]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/mailbox/bcm-pdc-mailbox.c
mailbox: bcm-pdc: Use octal permissions rather than symbolic
[mirror_ubuntu-focal-kernel.git] / drivers / mailbox / bcm-pdc-mailbox.c
CommitLineData
a24532f8
RR
1/*
2 * Copyright 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation (the "GPL").
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License version 2 (GPLv2) for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * version 2 (GPLv2) along with this source code.
15 */
16
17/*
18 * Broadcom PDC Mailbox Driver
19 * The PDC provides a ring based programming interface to one or more hardware
20 * offload engines. For example, the PDC driver works with both SPU-M and SPU2
21 * cryptographic offload hardware. In some chips the PDC is referred to as MDE.
22 *
23 * The PDC driver registers with the Linux mailbox framework as a mailbox
24 * controller, once for each PDC instance. Ring 0 for each PDC is registered as
25 * a mailbox channel. The PDC driver uses interrupts to determine when data
26 * transfers to and from an offload engine are complete. The PDC driver uses
27 * threaded IRQs so that response messages are handled outside of interrupt
28 * context.
29 *
30 * The PDC driver allows multiple messages to be pending in the descriptor
31 * rings. The tx_msg_start descriptor index indicates where the last message
32 * starts. The txin_numd value at this index indicates how many descriptor
33 * indexes make up the message. Similar state is kept on the receive side. When
34 * an rx interrupt indicates a response is ready, the PDC driver processes numd
35 * descriptors from the tx and rx ring, thus processing one response at a time.
36 */
37
38#include <linux/errno.h>
39#include <linux/module.h>
40#include <linux/init.h>
41#include <linux/slab.h>
42#include <linux/debugfs.h>
43#include <linux/interrupt.h>
44#include <linux/wait.h>
45#include <linux/platform_device.h>
46#include <linux/io.h>
47#include <linux/of.h>
48#include <linux/of_device.h>
49#include <linux/of_address.h>
50#include <linux/of_irq.h>
51#include <linux/mailbox_controller.h>
52#include <linux/mailbox/brcm-message.h>
53#include <linux/scatterlist.h>
54#include <linux/dma-direction.h>
55#include <linux/dma-mapping.h>
56#include <linux/dmapool.h>
57
58#define PDC_SUCCESS 0
59
60#define RING_ENTRY_SIZE sizeof(struct dma64dd)
61
62/* # entries in PDC dma ring */
63#define PDC_RING_ENTRIES 128
64#define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
65/* Rings are 8k aligned */
66#define RING_ALIGN_ORDER 13
67#define RING_ALIGN BIT(RING_ALIGN_ORDER)
68
69#define RX_BUF_ALIGN_ORDER 5
70#define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER)
71
72/* descriptor bumping macros */
73#define XXD(x, max_mask) ((x) & (max_mask))
74#define TXD(x, max_mask) XXD((x), (max_mask))
75#define RXD(x, max_mask) XXD((x), (max_mask))
76#define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask))
77#define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask))
78#define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask))
79#define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask))
80#define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask))
81#define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask))
82
83/* Length of BCM header at start of SPU msg, in bytes */
84#define BCM_HDR_LEN 8
85
86/*
87 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
88 * not currently support use of multiple ringsets on a single PDC engine.
89 */
90#define PDC_RINGSET 0
91
92/*
93 * Interrupt mask and status definitions. Enable interrupts for tx and rx on
94 * ring 0
95 */
96#define PDC_XMTINT_0 (24 + PDC_RINGSET)
97#define PDC_RCVINT_0 (16 + PDC_RINGSET)
98#define PDC_XMTINTEN_0 BIT(PDC_XMTINT_0)
99#define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0)
100#define PDC_INTMASK (PDC_XMTINTEN_0 | PDC_RCVINTEN_0)
101#define PDC_LAZY_FRAMECOUNT 1
102#define PDC_LAZY_TIMEOUT 10000
103#define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
104#define PDC_INTMASK_OFFSET 0x24
105#define PDC_INTSTATUS_OFFSET 0x20
106#define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET)
107
108/*
109 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
110 * before frame
111 */
112#define PDC_SPU2_RESP_HDR_LEN 17
113#define PDC_CKSUM_CTRL BIT(27)
114#define PDC_CKSUM_CTRL_OFFSET 0x400
115
116#define PDC_SPUM_RESP_HDR_LEN 32
117
118/*
119 * Sets the following bits for write to transmit control reg:
120 * 0 - XmtEn - enable activity on the tx channel
121 * 11 - PtyChkDisable - parity check is disabled
122 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
123 */
124#define PDC_TX_CTL 0x000C0801
125
126/*
127 * Sets the following bits for write to receive control reg:
128 * 0 - RcvEn - enable activity on the rx channel
129 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf
130 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors
131 * that have StartOfFrame set
132 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
133 * remaining bytes in current frame, report error
134 * in rx frame status for current frame
135 * 11 - PtyChkDisable - parity check is disabled
136 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
137 */
138#define PDC_RX_CTL 0x000C0E01
139
140#define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
141
142/* descriptor flags */
143#define D64_CTRL1_EOT BIT(28) /* end of descriptor table */
144#define D64_CTRL1_IOC BIT(29) /* interrupt on complete */
145#define D64_CTRL1_EOF BIT(30) /* end of frame */
146#define D64_CTRL1_SOF BIT(31) /* start of frame */
147
148#define RX_STATUS_OVERFLOW 0x00800000
149#define RX_STATUS_LEN 0x0000FFFF
150
151#define PDC_TXREGS_OFFSET 0x200
152#define PDC_RXREGS_OFFSET 0x220
153
154/* Maximum size buffer the DMA engine can handle */
155#define PDC_DMA_BUF_MAX 16384
156
157struct pdc_dma_map {
158 void *ctx; /* opaque context associated with frame */
159};
160
161/* dma descriptor */
162struct dma64dd {
163 u32 ctrl1; /* misc control bits */
164 u32 ctrl2; /* buffer count and address extension */
165 u32 addrlow; /* memory address of the date buffer, bits 31:0 */
166 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */
167};
168
169/* dma registers per channel(xmt or rcv) */
170struct dma64_regs {
171 u32 control; /* enable, et al */
172 u32 ptr; /* last descriptor posted to chip */
173 u32 addrlow; /* descriptor ring base address low 32-bits */
174 u32 addrhigh; /* descriptor ring base address bits 63:32 */
175 u32 status0; /* last rx descriptor written by hw */
176 u32 status1; /* driver does not use */
177};
178
179/* cpp contortions to concatenate w/arg prescan */
180#ifndef PAD
181#define _PADLINE(line) pad ## line
182#define _XSTR(line) _PADLINE(line)
183#define PAD _XSTR(__LINE__)
184#endif /* PAD */
185
186/* dma registers. matches hw layout. */
187struct dma64 {
188 struct dma64_regs dmaxmt; /* dma tx */
189 u32 PAD[2];
190 struct dma64_regs dmarcv; /* dma rx */
191 u32 PAD[2];
192};
193
194/* PDC registers */
195struct pdc_regs {
196 u32 devcontrol; /* 0x000 */
197 u32 devstatus; /* 0x004 */
198 u32 PAD;
199 u32 biststatus; /* 0x00c */
200 u32 PAD[4];
201 u32 intstatus; /* 0x020 */
202 u32 intmask; /* 0x024 */
203 u32 gptimer; /* 0x028 */
204
205 u32 PAD;
206 u32 intrcvlazy_0; /* 0x030 */
207 u32 intrcvlazy_1; /* 0x034 */
208 u32 intrcvlazy_2; /* 0x038 */
209 u32 intrcvlazy_3; /* 0x03c */
210
211 u32 PAD[48];
212 u32 removed_intrecvlazy; /* 0x100 */
213 u32 flowctlthresh; /* 0x104 */
214 u32 wrrthresh; /* 0x108 */
215 u32 gmac_idle_cnt_thresh; /* 0x10c */
216
217 u32 PAD[4];
218 u32 ifioaccessaddr; /* 0x120 */
219 u32 ifioaccessbyte; /* 0x124 */
220 u32 ifioaccessdata; /* 0x128 */
221
222 u32 PAD[21];
223 u32 phyaccess; /* 0x180 */
224 u32 PAD;
225 u32 phycontrol; /* 0x188 */
226 u32 txqctl; /* 0x18c */
227 u32 rxqctl; /* 0x190 */
228 u32 gpioselect; /* 0x194 */
229 u32 gpio_output_en; /* 0x198 */
230 u32 PAD; /* 0x19c */
231 u32 txq_rxq_mem_ctl; /* 0x1a0 */
232 u32 memory_ecc_status; /* 0x1a4 */
233 u32 serdes_ctl; /* 0x1a8 */
234 u32 serdes_status0; /* 0x1ac */
235 u32 serdes_status1; /* 0x1b0 */
236 u32 PAD[11]; /* 0x1b4-1dc */
237 u32 clk_ctl_st; /* 0x1e0 */
238 u32 hw_war; /* 0x1e4 */
239 u32 pwrctl; /* 0x1e8 */
240 u32 PAD[5];
241
242#define PDC_NUM_DMA_RINGS 4
243 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */
244
245 /* more registers follow, but we don't use them */
246};
247
248/* structure for allocating/freeing DMA rings */
249struct pdc_ring_alloc {
250 dma_addr_t dmabase; /* DMA address of start of ring */
251 void *vbase; /* base kernel virtual address of ring */
252 u32 size; /* ring allocation size in bytes */
253};
254
255/* PDC state structure */
256struct pdc_state {
257 /* synchronize access to this PDC state structure */
258 spinlock_t pdc_lock;
259
260 /* Index of the PDC whose state is in this structure instance */
261 u8 pdc_idx;
262
263 /* Platform device for this PDC instance */
264 struct platform_device *pdev;
265
266 /*
267 * Each PDC instance has a mailbox controller. PDC receives request
268 * messages through mailboxes, and sends response messages through the
269 * mailbox framework.
270 */
271 struct mbox_controller mbc;
272
273 unsigned int pdc_irq;
274
275 /*
276 * Last interrupt status read from PDC device. Saved in interrupt
277 * handler so the handler can clear the interrupt in the device,
278 * and the interrupt thread called later can know which interrupt
279 * bits are active.
280 */
281 unsigned long intstatus;
282
283 /* Number of bytes of receive status prior to each rx frame */
284 u32 rx_status_len;
285 /* Whether a BCM header is prepended to each frame */
286 bool use_bcm_hdr;
287 /* Sum of length of BCM header and rx status header */
288 u32 pdc_resp_hdr_len;
289
290 /* The base virtual address of DMA hw registers */
291 void __iomem *pdc_reg_vbase;
292
293 /* Pool for allocation of DMA rings */
294 struct dma_pool *ring_pool;
295
296 /* Pool for allocation of metadata buffers for response messages */
297 struct dma_pool *rx_buf_pool;
298
299 /*
300 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
301 * DMA address and size of ring allocation.
302 */
303 struct pdc_ring_alloc tx_ring_alloc;
304 struct pdc_ring_alloc rx_ring_alloc;
305
306 struct pdc_regs *regs; /* start of PDC registers */
307
308 struct dma64_regs *txregs_64; /* dma tx engine registers */
309 struct dma64_regs *rxregs_64; /* dma rx engine registers */
310
311 /*
312 * Arrays of PDC_RING_ENTRIES descriptors
313 * To use multiple ringsets, this needs to be extended
314 */
315 struct dma64dd *txd_64; /* tx descriptor ring */
316 struct dma64dd *rxd_64; /* rx descriptor ring */
317
318 /* descriptor ring sizes */
319 u32 ntxd; /* # tx descriptors */
320 u32 nrxd; /* # rx descriptors */
321 u32 nrxpost; /* # rx buffers to keep posted */
322 u32 ntxpost; /* max number of tx buffers that can be posted */
323
324 /*
325 * Index of next tx descriptor to reclaim. That is, the descriptor
326 * index of the oldest tx buffer for which the host has yet to process
327 * the corresponding response.
328 */
329 u32 txin;
330
331 /*
332 * Index of the first receive descriptor for the sequence of
333 * message fragments currently under construction. Used to build up
334 * the rxin_numd count for a message. Updated to rxout when the host
335 * starts a new sequence of rx buffers for a new message.
336 */
337 u32 tx_msg_start;
338
339 /* Index of next tx descriptor to post. */
340 u32 txout;
341
342 /*
343 * Number of tx descriptors associated with the message that starts
344 * at this tx descriptor index.
345 */
346 u32 txin_numd[PDC_RING_ENTRIES];
347
348 /*
349 * Index of next rx descriptor to reclaim. This is the index of
350 * the next descriptor whose data has yet to be processed by the host.
351 */
352 u32 rxin;
353
354 /*
355 * Index of the first receive descriptor for the sequence of
356 * message fragments currently under construction. Used to build up
357 * the rxin_numd count for a message. Updated to rxout when the host
358 * starts a new sequence of rx buffers for a new message.
359 */
360 u32 rx_msg_start;
361
362 /*
363 * Saved value of current hardware rx descriptor index.
364 * The last rx buffer written by the hw is the index previous to
365 * this one.
366 */
367 u32 last_rx_curr;
368
369 /* Index of next rx descriptor to post. */
370 u32 rxout;
371
372 /*
373 * opaque context associated with frame that starts at each
374 * rx ring index.
375 */
376 void *rxp_ctx[PDC_RING_ENTRIES];
377
378 /*
379 * Scatterlists used to form request and reply frames beginning at a
380 * given ring index. Retained in order to unmap each sg after reply
381 * is processed
382 */
383 struct scatterlist *src_sg[PDC_RING_ENTRIES];
384 struct scatterlist *dst_sg[PDC_RING_ENTRIES];
385
386 /*
387 * Number of rx descriptors associated with the message that starts
388 * at this descriptor index. Not set for every index. For example,
389 * if descriptor index i points to a scatterlist with 4 entries, then
390 * the next three descriptor indexes don't have a value set.
391 */
392 u32 rxin_numd[PDC_RING_ENTRIES];
393
394 void *resp_hdr[PDC_RING_ENTRIES];
395 dma_addr_t resp_hdr_daddr[PDC_RING_ENTRIES];
396
397 struct dentry *debugfs_stats; /* debug FS stats file for this PDC */
398
399 /* counters */
400 u32 pdc_requests; /* number of request messages submitted */
401 u32 pdc_replies; /* number of reply messages received */
402 u32 txnobuf; /* count of tx ring full */
403 u32 rxnobuf; /* count of rx ring full */
404 u32 rx_oflow; /* count of rx overflows */
405};
406
407/* Global variables */
408
409struct pdc_globals {
410 /* Actual number of SPUs in hardware, as reported by device tree */
411 u32 num_spu;
412};
413
414static struct pdc_globals pdcg;
415
416/* top level debug FS directory for PDC driver */
417static struct dentry *debugfs_dir;
418
419static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
420 size_t count, loff_t *offp)
421{
422 struct pdc_state *pdcs;
423 char *buf;
424 ssize_t ret, out_offset, out_count;
425
426 out_count = 512;
427
428 buf = kmalloc(out_count, GFP_KERNEL);
429 if (!buf)
430 return -ENOMEM;
431
432 pdcs = filp->private_data;
433 out_offset = 0;
434 out_offset += snprintf(buf + out_offset, out_count - out_offset,
435 "SPU %u stats:\n", pdcs->pdc_idx);
436 out_offset += snprintf(buf + out_offset, out_count - out_offset,
437 "PDC requests............%u\n",
438 pdcs->pdc_requests);
439 out_offset += snprintf(buf + out_offset, out_count - out_offset,
440 "PDC responses...........%u\n",
441 pdcs->pdc_replies);
442 out_offset += snprintf(buf + out_offset, out_count - out_offset,
443 "Tx err ring full........%u\n",
444 pdcs->txnobuf);
445 out_offset += snprintf(buf + out_offset, out_count - out_offset,
446 "Rx err ring full........%u\n",
447 pdcs->rxnobuf);
448 out_offset += snprintf(buf + out_offset, out_count - out_offset,
449 "Receive overflow........%u\n",
450 pdcs->rx_oflow);
451
452 if (out_offset > out_count)
453 out_offset = out_count;
454
455 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
456 kfree(buf);
457 return ret;
458}
459
460static const struct file_operations pdc_debugfs_stats = {
461 .owner = THIS_MODULE,
462 .open = simple_open,
463 .read = pdc_debugfs_read,
464};
465
466/**
467 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
468 * directory has not yet been created, create it now. Create a stats file in
469 * this directory for a SPU.
470 * @pdcs: PDC state structure
471 */
a75e4a85 472static void pdc_setup_debugfs(struct pdc_state *pdcs)
a24532f8
RR
473{
474 char spu_stats_name[16];
475
476 if (!debugfs_initialized())
477 return;
478
479 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
480 if (!debugfs_dir)
481 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
482
9b1b2b3a
RR
483 /* S_IRUSR == 0400 */
484 pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400,
a24532f8
RR
485 debugfs_dir, pdcs,
486 &pdc_debugfs_stats);
487}
488
a75e4a85 489static void pdc_free_debugfs(void)
a24532f8
RR
490{
491 if (debugfs_dir && simple_empty(debugfs_dir)) {
492 debugfs_remove_recursive(debugfs_dir);
493 debugfs_dir = NULL;
494 }
495}
496
497/**
498 * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
499 * @pdcs: PDC state for SPU that will generate result
500 * @dma_addr: DMA address of buffer that descriptor is being built for
501 * @buf_len: Length of the receive buffer, in bytes
502 * @flags: Flags to be stored in descriptor
503 */
504static inline void
505pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
506 u32 buf_len, u32 flags)
507{
508 struct device *dev = &pdcs->pdev->dev;
509
510 dev_dbg(dev,
511 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
512 pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
513
514 iowrite32(lower_32_bits(dma_addr),
515 (void *)&pdcs->rxd_64[pdcs->rxout].addrlow);
516 iowrite32(upper_32_bits(dma_addr),
517 (void *)&pdcs->rxd_64[pdcs->rxout].addrhigh);
518 iowrite32(flags, (void *)&pdcs->rxd_64[pdcs->rxout].ctrl1);
519 iowrite32(buf_len, (void *)&pdcs->rxd_64[pdcs->rxout].ctrl2);
520 /* bump ring index and return */
521 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
522}
523
524/**
525 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
526 * hardware.
527 * @pdcs: PDC state for the SPU that will process this request
528 * @dma_addr: DMA address of packet to be transmitted
529 * @buf_len: Length of tx buffer, in bytes
530 * @flags: Flags to be stored in descriptor
531 */
532static inline void
533pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
534 u32 flags)
535{
536 struct device *dev = &pdcs->pdev->dev;
537
538 dev_dbg(dev,
539 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
540 pdcs->pdc_idx, pdcs->txout, buf_len, flags);
541
542 iowrite32(lower_32_bits(dma_addr),
543 (void *)&pdcs->txd_64[pdcs->txout].addrlow);
544 iowrite32(upper_32_bits(dma_addr),
545 (void *)&pdcs->txd_64[pdcs->txout].addrhigh);
546 iowrite32(flags, (void *)&pdcs->txd_64[pdcs->txout].ctrl1);
547 iowrite32(buf_len, (void *)&pdcs->txd_64[pdcs->txout].ctrl2);
548
549 /* bump ring index and return */
550 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
551}
552
553/**
554 * pdc_receive() - Receive a response message from a given SPU.
555 * @pdcs: PDC state for the SPU to receive from
556 * @mssg: mailbox message to be returned to client
557 *
558 * When the return code indicates success, the response message is available in
559 * the receive buffers provided prior to submission of the request.
560 *
561 * Input:
562 * pdcs - PDC state structure for the SPU to be polled
563 * mssg - mailbox message to be returned to client. This function sets the
564 * context pointer on the message to help the client associate the
565 * response with a request.
566 *
567 * Return: PDC_SUCCESS if one or more receive descriptors was processed
568 * -EAGAIN indicates that no response message is available
569 * -EIO an error occurred
570 */
571static int
572pdc_receive(struct pdc_state *pdcs, struct brcm_message *mssg)
573{
574 struct device *dev = &pdcs->pdev->dev;
575 u32 len, rx_status;
576 u32 num_frags;
577 int i;
578 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */
579 u32 frags_rdy; /* number of fragments ready to read */
580 u32 rx_idx; /* ring index of start of receive frame */
581 dma_addr_t resp_hdr_daddr;
582
583 spin_lock(&pdcs->pdc_lock);
584
585 /*
586 * return if a complete response message is not yet ready.
587 * rxin_numd[rxin] is the number of fragments in the next msg
588 * to read.
589 */
590 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
591 if ((frags_rdy == 0) || (frags_rdy < pdcs->rxin_numd[pdcs->rxin])) {
592 /* See if the hw has written more fragments than we know */
593 pdcs->last_rx_curr =
594 (ioread32((void *)&pdcs->rxregs_64->status0) &
595 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
596 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
597 pdcs->nrxpost);
598 if ((frags_rdy == 0) ||
599 (frags_rdy < pdcs->rxin_numd[pdcs->rxin])) {
600 /* No response ready */
601 spin_unlock(&pdcs->pdc_lock);
602 return -EAGAIN;
603 }
604 /* can't read descriptors/data until write index is read */
605 rmb();
606 }
607
608 num_frags = pdcs->txin_numd[pdcs->txin];
609 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
610 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
611
612 for (i = 0; i < num_frags; i++)
613 pdcs->txin = NEXTTXD(pdcs->txin, pdcs->ntxpost);
614
615 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
616 pdcs->pdc_idx, num_frags);
617
618 rx_idx = pdcs->rxin;
619 num_frags = pdcs->rxin_numd[rx_idx];
620 /* Return opaque context with result */
621 mssg->ctx = pdcs->rxp_ctx[rx_idx];
622 pdcs->rxp_ctx[rx_idx] = NULL;
623 resp_hdr = pdcs->resp_hdr[rx_idx];
624 resp_hdr_daddr = pdcs->resp_hdr_daddr[rx_idx];
625 dma_unmap_sg(dev, pdcs->dst_sg[rx_idx],
626 sg_nents(pdcs->dst_sg[rx_idx]), DMA_FROM_DEVICE);
627
628 for (i = 0; i < num_frags; i++)
629 pdcs->rxin = NEXTRXD(pdcs->rxin, pdcs->nrxpost);
630
631 spin_unlock(&pdcs->pdc_lock);
632
633 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
634 pdcs->pdc_idx, num_frags);
635
636 dev_dbg(dev,
637 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
638 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
639 pdcs->rxout, pdcs->last_rx_curr);
640
641 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
642 /*
643 * For SPU-M, get length of response msg and rx overflow status.
644 */
645 rx_status = *((u32 *)resp_hdr);
646 len = rx_status & RX_STATUS_LEN;
647 dev_dbg(dev,
648 "SPU response length %u bytes", len);
649 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
650 if (rx_status & RX_STATUS_OVERFLOW) {
651 dev_err_ratelimited(dev,
652 "crypto receive overflow");
653 pdcs->rx_oflow++;
654 } else {
655 dev_info_ratelimited(dev, "crypto rx len = 0");
656 }
657 return -EIO;
658 }
659 }
660
661 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
662
663 pdcs->pdc_replies++;
664 /* if we read one or more rx descriptors, claim success */
665 if (num_frags > 0)
666 return PDC_SUCCESS;
667 else
668 return -EIO;
669}
670
671/**
672 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
673 * descriptors for a given SPU. The scatterlist buffers contain the data for a
674 * SPU request message.
675 * @spu_idx: The index of the SPU to submit the request to, [0, max_spu)
676 * @sg: Scatterlist whose buffers contain part of the SPU request
677 *
678 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
679 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
680 *
681 * Return: PDC_SUCCESS if successful
682 * < 0 otherwise
683 */
684static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
685{
686 u32 flags = 0;
687 u32 eot;
688 u32 tx_avail;
689
690 /*
691 * Num descriptors needed. Conservatively assume we need a descriptor
692 * for every entry in sg.
693 */
694 u32 num_desc;
695 u32 desc_w = 0; /* Number of tx descriptors written */
696 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
697 dma_addr_t databufptr; /* DMA address to put in descriptor */
698
699 num_desc = (u32)sg_nents(sg);
700
701 /* check whether enough tx descriptors are available */
702 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
703 pdcs->ntxpost);
704 if (unlikely(num_desc > tx_avail)) {
705 pdcs->txnobuf++;
706 return -ENOSPC;
707 }
708
709 /* build tx descriptors */
710 if (pdcs->tx_msg_start == pdcs->txout) {
711 /* Start of frame */
712 pdcs->txin_numd[pdcs->tx_msg_start] = 0;
713 pdcs->src_sg[pdcs->txout] = sg;
714 flags = D64_CTRL1_SOF;
715 }
716
717 while (sg) {
718 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
719 eot = D64_CTRL1_EOT;
720 else
721 eot = 0;
722
723 /*
724 * If sg buffer larger than PDC limit, split across
725 * multiple descriptors
726 */
727 bufcnt = sg_dma_len(sg);
728 databufptr = sg_dma_address(sg);
729 while (bufcnt > PDC_DMA_BUF_MAX) {
730 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
731 flags | eot);
732 desc_w++;
733 bufcnt -= PDC_DMA_BUF_MAX;
734 databufptr += PDC_DMA_BUF_MAX;
735 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
736 eot = D64_CTRL1_EOT;
737 else
738 eot = 0;
739 }
740 sg = sg_next(sg);
741 if (!sg)
742 /* Writing last descriptor for frame */
743 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
744 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
745 desc_w++;
746 /* Clear start of frame after first descriptor */
747 flags &= ~D64_CTRL1_SOF;
748 }
749 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
750
751 return PDC_SUCCESS;
752}
753
754/**
755 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
756 * ring.
757 * @pdcs: PDC state for SPU to process the request
758 *
759 * Sets the index of the last descriptor written in both the rx and tx ring.
760 *
761 * Return: PDC_SUCCESS
762 */
763static int pdc_tx_list_final(struct pdc_state *pdcs)
764{
765 /*
766 * write barrier to ensure all register writes are complete
767 * before chip starts to process new request
768 */
769 wmb();
770 iowrite32(pdcs->rxout << 4, (void *)&pdcs->rxregs_64->ptr);
771 iowrite32(pdcs->txout << 4, (void *)&pdcs->txregs_64->ptr);
772 pdcs->pdc_requests++;
773
774 return PDC_SUCCESS;
775}
776
777/**
778 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
779 * @pdcs: PDC state for SPU handling request
780 * @dst_sg: scatterlist providing rx buffers for response to be returned to
781 * mailbox client
782 * @ctx: Opaque context for this request
783 *
784 * Posts a single receive descriptor to hold the metadata that precedes a
785 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
786 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
787 * rx to indicate the start of a new message.
788 *
789 * Return: PDC_SUCCESS if successful
790 * < 0 if an error (e.g., rx ring is full)
791 */
792static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
793 void *ctx)
794{
795 u32 flags = 0;
796 u32 rx_avail;
797 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */
798 dma_addr_t daddr;
799 void *vaddr;
800
801 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
802 pdcs->nrxpost);
803 if (unlikely(rx_pkt_cnt > rx_avail)) {
804 pdcs->rxnobuf++;
805 return -ENOSPC;
806 }
807
808 /* allocate a buffer for the dma rx status */
809 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
810 if (!vaddr)
811 return -ENOMEM;
812
813 /*
814 * Update msg_start indexes for both tx and rx to indicate the start
815 * of a new sequence of descriptor indexes that contain the fragments
816 * of the same message.
817 */
818 pdcs->rx_msg_start = pdcs->rxout;
819 pdcs->tx_msg_start = pdcs->txout;
820
821 /* This is always the first descriptor in the receive sequence */
822 flags = D64_CTRL1_SOF;
823 pdcs->rxin_numd[pdcs->rx_msg_start] = 1;
824
825 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
826 flags |= D64_CTRL1_EOT;
827
828 pdcs->rxp_ctx[pdcs->rxout] = ctx;
829 pdcs->dst_sg[pdcs->rxout] = dst_sg;
830 pdcs->resp_hdr[pdcs->rxout] = vaddr;
831 pdcs->resp_hdr_daddr[pdcs->rxout] = daddr;
832 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
833 return PDC_SUCCESS;
834}
835
836/**
837 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
838 * descriptors for a given SPU. The caller must have already DMA mapped the
839 * scatterlist.
840 * @spu_idx: Indicates which SPU the buffers are for
841 * @sg: Scatterlist whose buffers are added to the receive ring
842 *
843 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
844 * multiple receive descriptors are written, each with a buffer <=
845 * PDC_DMA_BUF_MAX.
846 *
847 * Return: PDC_SUCCESS if successful
848 * < 0 otherwise (e.g., receive ring is full)
849 */
850static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
851{
852 u32 flags = 0;
853 u32 rx_avail;
854
855 /*
856 * Num descriptors needed. Conservatively assume we need a descriptor
857 * for every entry from our starting point in the scatterlist.
858 */
859 u32 num_desc;
860 u32 desc_w = 0; /* Number of tx descriptors written */
861 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
862 dma_addr_t databufptr; /* DMA address to put in descriptor */
863
864 num_desc = (u32)sg_nents(sg);
865
866 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
867 pdcs->nrxpost);
868 if (unlikely(num_desc > rx_avail)) {
869 pdcs->rxnobuf++;
870 return -ENOSPC;
871 }
872
873 while (sg) {
874 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
875 flags = D64_CTRL1_EOT;
876 else
877 flags = 0;
878
879 /*
880 * If sg buffer larger than PDC limit, split across
881 * multiple descriptors
882 */
883 bufcnt = sg_dma_len(sg);
884 databufptr = sg_dma_address(sg);
885 while (bufcnt > PDC_DMA_BUF_MAX) {
886 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
887 desc_w++;
888 bufcnt -= PDC_DMA_BUF_MAX;
889 databufptr += PDC_DMA_BUF_MAX;
890 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
891 flags = D64_CTRL1_EOT;
892 else
893 flags = 0;
894 }
895 pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
896 desc_w++;
897 sg = sg_next(sg);
898 }
899 pdcs->rxin_numd[pdcs->rx_msg_start] += desc_w;
900
901 return PDC_SUCCESS;
902}
903
904/**
905 * pdc_irq_handler() - Interrupt handler called in interrupt context.
906 * @irq: Interrupt number that has fired
907 * @cookie: PDC state for DMA engine that generated the interrupt
908 *
909 * We have to clear the device interrupt status flags here. So cache the
910 * status for later use in the thread function. Other than that, just return
911 * WAKE_THREAD to invoke the thread function.
912 *
913 * Return: IRQ_WAKE_THREAD if interrupt is ours
914 * IRQ_NONE otherwise
915 */
916static irqreturn_t pdc_irq_handler(int irq, void *cookie)
917{
918 struct pdc_state *pdcs = cookie;
919 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
920
921 if (intstatus & PDC_XMTINTEN_0)
922 set_bit(PDC_XMTINT_0, &pdcs->intstatus);
923 if (intstatus & PDC_RCVINTEN_0)
924 set_bit(PDC_RCVINT_0, &pdcs->intstatus);
925
926 /* Clear interrupt flags in device */
927 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
928
929 /* Wakeup IRQ thread */
930 if (pdcs && (irq == pdcs->pdc_irq) && (intstatus & PDC_INTMASK))
931 return IRQ_WAKE_THREAD;
932
933 return IRQ_NONE;
934}
935
936/**
937 * pdc_irq_thread() - Function invoked on deferred thread when a DMA tx has
938 * completed or data is available to receive.
939 * @irq: Interrupt number
940 * @cookie: PDC state for PDC that generated the interrupt
941 *
942 * On DMA tx complete, notify the mailbox client. On DMA rx complete, process
943 * as many SPU response messages as are available and send each to the mailbox
944 * client.
945 *
946 * Return: IRQ_HANDLED if we recognized and handled the interrupt
947 * IRQ_NONE otherwise
948 */
949static irqreturn_t pdc_irq_thread(int irq, void *cookie)
950{
951 struct pdc_state *pdcs = cookie;
952 struct mbox_controller *mbc;
953 struct mbox_chan *chan;
954 bool tx_int;
955 bool rx_int;
956 int rx_status;
957 struct brcm_message mssg;
958
959 tx_int = test_and_clear_bit(PDC_XMTINT_0, &pdcs->intstatus);
960 rx_int = test_and_clear_bit(PDC_RCVINT_0, &pdcs->intstatus);
961
962 if (pdcs && (tx_int || rx_int)) {
963 dev_dbg(&pdcs->pdev->dev,
964 "%s() got irq %d with tx_int %s, rx_int %s",
965 __func__, irq,
966 tx_int ? "set" : "clear", rx_int ? "set" : "clear");
967
968 mbc = &pdcs->mbc;
969 chan = &mbc->chans[0];
970
971 if (tx_int) {
972 dev_dbg(&pdcs->pdev->dev, "%s(): tx done", __func__);
973 /* only one frame in flight at a time */
974 mbox_chan_txdone(chan, PDC_SUCCESS);
975 }
976 if (rx_int) {
977 while (1) {
978 /* Could be many frames ready */
979 memset(&mssg, 0, sizeof(mssg));
980 mssg.type = BRCM_MESSAGE_SPU;
981 rx_status = pdc_receive(pdcs, &mssg);
982 if (rx_status >= 0) {
983 dev_dbg(&pdcs->pdev->dev,
984 "%s(): invoking client rx cb",
985 __func__);
986 mbox_chan_received_data(chan, &mssg);
987 } else {
988 dev_dbg(&pdcs->pdev->dev,
989 "%s(): no SPU response available",
990 __func__);
991 break;
992 }
993 }
994 }
995 return IRQ_HANDLED;
996 }
997 return IRQ_NONE;
998}
999
1000/**
1001 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
1002 * descriptors in one ringset.
1003 * @pdcs: PDC instance state
1004 * @ringset: index of ringset being used
1005 *
1006 * Return: PDC_SUCCESS if ring initialized
1007 * < 0 otherwise
1008 */
1009static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
1010{
1011 int i;
1012 int err = PDC_SUCCESS;
1013 struct dma64 *dma_reg;
1014 struct device *dev = &pdcs->pdev->dev;
1015 struct pdc_ring_alloc tx;
1016 struct pdc_ring_alloc rx;
1017
1018 /* Allocate tx ring */
1019 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
1020 if (!tx.vbase) {
1021 err = -ENOMEM;
1022 goto done;
1023 }
1024
1025 /* Allocate rx ring */
1026 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1027 if (!rx.vbase) {
1028 err = -ENOMEM;
1029 goto fail_dealloc;
1030 }
1031
a68b2166 1032 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase);
a24532f8 1033 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase);
a68b2166 1034 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase);
a24532f8
RR
1035 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase);
1036
1037 /* lock after ring allocation to avoid scheduling while atomic */
1038 spin_lock(&pdcs->pdc_lock);
1039
1040 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1041 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1042
1043 pdcs->rxin = 0;
1044 pdcs->rx_msg_start = 0;
1045 pdcs->last_rx_curr = 0;
1046 pdcs->rxout = 0;
1047 pdcs->txin = 0;
1048 pdcs->tx_msg_start = 0;
1049 pdcs->txout = 0;
1050
1051 /* Set descriptor array base addresses */
1052 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1053 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1054
1055 /* Tell device the base DMA address of each ring */
1056 dma_reg = &pdcs->regs->dmaregs[ringset];
1057 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1058 (void *)&dma_reg->dmaxmt.addrlow);
1059 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1060 (void *)&dma_reg->dmaxmt.addrhigh);
1061
1062 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1063 (void *)&dma_reg->dmarcv.addrlow);
1064 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1065 (void *)&dma_reg->dmarcv.addrhigh);
1066
1067 /* Initialize descriptors */
1068 for (i = 0; i < PDC_RING_ENTRIES; i++) {
1069 /* Every tx descriptor can be used for start of frame. */
1070 if (i != pdcs->ntxpost) {
1071 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1072 (void *)&pdcs->txd_64[i].ctrl1);
1073 } else {
1074 /* Last descriptor in ringset. Set End of Table. */
1075 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1076 D64_CTRL1_EOT,
1077 (void *)&pdcs->txd_64[i].ctrl1);
1078 }
1079
1080 /* Every rx descriptor can be used for start of frame */
1081 if (i != pdcs->nrxpost) {
1082 iowrite32(D64_CTRL1_SOF,
1083 (void *)&pdcs->rxd_64[i].ctrl1);
1084 } else {
1085 /* Last descriptor in ringset. Set End of Table. */
1086 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1087 (void *)&pdcs->rxd_64[i].ctrl1);
1088 }
1089 }
1090 spin_unlock(&pdcs->pdc_lock);
1091 return PDC_SUCCESS;
1092
1093fail_dealloc:
1094 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1095done:
1096 return err;
1097}
1098
1099static void pdc_ring_free(struct pdc_state *pdcs)
1100{
1101 if (pdcs->tx_ring_alloc.vbase) {
1102 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1103 pdcs->tx_ring_alloc.dmabase);
1104 pdcs->tx_ring_alloc.vbase = NULL;
1105 }
1106
1107 if (pdcs->rx_ring_alloc.vbase) {
1108 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1109 pdcs->rx_ring_alloc.dmabase);
1110 pdcs->rx_ring_alloc.vbase = NULL;
1111 }
1112}
1113
1114/**
1115 * pdc_send_data() - mailbox send_data function
1116 * @chan: The mailbox channel on which the data is sent. The channel
1117 * corresponds to a DMA ringset.
1118 * @data: The mailbox message to be sent. The message must be a
1119 * brcm_message structure.
1120 *
1121 * This function is registered as the send_data function for the mailbox
1122 * controller. From the destination scatterlist in the mailbox message, it
1123 * creates a sequence of receive descriptors in the rx ring. From the source
1124 * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1125 * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1126 * initiate the DMA transfer.
1127 *
1128 * This function does the DMA map and unmap of the src and dst scatterlists in
1129 * the mailbox message.
1130 *
1131 * Return: 0 if successful
1132 * -ENOTSUPP if the mailbox message is a type this driver does not
1133 * support
1134 * < 0 if an error
1135 */
1136static int pdc_send_data(struct mbox_chan *chan, void *data)
1137{
1138 struct pdc_state *pdcs = chan->con_priv;
1139 struct device *dev = &pdcs->pdev->dev;
1140 struct brcm_message *mssg = data;
1141 int err = PDC_SUCCESS;
1142 int src_nent;
1143 int dst_nent;
1144 int nent;
1145
1146 if (mssg->type != BRCM_MESSAGE_SPU)
1147 return -ENOTSUPP;
1148
1149 src_nent = sg_nents(mssg->spu.src);
1150 if (src_nent) {
1151 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1152 if (nent == 0)
1153 return -EIO;
1154 }
1155
1156 dst_nent = sg_nents(mssg->spu.dst);
1157 if (dst_nent) {
1158 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1159 DMA_FROM_DEVICE);
1160 if (nent == 0) {
1161 dma_unmap_sg(dev, mssg->spu.src, src_nent,
1162 DMA_TO_DEVICE);
1163 return -EIO;
1164 }
1165 }
1166
1167 spin_lock(&pdcs->pdc_lock);
1168
1169 /* Create rx descriptors to SPU catch response */
1170 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1171 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1172
1173 /* Create tx descriptors to submit SPU request */
1174 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1175 err |= pdc_tx_list_final(pdcs); /* initiate transfer */
1176
1177 spin_unlock(&pdcs->pdc_lock);
1178
1179 if (err)
1180 dev_err(&pdcs->pdev->dev,
1181 "%s failed with error %d", __func__, err);
1182
1183 return err;
1184}
1185
1186static int pdc_startup(struct mbox_chan *chan)
1187{
1188 return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1189}
1190
1191static void pdc_shutdown(struct mbox_chan *chan)
1192{
1193 struct pdc_state *pdcs = chan->con_priv;
1194
068cf29e
DC
1195 if (!pdcs)
1196 return;
a24532f8 1197
068cf29e
DC
1198 dev_dbg(&pdcs->pdev->dev,
1199 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
a24532f8
RR
1200 pdc_ring_free(pdcs);
1201}
1202
1203/**
1204 * pdc_hw_init() - Use the given initialization parameters to initialize the
1205 * state for one of the PDCs.
1206 * @pdcs: state of the PDC
1207 */
1208static
1209void pdc_hw_init(struct pdc_state *pdcs)
1210{
1211 struct platform_device *pdev;
1212 struct device *dev;
1213 struct dma64 *dma_reg;
1214 int ringset = PDC_RINGSET;
1215
1216 pdev = pdcs->pdev;
1217 dev = &pdev->dev;
1218
1219 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1220 dev_dbg(dev, "state structure: %p",
1221 pdcs);
1222 dev_dbg(dev, " - base virtual addr of hw regs %p",
1223 pdcs->pdc_reg_vbase);
1224
1225 /* initialize data structures */
1226 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1227 pdcs->txregs_64 = (struct dma64_regs *)
1228 (void *)(((u8 *)pdcs->pdc_reg_vbase) +
1229 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1230 pdcs->rxregs_64 = (struct dma64_regs *)
1231 (void *)(((u8 *)pdcs->pdc_reg_vbase) +
1232 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1233
1234 pdcs->ntxd = PDC_RING_ENTRIES;
1235 pdcs->nrxd = PDC_RING_ENTRIES;
1236 pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1237 pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1238 pdcs->regs->intmask = 0;
1239
1240 dma_reg = &pdcs->regs->dmaregs[ringset];
1241 iowrite32(0, (void *)&dma_reg->dmaxmt.ptr);
1242 iowrite32(0, (void *)&dma_reg->dmarcv.ptr);
1243
1244 iowrite32(PDC_TX_CTL, (void *)&dma_reg->dmaxmt.control);
1245
1246 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1247 (void *)&dma_reg->dmarcv.control);
1248
1249 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1250 iowrite32(PDC_CKSUM_CTRL,
1251 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1252}
1253
1254/**
1255 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1256 * header returned with each response message.
1257 * @pdcs: PDC state structure
1258 *
1259 * The metadata is not returned to the mailbox client. So the PDC driver
1260 * manages these buffers.
1261 *
1262 * Return: PDC_SUCCESS
1263 * -ENOMEM if pool creation fails
1264 */
1265static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1266{
1267 struct platform_device *pdev;
1268 struct device *dev;
1269
1270 pdev = pdcs->pdev;
1271 dev = &pdev->dev;
1272
1273 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1274 if (pdcs->use_bcm_hdr)
1275 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1276
1277 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1278 pdcs->pdc_resp_hdr_len,
1279 RX_BUF_ALIGN, 0);
1280 if (!pdcs->rx_buf_pool)
1281 return -ENOMEM;
1282
1283 return PDC_SUCCESS;
1284}
1285
1286/**
1287 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1288 * specify a threaded IRQ handler for deferred handling of interrupts outside of
1289 * interrupt context.
1290 * @pdcs: PDC state
1291 *
1292 * Set the interrupt mask for transmit and receive done.
1293 * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1294 *
1295 * Return: PDC_SUCCESS
1296 * <0 if threaded irq request fails
1297 */
1298static int pdc_interrupts_init(struct pdc_state *pdcs)
1299{
1300 struct platform_device *pdev = pdcs->pdev;
1301 struct device *dev = &pdev->dev;
1302 struct device_node *dn = pdev->dev.of_node;
1303 int err;
1304
1305 pdcs->intstatus = 0;
1306
1307 /* interrupt configuration */
1308 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1309 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + PDC_RCVLAZY0_OFFSET);
1310
1311 /* read irq from device tree */
1312 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1313 dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1314 dev_name(dev), pdcs->pdc_irq, pdcs);
1315 err = devm_request_threaded_irq(dev, pdcs->pdc_irq,
1316 pdc_irq_handler,
1317 pdc_irq_thread, 0, dev_name(dev), pdcs);
1318 if (err) {
1319 dev_err(dev, "threaded tx IRQ %u request failed with err %d\n",
1320 pdcs->pdc_irq, err);
1321 return err;
1322 }
1323 return PDC_SUCCESS;
1324}
1325
1326static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1327 .send_data = pdc_send_data,
1328 .startup = pdc_startup,
1329 .shutdown = pdc_shutdown
1330};
1331
1332/**
1333 * pdc_mb_init() - Initialize the mailbox controller.
1334 * @pdcs: PDC state
1335 *
1336 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1337 * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1338 * complete interrupt to determine when a mailbox message has successfully been
1339 * transmitted.
1340 *
1341 * Return: 0 on success
1342 * < 0 if there is an allocation or registration failure
1343 */
1344static int pdc_mb_init(struct pdc_state *pdcs)
1345{
1346 struct device *dev = &pdcs->pdev->dev;
1347 struct mbox_controller *mbc;
1348 int chan_index;
1349 int err;
1350
1351 mbc = &pdcs->mbc;
1352 mbc->dev = dev;
1353 mbc->ops = &pdc_mbox_chan_ops;
1354 mbc->num_chans = 1;
1355 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1356 GFP_KERNEL);
1357 if (!mbc->chans)
1358 return -ENOMEM;
1359
1360 mbc->txdone_irq = true;
1361 mbc->txdone_poll = false;
1362 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1363 mbc->chans[chan_index].con_priv = pdcs;
1364
1365 /* Register mailbox controller */
1366 err = mbox_controller_register(mbc);
1367 if (err) {
1368 dev_crit(dev,
1369 "Failed to register PDC mailbox controller. Error %d.",
1370 err);
1371 return err;
1372 }
1373 return 0;
1374}
1375
1376/**
1377 * pdc_dt_read() - Read application-specific data from device tree.
1378 * @pdev: Platform device
1379 * @pdcs: PDC state
1380 *
1381 * Reads the number of bytes of receive status that precede each received frame.
1382 * Reads whether transmit and received frames should be preceded by an 8-byte
1383 * BCM header.
1384 *
1385 * Return: 0 if successful
1386 * -ENODEV if device not available
1387 */
1388static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1389{
1390 struct device *dev = &pdev->dev;
1391 struct device_node *dn = pdev->dev.of_node;
1392 int err;
1393
1394 err = of_property_read_u32(dn, "brcm,rx-status-len",
1395 &pdcs->rx_status_len);
1396 if (err < 0)
1397 dev_err(dev,
1398 "%s failed to get DMA receive status length from device tree",
1399 __func__);
1400
1401 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1402
1403 return 0;
1404}
1405
1406/**
1407 * pdc_probe() - Probe function for PDC driver.
1408 * @pdev: PDC platform device
1409 *
1410 * Reserve and map register regions defined in device tree.
1411 * Allocate and initialize tx and rx DMA rings.
1412 * Initialize a mailbox controller for each PDC.
1413 *
1414 * Return: 0 if successful
1415 * < 0 if an error
1416 */
1417static int pdc_probe(struct platform_device *pdev)
1418{
1419 int err = 0;
1420 struct device *dev = &pdev->dev;
1421 struct resource *pdc_regs;
1422 struct pdc_state *pdcs;
1423
1424 /* PDC state for one SPU */
1425 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1426 if (!pdcs) {
1427 err = -ENOMEM;
1428 goto cleanup;
1429 }
1430
1431 spin_lock_init(&pdcs->pdc_lock);
1432 pdcs->pdev = pdev;
1433 platform_set_drvdata(pdev, pdcs);
1434 pdcs->pdc_idx = pdcg.num_spu;
1435 pdcg.num_spu++;
1436
1437 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1438 if (err) {
1439 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1440 goto cleanup;
1441 }
1442
1443 /* Create DMA pool for tx ring */
1444 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1445 RING_ALIGN, 0);
1446 if (!pdcs->ring_pool) {
1447 err = -ENOMEM;
1448 goto cleanup;
1449 }
1450
1451 err = pdc_dt_read(pdev, pdcs);
1452 if (err)
1453 goto cleanup_ring_pool;
1454
1455 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456 if (!pdc_regs) {
1457 err = -ENODEV;
1458 goto cleanup_ring_pool;
1459 }
a68b2166
RR
1460 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1461 &pdc_regs->start, &pdc_regs->end);
a24532f8
RR
1462
1463 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1464 if (IS_ERR(pdcs->pdc_reg_vbase)) {
1465 err = PTR_ERR(pdcs->pdc_reg_vbase);
1466 dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1467 goto cleanup_ring_pool;
1468 }
1469
1470 /* create rx buffer pool after dt read to know how big buffers are */
1471 err = pdc_rx_buf_pool_create(pdcs);
1472 if (err)
1473 goto cleanup_ring_pool;
1474
1475 pdc_hw_init(pdcs);
1476
1477 err = pdc_interrupts_init(pdcs);
1478 if (err)
1479 goto cleanup_buf_pool;
1480
1481 /* Initialize mailbox controller */
1482 err = pdc_mb_init(pdcs);
1483 if (err)
1484 goto cleanup_buf_pool;
1485
1486 pdcs->debugfs_stats = NULL;
1487 pdc_setup_debugfs(pdcs);
1488
1489 dev_dbg(dev, "pdc_probe() successful");
1490 return PDC_SUCCESS;
1491
1492cleanup_buf_pool:
1493 dma_pool_destroy(pdcs->rx_buf_pool);
1494
1495cleanup_ring_pool:
1496 dma_pool_destroy(pdcs->ring_pool);
1497
1498cleanup:
1499 return err;
1500}
1501
1502static int pdc_remove(struct platform_device *pdev)
1503{
1504 struct pdc_state *pdcs = platform_get_drvdata(pdev);
1505
1506 pdc_free_debugfs();
1507
1508 mbox_controller_unregister(&pdcs->mbc);
1509
1510 dma_pool_destroy(pdcs->rx_buf_pool);
1511 dma_pool_destroy(pdcs->ring_pool);
1512 return 0;
1513}
1514
1515static const struct of_device_id pdc_mbox_of_match[] = {
1516 {.compatible = "brcm,iproc-pdc-mbox"},
1517 { /* sentinel */ }
1518};
1519MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1520
1521static struct platform_driver pdc_mbox_driver = {
1522 .probe = pdc_probe,
1523 .remove = pdc_remove,
1524 .driver = {
1525 .name = "brcm-iproc-pdc-mbox",
1526 .of_match_table = of_match_ptr(pdc_mbox_of_match),
1527 },
1528};
1529module_platform_driver(pdc_mbox_driver);
1530
1531MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1532MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1533MODULE_LICENSE("GPL v2");