]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/bcache/alloc.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / md / bcache / alloc.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * Primary bucket allocation code
4 *
5 * Copyright 2012 Google, Inc.
6 *
7 * Allocation in bcache is done in terms of buckets:
8 *
9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10 * btree pointers - they must match for the pointer to be considered valid.
11 *
12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13 * bucket simply by incrementing its gen.
14 *
15 * The gens (along with the priorities; it's really the gens are important but
16 * the code is named as if it's the priorities) are written in an arbitrary list
17 * of buckets on disk, with a pointer to them in the journal header.
18 *
19 * When we invalidate a bucket, we have to write its new gen to disk and wait
20 * for that write to complete before we use it - otherwise after a crash we
21 * could have pointers that appeared to be good but pointed to data that had
22 * been overwritten.
23 *
24 * Since the gens and priorities are all stored contiguously on disk, we can
25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26 * call prio_write(), and when prio_write() finishes we pull buckets off the
27 * free_inc list and optionally discard them.
28 *
29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
30 * priorities and gens were being written before we could allocate. c->free is a
31 * smaller freelist, and buckets on that list are always ready to be used.
32 *
33 * If we've got discards enabled, that happens when a bucket moves from the
34 * free_inc list to the free list.
35 *
36 * There is another freelist, because sometimes we have buckets that we know
37 * have nothing pointing into them - these we can reuse without waiting for
38 * priorities to be rewritten. These come from freed btree nodes and buckets
39 * that garbage collection discovered no longer had valid keys pointing into
40 * them (because they were overwritten). That's the unused list - buckets on the
41 * unused list move to the free list, optionally being discarded in the process.
42 *
43 * It's also important to ensure that gens don't wrap around - with respect to
44 * either the oldest gen in the btree or the gen on disk. This is quite
45 * difficult to do in practice, but we explicitly guard against it anyways - if
46 * a bucket is in danger of wrapping around we simply skip invalidating it that
47 * time around, and we garbage collect or rewrite the priorities sooner than we
48 * would have otherwise.
49 *
50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
51 *
52 * bch_bucket_alloc_set() allocates one or more buckets from different caches
53 * out of a cache set.
54 *
55 * free_some_buckets() drives all the processes described above. It's called
56 * from bch_bucket_alloc() and a few other places that need to make sure free
57 * buckets are ready.
58 *
59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
60 * invalidated, and then invalidate them and stick them on the free_inc list -
61 * in either lru or fifo order.
62 */
63
64#include "bcache.h"
65#include "btree.h"
66
49b1212d 67#include <linux/blkdev.h>
119ba0f8 68#include <linux/kthread.h>
cafe5635 69#include <linux/random.h>
c37511b8 70#include <trace/events/bcache.h>
cafe5635 71
89b1fc54
TJ
72#define MAX_OPEN_BUCKETS 128
73
cafe5635
KO
74/* Bucket heap / gen */
75
76uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
77{
78 uint8_t ret = ++b->gen;
79
80 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
81 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
82
cafe5635
KO
83 return ret;
84}
85
86void bch_rescale_priorities(struct cache_set *c, int sectors)
87{
88 struct cache *ca;
89 struct bucket *b;
90 unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
91 unsigned i;
92 int r;
93
94 atomic_sub(sectors, &c->rescale);
95
96 do {
97 r = atomic_read(&c->rescale);
98
99 if (r >= 0)
100 return;
101 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
102
103 mutex_lock(&c->bucket_lock);
104
105 c->min_prio = USHRT_MAX;
106
107 for_each_cache(ca, c, i)
108 for_each_bucket(b, ca)
109 if (b->prio &&
110 b->prio != BTREE_PRIO &&
111 !atomic_read(&b->pin)) {
112 b->prio--;
113 c->min_prio = min(c->min_prio, b->prio);
114 }
115
116 mutex_unlock(&c->bucket_lock);
117}
118
2531d9ee
KO
119/*
120 * Background allocation thread: scans for buckets to be invalidated,
121 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
122 * then optionally issues discard commands to the newly free buckets, then puts
123 * them on the various freelists.
124 */
cafe5635
KO
125
126static inline bool can_inc_bucket_gen(struct bucket *b)
127{
2531d9ee 128 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
cafe5635
KO
129}
130
2531d9ee 131bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
cafe5635 132{
2531d9ee 133 BUG_ON(!ca->set->gc_mark_valid);
cafe5635 134
4fe6a816
KO
135 return (!GC_MARK(b) ||
136 GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
cafe5635
KO
137 !atomic_read(&b->pin) &&
138 can_inc_bucket_gen(b);
139}
140
2531d9ee 141void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
cafe5635 142{
2531d9ee
KO
143 lockdep_assert_held(&ca->set->bucket_lock);
144 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
7159b1ad
KO
145
146 if (GC_SECTORS_USED(b))
2531d9ee 147 trace_bcache_invalidate(ca, b - ca->buckets);
7159b1ad 148
cafe5635
KO
149 bch_inc_gen(ca, b);
150 b->prio = INITIAL_PRIO;
151 atomic_inc(&b->pin);
2531d9ee
KO
152}
153
154static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
155{
156 __bch_invalidate_one_bucket(ca, b);
157
158 fifo_push(&ca->free_inc, b - ca->buckets);
cafe5635
KO
159}
160
e0a985a4
KO
161/*
162 * Determines what order we're going to reuse buckets, smallest bucket_prio()
163 * first: we also take into account the number of sectors of live data in that
164 * bucket, and in order for that multiply to make sense we have to scale bucket
165 *
166 * Thus, we scale the bucket priorities so that the bucket with the smallest
167 * prio is worth 1/8th of what INITIAL_PRIO is worth.
168 */
169
170#define bucket_prio(b) \
171({ \
172 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
173 \
174 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
175})
cafe5635 176
b1a67b0f
KO
177#define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
178#define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
cafe5635 179
b1a67b0f
KO
180static void invalidate_buckets_lru(struct cache *ca)
181{
cafe5635
KO
182 struct bucket *b;
183 ssize_t i;
184
185 ca->heap.used = 0;
186
187 for_each_bucket(b, ca) {
2531d9ee 188 if (!bch_can_invalidate_bucket(ca, b))
86b26b82
KO
189 continue;
190
191 if (!heap_full(&ca->heap))
192 heap_add(&ca->heap, b, bucket_max_cmp);
193 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
194 ca->heap.data[0] = b;
195 heap_sift(&ca->heap, 0, bucket_max_cmp);
cafe5635
KO
196 }
197 }
198
cafe5635
KO
199 for (i = ca->heap.used / 2 - 1; i >= 0; --i)
200 heap_sift(&ca->heap, i, bucket_min_cmp);
201
202 while (!fifo_full(&ca->free_inc)) {
203 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
86b26b82
KO
204 /*
205 * We don't want to be calling invalidate_buckets()
cafe5635
KO
206 * multiple times when it can't do anything
207 */
208 ca->invalidate_needs_gc = 1;
72a44517 209 wake_up_gc(ca->set);
cafe5635
KO
210 return;
211 }
212
2531d9ee 213 bch_invalidate_one_bucket(ca, b);
cafe5635
KO
214 }
215}
216
217static void invalidate_buckets_fifo(struct cache *ca)
218{
219 struct bucket *b;
220 size_t checked = 0;
221
222 while (!fifo_full(&ca->free_inc)) {
223 if (ca->fifo_last_bucket < ca->sb.first_bucket ||
224 ca->fifo_last_bucket >= ca->sb.nbuckets)
225 ca->fifo_last_bucket = ca->sb.first_bucket;
226
227 b = ca->buckets + ca->fifo_last_bucket++;
228
2531d9ee
KO
229 if (bch_can_invalidate_bucket(ca, b))
230 bch_invalidate_one_bucket(ca, b);
cafe5635
KO
231
232 if (++checked >= ca->sb.nbuckets) {
233 ca->invalidate_needs_gc = 1;
72a44517 234 wake_up_gc(ca->set);
cafe5635
KO
235 return;
236 }
237 }
238}
239
240static void invalidate_buckets_random(struct cache *ca)
241{
242 struct bucket *b;
243 size_t checked = 0;
244
245 while (!fifo_full(&ca->free_inc)) {
246 size_t n;
247 get_random_bytes(&n, sizeof(n));
248
249 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
250 n += ca->sb.first_bucket;
251
252 b = ca->buckets + n;
253
2531d9ee
KO
254 if (bch_can_invalidate_bucket(ca, b))
255 bch_invalidate_one_bucket(ca, b);
cafe5635
KO
256
257 if (++checked >= ca->sb.nbuckets / 2) {
258 ca->invalidate_needs_gc = 1;
72a44517 259 wake_up_gc(ca->set);
cafe5635
KO
260 return;
261 }
262 }
263}
264
265static void invalidate_buckets(struct cache *ca)
266{
2531d9ee 267 BUG_ON(ca->invalidate_needs_gc);
cafe5635
KO
268
269 switch (CACHE_REPLACEMENT(&ca->sb)) {
270 case CACHE_REPLACEMENT_LRU:
271 invalidate_buckets_lru(ca);
272 break;
273 case CACHE_REPLACEMENT_FIFO:
274 invalidate_buckets_fifo(ca);
275 break;
276 case CACHE_REPLACEMENT_RANDOM:
277 invalidate_buckets_random(ca);
278 break;
279 }
280}
281
282#define allocator_wait(ca, cond) \
283do { \
86b26b82 284 while (1) { \
119ba0f8 285 set_current_state(TASK_INTERRUPTIBLE); \
86b26b82
KO
286 if (cond) \
287 break; \
cafe5635
KO
288 \
289 mutex_unlock(&(ca)->set->bucket_lock); \
79826c35 290 if (kthread_should_stop()) \
119ba0f8 291 return 0; \
cafe5635
KO
292 \
293 schedule(); \
cafe5635
KO
294 mutex_lock(&(ca)->set->bucket_lock); \
295 } \
119ba0f8 296 __set_current_state(TASK_RUNNING); \
cafe5635
KO
297} while (0)
298
78365411
KO
299static int bch_allocator_push(struct cache *ca, long bucket)
300{
301 unsigned i;
302
303 /* Prios/gens are actually the most important reserve */
304 if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
305 return true;
306
307 for (i = 0; i < RESERVE_NR; i++)
308 if (fifo_push(&ca->free[i], bucket))
309 return true;
310
311 return false;
312}
313
119ba0f8 314static int bch_allocator_thread(void *arg)
cafe5635 315{
119ba0f8 316 struct cache *ca = arg;
cafe5635
KO
317
318 mutex_lock(&ca->set->bucket_lock);
319
320 while (1) {
86b26b82
KO
321 /*
322 * First, we pull buckets off of the unused and free_inc lists,
323 * possibly issue discards to them, then we add the bucket to
324 * the free list:
325 */
2531d9ee 326 while (!fifo_empty(&ca->free_inc)) {
cafe5635
KO
327 long bucket;
328
2531d9ee 329 fifo_pop(&ca->free_inc, bucket);
cafe5635 330
cafe5635 331 if (ca->discard) {
49b1212d
KO
332 mutex_unlock(&ca->set->bucket_lock);
333 blkdev_issue_discard(ca->bdev,
334 bucket_to_sector(ca->set, bucket),
8b326d3a 335 ca->sb.bucket_size, GFP_KERNEL, 0);
49b1212d 336 mutex_lock(&ca->set->bucket_lock);
cafe5635 337 }
49b1212d 338
78365411 339 allocator_wait(ca, bch_allocator_push(ca, bucket));
0a63b66d 340 wake_up(&ca->set->btree_cache_wait);
35fcd848 341 wake_up(&ca->set->bucket_wait);
cafe5635
KO
342 }
343
86b26b82
KO
344 /*
345 * We've run out of free buckets, we need to find some buckets
346 * we can invalidate. First, invalidate them in memory and add
347 * them to the free_inc list:
348 */
cafe5635 349
2531d9ee 350retry_invalidate:
86b26b82 351 allocator_wait(ca, ca->set->gc_mark_valid &&
2531d9ee 352 !ca->invalidate_needs_gc);
86b26b82 353 invalidate_buckets(ca);
cafe5635 354
86b26b82
KO
355 /*
356 * Now, we write their new gens to disk so we can start writing
357 * new stuff to them:
358 */
359 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
2531d9ee
KO
360 if (CACHE_SYNC(&ca->set->sb)) {
361 /*
362 * This could deadlock if an allocation with a btree
363 * node locked ever blocked - having the btree node
364 * locked would block garbage collection, but here we're
365 * waiting on garbage collection before we invalidate
366 * and free anything.
367 *
368 * But this should be safe since the btree code always
369 * uses btree_check_reserve() before allocating now, and
370 * if it fails it blocks without btree nodes locked.
371 */
372 if (!fifo_full(&ca->free_inc))
373 goto retry_invalidate;
374
cafe5635 375 bch_prio_write(ca);
2531d9ee 376 }
cafe5635
KO
377 }
378}
379
2531d9ee
KO
380/* Allocation */
381
78365411 382long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
cafe5635 383{
35fcd848
KO
384 DEFINE_WAIT(w);
385 struct bucket *b;
386 long r;
387
388 /* fastpath */
78365411
KO
389 if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
390 fifo_pop(&ca->free[reserve], r))
35fcd848 391 goto out;
35fcd848 392
7159b1ad
KO
393 if (!wait) {
394 trace_bcache_alloc_fail(ca, reserve);
35fcd848 395 return -1;
7159b1ad 396 }
35fcd848 397
78365411 398 do {
35fcd848
KO
399 prepare_to_wait(&ca->set->bucket_wait, &w,
400 TASK_UNINTERRUPTIBLE);
401
402 mutex_unlock(&ca->set->bucket_lock);
403 schedule();
404 mutex_lock(&ca->set->bucket_lock);
78365411
KO
405 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
406 !fifo_pop(&ca->free[reserve], r));
35fcd848
KO
407
408 finish_wait(&ca->set->bucket_wait, &w);
409out:
91af8300
CL
410 if (ca->alloc_thread)
411 wake_up_process(ca->alloc_thread);
cafe5635 412
7159b1ad
KO
413 trace_bcache_alloc(ca, reserve);
414
280481d0 415 if (expensive_debug_checks(ca->set)) {
cafe5635
KO
416 size_t iter;
417 long i;
78365411 418 unsigned j;
cafe5635
KO
419
420 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
421 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
422
78365411
KO
423 for (j = 0; j < RESERVE_NR; j++)
424 fifo_for_each(i, &ca->free[j], iter)
425 BUG_ON(i == r);
cafe5635
KO
426 fifo_for_each(i, &ca->free_inc, iter)
427 BUG_ON(i == r);
cafe5635 428 }
280481d0 429
35fcd848 430 b = ca->buckets + r;
cafe5635 431
35fcd848 432 BUG_ON(atomic_read(&b->pin) != 1);
cafe5635 433
35fcd848 434 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
cafe5635 435
78365411 436 if (reserve <= RESERVE_PRIO) {
35fcd848 437 SET_GC_MARK(b, GC_MARK_METADATA);
981aa8c0 438 SET_GC_MOVE(b, 0);
35fcd848
KO
439 b->prio = BTREE_PRIO;
440 } else {
441 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
981aa8c0 442 SET_GC_MOVE(b, 0);
35fcd848 443 b->prio = INITIAL_PRIO;
cafe5635
KO
444 }
445
d44c2f9e
TJ
446 if (ca->set->avail_nbuckets > 0) {
447 ca->set->avail_nbuckets--;
448 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
449 }
450
35fcd848 451 return r;
cafe5635
KO
452}
453
2531d9ee
KO
454void __bch_bucket_free(struct cache *ca, struct bucket *b)
455{
456 SET_GC_MARK(b, 0);
457 SET_GC_SECTORS_USED(b, 0);
d44c2f9e
TJ
458
459 if (ca->set->avail_nbuckets < ca->set->nbuckets) {
460 ca->set->avail_nbuckets++;
461 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
462 }
2531d9ee
KO
463}
464
cafe5635
KO
465void bch_bucket_free(struct cache_set *c, struct bkey *k)
466{
467 unsigned i;
468
2531d9ee
KO
469 for (i = 0; i < KEY_PTRS(k); i++)
470 __bch_bucket_free(PTR_CACHE(c, k, i),
471 PTR_BUCKET(c, k, i));
cafe5635
KO
472}
473
78365411 474int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
35fcd848 475 struct bkey *k, int n, bool wait)
cafe5635
KO
476{
477 int i;
478
479 lockdep_assert_held(&c->bucket_lock);
480 BUG_ON(!n || n > c->caches_loaded || n > 8);
481
482 bkey_init(k);
483
484 /* sort by free space/prio of oldest data in caches */
485
486 for (i = 0; i < n; i++) {
487 struct cache *ca = c->cache_by_alloc[i];
78365411 488 long b = bch_bucket_alloc(ca, reserve, wait);
cafe5635
KO
489
490 if (b == -1)
491 goto err;
492
cf33c1ee 493 k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
cafe5635
KO
494 bucket_to_sector(c, b),
495 ca->sb.nr_this_dev);
496
497 SET_KEY_PTRS(k, i + 1);
498 }
499
500 return 0;
501err:
502 bch_bucket_free(c, k);
3a3b6a4e 503 bkey_put(c, k);
cafe5635
KO
504 return -1;
505}
506
78365411 507int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
35fcd848 508 struct bkey *k, int n, bool wait)
cafe5635
KO
509{
510 int ret;
511 mutex_lock(&c->bucket_lock);
78365411 512 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
cafe5635
KO
513 mutex_unlock(&c->bucket_lock);
514 return ret;
515}
516
2599b53b
KO
517/* Sector allocator */
518
519struct open_bucket {
520 struct list_head list;
521 unsigned last_write_point;
522 unsigned sectors_free;
523 BKEY_PADDED(key);
524};
525
526/*
527 * We keep multiple buckets open for writes, and try to segregate different
528 * write streams for better cache utilization: first we look for a bucket where
529 * the last write to it was sequential with the current write, and failing that
530 * we look for a bucket that was last used by the same task.
531 *
532 * The ideas is if you've got multiple tasks pulling data into the cache at the
533 * same time, you'll get better cache utilization if you try to segregate their
534 * data and preserve locality.
535 *
536 * For example, say you've starting Firefox at the same time you're copying a
537 * bunch of files. Firefox will likely end up being fairly hot and stay in the
538 * cache awhile, but the data you copied might not be; if you wrote all that
539 * data to the same buckets it'd get invalidated at the same time.
540 *
541 * Both of those tasks will be doing fairly random IO so we can't rely on
542 * detecting sequential IO to segregate their data, but going off of the task
543 * should be a sane heuristic.
544 */
545static struct open_bucket *pick_data_bucket(struct cache_set *c,
546 const struct bkey *search,
547 unsigned write_point,
548 struct bkey *alloc)
549{
550 struct open_bucket *ret, *ret_task = NULL;
551
552 list_for_each_entry_reverse(ret, &c->data_buckets, list)
553 if (!bkey_cmp(&ret->key, search))
554 goto found;
555 else if (ret->last_write_point == write_point)
556 ret_task = ret;
557
558 ret = ret_task ?: list_first_entry(&c->data_buckets,
559 struct open_bucket, list);
560found:
561 if (!ret->sectors_free && KEY_PTRS(alloc)) {
562 ret->sectors_free = c->sb.bucket_size;
563 bkey_copy(&ret->key, alloc);
564 bkey_init(alloc);
565 }
566
567 if (!ret->sectors_free)
568 ret = NULL;
569
570 return ret;
571}
572
573/*
574 * Allocates some space in the cache to write to, and k to point to the newly
575 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
576 * end of the newly allocated space).
577 *
578 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
579 * sectors were actually allocated.
580 *
581 * If s->writeback is true, will not fail.
582 */
583bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
584 unsigned write_point, unsigned write_prio, bool wait)
585{
586 struct open_bucket *b;
587 BKEY_PADDED(key) alloc;
588 unsigned i;
589
590 /*
591 * We might have to allocate a new bucket, which we can't do with a
592 * spinlock held. So if we have to allocate, we drop the lock, allocate
593 * and then retry. KEY_PTRS() indicates whether alloc points to
594 * allocated bucket(s).
595 */
596
597 bkey_init(&alloc.key);
598 spin_lock(&c->data_bucket_lock);
599
600 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
601 unsigned watermark = write_prio
78365411
KO
602 ? RESERVE_MOVINGGC
603 : RESERVE_NONE;
2599b53b
KO
604
605 spin_unlock(&c->data_bucket_lock);
606
607 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
608 return false;
609
610 spin_lock(&c->data_bucket_lock);
611 }
612
613 /*
614 * If we had to allocate, we might race and not need to allocate the
b1e8139e 615 * second time we call pick_data_bucket(). If we allocated a bucket but
2599b53b
KO
616 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
617 */
618 if (KEY_PTRS(&alloc.key))
3a3b6a4e 619 bkey_put(c, &alloc.key);
2599b53b
KO
620
621 for (i = 0; i < KEY_PTRS(&b->key); i++)
622 EBUG_ON(ptr_stale(c, &b->key, i));
623
624 /* Set up the pointer to the space we're allocating: */
625
626 for (i = 0; i < KEY_PTRS(&b->key); i++)
627 k->ptr[i] = b->key.ptr[i];
628
629 sectors = min(sectors, b->sectors_free);
630
631 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
632 SET_KEY_SIZE(k, sectors);
633 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
634
635 /*
636 * Move b to the end of the lru, and keep track of what this bucket was
637 * last used for:
638 */
639 list_move_tail(&b->list, &c->data_buckets);
640 bkey_copy_key(&b->key, k);
641 b->last_write_point = write_point;
642
643 b->sectors_free -= sectors;
644
645 for (i = 0; i < KEY_PTRS(&b->key); i++) {
646 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
647
648 atomic_long_add(sectors,
649 &PTR_CACHE(c, &b->key, i)->sectors_written);
650 }
651
652 if (b->sectors_free < c->sb.block_size)
653 b->sectors_free = 0;
654
655 /*
656 * k takes refcounts on the buckets it points to until it's inserted
657 * into the btree, but if we're done with this bucket we just transfer
658 * get_data_bucket()'s refcount.
659 */
660 if (b->sectors_free)
661 for (i = 0; i < KEY_PTRS(&b->key); i++)
662 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
663
664 spin_unlock(&c->data_bucket_lock);
665 return true;
666}
667
cafe5635
KO
668/* Init */
669
2599b53b
KO
670void bch_open_buckets_free(struct cache_set *c)
671{
672 struct open_bucket *b;
673
674 while (!list_empty(&c->data_buckets)) {
675 b = list_first_entry(&c->data_buckets,
676 struct open_bucket, list);
677 list_del(&b->list);
678 kfree(b);
679 }
680}
681
682int bch_open_buckets_alloc(struct cache_set *c)
683{
684 int i;
685
686 spin_lock_init(&c->data_bucket_lock);
687
89b1fc54 688 for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
2599b53b
KO
689 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
690 if (!b)
691 return -ENOMEM;
692
693 list_add(&b->list, &c->data_buckets);
694 }
695
696 return 0;
697}
698
119ba0f8
KO
699int bch_cache_allocator_start(struct cache *ca)
700{
79826c35
KO
701 struct task_struct *k = kthread_run(bch_allocator_thread,
702 ca, "bcache_allocator");
703 if (IS_ERR(k))
704 return PTR_ERR(k);
119ba0f8 705
79826c35 706 ca->alloc_thread = k;
119ba0f8
KO
707 return 0;
708}