]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/md/bcache/bset.c
bcache: Refactor bset_tree sysfs stats
[mirror_ubuntu-focal-kernel.git] / drivers / md / bcache / bset.c
CommitLineData
cafe5635
KO
1/*
2 * Code for working with individual keys, and sorted sets of keys with in a
3 * btree node
4 *
5 * Copyright 2012 Google, Inc.
6 */
7
8#include "bcache.h"
9#include "btree.h"
10#include "debug.h"
11
12#include <linux/random.h>
cd953ed0 13#include <linux/prefetch.h>
cafe5635
KO
14
15/* Keylists */
16
085d2a3d 17int __bch_keylist_realloc(struct keylist *l, unsigned u64s)
cafe5635 18{
c2f95ae2 19 size_t oldsize = bch_keylist_nkeys(l);
085d2a3d 20 size_t newsize = oldsize + u64s;
c2f95ae2
KO
21 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
22 uint64_t *new_keys;
cafe5635 23
cafe5635
KO
24 newsize = roundup_pow_of_two(newsize);
25
26 if (newsize <= KEYLIST_INLINE ||
27 roundup_pow_of_two(oldsize) == newsize)
28 return 0;
29
c2f95ae2 30 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
cafe5635 31
c2f95ae2 32 if (!new_keys)
cafe5635
KO
33 return -ENOMEM;
34
c2f95ae2
KO
35 if (!old_keys)
36 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
cafe5635 37
c2f95ae2
KO
38 l->keys_p = new_keys;
39 l->top_p = new_keys + oldsize;
cafe5635
KO
40
41 return 0;
42}
43
44struct bkey *bch_keylist_pop(struct keylist *l)
45{
c2f95ae2 46 struct bkey *k = l->keys;
cafe5635
KO
47
48 if (k == l->top)
49 return NULL;
50
51 while (bkey_next(k) != l->top)
52 k = bkey_next(k);
53
54 return l->top = k;
55}
56
26c949f8
KO
57void bch_keylist_pop_front(struct keylist *l)
58{
c2f95ae2 59 l->top_p -= bkey_u64s(l->keys);
26c949f8 60
c2f95ae2
KO
61 memmove(l->keys,
62 bkey_next(l->keys),
63 bch_keylist_bytes(l));
26c949f8
KO
64}
65
cafe5635
KO
66/* Key/pointer manipulation */
67
68void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
69 unsigned i)
70{
71 BUG_ON(i > KEY_PTRS(src));
72
73 /* Only copy the header, key, and one pointer. */
74 memcpy(dest, src, 2 * sizeof(uint64_t));
75 dest->ptr[0] = src->ptr[i];
76 SET_KEY_PTRS(dest, 1);
77 /* We didn't copy the checksum so clear that bit. */
78 SET_KEY_CSUM(dest, 0);
79}
80
81bool __bch_cut_front(const struct bkey *where, struct bkey *k)
82{
83 unsigned i, len = 0;
84
85 if (bkey_cmp(where, &START_KEY(k)) <= 0)
86 return false;
87
88 if (bkey_cmp(where, k) < 0)
89 len = KEY_OFFSET(k) - KEY_OFFSET(where);
90 else
91 bkey_copy_key(k, where);
92
93 for (i = 0; i < KEY_PTRS(k); i++)
94 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
95
96 BUG_ON(len > KEY_SIZE(k));
97 SET_KEY_SIZE(k, len);
98 return true;
99}
100
101bool __bch_cut_back(const struct bkey *where, struct bkey *k)
102{
103 unsigned len = 0;
104
105 if (bkey_cmp(where, k) >= 0)
106 return false;
107
108 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
109
110 if (bkey_cmp(where, &START_KEY(k)) > 0)
111 len = KEY_OFFSET(where) - KEY_START(k);
112
113 bkey_copy_key(k, where);
114
115 BUG_ON(len > KEY_SIZE(k));
116 SET_KEY_SIZE(k, len);
117 return true;
118}
119
ee811287
KO
120/* Auxiliary search trees */
121
122/* 32 bits total: */
123#define BKEY_MID_BITS 3
124#define BKEY_EXPONENT_BITS 7
125#define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
126#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
127
128struct bkey_float {
129 unsigned exponent:BKEY_EXPONENT_BITS;
130 unsigned m:BKEY_MID_BITS;
131 unsigned mantissa:BKEY_MANTISSA_BITS;
132} __packed;
133
134/*
135 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
136 * it used to be 64, but I realized the lookup code would touch slightly less
137 * memory if it was 128.
138 *
139 * It definites the number of bytes (in struct bset) per struct bkey_float in
140 * the auxiliar search tree - when we're done searching the bset_float tree we
141 * have this many bytes left that we do a linear search over.
142 *
143 * Since (after level 5) every level of the bset_tree is on a new cacheline,
144 * we're touching one fewer cacheline in the bset tree in exchange for one more
145 * cacheline in the linear search - but the linear search might stop before it
146 * gets to the second cacheline.
147 */
148
149#define BSET_CACHELINE 128
150
151/* Space required for the btree node keys */
a85e968e 152static inline size_t btree_keys_bytes(struct btree_keys *b)
ee811287
KO
153{
154 return PAGE_SIZE << b->page_order;
155}
156
a85e968e 157static inline size_t btree_keys_cachelines(struct btree_keys *b)
ee811287
KO
158{
159 return btree_keys_bytes(b) / BSET_CACHELINE;
160}
161
162/* Space required for the auxiliary search trees */
a85e968e 163static inline size_t bset_tree_bytes(struct btree_keys *b)
ee811287
KO
164{
165 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
166}
167
168/* Space required for the prev pointers */
a85e968e 169static inline size_t bset_prev_bytes(struct btree_keys *b)
ee811287
KO
170{
171 return btree_keys_cachelines(b) * sizeof(uint8_t);
172}
173
174/* Memory allocation */
175
a85e968e 176void bch_btree_keys_free(struct btree_keys *b)
ee811287 177{
a85e968e 178 struct bset_tree *t = b->set;
ee811287
KO
179
180 if (bset_prev_bytes(b) < PAGE_SIZE)
181 kfree(t->prev);
182 else
183 free_pages((unsigned long) t->prev,
184 get_order(bset_prev_bytes(b)));
185
186 if (bset_tree_bytes(b) < PAGE_SIZE)
187 kfree(t->tree);
188 else
189 free_pages((unsigned long) t->tree,
190 get_order(bset_tree_bytes(b)));
191
192 free_pages((unsigned long) t->data, b->page_order);
193
194 t->prev = NULL;
195 t->tree = NULL;
196 t->data = NULL;
197}
a85e968e 198EXPORT_SYMBOL(bch_btree_keys_free);
ee811287 199
a85e968e 200int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp)
ee811287 201{
a85e968e 202 struct bset_tree *t = b->set;
ee811287
KO
203
204 BUG_ON(t->data);
205
206 b->page_order = page_order;
207
208 t->data = (void *) __get_free_pages(gfp, b->page_order);
209 if (!t->data)
210 goto err;
211
212 t->tree = bset_tree_bytes(b) < PAGE_SIZE
213 ? kmalloc(bset_tree_bytes(b), gfp)
214 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
215 if (!t->tree)
216 goto err;
217
218 t->prev = bset_prev_bytes(b) < PAGE_SIZE
219 ? kmalloc(bset_prev_bytes(b), gfp)
220 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
221 if (!t->prev)
222 goto err;
223
224 return 0;
225err:
226 bch_btree_keys_free(b);
227 return -ENOMEM;
228}
a85e968e
KO
229EXPORT_SYMBOL(bch_btree_keys_alloc);
230
231void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
232 bool *expensive_debug_checks)
233{
234 unsigned i;
235
236 b->ops = ops;
237 b->expensive_debug_checks = expensive_debug_checks;
238 b->nsets = 0;
239 b->last_set_unwritten = 0;
240
241 /* XXX: shouldn't be needed */
242 for (i = 0; i < MAX_BSETS; i++)
243 b->set[i].size = 0;
244 /*
245 * Second loop starts at 1 because b->keys[0]->data is the memory we
246 * allocated
247 */
248 for (i = 1; i < MAX_BSETS; i++)
249 b->set[i].data = NULL;
250}
251EXPORT_SYMBOL(bch_btree_keys_init);
ee811287 252
cafe5635
KO
253/* Binary tree stuff for auxiliary search trees */
254
255static unsigned inorder_next(unsigned j, unsigned size)
256{
257 if (j * 2 + 1 < size) {
258 j = j * 2 + 1;
259
260 while (j * 2 < size)
261 j *= 2;
262 } else
263 j >>= ffz(j) + 1;
264
265 return j;
266}
267
268static unsigned inorder_prev(unsigned j, unsigned size)
269{
270 if (j * 2 < size) {
271 j = j * 2;
272
273 while (j * 2 + 1 < size)
274 j = j * 2 + 1;
275 } else
276 j >>= ffs(j);
277
278 return j;
279}
280
281/* I have no idea why this code works... and I'm the one who wrote it
282 *
283 * However, I do know what it does:
284 * Given a binary tree constructed in an array (i.e. how you normally implement
285 * a heap), it converts a node in the tree - referenced by array index - to the
286 * index it would have if you did an inorder traversal.
287 *
288 * Also tested for every j, size up to size somewhere around 6 million.
289 *
290 * The binary tree starts at array index 1, not 0
291 * extra is a function of size:
292 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
293 */
294static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
295{
296 unsigned b = fls(j);
297 unsigned shift = fls(size - 1) - b;
298
299 j ^= 1U << (b - 1);
300 j <<= 1;
301 j |= 1;
302 j <<= shift;
303
304 if (j > extra)
305 j -= (j - extra) >> 1;
306
307 return j;
308}
309
310static unsigned to_inorder(unsigned j, struct bset_tree *t)
311{
312 return __to_inorder(j, t->size, t->extra);
313}
314
315static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
316{
317 unsigned shift;
318
319 if (j > extra)
320 j += j - extra;
321
322 shift = ffs(j);
323
324 j >>= shift;
325 j |= roundup_pow_of_two(size) >> shift;
326
327 return j;
328}
329
330static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
331{
332 return __inorder_to_tree(j, t->size, t->extra);
333}
334
335#if 0
336void inorder_test(void)
337{
338 unsigned long done = 0;
339 ktime_t start = ktime_get();
340
341 for (unsigned size = 2;
342 size < 65536000;
343 size++) {
344 unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
345 unsigned i = 1, j = rounddown_pow_of_two(size - 1);
346
347 if (!(size % 4096))
348 printk(KERN_NOTICE "loop %u, %llu per us\n", size,
349 done / ktime_us_delta(ktime_get(), start));
350
351 while (1) {
352 if (__inorder_to_tree(i, size, extra) != j)
353 panic("size %10u j %10u i %10u", size, j, i);
354
355 if (__to_inorder(j, size, extra) != i)
356 panic("size %10u j %10u i %10u", size, j, i);
357
358 if (j == rounddown_pow_of_two(size) - 1)
359 break;
360
361 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
362
363 j = inorder_next(j, size);
364 i++;
365 }
366
367 done += size - 1;
368 }
369}
370#endif
371
372/*
48a73025 373 * Cacheline/offset <-> bkey pointer arithmetic:
cafe5635
KO
374 *
375 * t->tree is a binary search tree in an array; each node corresponds to a key
376 * in one cacheline in t->set (BSET_CACHELINE bytes).
377 *
378 * This means we don't have to store the full index of the key that a node in
379 * the binary tree points to; to_inorder() gives us the cacheline, and then
380 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
381 *
48a73025 382 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
cafe5635
KO
383 * make this work.
384 *
385 * To construct the bfloat for an arbitrary key we need to know what the key
386 * immediately preceding it is: we have to check if the two keys differ in the
387 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
388 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
389 */
390
391static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
392 unsigned offset)
393{
394 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
395}
396
397static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
398{
399 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
400}
401
402static unsigned bkey_to_cacheline_offset(struct bkey *k)
403{
404 return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t);
405}
406
407static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
408{
409 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
410}
411
412static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
413{
414 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
415}
416
417/*
418 * For the write set - the one we're currently inserting keys into - we don't
419 * maintain a full search tree, we just keep a simple lookup table in t->prev.
420 */
421static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
422{
423 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
424}
425
426static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
427{
cafe5635
KO
428 low >>= shift;
429 low |= (high << 1) << (63U - shift);
cafe5635
KO
430 return low;
431}
432
433static inline unsigned bfloat_mantissa(const struct bkey *k,
434 struct bkey_float *f)
435{
436 const uint64_t *p = &k->low - (f->exponent >> 6);
437 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
438}
439
440static void make_bfloat(struct bset_tree *t, unsigned j)
441{
442 struct bkey_float *f = &t->tree[j];
443 struct bkey *m = tree_to_bkey(t, j);
444 struct bkey *p = tree_to_prev_bkey(t, j);
445
446 struct bkey *l = is_power_of_2(j)
447 ? t->data->start
448 : tree_to_prev_bkey(t, j >> ffs(j));
449
450 struct bkey *r = is_power_of_2(j + 1)
fafff81c 451 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
cafe5635
KO
452 : tree_to_bkey(t, j >> (ffz(j) + 1));
453
454 BUG_ON(m < l || m > r);
455 BUG_ON(bkey_next(p) != m);
456
457 if (KEY_INODE(l) != KEY_INODE(r))
458 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
459 else
460 f->exponent = fls64(r->low ^ l->low);
461
462 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
463
464 /*
465 * Setting f->exponent = 127 flags this node as failed, and causes the
466 * lookup code to fall back to comparing against the original key.
467 */
468
469 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
470 f->mantissa = bfloat_mantissa(m, f) - 1;
471 else
472 f->exponent = 127;
473}
474
a85e968e 475static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
cafe5635 476{
a85e968e 477 if (t != b->set) {
cafe5635
KO
478 unsigned j = roundup(t[-1].size,
479 64 / sizeof(struct bkey_float));
480
481 t->tree = t[-1].tree + j;
482 t->prev = t[-1].prev + j;
483 }
484
a85e968e 485 while (t < b->set + MAX_BSETS)
cafe5635
KO
486 t++->size = 0;
487}
488
a85e968e 489static void bch_bset_build_unwritten_tree(struct btree_keys *b)
cafe5635 490{
ee811287 491 struct bset_tree *t = bset_tree_last(b);
cafe5635 492
a85e968e
KO
493 BUG_ON(b->last_set_unwritten);
494 b->last_set_unwritten = 1;
495
cafe5635
KO
496 bset_alloc_tree(b, t);
497
a85e968e 498 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
cafe5635
KO
499 t->prev[0] = bkey_to_cacheline_offset(t->data->start);
500 t->size = 1;
501 }
502}
503
a85e968e 504void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
ee811287 505{
a85e968e
KO
506 if (i != b->set->data) {
507 b->set[++b->nsets].data = i;
508 i->seq = b->set->data->seq;
ee811287
KO
509 } else
510 get_random_bytes(&i->seq, sizeof(uint64_t));
511
512 i->magic = magic;
513 i->version = 0;
514 i->keys = 0;
515
516 bch_bset_build_unwritten_tree(b);
517}
a85e968e 518EXPORT_SYMBOL(bch_bset_init_next);
ee811287 519
a85e968e 520void bch_bset_build_written_tree(struct btree_keys *b)
cafe5635 521{
ee811287 522 struct bset_tree *t = bset_tree_last(b);
cafe5635
KO
523 struct bkey *k = t->data->start;
524 unsigned j, cacheline = 1;
525
a85e968e
KO
526 b->last_set_unwritten = 0;
527
cafe5635
KO
528 bset_alloc_tree(b, t);
529
530 t->size = min_t(unsigned,
fafff81c 531 bkey_to_cacheline(t, bset_bkey_last(t->data)),
a85e968e 532 b->set->tree + btree_keys_cachelines(b) - t->tree);
cafe5635
KO
533
534 if (t->size < 2) {
535 t->size = 0;
536 return;
537 }
538
539 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
540
541 /* First we figure out where the first key in each cacheline is */
542 for (j = inorder_next(0, t->size);
543 j;
544 j = inorder_next(j, t->size)) {
545 while (bkey_to_cacheline(t, k) != cacheline)
546 k = bkey_next(k);
547
548 t->prev[j] = bkey_u64s(k);
549 k = bkey_next(k);
550 cacheline++;
551 t->tree[j].m = bkey_to_cacheline_offset(k);
552 }
553
fafff81c 554 while (bkey_next(k) != bset_bkey_last(t->data))
cafe5635
KO
555 k = bkey_next(k);
556
557 t->end = *k;
558
559 /* Then we build the tree */
560 for (j = inorder_next(0, t->size);
561 j;
562 j = inorder_next(j, t->size))
563 make_bfloat(t, j);
564}
a85e968e 565EXPORT_SYMBOL(bch_bset_build_written_tree);
cafe5635 566
a85e968e 567void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
cafe5635
KO
568{
569 struct bset_tree *t;
570 unsigned inorder, j = 1;
571
a85e968e 572 for (t = b->set; t <= bset_tree_last(b); t++)
fafff81c 573 if (k < bset_bkey_last(t->data))
cafe5635
KO
574 goto found_set;
575
576 BUG();
577found_set:
578 if (!t->size || !bset_written(b, t))
579 return;
580
581 inorder = bkey_to_cacheline(t, k);
582
583 if (k == t->data->start)
584 goto fix_left;
585
fafff81c 586 if (bkey_next(k) == bset_bkey_last(t->data)) {
cafe5635
KO
587 t->end = *k;
588 goto fix_right;
589 }
590
591 j = inorder_to_tree(inorder, t);
592
593 if (j &&
594 j < t->size &&
595 k == tree_to_bkey(t, j))
596fix_left: do {
597 make_bfloat(t, j);
598 j = j * 2;
599 } while (j < t->size);
600
601 j = inorder_to_tree(inorder + 1, t);
602
603 if (j &&
604 j < t->size &&
605 k == tree_to_prev_bkey(t, j))
606fix_right: do {
607 make_bfloat(t, j);
608 j = j * 2 + 1;
609 } while (j < t->size);
610}
a85e968e 611EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
cafe5635 612
a85e968e 613static void bch_bset_fix_lookup_table(struct btree_keys *b,
ee811287
KO
614 struct bset_tree *t,
615 struct bkey *k)
cafe5635 616{
cafe5635
KO
617 unsigned shift = bkey_u64s(k);
618 unsigned j = bkey_to_cacheline(t, k);
619
620 /* We're getting called from btree_split() or btree_gc, just bail out */
621 if (!t->size)
622 return;
623
624 /* k is the key we just inserted; we need to find the entry in the
625 * lookup table for the first key that is strictly greater than k:
626 * it's either k's cacheline or the next one
627 */
628 if (j < t->size &&
629 table_to_bkey(t, j) <= k)
630 j++;
631
632 /* Adjust all the lookup table entries, and find a new key for any that
633 * have gotten too big
634 */
635 for (; j < t->size; j++) {
636 t->prev[j] += shift;
637
638 if (t->prev[j] > 7) {
639 k = table_to_bkey(t, j - 1);
640
641 while (k < cacheline_to_bkey(t, j, 0))
642 k = bkey_next(k);
643
644 t->prev[j] = bkey_to_cacheline_offset(k);
645 }
646 }
647
a85e968e 648 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
cafe5635
KO
649 return;
650
651 /* Possibly add a new entry to the end of the lookup table */
652
653 for (k = table_to_bkey(t, t->size - 1);
fafff81c 654 k != bset_bkey_last(t->data);
cafe5635
KO
655 k = bkey_next(k))
656 if (t->size == bkey_to_cacheline(t, k)) {
657 t->prev[t->size] = bkey_to_cacheline_offset(k);
658 t->size++;
659 }
660}
661
a85e968e 662void bch_bset_insert(struct btree_keys *b, struct bkey *where,
ee811287 663 struct bkey *insert)
cafe5635 664{
ee811287 665 struct bset_tree *t = bset_tree_last(b);
cafe5635 666
a85e968e 667 BUG_ON(!b->last_set_unwritten);
ee811287
KO
668 BUG_ON(bset_byte_offset(b, t->data) +
669 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
670 PAGE_SIZE << b->page_order);
cafe5635 671
ee811287
KO
672 memmove((uint64_t *) where + bkey_u64s(insert),
673 where,
674 (void *) bset_bkey_last(t->data) - (void *) where);
cafe5635 675
ee811287
KO
676 t->data->keys += bkey_u64s(insert);
677 bkey_copy(where, insert);
678 bch_bset_fix_lookup_table(b, t, where);
cafe5635 679}
a85e968e 680EXPORT_SYMBOL(bch_bset_insert);
cafe5635
KO
681
682struct bset_search_iter {
683 struct bkey *l, *r;
684};
685
a85e968e 686static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
cafe5635
KO
687 const struct bkey *search)
688{
689 unsigned li = 0, ri = t->size;
690
cafe5635
KO
691 while (li + 1 != ri) {
692 unsigned m = (li + ri) >> 1;
693
694 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
695 ri = m;
696 else
697 li = m;
698 }
699
700 return (struct bset_search_iter) {
701 table_to_bkey(t, li),
fafff81c 702 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
cafe5635
KO
703 };
704}
705
a85e968e 706static struct bset_search_iter bset_search_tree(struct bset_tree *t,
cafe5635
KO
707 const struct bkey *search)
708{
709 struct bkey *l, *r;
710 struct bkey_float *f;
711 unsigned inorder, j, n = 1;
712
713 do {
714 unsigned p = n << 4;
715 p &= ((int) (p - t->size)) >> 31;
716
717 prefetch(&t->tree[p]);
718
719 j = n;
720 f = &t->tree[j];
721
722 /*
723 * n = (f->mantissa > bfloat_mantissa())
724 * ? j * 2
725 * : j * 2 + 1;
726 *
727 * We need to subtract 1 from f->mantissa for the sign bit trick
728 * to work - that's done in make_bfloat()
729 */
730 if (likely(f->exponent != 127))
731 n = j * 2 + (((unsigned)
732 (f->mantissa -
733 bfloat_mantissa(search, f))) >> 31);
734 else
735 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
736 ? j * 2
737 : j * 2 + 1;
738 } while (n < t->size);
739
740 inorder = to_inorder(j, t);
741
742 /*
743 * n would have been the node we recursed to - the low bit tells us if
744 * we recursed left or recursed right.
745 */
746 if (n & 1) {
747 l = cacheline_to_bkey(t, inorder, f->m);
748
749 if (++inorder != t->size) {
750 f = &t->tree[inorder_next(j, t->size)];
751 r = cacheline_to_bkey(t, inorder, f->m);
752 } else
fafff81c 753 r = bset_bkey_last(t->data);
cafe5635
KO
754 } else {
755 r = cacheline_to_bkey(t, inorder, f->m);
756
757 if (--inorder) {
758 f = &t->tree[inorder_prev(j, t->size)];
759 l = cacheline_to_bkey(t, inorder, f->m);
760 } else
761 l = t->data->start;
762 }
763
764 return (struct bset_search_iter) {l, r};
765}
766
767struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t,
768 const struct bkey *search)
769{
770 struct bset_search_iter i;
771
772 /*
773 * First, we search for a cacheline, then lastly we do a linear search
774 * within that cacheline.
775 *
776 * To search for the cacheline, there's three different possibilities:
777 * * The set is too small to have a search tree, so we just do a linear
778 * search over the whole set.
779 * * The set is the one we're currently inserting into; keeping a full
780 * auxiliary search tree up to date would be too expensive, so we
781 * use a much simpler lookup table to do a binary search -
782 * bset_search_write_set().
783 * * Or we use the auxiliary search tree we constructed earlier -
784 * bset_search_tree()
785 */
786
787 if (unlikely(!t->size)) {
788 i.l = t->data->start;
fafff81c 789 i.r = bset_bkey_last(t->data);
a85e968e 790 } else if (bset_written(&b->keys, t)) {
cafe5635
KO
791 /*
792 * Each node in the auxiliary search tree covers a certain range
793 * of bits, and keys above and below the set it covers might
794 * differ outside those bits - so we have to special case the
795 * start and end - handle that here:
796 */
797
798 if (unlikely(bkey_cmp(search, &t->end) >= 0))
fafff81c 799 return bset_bkey_last(t->data);
cafe5635
KO
800
801 if (unlikely(bkey_cmp(search, t->data->start) < 0))
802 return t->data->start;
803
a85e968e
KO
804 i = bset_search_tree(t, search);
805 } else {
806 BUG_ON(!b->keys.nsets &&
807 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
808
809 i = bset_search_write_set(t, search);
810 }
cafe5635 811
280481d0 812 if (expensive_debug_checks(b->c)) {
a85e968e 813 BUG_ON(bset_written(&b->keys, t) &&
280481d0
KO
814 i.l != t->data->start &&
815 bkey_cmp(tree_to_prev_bkey(t,
816 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
817 search) > 0);
cafe5635 818
fafff81c 819 BUG_ON(i.r != bset_bkey_last(t->data) &&
280481d0
KO
820 bkey_cmp(i.r, search) <= 0);
821 }
cafe5635
KO
822
823 while (likely(i.l != i.r) &&
824 bkey_cmp(i.l, search) <= 0)
825 i.l = bkey_next(i.l);
826
827 return i.l;
828}
a85e968e 829EXPORT_SYMBOL(__bch_bset_search);
cafe5635
KO
830
831/* Btree iterator */
832
911c9610
KO
833typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
834 struct btree_iter_set);
835
cafe5635
KO
836static inline bool btree_iter_cmp(struct btree_iter_set l,
837 struct btree_iter_set r)
838{
911c9610 839 return bkey_cmp(l.k, r.k) > 0;
cafe5635
KO
840}
841
842static inline bool btree_iter_end(struct btree_iter *iter)
843{
844 return !iter->used;
845}
846
847void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
848 struct bkey *end)
849{
850 if (k != end)
851 BUG_ON(!heap_add(iter,
852 ((struct btree_iter_set) { k, end }),
853 btree_iter_cmp));
854}
855
911c9610
KO
856static struct bkey *__bch_btree_iter_init(struct btree *b,
857 struct btree_iter *iter,
858 struct bkey *search,
859 struct bset_tree *start)
cafe5635
KO
860{
861 struct bkey *ret = NULL;
862 iter->size = ARRAY_SIZE(iter->data);
863 iter->used = 0;
864
280481d0
KO
865#ifdef CONFIG_BCACHE_DEBUG
866 iter->b = b;
867#endif
868
a85e968e 869 for (; start <= bset_tree_last(&b->keys); start++) {
cafe5635 870 ret = bch_bset_search(b, start, search);
fafff81c 871 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
cafe5635
KO
872 }
873
874 return ret;
875}
876
911c9610
KO
877struct bkey *bch_btree_iter_init(struct btree *b,
878 struct btree_iter *iter,
879 struct bkey *search)
880{
a85e968e 881 return __bch_btree_iter_init(b, iter, search, b->keys.set);
911c9610 882}
a85e968e 883EXPORT_SYMBOL(bch_btree_iter_init);
911c9610
KO
884
885static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
886 btree_iter_cmp_fn *cmp)
cafe5635
KO
887{
888 struct btree_iter_set unused;
889 struct bkey *ret = NULL;
890
891 if (!btree_iter_end(iter)) {
280481d0
KO
892 bch_btree_iter_next_check(iter);
893
cafe5635
KO
894 ret = iter->data->k;
895 iter->data->k = bkey_next(iter->data->k);
896
897 if (iter->data->k > iter->data->end) {
cc0f4eaa 898 WARN_ONCE(1, "bset was corrupt!\n");
cafe5635
KO
899 iter->data->k = iter->data->end;
900 }
901
902 if (iter->data->k == iter->data->end)
911c9610 903 heap_pop(iter, unused, cmp);
cafe5635 904 else
911c9610 905 heap_sift(iter, 0, cmp);
cafe5635
KO
906 }
907
908 return ret;
909}
910
911c9610
KO
911struct bkey *bch_btree_iter_next(struct btree_iter *iter)
912{
913 return __bch_btree_iter_next(iter, btree_iter_cmp);
914
915}
a85e968e 916EXPORT_SYMBOL(bch_btree_iter_next);
911c9610 917
cafe5635 918struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
a85e968e 919 struct btree_keys *b, ptr_filter_fn fn)
cafe5635
KO
920{
921 struct bkey *ret;
922
923 do {
924 ret = bch_btree_iter_next(iter);
925 } while (ret && fn(b, ret));
926
927 return ret;
928}
929
cafe5635
KO
930/* Mergesort */
931
67539e85
KO
932void bch_bset_sort_state_free(struct bset_sort_state *state)
933{
934 if (state->pool)
935 mempool_destroy(state->pool);
936}
937
938int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order)
939{
940 spin_lock_init(&state->time.lock);
941
942 state->page_order = page_order;
943 state->crit_factor = int_sqrt(1 << page_order);
944
945 state->pool = mempool_create_page_pool(1, page_order);
946 if (!state->pool)
947 return -ENOMEM;
948
949 return 0;
950}
a85e968e 951EXPORT_SYMBOL(bch_bset_sort_state_init);
67539e85 952
a85e968e 953static void btree_mergesort(struct btree_keys *b, struct bset *out,
cafe5635
KO
954 struct btree_iter *iter,
955 bool fixup, bool remove_stale)
956{
911c9610 957 int i;
cafe5635 958 struct bkey *k, *last = NULL;
ef71ec00 959 BKEY_PADDED(k) tmp;
a85e968e 960 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
cafe5635
KO
961 ? bch_ptr_bad
962 : bch_ptr_invalid;
963
911c9610
KO
964 /* Heapify the iterator, using our comparison function */
965 for (i = iter->used / 2 - 1; i >= 0; --i)
65d45231 966 heap_sift(iter, i, b->ops->sort_cmp);
911c9610 967
cafe5635 968 while (!btree_iter_end(iter)) {
65d45231
KO
969 if (b->ops->sort_fixup && fixup)
970 k = b->ops->sort_fixup(iter, &tmp.k);
ef71ec00
KO
971 else
972 k = NULL;
973
974 if (!k)
65d45231 975 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
cafe5635 976
cafe5635
KO
977 if (bad(b, k))
978 continue;
979
980 if (!last) {
981 last = out->start;
982 bkey_copy(last, k);
65d45231 983 } else if (!bch_bkey_try_merge(b, last, k)) {
cafe5635
KO
984 last = bkey_next(last);
985 bkey_copy(last, k);
986 }
987 }
988
989 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
990
991 pr_debug("sorted %i keys", out->keys);
cafe5635
KO
992}
993
a85e968e 994static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
67539e85
KO
995 unsigned start, unsigned order, bool fixup,
996 struct bset_sort_state *state)
cafe5635
KO
997{
998 uint64_t start_time;
0a451145 999 bool used_mempool = false;
cafe5635
KO
1000 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO,
1001 order);
1002 if (!out) {
67539e85
KO
1003 BUG_ON(order > state->page_order);
1004
1005 out = page_address(mempool_alloc(state->pool, GFP_NOIO));
0a451145 1006 used_mempool = true;
a85e968e 1007 order = state->page_order;
cafe5635
KO
1008 }
1009
1010 start_time = local_clock();
1011
67539e85 1012 btree_mergesort(b, out, iter, fixup, false);
cafe5635
KO
1013 b->nsets = start;
1014
cafe5635
KO
1015 if (!start && order == b->page_order) {
1016 /*
1017 * Our temporary buffer is the same size as the btree node's
1018 * buffer, we can just swap buffers instead of doing a big
1019 * memcpy()
1020 */
1021
a85e968e
KO
1022 out->magic = b->set->data->magic;
1023 out->seq = b->set->data->seq;
1024 out->version = b->set->data->version;
1025 swap(out, b->set->data);
cafe5635 1026 } else {
a85e968e
KO
1027 b->set[start].data->keys = out->keys;
1028 memcpy(b->set[start].data->start, out->start,
fafff81c 1029 (void *) bset_bkey_last(out) - (void *) out->start);
cafe5635
KO
1030 }
1031
0a451145 1032 if (used_mempool)
67539e85 1033 mempool_free(virt_to_page(out), state->pool);
cafe5635
KO
1034 else
1035 free_pages((unsigned long) out, order);
1036
a85e968e 1037 bch_bset_build_written_tree(b);
cafe5635 1038
65d22e91 1039 if (!start)
67539e85 1040 bch_time_stats_update(&state->time, start_time);
cafe5635
KO
1041}
1042
67539e85
KO
1043void bch_btree_sort_partial(struct btree *b, unsigned start,
1044 struct bset_sort_state *state)
cafe5635 1045{
a85e968e 1046 size_t order = b->keys.page_order, keys = 0;
cafe5635 1047 struct btree_iter iter;
280481d0
KO
1048 int oldsize = bch_count_data(b);
1049
a85e968e 1050 __bch_btree_iter_init(b, &iter, NULL, &b->keys.set[start]);
cafe5635
KO
1051
1052 if (start) {
1053 unsigned i;
1054
a85e968e
KO
1055 for (i = start; i <= b->keys.nsets; i++)
1056 keys += b->keys.set[i].data->keys;
cafe5635 1057
a85e968e 1058 order = roundup_pow_of_two(__set_bytes(b->keys.set->data,
b1a67b0f 1059 keys)) / PAGE_SIZE;
cafe5635
KO
1060 if (order)
1061 order = ilog2(order);
1062 }
1063
a85e968e 1064 __btree_sort(&b->keys, &iter, start, order, false, state);
cafe5635 1065
280481d0 1066 EBUG_ON(b->written && oldsize >= 0 && bch_count_data(b) != oldsize);
cafe5635 1067}
65d45231 1068EXPORT_SYMBOL(bch_btree_sort_partial);
cafe5635 1069
a85e968e
KO
1070void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1071 struct btree_iter *iter,
67539e85 1072 struct bset_sort_state *state)
cafe5635 1073{
67539e85 1074 __btree_sort(b, iter, 0, b->page_order, true, state);
cafe5635
KO
1075}
1076
67539e85
KO
1077void bch_btree_sort_into(struct btree *b, struct btree *new,
1078 struct bset_sort_state *state)
cafe5635
KO
1079{
1080 uint64_t start_time = local_clock();
1081
1082 struct btree_iter iter;
1083 bch_btree_iter_init(b, &iter, NULL);
1084
a85e968e 1085 btree_mergesort(&b->keys, new->keys.set->data, &iter, false, true);
cafe5635 1086
67539e85 1087 bch_time_stats_update(&state->time, start_time);
cafe5635 1088
a85e968e 1089 new->keys.set->size = 0; // XXX: why?
cafe5635
KO
1090}
1091
6ded34d1
KO
1092#define SORT_CRIT (4096 / sizeof(uint64_t))
1093
67539e85 1094void bch_btree_sort_lazy(struct btree *b, struct bset_sort_state *state)
cafe5635 1095{
6ded34d1
KO
1096 unsigned crit = SORT_CRIT;
1097 int i;
cafe5635 1098
a85e968e
KO
1099 b->keys.last_set_unwritten = 0;
1100
6ded34d1 1101 /* Don't sort if nothing to do */
a85e968e 1102 if (!b->keys.nsets)
6ded34d1 1103 goto out;
cafe5635 1104
a85e968e 1105 for (i = b->keys.nsets - 1; i >= 0; --i) {
67539e85 1106 crit *= state->crit_factor;
cafe5635 1107
a85e968e 1108 if (b->keys.set[i].data->keys < crit) {
67539e85 1109 bch_btree_sort_partial(b, i, state);
cafe5635
KO
1110 return;
1111 }
1112 }
1113
6ded34d1 1114 /* Sort if we'd overflow */
a85e968e 1115 if (b->keys.nsets + 1 == MAX_BSETS) {
67539e85 1116 bch_btree_sort(b, state);
6ded34d1
KO
1117 return;
1118 }
1119
1120out:
a85e968e 1121 bch_bset_build_written_tree(&b->keys);
cafe5635 1122}
a85e968e 1123EXPORT_SYMBOL(bch_btree_sort_lazy);
cafe5635 1124
f67342dd 1125void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
cafe5635 1126{
cafe5635
KO
1127 unsigned i;
1128
f67342dd
KO
1129 for (i = 0; i <= b->nsets; i++) {
1130 struct bset_tree *t = &b->set[i];
cafe5635
KO
1131 size_t bytes = t->data->keys * sizeof(uint64_t);
1132 size_t j;
1133
f67342dd 1134 if (bset_written(b, t)) {
cafe5635
KO
1135 stats->sets_written++;
1136 stats->bytes_written += bytes;
1137
1138 stats->floats += t->size - 1;
1139
1140 for (j = 1; j < t->size; j++)
1141 if (t->tree[j].exponent == 127)
1142 stats->failed++;
1143 } else {
1144 stats->sets_unwritten++;
1145 stats->bytes_unwritten += bytes;
1146 }
1147 }
cafe5635 1148}