]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/bcache/btree.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / btree.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/bcache.txt.
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
65d45231 27#include "extents.h"
cafe5635
KO
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
72a44517 32#include <linux/kthread.h>
cd953ed0 33#include <linux/prefetch.h>
cafe5635
KO
34#include <linux/random.h>
35#include <linux/rcupdate.h>
e6017571 36#include <linux/sched/clock.h>
b2d09103
IM
37#include <linux/rculist.h>
38
cafe5635
KO
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
cafe5635
KO
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
cafe5635
KO
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
cafe5635
KO
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
93
94#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
95
96#define PTR_HASH(c, k) \
97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
98
df8e8970
KO
99#define insert_lock(s, b) ((b)->level <= (s)->lock)
100
101/*
102 * These macros are for recursing down the btree - they handle the details of
103 * locking and looking up nodes in the cache for you. They're best treated as
104 * mere syntax when reading code that uses them.
105 *
106 * op->lock determines whether we take a read or a write lock at a given depth.
107 * If you've got a read lock and find that you need a write lock (i.e. you're
108 * going to have to split), set op->lock and return -EINTR; btree_root() will
109 * call you again and you'll have the correct lock.
110 */
111
112/**
113 * btree - recurse down the btree on a specified key
114 * @fn: function to call, which will be passed the child node
115 * @key: key to recurse on
116 * @b: parent btree node
117 * @op: pointer to struct btree_op
118 */
119#define btree(fn, key, b, op, ...) \
120({ \
121 int _r, l = (b)->level - 1; \
122 bool _w = l <= (op)->lock; \
2452cc89
SP
123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
124 _w, b); \
df8e8970 125 if (!IS_ERR(_child)) { \
df8e8970
KO
126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
127 rw_unlock(_w, _child); \
128 } else \
129 _r = PTR_ERR(_child); \
130 _r; \
131})
132
133/**
134 * btree_root - call a function on the root of the btree
135 * @fn: function to call, which will be passed the child node
136 * @c: cache set
137 * @op: pointer to struct btree_op
138 */
139#define btree_root(fn, c, op, ...) \
140({ \
141 int _r = -EINTR; \
142 do { \
143 struct btree *_b = (c)->root; \
144 bool _w = insert_lock(op, _b); \
145 rw_lock(_w, _b, _b->level); \
146 if (_b == (c)->root && \
147 _w == insert_lock(op, _b)) { \
df8e8970
KO
148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
149 } \
150 rw_unlock(_w, _b); \
0a63b66d 151 bch_cannibalize_unlock(c); \
78365411
KO
152 if (_r == -EINTR) \
153 schedule(); \
df8e8970
KO
154 } while (_r == -EINTR); \
155 \
0a63b66d 156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
df8e8970
KO
157 _r; \
158})
159
a85e968e
KO
160static inline struct bset *write_block(struct btree *b)
161{
162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
163}
164
2a285686
KO
165static void bch_btree_init_next(struct btree *b)
166{
167 /* If not a leaf node, always sort */
168 if (b->level && b->keys.nsets)
169 bch_btree_sort(&b->keys, &b->c->sort);
170 else
171 bch_btree_sort_lazy(&b->keys, &b->c->sort);
172
173 if (b->written < btree_blocks(b))
174 bch_bset_init_next(&b->keys, write_block(b),
175 bset_magic(&b->c->sb));
176
177}
178
cafe5635
KO
179/* Btree key manipulation */
180
3a3b6a4e 181void bkey_put(struct cache_set *c, struct bkey *k)
e7c590eb
KO
182{
183 unsigned i;
184
185 for (i = 0; i < KEY_PTRS(k); i++)
186 if (ptr_available(c, k, i))
187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
188}
189
cafe5635
KO
190/* Btree IO */
191
192static uint64_t btree_csum_set(struct btree *b, struct bset *i)
193{
194 uint64_t crc = b->key.ptr[0];
fafff81c 195 void *data = (void *) i + 8, *end = bset_bkey_last(i);
cafe5635 196
169ef1cf 197 crc = bch_crc64_update(crc, data, end - data);
c19ed23a 198 return crc ^ 0xffffffffffffffffULL;
cafe5635
KO
199}
200
78b77bf8 201void bch_btree_node_read_done(struct btree *b)
cafe5635 202{
cafe5635 203 const char *err = "bad btree header";
ee811287 204 struct bset *i = btree_bset_first(b);
57943511 205 struct btree_iter *iter;
cafe5635 206
bcf090e0 207 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
57943511 208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
cafe5635
KO
209 iter->used = 0;
210
280481d0 211#ifdef CONFIG_BCACHE_DEBUG
c052dd9a 212 iter->b = &b->keys;
280481d0
KO
213#endif
214
57943511 215 if (!i->seq)
cafe5635
KO
216 goto err;
217
218 for (;
a85e968e 219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
cafe5635
KO
220 i = write_block(b)) {
221 err = "unsupported bset version";
222 if (i->version > BCACHE_BSET_VERSION)
223 goto err;
224
225 err = "bad btree header";
ee811287
KO
226 if (b->written + set_blocks(i, block_bytes(b->c)) >
227 btree_blocks(b))
cafe5635
KO
228 goto err;
229
230 err = "bad magic";
81ab4190 231 if (i->magic != bset_magic(&b->c->sb))
cafe5635
KO
232 goto err;
233
234 err = "bad checksum";
235 switch (i->version) {
236 case 0:
237 if (i->csum != csum_set(i))
238 goto err;
239 break;
240 case BCACHE_BSET_VERSION:
241 if (i->csum != btree_csum_set(b, i))
242 goto err;
243 break;
244 }
245
246 err = "empty set";
a85e968e 247 if (i != b->keys.set[0].data && !i->keys)
cafe5635
KO
248 goto err;
249
fafff81c 250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
cafe5635 251
ee811287 252 b->written += set_blocks(i, block_bytes(b->c));
cafe5635
KO
253 }
254
255 err = "corrupted btree";
256 for (i = write_block(b);
a85e968e 257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
cafe5635 258 i = ((void *) i) + block_bytes(b->c))
a85e968e 259 if (i->seq == b->keys.set[0].data->seq)
cafe5635
KO
260 goto err;
261
a85e968e 262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
cafe5635 263
a85e968e 264 i = b->keys.set[0].data;
cafe5635 265 err = "short btree key";
a85e968e
KO
266 if (b->keys.set[0].size &&
267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
cafe5635
KO
268 goto err;
269
270 if (b->written < btree_blocks(b))
a85e968e
KO
271 bch_bset_init_next(&b->keys, write_block(b),
272 bset_magic(&b->c->sb));
cafe5635 273out:
57943511
KO
274 mempool_free(iter, b->c->fill_iter);
275 return;
cafe5635
KO
276err:
277 set_btree_node_io_error(b);
88b9f8c4 278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
cafe5635 279 err, PTR_BUCKET_NR(b->c, &b->key, 0),
88b9f8c4 280 bset_block_offset(b, i), i->keys);
cafe5635
KO
281 goto out;
282}
283
4246a0b6 284static void btree_node_read_endio(struct bio *bio)
cafe5635 285{
57943511
KO
286 struct closure *cl = bio->bi_private;
287 closure_put(cl);
288}
cafe5635 289
78b77bf8 290static void bch_btree_node_read(struct btree *b)
57943511
KO
291{
292 uint64_t start_time = local_clock();
293 struct closure cl;
294 struct bio *bio;
cafe5635 295
c37511b8
KO
296 trace_bcache_btree_read(b);
297
57943511 298 closure_init_stack(&cl);
cafe5635 299
57943511 300 bio = bch_bbio_alloc(b->c);
4f024f37 301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
57943511
KO
302 bio->bi_end_io = btree_node_read_endio;
303 bio->bi_private = &cl;
70fd7614 304 bio->bi_opf = REQ_OP_READ | REQ_META;
cafe5635 305
a85e968e 306 bch_bio_map(bio, b->keys.set[0].data);
cafe5635 307
57943511
KO
308 bch_submit_bbio(bio, b->c, &b->key, 0);
309 closure_sync(&cl);
cafe5635 310
4e4cbee9 311 if (bio->bi_status)
57943511
KO
312 set_btree_node_io_error(b);
313
314 bch_bbio_free(bio, b->c);
315
316 if (btree_node_io_error(b))
317 goto err;
318
319 bch_btree_node_read_done(b);
57943511 320 bch_time_stats_update(&b->c->btree_read_time, start_time);
57943511
KO
321
322 return;
323err:
61cbd250 324 bch_cache_set_error(b->c, "io error reading bucket %zu",
57943511 325 PTR_BUCKET_NR(b->c, &b->key, 0));
cafe5635
KO
326}
327
328static void btree_complete_write(struct btree *b, struct btree_write *w)
329{
330 if (w->prio_blocked &&
331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
119ba0f8 332 wake_up_allocators(b->c);
cafe5635
KO
333
334 if (w->journal) {
335 atomic_dec_bug(w->journal);
336 __closure_wake_up(&b->c->journal.wait);
337 }
338
cafe5635
KO
339 w->prio_blocked = 0;
340 w->journal = NULL;
cafe5635
KO
341}
342
cb7a583e
KO
343static void btree_node_write_unlock(struct closure *cl)
344{
345 struct btree *b = container_of(cl, struct btree, io);
346
347 up(&b->io_mutex);
348}
349
57943511 350static void __btree_node_write_done(struct closure *cl)
cafe5635 351{
cb7a583e 352 struct btree *b = container_of(cl, struct btree, io);
cafe5635
KO
353 struct btree_write *w = btree_prev_write(b);
354
355 bch_bbio_free(b->bio, b->c);
356 b->bio = NULL;
357 btree_complete_write(b, w);
358
359 if (btree_node_dirty(b))
56b30770 360 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 361
cb7a583e 362 closure_return_with_destructor(cl, btree_node_write_unlock);
cafe5635
KO
363}
364
57943511 365static void btree_node_write_done(struct closure *cl)
cafe5635 366{
cb7a583e 367 struct btree *b = container_of(cl, struct btree, io);
cafe5635 368
491221f8 369 bio_free_pages(b->bio);
57943511 370 __btree_node_write_done(cl);
cafe5635
KO
371}
372
4246a0b6 373static void btree_node_write_endio(struct bio *bio)
57943511
KO
374{
375 struct closure *cl = bio->bi_private;
cb7a583e 376 struct btree *b = container_of(cl, struct btree, io);
57943511 377
4e4cbee9 378 if (bio->bi_status)
57943511
KO
379 set_btree_node_io_error(b);
380
4e4cbee9 381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
57943511
KO
382 closure_put(cl);
383}
384
385static void do_btree_node_write(struct btree *b)
cafe5635 386{
cb7a583e 387 struct closure *cl = &b->io;
ee811287 388 struct bset *i = btree_bset_last(b);
cafe5635
KO
389 BKEY_PADDED(key) k;
390
391 i->version = BCACHE_BSET_VERSION;
392 i->csum = btree_csum_set(b, i);
393
57943511
KO
394 BUG_ON(b->bio);
395 b->bio = bch_bbio_alloc(b->c);
396
397 b->bio->bi_end_io = btree_node_write_endio;
faadf0c9 398 b->bio->bi_private = cl;
ee811287 399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
70fd7614 400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
169ef1cf 401 bch_bio_map(b->bio, i);
cafe5635 402
e49c7c37
KO
403 /*
404 * If we're appending to a leaf node, we don't technically need FUA -
405 * this write just needs to be persisted before the next journal write,
406 * which will be marked FLUSH|FUA.
407 *
408 * Similarly if we're writing a new btree root - the pointer is going to
409 * be in the next journal entry.
410 *
411 * But if we're writing a new btree node (that isn't a root) or
412 * appending to a non leaf btree node, we need either FUA or a flush
413 * when we write the parent with the new pointer. FUA is cheaper than a
414 * flush, and writes appending to leaf nodes aren't blocking anything so
415 * just make all btree node writes FUA to keep things sane.
416 */
417
cafe5635 418 bkey_copy(&k.key, &b->key);
ee811287 419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
a85e968e 420 bset_sector_offset(&b->keys, i));
cafe5635 421
501d52a9 422 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
cafe5635
KO
423 int j;
424 struct bio_vec *bv;
425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426
7988613b 427 bio_for_each_segment_all(bv, b->bio, j)
cafe5635
KO
428 memcpy(page_address(bv->bv_page),
429 base + j * PAGE_SIZE, PAGE_SIZE);
430
cafe5635
KO
431 bch_submit_bbio(b->bio, b->c, &k.key, 0);
432
57943511 433 continue_at(cl, btree_node_write_done, NULL);
cafe5635
KO
434 } else {
435 b->bio->bi_vcnt = 0;
169ef1cf 436 bch_bio_map(b->bio, i);
cafe5635 437
cafe5635
KO
438 bch_submit_bbio(b->bio, b->c, &k.key, 0);
439
440 closure_sync(cl);
cb7a583e 441 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
cafe5635
KO
442 }
443}
444
2a285686 445void __bch_btree_node_write(struct btree *b, struct closure *parent)
cafe5635 446{
ee811287 447 struct bset *i = btree_bset_last(b);
cafe5635 448
2a285686
KO
449 lockdep_assert_held(&b->write_lock);
450
c37511b8
KO
451 trace_bcache_btree_write(b);
452
cafe5635 453 BUG_ON(current->bio_list);
57943511
KO
454 BUG_ON(b->written >= btree_blocks(b));
455 BUG_ON(b->written && !i->keys);
ee811287 456 BUG_ON(btree_bset_first(b)->seq != i->seq);
dc9d98d6 457 bch_check_keys(&b->keys, "writing");
cafe5635 458
cafe5635
KO
459 cancel_delayed_work(&b->work);
460
57943511 461 /* If caller isn't waiting for write, parent refcount is cache set */
cb7a583e
KO
462 down(&b->io_mutex);
463 closure_init(&b->io, parent ?: &b->c->cl);
57943511 464
cafe5635
KO
465 clear_bit(BTREE_NODE_dirty, &b->flags);
466 change_bit(BTREE_NODE_write_idx, &b->flags);
467
57943511 468 do_btree_node_write(b);
cafe5635 469
ee811287 470 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
cafe5635
KO
471 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
472
a85e968e 473 b->written += set_blocks(i, block_bytes(b->c));
2a285686 474}
a85e968e 475
2a285686
KO
476void bch_btree_node_write(struct btree *b, struct closure *parent)
477{
478 unsigned nsets = b->keys.nsets;
479
480 lockdep_assert_held(&b->lock);
481
482 __bch_btree_node_write(b, parent);
cafe5635 483
78b77bf8
KO
484 /*
485 * do verify if there was more than one set initially (i.e. we did a
486 * sort) and we sorted down to a single set:
487 */
2a285686 488 if (nsets && !b->keys.nsets)
78b77bf8
KO
489 bch_btree_verify(b);
490
2a285686 491 bch_btree_init_next(b);
cafe5635
KO
492}
493
f269af5a
KO
494static void bch_btree_node_write_sync(struct btree *b)
495{
496 struct closure cl;
497
498 closure_init_stack(&cl);
2a285686
KO
499
500 mutex_lock(&b->write_lock);
f269af5a 501 bch_btree_node_write(b, &cl);
2a285686
KO
502 mutex_unlock(&b->write_lock);
503
f269af5a
KO
504 closure_sync(&cl);
505}
506
57943511 507static void btree_node_write_work(struct work_struct *w)
cafe5635
KO
508{
509 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
510
2a285686 511 mutex_lock(&b->write_lock);
cafe5635 512 if (btree_node_dirty(b))
2a285686
KO
513 __bch_btree_node_write(b, NULL);
514 mutex_unlock(&b->write_lock);
cafe5635
KO
515}
516
c18536a7 517static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
cafe5635 518{
ee811287 519 struct bset *i = btree_bset_last(b);
cafe5635
KO
520 struct btree_write *w = btree_current_write(b);
521
2a285686
KO
522 lockdep_assert_held(&b->write_lock);
523
57943511
KO
524 BUG_ON(!b->written);
525 BUG_ON(!i->keys);
cafe5635 526
57943511 527 if (!btree_node_dirty(b))
56b30770 528 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 529
57943511 530 set_btree_node_dirty(b);
cafe5635 531
c18536a7 532 if (journal_ref) {
cafe5635 533 if (w->journal &&
c18536a7 534 journal_pin_cmp(b->c, w->journal, journal_ref)) {
cafe5635
KO
535 atomic_dec_bug(w->journal);
536 w->journal = NULL;
537 }
538
539 if (!w->journal) {
c18536a7 540 w->journal = journal_ref;
cafe5635
KO
541 atomic_inc(w->journal);
542 }
543 }
544
cafe5635 545 /* Force write if set is too big */
57943511
KO
546 if (set_bytes(i) > PAGE_SIZE - 48 &&
547 !current->bio_list)
548 bch_btree_node_write(b, NULL);
cafe5635
KO
549}
550
551/*
552 * Btree in memory cache - allocation/freeing
553 * mca -> memory cache
554 */
555
cafe5635
KO
556#define mca_reserve(c) (((c->root && c->root->level) \
557 ? c->root->level : 1) * 8 + 16)
558#define mca_can_free(c) \
0a63b66d 559 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
cafe5635
KO
560
561static void mca_data_free(struct btree *b)
562{
cb7a583e 563 BUG_ON(b->io_mutex.count != 1);
cafe5635 564
a85e968e 565 bch_btree_keys_free(&b->keys);
cafe5635 566
0a63b66d 567 b->c->btree_cache_used--;
ee811287 568 list_move(&b->list, &b->c->btree_cache_freed);
cafe5635
KO
569}
570
571static void mca_bucket_free(struct btree *b)
572{
573 BUG_ON(btree_node_dirty(b));
574
575 b->key.ptr[0] = 0;
576 hlist_del_init_rcu(&b->hash);
577 list_move(&b->list, &b->c->btree_cache_freeable);
578}
579
580static unsigned btree_order(struct bkey *k)
581{
582 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
583}
584
585static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
586{
a85e968e 587 if (!bch_btree_keys_alloc(&b->keys,
ee811287
KO
588 max_t(unsigned,
589 ilog2(b->c->btree_pages),
590 btree_order(k)),
591 gfp)) {
0a63b66d 592 b->c->btree_cache_used++;
ee811287
KO
593 list_move(&b->list, &b->c->btree_cache);
594 } else {
595 list_move(&b->list, &b->c->btree_cache_freed);
596 }
cafe5635
KO
597}
598
599static struct btree *mca_bucket_alloc(struct cache_set *c,
600 struct bkey *k, gfp_t gfp)
601{
602 struct btree *b = kzalloc(sizeof(struct btree), gfp);
603 if (!b)
604 return NULL;
605
606 init_rwsem(&b->lock);
607 lockdep_set_novalidate_class(&b->lock);
2a285686
KO
608 mutex_init(&b->write_lock);
609 lockdep_set_novalidate_class(&b->write_lock);
cafe5635 610 INIT_LIST_HEAD(&b->list);
57943511 611 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
cafe5635 612 b->c = c;
cb7a583e 613 sema_init(&b->io_mutex, 1);
cafe5635
KO
614
615 mca_data_alloc(b, k, gfp);
616 return b;
617}
618
e8e1d468 619static int mca_reap(struct btree *b, unsigned min_order, bool flush)
cafe5635 620{
e8e1d468
KO
621 struct closure cl;
622
623 closure_init_stack(&cl);
cafe5635
KO
624 lockdep_assert_held(&b->c->bucket_lock);
625
626 if (!down_write_trylock(&b->lock))
627 return -ENOMEM;
628
a85e968e 629 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
e8e1d468 630
a85e968e 631 if (b->keys.page_order < min_order)
cb7a583e
KO
632 goto out_unlock;
633
634 if (!flush) {
635 if (btree_node_dirty(b))
636 goto out_unlock;
637
638 if (down_trylock(&b->io_mutex))
639 goto out_unlock;
640 up(&b->io_mutex);
cafe5635
KO
641 }
642
2a285686 643 mutex_lock(&b->write_lock);
f269af5a 644 if (btree_node_dirty(b))
2a285686
KO
645 __bch_btree_node_write(b, &cl);
646 mutex_unlock(&b->write_lock);
647
648 closure_sync(&cl);
cafe5635 649
e8e1d468 650 /* wait for any in flight btree write */
cb7a583e
KO
651 down(&b->io_mutex);
652 up(&b->io_mutex);
e8e1d468 653
cafe5635 654 return 0;
cb7a583e
KO
655out_unlock:
656 rw_unlock(true, b);
657 return -ENOMEM;
cafe5635
KO
658}
659
7dc19d5a
DC
660static unsigned long bch_mca_scan(struct shrinker *shrink,
661 struct shrink_control *sc)
cafe5635
KO
662{
663 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
664 struct btree *b, *t;
665 unsigned long i, nr = sc->nr_to_scan;
7dc19d5a 666 unsigned long freed = 0;
cafe5635
KO
667
668 if (c->shrinker_disabled)
7dc19d5a 669 return SHRINK_STOP;
cafe5635 670
0a63b66d 671 if (c->btree_cache_alloc_lock)
7dc19d5a 672 return SHRINK_STOP;
cafe5635
KO
673
674 /* Return -1 if we can't do anything right now */
a698e08c 675 if (sc->gfp_mask & __GFP_IO)
cafe5635
KO
676 mutex_lock(&c->bucket_lock);
677 else if (!mutex_trylock(&c->bucket_lock))
678 return -1;
679
36c9ea98
KO
680 /*
681 * It's _really_ critical that we don't free too many btree nodes - we
682 * have to always leave ourselves a reserve. The reserve is how we
683 * guarantee that allocating memory for a new btree node can always
684 * succeed, so that inserting keys into the btree can always succeed and
685 * IO can always make forward progress:
686 */
cafe5635
KO
687 nr /= c->btree_pages;
688 nr = min_t(unsigned long, nr, mca_can_free(c));
689
690 i = 0;
691 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
7dc19d5a 692 if (freed >= nr)
cafe5635
KO
693 break;
694
695 if (++i > 3 &&
e8e1d468 696 !mca_reap(b, 0, false)) {
cafe5635
KO
697 mca_data_free(b);
698 rw_unlock(true, b);
7dc19d5a 699 freed++;
cafe5635
KO
700 }
701 }
702
0a63b66d 703 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
b0f32a56
KO
704 if (list_empty(&c->btree_cache))
705 goto out;
706
cafe5635
KO
707 b = list_first_entry(&c->btree_cache, struct btree, list);
708 list_rotate_left(&c->btree_cache);
709
710 if (!b->accessed &&
e8e1d468 711 !mca_reap(b, 0, false)) {
cafe5635
KO
712 mca_bucket_free(b);
713 mca_data_free(b);
714 rw_unlock(true, b);
7dc19d5a 715 freed++;
cafe5635
KO
716 } else
717 b->accessed = 0;
718 }
719out:
cafe5635 720 mutex_unlock(&c->bucket_lock);
7dc19d5a
DC
721 return freed;
722}
723
724static unsigned long bch_mca_count(struct shrinker *shrink,
725 struct shrink_control *sc)
726{
727 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
728
729 if (c->shrinker_disabled)
730 return 0;
731
0a63b66d 732 if (c->btree_cache_alloc_lock)
7dc19d5a
DC
733 return 0;
734
735 return mca_can_free(c) * c->btree_pages;
cafe5635
KO
736}
737
738void bch_btree_cache_free(struct cache_set *c)
739{
740 struct btree *b;
741 struct closure cl;
742 closure_init_stack(&cl);
743
744 if (c->shrink.list.next)
745 unregister_shrinker(&c->shrink);
746
747 mutex_lock(&c->bucket_lock);
748
749#ifdef CONFIG_BCACHE_DEBUG
750 if (c->verify_data)
751 list_move(&c->verify_data->list, &c->btree_cache);
78b77bf8
KO
752
753 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
cafe5635
KO
754#endif
755
756 list_splice(&c->btree_cache_freeable,
757 &c->btree_cache);
758
759 while (!list_empty(&c->btree_cache)) {
760 b = list_first_entry(&c->btree_cache, struct btree, list);
761
762 if (btree_node_dirty(b))
763 btree_complete_write(b, btree_current_write(b));
764 clear_bit(BTREE_NODE_dirty, &b->flags);
765
766 mca_data_free(b);
767 }
768
769 while (!list_empty(&c->btree_cache_freed)) {
770 b = list_first_entry(&c->btree_cache_freed,
771 struct btree, list);
772 list_del(&b->list);
773 cancel_delayed_work_sync(&b->work);
774 kfree(b);
775 }
776
777 mutex_unlock(&c->bucket_lock);
778}
779
780int bch_btree_cache_alloc(struct cache_set *c)
781{
782 unsigned i;
783
cafe5635 784 for (i = 0; i < mca_reserve(c); i++)
72a44517
KO
785 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
786 return -ENOMEM;
cafe5635
KO
787
788 list_splice_init(&c->btree_cache,
789 &c->btree_cache_freeable);
790
791#ifdef CONFIG_BCACHE_DEBUG
792 mutex_init(&c->verify_lock);
793
78b77bf8
KO
794 c->verify_ondisk = (void *)
795 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
796
cafe5635
KO
797 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
798
799 if (c->verify_data &&
a85e968e 800 c->verify_data->keys.set->data)
cafe5635
KO
801 list_del_init(&c->verify_data->list);
802 else
803 c->verify_data = NULL;
804#endif
805
7dc19d5a
DC
806 c->shrink.count_objects = bch_mca_count;
807 c->shrink.scan_objects = bch_mca_scan;
cafe5635
KO
808 c->shrink.seeks = 4;
809 c->shrink.batch = c->btree_pages * 2;
6c4ca1e3
ML
810
811 if (register_shrinker(&c->shrink))
812 pr_warn("bcache: %s: could not register shrinker",
813 __func__);
cafe5635
KO
814
815 return 0;
816}
817
818/* Btree in memory cache - hash table */
819
820static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
821{
822 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
823}
824
825static struct btree *mca_find(struct cache_set *c, struct bkey *k)
826{
827 struct btree *b;
828
829 rcu_read_lock();
830 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
831 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
832 goto out;
833 b = NULL;
834out:
835 rcu_read_unlock();
836 return b;
837}
838
0a63b66d
KO
839static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
840{
841 struct task_struct *old;
842
843 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
844 if (old && old != current) {
845 if (op)
846 prepare_to_wait(&c->btree_cache_wait, &op->wait,
847 TASK_UNINTERRUPTIBLE);
848 return -EINTR;
849 }
850
851 return 0;
852}
853
854static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
855 struct bkey *k)
cafe5635 856{
e8e1d468 857 struct btree *b;
cafe5635 858
c37511b8
KO
859 trace_bcache_btree_cache_cannibalize(c);
860
0a63b66d
KO
861 if (mca_cannibalize_lock(c, op))
862 return ERR_PTR(-EINTR);
cafe5635 863
e8e1d468
KO
864 list_for_each_entry_reverse(b, &c->btree_cache, list)
865 if (!mca_reap(b, btree_order(k), false))
866 return b;
cafe5635 867
e8e1d468
KO
868 list_for_each_entry_reverse(b, &c->btree_cache, list)
869 if (!mca_reap(b, btree_order(k), true))
870 return b;
cafe5635 871
0a63b66d 872 WARN(1, "btree cache cannibalize failed\n");
e8e1d468 873 return ERR_PTR(-ENOMEM);
cafe5635
KO
874}
875
876/*
877 * We can only have one thread cannibalizing other cached btree nodes at a time,
878 * or we'll deadlock. We use an open coded mutex to ensure that, which a
879 * cannibalize_bucket() will take. This means every time we unlock the root of
880 * the btree, we need to release this lock if we have it held.
881 */
df8e8970 882static void bch_cannibalize_unlock(struct cache_set *c)
cafe5635 883{
0a63b66d
KO
884 if (c->btree_cache_alloc_lock == current) {
885 c->btree_cache_alloc_lock = NULL;
886 wake_up(&c->btree_cache_wait);
cafe5635
KO
887 }
888}
889
0a63b66d
KO
890static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
891 struct bkey *k, int level)
cafe5635
KO
892{
893 struct btree *b;
894
e8e1d468
KO
895 BUG_ON(current->bio_list);
896
cafe5635
KO
897 lockdep_assert_held(&c->bucket_lock);
898
899 if (mca_find(c, k))
900 return NULL;
901
902 /* btree_free() doesn't free memory; it sticks the node on the end of
903 * the list. Check if there's any freed nodes there:
904 */
905 list_for_each_entry(b, &c->btree_cache_freeable, list)
e8e1d468 906 if (!mca_reap(b, btree_order(k), false))
cafe5635
KO
907 goto out;
908
909 /* We never free struct btree itself, just the memory that holds the on
910 * disk node. Check the freed list before allocating a new one:
911 */
912 list_for_each_entry(b, &c->btree_cache_freed, list)
e8e1d468 913 if (!mca_reap(b, 0, false)) {
cafe5635 914 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
a85e968e 915 if (!b->keys.set[0].data)
cafe5635
KO
916 goto err;
917 else
918 goto out;
919 }
920
921 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
922 if (!b)
923 goto err;
924
925 BUG_ON(!down_write_trylock(&b->lock));
a85e968e 926 if (!b->keys.set->data)
cafe5635
KO
927 goto err;
928out:
cb7a583e 929 BUG_ON(b->io_mutex.count != 1);
cafe5635
KO
930
931 bkey_copy(&b->key, k);
932 list_move(&b->list, &c->btree_cache);
933 hlist_del_init_rcu(&b->hash);
934 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
935
936 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
d6fd3b11 937 b->parent = (void *) ~0UL;
a85e968e
KO
938 b->flags = 0;
939 b->written = 0;
940 b->level = level;
cafe5635 941
65d45231 942 if (!b->level)
a85e968e
KO
943 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
944 &b->c->expensive_debug_checks);
65d45231 945 else
a85e968e
KO
946 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
947 &b->c->expensive_debug_checks);
cafe5635
KO
948
949 return b;
950err:
951 if (b)
952 rw_unlock(true, b);
953
0a63b66d 954 b = mca_cannibalize(c, op, k);
cafe5635
KO
955 if (!IS_ERR(b))
956 goto out;
957
958 return b;
959}
960
961/**
962 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
963 * in from disk if necessary.
964 *
b54d6934 965 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
cafe5635
KO
966 *
967 * The btree node will have either a read or a write lock held, depending on
968 * level and op->lock.
969 */
0a63b66d 970struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
2452cc89
SP
971 struct bkey *k, int level, bool write,
972 struct btree *parent)
cafe5635
KO
973{
974 int i = 0;
cafe5635
KO
975 struct btree *b;
976
977 BUG_ON(level < 0);
978retry:
979 b = mca_find(c, k);
980
981 if (!b) {
57943511
KO
982 if (current->bio_list)
983 return ERR_PTR(-EAGAIN);
984
cafe5635 985 mutex_lock(&c->bucket_lock);
0a63b66d 986 b = mca_alloc(c, op, k, level);
cafe5635
KO
987 mutex_unlock(&c->bucket_lock);
988
989 if (!b)
990 goto retry;
991 if (IS_ERR(b))
992 return b;
993
57943511 994 bch_btree_node_read(b);
cafe5635
KO
995
996 if (!write)
997 downgrade_write(&b->lock);
998 } else {
999 rw_lock(write, b, level);
1000 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1001 rw_unlock(write, b);
1002 goto retry;
1003 }
1004 BUG_ON(b->level != level);
1005 }
1006
2452cc89 1007 b->parent = parent;
cafe5635
KO
1008 b->accessed = 1;
1009
a85e968e
KO
1010 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1011 prefetch(b->keys.set[i].tree);
1012 prefetch(b->keys.set[i].data);
cafe5635
KO
1013 }
1014
a85e968e
KO
1015 for (; i <= b->keys.nsets; i++)
1016 prefetch(b->keys.set[i].data);
cafe5635 1017
57943511 1018 if (btree_node_io_error(b)) {
cafe5635 1019 rw_unlock(write, b);
57943511
KO
1020 return ERR_PTR(-EIO);
1021 }
1022
1023 BUG_ON(!b->written);
cafe5635
KO
1024
1025 return b;
1026}
1027
2452cc89 1028static void btree_node_prefetch(struct btree *parent, struct bkey *k)
cafe5635
KO
1029{
1030 struct btree *b;
1031
2452cc89
SP
1032 mutex_lock(&parent->c->bucket_lock);
1033 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1034 mutex_unlock(&parent->c->bucket_lock);
cafe5635
KO
1035
1036 if (!IS_ERR_OR_NULL(b)) {
2452cc89 1037 b->parent = parent;
57943511 1038 bch_btree_node_read(b);
cafe5635
KO
1039 rw_unlock(true, b);
1040 }
1041}
1042
1043/* Btree alloc */
1044
e8e1d468 1045static void btree_node_free(struct btree *b)
cafe5635 1046{
c37511b8
KO
1047 trace_bcache_btree_node_free(b);
1048
cafe5635 1049 BUG_ON(b == b->c->root);
cafe5635 1050
2a285686
KO
1051 mutex_lock(&b->write_lock);
1052
cafe5635
KO
1053 if (btree_node_dirty(b))
1054 btree_complete_write(b, btree_current_write(b));
1055 clear_bit(BTREE_NODE_dirty, &b->flags);
1056
2a285686
KO
1057 mutex_unlock(&b->write_lock);
1058
cafe5635
KO
1059 cancel_delayed_work(&b->work);
1060
1061 mutex_lock(&b->c->bucket_lock);
cafe5635
KO
1062 bch_bucket_free(b->c, &b->key);
1063 mca_bucket_free(b);
1064 mutex_unlock(&b->c->bucket_lock);
1065}
1066
c5aa4a31 1067struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
2452cc89
SP
1068 int level, bool wait,
1069 struct btree *parent)
cafe5635
KO
1070{
1071 BKEY_PADDED(key) k;
1072 struct btree *b = ERR_PTR(-EAGAIN);
1073
1074 mutex_lock(&c->bucket_lock);
1075retry:
c5aa4a31 1076 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
cafe5635
KO
1077 goto err;
1078
3a3b6a4e 1079 bkey_put(c, &k.key);
cafe5635
KO
1080 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1081
0a63b66d 1082 b = mca_alloc(c, op, &k.key, level);
cafe5635
KO
1083 if (IS_ERR(b))
1084 goto err_free;
1085
1086 if (!b) {
b1a67b0f
KO
1087 cache_bug(c,
1088 "Tried to allocate bucket that was in btree cache");
cafe5635
KO
1089 goto retry;
1090 }
1091
cafe5635 1092 b->accessed = 1;
2452cc89 1093 b->parent = parent;
a85e968e 1094 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
cafe5635
KO
1095
1096 mutex_unlock(&c->bucket_lock);
c37511b8
KO
1097
1098 trace_bcache_btree_node_alloc(b);
cafe5635
KO
1099 return b;
1100err_free:
1101 bch_bucket_free(c, &k.key);
cafe5635
KO
1102err:
1103 mutex_unlock(&c->bucket_lock);
c37511b8 1104
913dc33f 1105 trace_bcache_btree_node_alloc_fail(c);
cafe5635
KO
1106 return b;
1107}
1108
c5aa4a31 1109static struct btree *bch_btree_node_alloc(struct cache_set *c,
2452cc89
SP
1110 struct btree_op *op, int level,
1111 struct btree *parent)
c5aa4a31 1112{
2452cc89 1113 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
c5aa4a31
SP
1114}
1115
0a63b66d
KO
1116static struct btree *btree_node_alloc_replacement(struct btree *b,
1117 struct btree_op *op)
cafe5635 1118{
2452cc89 1119 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
67539e85 1120 if (!IS_ERR_OR_NULL(n)) {
2a285686 1121 mutex_lock(&n->write_lock);
89ebb4a2 1122 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
67539e85 1123 bkey_copy_key(&n->key, &b->key);
2a285686 1124 mutex_unlock(&n->write_lock);
67539e85 1125 }
cafe5635
KO
1126
1127 return n;
1128}
1129
8835c123
KO
1130static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1131{
1132 unsigned i;
1133
05335cff
KO
1134 mutex_lock(&b->c->bucket_lock);
1135
1136 atomic_inc(&b->c->prio_blocked);
1137
8835c123
KO
1138 bkey_copy(k, &b->key);
1139 bkey_copy_key(k, &ZERO_KEY);
1140
05335cff
KO
1141 for (i = 0; i < KEY_PTRS(k); i++)
1142 SET_PTR_GEN(k, i,
1143 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1144 PTR_BUCKET(b->c, &b->key, i)));
8835c123 1145
05335cff 1146 mutex_unlock(&b->c->bucket_lock);
8835c123
KO
1147}
1148
78365411
KO
1149static int btree_check_reserve(struct btree *b, struct btree_op *op)
1150{
1151 struct cache_set *c = b->c;
1152 struct cache *ca;
0a63b66d 1153 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
78365411
KO
1154
1155 mutex_lock(&c->bucket_lock);
1156
1157 for_each_cache(ca, c, i)
1158 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1159 if (op)
0a63b66d 1160 prepare_to_wait(&c->btree_cache_wait, &op->wait,
78365411 1161 TASK_UNINTERRUPTIBLE);
0a63b66d
KO
1162 mutex_unlock(&c->bucket_lock);
1163 return -EINTR;
78365411
KO
1164 }
1165
1166 mutex_unlock(&c->bucket_lock);
0a63b66d
KO
1167
1168 return mca_cannibalize_lock(b->c, op);
78365411
KO
1169}
1170
cafe5635
KO
1171/* Garbage collection */
1172
487dded8
KO
1173static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1174 struct bkey *k)
cafe5635
KO
1175{
1176 uint8_t stale = 0;
1177 unsigned i;
1178 struct bucket *g;
1179
1180 /*
1181 * ptr_invalid() can't return true for the keys that mark btree nodes as
1182 * freed, but since ptr_bad() returns true we'll never actually use them
1183 * for anything and thus we don't want mark their pointers here
1184 */
1185 if (!bkey_cmp(k, &ZERO_KEY))
1186 return stale;
1187
1188 for (i = 0; i < KEY_PTRS(k); i++) {
1189 if (!ptr_available(c, k, i))
1190 continue;
1191
1192 g = PTR_BUCKET(c, k, i);
1193
3a2fd9d5
KO
1194 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1195 g->last_gc = PTR_GEN(k, i);
cafe5635
KO
1196
1197 if (ptr_stale(c, k, i)) {
1198 stale = max(stale, ptr_stale(c, k, i));
1199 continue;
1200 }
1201
1202 cache_bug_on(GC_MARK(g) &&
1203 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1204 c, "inconsistent ptrs: mark = %llu, level = %i",
1205 GC_MARK(g), level);
1206
1207 if (level)
1208 SET_GC_MARK(g, GC_MARK_METADATA);
1209 else if (KEY_DIRTY(k))
1210 SET_GC_MARK(g, GC_MARK_DIRTY);
4fe6a816
KO
1211 else if (!GC_MARK(g))
1212 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
cafe5635
KO
1213
1214 /* guard against overflow */
1215 SET_GC_SECTORS_USED(g, min_t(unsigned,
1216 GC_SECTORS_USED(g) + KEY_SIZE(k),
94717447 1217 MAX_GC_SECTORS_USED));
cafe5635
KO
1218
1219 BUG_ON(!GC_SECTORS_USED(g));
1220 }
1221
1222 return stale;
1223}
1224
1225#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1226
487dded8
KO
1227void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1228{
1229 unsigned i;
1230
1231 for (i = 0; i < KEY_PTRS(k); i++)
1232 if (ptr_available(c, k, i) &&
1233 !ptr_stale(c, k, i)) {
1234 struct bucket *b = PTR_BUCKET(c, k, i);
1235
1236 b->gen = PTR_GEN(k, i);
1237
1238 if (level && bkey_cmp(k, &ZERO_KEY))
1239 b->prio = BTREE_PRIO;
1240 else if (!level && b->prio == BTREE_PRIO)
1241 b->prio = INITIAL_PRIO;
1242 }
1243
1244 __bch_btree_mark_key(c, level, k);
1245}
1246
d44c2f9e
TJ
1247void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1248{
1249 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1250}
1251
a1f0358b 1252static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
cafe5635
KO
1253{
1254 uint8_t stale = 0;
a1f0358b 1255 unsigned keys = 0, good_keys = 0;
cafe5635
KO
1256 struct bkey *k;
1257 struct btree_iter iter;
1258 struct bset_tree *t;
1259
1260 gc->nodes++;
1261
c052dd9a 1262 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
cafe5635 1263 stale = max(stale, btree_mark_key(b, k));
a1f0358b 1264 keys++;
cafe5635 1265
a85e968e 1266 if (bch_ptr_bad(&b->keys, k))
cafe5635
KO
1267 continue;
1268
cafe5635
KO
1269 gc->key_bytes += bkey_u64s(k);
1270 gc->nkeys++;
a1f0358b 1271 good_keys++;
cafe5635
KO
1272
1273 gc->data += KEY_SIZE(k);
cafe5635
KO
1274 }
1275
a85e968e 1276 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
cafe5635 1277 btree_bug_on(t->size &&
a85e968e 1278 bset_written(&b->keys, t) &&
cafe5635
KO
1279 bkey_cmp(&b->key, &t->end) < 0,
1280 b, "found short btree key in gc");
1281
a1f0358b
KO
1282 if (b->c->gc_always_rewrite)
1283 return true;
cafe5635 1284
a1f0358b
KO
1285 if (stale > 10)
1286 return true;
cafe5635 1287
a1f0358b
KO
1288 if ((keys - good_keys) * 2 > keys)
1289 return true;
cafe5635 1290
a1f0358b 1291 return false;
cafe5635
KO
1292}
1293
a1f0358b 1294#define GC_MERGE_NODES 4U
cafe5635
KO
1295
1296struct gc_merge_info {
1297 struct btree *b;
cafe5635
KO
1298 unsigned keys;
1299};
1300
a1f0358b
KO
1301static int bch_btree_insert_node(struct btree *, struct btree_op *,
1302 struct keylist *, atomic_t *, struct bkey *);
1303
1304static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
0a63b66d 1305 struct gc_stat *gc, struct gc_merge_info *r)
cafe5635 1306{
a1f0358b
KO
1307 unsigned i, nodes = 0, keys = 0, blocks;
1308 struct btree *new_nodes[GC_MERGE_NODES];
0a63b66d 1309 struct keylist keylist;
b54d6934 1310 struct closure cl;
a1f0358b 1311 struct bkey *k;
b54d6934 1312
0a63b66d
KO
1313 bch_keylist_init(&keylist);
1314
1315 if (btree_check_reserve(b, NULL))
1316 return 0;
1317
a1f0358b 1318 memset(new_nodes, 0, sizeof(new_nodes));
b54d6934 1319 closure_init_stack(&cl);
cafe5635 1320
a1f0358b 1321 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
cafe5635
KO
1322 keys += r[nodes++].keys;
1323
1324 blocks = btree_default_blocks(b->c) * 2 / 3;
1325
1326 if (nodes < 2 ||
a85e968e 1327 __set_blocks(b->keys.set[0].data, keys,
ee811287 1328 block_bytes(b->c)) > blocks * (nodes - 1))
a1f0358b 1329 return 0;
cafe5635 1330
a1f0358b 1331 for (i = 0; i < nodes; i++) {
0a63b66d 1332 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
a1f0358b
KO
1333 if (IS_ERR_OR_NULL(new_nodes[i]))
1334 goto out_nocoalesce;
cafe5635
KO
1335 }
1336
0a63b66d
KO
1337 /*
1338 * We have to check the reserve here, after we've allocated our new
1339 * nodes, to make sure the insert below will succeed - we also check
1340 * before as an optimization to potentially avoid a bunch of expensive
1341 * allocs/sorts
1342 */
1343 if (btree_check_reserve(b, NULL))
1344 goto out_nocoalesce;
1345
2a285686
KO
1346 for (i = 0; i < nodes; i++)
1347 mutex_lock(&new_nodes[i]->write_lock);
1348
cafe5635 1349 for (i = nodes - 1; i > 0; --i) {
ee811287
KO
1350 struct bset *n1 = btree_bset_first(new_nodes[i]);
1351 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
cafe5635
KO
1352 struct bkey *k, *last = NULL;
1353
1354 keys = 0;
1355
a1f0358b
KO
1356 if (i > 1) {
1357 for (k = n2->start;
fafff81c 1358 k < bset_bkey_last(n2);
a1f0358b
KO
1359 k = bkey_next(k)) {
1360 if (__set_blocks(n1, n1->keys + keys +
ee811287
KO
1361 bkey_u64s(k),
1362 block_bytes(b->c)) > blocks)
a1f0358b
KO
1363 break;
1364
1365 last = k;
1366 keys += bkey_u64s(k);
1367 }
1368 } else {
cafe5635
KO
1369 /*
1370 * Last node we're not getting rid of - we're getting
1371 * rid of the node at r[0]. Have to try and fit all of
1372 * the remaining keys into this node; we can't ensure
1373 * they will always fit due to rounding and variable
1374 * length keys (shouldn't be possible in practice,
1375 * though)
1376 */
a1f0358b 1377 if (__set_blocks(n1, n1->keys + n2->keys,
ee811287
KO
1378 block_bytes(b->c)) >
1379 btree_blocks(new_nodes[i]))
a1f0358b 1380 goto out_nocoalesce;
cafe5635
KO
1381
1382 keys = n2->keys;
a1f0358b 1383 /* Take the key of the node we're getting rid of */
cafe5635 1384 last = &r->b->key;
a1f0358b 1385 }
cafe5635 1386
ee811287
KO
1387 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1388 btree_blocks(new_nodes[i]));
cafe5635 1389
a1f0358b
KO
1390 if (last)
1391 bkey_copy_key(&new_nodes[i]->key, last);
cafe5635 1392
fafff81c 1393 memcpy(bset_bkey_last(n1),
cafe5635 1394 n2->start,
fafff81c 1395 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
cafe5635
KO
1396
1397 n1->keys += keys;
a1f0358b 1398 r[i].keys = n1->keys;
cafe5635
KO
1399
1400 memmove(n2->start,
fafff81c
KO
1401 bset_bkey_idx(n2, keys),
1402 (void *) bset_bkey_last(n2) -
1403 (void *) bset_bkey_idx(n2, keys));
cafe5635
KO
1404
1405 n2->keys -= keys;
1406
0a63b66d 1407 if (__bch_keylist_realloc(&keylist,
085d2a3d 1408 bkey_u64s(&new_nodes[i]->key)))
a1f0358b
KO
1409 goto out_nocoalesce;
1410
1411 bch_btree_node_write(new_nodes[i], &cl);
0a63b66d 1412 bch_keylist_add(&keylist, &new_nodes[i]->key);
cafe5635
KO
1413 }
1414
2a285686
KO
1415 for (i = 0; i < nodes; i++)
1416 mutex_unlock(&new_nodes[i]->write_lock);
1417
05335cff
KO
1418 closure_sync(&cl);
1419
1420 /* We emptied out this node */
1421 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1422 btree_node_free(new_nodes[0]);
1423 rw_unlock(true, new_nodes[0]);
400ffaa2 1424 new_nodes[0] = NULL;
05335cff 1425
a1f0358b 1426 for (i = 0; i < nodes; i++) {
0a63b66d 1427 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
a1f0358b 1428 goto out_nocoalesce;
cafe5635 1429
0a63b66d
KO
1430 make_btree_freeing_key(r[i].b, keylist.top);
1431 bch_keylist_push(&keylist);
a1f0358b 1432 }
cafe5635 1433
0a63b66d
KO
1434 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1435 BUG_ON(!bch_keylist_empty(&keylist));
a1f0358b
KO
1436
1437 for (i = 0; i < nodes; i++) {
1438 btree_node_free(r[i].b);
1439 rw_unlock(true, r[i].b);
1440
1441 r[i].b = new_nodes[i];
1442 }
1443
a1f0358b
KO
1444 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1445 r[nodes - 1].b = ERR_PTR(-EINTR);
1446
1447 trace_bcache_btree_gc_coalesce(nodes);
cafe5635 1448 gc->nodes--;
cafe5635 1449
0a63b66d
KO
1450 bch_keylist_free(&keylist);
1451
a1f0358b
KO
1452 /* Invalidated our iterator */
1453 return -EINTR;
1454
1455out_nocoalesce:
1456 closure_sync(&cl);
0a63b66d 1457 bch_keylist_free(&keylist);
a1f0358b 1458
0a63b66d 1459 while ((k = bch_keylist_pop(&keylist)))
a1f0358b
KO
1460 if (!bkey_cmp(k, &ZERO_KEY))
1461 atomic_dec(&b->c->prio_blocked);
1462
1463 for (i = 0; i < nodes; i++)
1464 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1465 btree_node_free(new_nodes[i]);
1466 rw_unlock(true, new_nodes[i]);
1467 }
1468 return 0;
cafe5635
KO
1469}
1470
0a63b66d
KO
1471static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1472 struct btree *replace)
1473{
1474 struct keylist keys;
1475 struct btree *n;
1476
1477 if (btree_check_reserve(b, NULL))
1478 return 0;
1479
1480 n = btree_node_alloc_replacement(replace, NULL);
1481
1482 /* recheck reserve after allocating replacement node */
1483 if (btree_check_reserve(b, NULL)) {
1484 btree_node_free(n);
1485 rw_unlock(true, n);
1486 return 0;
1487 }
1488
1489 bch_btree_node_write_sync(n);
1490
1491 bch_keylist_init(&keys);
1492 bch_keylist_add(&keys, &n->key);
1493
1494 make_btree_freeing_key(replace, keys.top);
1495 bch_keylist_push(&keys);
1496
1497 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1498 BUG_ON(!bch_keylist_empty(&keys));
1499
1500 btree_node_free(replace);
1501 rw_unlock(true, n);
1502
1503 /* Invalidated our iterator */
1504 return -EINTR;
1505}
1506
a1f0358b 1507static unsigned btree_gc_count_keys(struct btree *b)
cafe5635 1508{
a1f0358b
KO
1509 struct bkey *k;
1510 struct btree_iter iter;
1511 unsigned ret = 0;
cafe5635 1512
c052dd9a 1513 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
a1f0358b
KO
1514 ret += bkey_u64s(k);
1515
1516 return ret;
1517}
cafe5635 1518
a1f0358b
KO
1519static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1520 struct closure *writes, struct gc_stat *gc)
1521{
a1f0358b
KO
1522 int ret = 0;
1523 bool should_rewrite;
a1f0358b 1524 struct bkey *k;
a1f0358b 1525 struct btree_iter iter;
cafe5635 1526 struct gc_merge_info r[GC_MERGE_NODES];
2a285686 1527 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
cafe5635 1528
c052dd9a 1529 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
cafe5635 1530
2a285686
KO
1531 for (i = r; i < r + ARRAY_SIZE(r); i++)
1532 i->b = ERR_PTR(-EINTR);
cafe5635 1533
a1f0358b 1534 while (1) {
a85e968e 1535 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
a1f0358b 1536 if (k) {
0a63b66d 1537 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
2452cc89 1538 true, b);
a1f0358b
KO
1539 if (IS_ERR(r->b)) {
1540 ret = PTR_ERR(r->b);
1541 break;
1542 }
1543
1544 r->keys = btree_gc_count_keys(r->b);
1545
0a63b66d 1546 ret = btree_gc_coalesce(b, op, gc, r);
a1f0358b
KO
1547 if (ret)
1548 break;
cafe5635
KO
1549 }
1550
a1f0358b
KO
1551 if (!last->b)
1552 break;
cafe5635 1553
a1f0358b
KO
1554 if (!IS_ERR(last->b)) {
1555 should_rewrite = btree_gc_mark_node(last->b, gc);
0a63b66d
KO
1556 if (should_rewrite) {
1557 ret = btree_gc_rewrite_node(b, op, last->b);
1558 if (ret)
a1f0358b 1559 break;
a1f0358b
KO
1560 }
1561
1562 if (last->b->level) {
1563 ret = btree_gc_recurse(last->b, op, writes, gc);
1564 if (ret)
1565 break;
1566 }
cafe5635 1567
a1f0358b
KO
1568 bkey_copy_key(&b->c->gc_done, &last->b->key);
1569
1570 /*
1571 * Must flush leaf nodes before gc ends, since replace
1572 * operations aren't journalled
1573 */
2a285686 1574 mutex_lock(&last->b->write_lock);
a1f0358b
KO
1575 if (btree_node_dirty(last->b))
1576 bch_btree_node_write(last->b, writes);
2a285686 1577 mutex_unlock(&last->b->write_lock);
a1f0358b
KO
1578 rw_unlock(true, last->b);
1579 }
1580
1581 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1582 r->b = NULL;
cafe5635 1583
cafe5635
KO
1584 if (need_resched()) {
1585 ret = -EAGAIN;
1586 break;
1587 }
cafe5635
KO
1588 }
1589
2a285686
KO
1590 for (i = r; i < r + ARRAY_SIZE(r); i++)
1591 if (!IS_ERR_OR_NULL(i->b)) {
1592 mutex_lock(&i->b->write_lock);
1593 if (btree_node_dirty(i->b))
1594 bch_btree_node_write(i->b, writes);
1595 mutex_unlock(&i->b->write_lock);
1596 rw_unlock(true, i->b);
a1f0358b 1597 }
cafe5635 1598
cafe5635
KO
1599 return ret;
1600}
1601
1602static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1603 struct closure *writes, struct gc_stat *gc)
1604{
1605 struct btree *n = NULL;
a1f0358b
KO
1606 int ret = 0;
1607 bool should_rewrite;
cafe5635 1608
a1f0358b
KO
1609 should_rewrite = btree_gc_mark_node(b, gc);
1610 if (should_rewrite) {
0a63b66d 1611 n = btree_node_alloc_replacement(b, NULL);
cafe5635 1612
a1f0358b
KO
1613 if (!IS_ERR_OR_NULL(n)) {
1614 bch_btree_node_write_sync(n);
2a285686 1615
a1f0358b
KO
1616 bch_btree_set_root(n);
1617 btree_node_free(b);
1618 rw_unlock(true, n);
cafe5635 1619
a1f0358b
KO
1620 return -EINTR;
1621 }
1622 }
cafe5635 1623
487dded8
KO
1624 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1625
a1f0358b
KO
1626 if (b->level) {
1627 ret = btree_gc_recurse(b, op, writes, gc);
1628 if (ret)
1629 return ret;
cafe5635
KO
1630 }
1631
a1f0358b
KO
1632 bkey_copy_key(&b->c->gc_done, &b->key);
1633
cafe5635
KO
1634 return ret;
1635}
1636
1637static void btree_gc_start(struct cache_set *c)
1638{
1639 struct cache *ca;
1640 struct bucket *b;
cafe5635
KO
1641 unsigned i;
1642
1643 if (!c->gc_mark_valid)
1644 return;
1645
1646 mutex_lock(&c->bucket_lock);
1647
1648 c->gc_mark_valid = 0;
1649 c->gc_done = ZERO_KEY;
1650
1651 for_each_cache(ca, c, i)
1652 for_each_bucket(b, ca) {
3a2fd9d5 1653 b->last_gc = b->gen;
29ebf465 1654 if (!atomic_read(&b->pin)) {
4fe6a816 1655 SET_GC_MARK(b, 0);
29ebf465
KO
1656 SET_GC_SECTORS_USED(b, 0);
1657 }
cafe5635
KO
1658 }
1659
cafe5635
KO
1660 mutex_unlock(&c->bucket_lock);
1661}
1662
d44c2f9e 1663static void bch_btree_gc_finish(struct cache_set *c)
cafe5635 1664{
cafe5635
KO
1665 struct bucket *b;
1666 struct cache *ca;
cafe5635
KO
1667 unsigned i;
1668
1669 mutex_lock(&c->bucket_lock);
1670
1671 set_gc_sectors(c);
1672 c->gc_mark_valid = 1;
1673 c->need_gc = 0;
1674
cafe5635
KO
1675 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1676 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1677 GC_MARK_METADATA);
1678
bf0a628a
NS
1679 /* don't reclaim buckets to which writeback keys point */
1680 rcu_read_lock();
1681 for (i = 0; i < c->nr_uuids; i++) {
1682 struct bcache_device *d = c->devices[i];
1683 struct cached_dev *dc;
1684 struct keybuf_key *w, *n;
1685 unsigned j;
1686
1687 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1688 continue;
1689 dc = container_of(d, struct cached_dev, disk);
1690
1691 spin_lock(&dc->writeback_keys.lock);
1692 rbtree_postorder_for_each_entry_safe(w, n,
1693 &dc->writeback_keys.keys, node)
1694 for (j = 0; j < KEY_PTRS(&w->key); j++)
1695 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1696 GC_MARK_DIRTY);
1697 spin_unlock(&dc->writeback_keys.lock);
1698 }
1699 rcu_read_unlock();
1700
d44c2f9e 1701 c->avail_nbuckets = 0;
cafe5635
KO
1702 for_each_cache(ca, c, i) {
1703 uint64_t *i;
1704
1705 ca->invalidate_needs_gc = 0;
1706
1707 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1708 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1709
1710 for (i = ca->prio_buckets;
1711 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1712 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1713
1714 for_each_bucket(b, ca) {
cafe5635
KO
1715 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1716
4fe6a816
KO
1717 if (atomic_read(&b->pin))
1718 continue;
1719
1720 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1721
1722 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
d44c2f9e 1723 c->avail_nbuckets++;
cafe5635
KO
1724 }
1725 }
1726
cafe5635 1727 mutex_unlock(&c->bucket_lock);
cafe5635
KO
1728}
1729
72a44517 1730static void bch_btree_gc(struct cache_set *c)
cafe5635 1731{
cafe5635 1732 int ret;
cafe5635
KO
1733 struct gc_stat stats;
1734 struct closure writes;
1735 struct btree_op op;
cafe5635 1736 uint64_t start_time = local_clock();
57943511 1737
c37511b8 1738 trace_bcache_gc_start(c);
cafe5635
KO
1739
1740 memset(&stats, 0, sizeof(struct gc_stat));
1741 closure_init_stack(&writes);
b54d6934 1742 bch_btree_op_init(&op, SHRT_MAX);
cafe5635
KO
1743
1744 btree_gc_start(c);
1745
a1f0358b
KO
1746 do {
1747 ret = btree_root(gc_root, c, &op, &writes, &stats);
1748 closure_sync(&writes);
c5f1e5ad 1749 cond_resched();
cafe5635 1750
a1f0358b
KO
1751 if (ret && ret != -EAGAIN)
1752 pr_warn("gc failed!");
1753 } while (ret);
cafe5635 1754
d44c2f9e 1755 bch_btree_gc_finish(c);
57943511
KO
1756 wake_up_allocators(c);
1757
169ef1cf 1758 bch_time_stats_update(&c->btree_gc_time, start_time);
cafe5635
KO
1759
1760 stats.key_bytes *= sizeof(uint64_t);
cafe5635 1761 stats.data <<= 9;
d44c2f9e 1762 bch_update_bucket_in_use(c, &stats);
cafe5635 1763 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
cafe5635 1764
c37511b8 1765 trace_bcache_gc_end(c);
cafe5635 1766
72a44517
KO
1767 bch_moving_gc(c);
1768}
1769
be628be0 1770static bool gc_should_run(struct cache_set *c)
72a44517 1771{
a1f0358b
KO
1772 struct cache *ca;
1773 unsigned i;
72a44517 1774
be628be0
KO
1775 for_each_cache(ca, c, i)
1776 if (ca->invalidate_needs_gc)
1777 return true;
72a44517 1778
be628be0
KO
1779 if (atomic_read(&c->sectors_to_gc) < 0)
1780 return true;
72a44517 1781
be628be0
KO
1782 return false;
1783}
a1f0358b 1784
be628be0
KO
1785static int bch_gc_thread(void *arg)
1786{
1787 struct cache_set *c = arg;
a1f0358b 1788
be628be0
KO
1789 while (1) {
1790 wait_event_interruptible(c->gc_wait,
1791 kthread_should_stop() || gc_should_run(c));
a1f0358b 1792
be628be0
KO
1793 if (kthread_should_stop())
1794 break;
1795
1796 set_gc_sectors(c);
1797 bch_btree_gc(c);
72a44517
KO
1798 }
1799
1800 return 0;
cafe5635
KO
1801}
1802
72a44517 1803int bch_gc_thread_start(struct cache_set *c)
cafe5635 1804{
be628be0 1805 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
72a44517
KO
1806 if (IS_ERR(c->gc_thread))
1807 return PTR_ERR(c->gc_thread);
1808
72a44517 1809 return 0;
cafe5635
KO
1810}
1811
1812/* Initial partial gc */
1813
487dded8 1814static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
cafe5635 1815{
50310164 1816 int ret = 0;
50310164 1817 struct bkey *k, *p = NULL;
cafe5635
KO
1818 struct btree_iter iter;
1819
487dded8
KO
1820 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1821 bch_initial_mark_key(b->c, b->level, k);
cafe5635 1822
487dded8 1823 bch_initial_mark_key(b->c, b->level + 1, &b->key);
cafe5635
KO
1824
1825 if (b->level) {
c052dd9a 1826 bch_btree_iter_init(&b->keys, &iter, NULL);
cafe5635 1827
50310164 1828 do {
a85e968e
KO
1829 k = bch_btree_iter_next_filter(&iter, &b->keys,
1830 bch_ptr_bad);
50310164 1831 if (k)
2452cc89 1832 btree_node_prefetch(b, k);
cafe5635 1833
50310164 1834 if (p)
487dded8 1835 ret = btree(check_recurse, p, b, op);
cafe5635 1836
50310164
KO
1837 p = k;
1838 } while (p && !ret);
cafe5635
KO
1839 }
1840
487dded8 1841 return ret;
cafe5635
KO
1842}
1843
c18536a7 1844int bch_btree_check(struct cache_set *c)
cafe5635 1845{
c18536a7 1846 struct btree_op op;
cafe5635 1847
b54d6934 1848 bch_btree_op_init(&op, SHRT_MAX);
cafe5635 1849
487dded8 1850 return btree_root(check_recurse, c, &op);
cafe5635
KO
1851}
1852
2531d9ee
KO
1853void bch_initial_gc_finish(struct cache_set *c)
1854{
1855 struct cache *ca;
1856 struct bucket *b;
1857 unsigned i;
1858
1859 bch_btree_gc_finish(c);
1860
1861 mutex_lock(&c->bucket_lock);
1862
1863 /*
1864 * We need to put some unused buckets directly on the prio freelist in
1865 * order to get the allocator thread started - it needs freed buckets in
1866 * order to rewrite the prios and gens, and it needs to rewrite prios
1867 * and gens in order to free buckets.
1868 *
1869 * This is only safe for buckets that have no live data in them, which
1870 * there should always be some of.
1871 */
1872 for_each_cache(ca, c, i) {
1873 for_each_bucket(b, ca) {
1874 if (fifo_full(&ca->free[RESERVE_PRIO]))
1875 break;
1876
1877 if (bch_can_invalidate_bucket(ca, b) &&
1878 !GC_MARK(b)) {
1879 __bch_invalidate_one_bucket(ca, b);
1880 fifo_push(&ca->free[RESERVE_PRIO],
1881 b - ca->buckets);
1882 }
1883 }
1884 }
1885
1886 mutex_unlock(&c->bucket_lock);
1887}
1888
cafe5635
KO
1889/* Btree insertion */
1890
829a60b9
KO
1891static bool btree_insert_key(struct btree *b, struct bkey *k,
1892 struct bkey *replace_key)
cafe5635 1893{
829a60b9 1894 unsigned status;
cafe5635
KO
1895
1896 BUG_ON(bkey_cmp(k, &b->key) > 0);
1fa8455d 1897
829a60b9
KO
1898 status = bch_btree_insert_key(&b->keys, k, replace_key);
1899 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1900 bch_check_keys(&b->keys, "%u for %s", status,
1901 replace_key ? "replace" : "insert");
cafe5635 1902
829a60b9
KO
1903 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1904 status);
1905 return true;
1906 } else
1907 return false;
cafe5635
KO
1908}
1909
59158fde
KO
1910static size_t insert_u64s_remaining(struct btree *b)
1911{
3572324a 1912 long ret = bch_btree_keys_u64s_remaining(&b->keys);
59158fde
KO
1913
1914 /*
1915 * Might land in the middle of an existing extent and have to split it
1916 */
1917 if (b->keys.ops->is_extents)
1918 ret -= KEY_MAX_U64S;
1919
1920 return max(ret, 0L);
1921}
1922
26c949f8 1923static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1b207d80
KO
1924 struct keylist *insert_keys,
1925 struct bkey *replace_key)
cafe5635
KO
1926{
1927 bool ret = false;
dc9d98d6 1928 int oldsize = bch_count_data(&b->keys);
cafe5635 1929
26c949f8 1930 while (!bch_keylist_empty(insert_keys)) {
c2f95ae2 1931 struct bkey *k = insert_keys->keys;
26c949f8 1932
59158fde 1933 if (bkey_u64s(k) > insert_u64s_remaining(b))
403b6cde
KO
1934 break;
1935
1936 if (bkey_cmp(k, &b->key) <= 0) {
3a3b6a4e
KO
1937 if (!b->level)
1938 bkey_put(b->c, k);
26c949f8 1939
829a60b9 1940 ret |= btree_insert_key(b, k, replace_key);
26c949f8
KO
1941 bch_keylist_pop_front(insert_keys);
1942 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
26c949f8 1943 BKEY_PADDED(key) temp;
c2f95ae2 1944 bkey_copy(&temp.key, insert_keys->keys);
26c949f8
KO
1945
1946 bch_cut_back(&b->key, &temp.key);
c2f95ae2 1947 bch_cut_front(&b->key, insert_keys->keys);
26c949f8 1948
829a60b9 1949 ret |= btree_insert_key(b, &temp.key, replace_key);
26c949f8
KO
1950 break;
1951 } else {
1952 break;
1953 }
cafe5635
KO
1954 }
1955
829a60b9
KO
1956 if (!ret)
1957 op->insert_collision = true;
1958
403b6cde
KO
1959 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1960
dc9d98d6 1961 BUG_ON(bch_count_data(&b->keys) < oldsize);
cafe5635
KO
1962 return ret;
1963}
1964
26c949f8
KO
1965static int btree_split(struct btree *b, struct btree_op *op,
1966 struct keylist *insert_keys,
1b207d80 1967 struct bkey *replace_key)
cafe5635 1968{
d6fd3b11 1969 bool split;
cafe5635
KO
1970 struct btree *n1, *n2 = NULL, *n3 = NULL;
1971 uint64_t start_time = local_clock();
b54d6934 1972 struct closure cl;
17e21a9f 1973 struct keylist parent_keys;
b54d6934
KO
1974
1975 closure_init_stack(&cl);
17e21a9f 1976 bch_keylist_init(&parent_keys);
cafe5635 1977
0a63b66d
KO
1978 if (btree_check_reserve(b, op)) {
1979 if (!b->level)
1980 return -EINTR;
1981 else
1982 WARN(1, "insufficient reserve for split\n");
1983 }
78365411 1984
0a63b66d 1985 n1 = btree_node_alloc_replacement(b, op);
cafe5635
KO
1986 if (IS_ERR(n1))
1987 goto err;
1988
ee811287
KO
1989 split = set_blocks(btree_bset_first(n1),
1990 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
cafe5635 1991
cafe5635
KO
1992 if (split) {
1993 unsigned keys = 0;
1994
ee811287 1995 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
c37511b8 1996
2452cc89 1997 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
cafe5635
KO
1998 if (IS_ERR(n2))
1999 goto err_free1;
2000
d6fd3b11 2001 if (!b->parent) {
2452cc89 2002 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
cafe5635
KO
2003 if (IS_ERR(n3))
2004 goto err_free2;
2005 }
2006
2a285686
KO
2007 mutex_lock(&n1->write_lock);
2008 mutex_lock(&n2->write_lock);
2009
1b207d80 2010 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
cafe5635 2011
d6fd3b11
KO
2012 /*
2013 * Has to be a linear search because we don't have an auxiliary
cafe5635
KO
2014 * search tree yet
2015 */
2016
ee811287
KO
2017 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2018 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
fafff81c 2019 keys));
cafe5635 2020
fafff81c 2021 bkey_copy_key(&n1->key,
ee811287
KO
2022 bset_bkey_idx(btree_bset_first(n1), keys));
2023 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
cafe5635 2024
ee811287
KO
2025 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2026 btree_bset_first(n1)->keys = keys;
cafe5635 2027
ee811287
KO
2028 memcpy(btree_bset_first(n2)->start,
2029 bset_bkey_last(btree_bset_first(n1)),
2030 btree_bset_first(n2)->keys * sizeof(uint64_t));
cafe5635
KO
2031
2032 bkey_copy_key(&n2->key, &b->key);
2033
17e21a9f 2034 bch_keylist_add(&parent_keys, &n2->key);
b54d6934 2035 bch_btree_node_write(n2, &cl);
2a285686 2036 mutex_unlock(&n2->write_lock);
cafe5635 2037 rw_unlock(true, n2);
c37511b8 2038 } else {
ee811287 2039 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
c37511b8 2040
2a285686 2041 mutex_lock(&n1->write_lock);
1b207d80 2042 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
c37511b8 2043 }
cafe5635 2044
17e21a9f 2045 bch_keylist_add(&parent_keys, &n1->key);
b54d6934 2046 bch_btree_node_write(n1, &cl);
2a285686 2047 mutex_unlock(&n1->write_lock);
cafe5635
KO
2048
2049 if (n3) {
d6fd3b11 2050 /* Depth increases, make a new root */
2a285686 2051 mutex_lock(&n3->write_lock);
cafe5635 2052 bkey_copy_key(&n3->key, &MAX_KEY);
17e21a9f 2053 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
b54d6934 2054 bch_btree_node_write(n3, &cl);
2a285686 2055 mutex_unlock(&n3->write_lock);
cafe5635 2056
b54d6934 2057 closure_sync(&cl);
cafe5635
KO
2058 bch_btree_set_root(n3);
2059 rw_unlock(true, n3);
d6fd3b11
KO
2060 } else if (!b->parent) {
2061 /* Root filled up but didn't need to be split */
b54d6934 2062 closure_sync(&cl);
cafe5635
KO
2063 bch_btree_set_root(n1);
2064 } else {
17e21a9f 2065 /* Split a non root node */
b54d6934 2066 closure_sync(&cl);
17e21a9f
KO
2067 make_btree_freeing_key(b, parent_keys.top);
2068 bch_keylist_push(&parent_keys);
2069
17e21a9f
KO
2070 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2071 BUG_ON(!bch_keylist_empty(&parent_keys));
cafe5635
KO
2072 }
2073
05335cff 2074 btree_node_free(b);
cafe5635 2075 rw_unlock(true, n1);
cafe5635 2076
169ef1cf 2077 bch_time_stats_update(&b->c->btree_split_time, start_time);
cafe5635
KO
2078
2079 return 0;
2080err_free2:
5f5837d2 2081 bkey_put(b->c, &n2->key);
e8e1d468 2082 btree_node_free(n2);
cafe5635
KO
2083 rw_unlock(true, n2);
2084err_free1:
5f5837d2 2085 bkey_put(b->c, &n1->key);
e8e1d468 2086 btree_node_free(n1);
cafe5635
KO
2087 rw_unlock(true, n1);
2088err:
0a63b66d 2089 WARN(1, "bcache: btree split failed (level %u)", b->level);
5f5837d2 2090
cafe5635
KO
2091 if (n3 == ERR_PTR(-EAGAIN) ||
2092 n2 == ERR_PTR(-EAGAIN) ||
2093 n1 == ERR_PTR(-EAGAIN))
2094 return -EAGAIN;
2095
cafe5635
KO
2096 return -ENOMEM;
2097}
2098
26c949f8 2099static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
c18536a7 2100 struct keylist *insert_keys,
1b207d80
KO
2101 atomic_t *journal_ref,
2102 struct bkey *replace_key)
cafe5635 2103{
2a285686
KO
2104 struct closure cl;
2105
17e21a9f
KO
2106 BUG_ON(b->level && replace_key);
2107
2a285686
KO
2108 closure_init_stack(&cl);
2109
2110 mutex_lock(&b->write_lock);
2111
2112 if (write_block(b) != btree_bset_last(b) &&
2113 b->keys.last_set_unwritten)
2114 bch_btree_init_next(b); /* just wrote a set */
2115
59158fde 2116 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2a285686
KO
2117 mutex_unlock(&b->write_lock);
2118 goto split;
2119 }
3b3e9e50 2120
2a285686 2121 BUG_ON(write_block(b) != btree_bset_last(b));
cafe5635 2122
2a285686
KO
2123 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2124 if (!b->level)
2125 bch_btree_leaf_dirty(b, journal_ref);
2126 else
2127 bch_btree_node_write(b, &cl);
2128 }
17e21a9f 2129
2a285686
KO
2130 mutex_unlock(&b->write_lock);
2131
2132 /* wait for btree node write if necessary, after unlock */
2133 closure_sync(&cl);
2134
2135 return 0;
2136split:
2137 if (current->bio_list) {
2138 op->lock = b->c->root->level + 1;
2139 return -EAGAIN;
2140 } else if (op->lock <= b->c->root->level) {
2141 op->lock = b->c->root->level + 1;
2142 return -EINTR;
2143 } else {
2144 /* Invalidated all iterators */
2145 int ret = btree_split(b, op, insert_keys, replace_key);
2146
2147 if (bch_keylist_empty(insert_keys))
2148 return 0;
2149 else if (!ret)
2150 return -EINTR;
2151 return ret;
17e21a9f 2152 }
26c949f8 2153}
cafe5635 2154
e7c590eb
KO
2155int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2156 struct bkey *check_key)
2157{
2158 int ret = -EINTR;
2159 uint64_t btree_ptr = b->key.ptr[0];
2160 unsigned long seq = b->seq;
2161 struct keylist insert;
2162 bool upgrade = op->lock == -1;
2163
2164 bch_keylist_init(&insert);
2165
2166 if (upgrade) {
2167 rw_unlock(false, b);
2168 rw_lock(true, b, b->level);
2169
2170 if (b->key.ptr[0] != btree_ptr ||
2ef9ccbf
ZL
2171 b->seq != seq + 1) {
2172 op->lock = b->level;
e7c590eb 2173 goto out;
2ef9ccbf 2174 }
e7c590eb
KO
2175 }
2176
2177 SET_KEY_PTRS(check_key, 1);
2178 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2179
2180 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2181
2182 bch_keylist_add(&insert, check_key);
2183
1b207d80 2184 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
e7c590eb
KO
2185
2186 BUG_ON(!ret && !bch_keylist_empty(&insert));
2187out:
2188 if (upgrade)
2189 downgrade_write(&b->lock);
2190 return ret;
2191}
2192
cc7b8819
KO
2193struct btree_insert_op {
2194 struct btree_op op;
2195 struct keylist *keys;
2196 atomic_t *journal_ref;
2197 struct bkey *replace_key;
2198};
cafe5635 2199
08239ca2 2200static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
cc7b8819
KO
2201{
2202 struct btree_insert_op *op = container_of(b_op,
2203 struct btree_insert_op, op);
cafe5635 2204
cc7b8819
KO
2205 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2206 op->journal_ref, op->replace_key);
2207 if (ret && !bch_keylist_empty(op->keys))
2208 return ret;
2209 else
2210 return MAP_DONE;
cafe5635
KO
2211}
2212
cc7b8819
KO
2213int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2214 atomic_t *journal_ref, struct bkey *replace_key)
cafe5635 2215{
cc7b8819 2216 struct btree_insert_op op;
cafe5635 2217 int ret = 0;
cafe5635 2218
cc7b8819 2219 BUG_ON(current->bio_list);
4f3d4014 2220 BUG_ON(bch_keylist_empty(keys));
cafe5635 2221
cc7b8819
KO
2222 bch_btree_op_init(&op.op, 0);
2223 op.keys = keys;
2224 op.journal_ref = journal_ref;
2225 op.replace_key = replace_key;
cafe5635 2226
cc7b8819
KO
2227 while (!ret && !bch_keylist_empty(keys)) {
2228 op.op.lock = 0;
2229 ret = bch_btree_map_leaf_nodes(&op.op, c,
2230 &START_KEY(keys->keys),
2231 btree_insert_fn);
2232 }
cafe5635 2233
cc7b8819
KO
2234 if (ret) {
2235 struct bkey *k;
cafe5635 2236
cc7b8819 2237 pr_err("error %i", ret);
cafe5635 2238
cc7b8819 2239 while ((k = bch_keylist_pop(keys)))
3a3b6a4e 2240 bkey_put(c, k);
cc7b8819
KO
2241 } else if (op.op.insert_collision)
2242 ret = -ESRCH;
6054c6d4 2243
cafe5635
KO
2244 return ret;
2245}
2246
2247void bch_btree_set_root(struct btree *b)
2248{
2249 unsigned i;
e49c7c37
KO
2250 struct closure cl;
2251
2252 closure_init_stack(&cl);
cafe5635 2253
c37511b8
KO
2254 trace_bcache_btree_set_root(b);
2255
cafe5635
KO
2256 BUG_ON(!b->written);
2257
2258 for (i = 0; i < KEY_PTRS(&b->key); i++)
2259 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2260
2261 mutex_lock(&b->c->bucket_lock);
2262 list_del_init(&b->list);
2263 mutex_unlock(&b->c->bucket_lock);
2264
2265 b->c->root = b;
cafe5635 2266
e49c7c37
KO
2267 bch_journal_meta(b->c, &cl);
2268 closure_sync(&cl);
cafe5635
KO
2269}
2270
48dad8ba
KO
2271/* Map across nodes or keys */
2272
2273static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2274 struct bkey *from,
2275 btree_map_nodes_fn *fn, int flags)
2276{
2277 int ret = MAP_CONTINUE;
2278
2279 if (b->level) {
2280 struct bkey *k;
2281 struct btree_iter iter;
2282
c052dd9a 2283 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2284
a85e968e 2285 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
48dad8ba
KO
2286 bch_ptr_bad))) {
2287 ret = btree(map_nodes_recurse, k, b,
2288 op, from, fn, flags);
2289 from = NULL;
2290
2291 if (ret != MAP_CONTINUE)
2292 return ret;
2293 }
2294 }
2295
2296 if (!b->level || flags == MAP_ALL_NODES)
2297 ret = fn(op, b);
2298
2299 return ret;
2300}
2301
2302int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2303 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2304{
b54d6934 2305 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
48dad8ba
KO
2306}
2307
2308static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2309 struct bkey *from, btree_map_keys_fn *fn,
2310 int flags)
2311{
2312 int ret = MAP_CONTINUE;
2313 struct bkey *k;
2314 struct btree_iter iter;
2315
c052dd9a 2316 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2317
a85e968e 2318 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
48dad8ba
KO
2319 ret = !b->level
2320 ? fn(op, b, k)
2321 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2322 from = NULL;
2323
2324 if (ret != MAP_CONTINUE)
2325 return ret;
2326 }
2327
2328 if (!b->level && (flags & MAP_END_KEY))
2329 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2330 KEY_OFFSET(&b->key), 0));
2331
2332 return ret;
2333}
2334
2335int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2336 struct bkey *from, btree_map_keys_fn *fn, int flags)
2337{
b54d6934 2338 return btree_root(map_keys_recurse, c, op, from, fn, flags);
48dad8ba
KO
2339}
2340
cafe5635
KO
2341/* Keybuf code */
2342
2343static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2344{
2345 /* Overlapping keys compare equal */
2346 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2347 return -1;
2348 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2349 return 1;
2350 return 0;
2351}
2352
2353static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2354 struct keybuf_key *r)
2355{
2356 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2357}
2358
48dad8ba
KO
2359struct refill {
2360 struct btree_op op;
48a915a8 2361 unsigned nr_found;
48dad8ba
KO
2362 struct keybuf *buf;
2363 struct bkey *end;
2364 keybuf_pred_fn *pred;
2365};
cafe5635 2366
48dad8ba
KO
2367static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2368 struct bkey *k)
2369{
2370 struct refill *refill = container_of(op, struct refill, op);
2371 struct keybuf *buf = refill->buf;
2372 int ret = MAP_CONTINUE;
cafe5635 2373
48dad8ba
KO
2374 if (bkey_cmp(k, refill->end) >= 0) {
2375 ret = MAP_DONE;
2376 goto out;
2377 }
cafe5635 2378
48dad8ba
KO
2379 if (!KEY_SIZE(k)) /* end key */
2380 goto out;
cafe5635 2381
48dad8ba
KO
2382 if (refill->pred(buf, k)) {
2383 struct keybuf_key *w;
cafe5635 2384
48dad8ba 2385 spin_lock(&buf->lock);
cafe5635 2386
48dad8ba
KO
2387 w = array_alloc(&buf->freelist);
2388 if (!w) {
2389 spin_unlock(&buf->lock);
2390 return MAP_DONE;
2391 }
cafe5635 2392
48dad8ba
KO
2393 w->private = NULL;
2394 bkey_copy(&w->key, k);
cafe5635 2395
48dad8ba
KO
2396 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2397 array_free(&buf->freelist, w);
48a915a8
KO
2398 else
2399 refill->nr_found++;
cafe5635 2400
48dad8ba
KO
2401 if (array_freelist_empty(&buf->freelist))
2402 ret = MAP_DONE;
cafe5635 2403
48dad8ba 2404 spin_unlock(&buf->lock);
cafe5635 2405 }
48dad8ba
KO
2406out:
2407 buf->last_scanned = *k;
2408 return ret;
cafe5635
KO
2409}
2410
2411void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
72c27061 2412 struct bkey *end, keybuf_pred_fn *pred)
cafe5635
KO
2413{
2414 struct bkey start = buf->last_scanned;
48dad8ba 2415 struct refill refill;
cafe5635
KO
2416
2417 cond_resched();
2418
b54d6934 2419 bch_btree_op_init(&refill.op, -1);
48a915a8
KO
2420 refill.nr_found = 0;
2421 refill.buf = buf;
2422 refill.end = end;
2423 refill.pred = pred;
48dad8ba
KO
2424
2425 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2426 refill_keybuf_fn, MAP_END_KEY);
cafe5635 2427
48a915a8
KO
2428 trace_bcache_keyscan(refill.nr_found,
2429 KEY_INODE(&start), KEY_OFFSET(&start),
2430 KEY_INODE(&buf->last_scanned),
2431 KEY_OFFSET(&buf->last_scanned));
cafe5635
KO
2432
2433 spin_lock(&buf->lock);
2434
2435 if (!RB_EMPTY_ROOT(&buf->keys)) {
2436 struct keybuf_key *w;
2437 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2438 buf->start = START_KEY(&w->key);
2439
2440 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2441 buf->end = w->key;
2442 } else {
2443 buf->start = MAX_KEY;
2444 buf->end = MAX_KEY;
2445 }
2446
2447 spin_unlock(&buf->lock);
2448}
2449
2450static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2451{
2452 rb_erase(&w->node, &buf->keys);
2453 array_free(&buf->freelist, w);
2454}
2455
2456void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2457{
2458 spin_lock(&buf->lock);
2459 __bch_keybuf_del(buf, w);
2460 spin_unlock(&buf->lock);
2461}
2462
2463bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2464 struct bkey *end)
2465{
2466 bool ret = false;
2467 struct keybuf_key *p, *w, s;
2468 s.key = *start;
2469
2470 if (bkey_cmp(end, &buf->start) <= 0 ||
2471 bkey_cmp(start, &buf->end) >= 0)
2472 return false;
2473
2474 spin_lock(&buf->lock);
2475 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2476
2477 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2478 p = w;
2479 w = RB_NEXT(w, node);
2480
2481 if (p->private)
2482 ret = true;
2483 else
2484 __bch_keybuf_del(buf, p);
2485 }
2486
2487 spin_unlock(&buf->lock);
2488 return ret;
2489}
2490
2491struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2492{
2493 struct keybuf_key *w;
2494 spin_lock(&buf->lock);
2495
2496 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2497
2498 while (w && w->private)
2499 w = RB_NEXT(w, node);
2500
2501 if (w)
2502 w->private = ERR_PTR(-EINTR);
2503
2504 spin_unlock(&buf->lock);
2505 return w;
2506}
2507
2508struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
48dad8ba
KO
2509 struct keybuf *buf,
2510 struct bkey *end,
2511 keybuf_pred_fn *pred)
cafe5635
KO
2512{
2513 struct keybuf_key *ret;
2514
2515 while (1) {
2516 ret = bch_keybuf_next(buf);
2517 if (ret)
2518 break;
2519
2520 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2521 pr_debug("scan finished");
2522 break;
2523 }
2524
72c27061 2525 bch_refill_keybuf(c, buf, end, pred);
cafe5635
KO
2526 }
2527
2528 return ret;
2529}
2530
72c27061 2531void bch_keybuf_init(struct keybuf *buf)
cafe5635 2532{
cafe5635
KO
2533 buf->last_scanned = MAX_KEY;
2534 buf->keys = RB_ROOT;
2535
2536 spin_lock_init(&buf->lock);
2537 array_allocator_init(&buf->freelist);
2538}