]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/bcache/request.c
bcache: Delete some slower inline asm
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / request.c
CommitLineData
cafe5635
KO
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
279afbad 13#include "writeback.h"
cafe5635
KO
14
15#include <linux/cgroup.h>
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include "blk-cgroup.h"
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
cafe5635
KO
25
26struct kmem_cache *bch_search_cache;
27
a34a8bfd
KO
28static void bch_data_insert_start(struct closure *);
29
cafe5635
KO
30/* Cgroup interface */
31
32#ifdef CONFIG_CGROUP_BCACHE
33static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36{
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42}
43
44struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45{
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53}
54
55static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58{
59 char tmp[1024];
169ef1cf
KO
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
cafe5635
KO
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67}
68
69static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71{
169ef1cf 72 int v = bch_read_string_list(buf, bch_cache_modes);
cafe5635
KO
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78}
79
80static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81{
82 return cgroup_to_bcache(cgrp)->verify;
83}
84
85static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86{
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89}
90
91static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92{
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95}
96
97static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98{
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101}
102
103static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105{
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108}
109
110static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112{
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115}
116
117static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145};
146
147static void init_bch_cgroup(struct bch_cgroup *cg)
148{
149 cg->cache_mode = -1;
150}
151
152static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153{
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161}
162
163static void bcachecg_destroy(struct cgroup *cgroup)
164{
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 free_css_id(&bcache_subsys, &cg->css);
167 kfree(cg);
168}
169
170struct cgroup_subsys bcache_subsys = {
171 .create = bcachecg_create,
172 .destroy = bcachecg_destroy,
173 .subsys_id = bcache_subsys_id,
174 .name = "bcache",
175 .module = THIS_MODULE,
176};
177EXPORT_SYMBOL_GPL(bcache_subsys);
178#endif
179
180static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181{
182#ifdef CONFIG_CGROUP_BCACHE
183 int r = bch_bio_to_cgroup(bio)->cache_mode;
184 if (r >= 0)
185 return r;
186#endif
187 return BDEV_CACHE_MODE(&dc->sb);
188}
189
190static bool verify(struct cached_dev *dc, struct bio *bio)
191{
192#ifdef CONFIG_CGROUP_BCACHE
193 if (bch_bio_to_cgroup(bio)->verify)
194 return true;
195#endif
196 return dc->verify;
197}
198
199static void bio_csum(struct bio *bio, struct bkey *k)
200{
201 struct bio_vec *bv;
202 uint64_t csum = 0;
203 int i;
204
205 bio_for_each_segment(bv, bio, i) {
206 void *d = kmap(bv->bv_page) + bv->bv_offset;
169ef1cf 207 csum = bch_crc64_update(csum, d, bv->bv_len);
cafe5635
KO
208 kunmap(bv->bv_page);
209 }
210
211 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212}
213
214/* Insert data into cache */
215
a34a8bfd 216static void bch_data_insert_keys(struct closure *cl)
cafe5635 217{
220bb38c 218 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
c18536a7 219 atomic_t *journal_ref = NULL;
220bb38c 220 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
6054c6d4 221 int ret;
cafe5635 222
a34a8bfd
KO
223 /*
224 * If we're looping, might already be waiting on
225 * another journal write - can't wait on more than one journal write at
226 * a time
227 *
228 * XXX: this looks wrong
229 */
230#if 0
231 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
232 closure_sync(&s->cl);
233#endif
cafe5635 234
220bb38c
KO
235 if (!op->replace)
236 journal_ref = bch_journal(op->c, &op->insert_keys,
237 op->flush_journal ? cl : NULL);
cafe5635 238
220bb38c 239 ret = bch_btree_insert(op->c, &op->insert_keys,
6054c6d4
KO
240 journal_ref, replace_key);
241 if (ret == -ESRCH) {
220bb38c 242 op->replace_collision = true;
6054c6d4 243 } else if (ret) {
220bb38c
KO
244 op->error = -ENOMEM;
245 op->insert_data_done = true;
a34a8bfd 246 }
cafe5635 247
c18536a7
KO
248 if (journal_ref)
249 atomic_dec_bug(journal_ref);
cafe5635 250
220bb38c 251 if (!op->insert_data_done)
a34a8bfd 252 continue_at(cl, bch_data_insert_start, bcache_wq);
cafe5635 253
220bb38c 254 bch_keylist_free(&op->insert_keys);
a34a8bfd 255 closure_return(cl);
cafe5635
KO
256}
257
a34a8bfd
KO
258static void bch_data_invalidate(struct closure *cl)
259{
220bb38c
KO
260 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
261 struct bio *bio = op->bio;
a34a8bfd
KO
262
263 pr_debug("invalidating %i sectors from %llu",
264 bio_sectors(bio), (uint64_t) bio->bi_sector);
265
266 while (bio_sectors(bio)) {
81ab4190
KO
267 unsigned sectors = min(bio_sectors(bio),
268 1U << (KEY_SIZE_BITS - 1));
a34a8bfd 269
220bb38c 270 if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
a34a8bfd
KO
271 goto out;
272
81ab4190
KO
273 bio->bi_sector += sectors;
274 bio->bi_size -= sectors << 9;
a34a8bfd 275
220bb38c 276 bch_keylist_add(&op->insert_keys,
81ab4190 277 &KEY(op->inode, bio->bi_sector, sectors));
a34a8bfd
KO
278 }
279
220bb38c 280 op->insert_data_done = true;
a34a8bfd
KO
281 bio_put(bio);
282out:
283 continue_at(cl, bch_data_insert_keys, bcache_wq);
284}
285
286static void bch_data_insert_error(struct closure *cl)
cafe5635 287{
220bb38c 288 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635
KO
289
290 /*
291 * Our data write just errored, which means we've got a bunch of keys to
292 * insert that point to data that wasn't succesfully written.
293 *
294 * We don't have to insert those keys but we still have to invalidate
295 * that region of the cache - so, if we just strip off all the pointers
296 * from the keys we'll accomplish just that.
297 */
298
220bb38c 299 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
cafe5635 300
220bb38c 301 while (src != op->insert_keys.top) {
cafe5635
KO
302 struct bkey *n = bkey_next(src);
303
304 SET_KEY_PTRS(src, 0);
c2f95ae2 305 memmove(dst, src, bkey_bytes(src));
cafe5635
KO
306
307 dst = bkey_next(dst);
308 src = n;
309 }
310
220bb38c 311 op->insert_keys.top = dst;
cafe5635 312
a34a8bfd 313 bch_data_insert_keys(cl);
cafe5635
KO
314}
315
a34a8bfd 316static void bch_data_insert_endio(struct bio *bio, int error)
cafe5635
KO
317{
318 struct closure *cl = bio->bi_private;
220bb38c 319 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635
KO
320
321 if (error) {
322 /* TODO: We could try to recover from this. */
220bb38c
KO
323 if (op->writeback)
324 op->error = error;
325 else if (!op->replace)
a34a8bfd 326 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
cafe5635
KO
327 else
328 set_closure_fn(cl, NULL, NULL);
329 }
330
220bb38c 331 bch_bbio_endio(op->c, bio, error, "writing data to cache");
cafe5635
KO
332}
333
a34a8bfd 334static void bch_data_insert_start(struct closure *cl)
cafe5635 335{
220bb38c
KO
336 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
337 struct bio *bio = op->bio, *n;
cafe5635 338
220bb38c 339 if (op->bypass)
a34a8bfd 340 return bch_data_invalidate(cl);
cafe5635 341
220bb38c
KO
342 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
343 set_gc_sectors(op->c);
344 wake_up_gc(op->c);
cafe5635
KO
345 }
346
54d12f2b
KO
347 /*
348 * Journal writes are marked REQ_FLUSH; if the original write was a
349 * flush, it'll wait on the journal write.
350 */
351 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
352
cafe5635
KO
353 do {
354 unsigned i;
355 struct bkey *k;
220bb38c 356 struct bio_set *split = op->c->bio_split;
cafe5635
KO
357
358 /* 1 for the device pointer and 1 for the chksum */
220bb38c
KO
359 if (bch_keylist_realloc(&op->insert_keys,
360 1 + (op->csum ? 1 : 0),
361 op->c))
a34a8bfd 362 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635 363
220bb38c 364 k = op->insert_keys.top;
cafe5635 365 bkey_init(k);
220bb38c 366 SET_KEY_INODE(k, op->inode);
cafe5635
KO
367 SET_KEY_OFFSET(k, bio->bi_sector);
368
2599b53b
KO
369 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
370 op->write_point, op->write_prio,
371 op->writeback))
cafe5635
KO
372 goto err;
373
374 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
cafe5635 375
a34a8bfd 376 n->bi_end_io = bch_data_insert_endio;
cafe5635
KO
377 n->bi_private = cl;
378
220bb38c 379 if (op->writeback) {
cafe5635
KO
380 SET_KEY_DIRTY(k, true);
381
382 for (i = 0; i < KEY_PTRS(k); i++)
220bb38c 383 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
cafe5635
KO
384 GC_MARK_DIRTY);
385 }
386
220bb38c 387 SET_KEY_CSUM(k, op->csum);
cafe5635
KO
388 if (KEY_CSUM(k))
389 bio_csum(n, k);
390
c37511b8 391 trace_bcache_cache_insert(k);
220bb38c 392 bch_keylist_push(&op->insert_keys);
cafe5635 393
cafe5635 394 n->bi_rw |= REQ_WRITE;
220bb38c 395 bch_submit_bbio(n, op->c, k, 0);
cafe5635
KO
396 } while (n != bio);
397
220bb38c 398 op->insert_data_done = true;
a34a8bfd 399 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
400err:
401 /* bch_alloc_sectors() blocks if s->writeback = true */
220bb38c 402 BUG_ON(op->writeback);
cafe5635
KO
403
404 /*
405 * But if it's not a writeback write we'd rather just bail out if
406 * there aren't any buckets ready to write to - it might take awhile and
407 * we might be starving btree writes for gc or something.
408 */
409
220bb38c 410 if (!op->replace) {
cafe5635
KO
411 /*
412 * Writethrough write: We can't complete the write until we've
413 * updated the index. But we don't want to delay the write while
414 * we wait for buckets to be freed up, so just invalidate the
415 * rest of the write.
416 */
220bb38c 417 op->bypass = true;
a34a8bfd 418 return bch_data_invalidate(cl);
cafe5635
KO
419 } else {
420 /*
421 * From a cache miss, we can just insert the keys for the data
422 * we have written or bail out if we didn't do anything.
423 */
220bb38c 424 op->insert_data_done = true;
cafe5635
KO
425 bio_put(bio);
426
220bb38c 427 if (!bch_keylist_empty(&op->insert_keys))
a34a8bfd 428 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
429 else
430 closure_return(cl);
431 }
432}
433
434/**
a34a8bfd 435 * bch_data_insert - stick some data in the cache
cafe5635
KO
436 *
437 * This is the starting point for any data to end up in a cache device; it could
438 * be from a normal write, or a writeback write, or a write to a flash only
439 * volume - it's also used by the moving garbage collector to compact data in
440 * mostly empty buckets.
441 *
442 * It first writes the data to the cache, creating a list of keys to be inserted
443 * (if the data had to be fragmented there will be multiple keys); after the
444 * data is written it calls bch_journal, and after the keys have been added to
445 * the next journal write they're inserted into the btree.
446 *
c18536a7 447 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
cafe5635
KO
448 * and op->inode is used for the key inode.
449 *
c18536a7
KO
450 * If s->bypass is true, instead of inserting the data it invalidates the
451 * region of the cache represented by s->cache_bio and op->inode.
cafe5635 452 */
a34a8bfd 453void bch_data_insert(struct closure *cl)
cafe5635 454{
220bb38c 455 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 456
220bb38c
KO
457 trace_bcache_write(op->bio, op->writeback, op->bypass);
458
459 bch_keylist_init(&op->insert_keys);
460 bio_get(op->bio);
a34a8bfd 461 bch_data_insert_start(cl);
cafe5635
KO
462}
463
220bb38c
KO
464/* Congested? */
465
466unsigned bch_get_congested(struct cache_set *c)
467{
468 int i;
469 long rand;
470
471 if (!c->congested_read_threshold_us &&
472 !c->congested_write_threshold_us)
473 return 0;
474
475 i = (local_clock_us() - c->congested_last_us) / 1024;
476 if (i < 0)
477 return 0;
478
479 i += atomic_read(&c->congested);
480 if (i >= 0)
481 return 0;
482
483 i += CONGESTED_MAX;
484
485 if (i > 0)
486 i = fract_exp_two(i, 6);
487
488 rand = get_random_int();
489 i -= bitmap_weight(&rand, BITS_PER_LONG);
490
491 return i > 0 ? i : 1;
492}
493
494static void add_sequential(struct task_struct *t)
495{
496 ewma_add(t->sequential_io_avg,
497 t->sequential_io, 8, 0);
498
499 t->sequential_io = 0;
500}
501
502static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
503{
504 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
505}
506
507static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
508{
509 struct cache_set *c = dc->disk.c;
510 unsigned mode = cache_mode(dc, bio);
511 unsigned sectors, congested = bch_get_congested(c);
512 struct task_struct *task = current;
8aee1220 513 struct io *i;
220bb38c 514
c4d951dd 515 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
220bb38c
KO
516 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
517 (bio->bi_rw & REQ_DISCARD))
518 goto skip;
519
520 if (mode == CACHE_MODE_NONE ||
521 (mode == CACHE_MODE_WRITEAROUND &&
522 (bio->bi_rw & REQ_WRITE)))
523 goto skip;
524
525 if (bio->bi_sector & (c->sb.block_size - 1) ||
526 bio_sectors(bio) & (c->sb.block_size - 1)) {
527 pr_debug("skipping unaligned io");
528 goto skip;
529 }
530
531 if (!congested && !dc->sequential_cutoff)
532 goto rescale;
533
534 if (!congested &&
535 mode == CACHE_MODE_WRITEBACK &&
536 (bio->bi_rw & REQ_WRITE) &&
537 (bio->bi_rw & REQ_SYNC))
538 goto rescale;
539
8aee1220 540 spin_lock(&dc->io_lock);
220bb38c 541
8aee1220
KO
542 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
543 if (i->last == bio->bi_sector &&
544 time_before(jiffies, i->jiffies))
545 goto found;
220bb38c 546
8aee1220 547 i = list_first_entry(&dc->io_lru, struct io, lru);
220bb38c 548
8aee1220
KO
549 add_sequential(task);
550 i->sequential = 0;
220bb38c 551found:
8aee1220
KO
552 if (i->sequential + bio->bi_size > i->sequential)
553 i->sequential += bio->bi_size;
220bb38c 554
8aee1220
KO
555 i->last = bio_end_sector(bio);
556 i->jiffies = jiffies + msecs_to_jiffies(5000);
557 task->sequential_io = i->sequential;
220bb38c 558
8aee1220
KO
559 hlist_del(&i->hash);
560 hlist_add_head(&i->hash, iohash(dc, i->last));
561 list_move_tail(&i->lru, &dc->io_lru);
220bb38c 562
8aee1220 563 spin_unlock(&dc->io_lock);
220bb38c
KO
564
565 sectors = max(task->sequential_io,
566 task->sequential_io_avg) >> 9;
567
568 if (dc->sequential_cutoff &&
569 sectors >= dc->sequential_cutoff >> 9) {
570 trace_bcache_bypass_sequential(bio);
571 goto skip;
572 }
573
574 if (congested && sectors >= congested) {
575 trace_bcache_bypass_congested(bio);
576 goto skip;
577 }
578
579rescale:
580 bch_rescale_priorities(c, bio_sectors(bio));
581 return false;
582skip:
583 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
584 return true;
585}
586
2c1953e2 587/* Cache lookup */
cafe5635 588
220bb38c
KO
589struct search {
590 /* Stack frame for bio_complete */
591 struct closure cl;
592
593 struct bcache_device *d;
594
595 struct bbio bio;
596 struct bio *orig_bio;
597 struct bio *cache_miss;
598
599 unsigned insert_bio_sectors;
600
601 unsigned recoverable:1;
602 unsigned unaligned_bvec:1;
603 unsigned write:1;
604
605 unsigned long start_time;
606
607 struct btree_op op;
608 struct data_insert_op iop;
609};
610
2c1953e2 611static void bch_cache_read_endio(struct bio *bio, int error)
cafe5635
KO
612{
613 struct bbio *b = container_of(bio, struct bbio, bio);
614 struct closure *cl = bio->bi_private;
615 struct search *s = container_of(cl, struct search, cl);
616
617 /*
618 * If the bucket was reused while our bio was in flight, we might have
619 * read the wrong data. Set s->error but not error so it doesn't get
620 * counted against the cache device, but we'll still reread the data
621 * from the backing device.
622 */
623
624 if (error)
220bb38c
KO
625 s->iop.error = error;
626 else if (ptr_stale(s->iop.c, &b->key, 0)) {
627 atomic_long_inc(&s->iop.c->cache_read_races);
628 s->iop.error = -EINTR;
cafe5635
KO
629 }
630
220bb38c 631 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
cafe5635
KO
632}
633
2c1953e2
KO
634/*
635 * Read from a single key, handling the initial cache miss if the key starts in
636 * the middle of the bio
637 */
cc231966 638static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
2c1953e2
KO
639{
640 struct search *s = container_of(op, struct search, op);
cc231966
KO
641 struct bio *n, *bio = &s->bio.bio;
642 struct bkey *bio_key;
2c1953e2 643 unsigned ptr;
2c1953e2 644
220bb38c 645 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_sector, 0)) <= 0)
cc231966
KO
646 return MAP_CONTINUE;
647
220bb38c 648 if (KEY_INODE(k) != s->iop.inode ||
cc231966
KO
649 KEY_START(k) > bio->bi_sector) {
650 unsigned bio_sectors = bio_sectors(bio);
220bb38c 651 unsigned sectors = KEY_INODE(k) == s->iop.inode
cc231966
KO
652 ? min_t(uint64_t, INT_MAX,
653 KEY_START(k) - bio->bi_sector)
654 : INT_MAX;
655
656 int ret = s->d->cache_miss(b, s, bio, sectors);
657 if (ret != MAP_CONTINUE)
658 return ret;
659
660 /* if this was a complete miss we shouldn't get here */
661 BUG_ON(bio_sectors <= sectors);
662 }
663
664 if (!KEY_SIZE(k))
665 return MAP_CONTINUE;
2c1953e2
KO
666
667 /* XXX: figure out best pointer - for multiple cache devices */
668 ptr = 0;
669
670 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
671
cc231966
KO
672 n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
673 KEY_OFFSET(k) - bio->bi_sector),
674 GFP_NOIO, s->d->bio_split);
2c1953e2 675
cc231966
KO
676 bio_key = &container_of(n, struct bbio, bio)->key;
677 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2c1953e2 678
220bb38c
KO
679 bch_cut_front(&KEY(s->iop.inode, n->bi_sector, 0), bio_key);
680 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
2c1953e2 681
cc231966
KO
682 n->bi_end_io = bch_cache_read_endio;
683 n->bi_private = &s->cl;
2c1953e2 684
cc231966
KO
685 /*
686 * The bucket we're reading from might be reused while our bio
687 * is in flight, and we could then end up reading the wrong
688 * data.
689 *
690 * We guard against this by checking (in cache_read_endio()) if
691 * the pointer is stale again; if so, we treat it as an error
692 * and reread from the backing device (but we don't pass that
693 * error up anywhere).
694 */
2c1953e2 695
cc231966
KO
696 __bch_submit_bbio(n, b->c);
697 return n == bio ? MAP_DONE : MAP_CONTINUE;
2c1953e2
KO
698}
699
700static void cache_lookup(struct closure *cl)
701{
220bb38c 702 struct search *s = container_of(cl, struct search, iop.cl);
2c1953e2
KO
703 struct bio *bio = &s->bio.bio;
704
220bb38c
KO
705 int ret = bch_btree_map_keys(&s->op, s->iop.c,
706 &KEY(s->iop.inode, bio->bi_sector, 0),
cc231966 707 cache_lookup_fn, MAP_END_KEY);
2c1953e2
KO
708 if (ret == -EAGAIN)
709 continue_at(cl, cache_lookup, bcache_wq);
710
711 closure_return(cl);
712}
713
714/* Common code for the make_request functions */
715
716static void request_endio(struct bio *bio, int error)
717{
718 struct closure *cl = bio->bi_private;
719
720 if (error) {
721 struct search *s = container_of(cl, struct search, cl);
220bb38c 722 s->iop.error = error;
2c1953e2
KO
723 /* Only cache read errors are recoverable */
724 s->recoverable = false;
725 }
726
727 bio_put(bio);
728 closure_put(cl);
729}
730
cafe5635
KO
731static void bio_complete(struct search *s)
732{
733 if (s->orig_bio) {
734 int cpu, rw = bio_data_dir(s->orig_bio);
735 unsigned long duration = jiffies - s->start_time;
736
737 cpu = part_stat_lock();
738 part_round_stats(cpu, &s->d->disk->part0);
739 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
740 part_stat_unlock();
741
220bb38c
KO
742 trace_bcache_request_end(s->d, s->orig_bio);
743 bio_endio(s->orig_bio, s->iop.error);
cafe5635
KO
744 s->orig_bio = NULL;
745 }
746}
747
748static void do_bio_hook(struct search *s)
749{
750 struct bio *bio = &s->bio.bio;
751 memcpy(bio, s->orig_bio, sizeof(struct bio));
752
753 bio->bi_end_io = request_endio;
754 bio->bi_private = &s->cl;
755 atomic_set(&bio->bi_cnt, 3);
756}
757
758static void search_free(struct closure *cl)
759{
760 struct search *s = container_of(cl, struct search, cl);
761 bio_complete(s);
762
220bb38c
KO
763 if (s->iop.bio)
764 bio_put(s->iop.bio);
cafe5635
KO
765
766 if (s->unaligned_bvec)
767 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
768
769 closure_debug_destroy(cl);
770 mempool_free(s, s->d->c->search);
771}
772
773static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
774{
0b93207a 775 struct search *s;
cafe5635 776 struct bio_vec *bv;
0b93207a
KO
777
778 s = mempool_alloc(d->c->search, GFP_NOIO);
220bb38c 779 memset(s, 0, offsetof(struct search, iop.insert_keys));
cafe5635
KO
780
781 __closure_init(&s->cl, NULL);
782
220bb38c
KO
783 s->iop.inode = d->id;
784 s->iop.c = d->c;
cafe5635
KO
785 s->d = d;
786 s->op.lock = -1;
2599b53b 787 s->iop.write_point = hash_long((unsigned long) current, 16);
cafe5635
KO
788 s->orig_bio = bio;
789 s->write = (bio->bi_rw & REQ_WRITE) != 0;
220bb38c 790 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
cafe5635
KO
791 s->recoverable = 1;
792 s->start_time = jiffies;
793 do_bio_hook(s);
794
795 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
796 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
797 memcpy(bv, bio_iovec(bio),
798 sizeof(struct bio_vec) * bio_segments(bio));
799
800 s->bio.bio.bi_io_vec = bv;
801 s->unaligned_bvec = 1;
802 }
803
804 return s;
805}
806
cafe5635
KO
807/* Cached devices */
808
809static void cached_dev_bio_complete(struct closure *cl)
810{
811 struct search *s = container_of(cl, struct search, cl);
812 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
813
814 search_free(cl);
815 cached_dev_put(dc);
816}
817
818/* Process reads */
819
cdd972b1 820static void cached_dev_cache_miss_done(struct closure *cl)
cafe5635
KO
821{
822 struct search *s = container_of(cl, struct search, cl);
823
220bb38c
KO
824 if (s->iop.replace_collision)
825 bch_mark_cache_miss_collision(s->iop.c, s->d);
cafe5635 826
220bb38c 827 if (s->iop.bio) {
cafe5635
KO
828 int i;
829 struct bio_vec *bv;
830
220bb38c 831 bio_for_each_segment_all(bv, s->iop.bio, i)
cafe5635
KO
832 __free_page(bv->bv_page);
833 }
834
835 cached_dev_bio_complete(cl);
836}
837
cdd972b1 838static void cached_dev_read_error(struct closure *cl)
cafe5635
KO
839{
840 struct search *s = container_of(cl, struct search, cl);
cdd972b1 841 struct bio *bio = &s->bio.bio;
cafe5635
KO
842 struct bio_vec *bv;
843 int i;
844
845 if (s->recoverable) {
c37511b8
KO
846 /* Retry from the backing device: */
847 trace_bcache_read_retry(s->orig_bio);
cafe5635 848
220bb38c 849 s->iop.error = 0;
cafe5635
KO
850 bv = s->bio.bio.bi_io_vec;
851 do_bio_hook(s);
852 s->bio.bio.bi_io_vec = bv;
853
854 if (!s->unaligned_bvec)
855 bio_for_each_segment(bv, s->orig_bio, i)
856 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
857 else
858 memcpy(s->bio.bio.bi_io_vec,
859 bio_iovec(s->orig_bio),
860 sizeof(struct bio_vec) *
861 bio_segments(s->orig_bio));
862
863 /* XXX: invalidate cache */
864
cdd972b1 865 closure_bio_submit(bio, cl, s->d);
cafe5635
KO
866 }
867
cdd972b1 868 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
869}
870
cdd972b1 871static void cached_dev_read_done(struct closure *cl)
cafe5635
KO
872{
873 struct search *s = container_of(cl, struct search, cl);
874 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
875
876 /*
cdd972b1
KO
877 * We had a cache miss; cache_bio now contains data ready to be inserted
878 * into the cache.
cafe5635
KO
879 *
880 * First, we copy the data we just read from cache_bio's bounce buffers
881 * to the buffers the original bio pointed to:
882 */
883
220bb38c
KO
884 if (s->iop.bio) {
885 bio_reset(s->iop.bio);
886 s->iop.bio->bi_sector = s->cache_miss->bi_sector;
887 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
888 s->iop.bio->bi_size = s->insert_bio_sectors << 9;
889 bch_bio_map(s->iop.bio, NULL);
cafe5635 890
220bb38c 891 bio_copy_data(s->cache_miss, s->iop.bio);
cafe5635
KO
892
893 bio_put(s->cache_miss);
894 s->cache_miss = NULL;
895 }
896
220bb38c
KO
897 if (verify(dc, &s->bio.bio) && s->recoverable && !s->unaligned_bvec)
898 bch_data_verify(dc, s->orig_bio);
cafe5635
KO
899
900 bio_complete(s);
901
220bb38c
KO
902 if (s->iop.bio &&
903 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
904 BUG_ON(!s->iop.replace);
905 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635
KO
906 }
907
cdd972b1 908 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
909}
910
cdd972b1 911static void cached_dev_read_done_bh(struct closure *cl)
cafe5635
KO
912{
913 struct search *s = container_of(cl, struct search, cl);
914 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
915
220bb38c
KO
916 bch_mark_cache_accounting(s->iop.c, s->d,
917 !s->cache_miss, s->iop.bypass);
918 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
cafe5635 919
220bb38c 920 if (s->iop.error)
cdd972b1 921 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
220bb38c 922 else if (s->iop.bio || verify(dc, &s->bio.bio))
cdd972b1 923 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
cafe5635 924 else
cdd972b1 925 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
cafe5635
KO
926}
927
928static int cached_dev_cache_miss(struct btree *b, struct search *s,
929 struct bio *bio, unsigned sectors)
930{
2c1953e2 931 int ret = MAP_CONTINUE;
e7c590eb 932 unsigned reada = 0;
cafe5635 933 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
cdd972b1 934 struct bio *miss, *cache_bio;
cafe5635 935
220bb38c 936 if (s->cache_miss || s->iop.bypass) {
e7c590eb 937 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2 938 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
e7c590eb
KO
939 goto out_submit;
940 }
cafe5635 941
e7c590eb
KO
942 if (!(bio->bi_rw & REQ_RAHEAD) &&
943 !(bio->bi_rw & REQ_META) &&
220bb38c 944 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
e7c590eb
KO
945 reada = min_t(sector_t, dc->readahead >> 9,
946 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
cafe5635 947
220bb38c 948 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
cafe5635 949
220bb38c
KO
950 s->iop.replace_key = KEY(s->iop.inode,
951 bio->bi_sector + s->insert_bio_sectors,
952 s->insert_bio_sectors);
e7c590eb 953
220bb38c 954 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
e7c590eb
KO
955 if (ret)
956 return ret;
957
220bb38c 958 s->iop.replace = true;
1b207d80 959
e7c590eb 960 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2
KO
961
962 /* btree_search_recurse()'s btree iterator is no good anymore */
963 ret = miss == bio ? MAP_DONE : -EINTR;
cafe5635 964
cdd972b1 965 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
220bb38c 966 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
cafe5635 967 dc->disk.bio_split);
cdd972b1 968 if (!cache_bio)
cafe5635
KO
969 goto out_submit;
970
cdd972b1
KO
971 cache_bio->bi_sector = miss->bi_sector;
972 cache_bio->bi_bdev = miss->bi_bdev;
220bb38c 973 cache_bio->bi_size = s->insert_bio_sectors << 9;
cafe5635 974
cdd972b1
KO
975 cache_bio->bi_end_io = request_endio;
976 cache_bio->bi_private = &s->cl;
cafe5635 977
cdd972b1
KO
978 bch_bio_map(cache_bio, NULL);
979 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
980 goto out_put;
981
220bb38c
KO
982 if (reada)
983 bch_mark_cache_readahead(s->iop.c, s->d);
984
cdd972b1 985 s->cache_miss = miss;
220bb38c 986 s->iop.bio = cache_bio;
cdd972b1
KO
987 bio_get(cache_bio);
988 closure_bio_submit(cache_bio, &s->cl, s->d);
cafe5635
KO
989
990 return ret;
991out_put:
cdd972b1 992 bio_put(cache_bio);
cafe5635 993out_submit:
e7c590eb
KO
994 miss->bi_end_io = request_endio;
995 miss->bi_private = &s->cl;
cafe5635
KO
996 closure_bio_submit(miss, &s->cl, s->d);
997 return ret;
998}
999
cdd972b1 1000static void cached_dev_read(struct cached_dev *dc, struct search *s)
cafe5635
KO
1001{
1002 struct closure *cl = &s->cl;
1003
220bb38c 1004 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cdd972b1 1005 continue_at(cl, cached_dev_read_done_bh, NULL);
cafe5635
KO
1006}
1007
1008/* Process writes */
1009
1010static void cached_dev_write_complete(struct closure *cl)
1011{
1012 struct search *s = container_of(cl, struct search, cl);
1013 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1014
1015 up_read_non_owner(&dc->writeback_lock);
1016 cached_dev_bio_complete(cl);
1017}
1018
cdd972b1 1019static void cached_dev_write(struct cached_dev *dc, struct search *s)
cafe5635
KO
1020{
1021 struct closure *cl = &s->cl;
1022 struct bio *bio = &s->bio.bio;
84f0db03
KO
1023 struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
1024 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
cafe5635 1025
220bb38c 1026 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
cafe5635 1027
cafe5635 1028 down_read_non_owner(&dc->writeback_lock);
cafe5635 1029 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
84f0db03
KO
1030 /*
1031 * We overlap with some dirty data undergoing background
1032 * writeback, force this write to writeback
1033 */
220bb38c
KO
1034 s->iop.bypass = false;
1035 s->iop.writeback = true;
cafe5635
KO
1036 }
1037
84f0db03
KO
1038 /*
1039 * Discards aren't _required_ to do anything, so skipping if
1040 * check_overlapping returned true is ok
1041 *
1042 * But check_overlapping drops dirty keys for which io hasn't started,
1043 * so we still want to call it.
1044 */
cafe5635 1045 if (bio->bi_rw & REQ_DISCARD)
220bb38c 1046 s->iop.bypass = true;
cafe5635 1047
72c27061
KO
1048 if (should_writeback(dc, s->orig_bio,
1049 cache_mode(dc, bio),
220bb38c
KO
1050 s->iop.bypass)) {
1051 s->iop.bypass = false;
1052 s->iop.writeback = true;
72c27061
KO
1053 }
1054
220bb38c
KO
1055 if (s->iop.bypass) {
1056 s->iop.bio = s->orig_bio;
1057 bio_get(s->iop.bio);
cafe5635 1058
84f0db03
KO
1059 if (!(bio->bi_rw & REQ_DISCARD) ||
1060 blk_queue_discard(bdev_get_queue(dc->bdev)))
1061 closure_bio_submit(bio, cl, s->d);
220bb38c 1062 } else if (s->iop.writeback) {
279afbad 1063 bch_writeback_add(dc);
220bb38c 1064 s->iop.bio = bio;
e49c7c37 1065
c0f04d88 1066 if (bio->bi_rw & REQ_FLUSH) {
e49c7c37 1067 /* Also need to send a flush to the backing device */
d4eddd42 1068 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
c0f04d88 1069 dc->disk.bio_split);
e49c7c37 1070
c0f04d88
KO
1071 flush->bi_rw = WRITE_FLUSH;
1072 flush->bi_bdev = bio->bi_bdev;
1073 flush->bi_end_io = request_endio;
1074 flush->bi_private = cl;
1075
1076 closure_bio_submit(flush, cl, s->d);
e49c7c37 1077 }
84f0db03 1078 } else {
220bb38c
KO
1079 s->iop.bio = bio_clone_bioset(bio, GFP_NOIO,
1080 dc->disk.bio_split);
84f0db03
KO
1081
1082 closure_bio_submit(bio, cl, s->d);
cafe5635 1083 }
84f0db03 1084
220bb38c 1085 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 1086 continue_at(cl, cached_dev_write_complete, NULL);
cafe5635
KO
1087}
1088
a34a8bfd 1089static void cached_dev_nodata(struct closure *cl)
cafe5635 1090{
a34a8bfd 1091 struct search *s = container_of(cl, struct search, cl);
cafe5635
KO
1092 struct bio *bio = &s->bio.bio;
1093
220bb38c
KO
1094 if (s->iop.flush_journal)
1095 bch_journal_meta(s->iop.c, cl);
cafe5635 1096
84f0db03 1097 /* If it's a flush, we send the flush to the backing device too */
cafe5635
KO
1098 closure_bio_submit(bio, cl, s->d);
1099
1100 continue_at(cl, cached_dev_bio_complete, NULL);
1101}
1102
1103/* Cached devices - read & write stuff */
1104
cafe5635
KO
1105static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1106{
1107 struct search *s;
1108 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1109 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1110 int cpu, rw = bio_data_dir(bio);
1111
1112 cpu = part_stat_lock();
1113 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1114 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1115 part_stat_unlock();
1116
1117 bio->bi_bdev = dc->bdev;
2903381f 1118 bio->bi_sector += dc->sb.data_offset;
cafe5635
KO
1119
1120 if (cached_dev_get(dc)) {
1121 s = search_alloc(bio, d);
220bb38c 1122 trace_bcache_request_start(s->d, bio);
cafe5635 1123
a34a8bfd
KO
1124 if (!bio->bi_size) {
1125 /*
1126 * can't call bch_journal_meta from under
1127 * generic_make_request
1128 */
1129 continue_at_nobarrier(&s->cl,
1130 cached_dev_nodata,
1131 bcache_wq);
1132 } else {
220bb38c 1133 s->iop.bypass = check_should_bypass(dc, bio);
84f0db03
KO
1134
1135 if (rw)
cdd972b1 1136 cached_dev_write(dc, s);
84f0db03 1137 else
cdd972b1 1138 cached_dev_read(dc, s);
84f0db03 1139 }
cafe5635
KO
1140 } else {
1141 if ((bio->bi_rw & REQ_DISCARD) &&
1142 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1143 bio_endio(bio, 0);
1144 else
1145 bch_generic_make_request(bio, &d->bio_split_hook);
1146 }
1147}
1148
1149static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1150 unsigned int cmd, unsigned long arg)
1151{
1152 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1153 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1154}
1155
1156static int cached_dev_congested(void *data, int bits)
1157{
1158 struct bcache_device *d = data;
1159 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1160 struct request_queue *q = bdev_get_queue(dc->bdev);
1161 int ret = 0;
1162
1163 if (bdi_congested(&q->backing_dev_info, bits))
1164 return 1;
1165
1166 if (cached_dev_get(dc)) {
1167 unsigned i;
1168 struct cache *ca;
1169
1170 for_each_cache(ca, d->c, i) {
1171 q = bdev_get_queue(ca->bdev);
1172 ret |= bdi_congested(&q->backing_dev_info, bits);
1173 }
1174
1175 cached_dev_put(dc);
1176 }
1177
1178 return ret;
1179}
1180
1181void bch_cached_dev_request_init(struct cached_dev *dc)
1182{
1183 struct gendisk *g = dc->disk.disk;
1184
1185 g->queue->make_request_fn = cached_dev_make_request;
1186 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1187 dc->disk.cache_miss = cached_dev_cache_miss;
1188 dc->disk.ioctl = cached_dev_ioctl;
1189}
1190
1191/* Flash backed devices */
1192
1193static int flash_dev_cache_miss(struct btree *b, struct search *s,
1194 struct bio *bio, unsigned sectors)
1195{
8e51e414
KO
1196 struct bio_vec *bv;
1197 int i;
1198
cafe5635
KO
1199 /* Zero fill bio */
1200
8e51e414 1201 bio_for_each_segment(bv, bio, i) {
cafe5635
KO
1202 unsigned j = min(bv->bv_len >> 9, sectors);
1203
1204 void *p = kmap(bv->bv_page);
1205 memset(p + bv->bv_offset, 0, j << 9);
1206 kunmap(bv->bv_page);
1207
8e51e414 1208 sectors -= j;
cafe5635
KO
1209 }
1210
8e51e414
KO
1211 bio_advance(bio, min(sectors << 9, bio->bi_size));
1212
1213 if (!bio->bi_size)
2c1953e2 1214 return MAP_DONE;
cafe5635 1215
2c1953e2 1216 return MAP_CONTINUE;
cafe5635
KO
1217}
1218
a34a8bfd
KO
1219static void flash_dev_nodata(struct closure *cl)
1220{
1221 struct search *s = container_of(cl, struct search, cl);
1222
220bb38c
KO
1223 if (s->iop.flush_journal)
1224 bch_journal_meta(s->iop.c, cl);
a34a8bfd
KO
1225
1226 continue_at(cl, search_free, NULL);
1227}
1228
cafe5635
KO
1229static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1230{
1231 struct search *s;
1232 struct closure *cl;
1233 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1234 int cpu, rw = bio_data_dir(bio);
1235
1236 cpu = part_stat_lock();
1237 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1238 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1239 part_stat_unlock();
1240
1241 s = search_alloc(bio, d);
1242 cl = &s->cl;
1243 bio = &s->bio.bio;
1244
220bb38c 1245 trace_bcache_request_start(s->d, bio);
cafe5635 1246
84f0db03 1247 if (!bio->bi_size) {
a34a8bfd
KO
1248 /*
1249 * can't call bch_journal_meta from under
1250 * generic_make_request
1251 */
1252 continue_at_nobarrier(&s->cl,
1253 flash_dev_nodata,
1254 bcache_wq);
84f0db03 1255 } else if (rw) {
220bb38c 1256 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
8e51e414
KO
1257 &KEY(d->id, bio->bi_sector, 0),
1258 &KEY(d->id, bio_end_sector(bio), 0));
cafe5635 1259
220bb38c
KO
1260 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1261 s->iop.writeback = true;
1262 s->iop.bio = bio;
cafe5635 1263
220bb38c 1264 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 1265 } else {
220bb38c 1266 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cafe5635
KO
1267 }
1268
1269 continue_at(cl, search_free, NULL);
1270}
1271
1272static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1273 unsigned int cmd, unsigned long arg)
1274{
1275 return -ENOTTY;
1276}
1277
1278static int flash_dev_congested(void *data, int bits)
1279{
1280 struct bcache_device *d = data;
1281 struct request_queue *q;
1282 struct cache *ca;
1283 unsigned i;
1284 int ret = 0;
1285
1286 for_each_cache(ca, d->c, i) {
1287 q = bdev_get_queue(ca->bdev);
1288 ret |= bdi_congested(&q->backing_dev_info, bits);
1289 }
1290
1291 return ret;
1292}
1293
1294void bch_flash_dev_request_init(struct bcache_device *d)
1295{
1296 struct gendisk *g = d->disk;
1297
1298 g->queue->make_request_fn = flash_dev_make_request;
1299 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1300 d->cache_miss = flash_dev_cache_miss;
1301 d->ioctl = flash_dev_ioctl;
1302}
1303
1304void bch_request_exit(void)
1305{
1306#ifdef CONFIG_CGROUP_BCACHE
1307 cgroup_unload_subsys(&bcache_subsys);
1308#endif
1309 if (bch_search_cache)
1310 kmem_cache_destroy(bch_search_cache);
1311}
1312
1313int __init bch_request_init(void)
1314{
1315 bch_search_cache = KMEM_CACHE(search, 0);
1316 if (!bch_search_cache)
1317 return -ENOMEM;
1318
1319#ifdef CONFIG_CGROUP_BCACHE
1320 cgroup_load_subsys(&bcache_subsys);
1321 init_bch_cgroup(&bcache_default_cgroup);
1322
1323 cgroup_add_cftypes(&bcache_subsys, bch_files);
1324#endif
1325 return 0;
1326}