]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/bcache/request.c
bcache: Kill op->replace
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / request.c
CommitLineData
cafe5635
KO
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
279afbad 13#include "writeback.h"
cafe5635
KO
14
15#include <linux/cgroup.h>
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include "blk-cgroup.h"
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
cafe5635
KO
25
26struct kmem_cache *bch_search_cache;
27
a34a8bfd
KO
28static void bch_data_insert_start(struct closure *);
29
cafe5635
KO
30/* Cgroup interface */
31
32#ifdef CONFIG_CGROUP_BCACHE
33static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36{
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42}
43
44struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45{
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53}
54
55static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58{
59 char tmp[1024];
169ef1cf
KO
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
cafe5635
KO
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67}
68
69static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71{
169ef1cf 72 int v = bch_read_string_list(buf, bch_cache_modes);
cafe5635
KO
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78}
79
80static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81{
82 return cgroup_to_bcache(cgrp)->verify;
83}
84
85static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86{
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89}
90
91static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92{
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95}
96
97static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98{
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101}
102
103static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105{
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108}
109
110static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112{
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115}
116
117static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145};
146
147static void init_bch_cgroup(struct bch_cgroup *cg)
148{
149 cg->cache_mode = -1;
150}
151
152static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153{
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161}
162
163static void bcachecg_destroy(struct cgroup *cgroup)
164{
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 free_css_id(&bcache_subsys, &cg->css);
167 kfree(cg);
168}
169
170struct cgroup_subsys bcache_subsys = {
171 .create = bcachecg_create,
172 .destroy = bcachecg_destroy,
173 .subsys_id = bcache_subsys_id,
174 .name = "bcache",
175 .module = THIS_MODULE,
176};
177EXPORT_SYMBOL_GPL(bcache_subsys);
178#endif
179
180static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181{
182#ifdef CONFIG_CGROUP_BCACHE
183 int r = bch_bio_to_cgroup(bio)->cache_mode;
184 if (r >= 0)
185 return r;
186#endif
187 return BDEV_CACHE_MODE(&dc->sb);
188}
189
190static bool verify(struct cached_dev *dc, struct bio *bio)
191{
192#ifdef CONFIG_CGROUP_BCACHE
193 if (bch_bio_to_cgroup(bio)->verify)
194 return true;
195#endif
196 return dc->verify;
197}
198
199static void bio_csum(struct bio *bio, struct bkey *k)
200{
201 struct bio_vec *bv;
202 uint64_t csum = 0;
203 int i;
204
205 bio_for_each_segment(bv, bio, i) {
206 void *d = kmap(bv->bv_page) + bv->bv_offset;
169ef1cf 207 csum = bch_crc64_update(csum, d, bv->bv_len);
cafe5635
KO
208 kunmap(bv->bv_page);
209 }
210
211 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212}
213
214/* Insert data into cache */
215
a34a8bfd 216static void bch_data_insert_keys(struct closure *cl)
cafe5635 217{
b54d6934 218 struct search *s = container_of(cl, struct search, btree);
c18536a7 219 atomic_t *journal_ref = NULL;
1b207d80 220 struct bkey *replace_key = s->replace ? &s->replace_key : NULL;
cafe5635 221
a34a8bfd
KO
222 /*
223 * If we're looping, might already be waiting on
224 * another journal write - can't wait on more than one journal write at
225 * a time
226 *
227 * XXX: this looks wrong
228 */
229#if 0
230 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
231 closure_sync(&s->cl);
232#endif
cafe5635 233
a34a8bfd 234 if (s->write)
c18536a7
KO
235 journal_ref = bch_journal(s->c, &s->insert_keys,
236 s->flush_journal
a34a8bfd 237 ? &s->cl : NULL);
cafe5635 238
1b207d80
KO
239 if (bch_btree_insert(&s->op, s->c, &s->insert_keys,
240 journal_ref, replace_key)) {
a34a8bfd 241 s->error = -ENOMEM;
c18536a7 242 s->insert_data_done = true;
a34a8bfd 243 }
cafe5635 244
c18536a7
KO
245 if (journal_ref)
246 atomic_dec_bug(journal_ref);
cafe5635 247
c18536a7 248 if (!s->insert_data_done)
a34a8bfd 249 continue_at(cl, bch_data_insert_start, bcache_wq);
cafe5635 250
0b93207a 251 bch_keylist_free(&s->insert_keys);
a34a8bfd 252 closure_return(cl);
cafe5635
KO
253}
254
255struct open_bucket {
256 struct list_head list;
257 struct task_struct *last;
258 unsigned sectors_free;
259 BKEY_PADDED(key);
260};
261
262void bch_open_buckets_free(struct cache_set *c)
263{
264 struct open_bucket *b;
265
266 while (!list_empty(&c->data_buckets)) {
267 b = list_first_entry(&c->data_buckets,
268 struct open_bucket, list);
269 list_del(&b->list);
270 kfree(b);
271 }
272}
273
274int bch_open_buckets_alloc(struct cache_set *c)
275{
276 int i;
277
278 spin_lock_init(&c->data_bucket_lock);
279
280 for (i = 0; i < 6; i++) {
281 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
282 if (!b)
283 return -ENOMEM;
284
285 list_add(&b->list, &c->data_buckets);
286 }
287
288 return 0;
289}
290
291/*
292 * We keep multiple buckets open for writes, and try to segregate different
293 * write streams for better cache utilization: first we look for a bucket where
294 * the last write to it was sequential with the current write, and failing that
295 * we look for a bucket that was last used by the same task.
296 *
297 * The ideas is if you've got multiple tasks pulling data into the cache at the
298 * same time, you'll get better cache utilization if you try to segregate their
299 * data and preserve locality.
300 *
301 * For example, say you've starting Firefox at the same time you're copying a
302 * bunch of files. Firefox will likely end up being fairly hot and stay in the
303 * cache awhile, but the data you copied might not be; if you wrote all that
304 * data to the same buckets it'd get invalidated at the same time.
305 *
306 * Both of those tasks will be doing fairly random IO so we can't rely on
307 * detecting sequential IO to segregate their data, but going off of the task
308 * should be a sane heuristic.
309 */
310static struct open_bucket *pick_data_bucket(struct cache_set *c,
311 const struct bkey *search,
312 struct task_struct *task,
313 struct bkey *alloc)
314{
315 struct open_bucket *ret, *ret_task = NULL;
316
317 list_for_each_entry_reverse(ret, &c->data_buckets, list)
318 if (!bkey_cmp(&ret->key, search))
319 goto found;
320 else if (ret->last == task)
321 ret_task = ret;
322
323 ret = ret_task ?: list_first_entry(&c->data_buckets,
324 struct open_bucket, list);
325found:
326 if (!ret->sectors_free && KEY_PTRS(alloc)) {
327 ret->sectors_free = c->sb.bucket_size;
328 bkey_copy(&ret->key, alloc);
329 bkey_init(alloc);
330 }
331
332 if (!ret->sectors_free)
333 ret = NULL;
334
335 return ret;
336}
337
338/*
339 * Allocates some space in the cache to write to, and k to point to the newly
340 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
341 * end of the newly allocated space).
342 *
343 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
344 * sectors were actually allocated.
345 *
346 * If s->writeback is true, will not fail.
347 */
348static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
349 struct search *s)
350{
c18536a7 351 struct cache_set *c = s->c;
cafe5635
KO
352 struct open_bucket *b;
353 BKEY_PADDED(key) alloc;
cafe5635
KO
354 unsigned i;
355
cafe5635
KO
356 /*
357 * We might have to allocate a new bucket, which we can't do with a
358 * spinlock held. So if we have to allocate, we drop the lock, allocate
359 * and then retry. KEY_PTRS() indicates whether alloc points to
360 * allocated bucket(s).
361 */
362
363 bkey_init(&alloc.key);
364 spin_lock(&c->data_bucket_lock);
365
366 while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
c18536a7 367 unsigned watermark = s->write_prio
cafe5635
KO
368 ? WATERMARK_MOVINGGC
369 : WATERMARK_NONE;
370
371 spin_unlock(&c->data_bucket_lock);
372
35fcd848
KO
373 if (bch_bucket_alloc_set(c, watermark, &alloc.key,
374 1, s->writeback))
cafe5635
KO
375 return false;
376
377 spin_lock(&c->data_bucket_lock);
378 }
379
380 /*
381 * If we had to allocate, we might race and not need to allocate the
382 * second time we call find_data_bucket(). If we allocated a bucket but
383 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
384 */
385 if (KEY_PTRS(&alloc.key))
386 __bkey_put(c, &alloc.key);
387
388 for (i = 0; i < KEY_PTRS(&b->key); i++)
389 EBUG_ON(ptr_stale(c, &b->key, i));
390
391 /* Set up the pointer to the space we're allocating: */
392
393 for (i = 0; i < KEY_PTRS(&b->key); i++)
394 k->ptr[i] = b->key.ptr[i];
395
396 sectors = min(sectors, b->sectors_free);
397
398 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
399 SET_KEY_SIZE(k, sectors);
400 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
401
402 /*
403 * Move b to the end of the lru, and keep track of what this bucket was
404 * last used for:
405 */
406 list_move_tail(&b->list, &c->data_buckets);
407 bkey_copy_key(&b->key, k);
408 b->last = s->task;
409
410 b->sectors_free -= sectors;
411
412 for (i = 0; i < KEY_PTRS(&b->key); i++) {
413 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
414
415 atomic_long_add(sectors,
416 &PTR_CACHE(c, &b->key, i)->sectors_written);
417 }
418
419 if (b->sectors_free < c->sb.block_size)
420 b->sectors_free = 0;
421
422 /*
423 * k takes refcounts on the buckets it points to until it's inserted
424 * into the btree, but if we're done with this bucket we just transfer
425 * get_data_bucket()'s refcount.
426 */
427 if (b->sectors_free)
428 for (i = 0; i < KEY_PTRS(&b->key); i++)
429 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
430
431 spin_unlock(&c->data_bucket_lock);
432 return true;
433}
434
a34a8bfd
KO
435static void bch_data_invalidate(struct closure *cl)
436{
b54d6934 437 struct search *s = container_of(cl, struct search, btree);
c18536a7 438 struct bio *bio = s->cache_bio;
a34a8bfd
KO
439
440 pr_debug("invalidating %i sectors from %llu",
441 bio_sectors(bio), (uint64_t) bio->bi_sector);
442
443 while (bio_sectors(bio)) {
444 unsigned len = min(bio_sectors(bio), 1U << 14);
445
c18536a7 446 if (bch_keylist_realloc(&s->insert_keys, 0, s->c))
a34a8bfd
KO
447 goto out;
448
449 bio->bi_sector += len;
450 bio->bi_size -= len << 9;
451
0b93207a 452 bch_keylist_add(&s->insert_keys,
c18536a7 453 &KEY(s->inode, bio->bi_sector, len));
a34a8bfd
KO
454 }
455
c18536a7 456 s->insert_data_done = true;
a34a8bfd
KO
457 bio_put(bio);
458out:
459 continue_at(cl, bch_data_insert_keys, bcache_wq);
460}
461
462static void bch_data_insert_error(struct closure *cl)
cafe5635 463{
b54d6934 464 struct search *s = container_of(cl, struct search, btree);
cafe5635
KO
465
466 /*
467 * Our data write just errored, which means we've got a bunch of keys to
468 * insert that point to data that wasn't succesfully written.
469 *
470 * We don't have to insert those keys but we still have to invalidate
471 * that region of the cache - so, if we just strip off all the pointers
472 * from the keys we'll accomplish just that.
473 */
474
0b93207a 475 struct bkey *src = s->insert_keys.keys, *dst = s->insert_keys.keys;
cafe5635 476
0b93207a 477 while (src != s->insert_keys.top) {
cafe5635
KO
478 struct bkey *n = bkey_next(src);
479
480 SET_KEY_PTRS(src, 0);
c2f95ae2 481 memmove(dst, src, bkey_bytes(src));
cafe5635
KO
482
483 dst = bkey_next(dst);
484 src = n;
485 }
486
0b93207a 487 s->insert_keys.top = dst;
cafe5635 488
a34a8bfd 489 bch_data_insert_keys(cl);
cafe5635
KO
490}
491
a34a8bfd 492static void bch_data_insert_endio(struct bio *bio, int error)
cafe5635
KO
493{
494 struct closure *cl = bio->bi_private;
b54d6934 495 struct search *s = container_of(cl, struct search, btree);
cafe5635
KO
496
497 if (error) {
498 /* TODO: We could try to recover from this. */
499 if (s->writeback)
500 s->error = error;
501 else if (s->write)
a34a8bfd 502 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
cafe5635
KO
503 else
504 set_closure_fn(cl, NULL, NULL);
505 }
506
c18536a7 507 bch_bbio_endio(s->c, bio, error, "writing data to cache");
cafe5635
KO
508}
509
a34a8bfd 510static void bch_data_insert_start(struct closure *cl)
cafe5635 511{
b54d6934 512 struct search *s = container_of(cl, struct search, btree);
c18536a7 513 struct bio *bio = s->cache_bio, *n;
cafe5635 514
c18536a7 515 if (s->bypass)
a34a8bfd 516 return bch_data_invalidate(cl);
cafe5635 517
c18536a7
KO
518 if (atomic_sub_return(bio_sectors(bio), &s->c->sectors_to_gc) < 0) {
519 set_gc_sectors(s->c);
520 wake_up_gc(s->c);
cafe5635
KO
521 }
522
54d12f2b
KO
523 /*
524 * Journal writes are marked REQ_FLUSH; if the original write was a
525 * flush, it'll wait on the journal write.
526 */
527 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
528
cafe5635
KO
529 do {
530 unsigned i;
531 struct bkey *k;
532 struct bio_set *split = s->d
c18536a7 533 ? s->d->bio_split : s->c->bio_split;
cafe5635
KO
534
535 /* 1 for the device pointer and 1 for the chksum */
0b93207a 536 if (bch_keylist_realloc(&s->insert_keys,
c18536a7
KO
537 1 + (s->csum ? 1 : 0),
538 s->c))
a34a8bfd 539 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635 540
0b93207a 541 k = s->insert_keys.top;
cafe5635 542 bkey_init(k);
c18536a7 543 SET_KEY_INODE(k, s->inode);
cafe5635
KO
544 SET_KEY_OFFSET(k, bio->bi_sector);
545
546 if (!bch_alloc_sectors(k, bio_sectors(bio), s))
547 goto err;
548
549 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
cafe5635 550
a34a8bfd 551 n->bi_end_io = bch_data_insert_endio;
cafe5635
KO
552 n->bi_private = cl;
553
554 if (s->writeback) {
555 SET_KEY_DIRTY(k, true);
556
557 for (i = 0; i < KEY_PTRS(k); i++)
c18536a7 558 SET_GC_MARK(PTR_BUCKET(s->c, k, i),
cafe5635
KO
559 GC_MARK_DIRTY);
560 }
561
c18536a7 562 SET_KEY_CSUM(k, s->csum);
cafe5635
KO
563 if (KEY_CSUM(k))
564 bio_csum(n, k);
565
c37511b8 566 trace_bcache_cache_insert(k);
0b93207a 567 bch_keylist_push(&s->insert_keys);
cafe5635 568
cafe5635 569 n->bi_rw |= REQ_WRITE;
c18536a7 570 bch_submit_bbio(n, s->c, k, 0);
cafe5635
KO
571 } while (n != bio);
572
c18536a7 573 s->insert_data_done = true;
a34a8bfd 574 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
575err:
576 /* bch_alloc_sectors() blocks if s->writeback = true */
577 BUG_ON(s->writeback);
578
579 /*
580 * But if it's not a writeback write we'd rather just bail out if
581 * there aren't any buckets ready to write to - it might take awhile and
582 * we might be starving btree writes for gc or something.
583 */
584
585 if (s->write) {
586 /*
587 * Writethrough write: We can't complete the write until we've
588 * updated the index. But we don't want to delay the write while
589 * we wait for buckets to be freed up, so just invalidate the
590 * rest of the write.
591 */
c18536a7 592 s->bypass = true;
a34a8bfd 593 return bch_data_invalidate(cl);
cafe5635
KO
594 } else {
595 /*
596 * From a cache miss, we can just insert the keys for the data
597 * we have written or bail out if we didn't do anything.
598 */
c18536a7 599 s->insert_data_done = true;
cafe5635
KO
600 bio_put(bio);
601
0b93207a 602 if (!bch_keylist_empty(&s->insert_keys))
a34a8bfd 603 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
604 else
605 closure_return(cl);
606 }
607}
608
609/**
a34a8bfd 610 * bch_data_insert - stick some data in the cache
cafe5635
KO
611 *
612 * This is the starting point for any data to end up in a cache device; it could
613 * be from a normal write, or a writeback write, or a write to a flash only
614 * volume - it's also used by the moving garbage collector to compact data in
615 * mostly empty buckets.
616 *
617 * It first writes the data to the cache, creating a list of keys to be inserted
618 * (if the data had to be fragmented there will be multiple keys); after the
619 * data is written it calls bch_journal, and after the keys have been added to
620 * the next journal write they're inserted into the btree.
621 *
c18536a7 622 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
cafe5635
KO
623 * and op->inode is used for the key inode.
624 *
c18536a7
KO
625 * If s->bypass is true, instead of inserting the data it invalidates the
626 * region of the cache represented by s->cache_bio and op->inode.
cafe5635 627 */
a34a8bfd 628void bch_data_insert(struct closure *cl)
cafe5635 629{
b54d6934 630 struct search *s = container_of(cl, struct search, btree);
cafe5635 631
0b93207a 632 bch_keylist_init(&s->insert_keys);
c18536a7 633 bio_get(s->cache_bio);
a34a8bfd 634 bch_data_insert_start(cl);
cafe5635
KO
635}
636
2c1953e2 637/* Cache lookup */
cafe5635 638
2c1953e2 639static void bch_cache_read_endio(struct bio *bio, int error)
cafe5635
KO
640{
641 struct bbio *b = container_of(bio, struct bbio, bio);
642 struct closure *cl = bio->bi_private;
643 struct search *s = container_of(cl, struct search, cl);
644
645 /*
646 * If the bucket was reused while our bio was in flight, we might have
647 * read the wrong data. Set s->error but not error so it doesn't get
648 * counted against the cache device, but we'll still reread the data
649 * from the backing device.
650 */
651
652 if (error)
653 s->error = error;
c18536a7
KO
654 else if (ptr_stale(s->c, &b->key, 0)) {
655 atomic_long_inc(&s->c->cache_read_races);
cafe5635
KO
656 s->error = -EINTR;
657 }
658
c18536a7 659 bch_bbio_endio(s->c, bio, error, "reading from cache");
cafe5635
KO
660}
661
2c1953e2
KO
662/*
663 * Read from a single key, handling the initial cache miss if the key starts in
664 * the middle of the bio
665 */
cc231966 666static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
2c1953e2
KO
667{
668 struct search *s = container_of(op, struct search, op);
cc231966
KO
669 struct bio *n, *bio = &s->bio.bio;
670 struct bkey *bio_key;
2c1953e2 671 unsigned ptr;
2c1953e2 672
c18536a7 673 if (bkey_cmp(k, &KEY(s->inode, bio->bi_sector, 0)) <= 0)
cc231966
KO
674 return MAP_CONTINUE;
675
c18536a7 676 if (KEY_INODE(k) != s->inode ||
cc231966
KO
677 KEY_START(k) > bio->bi_sector) {
678 unsigned bio_sectors = bio_sectors(bio);
c18536a7 679 unsigned sectors = KEY_INODE(k) == s->inode
cc231966
KO
680 ? min_t(uint64_t, INT_MAX,
681 KEY_START(k) - bio->bi_sector)
682 : INT_MAX;
683
684 int ret = s->d->cache_miss(b, s, bio, sectors);
685 if (ret != MAP_CONTINUE)
686 return ret;
687
688 /* if this was a complete miss we shouldn't get here */
689 BUG_ON(bio_sectors <= sectors);
690 }
691
692 if (!KEY_SIZE(k))
693 return MAP_CONTINUE;
2c1953e2
KO
694
695 /* XXX: figure out best pointer - for multiple cache devices */
696 ptr = 0;
697
698 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
699
cc231966
KO
700 n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
701 KEY_OFFSET(k) - bio->bi_sector),
702 GFP_NOIO, s->d->bio_split);
2c1953e2 703
cc231966
KO
704 bio_key = &container_of(n, struct bbio, bio)->key;
705 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2c1953e2 706
c18536a7
KO
707 bch_cut_front(&KEY(s->inode, n->bi_sector, 0), bio_key);
708 bch_cut_back(&KEY(s->inode, bio_end_sector(n), 0), bio_key);
2c1953e2 709
cc231966
KO
710 n->bi_end_io = bch_cache_read_endio;
711 n->bi_private = &s->cl;
2c1953e2 712
cc231966
KO
713 /*
714 * The bucket we're reading from might be reused while our bio
715 * is in flight, and we could then end up reading the wrong
716 * data.
717 *
718 * We guard against this by checking (in cache_read_endio()) if
719 * the pointer is stale again; if so, we treat it as an error
720 * and reread from the backing device (but we don't pass that
721 * error up anywhere).
722 */
2c1953e2 723
cc231966
KO
724 __bch_submit_bbio(n, b->c);
725 return n == bio ? MAP_DONE : MAP_CONTINUE;
2c1953e2
KO
726}
727
728static void cache_lookup(struct closure *cl)
729{
b54d6934 730 struct search *s = container_of(cl, struct search, btree);
2c1953e2
KO
731 struct bio *bio = &s->bio.bio;
732
b54d6934 733 int ret = bch_btree_map_keys(&s->op, s->c,
c18536a7 734 &KEY(s->inode, bio->bi_sector, 0),
cc231966 735 cache_lookup_fn, MAP_END_KEY);
2c1953e2
KO
736 if (ret == -EAGAIN)
737 continue_at(cl, cache_lookup, bcache_wq);
738
739 closure_return(cl);
740}
741
742/* Common code for the make_request functions */
743
744static void request_endio(struct bio *bio, int error)
745{
746 struct closure *cl = bio->bi_private;
747
748 if (error) {
749 struct search *s = container_of(cl, struct search, cl);
750 s->error = error;
751 /* Only cache read errors are recoverable */
752 s->recoverable = false;
753 }
754
755 bio_put(bio);
756 closure_put(cl);
757}
758
cafe5635
KO
759static void bio_complete(struct search *s)
760{
761 if (s->orig_bio) {
762 int cpu, rw = bio_data_dir(s->orig_bio);
763 unsigned long duration = jiffies - s->start_time;
764
765 cpu = part_stat_lock();
766 part_round_stats(cpu, &s->d->disk->part0);
767 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
768 part_stat_unlock();
769
770 trace_bcache_request_end(s, s->orig_bio);
771 bio_endio(s->orig_bio, s->error);
772 s->orig_bio = NULL;
773 }
774}
775
776static void do_bio_hook(struct search *s)
777{
778 struct bio *bio = &s->bio.bio;
779 memcpy(bio, s->orig_bio, sizeof(struct bio));
780
781 bio->bi_end_io = request_endio;
782 bio->bi_private = &s->cl;
783 atomic_set(&bio->bi_cnt, 3);
784}
785
786static void search_free(struct closure *cl)
787{
788 struct search *s = container_of(cl, struct search, cl);
789 bio_complete(s);
790
c18536a7
KO
791 if (s->cache_bio)
792 bio_put(s->cache_bio);
cafe5635
KO
793
794 if (s->unaligned_bvec)
795 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
796
797 closure_debug_destroy(cl);
798 mempool_free(s, s->d->c->search);
799}
800
801static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
802{
0b93207a 803 struct search *s;
cafe5635 804 struct bio_vec *bv;
0b93207a
KO
805
806 s = mempool_alloc(d->c->search, GFP_NOIO);
807 memset(s, 0, offsetof(struct search, insert_keys));
cafe5635
KO
808
809 __closure_init(&s->cl, NULL);
810
c18536a7
KO
811 s->inode = d->id;
812 s->c = d->c;
cafe5635
KO
813 s->d = d;
814 s->op.lock = -1;
815 s->task = current;
816 s->orig_bio = bio;
817 s->write = (bio->bi_rw & REQ_WRITE) != 0;
c18536a7 818 s->flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
cafe5635
KO
819 s->recoverable = 1;
820 s->start_time = jiffies;
821 do_bio_hook(s);
822
823 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
824 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
825 memcpy(bv, bio_iovec(bio),
826 sizeof(struct bio_vec) * bio_segments(bio));
827
828 s->bio.bio.bi_io_vec = bv;
829 s->unaligned_bvec = 1;
830 }
831
832 return s;
833}
834
cafe5635
KO
835/* Cached devices */
836
837static void cached_dev_bio_complete(struct closure *cl)
838{
839 struct search *s = container_of(cl, struct search, cl);
840 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
841
842 search_free(cl);
843 cached_dev_put(dc);
844}
845
84f0db03
KO
846unsigned bch_get_congested(struct cache_set *c)
847{
848 int i;
849 long rand;
850
851 if (!c->congested_read_threshold_us &&
852 !c->congested_write_threshold_us)
853 return 0;
854
855 i = (local_clock_us() - c->congested_last_us) / 1024;
856 if (i < 0)
857 return 0;
858
859 i += atomic_read(&c->congested);
860 if (i >= 0)
861 return 0;
862
863 i += CONGESTED_MAX;
864
865 if (i > 0)
866 i = fract_exp_two(i, 6);
867
868 rand = get_random_int();
869 i -= bitmap_weight(&rand, BITS_PER_LONG);
870
871 return i > 0 ? i : 1;
872}
873
874static void add_sequential(struct task_struct *t)
875{
876 ewma_add(t->sequential_io_avg,
877 t->sequential_io, 8, 0);
878
879 t->sequential_io = 0;
880}
881
882static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
883{
884 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
885}
886
887static bool check_should_bypass(struct cached_dev *dc, struct search *s)
888{
c18536a7 889 struct cache_set *c = s->c;
84f0db03
KO
890 struct bio *bio = &s->bio.bio;
891 unsigned mode = cache_mode(dc, bio);
892 unsigned sectors, congested = bch_get_congested(c);
893
894 if (atomic_read(&dc->disk.detaching) ||
895 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
896 (bio->bi_rw & REQ_DISCARD))
897 goto skip;
898
899 if (mode == CACHE_MODE_NONE ||
900 (mode == CACHE_MODE_WRITEAROUND &&
901 (bio->bi_rw & REQ_WRITE)))
902 goto skip;
903
904 if (bio->bi_sector & (c->sb.block_size - 1) ||
905 bio_sectors(bio) & (c->sb.block_size - 1)) {
906 pr_debug("skipping unaligned io");
907 goto skip;
908 }
909
910 if (!congested && !dc->sequential_cutoff)
911 goto rescale;
912
913 if (!congested &&
914 mode == CACHE_MODE_WRITEBACK &&
915 (bio->bi_rw & REQ_WRITE) &&
916 (bio->bi_rw & REQ_SYNC))
917 goto rescale;
918
919 if (dc->sequential_merge) {
920 struct io *i;
921
922 spin_lock(&dc->io_lock);
923
924 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
925 if (i->last == bio->bi_sector &&
926 time_before(jiffies, i->jiffies))
927 goto found;
928
929 i = list_first_entry(&dc->io_lru, struct io, lru);
930
931 add_sequential(s->task);
932 i->sequential = 0;
933found:
934 if (i->sequential + bio->bi_size > i->sequential)
935 i->sequential += bio->bi_size;
936
937 i->last = bio_end_sector(bio);
938 i->jiffies = jiffies + msecs_to_jiffies(5000);
939 s->task->sequential_io = i->sequential;
940
941 hlist_del(&i->hash);
942 hlist_add_head(&i->hash, iohash(dc, i->last));
943 list_move_tail(&i->lru, &dc->io_lru);
944
945 spin_unlock(&dc->io_lock);
946 } else {
947 s->task->sequential_io = bio->bi_size;
948
949 add_sequential(s->task);
950 }
951
952 sectors = max(s->task->sequential_io,
953 s->task->sequential_io_avg) >> 9;
954
955 if (dc->sequential_cutoff &&
956 sectors >= dc->sequential_cutoff >> 9) {
957 trace_bcache_bypass_sequential(s->orig_bio);
958 goto skip;
959 }
960
961 if (congested && sectors >= congested) {
962 trace_bcache_bypass_congested(s->orig_bio);
963 goto skip;
964 }
965
966rescale:
967 bch_rescale_priorities(c, bio_sectors(bio));
968 return false;
969skip:
970 bch_mark_sectors_bypassed(s, bio_sectors(bio));
971 return true;
972}
973
cafe5635
KO
974/* Process reads */
975
cdd972b1 976static void cached_dev_cache_miss_done(struct closure *cl)
cafe5635
KO
977{
978 struct search *s = container_of(cl, struct search, cl);
979
980 if (s->op.insert_collision)
981 bch_mark_cache_miss_collision(s);
982
c18536a7 983 if (s->cache_bio) {
cafe5635
KO
984 int i;
985 struct bio_vec *bv;
986
c18536a7 987 bio_for_each_segment_all(bv, s->cache_bio, i)
cafe5635
KO
988 __free_page(bv->bv_page);
989 }
990
991 cached_dev_bio_complete(cl);
992}
993
cdd972b1 994static void cached_dev_read_error(struct closure *cl)
cafe5635
KO
995{
996 struct search *s = container_of(cl, struct search, cl);
cdd972b1 997 struct bio *bio = &s->bio.bio;
cafe5635
KO
998 struct bio_vec *bv;
999 int i;
1000
1001 if (s->recoverable) {
c37511b8
KO
1002 /* Retry from the backing device: */
1003 trace_bcache_read_retry(s->orig_bio);
cafe5635
KO
1004
1005 s->error = 0;
1006 bv = s->bio.bio.bi_io_vec;
1007 do_bio_hook(s);
1008 s->bio.bio.bi_io_vec = bv;
1009
1010 if (!s->unaligned_bvec)
1011 bio_for_each_segment(bv, s->orig_bio, i)
1012 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
1013 else
1014 memcpy(s->bio.bio.bi_io_vec,
1015 bio_iovec(s->orig_bio),
1016 sizeof(struct bio_vec) *
1017 bio_segments(s->orig_bio));
1018
1019 /* XXX: invalidate cache */
1020
cdd972b1 1021 closure_bio_submit(bio, cl, s->d);
cafe5635
KO
1022 }
1023
cdd972b1 1024 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
1025}
1026
cdd972b1 1027static void cached_dev_read_done(struct closure *cl)
cafe5635
KO
1028{
1029 struct search *s = container_of(cl, struct search, cl);
1030 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1031
1032 /*
cdd972b1
KO
1033 * We had a cache miss; cache_bio now contains data ready to be inserted
1034 * into the cache.
cafe5635
KO
1035 *
1036 * First, we copy the data we just read from cache_bio's bounce buffers
1037 * to the buffers the original bio pointed to:
1038 */
1039
c18536a7
KO
1040 if (s->cache_bio) {
1041 bio_reset(s->cache_bio);
1042 s->cache_bio->bi_sector =
1043 s->cache_miss->bi_sector;
1044 s->cache_bio->bi_bdev = s->cache_miss->bi_bdev;
1045 s->cache_bio->bi_size = s->cache_bio_sectors << 9;
1046 bch_bio_map(s->cache_bio, NULL);
cafe5635 1047
c18536a7 1048 bio_copy_data(s->cache_miss, s->cache_bio);
cafe5635
KO
1049
1050 bio_put(s->cache_miss);
1051 s->cache_miss = NULL;
1052 }
1053
1054 if (verify(dc, &s->bio.bio) && s->recoverable)
1055 bch_data_verify(s);
1056
1057 bio_complete(s);
1058
c18536a7
KO
1059 if (s->cache_bio &&
1060 !test_bit(CACHE_SET_STOPPING, &s->c->flags)) {
1b207d80 1061 BUG_ON(!s->replace);
b54d6934 1062 closure_call(&s->btree, bch_data_insert, NULL, cl);
cafe5635
KO
1063 }
1064
cdd972b1 1065 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
1066}
1067
cdd972b1 1068static void cached_dev_read_done_bh(struct closure *cl)
cafe5635
KO
1069{
1070 struct search *s = container_of(cl, struct search, cl);
1071 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1072
c18536a7
KO
1073 bch_mark_cache_accounting(s, !s->cache_miss, s->bypass);
1074 trace_bcache_read(s->orig_bio, !s->cache_miss, s->bypass);
cafe5635
KO
1075
1076 if (s->error)
cdd972b1 1077 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
c18536a7 1078 else if (s->cache_bio || verify(dc, &s->bio.bio))
cdd972b1 1079 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
cafe5635 1080 else
cdd972b1 1081 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
cafe5635
KO
1082}
1083
1084static int cached_dev_cache_miss(struct btree *b, struct search *s,
1085 struct bio *bio, unsigned sectors)
1086{
2c1953e2 1087 int ret = MAP_CONTINUE;
e7c590eb 1088 unsigned reada = 0;
cafe5635 1089 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
cdd972b1 1090 struct bio *miss, *cache_bio;
cafe5635 1091
c18536a7 1092 if (s->cache_miss || s->bypass) {
e7c590eb 1093 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2 1094 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
e7c590eb
KO
1095 goto out_submit;
1096 }
cafe5635 1097
e7c590eb
KO
1098 if (!(bio->bi_rw & REQ_RAHEAD) &&
1099 !(bio->bi_rw & REQ_META) &&
c18536a7 1100 s->c->gc_stats.in_use < CUTOFF_CACHE_READA)
e7c590eb
KO
1101 reada = min_t(sector_t, dc->readahead >> 9,
1102 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
cafe5635 1103
e7c590eb 1104 s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada);
cafe5635 1105
1b207d80
KO
1106 s->replace_key = KEY(s->inode, bio->bi_sector +
1107 s->cache_bio_sectors, s->cache_bio_sectors);
e7c590eb 1108
1b207d80 1109 ret = bch_btree_insert_check_key(b, &s->op, &s->replace_key);
e7c590eb
KO
1110 if (ret)
1111 return ret;
1112
1b207d80
KO
1113 s->replace = true;
1114
e7c590eb 1115 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2
KO
1116
1117 /* btree_search_recurse()'s btree iterator is no good anymore */
1118 ret = miss == bio ? MAP_DONE : -EINTR;
cafe5635 1119
cdd972b1 1120 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
cafe5635
KO
1121 DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
1122 dc->disk.bio_split);
cdd972b1 1123 if (!cache_bio)
cafe5635
KO
1124 goto out_submit;
1125
cdd972b1
KO
1126 cache_bio->bi_sector = miss->bi_sector;
1127 cache_bio->bi_bdev = miss->bi_bdev;
1128 cache_bio->bi_size = s->cache_bio_sectors << 9;
cafe5635 1129
cdd972b1
KO
1130 cache_bio->bi_end_io = request_endio;
1131 cache_bio->bi_private = &s->cl;
cafe5635 1132
cdd972b1
KO
1133 bch_bio_map(cache_bio, NULL);
1134 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
1135 goto out_put;
1136
cdd972b1 1137 s->cache_miss = miss;
c18536a7 1138 s->cache_bio = cache_bio;
cdd972b1
KO
1139 bio_get(cache_bio);
1140 closure_bio_submit(cache_bio, &s->cl, s->d);
cafe5635
KO
1141
1142 return ret;
1143out_put:
cdd972b1 1144 bio_put(cache_bio);
cafe5635 1145out_submit:
e7c590eb
KO
1146 miss->bi_end_io = request_endio;
1147 miss->bi_private = &s->cl;
cafe5635
KO
1148 closure_bio_submit(miss, &s->cl, s->d);
1149 return ret;
1150}
1151
cdd972b1 1152static void cached_dev_read(struct cached_dev *dc, struct search *s)
cafe5635
KO
1153{
1154 struct closure *cl = &s->cl;
1155
b54d6934 1156 closure_call(&s->btree, cache_lookup, NULL, cl);
cdd972b1 1157 continue_at(cl, cached_dev_read_done_bh, NULL);
cafe5635
KO
1158}
1159
1160/* Process writes */
1161
1162static void cached_dev_write_complete(struct closure *cl)
1163{
1164 struct search *s = container_of(cl, struct search, cl);
1165 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1166
1167 up_read_non_owner(&dc->writeback_lock);
1168 cached_dev_bio_complete(cl);
1169}
1170
cdd972b1 1171static void cached_dev_write(struct cached_dev *dc, struct search *s)
cafe5635
KO
1172{
1173 struct closure *cl = &s->cl;
1174 struct bio *bio = &s->bio.bio;
84f0db03
KO
1175 struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
1176 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
cafe5635 1177
c18536a7 1178 bch_keybuf_check_overlapping(&s->c->moving_gc_keys, &start, &end);
cafe5635 1179
cafe5635 1180 down_read_non_owner(&dc->writeback_lock);
cafe5635 1181 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
84f0db03
KO
1182 /*
1183 * We overlap with some dirty data undergoing background
1184 * writeback, force this write to writeback
1185 */
c18536a7 1186 s->bypass = false;
cafe5635
KO
1187 s->writeback = true;
1188 }
1189
84f0db03
KO
1190 /*
1191 * Discards aren't _required_ to do anything, so skipping if
1192 * check_overlapping returned true is ok
1193 *
1194 * But check_overlapping drops dirty keys for which io hasn't started,
1195 * so we still want to call it.
1196 */
cafe5635 1197 if (bio->bi_rw & REQ_DISCARD)
c18536a7 1198 s->bypass = true;
cafe5635 1199
72c27061
KO
1200 if (should_writeback(dc, s->orig_bio,
1201 cache_mode(dc, bio),
c18536a7
KO
1202 s->bypass)) {
1203 s->bypass = false;
72c27061
KO
1204 s->writeback = true;
1205 }
1206
c18536a7 1207 trace_bcache_write(s->orig_bio, s->writeback, s->bypass);
c37511b8 1208
c18536a7
KO
1209 if (s->bypass) {
1210 s->cache_bio = s->orig_bio;
1211 bio_get(s->cache_bio);
cafe5635 1212
84f0db03
KO
1213 if (!(bio->bi_rw & REQ_DISCARD) ||
1214 blk_queue_discard(bdev_get_queue(dc->bdev)))
1215 closure_bio_submit(bio, cl, s->d);
1216 } else if (s->writeback) {
279afbad 1217 bch_writeback_add(dc);
c18536a7 1218 s->cache_bio = bio;
e49c7c37 1219
c0f04d88 1220 if (bio->bi_rw & REQ_FLUSH) {
e49c7c37 1221 /* Also need to send a flush to the backing device */
d4eddd42 1222 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
c0f04d88 1223 dc->disk.bio_split);
e49c7c37 1224
c0f04d88
KO
1225 flush->bi_rw = WRITE_FLUSH;
1226 flush->bi_bdev = bio->bi_bdev;
1227 flush->bi_end_io = request_endio;
1228 flush->bi_private = cl;
1229
1230 closure_bio_submit(flush, cl, s->d);
e49c7c37 1231 }
84f0db03 1232 } else {
c18536a7
KO
1233 s->cache_bio = bio_clone_bioset(bio, GFP_NOIO,
1234 dc->disk.bio_split);
84f0db03
KO
1235
1236 closure_bio_submit(bio, cl, s->d);
cafe5635 1237 }
84f0db03 1238
b54d6934 1239 closure_call(&s->btree, bch_data_insert, NULL, cl);
cafe5635 1240 continue_at(cl, cached_dev_write_complete, NULL);
cafe5635
KO
1241}
1242
a34a8bfd 1243static void cached_dev_nodata(struct closure *cl)
cafe5635 1244{
a34a8bfd 1245 struct search *s = container_of(cl, struct search, cl);
cafe5635
KO
1246 struct bio *bio = &s->bio.bio;
1247
c18536a7
KO
1248 if (s->flush_journal)
1249 bch_journal_meta(s->c, cl);
cafe5635 1250
84f0db03 1251 /* If it's a flush, we send the flush to the backing device too */
cafe5635
KO
1252 closure_bio_submit(bio, cl, s->d);
1253
1254 continue_at(cl, cached_dev_bio_complete, NULL);
1255}
1256
1257/* Cached devices - read & write stuff */
1258
cafe5635
KO
1259static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1260{
1261 struct search *s;
1262 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1263 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1264 int cpu, rw = bio_data_dir(bio);
1265
1266 cpu = part_stat_lock();
1267 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1268 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1269 part_stat_unlock();
1270
1271 bio->bi_bdev = dc->bdev;
2903381f 1272 bio->bi_sector += dc->sb.data_offset;
cafe5635
KO
1273
1274 if (cached_dev_get(dc)) {
1275 s = search_alloc(bio, d);
1276 trace_bcache_request_start(s, bio);
1277
a34a8bfd
KO
1278 if (!bio->bi_size) {
1279 /*
1280 * can't call bch_journal_meta from under
1281 * generic_make_request
1282 */
1283 continue_at_nobarrier(&s->cl,
1284 cached_dev_nodata,
1285 bcache_wq);
1286 } else {
c18536a7 1287 s->bypass = check_should_bypass(dc, s);
84f0db03
KO
1288
1289 if (rw)
cdd972b1 1290 cached_dev_write(dc, s);
84f0db03 1291 else
cdd972b1 1292 cached_dev_read(dc, s);
84f0db03 1293 }
cafe5635
KO
1294 } else {
1295 if ((bio->bi_rw & REQ_DISCARD) &&
1296 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1297 bio_endio(bio, 0);
1298 else
1299 bch_generic_make_request(bio, &d->bio_split_hook);
1300 }
1301}
1302
1303static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1304 unsigned int cmd, unsigned long arg)
1305{
1306 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1307 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1308}
1309
1310static int cached_dev_congested(void *data, int bits)
1311{
1312 struct bcache_device *d = data;
1313 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1314 struct request_queue *q = bdev_get_queue(dc->bdev);
1315 int ret = 0;
1316
1317 if (bdi_congested(&q->backing_dev_info, bits))
1318 return 1;
1319
1320 if (cached_dev_get(dc)) {
1321 unsigned i;
1322 struct cache *ca;
1323
1324 for_each_cache(ca, d->c, i) {
1325 q = bdev_get_queue(ca->bdev);
1326 ret |= bdi_congested(&q->backing_dev_info, bits);
1327 }
1328
1329 cached_dev_put(dc);
1330 }
1331
1332 return ret;
1333}
1334
1335void bch_cached_dev_request_init(struct cached_dev *dc)
1336{
1337 struct gendisk *g = dc->disk.disk;
1338
1339 g->queue->make_request_fn = cached_dev_make_request;
1340 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1341 dc->disk.cache_miss = cached_dev_cache_miss;
1342 dc->disk.ioctl = cached_dev_ioctl;
1343}
1344
1345/* Flash backed devices */
1346
1347static int flash_dev_cache_miss(struct btree *b, struct search *s,
1348 struct bio *bio, unsigned sectors)
1349{
8e51e414
KO
1350 struct bio_vec *bv;
1351 int i;
1352
cafe5635
KO
1353 /* Zero fill bio */
1354
8e51e414 1355 bio_for_each_segment(bv, bio, i) {
cafe5635
KO
1356 unsigned j = min(bv->bv_len >> 9, sectors);
1357
1358 void *p = kmap(bv->bv_page);
1359 memset(p + bv->bv_offset, 0, j << 9);
1360 kunmap(bv->bv_page);
1361
8e51e414 1362 sectors -= j;
cafe5635
KO
1363 }
1364
8e51e414
KO
1365 bio_advance(bio, min(sectors << 9, bio->bi_size));
1366
1367 if (!bio->bi_size)
2c1953e2 1368 return MAP_DONE;
cafe5635 1369
2c1953e2 1370 return MAP_CONTINUE;
cafe5635
KO
1371}
1372
a34a8bfd
KO
1373static void flash_dev_nodata(struct closure *cl)
1374{
1375 struct search *s = container_of(cl, struct search, cl);
1376
c18536a7
KO
1377 if (s->flush_journal)
1378 bch_journal_meta(s->c, cl);
a34a8bfd
KO
1379
1380 continue_at(cl, search_free, NULL);
1381}
1382
cafe5635
KO
1383static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1384{
1385 struct search *s;
1386 struct closure *cl;
1387 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1388 int cpu, rw = bio_data_dir(bio);
1389
1390 cpu = part_stat_lock();
1391 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1392 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1393 part_stat_unlock();
1394
1395 s = search_alloc(bio, d);
1396 cl = &s->cl;
1397 bio = &s->bio.bio;
1398
1399 trace_bcache_request_start(s, bio);
1400
84f0db03 1401 if (!bio->bi_size) {
a34a8bfd
KO
1402 /*
1403 * can't call bch_journal_meta from under
1404 * generic_make_request
1405 */
1406 continue_at_nobarrier(&s->cl,
1407 flash_dev_nodata,
1408 bcache_wq);
84f0db03 1409 } else if (rw) {
c18536a7 1410 bch_keybuf_check_overlapping(&s->c->moving_gc_keys,
8e51e414
KO
1411 &KEY(d->id, bio->bi_sector, 0),
1412 &KEY(d->id, bio_end_sector(bio), 0));
cafe5635 1413
c18536a7 1414 s->bypass = (bio->bi_rw & REQ_DISCARD) != 0;
cafe5635 1415 s->writeback = true;
c18536a7 1416 s->cache_bio = bio;
cafe5635 1417
b54d6934 1418 closure_call(&s->btree, bch_data_insert, NULL, cl);
cafe5635 1419 } else {
b54d6934 1420 closure_call(&s->btree, cache_lookup, NULL, cl);
cafe5635
KO
1421 }
1422
1423 continue_at(cl, search_free, NULL);
1424}
1425
1426static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1427 unsigned int cmd, unsigned long arg)
1428{
1429 return -ENOTTY;
1430}
1431
1432static int flash_dev_congested(void *data, int bits)
1433{
1434 struct bcache_device *d = data;
1435 struct request_queue *q;
1436 struct cache *ca;
1437 unsigned i;
1438 int ret = 0;
1439
1440 for_each_cache(ca, d->c, i) {
1441 q = bdev_get_queue(ca->bdev);
1442 ret |= bdi_congested(&q->backing_dev_info, bits);
1443 }
1444
1445 return ret;
1446}
1447
1448void bch_flash_dev_request_init(struct bcache_device *d)
1449{
1450 struct gendisk *g = d->disk;
1451
1452 g->queue->make_request_fn = flash_dev_make_request;
1453 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1454 d->cache_miss = flash_dev_cache_miss;
1455 d->ioctl = flash_dev_ioctl;
1456}
1457
1458void bch_request_exit(void)
1459{
1460#ifdef CONFIG_CGROUP_BCACHE
1461 cgroup_unload_subsys(&bcache_subsys);
1462#endif
1463 if (bch_search_cache)
1464 kmem_cache_destroy(bch_search_cache);
1465}
1466
1467int __init bch_request_init(void)
1468{
1469 bch_search_cache = KMEM_CACHE(search, 0);
1470 if (!bch_search_cache)
1471 return -ENOMEM;
1472
1473#ifdef CONFIG_CGROUP_BCACHE
1474 cgroup_load_subsys(&bcache_subsys);
1475 init_bch_cgroup(&bcache_default_cgroup);
1476
1477 cgroup_add_cftypes(&bcache_subsys, bch_files);
1478#endif
1479 return 0;
1480}