]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/bcache/request.c
target: iblock_execute_sync_cache() should use bio_set_op_attrs()
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / request.c
CommitLineData
cafe5635
KO
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
279afbad 13#include "writeback.h"
cafe5635 14
cafe5635
KO
15#include <linux/module.h>
16#include <linux/hash.h>
17#include <linux/random.h>
66114cad 18#include <linux/backing-dev.h>
cafe5635
KO
19
20#include <trace/events/bcache.h>
21
22#define CUTOFF_CACHE_ADD 95
23#define CUTOFF_CACHE_READA 90
cafe5635
KO
24
25struct kmem_cache *bch_search_cache;
26
a34a8bfd
KO
27static void bch_data_insert_start(struct closure *);
28
cafe5635
KO
29static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30{
cafe5635
KO
31 return BDEV_CACHE_MODE(&dc->sb);
32}
33
34static bool verify(struct cached_dev *dc, struct bio *bio)
35{
cafe5635
KO
36 return dc->verify;
37}
38
39static void bio_csum(struct bio *bio, struct bkey *k)
40{
7988613b
KO
41 struct bio_vec bv;
42 struct bvec_iter iter;
cafe5635 43 uint64_t csum = 0;
cafe5635 44
7988613b
KO
45 bio_for_each_segment(bv, bio, iter) {
46 void *d = kmap(bv.bv_page) + bv.bv_offset;
47 csum = bch_crc64_update(csum, d, bv.bv_len);
48 kunmap(bv.bv_page);
cafe5635
KO
49 }
50
51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52}
53
54/* Insert data into cache */
55
a34a8bfd 56static void bch_data_insert_keys(struct closure *cl)
cafe5635 57{
220bb38c 58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
c18536a7 59 atomic_t *journal_ref = NULL;
220bb38c 60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
6054c6d4 61 int ret;
cafe5635 62
a34a8bfd
KO
63 /*
64 * If we're looping, might already be waiting on
65 * another journal write - can't wait on more than one journal write at
66 * a time
67 *
68 * XXX: this looks wrong
69 */
70#if 0
71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72 closure_sync(&s->cl);
73#endif
cafe5635 74
220bb38c
KO
75 if (!op->replace)
76 journal_ref = bch_journal(op->c, &op->insert_keys,
77 op->flush_journal ? cl : NULL);
cafe5635 78
220bb38c 79 ret = bch_btree_insert(op->c, &op->insert_keys,
6054c6d4
KO
80 journal_ref, replace_key);
81 if (ret == -ESRCH) {
220bb38c 82 op->replace_collision = true;
6054c6d4 83 } else if (ret) {
220bb38c
KO
84 op->error = -ENOMEM;
85 op->insert_data_done = true;
a34a8bfd 86 }
cafe5635 87
c18536a7
KO
88 if (journal_ref)
89 atomic_dec_bug(journal_ref);
cafe5635 90
77b5a084 91 if (!op->insert_data_done) {
da415a09 92 continue_at(cl, bch_data_insert_start, op->wq);
77b5a084
JA
93 return;
94 }
cafe5635 95
220bb38c 96 bch_keylist_free(&op->insert_keys);
a34a8bfd 97 closure_return(cl);
cafe5635
KO
98}
99
085d2a3d
KO
100static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101 struct cache_set *c)
102{
103 size_t oldsize = bch_keylist_nkeys(l);
104 size_t newsize = oldsize + u64s;
105
106 /*
107 * The journalling code doesn't handle the case where the keys to insert
108 * is bigger than an empty write: If we just return -ENOMEM here,
109 * bio_insert() and bio_invalidate() will insert the keys created so far
110 * and finish the rest when the keylist is empty.
111 */
112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113 return -ENOMEM;
114
115 return __bch_keylist_realloc(l, u64s);
116}
117
a34a8bfd
KO
118static void bch_data_invalidate(struct closure *cl)
119{
220bb38c
KO
120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121 struct bio *bio = op->bio;
a34a8bfd
KO
122
123 pr_debug("invalidating %i sectors from %llu",
4f024f37 124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
a34a8bfd
KO
125
126 while (bio_sectors(bio)) {
81ab4190
KO
127 unsigned sectors = min(bio_sectors(bio),
128 1U << (KEY_SIZE_BITS - 1));
a34a8bfd 129
085d2a3d 130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
a34a8bfd
KO
131 goto out;
132
4f024f37
KO
133 bio->bi_iter.bi_sector += sectors;
134 bio->bi_iter.bi_size -= sectors << 9;
a34a8bfd 135
220bb38c 136 bch_keylist_add(&op->insert_keys,
4f024f37 137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
a34a8bfd
KO
138 }
139
220bb38c 140 op->insert_data_done = true;
a34a8bfd
KO
141 bio_put(bio);
142out:
da415a09 143 continue_at(cl, bch_data_insert_keys, op->wq);
a34a8bfd
KO
144}
145
146static void bch_data_insert_error(struct closure *cl)
cafe5635 147{
220bb38c 148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635
KO
149
150 /*
151 * Our data write just errored, which means we've got a bunch of keys to
152 * insert that point to data that wasn't succesfully written.
153 *
154 * We don't have to insert those keys but we still have to invalidate
155 * that region of the cache - so, if we just strip off all the pointers
156 * from the keys we'll accomplish just that.
157 */
158
220bb38c 159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
cafe5635 160
220bb38c 161 while (src != op->insert_keys.top) {
cafe5635
KO
162 struct bkey *n = bkey_next(src);
163
164 SET_KEY_PTRS(src, 0);
c2f95ae2 165 memmove(dst, src, bkey_bytes(src));
cafe5635
KO
166
167 dst = bkey_next(dst);
168 src = n;
169 }
170
220bb38c 171 op->insert_keys.top = dst;
cafe5635 172
a34a8bfd 173 bch_data_insert_keys(cl);
cafe5635
KO
174}
175
4246a0b6 176static void bch_data_insert_endio(struct bio *bio)
cafe5635
KO
177{
178 struct closure *cl = bio->bi_private;
220bb38c 179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 180
4246a0b6 181 if (bio->bi_error) {
cafe5635 182 /* TODO: We could try to recover from this. */
220bb38c 183 if (op->writeback)
4246a0b6 184 op->error = bio->bi_error;
220bb38c 185 else if (!op->replace)
da415a09 186 set_closure_fn(cl, bch_data_insert_error, op->wq);
cafe5635
KO
187 else
188 set_closure_fn(cl, NULL, NULL);
189 }
190
4246a0b6 191 bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache");
cafe5635
KO
192}
193
a34a8bfd 194static void bch_data_insert_start(struct closure *cl)
cafe5635 195{
220bb38c
KO
196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197 struct bio *bio = op->bio, *n;
cafe5635 198
220bb38c
KO
199 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
200 set_gc_sectors(op->c);
201 wake_up_gc(op->c);
cafe5635
KO
202 }
203
e3b4825b
NS
204 if (op->bypass)
205 return bch_data_invalidate(cl);
206
54d12f2b 207 /*
28a8f0d3 208 * Journal writes are marked REQ_PREFLUSH; if the original write was a
54d12f2b
KO
209 * flush, it'll wait on the journal write.
210 */
28a8f0d3 211 bio->bi_rw &= ~(REQ_PREFLUSH|REQ_FUA);
54d12f2b 212
cafe5635
KO
213 do {
214 unsigned i;
215 struct bkey *k;
220bb38c 216 struct bio_set *split = op->c->bio_split;
cafe5635
KO
217
218 /* 1 for the device pointer and 1 for the chksum */
220bb38c 219 if (bch_keylist_realloc(&op->insert_keys,
085d2a3d 220 3 + (op->csum ? 1 : 0),
77b5a084 221 op->c)) {
da415a09 222 continue_at(cl, bch_data_insert_keys, op->wq);
77b5a084
JA
223 return;
224 }
cafe5635 225
220bb38c 226 k = op->insert_keys.top;
cafe5635 227 bkey_init(k);
220bb38c 228 SET_KEY_INODE(k, op->inode);
4f024f37 229 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
cafe5635 230
2599b53b
KO
231 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
232 op->write_point, op->write_prio,
233 op->writeback))
cafe5635
KO
234 goto err;
235
20d0189b 236 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
cafe5635 237
a34a8bfd 238 n->bi_end_io = bch_data_insert_endio;
cafe5635
KO
239 n->bi_private = cl;
240
220bb38c 241 if (op->writeback) {
cafe5635
KO
242 SET_KEY_DIRTY(k, true);
243
244 for (i = 0; i < KEY_PTRS(k); i++)
220bb38c 245 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
cafe5635
KO
246 GC_MARK_DIRTY);
247 }
248
220bb38c 249 SET_KEY_CSUM(k, op->csum);
cafe5635
KO
250 if (KEY_CSUM(k))
251 bio_csum(n, k);
252
c37511b8 253 trace_bcache_cache_insert(k);
220bb38c 254 bch_keylist_push(&op->insert_keys);
cafe5635 255
ad0d9e76 256 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
220bb38c 257 bch_submit_bbio(n, op->c, k, 0);
cafe5635
KO
258 } while (n != bio);
259
220bb38c 260 op->insert_data_done = true;
da415a09 261 continue_at(cl, bch_data_insert_keys, op->wq);
77b5a084 262 return;
cafe5635
KO
263err:
264 /* bch_alloc_sectors() blocks if s->writeback = true */
220bb38c 265 BUG_ON(op->writeback);
cafe5635
KO
266
267 /*
268 * But if it's not a writeback write we'd rather just bail out if
269 * there aren't any buckets ready to write to - it might take awhile and
270 * we might be starving btree writes for gc or something.
271 */
272
220bb38c 273 if (!op->replace) {
cafe5635
KO
274 /*
275 * Writethrough write: We can't complete the write until we've
276 * updated the index. But we don't want to delay the write while
277 * we wait for buckets to be freed up, so just invalidate the
278 * rest of the write.
279 */
220bb38c 280 op->bypass = true;
a34a8bfd 281 return bch_data_invalidate(cl);
cafe5635
KO
282 } else {
283 /*
284 * From a cache miss, we can just insert the keys for the data
285 * we have written or bail out if we didn't do anything.
286 */
220bb38c 287 op->insert_data_done = true;
cafe5635
KO
288 bio_put(bio);
289
220bb38c 290 if (!bch_keylist_empty(&op->insert_keys))
da415a09 291 continue_at(cl, bch_data_insert_keys, op->wq);
cafe5635
KO
292 else
293 closure_return(cl);
294 }
295}
296
297/**
a34a8bfd 298 * bch_data_insert - stick some data in the cache
cafe5635
KO
299 *
300 * This is the starting point for any data to end up in a cache device; it could
301 * be from a normal write, or a writeback write, or a write to a flash only
302 * volume - it's also used by the moving garbage collector to compact data in
303 * mostly empty buckets.
304 *
305 * It first writes the data to the cache, creating a list of keys to be inserted
306 * (if the data had to be fragmented there will be multiple keys); after the
307 * data is written it calls bch_journal, and after the keys have been added to
308 * the next journal write they're inserted into the btree.
309 *
c18536a7 310 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
cafe5635
KO
311 * and op->inode is used for the key inode.
312 *
c18536a7
KO
313 * If s->bypass is true, instead of inserting the data it invalidates the
314 * region of the cache represented by s->cache_bio and op->inode.
cafe5635 315 */
a34a8bfd 316void bch_data_insert(struct closure *cl)
cafe5635 317{
220bb38c 318 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 319
60ae81ee
SP
320 trace_bcache_write(op->c, op->inode, op->bio,
321 op->writeback, op->bypass);
220bb38c
KO
322
323 bch_keylist_init(&op->insert_keys);
324 bio_get(op->bio);
a34a8bfd 325 bch_data_insert_start(cl);
cafe5635
KO
326}
327
220bb38c
KO
328/* Congested? */
329
330unsigned bch_get_congested(struct cache_set *c)
331{
332 int i;
333 long rand;
334
335 if (!c->congested_read_threshold_us &&
336 !c->congested_write_threshold_us)
337 return 0;
338
339 i = (local_clock_us() - c->congested_last_us) / 1024;
340 if (i < 0)
341 return 0;
342
343 i += atomic_read(&c->congested);
344 if (i >= 0)
345 return 0;
346
347 i += CONGESTED_MAX;
348
349 if (i > 0)
350 i = fract_exp_two(i, 6);
351
352 rand = get_random_int();
353 i -= bitmap_weight(&rand, BITS_PER_LONG);
354
355 return i > 0 ? i : 1;
356}
357
358static void add_sequential(struct task_struct *t)
359{
360 ewma_add(t->sequential_io_avg,
361 t->sequential_io, 8, 0);
362
363 t->sequential_io = 0;
364}
365
366static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
367{
368 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
369}
370
371static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
372{
373 struct cache_set *c = dc->disk.c;
374 unsigned mode = cache_mode(dc, bio);
375 unsigned sectors, congested = bch_get_congested(c);
376 struct task_struct *task = current;
8aee1220 377 struct io *i;
220bb38c 378
c4d951dd 379 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
220bb38c 380 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
ad0d9e76 381 (bio_op(bio) == REQ_OP_DISCARD))
220bb38c
KO
382 goto skip;
383
384 if (mode == CACHE_MODE_NONE ||
385 (mode == CACHE_MODE_WRITEAROUND &&
c8d93247 386 op_is_write(bio_op(bio))))
220bb38c
KO
387 goto skip;
388
4f024f37 389 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
220bb38c
KO
390 bio_sectors(bio) & (c->sb.block_size - 1)) {
391 pr_debug("skipping unaligned io");
392 goto skip;
393 }
394
5ceaaad7
KO
395 if (bypass_torture_test(dc)) {
396 if ((get_random_int() & 3) == 3)
397 goto skip;
398 else
399 goto rescale;
400 }
401
220bb38c
KO
402 if (!congested && !dc->sequential_cutoff)
403 goto rescale;
404
405 if (!congested &&
406 mode == CACHE_MODE_WRITEBACK &&
c8d93247 407 op_is_write(bio_op(bio)) &&
220bb38c
KO
408 (bio->bi_rw & REQ_SYNC))
409 goto rescale;
410
8aee1220 411 spin_lock(&dc->io_lock);
220bb38c 412
4f024f37
KO
413 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
414 if (i->last == bio->bi_iter.bi_sector &&
8aee1220
KO
415 time_before(jiffies, i->jiffies))
416 goto found;
220bb38c 417
8aee1220 418 i = list_first_entry(&dc->io_lru, struct io, lru);
220bb38c 419
8aee1220
KO
420 add_sequential(task);
421 i->sequential = 0;
220bb38c 422found:
4f024f37
KO
423 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
424 i->sequential += bio->bi_iter.bi_size;
220bb38c 425
8aee1220
KO
426 i->last = bio_end_sector(bio);
427 i->jiffies = jiffies + msecs_to_jiffies(5000);
428 task->sequential_io = i->sequential;
220bb38c 429
8aee1220
KO
430 hlist_del(&i->hash);
431 hlist_add_head(&i->hash, iohash(dc, i->last));
432 list_move_tail(&i->lru, &dc->io_lru);
220bb38c 433
8aee1220 434 spin_unlock(&dc->io_lock);
220bb38c
KO
435
436 sectors = max(task->sequential_io,
437 task->sequential_io_avg) >> 9;
438
439 if (dc->sequential_cutoff &&
440 sectors >= dc->sequential_cutoff >> 9) {
441 trace_bcache_bypass_sequential(bio);
442 goto skip;
443 }
444
445 if (congested && sectors >= congested) {
446 trace_bcache_bypass_congested(bio);
447 goto skip;
448 }
449
450rescale:
451 bch_rescale_priorities(c, bio_sectors(bio));
452 return false;
453skip:
454 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
455 return true;
456}
457
2c1953e2 458/* Cache lookup */
cafe5635 459
220bb38c
KO
460struct search {
461 /* Stack frame for bio_complete */
462 struct closure cl;
463
220bb38c
KO
464 struct bbio bio;
465 struct bio *orig_bio;
466 struct bio *cache_miss;
a5ae4300 467 struct bcache_device *d;
220bb38c
KO
468
469 unsigned insert_bio_sectors;
220bb38c 470 unsigned recoverable:1;
220bb38c 471 unsigned write:1;
5ceaaad7 472 unsigned read_dirty_data:1;
220bb38c
KO
473
474 unsigned long start_time;
475
476 struct btree_op op;
477 struct data_insert_op iop;
478};
479
4246a0b6 480static void bch_cache_read_endio(struct bio *bio)
cafe5635
KO
481{
482 struct bbio *b = container_of(bio, struct bbio, bio);
483 struct closure *cl = bio->bi_private;
484 struct search *s = container_of(cl, struct search, cl);
485
486 /*
487 * If the bucket was reused while our bio was in flight, we might have
488 * read the wrong data. Set s->error but not error so it doesn't get
489 * counted against the cache device, but we'll still reread the data
490 * from the backing device.
491 */
492
4246a0b6
CH
493 if (bio->bi_error)
494 s->iop.error = bio->bi_error;
d56d000a
KO
495 else if (!KEY_DIRTY(&b->key) &&
496 ptr_stale(s->iop.c, &b->key, 0)) {
220bb38c
KO
497 atomic_long_inc(&s->iop.c->cache_read_races);
498 s->iop.error = -EINTR;
cafe5635
KO
499 }
500
4246a0b6 501 bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache");
cafe5635
KO
502}
503
2c1953e2
KO
504/*
505 * Read from a single key, handling the initial cache miss if the key starts in
506 * the middle of the bio
507 */
cc231966 508static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
2c1953e2
KO
509{
510 struct search *s = container_of(op, struct search, op);
cc231966
KO
511 struct bio *n, *bio = &s->bio.bio;
512 struct bkey *bio_key;
2c1953e2 513 unsigned ptr;
2c1953e2 514
4f024f37 515 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
cc231966
KO
516 return MAP_CONTINUE;
517
220bb38c 518 if (KEY_INODE(k) != s->iop.inode ||
4f024f37 519 KEY_START(k) > bio->bi_iter.bi_sector) {
cc231966 520 unsigned bio_sectors = bio_sectors(bio);
220bb38c 521 unsigned sectors = KEY_INODE(k) == s->iop.inode
cc231966 522 ? min_t(uint64_t, INT_MAX,
4f024f37 523 KEY_START(k) - bio->bi_iter.bi_sector)
cc231966
KO
524 : INT_MAX;
525
526 int ret = s->d->cache_miss(b, s, bio, sectors);
527 if (ret != MAP_CONTINUE)
528 return ret;
529
530 /* if this was a complete miss we shouldn't get here */
531 BUG_ON(bio_sectors <= sectors);
532 }
533
534 if (!KEY_SIZE(k))
535 return MAP_CONTINUE;
2c1953e2
KO
536
537 /* XXX: figure out best pointer - for multiple cache devices */
538 ptr = 0;
539
540 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
541
5ceaaad7
KO
542 if (KEY_DIRTY(k))
543 s->read_dirty_data = true;
544
20d0189b
KO
545 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
546 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
547 GFP_NOIO, s->d->bio_split);
2c1953e2 548
cc231966
KO
549 bio_key = &container_of(n, struct bbio, bio)->key;
550 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2c1953e2 551
4f024f37 552 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
220bb38c 553 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
2c1953e2 554
cc231966
KO
555 n->bi_end_io = bch_cache_read_endio;
556 n->bi_private = &s->cl;
2c1953e2 557
cc231966
KO
558 /*
559 * The bucket we're reading from might be reused while our bio
560 * is in flight, and we could then end up reading the wrong
561 * data.
562 *
563 * We guard against this by checking (in cache_read_endio()) if
564 * the pointer is stale again; if so, we treat it as an error
565 * and reread from the backing device (but we don't pass that
566 * error up anywhere).
567 */
2c1953e2 568
cc231966
KO
569 __bch_submit_bbio(n, b->c);
570 return n == bio ? MAP_DONE : MAP_CONTINUE;
2c1953e2
KO
571}
572
573static void cache_lookup(struct closure *cl)
574{
220bb38c 575 struct search *s = container_of(cl, struct search, iop.cl);
2c1953e2 576 struct bio *bio = &s->bio.bio;
a5ae4300 577 int ret;
2c1953e2 578
a5ae4300 579 bch_btree_op_init(&s->op, -1);
2c1953e2 580
a5ae4300
KO
581 ret = bch_btree_map_keys(&s->op, s->iop.c,
582 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
583 cache_lookup_fn, MAP_END_KEY);
77b5a084 584 if (ret == -EAGAIN) {
2c1953e2 585 continue_at(cl, cache_lookup, bcache_wq);
77b5a084
JA
586 return;
587 }
2c1953e2
KO
588
589 closure_return(cl);
590}
591
592/* Common code for the make_request functions */
593
4246a0b6 594static void request_endio(struct bio *bio)
2c1953e2
KO
595{
596 struct closure *cl = bio->bi_private;
597
4246a0b6 598 if (bio->bi_error) {
2c1953e2 599 struct search *s = container_of(cl, struct search, cl);
4246a0b6 600 s->iop.error = bio->bi_error;
2c1953e2
KO
601 /* Only cache read errors are recoverable */
602 s->recoverable = false;
603 }
604
605 bio_put(bio);
606 closure_put(cl);
607}
608
cafe5635
KO
609static void bio_complete(struct search *s)
610{
611 if (s->orig_bio) {
aae4933d
GZ
612 generic_end_io_acct(bio_data_dir(s->orig_bio),
613 &s->d->disk->part0, s->start_time);
cafe5635 614
220bb38c 615 trace_bcache_request_end(s->d, s->orig_bio);
4246a0b6
CH
616 s->orig_bio->bi_error = s->iop.error;
617 bio_endio(s->orig_bio);
cafe5635
KO
618 s->orig_bio = NULL;
619 }
620}
621
a5ae4300 622static void do_bio_hook(struct search *s, struct bio *orig_bio)
cafe5635
KO
623{
624 struct bio *bio = &s->bio.bio;
cafe5635 625
ed9c47be 626 bio_init(bio);
a5ae4300 627 __bio_clone_fast(bio, orig_bio);
cafe5635
KO
628 bio->bi_end_io = request_endio;
629 bio->bi_private = &s->cl;
ed9c47be 630
dac56212 631 bio_cnt_set(bio, 3);
cafe5635
KO
632}
633
634static void search_free(struct closure *cl)
635{
636 struct search *s = container_of(cl, struct search, cl);
637 bio_complete(s);
638
220bb38c
KO
639 if (s->iop.bio)
640 bio_put(s->iop.bio);
cafe5635 641
cafe5635
KO
642 closure_debug_destroy(cl);
643 mempool_free(s, s->d->c->search);
644}
645
a5ae4300
KO
646static inline struct search *search_alloc(struct bio *bio,
647 struct bcache_device *d)
cafe5635 648{
0b93207a 649 struct search *s;
0b93207a
KO
650
651 s = mempool_alloc(d->c->search, GFP_NOIO);
cafe5635 652
a5ae4300
KO
653 closure_init(&s->cl, NULL);
654 do_bio_hook(s, bio);
cafe5635 655
cafe5635 656 s->orig_bio = bio;
a5ae4300
KO
657 s->cache_miss = NULL;
658 s->d = d;
cafe5635 659 s->recoverable = 1;
c8d93247 660 s->write = op_is_write(bio_op(bio));
a5ae4300 661 s->read_dirty_data = 0;
cafe5635 662 s->start_time = jiffies;
a5ae4300
KO
663
664 s->iop.c = d->c;
665 s->iop.bio = NULL;
666 s->iop.inode = d->id;
667 s->iop.write_point = hash_long((unsigned long) current, 16);
668 s->iop.write_prio = 0;
669 s->iop.error = 0;
670 s->iop.flags = 0;
28a8f0d3 671 s->iop.flush_journal = (bio->bi_rw & (REQ_PREFLUSH|REQ_FUA)) != 0;
da415a09 672 s->iop.wq = bcache_wq;
cafe5635 673
cafe5635
KO
674 return s;
675}
676
cafe5635
KO
677/* Cached devices */
678
679static void cached_dev_bio_complete(struct closure *cl)
680{
681 struct search *s = container_of(cl, struct search, cl);
682 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
683
684 search_free(cl);
685 cached_dev_put(dc);
686}
687
688/* Process reads */
689
cdd972b1 690static void cached_dev_cache_miss_done(struct closure *cl)
cafe5635
KO
691{
692 struct search *s = container_of(cl, struct search, cl);
693
220bb38c
KO
694 if (s->iop.replace_collision)
695 bch_mark_cache_miss_collision(s->iop.c, s->d);
cafe5635 696
220bb38c 697 if (s->iop.bio) {
cafe5635
KO
698 int i;
699 struct bio_vec *bv;
700
220bb38c 701 bio_for_each_segment_all(bv, s->iop.bio, i)
cafe5635
KO
702 __free_page(bv->bv_page);
703 }
704
705 cached_dev_bio_complete(cl);
706}
707
cdd972b1 708static void cached_dev_read_error(struct closure *cl)
cafe5635
KO
709{
710 struct search *s = container_of(cl, struct search, cl);
cdd972b1 711 struct bio *bio = &s->bio.bio;
cafe5635
KO
712
713 if (s->recoverable) {
c37511b8
KO
714 /* Retry from the backing device: */
715 trace_bcache_read_retry(s->orig_bio);
cafe5635 716
220bb38c 717 s->iop.error = 0;
a5ae4300 718 do_bio_hook(s, s->orig_bio);
cafe5635
KO
719
720 /* XXX: invalidate cache */
721
749b61da 722 closure_bio_submit(bio, cl);
cafe5635
KO
723 }
724
cdd972b1 725 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
726}
727
cdd972b1 728static void cached_dev_read_done(struct closure *cl)
cafe5635
KO
729{
730 struct search *s = container_of(cl, struct search, cl);
731 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
732
733 /*
cdd972b1
KO
734 * We had a cache miss; cache_bio now contains data ready to be inserted
735 * into the cache.
cafe5635
KO
736 *
737 * First, we copy the data we just read from cache_bio's bounce buffers
738 * to the buffers the original bio pointed to:
739 */
740
220bb38c
KO
741 if (s->iop.bio) {
742 bio_reset(s->iop.bio);
4f024f37 743 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
220bb38c 744 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
4f024f37 745 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
220bb38c 746 bch_bio_map(s->iop.bio, NULL);
cafe5635 747
220bb38c 748 bio_copy_data(s->cache_miss, s->iop.bio);
cafe5635
KO
749
750 bio_put(s->cache_miss);
751 s->cache_miss = NULL;
752 }
753
ed9c47be 754 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
220bb38c 755 bch_data_verify(dc, s->orig_bio);
cafe5635
KO
756
757 bio_complete(s);
758
220bb38c
KO
759 if (s->iop.bio &&
760 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
761 BUG_ON(!s->iop.replace);
762 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635
KO
763 }
764
cdd972b1 765 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
766}
767
cdd972b1 768static void cached_dev_read_done_bh(struct closure *cl)
cafe5635
KO
769{
770 struct search *s = container_of(cl, struct search, cl);
771 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
772
220bb38c
KO
773 bch_mark_cache_accounting(s->iop.c, s->d,
774 !s->cache_miss, s->iop.bypass);
775 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
cafe5635 776
220bb38c 777 if (s->iop.error)
cdd972b1 778 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
220bb38c 779 else if (s->iop.bio || verify(dc, &s->bio.bio))
cdd972b1 780 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
cafe5635 781 else
cdd972b1 782 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
cafe5635
KO
783}
784
785static int cached_dev_cache_miss(struct btree *b, struct search *s,
786 struct bio *bio, unsigned sectors)
787{
2c1953e2 788 int ret = MAP_CONTINUE;
e7c590eb 789 unsigned reada = 0;
cafe5635 790 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
cdd972b1 791 struct bio *miss, *cache_bio;
cafe5635 792
220bb38c 793 if (s->cache_miss || s->iop.bypass) {
20d0189b 794 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2 795 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
e7c590eb
KO
796 goto out_submit;
797 }
cafe5635 798
e7c590eb
KO
799 if (!(bio->bi_rw & REQ_RAHEAD) &&
800 !(bio->bi_rw & REQ_META) &&
220bb38c 801 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
e7c590eb
KO
802 reada = min_t(sector_t, dc->readahead >> 9,
803 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
cafe5635 804
220bb38c 805 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
cafe5635 806
220bb38c 807 s->iop.replace_key = KEY(s->iop.inode,
4f024f37 808 bio->bi_iter.bi_sector + s->insert_bio_sectors,
220bb38c 809 s->insert_bio_sectors);
e7c590eb 810
220bb38c 811 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
e7c590eb
KO
812 if (ret)
813 return ret;
814
220bb38c 815 s->iop.replace = true;
1b207d80 816
20d0189b 817 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2
KO
818
819 /* btree_search_recurse()'s btree iterator is no good anymore */
820 ret = miss == bio ? MAP_DONE : -EINTR;
cafe5635 821
cdd972b1 822 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
220bb38c 823 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
cafe5635 824 dc->disk.bio_split);
cdd972b1 825 if (!cache_bio)
cafe5635
KO
826 goto out_submit;
827
4f024f37
KO
828 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
829 cache_bio->bi_bdev = miss->bi_bdev;
830 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
cafe5635 831
cdd972b1
KO
832 cache_bio->bi_end_io = request_endio;
833 cache_bio->bi_private = &s->cl;
cafe5635 834
cdd972b1
KO
835 bch_bio_map(cache_bio, NULL);
836 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
837 goto out_put;
838
220bb38c
KO
839 if (reada)
840 bch_mark_cache_readahead(s->iop.c, s->d);
841
cdd972b1 842 s->cache_miss = miss;
220bb38c 843 s->iop.bio = cache_bio;
cdd972b1 844 bio_get(cache_bio);
749b61da 845 closure_bio_submit(cache_bio, &s->cl);
cafe5635
KO
846
847 return ret;
848out_put:
cdd972b1 849 bio_put(cache_bio);
cafe5635 850out_submit:
e7c590eb
KO
851 miss->bi_end_io = request_endio;
852 miss->bi_private = &s->cl;
749b61da 853 closure_bio_submit(miss, &s->cl);
cafe5635
KO
854 return ret;
855}
856
cdd972b1 857static void cached_dev_read(struct cached_dev *dc, struct search *s)
cafe5635
KO
858{
859 struct closure *cl = &s->cl;
860
220bb38c 861 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cdd972b1 862 continue_at(cl, cached_dev_read_done_bh, NULL);
cafe5635
KO
863}
864
865/* Process writes */
866
867static void cached_dev_write_complete(struct closure *cl)
868{
869 struct search *s = container_of(cl, struct search, cl);
870 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
871
872 up_read_non_owner(&dc->writeback_lock);
873 cached_dev_bio_complete(cl);
874}
875
cdd972b1 876static void cached_dev_write(struct cached_dev *dc, struct search *s)
cafe5635
KO
877{
878 struct closure *cl = &s->cl;
879 struct bio *bio = &s->bio.bio;
4f024f37 880 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
84f0db03 881 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
cafe5635 882
220bb38c 883 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
cafe5635 884
cafe5635 885 down_read_non_owner(&dc->writeback_lock);
cafe5635 886 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
84f0db03
KO
887 /*
888 * We overlap with some dirty data undergoing background
889 * writeback, force this write to writeback
890 */
220bb38c
KO
891 s->iop.bypass = false;
892 s->iop.writeback = true;
cafe5635
KO
893 }
894
84f0db03
KO
895 /*
896 * Discards aren't _required_ to do anything, so skipping if
897 * check_overlapping returned true is ok
898 *
899 * But check_overlapping drops dirty keys for which io hasn't started,
900 * so we still want to call it.
901 */
ad0d9e76 902 if (bio_op(bio) == REQ_OP_DISCARD)
220bb38c 903 s->iop.bypass = true;
cafe5635 904
72c27061
KO
905 if (should_writeback(dc, s->orig_bio,
906 cache_mode(dc, bio),
220bb38c
KO
907 s->iop.bypass)) {
908 s->iop.bypass = false;
909 s->iop.writeback = true;
72c27061
KO
910 }
911
220bb38c
KO
912 if (s->iop.bypass) {
913 s->iop.bio = s->orig_bio;
914 bio_get(s->iop.bio);
cafe5635 915
ad0d9e76 916 if ((bio_op(bio) != REQ_OP_DISCARD) ||
84f0db03 917 blk_queue_discard(bdev_get_queue(dc->bdev)))
749b61da 918 closure_bio_submit(bio, cl);
220bb38c 919 } else if (s->iop.writeback) {
279afbad 920 bch_writeback_add(dc);
220bb38c 921 s->iop.bio = bio;
e49c7c37 922
28a8f0d3 923 if (bio->bi_rw & REQ_PREFLUSH) {
e49c7c37 924 /* Also need to send a flush to the backing device */
d4eddd42 925 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
c0f04d88 926 dc->disk.bio_split);
e49c7c37 927
c0f04d88
KO
928 flush->bi_bdev = bio->bi_bdev;
929 flush->bi_end_io = request_endio;
930 flush->bi_private = cl;
ad0d9e76 931 bio_set_op_attrs(flush, REQ_OP_WRITE, WRITE_FLUSH);
c0f04d88 932
749b61da 933 closure_bio_submit(flush, cl);
e49c7c37 934 }
84f0db03 935 } else {
59d276fe 936 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
84f0db03 937
749b61da 938 closure_bio_submit(bio, cl);
cafe5635 939 }
84f0db03 940
220bb38c 941 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 942 continue_at(cl, cached_dev_write_complete, NULL);
cafe5635
KO
943}
944
a34a8bfd 945static void cached_dev_nodata(struct closure *cl)
cafe5635 946{
a34a8bfd 947 struct search *s = container_of(cl, struct search, cl);
cafe5635
KO
948 struct bio *bio = &s->bio.bio;
949
220bb38c
KO
950 if (s->iop.flush_journal)
951 bch_journal_meta(s->iop.c, cl);
cafe5635 952
84f0db03 953 /* If it's a flush, we send the flush to the backing device too */
749b61da 954 closure_bio_submit(bio, cl);
cafe5635
KO
955
956 continue_at(cl, cached_dev_bio_complete, NULL);
957}
958
959/* Cached devices - read & write stuff */
960
dece1635
JA
961static blk_qc_t cached_dev_make_request(struct request_queue *q,
962 struct bio *bio)
cafe5635
KO
963{
964 struct search *s;
965 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
966 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
aae4933d 967 int rw = bio_data_dir(bio);
cafe5635 968
aae4933d 969 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
cafe5635
KO
970
971 bio->bi_bdev = dc->bdev;
4f024f37 972 bio->bi_iter.bi_sector += dc->sb.data_offset;
cafe5635
KO
973
974 if (cached_dev_get(dc)) {
975 s = search_alloc(bio, d);
220bb38c 976 trace_bcache_request_start(s->d, bio);
cafe5635 977
4f024f37 978 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
979 /*
980 * can't call bch_journal_meta from under
981 * generic_make_request
982 */
983 continue_at_nobarrier(&s->cl,
984 cached_dev_nodata,
985 bcache_wq);
986 } else {
220bb38c 987 s->iop.bypass = check_should_bypass(dc, bio);
84f0db03
KO
988
989 if (rw)
cdd972b1 990 cached_dev_write(dc, s);
84f0db03 991 else
cdd972b1 992 cached_dev_read(dc, s);
84f0db03 993 }
cafe5635 994 } else {
ad0d9e76 995 if ((bio_op(bio) == REQ_OP_DISCARD) &&
cafe5635 996 !blk_queue_discard(bdev_get_queue(dc->bdev)))
4246a0b6 997 bio_endio(bio);
cafe5635 998 else
749b61da 999 generic_make_request(bio);
cafe5635 1000 }
dece1635
JA
1001
1002 return BLK_QC_T_NONE;
cafe5635
KO
1003}
1004
1005static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1006 unsigned int cmd, unsigned long arg)
1007{
1008 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1009 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1010}
1011
1012static int cached_dev_congested(void *data, int bits)
1013{
1014 struct bcache_device *d = data;
1015 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1016 struct request_queue *q = bdev_get_queue(dc->bdev);
1017 int ret = 0;
1018
1019 if (bdi_congested(&q->backing_dev_info, bits))
1020 return 1;
1021
1022 if (cached_dev_get(dc)) {
1023 unsigned i;
1024 struct cache *ca;
1025
1026 for_each_cache(ca, d->c, i) {
1027 q = bdev_get_queue(ca->bdev);
1028 ret |= bdi_congested(&q->backing_dev_info, bits);
1029 }
1030
1031 cached_dev_put(dc);
1032 }
1033
1034 return ret;
1035}
1036
1037void bch_cached_dev_request_init(struct cached_dev *dc)
1038{
1039 struct gendisk *g = dc->disk.disk;
1040
1041 g->queue->make_request_fn = cached_dev_make_request;
1042 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1043 dc->disk.cache_miss = cached_dev_cache_miss;
1044 dc->disk.ioctl = cached_dev_ioctl;
1045}
1046
1047/* Flash backed devices */
1048
1049static int flash_dev_cache_miss(struct btree *b, struct search *s,
1050 struct bio *bio, unsigned sectors)
1051{
1b4eaf3d 1052 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
cafe5635 1053
1b4eaf3d
KO
1054 swap(bio->bi_iter.bi_size, bytes);
1055 zero_fill_bio(bio);
1056 swap(bio->bi_iter.bi_size, bytes);
cafe5635 1057
1b4eaf3d 1058 bio_advance(bio, bytes);
8e51e414 1059
4f024f37 1060 if (!bio->bi_iter.bi_size)
2c1953e2 1061 return MAP_DONE;
cafe5635 1062
2c1953e2 1063 return MAP_CONTINUE;
cafe5635
KO
1064}
1065
a34a8bfd
KO
1066static void flash_dev_nodata(struct closure *cl)
1067{
1068 struct search *s = container_of(cl, struct search, cl);
1069
220bb38c
KO
1070 if (s->iop.flush_journal)
1071 bch_journal_meta(s->iop.c, cl);
a34a8bfd
KO
1072
1073 continue_at(cl, search_free, NULL);
1074}
1075
dece1635
JA
1076static blk_qc_t flash_dev_make_request(struct request_queue *q,
1077 struct bio *bio)
cafe5635
KO
1078{
1079 struct search *s;
1080 struct closure *cl;
1081 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
aae4933d 1082 int rw = bio_data_dir(bio);
cafe5635 1083
aae4933d 1084 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
cafe5635
KO
1085
1086 s = search_alloc(bio, d);
1087 cl = &s->cl;
1088 bio = &s->bio.bio;
1089
220bb38c 1090 trace_bcache_request_start(s->d, bio);
cafe5635 1091
4f024f37 1092 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
1093 /*
1094 * can't call bch_journal_meta from under
1095 * generic_make_request
1096 */
1097 continue_at_nobarrier(&s->cl,
1098 flash_dev_nodata,
1099 bcache_wq);
dece1635 1100 return BLK_QC_T_NONE;
84f0db03 1101 } else if (rw) {
220bb38c 1102 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
4f024f37 1103 &KEY(d->id, bio->bi_iter.bi_sector, 0),
8e51e414 1104 &KEY(d->id, bio_end_sector(bio), 0));
cafe5635 1105
ad0d9e76 1106 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
220bb38c
KO
1107 s->iop.writeback = true;
1108 s->iop.bio = bio;
cafe5635 1109
220bb38c 1110 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 1111 } else {
220bb38c 1112 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cafe5635
KO
1113 }
1114
1115 continue_at(cl, search_free, NULL);
dece1635 1116 return BLK_QC_T_NONE;
cafe5635
KO
1117}
1118
1119static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1120 unsigned int cmd, unsigned long arg)
1121{
1122 return -ENOTTY;
1123}
1124
1125static int flash_dev_congested(void *data, int bits)
1126{
1127 struct bcache_device *d = data;
1128 struct request_queue *q;
1129 struct cache *ca;
1130 unsigned i;
1131 int ret = 0;
1132
1133 for_each_cache(ca, d->c, i) {
1134 q = bdev_get_queue(ca->bdev);
1135 ret |= bdi_congested(&q->backing_dev_info, bits);
1136 }
1137
1138 return ret;
1139}
1140
1141void bch_flash_dev_request_init(struct bcache_device *d)
1142{
1143 struct gendisk *g = d->disk;
1144
1145 g->queue->make_request_fn = flash_dev_make_request;
1146 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1147 d->cache_miss = flash_dev_cache_miss;
1148 d->ioctl = flash_dev_ioctl;
1149}
1150
1151void bch_request_exit(void)
1152{
cafe5635
KO
1153 if (bch_search_cache)
1154 kmem_cache_destroy(bch_search_cache);
1155}
1156
1157int __init bch_request_init(void)
1158{
1159 bch_search_cache = KMEM_CACHE(search, 0);
1160 if (!bch_search_cache)
1161 return -ENOMEM;
1162
cafe5635
KO
1163 return 0;
1164}