]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/bcache/request.c
block: Abstract out bvec iterator
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / request.c
CommitLineData
cafe5635
KO
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
279afbad 13#include "writeback.h"
cafe5635
KO
14
15#include <linux/cgroup.h>
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include "blk-cgroup.h"
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
cafe5635
KO
25
26struct kmem_cache *bch_search_cache;
27
a34a8bfd
KO
28static void bch_data_insert_start(struct closure *);
29
cafe5635
KO
30/* Cgroup interface */
31
32#ifdef CONFIG_CGROUP_BCACHE
33static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36{
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42}
43
44struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45{
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53}
54
55static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58{
59 char tmp[1024];
169ef1cf
KO
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
cafe5635
KO
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67}
68
69static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71{
169ef1cf 72 int v = bch_read_string_list(buf, bch_cache_modes);
cafe5635
KO
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78}
79
80static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81{
82 return cgroup_to_bcache(cgrp)->verify;
83}
84
85static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86{
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89}
90
91static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92{
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95}
96
97static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98{
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101}
102
103static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105{
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108}
109
110static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112{
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115}
116
117static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145};
146
147static void init_bch_cgroup(struct bch_cgroup *cg)
148{
149 cg->cache_mode = -1;
150}
151
152static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153{
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161}
162
163static void bcachecg_destroy(struct cgroup *cgroup)
164{
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 free_css_id(&bcache_subsys, &cg->css);
167 kfree(cg);
168}
169
170struct cgroup_subsys bcache_subsys = {
171 .create = bcachecg_create,
172 .destroy = bcachecg_destroy,
173 .subsys_id = bcache_subsys_id,
174 .name = "bcache",
175 .module = THIS_MODULE,
176};
177EXPORT_SYMBOL_GPL(bcache_subsys);
178#endif
179
180static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181{
182#ifdef CONFIG_CGROUP_BCACHE
183 int r = bch_bio_to_cgroup(bio)->cache_mode;
184 if (r >= 0)
185 return r;
186#endif
187 return BDEV_CACHE_MODE(&dc->sb);
188}
189
190static bool verify(struct cached_dev *dc, struct bio *bio)
191{
192#ifdef CONFIG_CGROUP_BCACHE
193 if (bch_bio_to_cgroup(bio)->verify)
194 return true;
195#endif
196 return dc->verify;
197}
198
199static void bio_csum(struct bio *bio, struct bkey *k)
200{
201 struct bio_vec *bv;
202 uint64_t csum = 0;
203 int i;
204
205 bio_for_each_segment(bv, bio, i) {
206 void *d = kmap(bv->bv_page) + bv->bv_offset;
169ef1cf 207 csum = bch_crc64_update(csum, d, bv->bv_len);
cafe5635
KO
208 kunmap(bv->bv_page);
209 }
210
211 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212}
213
214/* Insert data into cache */
215
a34a8bfd 216static void bch_data_insert_keys(struct closure *cl)
cafe5635 217{
220bb38c 218 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
c18536a7 219 atomic_t *journal_ref = NULL;
220bb38c 220 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
6054c6d4 221 int ret;
cafe5635 222
a34a8bfd
KO
223 /*
224 * If we're looping, might already be waiting on
225 * another journal write - can't wait on more than one journal write at
226 * a time
227 *
228 * XXX: this looks wrong
229 */
230#if 0
231 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
232 closure_sync(&s->cl);
233#endif
cafe5635 234
220bb38c
KO
235 if (!op->replace)
236 journal_ref = bch_journal(op->c, &op->insert_keys,
237 op->flush_journal ? cl : NULL);
cafe5635 238
220bb38c 239 ret = bch_btree_insert(op->c, &op->insert_keys,
6054c6d4
KO
240 journal_ref, replace_key);
241 if (ret == -ESRCH) {
220bb38c 242 op->replace_collision = true;
6054c6d4 243 } else if (ret) {
220bb38c
KO
244 op->error = -ENOMEM;
245 op->insert_data_done = true;
a34a8bfd 246 }
cafe5635 247
c18536a7
KO
248 if (journal_ref)
249 atomic_dec_bug(journal_ref);
cafe5635 250
220bb38c 251 if (!op->insert_data_done)
a34a8bfd 252 continue_at(cl, bch_data_insert_start, bcache_wq);
cafe5635 253
220bb38c 254 bch_keylist_free(&op->insert_keys);
a34a8bfd 255 closure_return(cl);
cafe5635
KO
256}
257
a34a8bfd
KO
258static void bch_data_invalidate(struct closure *cl)
259{
220bb38c
KO
260 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
261 struct bio *bio = op->bio;
a34a8bfd
KO
262
263 pr_debug("invalidating %i sectors from %llu",
4f024f37 264 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
a34a8bfd
KO
265
266 while (bio_sectors(bio)) {
81ab4190
KO
267 unsigned sectors = min(bio_sectors(bio),
268 1U << (KEY_SIZE_BITS - 1));
a34a8bfd 269
220bb38c 270 if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
a34a8bfd
KO
271 goto out;
272
4f024f37
KO
273 bio->bi_iter.bi_sector += sectors;
274 bio->bi_iter.bi_size -= sectors << 9;
a34a8bfd 275
220bb38c 276 bch_keylist_add(&op->insert_keys,
4f024f37 277 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
a34a8bfd
KO
278 }
279
220bb38c 280 op->insert_data_done = true;
a34a8bfd
KO
281 bio_put(bio);
282out:
283 continue_at(cl, bch_data_insert_keys, bcache_wq);
284}
285
286static void bch_data_insert_error(struct closure *cl)
cafe5635 287{
220bb38c 288 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635
KO
289
290 /*
291 * Our data write just errored, which means we've got a bunch of keys to
292 * insert that point to data that wasn't succesfully written.
293 *
294 * We don't have to insert those keys but we still have to invalidate
295 * that region of the cache - so, if we just strip off all the pointers
296 * from the keys we'll accomplish just that.
297 */
298
220bb38c 299 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
cafe5635 300
220bb38c 301 while (src != op->insert_keys.top) {
cafe5635
KO
302 struct bkey *n = bkey_next(src);
303
304 SET_KEY_PTRS(src, 0);
c2f95ae2 305 memmove(dst, src, bkey_bytes(src));
cafe5635
KO
306
307 dst = bkey_next(dst);
308 src = n;
309 }
310
220bb38c 311 op->insert_keys.top = dst;
cafe5635 312
a34a8bfd 313 bch_data_insert_keys(cl);
cafe5635
KO
314}
315
a34a8bfd 316static void bch_data_insert_endio(struct bio *bio, int error)
cafe5635
KO
317{
318 struct closure *cl = bio->bi_private;
220bb38c 319 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635
KO
320
321 if (error) {
322 /* TODO: We could try to recover from this. */
220bb38c
KO
323 if (op->writeback)
324 op->error = error;
325 else if (!op->replace)
a34a8bfd 326 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
cafe5635
KO
327 else
328 set_closure_fn(cl, NULL, NULL);
329 }
330
220bb38c 331 bch_bbio_endio(op->c, bio, error, "writing data to cache");
cafe5635
KO
332}
333
a34a8bfd 334static void bch_data_insert_start(struct closure *cl)
cafe5635 335{
220bb38c
KO
336 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
337 struct bio *bio = op->bio, *n;
cafe5635 338
220bb38c 339 if (op->bypass)
a34a8bfd 340 return bch_data_invalidate(cl);
cafe5635 341
220bb38c
KO
342 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
343 set_gc_sectors(op->c);
344 wake_up_gc(op->c);
cafe5635
KO
345 }
346
54d12f2b
KO
347 /*
348 * Journal writes are marked REQ_FLUSH; if the original write was a
349 * flush, it'll wait on the journal write.
350 */
351 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
352
cafe5635
KO
353 do {
354 unsigned i;
355 struct bkey *k;
220bb38c 356 struct bio_set *split = op->c->bio_split;
cafe5635
KO
357
358 /* 1 for the device pointer and 1 for the chksum */
220bb38c
KO
359 if (bch_keylist_realloc(&op->insert_keys,
360 1 + (op->csum ? 1 : 0),
361 op->c))
a34a8bfd 362 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635 363
220bb38c 364 k = op->insert_keys.top;
cafe5635 365 bkey_init(k);
220bb38c 366 SET_KEY_INODE(k, op->inode);
4f024f37 367 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
cafe5635 368
2599b53b
KO
369 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
370 op->write_point, op->write_prio,
371 op->writeback))
cafe5635
KO
372 goto err;
373
374 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
cafe5635 375
a34a8bfd 376 n->bi_end_io = bch_data_insert_endio;
cafe5635
KO
377 n->bi_private = cl;
378
220bb38c 379 if (op->writeback) {
cafe5635
KO
380 SET_KEY_DIRTY(k, true);
381
382 for (i = 0; i < KEY_PTRS(k); i++)
220bb38c 383 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
cafe5635
KO
384 GC_MARK_DIRTY);
385 }
386
220bb38c 387 SET_KEY_CSUM(k, op->csum);
cafe5635
KO
388 if (KEY_CSUM(k))
389 bio_csum(n, k);
390
c37511b8 391 trace_bcache_cache_insert(k);
220bb38c 392 bch_keylist_push(&op->insert_keys);
cafe5635 393
cafe5635 394 n->bi_rw |= REQ_WRITE;
220bb38c 395 bch_submit_bbio(n, op->c, k, 0);
cafe5635
KO
396 } while (n != bio);
397
220bb38c 398 op->insert_data_done = true;
a34a8bfd 399 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
400err:
401 /* bch_alloc_sectors() blocks if s->writeback = true */
220bb38c 402 BUG_ON(op->writeback);
cafe5635
KO
403
404 /*
405 * But if it's not a writeback write we'd rather just bail out if
406 * there aren't any buckets ready to write to - it might take awhile and
407 * we might be starving btree writes for gc or something.
408 */
409
220bb38c 410 if (!op->replace) {
cafe5635
KO
411 /*
412 * Writethrough write: We can't complete the write until we've
413 * updated the index. But we don't want to delay the write while
414 * we wait for buckets to be freed up, so just invalidate the
415 * rest of the write.
416 */
220bb38c 417 op->bypass = true;
a34a8bfd 418 return bch_data_invalidate(cl);
cafe5635
KO
419 } else {
420 /*
421 * From a cache miss, we can just insert the keys for the data
422 * we have written or bail out if we didn't do anything.
423 */
220bb38c 424 op->insert_data_done = true;
cafe5635
KO
425 bio_put(bio);
426
220bb38c 427 if (!bch_keylist_empty(&op->insert_keys))
a34a8bfd 428 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
429 else
430 closure_return(cl);
431 }
432}
433
434/**
a34a8bfd 435 * bch_data_insert - stick some data in the cache
cafe5635
KO
436 *
437 * This is the starting point for any data to end up in a cache device; it could
438 * be from a normal write, or a writeback write, or a write to a flash only
439 * volume - it's also used by the moving garbage collector to compact data in
440 * mostly empty buckets.
441 *
442 * It first writes the data to the cache, creating a list of keys to be inserted
443 * (if the data had to be fragmented there will be multiple keys); after the
444 * data is written it calls bch_journal, and after the keys have been added to
445 * the next journal write they're inserted into the btree.
446 *
c18536a7 447 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
cafe5635
KO
448 * and op->inode is used for the key inode.
449 *
c18536a7
KO
450 * If s->bypass is true, instead of inserting the data it invalidates the
451 * region of the cache represented by s->cache_bio and op->inode.
cafe5635 452 */
a34a8bfd 453void bch_data_insert(struct closure *cl)
cafe5635 454{
220bb38c 455 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 456
220bb38c
KO
457 trace_bcache_write(op->bio, op->writeback, op->bypass);
458
459 bch_keylist_init(&op->insert_keys);
460 bio_get(op->bio);
a34a8bfd 461 bch_data_insert_start(cl);
cafe5635
KO
462}
463
220bb38c
KO
464/* Congested? */
465
466unsigned bch_get_congested(struct cache_set *c)
467{
468 int i;
469 long rand;
470
471 if (!c->congested_read_threshold_us &&
472 !c->congested_write_threshold_us)
473 return 0;
474
475 i = (local_clock_us() - c->congested_last_us) / 1024;
476 if (i < 0)
477 return 0;
478
479 i += atomic_read(&c->congested);
480 if (i >= 0)
481 return 0;
482
483 i += CONGESTED_MAX;
484
485 if (i > 0)
486 i = fract_exp_two(i, 6);
487
488 rand = get_random_int();
489 i -= bitmap_weight(&rand, BITS_PER_LONG);
490
491 return i > 0 ? i : 1;
492}
493
494static void add_sequential(struct task_struct *t)
495{
496 ewma_add(t->sequential_io_avg,
497 t->sequential_io, 8, 0);
498
499 t->sequential_io = 0;
500}
501
502static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
503{
504 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
505}
506
507static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
508{
509 struct cache_set *c = dc->disk.c;
510 unsigned mode = cache_mode(dc, bio);
511 unsigned sectors, congested = bch_get_congested(c);
512 struct task_struct *task = current;
8aee1220 513 struct io *i;
220bb38c 514
c4d951dd 515 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
220bb38c
KO
516 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
517 (bio->bi_rw & REQ_DISCARD))
518 goto skip;
519
520 if (mode == CACHE_MODE_NONE ||
521 (mode == CACHE_MODE_WRITEAROUND &&
522 (bio->bi_rw & REQ_WRITE)))
523 goto skip;
524
4f024f37 525 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
220bb38c
KO
526 bio_sectors(bio) & (c->sb.block_size - 1)) {
527 pr_debug("skipping unaligned io");
528 goto skip;
529 }
530
5ceaaad7
KO
531 if (bypass_torture_test(dc)) {
532 if ((get_random_int() & 3) == 3)
533 goto skip;
534 else
535 goto rescale;
536 }
537
220bb38c
KO
538 if (!congested && !dc->sequential_cutoff)
539 goto rescale;
540
541 if (!congested &&
542 mode == CACHE_MODE_WRITEBACK &&
543 (bio->bi_rw & REQ_WRITE) &&
544 (bio->bi_rw & REQ_SYNC))
545 goto rescale;
546
8aee1220 547 spin_lock(&dc->io_lock);
220bb38c 548
4f024f37
KO
549 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
550 if (i->last == bio->bi_iter.bi_sector &&
8aee1220
KO
551 time_before(jiffies, i->jiffies))
552 goto found;
220bb38c 553
8aee1220 554 i = list_first_entry(&dc->io_lru, struct io, lru);
220bb38c 555
8aee1220
KO
556 add_sequential(task);
557 i->sequential = 0;
220bb38c 558found:
4f024f37
KO
559 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
560 i->sequential += bio->bi_iter.bi_size;
220bb38c 561
8aee1220
KO
562 i->last = bio_end_sector(bio);
563 i->jiffies = jiffies + msecs_to_jiffies(5000);
564 task->sequential_io = i->sequential;
220bb38c 565
8aee1220
KO
566 hlist_del(&i->hash);
567 hlist_add_head(&i->hash, iohash(dc, i->last));
568 list_move_tail(&i->lru, &dc->io_lru);
220bb38c 569
8aee1220 570 spin_unlock(&dc->io_lock);
220bb38c
KO
571
572 sectors = max(task->sequential_io,
573 task->sequential_io_avg) >> 9;
574
575 if (dc->sequential_cutoff &&
576 sectors >= dc->sequential_cutoff >> 9) {
577 trace_bcache_bypass_sequential(bio);
578 goto skip;
579 }
580
581 if (congested && sectors >= congested) {
582 trace_bcache_bypass_congested(bio);
583 goto skip;
584 }
585
586rescale:
587 bch_rescale_priorities(c, bio_sectors(bio));
588 return false;
589skip:
590 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
591 return true;
592}
593
2c1953e2 594/* Cache lookup */
cafe5635 595
220bb38c
KO
596struct search {
597 /* Stack frame for bio_complete */
598 struct closure cl;
599
600 struct bcache_device *d;
601
602 struct bbio bio;
603 struct bio *orig_bio;
604 struct bio *cache_miss;
605
606 unsigned insert_bio_sectors;
607
608 unsigned recoverable:1;
220bb38c 609 unsigned write:1;
5ceaaad7 610 unsigned read_dirty_data:1;
220bb38c
KO
611
612 unsigned long start_time;
613
614 struct btree_op op;
615 struct data_insert_op iop;
ed9c47be 616 struct bio_vec bv[BIO_MAX_PAGES];
220bb38c
KO
617};
618
2c1953e2 619static void bch_cache_read_endio(struct bio *bio, int error)
cafe5635
KO
620{
621 struct bbio *b = container_of(bio, struct bbio, bio);
622 struct closure *cl = bio->bi_private;
623 struct search *s = container_of(cl, struct search, cl);
624
625 /*
626 * If the bucket was reused while our bio was in flight, we might have
627 * read the wrong data. Set s->error but not error so it doesn't get
628 * counted against the cache device, but we'll still reread the data
629 * from the backing device.
630 */
631
632 if (error)
220bb38c
KO
633 s->iop.error = error;
634 else if (ptr_stale(s->iop.c, &b->key, 0)) {
635 atomic_long_inc(&s->iop.c->cache_read_races);
636 s->iop.error = -EINTR;
cafe5635
KO
637 }
638
220bb38c 639 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
cafe5635
KO
640}
641
2c1953e2
KO
642/*
643 * Read from a single key, handling the initial cache miss if the key starts in
644 * the middle of the bio
645 */
cc231966 646static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
2c1953e2
KO
647{
648 struct search *s = container_of(op, struct search, op);
cc231966
KO
649 struct bio *n, *bio = &s->bio.bio;
650 struct bkey *bio_key;
2c1953e2 651 unsigned ptr;
2c1953e2 652
4f024f37 653 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
cc231966
KO
654 return MAP_CONTINUE;
655
220bb38c 656 if (KEY_INODE(k) != s->iop.inode ||
4f024f37 657 KEY_START(k) > bio->bi_iter.bi_sector) {
cc231966 658 unsigned bio_sectors = bio_sectors(bio);
220bb38c 659 unsigned sectors = KEY_INODE(k) == s->iop.inode
cc231966 660 ? min_t(uint64_t, INT_MAX,
4f024f37 661 KEY_START(k) - bio->bi_iter.bi_sector)
cc231966
KO
662 : INT_MAX;
663
664 int ret = s->d->cache_miss(b, s, bio, sectors);
665 if (ret != MAP_CONTINUE)
666 return ret;
667
668 /* if this was a complete miss we shouldn't get here */
669 BUG_ON(bio_sectors <= sectors);
670 }
671
672 if (!KEY_SIZE(k))
673 return MAP_CONTINUE;
2c1953e2
KO
674
675 /* XXX: figure out best pointer - for multiple cache devices */
676 ptr = 0;
677
678 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
679
5ceaaad7
KO
680 if (KEY_DIRTY(k))
681 s->read_dirty_data = true;
682
cc231966 683 n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
4f024f37 684 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
cc231966 685 GFP_NOIO, s->d->bio_split);
2c1953e2 686
cc231966
KO
687 bio_key = &container_of(n, struct bbio, bio)->key;
688 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2c1953e2 689
4f024f37 690 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
220bb38c 691 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
2c1953e2 692
cc231966
KO
693 n->bi_end_io = bch_cache_read_endio;
694 n->bi_private = &s->cl;
2c1953e2 695
cc231966
KO
696 /*
697 * The bucket we're reading from might be reused while our bio
698 * is in flight, and we could then end up reading the wrong
699 * data.
700 *
701 * We guard against this by checking (in cache_read_endio()) if
702 * the pointer is stale again; if so, we treat it as an error
703 * and reread from the backing device (but we don't pass that
704 * error up anywhere).
705 */
2c1953e2 706
cc231966
KO
707 __bch_submit_bbio(n, b->c);
708 return n == bio ? MAP_DONE : MAP_CONTINUE;
2c1953e2
KO
709}
710
711static void cache_lookup(struct closure *cl)
712{
220bb38c 713 struct search *s = container_of(cl, struct search, iop.cl);
2c1953e2
KO
714 struct bio *bio = &s->bio.bio;
715
220bb38c 716 int ret = bch_btree_map_keys(&s->op, s->iop.c,
4f024f37 717 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
cc231966 718 cache_lookup_fn, MAP_END_KEY);
2c1953e2
KO
719 if (ret == -EAGAIN)
720 continue_at(cl, cache_lookup, bcache_wq);
721
722 closure_return(cl);
723}
724
725/* Common code for the make_request functions */
726
727static void request_endio(struct bio *bio, int error)
728{
729 struct closure *cl = bio->bi_private;
730
731 if (error) {
732 struct search *s = container_of(cl, struct search, cl);
220bb38c 733 s->iop.error = error;
2c1953e2
KO
734 /* Only cache read errors are recoverable */
735 s->recoverable = false;
736 }
737
738 bio_put(bio);
739 closure_put(cl);
740}
741
cafe5635
KO
742static void bio_complete(struct search *s)
743{
744 if (s->orig_bio) {
745 int cpu, rw = bio_data_dir(s->orig_bio);
746 unsigned long duration = jiffies - s->start_time;
747
748 cpu = part_stat_lock();
749 part_round_stats(cpu, &s->d->disk->part0);
750 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
751 part_stat_unlock();
752
220bb38c
KO
753 trace_bcache_request_end(s->d, s->orig_bio);
754 bio_endio(s->orig_bio, s->iop.error);
cafe5635
KO
755 s->orig_bio = NULL;
756 }
757}
758
759static void do_bio_hook(struct search *s)
760{
761 struct bio *bio = &s->bio.bio;
cafe5635 762
ed9c47be
KO
763 bio_init(bio);
764 bio->bi_io_vec = s->bv;
765 bio->bi_max_vecs = BIO_MAX_PAGES;
766 __bio_clone(bio, s->orig_bio);
cafe5635
KO
767 bio->bi_end_io = request_endio;
768 bio->bi_private = &s->cl;
ed9c47be 769
cafe5635
KO
770 atomic_set(&bio->bi_cnt, 3);
771}
772
773static void search_free(struct closure *cl)
774{
775 struct search *s = container_of(cl, struct search, cl);
776 bio_complete(s);
777
220bb38c
KO
778 if (s->iop.bio)
779 bio_put(s->iop.bio);
cafe5635 780
cafe5635
KO
781 closure_debug_destroy(cl);
782 mempool_free(s, s->d->c->search);
783}
784
785static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
786{
0b93207a 787 struct search *s;
0b93207a
KO
788
789 s = mempool_alloc(d->c->search, GFP_NOIO);
220bb38c 790 memset(s, 0, offsetof(struct search, iop.insert_keys));
cafe5635
KO
791
792 __closure_init(&s->cl, NULL);
793
220bb38c
KO
794 s->iop.inode = d->id;
795 s->iop.c = d->c;
cafe5635
KO
796 s->d = d;
797 s->op.lock = -1;
2599b53b 798 s->iop.write_point = hash_long((unsigned long) current, 16);
cafe5635
KO
799 s->orig_bio = bio;
800 s->write = (bio->bi_rw & REQ_WRITE) != 0;
220bb38c 801 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
cafe5635
KO
802 s->recoverable = 1;
803 s->start_time = jiffies;
804 do_bio_hook(s);
805
cafe5635
KO
806 return s;
807}
808
cafe5635
KO
809/* Cached devices */
810
811static void cached_dev_bio_complete(struct closure *cl)
812{
813 struct search *s = container_of(cl, struct search, cl);
814 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
815
816 search_free(cl);
817 cached_dev_put(dc);
818}
819
820/* Process reads */
821
cdd972b1 822static void cached_dev_cache_miss_done(struct closure *cl)
cafe5635
KO
823{
824 struct search *s = container_of(cl, struct search, cl);
825
220bb38c
KO
826 if (s->iop.replace_collision)
827 bch_mark_cache_miss_collision(s->iop.c, s->d);
cafe5635 828
220bb38c 829 if (s->iop.bio) {
cafe5635
KO
830 int i;
831 struct bio_vec *bv;
832
220bb38c 833 bio_for_each_segment_all(bv, s->iop.bio, i)
cafe5635
KO
834 __free_page(bv->bv_page);
835 }
836
837 cached_dev_bio_complete(cl);
838}
839
cdd972b1 840static void cached_dev_read_error(struct closure *cl)
cafe5635
KO
841{
842 struct search *s = container_of(cl, struct search, cl);
cdd972b1 843 struct bio *bio = &s->bio.bio;
cafe5635
KO
844
845 if (s->recoverable) {
c37511b8
KO
846 /* Retry from the backing device: */
847 trace_bcache_read_retry(s->orig_bio);
cafe5635 848
220bb38c 849 s->iop.error = 0;
cafe5635 850 do_bio_hook(s);
cafe5635
KO
851
852 /* XXX: invalidate cache */
853
cdd972b1 854 closure_bio_submit(bio, cl, s->d);
cafe5635
KO
855 }
856
cdd972b1 857 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
858}
859
cdd972b1 860static void cached_dev_read_done(struct closure *cl)
cafe5635
KO
861{
862 struct search *s = container_of(cl, struct search, cl);
863 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
864
865 /*
cdd972b1
KO
866 * We had a cache miss; cache_bio now contains data ready to be inserted
867 * into the cache.
cafe5635
KO
868 *
869 * First, we copy the data we just read from cache_bio's bounce buffers
870 * to the buffers the original bio pointed to:
871 */
872
220bb38c
KO
873 if (s->iop.bio) {
874 bio_reset(s->iop.bio);
4f024f37 875 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
220bb38c 876 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
4f024f37 877 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
220bb38c 878 bch_bio_map(s->iop.bio, NULL);
cafe5635 879
220bb38c 880 bio_copy_data(s->cache_miss, s->iop.bio);
cafe5635
KO
881
882 bio_put(s->cache_miss);
883 s->cache_miss = NULL;
884 }
885
ed9c47be 886 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
220bb38c 887 bch_data_verify(dc, s->orig_bio);
cafe5635
KO
888
889 bio_complete(s);
890
220bb38c
KO
891 if (s->iop.bio &&
892 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
893 BUG_ON(!s->iop.replace);
894 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635
KO
895 }
896
cdd972b1 897 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
898}
899
cdd972b1 900static void cached_dev_read_done_bh(struct closure *cl)
cafe5635
KO
901{
902 struct search *s = container_of(cl, struct search, cl);
903 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
904
220bb38c
KO
905 bch_mark_cache_accounting(s->iop.c, s->d,
906 !s->cache_miss, s->iop.bypass);
907 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
cafe5635 908
220bb38c 909 if (s->iop.error)
cdd972b1 910 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
220bb38c 911 else if (s->iop.bio || verify(dc, &s->bio.bio))
cdd972b1 912 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
cafe5635 913 else
cdd972b1 914 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
cafe5635
KO
915}
916
917static int cached_dev_cache_miss(struct btree *b, struct search *s,
918 struct bio *bio, unsigned sectors)
919{
2c1953e2 920 int ret = MAP_CONTINUE;
e7c590eb 921 unsigned reada = 0;
cafe5635 922 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
cdd972b1 923 struct bio *miss, *cache_bio;
cafe5635 924
220bb38c 925 if (s->cache_miss || s->iop.bypass) {
e7c590eb 926 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2 927 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
e7c590eb
KO
928 goto out_submit;
929 }
cafe5635 930
e7c590eb
KO
931 if (!(bio->bi_rw & REQ_RAHEAD) &&
932 !(bio->bi_rw & REQ_META) &&
220bb38c 933 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
e7c590eb
KO
934 reada = min_t(sector_t, dc->readahead >> 9,
935 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
cafe5635 936
220bb38c 937 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
cafe5635 938
220bb38c 939 s->iop.replace_key = KEY(s->iop.inode,
4f024f37 940 bio->bi_iter.bi_sector + s->insert_bio_sectors,
220bb38c 941 s->insert_bio_sectors);
e7c590eb 942
220bb38c 943 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
e7c590eb
KO
944 if (ret)
945 return ret;
946
220bb38c 947 s->iop.replace = true;
1b207d80 948
e7c590eb 949 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2
KO
950
951 /* btree_search_recurse()'s btree iterator is no good anymore */
952 ret = miss == bio ? MAP_DONE : -EINTR;
cafe5635 953
cdd972b1 954 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
220bb38c 955 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
cafe5635 956 dc->disk.bio_split);
cdd972b1 957 if (!cache_bio)
cafe5635
KO
958 goto out_submit;
959
4f024f37
KO
960 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
961 cache_bio->bi_bdev = miss->bi_bdev;
962 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
cafe5635 963
cdd972b1
KO
964 cache_bio->bi_end_io = request_endio;
965 cache_bio->bi_private = &s->cl;
cafe5635 966
cdd972b1
KO
967 bch_bio_map(cache_bio, NULL);
968 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
969 goto out_put;
970
220bb38c
KO
971 if (reada)
972 bch_mark_cache_readahead(s->iop.c, s->d);
973
cdd972b1 974 s->cache_miss = miss;
220bb38c 975 s->iop.bio = cache_bio;
cdd972b1
KO
976 bio_get(cache_bio);
977 closure_bio_submit(cache_bio, &s->cl, s->d);
cafe5635
KO
978
979 return ret;
980out_put:
cdd972b1 981 bio_put(cache_bio);
cafe5635 982out_submit:
e7c590eb
KO
983 miss->bi_end_io = request_endio;
984 miss->bi_private = &s->cl;
cafe5635
KO
985 closure_bio_submit(miss, &s->cl, s->d);
986 return ret;
987}
988
cdd972b1 989static void cached_dev_read(struct cached_dev *dc, struct search *s)
cafe5635
KO
990{
991 struct closure *cl = &s->cl;
992
220bb38c 993 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cdd972b1 994 continue_at(cl, cached_dev_read_done_bh, NULL);
cafe5635
KO
995}
996
997/* Process writes */
998
999static void cached_dev_write_complete(struct closure *cl)
1000{
1001 struct search *s = container_of(cl, struct search, cl);
1002 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1003
1004 up_read_non_owner(&dc->writeback_lock);
1005 cached_dev_bio_complete(cl);
1006}
1007
cdd972b1 1008static void cached_dev_write(struct cached_dev *dc, struct search *s)
cafe5635
KO
1009{
1010 struct closure *cl = &s->cl;
1011 struct bio *bio = &s->bio.bio;
4f024f37 1012 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
84f0db03 1013 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
cafe5635 1014
220bb38c 1015 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
cafe5635 1016
cafe5635 1017 down_read_non_owner(&dc->writeback_lock);
cafe5635 1018 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
84f0db03
KO
1019 /*
1020 * We overlap with some dirty data undergoing background
1021 * writeback, force this write to writeback
1022 */
220bb38c
KO
1023 s->iop.bypass = false;
1024 s->iop.writeback = true;
cafe5635
KO
1025 }
1026
84f0db03
KO
1027 /*
1028 * Discards aren't _required_ to do anything, so skipping if
1029 * check_overlapping returned true is ok
1030 *
1031 * But check_overlapping drops dirty keys for which io hasn't started,
1032 * so we still want to call it.
1033 */
cafe5635 1034 if (bio->bi_rw & REQ_DISCARD)
220bb38c 1035 s->iop.bypass = true;
cafe5635 1036
72c27061
KO
1037 if (should_writeback(dc, s->orig_bio,
1038 cache_mode(dc, bio),
220bb38c
KO
1039 s->iop.bypass)) {
1040 s->iop.bypass = false;
1041 s->iop.writeback = true;
72c27061
KO
1042 }
1043
220bb38c
KO
1044 if (s->iop.bypass) {
1045 s->iop.bio = s->orig_bio;
1046 bio_get(s->iop.bio);
cafe5635 1047
84f0db03
KO
1048 if (!(bio->bi_rw & REQ_DISCARD) ||
1049 blk_queue_discard(bdev_get_queue(dc->bdev)))
1050 closure_bio_submit(bio, cl, s->d);
220bb38c 1051 } else if (s->iop.writeback) {
279afbad 1052 bch_writeback_add(dc);
220bb38c 1053 s->iop.bio = bio;
e49c7c37 1054
c0f04d88 1055 if (bio->bi_rw & REQ_FLUSH) {
e49c7c37 1056 /* Also need to send a flush to the backing device */
d4eddd42 1057 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
c0f04d88 1058 dc->disk.bio_split);
e49c7c37 1059
c0f04d88
KO
1060 flush->bi_rw = WRITE_FLUSH;
1061 flush->bi_bdev = bio->bi_bdev;
1062 flush->bi_end_io = request_endio;
1063 flush->bi_private = cl;
1064
1065 closure_bio_submit(flush, cl, s->d);
e49c7c37 1066 }
84f0db03 1067 } else {
220bb38c
KO
1068 s->iop.bio = bio_clone_bioset(bio, GFP_NOIO,
1069 dc->disk.bio_split);
84f0db03
KO
1070
1071 closure_bio_submit(bio, cl, s->d);
cafe5635 1072 }
84f0db03 1073
220bb38c 1074 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 1075 continue_at(cl, cached_dev_write_complete, NULL);
cafe5635
KO
1076}
1077
a34a8bfd 1078static void cached_dev_nodata(struct closure *cl)
cafe5635 1079{
a34a8bfd 1080 struct search *s = container_of(cl, struct search, cl);
cafe5635
KO
1081 struct bio *bio = &s->bio.bio;
1082
220bb38c
KO
1083 if (s->iop.flush_journal)
1084 bch_journal_meta(s->iop.c, cl);
cafe5635 1085
84f0db03 1086 /* If it's a flush, we send the flush to the backing device too */
cafe5635
KO
1087 closure_bio_submit(bio, cl, s->d);
1088
1089 continue_at(cl, cached_dev_bio_complete, NULL);
1090}
1091
1092/* Cached devices - read & write stuff */
1093
cafe5635
KO
1094static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1095{
1096 struct search *s;
1097 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1098 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1099 int cpu, rw = bio_data_dir(bio);
1100
1101 cpu = part_stat_lock();
1102 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1103 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1104 part_stat_unlock();
1105
1106 bio->bi_bdev = dc->bdev;
4f024f37 1107 bio->bi_iter.bi_sector += dc->sb.data_offset;
cafe5635
KO
1108
1109 if (cached_dev_get(dc)) {
1110 s = search_alloc(bio, d);
220bb38c 1111 trace_bcache_request_start(s->d, bio);
cafe5635 1112
4f024f37 1113 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
1114 /*
1115 * can't call bch_journal_meta from under
1116 * generic_make_request
1117 */
1118 continue_at_nobarrier(&s->cl,
1119 cached_dev_nodata,
1120 bcache_wq);
1121 } else {
220bb38c 1122 s->iop.bypass = check_should_bypass(dc, bio);
84f0db03
KO
1123
1124 if (rw)
cdd972b1 1125 cached_dev_write(dc, s);
84f0db03 1126 else
cdd972b1 1127 cached_dev_read(dc, s);
84f0db03 1128 }
cafe5635
KO
1129 } else {
1130 if ((bio->bi_rw & REQ_DISCARD) &&
1131 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1132 bio_endio(bio, 0);
1133 else
1134 bch_generic_make_request(bio, &d->bio_split_hook);
1135 }
1136}
1137
1138static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1139 unsigned int cmd, unsigned long arg)
1140{
1141 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1142 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1143}
1144
1145static int cached_dev_congested(void *data, int bits)
1146{
1147 struct bcache_device *d = data;
1148 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1149 struct request_queue *q = bdev_get_queue(dc->bdev);
1150 int ret = 0;
1151
1152 if (bdi_congested(&q->backing_dev_info, bits))
1153 return 1;
1154
1155 if (cached_dev_get(dc)) {
1156 unsigned i;
1157 struct cache *ca;
1158
1159 for_each_cache(ca, d->c, i) {
1160 q = bdev_get_queue(ca->bdev);
1161 ret |= bdi_congested(&q->backing_dev_info, bits);
1162 }
1163
1164 cached_dev_put(dc);
1165 }
1166
1167 return ret;
1168}
1169
1170void bch_cached_dev_request_init(struct cached_dev *dc)
1171{
1172 struct gendisk *g = dc->disk.disk;
1173
1174 g->queue->make_request_fn = cached_dev_make_request;
1175 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1176 dc->disk.cache_miss = cached_dev_cache_miss;
1177 dc->disk.ioctl = cached_dev_ioctl;
1178}
1179
1180/* Flash backed devices */
1181
1182static int flash_dev_cache_miss(struct btree *b, struct search *s,
1183 struct bio *bio, unsigned sectors)
1184{
8e51e414
KO
1185 struct bio_vec *bv;
1186 int i;
1187
cafe5635
KO
1188 /* Zero fill bio */
1189
8e51e414 1190 bio_for_each_segment(bv, bio, i) {
cafe5635
KO
1191 unsigned j = min(bv->bv_len >> 9, sectors);
1192
1193 void *p = kmap(bv->bv_page);
1194 memset(p + bv->bv_offset, 0, j << 9);
1195 kunmap(bv->bv_page);
1196
8e51e414 1197 sectors -= j;
cafe5635
KO
1198 }
1199
4f024f37 1200 bio_advance(bio, min(sectors << 9, bio->bi_iter.bi_size));
8e51e414 1201
4f024f37 1202 if (!bio->bi_iter.bi_size)
2c1953e2 1203 return MAP_DONE;
cafe5635 1204
2c1953e2 1205 return MAP_CONTINUE;
cafe5635
KO
1206}
1207
a34a8bfd
KO
1208static void flash_dev_nodata(struct closure *cl)
1209{
1210 struct search *s = container_of(cl, struct search, cl);
1211
220bb38c
KO
1212 if (s->iop.flush_journal)
1213 bch_journal_meta(s->iop.c, cl);
a34a8bfd
KO
1214
1215 continue_at(cl, search_free, NULL);
1216}
1217
cafe5635
KO
1218static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1219{
1220 struct search *s;
1221 struct closure *cl;
1222 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1223 int cpu, rw = bio_data_dir(bio);
1224
1225 cpu = part_stat_lock();
1226 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1227 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1228 part_stat_unlock();
1229
1230 s = search_alloc(bio, d);
1231 cl = &s->cl;
1232 bio = &s->bio.bio;
1233
220bb38c 1234 trace_bcache_request_start(s->d, bio);
cafe5635 1235
4f024f37 1236 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
1237 /*
1238 * can't call bch_journal_meta from under
1239 * generic_make_request
1240 */
1241 continue_at_nobarrier(&s->cl,
1242 flash_dev_nodata,
1243 bcache_wq);
84f0db03 1244 } else if (rw) {
220bb38c 1245 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
4f024f37 1246 &KEY(d->id, bio->bi_iter.bi_sector, 0),
8e51e414 1247 &KEY(d->id, bio_end_sector(bio), 0));
cafe5635 1248
220bb38c
KO
1249 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1250 s->iop.writeback = true;
1251 s->iop.bio = bio;
cafe5635 1252
220bb38c 1253 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 1254 } else {
220bb38c 1255 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cafe5635
KO
1256 }
1257
1258 continue_at(cl, search_free, NULL);
1259}
1260
1261static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1262 unsigned int cmd, unsigned long arg)
1263{
1264 return -ENOTTY;
1265}
1266
1267static int flash_dev_congested(void *data, int bits)
1268{
1269 struct bcache_device *d = data;
1270 struct request_queue *q;
1271 struct cache *ca;
1272 unsigned i;
1273 int ret = 0;
1274
1275 for_each_cache(ca, d->c, i) {
1276 q = bdev_get_queue(ca->bdev);
1277 ret |= bdi_congested(&q->backing_dev_info, bits);
1278 }
1279
1280 return ret;
1281}
1282
1283void bch_flash_dev_request_init(struct bcache_device *d)
1284{
1285 struct gendisk *g = d->disk;
1286
1287 g->queue->make_request_fn = flash_dev_make_request;
1288 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1289 d->cache_miss = flash_dev_cache_miss;
1290 d->ioctl = flash_dev_ioctl;
1291}
1292
1293void bch_request_exit(void)
1294{
1295#ifdef CONFIG_CGROUP_BCACHE
1296 cgroup_unload_subsys(&bcache_subsys);
1297#endif
1298 if (bch_search_cache)
1299 kmem_cache_destroy(bch_search_cache);
1300}
1301
1302int __init bch_request_init(void)
1303{
1304 bch_search_cache = KMEM_CACHE(search, 0);
1305 if (!bch_search_cache)
1306 return -ENOMEM;
1307
1308#ifdef CONFIG_CGROUP_BCACHE
1309 cgroup_load_subsys(&bcache_subsys);
1310 init_bch_cgroup(&bcache_default_cgroup);
1311
1312 cgroup_add_cftypes(&bcache_subsys, bch_files);
1313#endif
1314 return 0;
1315}