]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/bcache/request.c
bcache: Refactor journalling flow control
[mirror_ubuntu-artful-kernel.git] / drivers / md / bcache / request.c
CommitLineData
cafe5635
KO
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
279afbad 13#include "writeback.h"
cafe5635
KO
14
15#include <linux/cgroup.h>
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include "blk-cgroup.h"
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
cafe5635
KO
25
26struct kmem_cache *bch_search_cache;
27
a34a8bfd
KO
28static void bch_data_insert_start(struct closure *);
29
cafe5635
KO
30/* Cgroup interface */
31
32#ifdef CONFIG_CGROUP_BCACHE
33static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36{
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42}
43
44struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45{
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53}
54
55static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58{
59 char tmp[1024];
169ef1cf
KO
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
cafe5635
KO
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67}
68
69static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71{
169ef1cf 72 int v = bch_read_string_list(buf, bch_cache_modes);
cafe5635
KO
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78}
79
80static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81{
82 return cgroup_to_bcache(cgrp)->verify;
83}
84
85static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86{
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89}
90
91static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92{
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95}
96
97static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98{
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101}
102
103static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105{
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108}
109
110static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112{
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115}
116
117static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145};
146
147static void init_bch_cgroup(struct bch_cgroup *cg)
148{
149 cg->cache_mode = -1;
150}
151
152static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153{
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161}
162
163static void bcachecg_destroy(struct cgroup *cgroup)
164{
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 free_css_id(&bcache_subsys, &cg->css);
167 kfree(cg);
168}
169
170struct cgroup_subsys bcache_subsys = {
171 .create = bcachecg_create,
172 .destroy = bcachecg_destroy,
173 .subsys_id = bcache_subsys_id,
174 .name = "bcache",
175 .module = THIS_MODULE,
176};
177EXPORT_SYMBOL_GPL(bcache_subsys);
178#endif
179
180static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181{
182#ifdef CONFIG_CGROUP_BCACHE
183 int r = bch_bio_to_cgroup(bio)->cache_mode;
184 if (r >= 0)
185 return r;
186#endif
187 return BDEV_CACHE_MODE(&dc->sb);
188}
189
190static bool verify(struct cached_dev *dc, struct bio *bio)
191{
192#ifdef CONFIG_CGROUP_BCACHE
193 if (bch_bio_to_cgroup(bio)->verify)
194 return true;
195#endif
196 return dc->verify;
197}
198
199static void bio_csum(struct bio *bio, struct bkey *k)
200{
201 struct bio_vec *bv;
202 uint64_t csum = 0;
203 int i;
204
205 bio_for_each_segment(bv, bio, i) {
206 void *d = kmap(bv->bv_page) + bv->bv_offset;
169ef1cf 207 csum = bch_crc64_update(csum, d, bv->bv_len);
cafe5635
KO
208 kunmap(bv->bv_page);
209 }
210
211 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212}
213
214/* Insert data into cache */
215
a34a8bfd 216static void bch_data_insert_keys(struct closure *cl)
cafe5635
KO
217{
218 struct btree_op *op = container_of(cl, struct btree_op, cl);
a34a8bfd 219 struct search *s = container_of(op, struct search, op);
cafe5635 220
a34a8bfd
KO
221 /*
222 * If we're looping, might already be waiting on
223 * another journal write - can't wait on more than one journal write at
224 * a time
225 *
226 * XXX: this looks wrong
227 */
228#if 0
229 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
230 closure_sync(&s->cl);
231#endif
cafe5635 232
a34a8bfd
KO
233 if (s->write)
234 op->journal = bch_journal(op->c, &op->keys,
235 op->flush_journal
236 ? &s->cl : NULL);
cafe5635 237
a34a8bfd
KO
238 if (bch_btree_insert(op, op->c, &op->keys)) {
239 s->error = -ENOMEM;
240 op->insert_data_done = true;
241 }
cafe5635 242
a34a8bfd
KO
243 if (op->journal)
244 atomic_dec_bug(op->journal);
245 op->journal = NULL;
cafe5635 246
a34a8bfd
KO
247 if (!op->insert_data_done)
248 continue_at(cl, bch_data_insert_start, bcache_wq);
cafe5635 249
a34a8bfd
KO
250 bch_keylist_free(&op->keys);
251 closure_return(cl);
cafe5635
KO
252}
253
254struct open_bucket {
255 struct list_head list;
256 struct task_struct *last;
257 unsigned sectors_free;
258 BKEY_PADDED(key);
259};
260
261void bch_open_buckets_free(struct cache_set *c)
262{
263 struct open_bucket *b;
264
265 while (!list_empty(&c->data_buckets)) {
266 b = list_first_entry(&c->data_buckets,
267 struct open_bucket, list);
268 list_del(&b->list);
269 kfree(b);
270 }
271}
272
273int bch_open_buckets_alloc(struct cache_set *c)
274{
275 int i;
276
277 spin_lock_init(&c->data_bucket_lock);
278
279 for (i = 0; i < 6; i++) {
280 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
281 if (!b)
282 return -ENOMEM;
283
284 list_add(&b->list, &c->data_buckets);
285 }
286
287 return 0;
288}
289
290/*
291 * We keep multiple buckets open for writes, and try to segregate different
292 * write streams for better cache utilization: first we look for a bucket where
293 * the last write to it was sequential with the current write, and failing that
294 * we look for a bucket that was last used by the same task.
295 *
296 * The ideas is if you've got multiple tasks pulling data into the cache at the
297 * same time, you'll get better cache utilization if you try to segregate their
298 * data and preserve locality.
299 *
300 * For example, say you've starting Firefox at the same time you're copying a
301 * bunch of files. Firefox will likely end up being fairly hot and stay in the
302 * cache awhile, but the data you copied might not be; if you wrote all that
303 * data to the same buckets it'd get invalidated at the same time.
304 *
305 * Both of those tasks will be doing fairly random IO so we can't rely on
306 * detecting sequential IO to segregate their data, but going off of the task
307 * should be a sane heuristic.
308 */
309static struct open_bucket *pick_data_bucket(struct cache_set *c,
310 const struct bkey *search,
311 struct task_struct *task,
312 struct bkey *alloc)
313{
314 struct open_bucket *ret, *ret_task = NULL;
315
316 list_for_each_entry_reverse(ret, &c->data_buckets, list)
317 if (!bkey_cmp(&ret->key, search))
318 goto found;
319 else if (ret->last == task)
320 ret_task = ret;
321
322 ret = ret_task ?: list_first_entry(&c->data_buckets,
323 struct open_bucket, list);
324found:
325 if (!ret->sectors_free && KEY_PTRS(alloc)) {
326 ret->sectors_free = c->sb.bucket_size;
327 bkey_copy(&ret->key, alloc);
328 bkey_init(alloc);
329 }
330
331 if (!ret->sectors_free)
332 ret = NULL;
333
334 return ret;
335}
336
337/*
338 * Allocates some space in the cache to write to, and k to point to the newly
339 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
340 * end of the newly allocated space).
341 *
342 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
343 * sectors were actually allocated.
344 *
345 * If s->writeback is true, will not fail.
346 */
347static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
348 struct search *s)
349{
350 struct cache_set *c = s->op.c;
351 struct open_bucket *b;
352 BKEY_PADDED(key) alloc;
353 struct closure cl, *w = NULL;
354 unsigned i;
355
356 if (s->writeback) {
357 closure_init_stack(&cl);
358 w = &cl;
359 }
360
361 /*
362 * We might have to allocate a new bucket, which we can't do with a
363 * spinlock held. So if we have to allocate, we drop the lock, allocate
364 * and then retry. KEY_PTRS() indicates whether alloc points to
365 * allocated bucket(s).
366 */
367
368 bkey_init(&alloc.key);
369 spin_lock(&c->data_bucket_lock);
370
371 while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
372 unsigned watermark = s->op.write_prio
373 ? WATERMARK_MOVINGGC
374 : WATERMARK_NONE;
375
376 spin_unlock(&c->data_bucket_lock);
377
378 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
379 return false;
380
381 spin_lock(&c->data_bucket_lock);
382 }
383
384 /*
385 * If we had to allocate, we might race and not need to allocate the
386 * second time we call find_data_bucket(). If we allocated a bucket but
387 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
388 */
389 if (KEY_PTRS(&alloc.key))
390 __bkey_put(c, &alloc.key);
391
392 for (i = 0; i < KEY_PTRS(&b->key); i++)
393 EBUG_ON(ptr_stale(c, &b->key, i));
394
395 /* Set up the pointer to the space we're allocating: */
396
397 for (i = 0; i < KEY_PTRS(&b->key); i++)
398 k->ptr[i] = b->key.ptr[i];
399
400 sectors = min(sectors, b->sectors_free);
401
402 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
403 SET_KEY_SIZE(k, sectors);
404 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
405
406 /*
407 * Move b to the end of the lru, and keep track of what this bucket was
408 * last used for:
409 */
410 list_move_tail(&b->list, &c->data_buckets);
411 bkey_copy_key(&b->key, k);
412 b->last = s->task;
413
414 b->sectors_free -= sectors;
415
416 for (i = 0; i < KEY_PTRS(&b->key); i++) {
417 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
418
419 atomic_long_add(sectors,
420 &PTR_CACHE(c, &b->key, i)->sectors_written);
421 }
422
423 if (b->sectors_free < c->sb.block_size)
424 b->sectors_free = 0;
425
426 /*
427 * k takes refcounts on the buckets it points to until it's inserted
428 * into the btree, but if we're done with this bucket we just transfer
429 * get_data_bucket()'s refcount.
430 */
431 if (b->sectors_free)
432 for (i = 0; i < KEY_PTRS(&b->key); i++)
433 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
434
435 spin_unlock(&c->data_bucket_lock);
436 return true;
437}
438
a34a8bfd
KO
439static void bch_data_invalidate(struct closure *cl)
440{
441 struct btree_op *op = container_of(cl, struct btree_op, cl);
442 struct bio *bio = op->cache_bio;
443
444 pr_debug("invalidating %i sectors from %llu",
445 bio_sectors(bio), (uint64_t) bio->bi_sector);
446
447 while (bio_sectors(bio)) {
448 unsigned len = min(bio_sectors(bio), 1U << 14);
449
450 if (bch_keylist_realloc(&op->keys, 0, op->c))
451 goto out;
452
453 bio->bi_sector += len;
454 bio->bi_size -= len << 9;
455
456 bch_keylist_add(&op->keys, &KEY(op->inode,
457 bio->bi_sector, len));
458 }
459
460 op->insert_data_done = true;
461 bio_put(bio);
462out:
463 continue_at(cl, bch_data_insert_keys, bcache_wq);
464}
465
466static void bch_data_insert_error(struct closure *cl)
cafe5635
KO
467{
468 struct btree_op *op = container_of(cl, struct btree_op, cl);
469
470 /*
471 * Our data write just errored, which means we've got a bunch of keys to
472 * insert that point to data that wasn't succesfully written.
473 *
474 * We don't have to insert those keys but we still have to invalidate
475 * that region of the cache - so, if we just strip off all the pointers
476 * from the keys we'll accomplish just that.
477 */
478
c2f95ae2 479 struct bkey *src = op->keys.keys, *dst = op->keys.keys;
cafe5635
KO
480
481 while (src != op->keys.top) {
482 struct bkey *n = bkey_next(src);
483
484 SET_KEY_PTRS(src, 0);
c2f95ae2 485 memmove(dst, src, bkey_bytes(src));
cafe5635
KO
486
487 dst = bkey_next(dst);
488 src = n;
489 }
490
491 op->keys.top = dst;
492
a34a8bfd 493 bch_data_insert_keys(cl);
cafe5635
KO
494}
495
a34a8bfd 496static void bch_data_insert_endio(struct bio *bio, int error)
cafe5635
KO
497{
498 struct closure *cl = bio->bi_private;
499 struct btree_op *op = container_of(cl, struct btree_op, cl);
500 struct search *s = container_of(op, struct search, op);
501
502 if (error) {
503 /* TODO: We could try to recover from this. */
504 if (s->writeback)
505 s->error = error;
506 else if (s->write)
a34a8bfd 507 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
cafe5635
KO
508 else
509 set_closure_fn(cl, NULL, NULL);
510 }
511
512 bch_bbio_endio(op->c, bio, error, "writing data to cache");
513}
514
a34a8bfd 515static void bch_data_insert_start(struct closure *cl)
cafe5635
KO
516{
517 struct btree_op *op = container_of(cl, struct btree_op, cl);
518 struct search *s = container_of(op, struct search, op);
519 struct bio *bio = op->cache_bio, *n;
520
84f0db03 521 if (op->bypass)
a34a8bfd 522 return bch_data_invalidate(cl);
cafe5635
KO
523
524 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
525 set_gc_sectors(op->c);
526 bch_queue_gc(op->c);
527 }
528
54d12f2b
KO
529 /*
530 * Journal writes are marked REQ_FLUSH; if the original write was a
531 * flush, it'll wait on the journal write.
532 */
533 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
534
cafe5635
KO
535 do {
536 unsigned i;
537 struct bkey *k;
538 struct bio_set *split = s->d
539 ? s->d->bio_split : op->c->bio_split;
540
541 /* 1 for the device pointer and 1 for the chksum */
542 if (bch_keylist_realloc(&op->keys,
543 1 + (op->csum ? 1 : 0),
544 op->c))
a34a8bfd 545 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
546
547 k = op->keys.top;
548 bkey_init(k);
549 SET_KEY_INODE(k, op->inode);
550 SET_KEY_OFFSET(k, bio->bi_sector);
551
552 if (!bch_alloc_sectors(k, bio_sectors(bio), s))
553 goto err;
554
555 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
cafe5635 556
a34a8bfd 557 n->bi_end_io = bch_data_insert_endio;
cafe5635
KO
558 n->bi_private = cl;
559
560 if (s->writeback) {
561 SET_KEY_DIRTY(k, true);
562
563 for (i = 0; i < KEY_PTRS(k); i++)
564 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
565 GC_MARK_DIRTY);
566 }
567
568 SET_KEY_CSUM(k, op->csum);
569 if (KEY_CSUM(k))
570 bio_csum(n, k);
571
c37511b8 572 trace_bcache_cache_insert(k);
cafe5635
KO
573 bch_keylist_push(&op->keys);
574
cafe5635
KO
575 n->bi_rw |= REQ_WRITE;
576 bch_submit_bbio(n, op->c, k, 0);
577 } while (n != bio);
578
579 op->insert_data_done = true;
a34a8bfd 580 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
581err:
582 /* bch_alloc_sectors() blocks if s->writeback = true */
583 BUG_ON(s->writeback);
584
585 /*
586 * But if it's not a writeback write we'd rather just bail out if
587 * there aren't any buckets ready to write to - it might take awhile and
588 * we might be starving btree writes for gc or something.
589 */
590
591 if (s->write) {
592 /*
593 * Writethrough write: We can't complete the write until we've
594 * updated the index. But we don't want to delay the write while
595 * we wait for buckets to be freed up, so just invalidate the
596 * rest of the write.
597 */
84f0db03 598 op->bypass = true;
a34a8bfd 599 return bch_data_invalidate(cl);
cafe5635
KO
600 } else {
601 /*
602 * From a cache miss, we can just insert the keys for the data
603 * we have written or bail out if we didn't do anything.
604 */
605 op->insert_data_done = true;
606 bio_put(bio);
607
608 if (!bch_keylist_empty(&op->keys))
a34a8bfd 609 continue_at(cl, bch_data_insert_keys, bcache_wq);
cafe5635
KO
610 else
611 closure_return(cl);
612 }
613}
614
615/**
a34a8bfd 616 * bch_data_insert - stick some data in the cache
cafe5635
KO
617 *
618 * This is the starting point for any data to end up in a cache device; it could
619 * be from a normal write, or a writeback write, or a write to a flash only
620 * volume - it's also used by the moving garbage collector to compact data in
621 * mostly empty buckets.
622 *
623 * It first writes the data to the cache, creating a list of keys to be inserted
624 * (if the data had to be fragmented there will be multiple keys); after the
625 * data is written it calls bch_journal, and after the keys have been added to
626 * the next journal write they're inserted into the btree.
627 *
628 * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
629 * and op->inode is used for the key inode.
630 *
84f0db03
KO
631 * If op->bypass is true, instead of inserting the data it invalidates the
632 * region of the cache represented by op->cache_bio and op->inode.
cafe5635 633 */
a34a8bfd 634void bch_data_insert(struct closure *cl)
cafe5635
KO
635{
636 struct btree_op *op = container_of(cl, struct btree_op, cl);
637
638 bch_keylist_init(&op->keys);
639 bio_get(op->cache_bio);
a34a8bfd 640 bch_data_insert_start(cl);
cafe5635
KO
641}
642
643/* Common code for the make_request functions */
644
645static void request_endio(struct bio *bio, int error)
646{
647 struct closure *cl = bio->bi_private;
648
649 if (error) {
650 struct search *s = container_of(cl, struct search, cl);
651 s->error = error;
652 /* Only cache read errors are recoverable */
653 s->recoverable = false;
654 }
655
656 bio_put(bio);
657 closure_put(cl);
658}
659
660void bch_cache_read_endio(struct bio *bio, int error)
661{
662 struct bbio *b = container_of(bio, struct bbio, bio);
663 struct closure *cl = bio->bi_private;
664 struct search *s = container_of(cl, struct search, cl);
665
666 /*
667 * If the bucket was reused while our bio was in flight, we might have
668 * read the wrong data. Set s->error but not error so it doesn't get
669 * counted against the cache device, but we'll still reread the data
670 * from the backing device.
671 */
672
673 if (error)
674 s->error = error;
675 else if (ptr_stale(s->op.c, &b->key, 0)) {
676 atomic_long_inc(&s->op.c->cache_read_races);
677 s->error = -EINTR;
678 }
679
680 bch_bbio_endio(s->op.c, bio, error, "reading from cache");
681}
682
683static void bio_complete(struct search *s)
684{
685 if (s->orig_bio) {
686 int cpu, rw = bio_data_dir(s->orig_bio);
687 unsigned long duration = jiffies - s->start_time;
688
689 cpu = part_stat_lock();
690 part_round_stats(cpu, &s->d->disk->part0);
691 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
692 part_stat_unlock();
693
694 trace_bcache_request_end(s, s->orig_bio);
695 bio_endio(s->orig_bio, s->error);
696 s->orig_bio = NULL;
697 }
698}
699
700static void do_bio_hook(struct search *s)
701{
702 struct bio *bio = &s->bio.bio;
703 memcpy(bio, s->orig_bio, sizeof(struct bio));
704
705 bio->bi_end_io = request_endio;
706 bio->bi_private = &s->cl;
707 atomic_set(&bio->bi_cnt, 3);
708}
709
710static void search_free(struct closure *cl)
711{
712 struct search *s = container_of(cl, struct search, cl);
713 bio_complete(s);
714
715 if (s->op.cache_bio)
716 bio_put(s->op.cache_bio);
717
718 if (s->unaligned_bvec)
719 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
720
721 closure_debug_destroy(cl);
722 mempool_free(s, s->d->c->search);
723}
724
725static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
726{
727 struct bio_vec *bv;
728 struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
729 memset(s, 0, offsetof(struct search, op.keys));
730
731 __closure_init(&s->cl, NULL);
732
733 s->op.inode = d->id;
734 s->op.c = d->c;
735 s->d = d;
736 s->op.lock = -1;
737 s->task = current;
738 s->orig_bio = bio;
739 s->write = (bio->bi_rw & REQ_WRITE) != 0;
54d12f2b 740 s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
cafe5635
KO
741 s->recoverable = 1;
742 s->start_time = jiffies;
743 do_bio_hook(s);
744
745 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
746 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
747 memcpy(bv, bio_iovec(bio),
748 sizeof(struct bio_vec) * bio_segments(bio));
749
750 s->bio.bio.bi_io_vec = bv;
751 s->unaligned_bvec = 1;
752 }
753
754 return s;
755}
756
757static void btree_read_async(struct closure *cl)
758{
759 struct btree_op *op = container_of(cl, struct btree_op, cl);
760
761 int ret = btree_root(search_recurse, op->c, op);
762
763 if (ret == -EAGAIN)
764 continue_at(cl, btree_read_async, bcache_wq);
765
766 closure_return(cl);
767}
768
769/* Cached devices */
770
771static void cached_dev_bio_complete(struct closure *cl)
772{
773 struct search *s = container_of(cl, struct search, cl);
774 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
775
776 search_free(cl);
777 cached_dev_put(dc);
778}
779
84f0db03
KO
780unsigned bch_get_congested(struct cache_set *c)
781{
782 int i;
783 long rand;
784
785 if (!c->congested_read_threshold_us &&
786 !c->congested_write_threshold_us)
787 return 0;
788
789 i = (local_clock_us() - c->congested_last_us) / 1024;
790 if (i < 0)
791 return 0;
792
793 i += atomic_read(&c->congested);
794 if (i >= 0)
795 return 0;
796
797 i += CONGESTED_MAX;
798
799 if (i > 0)
800 i = fract_exp_two(i, 6);
801
802 rand = get_random_int();
803 i -= bitmap_weight(&rand, BITS_PER_LONG);
804
805 return i > 0 ? i : 1;
806}
807
808static void add_sequential(struct task_struct *t)
809{
810 ewma_add(t->sequential_io_avg,
811 t->sequential_io, 8, 0);
812
813 t->sequential_io = 0;
814}
815
816static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
817{
818 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
819}
820
821static bool check_should_bypass(struct cached_dev *dc, struct search *s)
822{
823 struct cache_set *c = s->op.c;
824 struct bio *bio = &s->bio.bio;
825 unsigned mode = cache_mode(dc, bio);
826 unsigned sectors, congested = bch_get_congested(c);
827
828 if (atomic_read(&dc->disk.detaching) ||
829 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
830 (bio->bi_rw & REQ_DISCARD))
831 goto skip;
832
833 if (mode == CACHE_MODE_NONE ||
834 (mode == CACHE_MODE_WRITEAROUND &&
835 (bio->bi_rw & REQ_WRITE)))
836 goto skip;
837
838 if (bio->bi_sector & (c->sb.block_size - 1) ||
839 bio_sectors(bio) & (c->sb.block_size - 1)) {
840 pr_debug("skipping unaligned io");
841 goto skip;
842 }
843
844 if (!congested && !dc->sequential_cutoff)
845 goto rescale;
846
847 if (!congested &&
848 mode == CACHE_MODE_WRITEBACK &&
849 (bio->bi_rw & REQ_WRITE) &&
850 (bio->bi_rw & REQ_SYNC))
851 goto rescale;
852
853 if (dc->sequential_merge) {
854 struct io *i;
855
856 spin_lock(&dc->io_lock);
857
858 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
859 if (i->last == bio->bi_sector &&
860 time_before(jiffies, i->jiffies))
861 goto found;
862
863 i = list_first_entry(&dc->io_lru, struct io, lru);
864
865 add_sequential(s->task);
866 i->sequential = 0;
867found:
868 if (i->sequential + bio->bi_size > i->sequential)
869 i->sequential += bio->bi_size;
870
871 i->last = bio_end_sector(bio);
872 i->jiffies = jiffies + msecs_to_jiffies(5000);
873 s->task->sequential_io = i->sequential;
874
875 hlist_del(&i->hash);
876 hlist_add_head(&i->hash, iohash(dc, i->last));
877 list_move_tail(&i->lru, &dc->io_lru);
878
879 spin_unlock(&dc->io_lock);
880 } else {
881 s->task->sequential_io = bio->bi_size;
882
883 add_sequential(s->task);
884 }
885
886 sectors = max(s->task->sequential_io,
887 s->task->sequential_io_avg) >> 9;
888
889 if (dc->sequential_cutoff &&
890 sectors >= dc->sequential_cutoff >> 9) {
891 trace_bcache_bypass_sequential(s->orig_bio);
892 goto skip;
893 }
894
895 if (congested && sectors >= congested) {
896 trace_bcache_bypass_congested(s->orig_bio);
897 goto skip;
898 }
899
900rescale:
901 bch_rescale_priorities(c, bio_sectors(bio));
902 return false;
903skip:
904 bch_mark_sectors_bypassed(s, bio_sectors(bio));
905 return true;
906}
907
cafe5635
KO
908/* Process reads */
909
cdd972b1 910static void cached_dev_cache_miss_done(struct closure *cl)
cafe5635
KO
911{
912 struct search *s = container_of(cl, struct search, cl);
913
914 if (s->op.insert_collision)
915 bch_mark_cache_miss_collision(s);
916
917 if (s->op.cache_bio) {
918 int i;
919 struct bio_vec *bv;
920
921 __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
922 __free_page(bv->bv_page);
923 }
924
925 cached_dev_bio_complete(cl);
926}
927
cdd972b1 928static void cached_dev_read_error(struct closure *cl)
cafe5635
KO
929{
930 struct search *s = container_of(cl, struct search, cl);
cdd972b1 931 struct bio *bio = &s->bio.bio;
cafe5635
KO
932 struct bio_vec *bv;
933 int i;
934
935 if (s->recoverable) {
c37511b8
KO
936 /* Retry from the backing device: */
937 trace_bcache_read_retry(s->orig_bio);
cafe5635
KO
938
939 s->error = 0;
940 bv = s->bio.bio.bi_io_vec;
941 do_bio_hook(s);
942 s->bio.bio.bi_io_vec = bv;
943
944 if (!s->unaligned_bvec)
945 bio_for_each_segment(bv, s->orig_bio, i)
946 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
947 else
948 memcpy(s->bio.bio.bi_io_vec,
949 bio_iovec(s->orig_bio),
950 sizeof(struct bio_vec) *
951 bio_segments(s->orig_bio));
952
953 /* XXX: invalidate cache */
954
cdd972b1 955 closure_bio_submit(bio, cl, s->d);
cafe5635
KO
956 }
957
cdd972b1 958 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
959}
960
cdd972b1 961static void cached_dev_read_done(struct closure *cl)
cafe5635
KO
962{
963 struct search *s = container_of(cl, struct search, cl);
964 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
965
966 /*
cdd972b1
KO
967 * We had a cache miss; cache_bio now contains data ready to be inserted
968 * into the cache.
cafe5635
KO
969 *
970 * First, we copy the data we just read from cache_bio's bounce buffers
971 * to the buffers the original bio pointed to:
972 */
973
974 if (s->op.cache_bio) {
cafe5635
KO
975 bio_reset(s->op.cache_bio);
976 s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
977 s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
978 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
169ef1cf 979 bch_bio_map(s->op.cache_bio, NULL);
cafe5635 980
8e51e414 981 bio_copy_data(s->cache_miss, s->op.cache_bio);
cafe5635
KO
982
983 bio_put(s->cache_miss);
984 s->cache_miss = NULL;
985 }
986
987 if (verify(dc, &s->bio.bio) && s->recoverable)
988 bch_data_verify(s);
989
990 bio_complete(s);
991
992 if (s->op.cache_bio &&
993 !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
994 s->op.type = BTREE_REPLACE;
a34a8bfd 995 closure_call(&s->op.cl, bch_data_insert, NULL, cl);
cafe5635
KO
996 }
997
cdd972b1 998 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
999}
1000
cdd972b1 1001static void cached_dev_read_done_bh(struct closure *cl)
cafe5635
KO
1002{
1003 struct search *s = container_of(cl, struct search, cl);
1004 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1005
84f0db03
KO
1006 bch_mark_cache_accounting(s, !s->cache_miss, s->op.bypass);
1007 trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.bypass);
cafe5635
KO
1008
1009 if (s->error)
cdd972b1 1010 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
cafe5635 1011 else if (s->op.cache_bio || verify(dc, &s->bio.bio))
cdd972b1 1012 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
cafe5635 1013 else
cdd972b1 1014 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
cafe5635
KO
1015}
1016
1017static int cached_dev_cache_miss(struct btree *b, struct search *s,
1018 struct bio *bio, unsigned sectors)
1019{
1020 int ret = 0;
e7c590eb 1021 unsigned reada = 0;
cafe5635 1022 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
cdd972b1 1023 struct bio *miss, *cache_bio;
cafe5635 1024
84f0db03 1025 if (s->cache_miss || s->op.bypass) {
e7c590eb
KO
1026 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
1027 if (miss == bio)
1028 s->op.lookup_done = true;
1029 goto out_submit;
1030 }
cafe5635 1031
e7c590eb
KO
1032 if (!(bio->bi_rw & REQ_RAHEAD) &&
1033 !(bio->bi_rw & REQ_META) &&
1034 s->op.c->gc_stats.in_use < CUTOFF_CACHE_READA)
1035 reada = min_t(sector_t, dc->readahead >> 9,
1036 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
cafe5635 1037
e7c590eb 1038 s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada);
cafe5635 1039
e7c590eb
KO
1040 s->op.replace = KEY(s->op.inode, bio->bi_sector +
1041 s->cache_bio_sectors, s->cache_bio_sectors);
1042
1043 ret = bch_btree_insert_check_key(b, &s->op, &s->op.replace);
1044 if (ret)
1045 return ret;
1046
1047 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
1048 if (miss == bio)
1049 s->op.lookup_done = true;
1050 else
1051 /* btree_search_recurse()'s btree iterator is no good anymore */
1052 ret = -EINTR;
cafe5635 1053
cdd972b1 1054 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
cafe5635
KO
1055 DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
1056 dc->disk.bio_split);
cdd972b1 1057 if (!cache_bio)
cafe5635
KO
1058 goto out_submit;
1059
cdd972b1
KO
1060 cache_bio->bi_sector = miss->bi_sector;
1061 cache_bio->bi_bdev = miss->bi_bdev;
1062 cache_bio->bi_size = s->cache_bio_sectors << 9;
cafe5635 1063
cdd972b1
KO
1064 cache_bio->bi_end_io = request_endio;
1065 cache_bio->bi_private = &s->cl;
cafe5635 1066
cdd972b1
KO
1067 bch_bio_map(cache_bio, NULL);
1068 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
1069 goto out_put;
1070
cdd972b1
KO
1071 s->cache_miss = miss;
1072 s->op.cache_bio = cache_bio;
1073 bio_get(cache_bio);
1074 closure_bio_submit(cache_bio, &s->cl, s->d);
cafe5635
KO
1075
1076 return ret;
1077out_put:
cdd972b1 1078 bio_put(cache_bio);
cafe5635 1079out_submit:
e7c590eb
KO
1080 miss->bi_end_io = request_endio;
1081 miss->bi_private = &s->cl;
cafe5635
KO
1082 closure_bio_submit(miss, &s->cl, s->d);
1083 return ret;
1084}
1085
cdd972b1 1086static void cached_dev_read(struct cached_dev *dc, struct search *s)
cafe5635
KO
1087{
1088 struct closure *cl = &s->cl;
1089
cafe5635 1090 closure_call(&s->op.cl, btree_read_async, NULL, cl);
cdd972b1 1091 continue_at(cl, cached_dev_read_done_bh, NULL);
cafe5635
KO
1092}
1093
1094/* Process writes */
1095
1096static void cached_dev_write_complete(struct closure *cl)
1097{
1098 struct search *s = container_of(cl, struct search, cl);
1099 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1100
1101 up_read_non_owner(&dc->writeback_lock);
1102 cached_dev_bio_complete(cl);
1103}
1104
cdd972b1 1105static void cached_dev_write(struct cached_dev *dc, struct search *s)
cafe5635
KO
1106{
1107 struct closure *cl = &s->cl;
1108 struct bio *bio = &s->bio.bio;
84f0db03
KO
1109 struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
1110 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
cafe5635
KO
1111
1112 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
1113
cafe5635 1114 down_read_non_owner(&dc->writeback_lock);
cafe5635 1115 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
84f0db03
KO
1116 /*
1117 * We overlap with some dirty data undergoing background
1118 * writeback, force this write to writeback
1119 */
1120 s->op.bypass = false;
cafe5635
KO
1121 s->writeback = true;
1122 }
1123
84f0db03
KO
1124 /*
1125 * Discards aren't _required_ to do anything, so skipping if
1126 * check_overlapping returned true is ok
1127 *
1128 * But check_overlapping drops dirty keys for which io hasn't started,
1129 * so we still want to call it.
1130 */
cafe5635 1131 if (bio->bi_rw & REQ_DISCARD)
84f0db03 1132 s->op.bypass = true;
cafe5635 1133
72c27061
KO
1134 if (should_writeback(dc, s->orig_bio,
1135 cache_mode(dc, bio),
84f0db03
KO
1136 s->op.bypass)) {
1137 s->op.bypass = false;
72c27061
KO
1138 s->writeback = true;
1139 }
1140
84f0db03 1141 trace_bcache_write(s->orig_bio, s->writeback, s->op.bypass);
c37511b8 1142
84f0db03
KO
1143 if (s->op.bypass) {
1144 s->op.cache_bio = s->orig_bio;
1145 bio_get(s->op.cache_bio);
cafe5635 1146
84f0db03
KO
1147 if (!(bio->bi_rw & REQ_DISCARD) ||
1148 blk_queue_discard(bdev_get_queue(dc->bdev)))
1149 closure_bio_submit(bio, cl, s->d);
1150 } else if (s->writeback) {
279afbad 1151 bch_writeback_add(dc);
2fe80d3b 1152 s->op.cache_bio = bio;
e49c7c37 1153
c0f04d88 1154 if (bio->bi_rw & REQ_FLUSH) {
e49c7c37 1155 /* Also need to send a flush to the backing device */
d4eddd42 1156 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
c0f04d88 1157 dc->disk.bio_split);
e49c7c37 1158
c0f04d88
KO
1159 flush->bi_rw = WRITE_FLUSH;
1160 flush->bi_bdev = bio->bi_bdev;
1161 flush->bi_end_io = request_endio;
1162 flush->bi_private = cl;
1163
1164 closure_bio_submit(flush, cl, s->d);
e49c7c37 1165 }
84f0db03
KO
1166 } else {
1167 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
1168 dc->disk.bio_split);
1169
1170 closure_bio_submit(bio, cl, s->d);
cafe5635 1171 }
84f0db03 1172
a34a8bfd 1173 closure_call(&s->op.cl, bch_data_insert, NULL, cl);
cafe5635 1174 continue_at(cl, cached_dev_write_complete, NULL);
cafe5635
KO
1175}
1176
a34a8bfd 1177static void cached_dev_nodata(struct closure *cl)
cafe5635 1178{
a34a8bfd 1179 struct search *s = container_of(cl, struct search, cl);
cafe5635
KO
1180 struct bio *bio = &s->bio.bio;
1181
cafe5635
KO
1182 if (s->op.flush_journal)
1183 bch_journal_meta(s->op.c, cl);
1184
84f0db03 1185 /* If it's a flush, we send the flush to the backing device too */
cafe5635
KO
1186 closure_bio_submit(bio, cl, s->d);
1187
1188 continue_at(cl, cached_dev_bio_complete, NULL);
1189}
1190
1191/* Cached devices - read & write stuff */
1192
cafe5635
KO
1193static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1194{
1195 struct search *s;
1196 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1197 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1198 int cpu, rw = bio_data_dir(bio);
1199
1200 cpu = part_stat_lock();
1201 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1202 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1203 part_stat_unlock();
1204
1205 bio->bi_bdev = dc->bdev;
2903381f 1206 bio->bi_sector += dc->sb.data_offset;
cafe5635
KO
1207
1208 if (cached_dev_get(dc)) {
1209 s = search_alloc(bio, d);
1210 trace_bcache_request_start(s, bio);
1211
a34a8bfd
KO
1212 if (!bio->bi_size) {
1213 /*
1214 * can't call bch_journal_meta from under
1215 * generic_make_request
1216 */
1217 continue_at_nobarrier(&s->cl,
1218 cached_dev_nodata,
1219 bcache_wq);
1220 } else {
84f0db03
KO
1221 s->op.bypass = check_should_bypass(dc, s);
1222
1223 if (rw)
cdd972b1 1224 cached_dev_write(dc, s);
84f0db03 1225 else
cdd972b1 1226 cached_dev_read(dc, s);
84f0db03 1227 }
cafe5635
KO
1228 } else {
1229 if ((bio->bi_rw & REQ_DISCARD) &&
1230 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1231 bio_endio(bio, 0);
1232 else
1233 bch_generic_make_request(bio, &d->bio_split_hook);
1234 }
1235}
1236
1237static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1238 unsigned int cmd, unsigned long arg)
1239{
1240 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1241 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1242}
1243
1244static int cached_dev_congested(void *data, int bits)
1245{
1246 struct bcache_device *d = data;
1247 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1248 struct request_queue *q = bdev_get_queue(dc->bdev);
1249 int ret = 0;
1250
1251 if (bdi_congested(&q->backing_dev_info, bits))
1252 return 1;
1253
1254 if (cached_dev_get(dc)) {
1255 unsigned i;
1256 struct cache *ca;
1257
1258 for_each_cache(ca, d->c, i) {
1259 q = bdev_get_queue(ca->bdev);
1260 ret |= bdi_congested(&q->backing_dev_info, bits);
1261 }
1262
1263 cached_dev_put(dc);
1264 }
1265
1266 return ret;
1267}
1268
1269void bch_cached_dev_request_init(struct cached_dev *dc)
1270{
1271 struct gendisk *g = dc->disk.disk;
1272
1273 g->queue->make_request_fn = cached_dev_make_request;
1274 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1275 dc->disk.cache_miss = cached_dev_cache_miss;
1276 dc->disk.ioctl = cached_dev_ioctl;
1277}
1278
1279/* Flash backed devices */
1280
1281static int flash_dev_cache_miss(struct btree *b, struct search *s,
1282 struct bio *bio, unsigned sectors)
1283{
8e51e414
KO
1284 struct bio_vec *bv;
1285 int i;
1286
cafe5635
KO
1287 /* Zero fill bio */
1288
8e51e414 1289 bio_for_each_segment(bv, bio, i) {
cafe5635
KO
1290 unsigned j = min(bv->bv_len >> 9, sectors);
1291
1292 void *p = kmap(bv->bv_page);
1293 memset(p + bv->bv_offset, 0, j << 9);
1294 kunmap(bv->bv_page);
1295
8e51e414 1296 sectors -= j;
cafe5635
KO
1297 }
1298
8e51e414
KO
1299 bio_advance(bio, min(sectors << 9, bio->bi_size));
1300
1301 if (!bio->bi_size)
1302 s->op.lookup_done = true;
cafe5635
KO
1303
1304 return 0;
1305}
1306
a34a8bfd
KO
1307static void flash_dev_nodata(struct closure *cl)
1308{
1309 struct search *s = container_of(cl, struct search, cl);
1310
1311 if (s->op.flush_journal)
1312 bch_journal_meta(s->op.c, cl);
1313
1314 continue_at(cl, search_free, NULL);
1315}
1316
cafe5635
KO
1317static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1318{
1319 struct search *s;
1320 struct closure *cl;
1321 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1322 int cpu, rw = bio_data_dir(bio);
1323
1324 cpu = part_stat_lock();
1325 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1326 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1327 part_stat_unlock();
1328
1329 s = search_alloc(bio, d);
1330 cl = &s->cl;
1331 bio = &s->bio.bio;
1332
1333 trace_bcache_request_start(s, bio);
1334
84f0db03 1335 if (!bio->bi_size) {
a34a8bfd
KO
1336 /*
1337 * can't call bch_journal_meta from under
1338 * generic_make_request
1339 */
1340 continue_at_nobarrier(&s->cl,
1341 flash_dev_nodata,
1342 bcache_wq);
84f0db03 1343 } else if (rw) {
cafe5635 1344 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
8e51e414
KO
1345 &KEY(d->id, bio->bi_sector, 0),
1346 &KEY(d->id, bio_end_sector(bio), 0));
cafe5635 1347
84f0db03 1348 s->op.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
cafe5635
KO
1349 s->writeback = true;
1350 s->op.cache_bio = bio;
1351
a34a8bfd 1352 closure_call(&s->op.cl, bch_data_insert, NULL, cl);
cafe5635 1353 } else {
84f0db03 1354 closure_call(&s->op.cl, btree_read_async, NULL, cl);
cafe5635
KO
1355 }
1356
1357 continue_at(cl, search_free, NULL);
1358}
1359
1360static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1361 unsigned int cmd, unsigned long arg)
1362{
1363 return -ENOTTY;
1364}
1365
1366static int flash_dev_congested(void *data, int bits)
1367{
1368 struct bcache_device *d = data;
1369 struct request_queue *q;
1370 struct cache *ca;
1371 unsigned i;
1372 int ret = 0;
1373
1374 for_each_cache(ca, d->c, i) {
1375 q = bdev_get_queue(ca->bdev);
1376 ret |= bdi_congested(&q->backing_dev_info, bits);
1377 }
1378
1379 return ret;
1380}
1381
1382void bch_flash_dev_request_init(struct bcache_device *d)
1383{
1384 struct gendisk *g = d->disk;
1385
1386 g->queue->make_request_fn = flash_dev_make_request;
1387 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1388 d->cache_miss = flash_dev_cache_miss;
1389 d->ioctl = flash_dev_ioctl;
1390}
1391
1392void bch_request_exit(void)
1393{
1394#ifdef CONFIG_CGROUP_BCACHE
1395 cgroup_unload_subsys(&bcache_subsys);
1396#endif
1397 if (bch_search_cache)
1398 kmem_cache_destroy(bch_search_cache);
1399}
1400
1401int __init bch_request_init(void)
1402{
1403 bch_search_cache = KMEM_CACHE(search, 0);
1404 if (!bch_search_cache)
1405 return -ENOMEM;
1406
1407#ifdef CONFIG_CGROUP_BCACHE
1408 cgroup_load_subsys(&bcache_subsys);
1409 init_bch_cgroup(&bcache_default_cgroup);
1410
1411 cgroup_add_cftypes(&bcache_subsys, bch_files);
1412#endif
1413 return 0;
1414}