]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/bcache/request.c
bcache: add CACHE_SET_IO_DISABLE to struct cache_set flags
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / request.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "request.h"
279afbad 14#include "writeback.h"
cafe5635 15
cafe5635
KO
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
66114cad 19#include <linux/backing-dev.h>
cafe5635
KO
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
cafe5635
KO
25
26struct kmem_cache *bch_search_cache;
27
a34a8bfd
KO
28static void bch_data_insert_start(struct closure *);
29
23850102 30static unsigned cache_mode(struct cached_dev *dc)
cafe5635 31{
cafe5635
KO
32 return BDEV_CACHE_MODE(&dc->sb);
33}
34
23850102 35static bool verify(struct cached_dev *dc)
cafe5635 36{
cafe5635
KO
37 return dc->verify;
38}
39
40static void bio_csum(struct bio *bio, struct bkey *k)
41{
7988613b
KO
42 struct bio_vec bv;
43 struct bvec_iter iter;
cafe5635 44 uint64_t csum = 0;
cafe5635 45
7988613b
KO
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48 csum = bch_crc64_update(csum, d, bv.bv_len);
49 kunmap(bv.bv_page);
cafe5635
KO
50 }
51
52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53}
54
55/* Insert data into cache */
56
a34a8bfd 57static void bch_data_insert_keys(struct closure *cl)
cafe5635 58{
220bb38c 59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
c18536a7 60 atomic_t *journal_ref = NULL;
220bb38c 61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
6054c6d4 62 int ret;
cafe5635 63
a34a8bfd
KO
64 /*
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
67 * a time
68 *
69 * XXX: this looks wrong
70 */
71#if 0
72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 closure_sync(&s->cl);
74#endif
cafe5635 75
220bb38c
KO
76 if (!op->replace)
77 journal_ref = bch_journal(op->c, &op->insert_keys,
78 op->flush_journal ? cl : NULL);
cafe5635 79
220bb38c 80 ret = bch_btree_insert(op->c, &op->insert_keys,
6054c6d4
KO
81 journal_ref, replace_key);
82 if (ret == -ESRCH) {
220bb38c 83 op->replace_collision = true;
6054c6d4 84 } else if (ret) {
4e4cbee9 85 op->status = BLK_STS_RESOURCE;
220bb38c 86 op->insert_data_done = true;
a34a8bfd 87 }
cafe5635 88
c18536a7
KO
89 if (journal_ref)
90 atomic_dec_bug(journal_ref);
cafe5635 91
77b5a084 92 if (!op->insert_data_done) {
da415a09 93 continue_at(cl, bch_data_insert_start, op->wq);
77b5a084
JA
94 return;
95 }
cafe5635 96
220bb38c 97 bch_keylist_free(&op->insert_keys);
a34a8bfd 98 closure_return(cl);
cafe5635
KO
99}
100
085d2a3d
KO
101static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 struct cache_set *c)
103{
104 size_t oldsize = bch_keylist_nkeys(l);
105 size_t newsize = oldsize + u64s;
106
107 /*
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
112 */
113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 return -ENOMEM;
115
116 return __bch_keylist_realloc(l, u64s);
117}
118
a34a8bfd
KO
119static void bch_data_invalidate(struct closure *cl)
120{
220bb38c
KO
121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 struct bio *bio = op->bio;
a34a8bfd
KO
123
124 pr_debug("invalidating %i sectors from %llu",
4f024f37 125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
a34a8bfd
KO
126
127 while (bio_sectors(bio)) {
81ab4190
KO
128 unsigned sectors = min(bio_sectors(bio),
129 1U << (KEY_SIZE_BITS - 1));
a34a8bfd 130
085d2a3d 131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
a34a8bfd
KO
132 goto out;
133
4f024f37
KO
134 bio->bi_iter.bi_sector += sectors;
135 bio->bi_iter.bi_size -= sectors << 9;
a34a8bfd 136
220bb38c 137 bch_keylist_add(&op->insert_keys,
4f024f37 138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
a34a8bfd
KO
139 }
140
220bb38c 141 op->insert_data_done = true;
a34a8bfd
KO
142 bio_put(bio);
143out:
da415a09 144 continue_at(cl, bch_data_insert_keys, op->wq);
a34a8bfd
KO
145}
146
147static void bch_data_insert_error(struct closure *cl)
cafe5635 148{
220bb38c 149 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635
KO
150
151 /*
152 * Our data write just errored, which means we've got a bunch of keys to
153 * insert that point to data that wasn't succesfully written.
154 *
155 * We don't have to insert those keys but we still have to invalidate
156 * that region of the cache - so, if we just strip off all the pointers
157 * from the keys we'll accomplish just that.
158 */
159
220bb38c 160 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
cafe5635 161
220bb38c 162 while (src != op->insert_keys.top) {
cafe5635
KO
163 struct bkey *n = bkey_next(src);
164
165 SET_KEY_PTRS(src, 0);
c2f95ae2 166 memmove(dst, src, bkey_bytes(src));
cafe5635
KO
167
168 dst = bkey_next(dst);
169 src = n;
170 }
171
220bb38c 172 op->insert_keys.top = dst;
cafe5635 173
a34a8bfd 174 bch_data_insert_keys(cl);
cafe5635
KO
175}
176
4246a0b6 177static void bch_data_insert_endio(struct bio *bio)
cafe5635
KO
178{
179 struct closure *cl = bio->bi_private;
220bb38c 180 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 181
4e4cbee9 182 if (bio->bi_status) {
cafe5635 183 /* TODO: We could try to recover from this. */
220bb38c 184 if (op->writeback)
4e4cbee9 185 op->status = bio->bi_status;
220bb38c 186 else if (!op->replace)
da415a09 187 set_closure_fn(cl, bch_data_insert_error, op->wq);
cafe5635
KO
188 else
189 set_closure_fn(cl, NULL, NULL);
190 }
191
4e4cbee9 192 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
cafe5635
KO
193}
194
a34a8bfd 195static void bch_data_insert_start(struct closure *cl)
cafe5635 196{
220bb38c
KO
197 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
198 struct bio *bio = op->bio, *n;
cafe5635 199
e3b4825b
NS
200 if (op->bypass)
201 return bch_data_invalidate(cl);
202
69daf03a
TJ
203 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
204 wake_up_gc(op->c);
205
54d12f2b 206 /*
28a8f0d3 207 * Journal writes are marked REQ_PREFLUSH; if the original write was a
54d12f2b
KO
208 * flush, it'll wait on the journal write.
209 */
1eff9d32 210 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
54d12f2b 211
cafe5635
KO
212 do {
213 unsigned i;
214 struct bkey *k;
220bb38c 215 struct bio_set *split = op->c->bio_split;
cafe5635
KO
216
217 /* 1 for the device pointer and 1 for the chksum */
220bb38c 218 if (bch_keylist_realloc(&op->insert_keys,
085d2a3d 219 3 + (op->csum ? 1 : 0),
77b5a084 220 op->c)) {
da415a09 221 continue_at(cl, bch_data_insert_keys, op->wq);
77b5a084
JA
222 return;
223 }
cafe5635 224
220bb38c 225 k = op->insert_keys.top;
cafe5635 226 bkey_init(k);
220bb38c 227 SET_KEY_INODE(k, op->inode);
4f024f37 228 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
cafe5635 229
2599b53b
KO
230 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
231 op->write_point, op->write_prio,
232 op->writeback))
cafe5635
KO
233 goto err;
234
20d0189b 235 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
cafe5635 236
a34a8bfd 237 n->bi_end_io = bch_data_insert_endio;
cafe5635
KO
238 n->bi_private = cl;
239
220bb38c 240 if (op->writeback) {
cafe5635
KO
241 SET_KEY_DIRTY(k, true);
242
243 for (i = 0; i < KEY_PTRS(k); i++)
220bb38c 244 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
cafe5635
KO
245 GC_MARK_DIRTY);
246 }
247
220bb38c 248 SET_KEY_CSUM(k, op->csum);
cafe5635
KO
249 if (KEY_CSUM(k))
250 bio_csum(n, k);
251
c37511b8 252 trace_bcache_cache_insert(k);
220bb38c 253 bch_keylist_push(&op->insert_keys);
cafe5635 254
ad0d9e76 255 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
220bb38c 256 bch_submit_bbio(n, op->c, k, 0);
cafe5635
KO
257 } while (n != bio);
258
220bb38c 259 op->insert_data_done = true;
da415a09 260 continue_at(cl, bch_data_insert_keys, op->wq);
77b5a084 261 return;
cafe5635
KO
262err:
263 /* bch_alloc_sectors() blocks if s->writeback = true */
220bb38c 264 BUG_ON(op->writeback);
cafe5635
KO
265
266 /*
267 * But if it's not a writeback write we'd rather just bail out if
268 * there aren't any buckets ready to write to - it might take awhile and
269 * we might be starving btree writes for gc or something.
270 */
271
220bb38c 272 if (!op->replace) {
cafe5635
KO
273 /*
274 * Writethrough write: We can't complete the write until we've
275 * updated the index. But we don't want to delay the write while
276 * we wait for buckets to be freed up, so just invalidate the
277 * rest of the write.
278 */
220bb38c 279 op->bypass = true;
a34a8bfd 280 return bch_data_invalidate(cl);
cafe5635
KO
281 } else {
282 /*
283 * From a cache miss, we can just insert the keys for the data
284 * we have written or bail out if we didn't do anything.
285 */
220bb38c 286 op->insert_data_done = true;
cafe5635
KO
287 bio_put(bio);
288
220bb38c 289 if (!bch_keylist_empty(&op->insert_keys))
da415a09 290 continue_at(cl, bch_data_insert_keys, op->wq);
cafe5635
KO
291 else
292 closure_return(cl);
293 }
294}
295
296/**
a34a8bfd 297 * bch_data_insert - stick some data in the cache
cafe5635
KO
298 *
299 * This is the starting point for any data to end up in a cache device; it could
300 * be from a normal write, or a writeback write, or a write to a flash only
301 * volume - it's also used by the moving garbage collector to compact data in
302 * mostly empty buckets.
303 *
304 * It first writes the data to the cache, creating a list of keys to be inserted
305 * (if the data had to be fragmented there will be multiple keys); after the
306 * data is written it calls bch_journal, and after the keys have been added to
307 * the next journal write they're inserted into the btree.
308 *
c18536a7 309 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
cafe5635
KO
310 * and op->inode is used for the key inode.
311 *
c18536a7
KO
312 * If s->bypass is true, instead of inserting the data it invalidates the
313 * region of the cache represented by s->cache_bio and op->inode.
cafe5635 314 */
a34a8bfd 315void bch_data_insert(struct closure *cl)
cafe5635 316{
220bb38c 317 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 318
60ae81ee
SP
319 trace_bcache_write(op->c, op->inode, op->bio,
320 op->writeback, op->bypass);
220bb38c
KO
321
322 bch_keylist_init(&op->insert_keys);
323 bio_get(op->bio);
a34a8bfd 324 bch_data_insert_start(cl);
cafe5635
KO
325}
326
220bb38c
KO
327/* Congested? */
328
329unsigned bch_get_congested(struct cache_set *c)
330{
331 int i;
332 long rand;
333
334 if (!c->congested_read_threshold_us &&
335 !c->congested_write_threshold_us)
336 return 0;
337
338 i = (local_clock_us() - c->congested_last_us) / 1024;
339 if (i < 0)
340 return 0;
341
342 i += atomic_read(&c->congested);
343 if (i >= 0)
344 return 0;
345
346 i += CONGESTED_MAX;
347
348 if (i > 0)
349 i = fract_exp_two(i, 6);
350
351 rand = get_random_int();
352 i -= bitmap_weight(&rand, BITS_PER_LONG);
353
354 return i > 0 ? i : 1;
355}
356
357static void add_sequential(struct task_struct *t)
358{
359 ewma_add(t->sequential_io_avg,
360 t->sequential_io, 8, 0);
361
362 t->sequential_io = 0;
363}
364
365static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
366{
367 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
368}
369
370static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
371{
372 struct cache_set *c = dc->disk.c;
23850102 373 unsigned mode = cache_mode(dc);
220bb38c
KO
374 unsigned sectors, congested = bch_get_congested(c);
375 struct task_struct *task = current;
8aee1220 376 struct io *i;
220bb38c 377
c4d951dd 378 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
220bb38c 379 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
ad0d9e76 380 (bio_op(bio) == REQ_OP_DISCARD))
220bb38c
KO
381 goto skip;
382
383 if (mode == CACHE_MODE_NONE ||
384 (mode == CACHE_MODE_WRITEAROUND &&
c8d93247 385 op_is_write(bio_op(bio))))
220bb38c
KO
386 goto skip;
387
b41c9b02
EW
388 /*
389 * Flag for bypass if the IO is for read-ahead or background,
390 * unless the read-ahead request is for metadata (eg, for gfs2).
391 */
392 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
393 !(bio->bi_opf & REQ_META))
394 goto skip;
395
4f024f37 396 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
220bb38c
KO
397 bio_sectors(bio) & (c->sb.block_size - 1)) {
398 pr_debug("skipping unaligned io");
399 goto skip;
400 }
401
5ceaaad7
KO
402 if (bypass_torture_test(dc)) {
403 if ((get_random_int() & 3) == 3)
404 goto skip;
405 else
406 goto rescale;
407 }
408
220bb38c
KO
409 if (!congested && !dc->sequential_cutoff)
410 goto rescale;
411
8aee1220 412 spin_lock(&dc->io_lock);
220bb38c 413
4f024f37
KO
414 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
415 if (i->last == bio->bi_iter.bi_sector &&
8aee1220
KO
416 time_before(jiffies, i->jiffies))
417 goto found;
220bb38c 418
8aee1220 419 i = list_first_entry(&dc->io_lru, struct io, lru);
220bb38c 420
8aee1220
KO
421 add_sequential(task);
422 i->sequential = 0;
220bb38c 423found:
4f024f37
KO
424 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
425 i->sequential += bio->bi_iter.bi_size;
220bb38c 426
8aee1220
KO
427 i->last = bio_end_sector(bio);
428 i->jiffies = jiffies + msecs_to_jiffies(5000);
429 task->sequential_io = i->sequential;
220bb38c 430
8aee1220
KO
431 hlist_del(&i->hash);
432 hlist_add_head(&i->hash, iohash(dc, i->last));
433 list_move_tail(&i->lru, &dc->io_lru);
220bb38c 434
8aee1220 435 spin_unlock(&dc->io_lock);
220bb38c
KO
436
437 sectors = max(task->sequential_io,
438 task->sequential_io_avg) >> 9;
439
440 if (dc->sequential_cutoff &&
441 sectors >= dc->sequential_cutoff >> 9) {
442 trace_bcache_bypass_sequential(bio);
443 goto skip;
444 }
445
446 if (congested && sectors >= congested) {
447 trace_bcache_bypass_congested(bio);
448 goto skip;
449 }
450
451rescale:
452 bch_rescale_priorities(c, bio_sectors(bio));
453 return false;
454skip:
455 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
456 return true;
457}
458
2c1953e2 459/* Cache lookup */
cafe5635 460
220bb38c
KO
461struct search {
462 /* Stack frame for bio_complete */
463 struct closure cl;
464
220bb38c
KO
465 struct bbio bio;
466 struct bio *orig_bio;
467 struct bio *cache_miss;
a5ae4300 468 struct bcache_device *d;
220bb38c
KO
469
470 unsigned insert_bio_sectors;
220bb38c 471 unsigned recoverable:1;
220bb38c 472 unsigned write:1;
5ceaaad7 473 unsigned read_dirty_data:1;
c1573137 474 unsigned cache_missed:1;
220bb38c
KO
475
476 unsigned long start_time;
477
478 struct btree_op op;
479 struct data_insert_op iop;
480};
481
4246a0b6 482static void bch_cache_read_endio(struct bio *bio)
cafe5635
KO
483{
484 struct bbio *b = container_of(bio, struct bbio, bio);
485 struct closure *cl = bio->bi_private;
486 struct search *s = container_of(cl, struct search, cl);
487
488 /*
489 * If the bucket was reused while our bio was in flight, we might have
490 * read the wrong data. Set s->error but not error so it doesn't get
491 * counted against the cache device, but we'll still reread the data
492 * from the backing device.
493 */
494
4e4cbee9
CH
495 if (bio->bi_status)
496 s->iop.status = bio->bi_status;
d56d000a
KO
497 else if (!KEY_DIRTY(&b->key) &&
498 ptr_stale(s->iop.c, &b->key, 0)) {
220bb38c 499 atomic_long_inc(&s->iop.c->cache_read_races);
4e4cbee9 500 s->iop.status = BLK_STS_IOERR;
cafe5635
KO
501 }
502
4e4cbee9 503 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
cafe5635
KO
504}
505
2c1953e2
KO
506/*
507 * Read from a single key, handling the initial cache miss if the key starts in
508 * the middle of the bio
509 */
cc231966 510static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
2c1953e2
KO
511{
512 struct search *s = container_of(op, struct search, op);
cc231966
KO
513 struct bio *n, *bio = &s->bio.bio;
514 struct bkey *bio_key;
2c1953e2 515 unsigned ptr;
2c1953e2 516
4f024f37 517 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
cc231966
KO
518 return MAP_CONTINUE;
519
220bb38c 520 if (KEY_INODE(k) != s->iop.inode ||
4f024f37 521 KEY_START(k) > bio->bi_iter.bi_sector) {
cc231966 522 unsigned bio_sectors = bio_sectors(bio);
220bb38c 523 unsigned sectors = KEY_INODE(k) == s->iop.inode
cc231966 524 ? min_t(uint64_t, INT_MAX,
4f024f37 525 KEY_START(k) - bio->bi_iter.bi_sector)
cc231966
KO
526 : INT_MAX;
527
528 int ret = s->d->cache_miss(b, s, bio, sectors);
529 if (ret != MAP_CONTINUE)
530 return ret;
531
532 /* if this was a complete miss we shouldn't get here */
533 BUG_ON(bio_sectors <= sectors);
534 }
535
536 if (!KEY_SIZE(k))
537 return MAP_CONTINUE;
2c1953e2
KO
538
539 /* XXX: figure out best pointer - for multiple cache devices */
540 ptr = 0;
541
542 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
543
5ceaaad7
KO
544 if (KEY_DIRTY(k))
545 s->read_dirty_data = true;
546
20d0189b
KO
547 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
548 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
549 GFP_NOIO, s->d->bio_split);
2c1953e2 550
cc231966
KO
551 bio_key = &container_of(n, struct bbio, bio)->key;
552 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2c1953e2 553
4f024f37 554 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
220bb38c 555 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
2c1953e2 556
cc231966
KO
557 n->bi_end_io = bch_cache_read_endio;
558 n->bi_private = &s->cl;
2c1953e2 559
cc231966
KO
560 /*
561 * The bucket we're reading from might be reused while our bio
562 * is in flight, and we could then end up reading the wrong
563 * data.
564 *
565 * We guard against this by checking (in cache_read_endio()) if
566 * the pointer is stale again; if so, we treat it as an error
567 * and reread from the backing device (but we don't pass that
568 * error up anywhere).
569 */
2c1953e2 570
cc231966
KO
571 __bch_submit_bbio(n, b->c);
572 return n == bio ? MAP_DONE : MAP_CONTINUE;
2c1953e2
KO
573}
574
575static void cache_lookup(struct closure *cl)
576{
220bb38c 577 struct search *s = container_of(cl, struct search, iop.cl);
2c1953e2 578 struct bio *bio = &s->bio.bio;
239c930c 579 struct cached_dev *dc;
a5ae4300 580 int ret;
2c1953e2 581
a5ae4300 582 bch_btree_op_init(&s->op, -1);
2c1953e2 583
a5ae4300
KO
584 ret = bch_btree_map_keys(&s->op, s->iop.c,
585 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
586 cache_lookup_fn, MAP_END_KEY);
77b5a084 587 if (ret == -EAGAIN) {
2c1953e2 588 continue_at(cl, cache_lookup, bcache_wq);
77b5a084
JA
589 return;
590 }
2c1953e2 591
239c930c
RH
592 /*
593 * We might meet err when searching the btree, If that happens, we will
594 * get negative ret, in this scenario we should not recover data from
595 * backing device (when cache device is dirty) because we don't know
596 * whether bkeys the read request covered are all clean.
597 *
598 * And after that happened, s->iop.status is still its initial value
599 * before we submit s->bio.bio
600 */
601 if (ret < 0) {
602 BUG_ON(ret == -EINTR);
603 if (s->d && s->d->c &&
604 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
605 dc = container_of(s->d, struct cached_dev, disk);
606 if (dc && atomic_read(&dc->has_dirty))
607 s->recoverable = false;
608 }
609 if (!s->iop.status)
610 s->iop.status = BLK_STS_IOERR;
611 }
612
2c1953e2
KO
613 closure_return(cl);
614}
615
616/* Common code for the make_request functions */
617
4246a0b6 618static void request_endio(struct bio *bio)
2c1953e2
KO
619{
620 struct closure *cl = bio->bi_private;
621
4e4cbee9 622 if (bio->bi_status) {
2c1953e2 623 struct search *s = container_of(cl, struct search, cl);
4e4cbee9 624 s->iop.status = bio->bi_status;
2c1953e2
KO
625 /* Only cache read errors are recoverable */
626 s->recoverable = false;
627 }
628
629 bio_put(bio);
630 closure_put(cl);
631}
632
cafe5635
KO
633static void bio_complete(struct search *s)
634{
635 if (s->orig_bio) {
74d46992 636 struct request_queue *q = s->orig_bio->bi_disk->queue;
d62e26b3 637 generic_end_io_acct(q, bio_data_dir(s->orig_bio),
aae4933d 638 &s->d->disk->part0, s->start_time);
cafe5635 639
220bb38c 640 trace_bcache_request_end(s->d, s->orig_bio);
4e4cbee9 641 s->orig_bio->bi_status = s->iop.status;
4246a0b6 642 bio_endio(s->orig_bio);
cafe5635
KO
643 s->orig_bio = NULL;
644 }
645}
646
a5ae4300 647static void do_bio_hook(struct search *s, struct bio *orig_bio)
cafe5635
KO
648{
649 struct bio *bio = &s->bio.bio;
cafe5635 650
3a83f467 651 bio_init(bio, NULL, 0);
a5ae4300 652 __bio_clone_fast(bio, orig_bio);
cafe5635
KO
653 bio->bi_end_io = request_endio;
654 bio->bi_private = &s->cl;
ed9c47be 655
dac56212 656 bio_cnt_set(bio, 3);
cafe5635
KO
657}
658
659static void search_free(struct closure *cl)
660{
661 struct search *s = container_of(cl, struct search, cl);
cafe5635 662
220bb38c
KO
663 if (s->iop.bio)
664 bio_put(s->iop.bio);
cafe5635 665
225e6974 666 bio_complete(s);
cafe5635
KO
667 closure_debug_destroy(cl);
668 mempool_free(s, s->d->c->search);
669}
670
a5ae4300
KO
671static inline struct search *search_alloc(struct bio *bio,
672 struct bcache_device *d)
cafe5635 673{
0b93207a 674 struct search *s;
0b93207a
KO
675
676 s = mempool_alloc(d->c->search, GFP_NOIO);
cafe5635 677
a5ae4300
KO
678 closure_init(&s->cl, NULL);
679 do_bio_hook(s, bio);
cafe5635 680
cafe5635 681 s->orig_bio = bio;
a5ae4300 682 s->cache_miss = NULL;
c1573137 683 s->cache_missed = 0;
a5ae4300 684 s->d = d;
cafe5635 685 s->recoverable = 1;
c8d93247 686 s->write = op_is_write(bio_op(bio));
a5ae4300 687 s->read_dirty_data = 0;
cafe5635 688 s->start_time = jiffies;
a5ae4300
KO
689
690 s->iop.c = d->c;
691 s->iop.bio = NULL;
692 s->iop.inode = d->id;
693 s->iop.write_point = hash_long((unsigned long) current, 16);
694 s->iop.write_prio = 0;
4e4cbee9 695 s->iop.status = 0;
a5ae4300 696 s->iop.flags = 0;
f73f44eb 697 s->iop.flush_journal = op_is_flush(bio->bi_opf);
da415a09 698 s->iop.wq = bcache_wq;
cafe5635 699
cafe5635
KO
700 return s;
701}
702
cafe5635
KO
703/* Cached devices */
704
705static void cached_dev_bio_complete(struct closure *cl)
706{
707 struct search *s = container_of(cl, struct search, cl);
708 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
709
710 search_free(cl);
711 cached_dev_put(dc);
712}
713
714/* Process reads */
715
cdd972b1 716static void cached_dev_cache_miss_done(struct closure *cl)
cafe5635
KO
717{
718 struct search *s = container_of(cl, struct search, cl);
719
220bb38c
KO
720 if (s->iop.replace_collision)
721 bch_mark_cache_miss_collision(s->iop.c, s->d);
cafe5635 722
491221f8
GJ
723 if (s->iop.bio)
724 bio_free_pages(s->iop.bio);
cafe5635
KO
725
726 cached_dev_bio_complete(cl);
727}
728
cdd972b1 729static void cached_dev_read_error(struct closure *cl)
cafe5635
KO
730{
731 struct search *s = container_of(cl, struct search, cl);
cdd972b1 732 struct bio *bio = &s->bio.bio;
cafe5635 733
d59b2379 734 /*
e393aa24
RH
735 * If read request hit dirty data (s->read_dirty_data is true),
736 * then recovery a failed read request from cached device may
737 * get a stale data back. So read failure recovery is only
738 * permitted when read request hit clean data in cache device,
739 * or when cache read race happened.
d59b2379 740 */
e393aa24 741 if (s->recoverable && !s->read_dirty_data) {
c37511b8
KO
742 /* Retry from the backing device: */
743 trace_bcache_read_retry(s->orig_bio);
cafe5635 744
4e4cbee9 745 s->iop.status = 0;
a5ae4300 746 do_bio_hook(s, s->orig_bio);
cafe5635
KO
747
748 /* XXX: invalidate cache */
749
bc2e6da1 750 closure_bio_submit(s->iop.c, bio, cl);
cafe5635
KO
751 }
752
cdd972b1 753 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
754}
755
cdd972b1 756static void cached_dev_read_done(struct closure *cl)
cafe5635
KO
757{
758 struct search *s = container_of(cl, struct search, cl);
759 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
760
761 /*
cdd972b1
KO
762 * We had a cache miss; cache_bio now contains data ready to be inserted
763 * into the cache.
cafe5635
KO
764 *
765 * First, we copy the data we just read from cache_bio's bounce buffers
766 * to the buffers the original bio pointed to:
767 */
768
220bb38c
KO
769 if (s->iop.bio) {
770 bio_reset(s->iop.bio);
4f024f37 771 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
74d46992 772 bio_copy_dev(s->iop.bio, s->cache_miss);
4f024f37 773 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
220bb38c 774 bch_bio_map(s->iop.bio, NULL);
cafe5635 775
220bb38c 776 bio_copy_data(s->cache_miss, s->iop.bio);
cafe5635
KO
777
778 bio_put(s->cache_miss);
779 s->cache_miss = NULL;
780 }
781
23850102 782 if (verify(dc) && s->recoverable && !s->read_dirty_data)
220bb38c 783 bch_data_verify(dc, s->orig_bio);
cafe5635
KO
784
785 bio_complete(s);
786
220bb38c
KO
787 if (s->iop.bio &&
788 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
789 BUG_ON(!s->iop.replace);
790 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635
KO
791 }
792
cdd972b1 793 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
794}
795
cdd972b1 796static void cached_dev_read_done_bh(struct closure *cl)
cafe5635
KO
797{
798 struct search *s = container_of(cl, struct search, cl);
799 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
800
220bb38c 801 bch_mark_cache_accounting(s->iop.c, s->d,
c1573137 802 !s->cache_missed, s->iop.bypass);
062d75ed 803 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
cafe5635 804
4e4cbee9 805 if (s->iop.status)
cdd972b1 806 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
23850102 807 else if (s->iop.bio || verify(dc))
cdd972b1 808 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
cafe5635 809 else
cdd972b1 810 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
cafe5635
KO
811}
812
813static int cached_dev_cache_miss(struct btree *b, struct search *s,
814 struct bio *bio, unsigned sectors)
815{
2c1953e2 816 int ret = MAP_CONTINUE;
e7c590eb 817 unsigned reada = 0;
cafe5635 818 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
cdd972b1 819 struct bio *miss, *cache_bio;
cafe5635 820
c1573137 821 s->cache_missed = 1;
822
220bb38c 823 if (s->cache_miss || s->iop.bypass) {
20d0189b 824 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2 825 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
e7c590eb
KO
826 goto out_submit;
827 }
cafe5635 828
1eff9d32
JA
829 if (!(bio->bi_opf & REQ_RAHEAD) &&
830 !(bio->bi_opf & REQ_META) &&
220bb38c 831 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
e7c590eb 832 reada = min_t(sector_t, dc->readahead >> 9,
74d46992 833 get_capacity(bio->bi_disk) - bio_end_sector(bio));
cafe5635 834
220bb38c 835 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
cafe5635 836
220bb38c 837 s->iop.replace_key = KEY(s->iop.inode,
4f024f37 838 bio->bi_iter.bi_sector + s->insert_bio_sectors,
220bb38c 839 s->insert_bio_sectors);
e7c590eb 840
220bb38c 841 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
e7c590eb
KO
842 if (ret)
843 return ret;
844
220bb38c 845 s->iop.replace = true;
1b207d80 846
20d0189b 847 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2
KO
848
849 /* btree_search_recurse()'s btree iterator is no good anymore */
850 ret = miss == bio ? MAP_DONE : -EINTR;
cafe5635 851
cdd972b1 852 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
220bb38c 853 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
cafe5635 854 dc->disk.bio_split);
cdd972b1 855 if (!cache_bio)
cafe5635
KO
856 goto out_submit;
857
4f024f37 858 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
74d46992 859 bio_copy_dev(cache_bio, miss);
4f024f37 860 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
cafe5635 861
cdd972b1
KO
862 cache_bio->bi_end_io = request_endio;
863 cache_bio->bi_private = &s->cl;
cafe5635 864
cdd972b1
KO
865 bch_bio_map(cache_bio, NULL);
866 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
867 goto out_put;
868
220bb38c
KO
869 if (reada)
870 bch_mark_cache_readahead(s->iop.c, s->d);
871
cdd972b1 872 s->cache_miss = miss;
220bb38c 873 s->iop.bio = cache_bio;
cdd972b1 874 bio_get(cache_bio);
bc2e6da1 875 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
cafe5635
KO
876
877 return ret;
878out_put:
cdd972b1 879 bio_put(cache_bio);
cafe5635 880out_submit:
e7c590eb
KO
881 miss->bi_end_io = request_endio;
882 miss->bi_private = &s->cl;
bc2e6da1 883 closure_bio_submit(s->iop.c, miss, &s->cl);
cafe5635
KO
884 return ret;
885}
886
cdd972b1 887static void cached_dev_read(struct cached_dev *dc, struct search *s)
cafe5635
KO
888{
889 struct closure *cl = &s->cl;
890
220bb38c 891 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cdd972b1 892 continue_at(cl, cached_dev_read_done_bh, NULL);
cafe5635
KO
893}
894
895/* Process writes */
896
897static void cached_dev_write_complete(struct closure *cl)
898{
899 struct search *s = container_of(cl, struct search, cl);
900 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
901
902 up_read_non_owner(&dc->writeback_lock);
903 cached_dev_bio_complete(cl);
904}
905
cdd972b1 906static void cached_dev_write(struct cached_dev *dc, struct search *s)
cafe5635
KO
907{
908 struct closure *cl = &s->cl;
909 struct bio *bio = &s->bio.bio;
4f024f37 910 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
84f0db03 911 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
cafe5635 912
220bb38c 913 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
cafe5635 914
cafe5635 915 down_read_non_owner(&dc->writeback_lock);
cafe5635 916 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
84f0db03
KO
917 /*
918 * We overlap with some dirty data undergoing background
919 * writeback, force this write to writeback
920 */
220bb38c
KO
921 s->iop.bypass = false;
922 s->iop.writeback = true;
cafe5635
KO
923 }
924
84f0db03
KO
925 /*
926 * Discards aren't _required_ to do anything, so skipping if
927 * check_overlapping returned true is ok
928 *
929 * But check_overlapping drops dirty keys for which io hasn't started,
930 * so we still want to call it.
931 */
ad0d9e76 932 if (bio_op(bio) == REQ_OP_DISCARD)
220bb38c 933 s->iop.bypass = true;
cafe5635 934
72c27061 935 if (should_writeback(dc, s->orig_bio,
23850102 936 cache_mode(dc),
220bb38c
KO
937 s->iop.bypass)) {
938 s->iop.bypass = false;
939 s->iop.writeback = true;
72c27061
KO
940 }
941
220bb38c
KO
942 if (s->iop.bypass) {
943 s->iop.bio = s->orig_bio;
944 bio_get(s->iop.bio);
cafe5635 945
ad0d9e76 946 if ((bio_op(bio) != REQ_OP_DISCARD) ||
84f0db03 947 blk_queue_discard(bdev_get_queue(dc->bdev)))
bc2e6da1 948 closure_bio_submit(s->iop.c, bio, cl);
220bb38c 949 } else if (s->iop.writeback) {
279afbad 950 bch_writeback_add(dc);
220bb38c 951 s->iop.bio = bio;
e49c7c37 952
1eff9d32 953 if (bio->bi_opf & REQ_PREFLUSH) {
e49c7c37 954 /* Also need to send a flush to the backing device */
d4eddd42 955 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
c0f04d88 956 dc->disk.bio_split);
e49c7c37 957
74d46992 958 bio_copy_dev(flush, bio);
c0f04d88
KO
959 flush->bi_end_io = request_endio;
960 flush->bi_private = cl;
70fd7614 961 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
c0f04d88 962
bc2e6da1 963 closure_bio_submit(s->iop.c, flush, cl);
e49c7c37 964 }
84f0db03 965 } else {
59d276fe 966 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
84f0db03 967
bc2e6da1 968 closure_bio_submit(s->iop.c, bio, cl);
cafe5635 969 }
84f0db03 970
220bb38c 971 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 972 continue_at(cl, cached_dev_write_complete, NULL);
cafe5635
KO
973}
974
a34a8bfd 975static void cached_dev_nodata(struct closure *cl)
cafe5635 976{
a34a8bfd 977 struct search *s = container_of(cl, struct search, cl);
cafe5635
KO
978 struct bio *bio = &s->bio.bio;
979
220bb38c
KO
980 if (s->iop.flush_journal)
981 bch_journal_meta(s->iop.c, cl);
cafe5635 982
84f0db03 983 /* If it's a flush, we send the flush to the backing device too */
bc2e6da1 984 closure_bio_submit(s->iop.c, bio, cl);
cafe5635
KO
985
986 continue_at(cl, cached_dev_bio_complete, NULL);
987}
988
989/* Cached devices - read & write stuff */
990
dece1635
JA
991static blk_qc_t cached_dev_make_request(struct request_queue *q,
992 struct bio *bio)
cafe5635
KO
993{
994 struct search *s;
74d46992 995 struct bcache_device *d = bio->bi_disk->private_data;
cafe5635 996 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
aae4933d 997 int rw = bio_data_dir(bio);
cafe5635 998
bc2e6da1
CL
999 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1000 bio->bi_status = BLK_STS_IOERR;
1001 bio_endio(bio);
1002 return BLK_QC_T_NONE;
1003 }
1004
d62e26b3 1005 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
cafe5635 1006
74d46992 1007 bio_set_dev(bio, dc->bdev);
4f024f37 1008 bio->bi_iter.bi_sector += dc->sb.data_offset;
cafe5635
KO
1009
1010 if (cached_dev_get(dc)) {
1011 s = search_alloc(bio, d);
220bb38c 1012 trace_bcache_request_start(s->d, bio);
cafe5635 1013
4f024f37 1014 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
1015 /*
1016 * can't call bch_journal_meta from under
1017 * generic_make_request
1018 */
1019 continue_at_nobarrier(&s->cl,
1020 cached_dev_nodata,
1021 bcache_wq);
1022 } else {
220bb38c 1023 s->iop.bypass = check_should_bypass(dc, bio);
84f0db03
KO
1024
1025 if (rw)
cdd972b1 1026 cached_dev_write(dc, s);
84f0db03 1027 else
cdd972b1 1028 cached_dev_read(dc, s);
84f0db03 1029 }
cafe5635 1030 } else {
ad0d9e76 1031 if ((bio_op(bio) == REQ_OP_DISCARD) &&
cafe5635 1032 !blk_queue_discard(bdev_get_queue(dc->bdev)))
4246a0b6 1033 bio_endio(bio);
cafe5635 1034 else
749b61da 1035 generic_make_request(bio);
cafe5635 1036 }
dece1635
JA
1037
1038 return BLK_QC_T_NONE;
cafe5635
KO
1039}
1040
1041static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1042 unsigned int cmd, unsigned long arg)
1043{
1044 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1045 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1046}
1047
1048static int cached_dev_congested(void *data, int bits)
1049{
1050 struct bcache_device *d = data;
1051 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1052 struct request_queue *q = bdev_get_queue(dc->bdev);
1053 int ret = 0;
1054
dc3b17cc 1055 if (bdi_congested(q->backing_dev_info, bits))
cafe5635
KO
1056 return 1;
1057
1058 if (cached_dev_get(dc)) {
1059 unsigned i;
1060 struct cache *ca;
1061
1062 for_each_cache(ca, d->c, i) {
1063 q = bdev_get_queue(ca->bdev);
dc3b17cc 1064 ret |= bdi_congested(q->backing_dev_info, bits);
cafe5635
KO
1065 }
1066
1067 cached_dev_put(dc);
1068 }
1069
1070 return ret;
1071}
1072
1073void bch_cached_dev_request_init(struct cached_dev *dc)
1074{
1075 struct gendisk *g = dc->disk.disk;
1076
1077 g->queue->make_request_fn = cached_dev_make_request;
dc3b17cc 1078 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
cafe5635
KO
1079 dc->disk.cache_miss = cached_dev_cache_miss;
1080 dc->disk.ioctl = cached_dev_ioctl;
1081}
1082
1083/* Flash backed devices */
1084
1085static int flash_dev_cache_miss(struct btree *b, struct search *s,
1086 struct bio *bio, unsigned sectors)
1087{
1b4eaf3d 1088 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
cafe5635 1089
1b4eaf3d
KO
1090 swap(bio->bi_iter.bi_size, bytes);
1091 zero_fill_bio(bio);
1092 swap(bio->bi_iter.bi_size, bytes);
cafe5635 1093
1b4eaf3d 1094 bio_advance(bio, bytes);
8e51e414 1095
4f024f37 1096 if (!bio->bi_iter.bi_size)
2c1953e2 1097 return MAP_DONE;
cafe5635 1098
2c1953e2 1099 return MAP_CONTINUE;
cafe5635
KO
1100}
1101
a34a8bfd
KO
1102static void flash_dev_nodata(struct closure *cl)
1103{
1104 struct search *s = container_of(cl, struct search, cl);
1105
220bb38c
KO
1106 if (s->iop.flush_journal)
1107 bch_journal_meta(s->iop.c, cl);
a34a8bfd
KO
1108
1109 continue_at(cl, search_free, NULL);
1110}
1111
dece1635
JA
1112static blk_qc_t flash_dev_make_request(struct request_queue *q,
1113 struct bio *bio)
cafe5635
KO
1114{
1115 struct search *s;
1116 struct closure *cl;
74d46992 1117 struct bcache_device *d = bio->bi_disk->private_data;
aae4933d 1118 int rw = bio_data_dir(bio);
cafe5635 1119
bc2e6da1
CL
1120 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1121 bio->bi_status = BLK_STS_IOERR;
1122 bio_endio(bio);
1123 return BLK_QC_T_NONE;
1124 }
1125
d62e26b3 1126 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
cafe5635
KO
1127
1128 s = search_alloc(bio, d);
1129 cl = &s->cl;
1130 bio = &s->bio.bio;
1131
220bb38c 1132 trace_bcache_request_start(s->d, bio);
cafe5635 1133
4f024f37 1134 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
1135 /*
1136 * can't call bch_journal_meta from under
1137 * generic_make_request
1138 */
1139 continue_at_nobarrier(&s->cl,
1140 flash_dev_nodata,
1141 bcache_wq);
dece1635 1142 return BLK_QC_T_NONE;
84f0db03 1143 } else if (rw) {
220bb38c 1144 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
4f024f37 1145 &KEY(d->id, bio->bi_iter.bi_sector, 0),
8e51e414 1146 &KEY(d->id, bio_end_sector(bio), 0));
cafe5635 1147
ad0d9e76 1148 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
220bb38c
KO
1149 s->iop.writeback = true;
1150 s->iop.bio = bio;
cafe5635 1151
220bb38c 1152 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 1153 } else {
220bb38c 1154 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cafe5635
KO
1155 }
1156
1157 continue_at(cl, search_free, NULL);
dece1635 1158 return BLK_QC_T_NONE;
cafe5635
KO
1159}
1160
1161static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1162 unsigned int cmd, unsigned long arg)
1163{
1164 return -ENOTTY;
1165}
1166
1167static int flash_dev_congested(void *data, int bits)
1168{
1169 struct bcache_device *d = data;
1170 struct request_queue *q;
1171 struct cache *ca;
1172 unsigned i;
1173 int ret = 0;
1174
1175 for_each_cache(ca, d->c, i) {
1176 q = bdev_get_queue(ca->bdev);
dc3b17cc 1177 ret |= bdi_congested(q->backing_dev_info, bits);
cafe5635
KO
1178 }
1179
1180 return ret;
1181}
1182
1183void bch_flash_dev_request_init(struct bcache_device *d)
1184{
1185 struct gendisk *g = d->disk;
1186
1187 g->queue->make_request_fn = flash_dev_make_request;
dc3b17cc 1188 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
cafe5635
KO
1189 d->cache_miss = flash_dev_cache_miss;
1190 d->ioctl = flash_dev_ioctl;
1191}
1192
1193void bch_request_exit(void)
1194{
cafe5635
KO
1195 if (bch_search_cache)
1196 kmem_cache_destroy(bch_search_cache);
1197}
1198
1199int __init bch_request_init(void)
1200{
1201 bch_search_cache = KMEM_CACHE(search, 0);
1202 if (!bch_search_cache)
1203 return -ENOMEM;
1204
cafe5635
KO
1205 return 0;
1206}