]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/bcache/writeback.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / drivers / md / bcache / writeback.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
279afbad 13#include "writeback.h"
cafe5635 14
5e6926da 15#include <linux/delay.h>
5e6926da 16#include <linux/kthread.h>
e6017571 17#include <linux/sched/clock.h>
c37511b8
KO
18#include <trace/events/bcache.h>
19
cafe5635 20/* Rate limiting */
95a9e126 21static uint64_t __calc_target_rate(struct cached_dev *dc)
cafe5635
KO
22{
23 struct cache_set *c = dc->disk.c;
95a9e126
ML
24
25 /*
26 * This is the size of the cache, minus the amount used for
27 * flash-only devices
28 */
a8394090
TJ
29 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30 bcache_flash_devs_sectors_dirty(c);
95a9e126
ML
31
32 /*
33 * Unfortunately there is no control of global dirty data. If the
34 * user states that they want 10% dirty data in the cache, and has,
35 * e.g., 5 backing volumes of equal size, we try and ensure each
36 * backing volume uses about 2% of the cache for dirty data.
37 */
38 uint32_t bdev_share =
39 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
40 c->cached_dev_sectors);
41
cafe5635
KO
42 uint64_t cache_dirty_target =
43 div_u64(cache_sectors * dc->writeback_percent, 100);
cafe5635 44
95a9e126
ML
45 /* Ensure each backing dev gets at least one dirty share */
46 if (bdev_share < 1)
47 bdev_share = 1;
48
49 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
50}
51
52static void __update_writeback_rate(struct cached_dev *dc)
53{
1d316e65
ML
54 /*
55 * PI controller:
56 * Figures out the amount that should be written per second.
57 *
58 * First, the error (number of sectors that are dirty beyond our
59 * target) is calculated. The error is accumulated (numerically
60 * integrated).
61 *
62 * Then, the proportional value and integral value are scaled
63 * based on configured values. These are stored as inverses to
64 * avoid fixed point math and to make configuration easy-- e.g.
65 * the default value of 40 for writeback_rate_p_term_inverse
66 * attempts to write at a rate that would retire all the dirty
67 * blocks in 40 seconds.
68 *
69 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
70 * of the error is accumulated in the integral term per second.
71 * This acts as a slow, long-term average that is not subject to
72 * variations in usage like the p term.
73 */
95a9e126 74 int64_t target = __calc_target_rate(dc);
279afbad 75 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
1d316e65
ML
76 int64_t error = dirty - target;
77 int64_t proportional_scaled =
78 div_s64(error, dc->writeback_rate_p_term_inverse);
e41166c5
ML
79 int64_t integral_scaled;
80 uint32_t new_rate;
1d316e65
ML
81
82 if ((error < 0 && dc->writeback_rate_integral > 0) ||
83 (error > 0 && time_before64(local_clock(),
84 dc->writeback_rate.next + NSEC_PER_MSEC))) {
85 /*
86 * Only decrease the integral term if it's more than
87 * zero. Only increase the integral term if the device
88 * is keeping up. (Don't wind up the integral
89 * ineffectively in either case).
90 *
91 * It's necessary to scale this by
92 * writeback_rate_update_seconds to keep the integral
93 * term dimensioned properly.
94 */
95 dc->writeback_rate_integral += error *
96 dc->writeback_rate_update_seconds;
97 }
cafe5635 98
1d316e65
ML
99 integral_scaled = div_s64(dc->writeback_rate_integral,
100 dc->writeback_rate_i_term_inverse);
cafe5635 101
e41166c5
ML
102 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
103 dc->writeback_rate_minimum, NSEC_PER_SEC);
16749c23 104
1d316e65
ML
105 dc->writeback_rate_proportional = proportional_scaled;
106 dc->writeback_rate_integral_scaled = integral_scaled;
107 dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
108 dc->writeback_rate.rate = new_rate;
cafe5635 109 dc->writeback_rate_target = target;
cafe5635
KO
110}
111
112static void update_writeback_rate(struct work_struct *work)
113{
114 struct cached_dev *dc = container_of(to_delayed_work(work),
115 struct cached_dev,
116 writeback_rate_update);
bc2e6da1 117 struct cache_set *c = dc->disk.c;
cafe5635 118
85c3a370
CL
119 /*
120 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
121 * cancel_delayed_work_sync().
122 */
123 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
124 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
125 smp_mb();
126
bc2e6da1
CL
127 /*
128 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
129 * check it here too.
130 */
131 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
132 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
85c3a370
CL
133 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
134 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
135 smp_mb();
136 return;
137 }
138
cafe5635
KO
139 down_read(&dc->writeback_lock);
140
141 if (atomic_read(&dc->has_dirty) &&
142 dc->writeback_percent)
143 __update_writeback_rate(dc);
144
145 up_read(&dc->writeback_lock);
5e6926da 146
bc2e6da1
CL
147 /*
148 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
149 * check it here too.
150 */
151 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
152 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
85c3a370 153 schedule_delayed_work(&dc->writeback_rate_update,
5e6926da 154 dc->writeback_rate_update_seconds * HZ);
85c3a370
CL
155 }
156
157 /*
158 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
159 * cancel_delayed_work_sync().
160 */
161 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
162 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
163 smp_mb();
cafe5635
KO
164}
165
166static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
167{
c4d951dd 168 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
cafe5635
KO
169 !dc->writeback_percent)
170 return 0;
171
16749c23 172 return bch_next_delay(&dc->writeback_rate, sectors);
cafe5635
KO
173}
174
5e6926da
KO
175struct dirty_io {
176 struct closure cl;
177 struct cached_dev *dc;
178 struct bio bio;
179};
72c27061 180
cafe5635
KO
181static void dirty_init(struct keybuf_key *w)
182{
183 struct dirty_io *io = w->private;
184 struct bio *bio = &io->bio;
185
3a83f467
ML
186 bio_init(bio, bio->bi_inline_vecs,
187 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
cafe5635
KO
188 if (!io->dc->writeback_percent)
189 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
190
4f024f37 191 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
cafe5635 192 bio->bi_private = w;
169ef1cf 193 bch_bio_map(bio, NULL);
cafe5635
KO
194}
195
cafe5635
KO
196static void dirty_io_destructor(struct closure *cl)
197{
198 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
199 kfree(io);
200}
201
202static void write_dirty_finish(struct closure *cl)
203{
204 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
205 struct keybuf_key *w = io->bio.bi_private;
206 struct cached_dev *dc = io->dc;
cafe5635 207
491221f8 208 bio_free_pages(&io->bio);
cafe5635
KO
209
210 /* This is kind of a dumb way of signalling errors. */
211 if (KEY_DIRTY(&w->key)) {
cc7b8819 212 int ret;
cafe5635 213 unsigned i;
0b93207a
KO
214 struct keylist keys;
215
0b93207a 216 bch_keylist_init(&keys);
cafe5635 217
1b207d80
KO
218 bkey_copy(keys.top, &w->key);
219 SET_KEY_DIRTY(keys.top, false);
220 bch_keylist_push(&keys);
cafe5635
KO
221
222 for (i = 0; i < KEY_PTRS(&w->key); i++)
223 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
224
cc7b8819 225 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
cafe5635 226
6054c6d4 227 if (ret)
c37511b8
KO
228 trace_bcache_writeback_collision(&w->key);
229
6054c6d4 230 atomic_long_inc(ret
cafe5635
KO
231 ? &dc->disk.c->writeback_keys_failed
232 : &dc->disk.c->writeback_keys_done);
233 }
234
235 bch_keybuf_del(&dc->writeback_keys, w);
c2a4f318 236 up(&dc->in_flight);
cafe5635
KO
237
238 closure_return_with_destructor(cl, dirty_io_destructor);
239}
240
4246a0b6 241static void dirty_endio(struct bio *bio)
cafe5635
KO
242{
243 struct keybuf_key *w = bio->bi_private;
244 struct dirty_io *io = w->private;
245
44edbfe5 246 if (bio->bi_status) {
cafe5635 247 SET_KEY_DIRTY(&w->key, false);
44edbfe5
CL
248 bch_count_backing_io_errors(io->dc, bio);
249 }
cafe5635
KO
250
251 closure_put(&io->cl);
252}
253
254static void write_dirty(struct closure *cl)
255{
256 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
257 struct keybuf_key *w = io->bio.bi_private;
258
5fa89fb9
ML
259 /*
260 * IO errors are signalled using the dirty bit on the key.
261 * If we failed to read, we should not attempt to write to the
262 * backing device. Instead, immediately go to write_dirty_finish
263 * to clean up.
264 */
265 if (KEY_DIRTY(&w->key)) {
266 dirty_init(w);
267 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
268 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
269 bio_set_dev(&io->bio, io->dc->bdev);
270 io->bio.bi_end_io = dirty_endio;
cafe5635 271
55afa739 272 /* I/O request sent to backing device */
bc2e6da1 273 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
5fa89fb9 274 }
cafe5635 275
9baf3097 276 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
cafe5635
KO
277}
278
4246a0b6 279static void read_dirty_endio(struct bio *bio)
cafe5635
KO
280{
281 struct keybuf_key *w = bio->bi_private;
282 struct dirty_io *io = w->private;
283
284 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
4e4cbee9 285 bio->bi_status, "reading dirty data from cache");
cafe5635 286
4246a0b6 287 dirty_endio(bio);
cafe5635
KO
288}
289
290static void read_dirty_submit(struct closure *cl)
291{
292 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
293
bc2e6da1 294 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
cafe5635 295
9baf3097 296 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
cafe5635
KO
297}
298
5e6926da 299static void read_dirty(struct cached_dev *dc)
cafe5635 300{
5e6926da 301 unsigned delay = 0;
cafe5635
KO
302 struct keybuf_key *w;
303 struct dirty_io *io;
5e6926da
KO
304 struct closure cl;
305
306 closure_init_stack(&cl);
cafe5635
KO
307
308 /*
309 * XXX: if we error, background writeback just spins. Should use some
310 * mempools.
311 */
312
bc2e6da1
CL
313 while (!kthread_should_stop() &&
314 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags)) {
5e6926da 315
cafe5635
KO
316 w = bch_keybuf_next(&dc->writeback_keys);
317 if (!w)
318 break;
319
320 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
321
5e6926da
KO
322 if (KEY_START(&w->key) != dc->last_read ||
323 jiffies_to_msecs(delay) > 50)
324 while (!kthread_should_stop() && delay)
9e5c3535 325 delay = schedule_timeout_interruptible(delay);
cafe5635
KO
326
327 dc->last_read = KEY_OFFSET(&w->key);
328
329 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
330 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
331 GFP_KERNEL);
332 if (!io)
333 goto err;
334
335 w->private = io;
336 io->dc = dc;
337
338 dirty_init(w);
ad0d9e76 339 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
4f024f37 340 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
74d46992 341 bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
cafe5635
KO
342 io->bio.bi_end_io = read_dirty_endio;
343
8e51e414 344 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
cafe5635
KO
345 goto err_free;
346
c37511b8 347 trace_bcache_writeback(&w->key);
cafe5635 348
c2a4f318 349 down(&dc->in_flight);
5e6926da 350 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
cafe5635
KO
351
352 delay = writeback_delay(dc, KEY_SIZE(&w->key));
cafe5635
KO
353 }
354
355 if (0) {
356err_free:
357 kfree(w->private);
358err:
359 bch_keybuf_del(&dc->writeback_keys, w);
360 }
361
c2a4f318
KO
362 /*
363 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
364 * freed) before refilling again
365 */
5e6926da
KO
366 closure_sync(&cl);
367}
368
369/* Scan for dirty data */
370
371void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
372 uint64_t offset, int nr_sectors)
373{
374 struct bcache_device *d = c->devices[inode];
48a915a8 375 unsigned stripe_offset, stripe, sectors_dirty;
5e6926da
KO
376
377 if (!d)
378 return;
379
48a915a8 380 stripe = offset_to_stripe(d, offset);
5e6926da
KO
381 stripe_offset = offset & (d->stripe_size - 1);
382
383 while (nr_sectors) {
384 int s = min_t(unsigned, abs(nr_sectors),
385 d->stripe_size - stripe_offset);
386
387 if (nr_sectors < 0)
388 s = -s;
389
48a915a8
KO
390 if (stripe >= d->nr_stripes)
391 return;
392
393 sectors_dirty = atomic_add_return(s,
394 d->stripe_sectors_dirty + stripe);
395 if (sectors_dirty == d->stripe_size)
396 set_bit(stripe, d->full_dirty_stripes);
397 else
398 clear_bit(stripe, d->full_dirty_stripes);
399
5e6926da
KO
400 nr_sectors -= s;
401 stripe_offset = 0;
402 stripe++;
403 }
404}
405
406static bool dirty_pred(struct keybuf *buf, struct bkey *k)
407{
627ccd20
KO
408 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
409
410 BUG_ON(KEY_INODE(k) != dc->disk.id);
411
5e6926da
KO
412 return KEY_DIRTY(k);
413}
414
48a915a8 415static void refill_full_stripes(struct cached_dev *dc)
5e6926da 416{
48a915a8
KO
417 struct keybuf *buf = &dc->writeback_keys;
418 unsigned start_stripe, stripe, next_stripe;
419 bool wrapped = false;
420
421 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
5e6926da 422
48a915a8
KO
423 if (stripe >= dc->disk.nr_stripes)
424 stripe = 0;
5e6926da 425
48a915a8 426 start_stripe = stripe;
5e6926da
KO
427
428 while (1) {
48a915a8
KO
429 stripe = find_next_bit(dc->disk.full_dirty_stripes,
430 dc->disk.nr_stripes, stripe);
5e6926da 431
48a915a8
KO
432 if (stripe == dc->disk.nr_stripes)
433 goto next;
5e6926da 434
48a915a8
KO
435 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
436 dc->disk.nr_stripes, stripe);
437
438 buf->last_scanned = KEY(dc->disk.id,
439 stripe * dc->disk.stripe_size, 0);
440
441 bch_refill_keybuf(dc->disk.c, buf,
442 &KEY(dc->disk.id,
443 next_stripe * dc->disk.stripe_size, 0),
444 dirty_pred);
445
446 if (array_freelist_empty(&buf->freelist))
447 return;
448
449 stripe = next_stripe;
450next:
451 if (wrapped && stripe > start_stripe)
452 return;
453
454 if (stripe == dc->disk.nr_stripes) {
455 stripe = 0;
456 wrapped = true;
457 }
5e6926da
KO
458 }
459}
460
627ccd20
KO
461/*
462 * Returns true if we scanned the entire disk
463 */
5e6926da
KO
464static bool refill_dirty(struct cached_dev *dc)
465{
466 struct keybuf *buf = &dc->writeback_keys;
627ccd20 467 struct bkey start = KEY(dc->disk.id, 0, 0);
5e6926da 468 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
627ccd20
KO
469 struct bkey start_pos;
470
471 /*
472 * make sure keybuf pos is inside the range for this disk - at bringup
473 * we might not be attached yet so this disk's inode nr isn't
474 * initialized then
475 */
476 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
477 bkey_cmp(&buf->last_scanned, &end) > 0)
478 buf->last_scanned = start;
48a915a8
KO
479
480 if (dc->partial_stripes_expensive) {
481 refill_full_stripes(dc);
482 if (array_freelist_empty(&buf->freelist))
483 return false;
484 }
5e6926da 485
627ccd20 486 start_pos = buf->last_scanned;
48a915a8 487 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
5e6926da 488
627ccd20
KO
489 if (bkey_cmp(&buf->last_scanned, &end) < 0)
490 return false;
491
492 /*
493 * If we get to the end start scanning again from the beginning, and
494 * only scan up to where we initially started scanning from:
495 */
496 buf->last_scanned = start;
497 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
498
499 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
5e6926da
KO
500}
501
502static int bch_writeback_thread(void *arg)
503{
504 struct cached_dev *dc = arg;
bc2e6da1 505 struct cache_set *c = dc->disk.c;
5e6926da
KO
506 bool searched_full_index;
507
a8500fc8
ML
508 bch_ratelimit_reset(&dc->writeback_rate);
509
bc2e6da1
CL
510 while (!kthread_should_stop() &&
511 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
5e6926da 512 down_write(&dc->writeback_lock);
412c93e2 513 set_current_state(TASK_INTERRUPTIBLE);
9b76f79e
CL
514 /*
515 * If the bache device is detaching, skip here and continue
516 * to perform writeback. Otherwise, if no dirty data on cache,
517 * or there is dirty data on cache but writeback is disabled,
518 * the writeback thread should sleep here and wait for others
519 * to wake up it.
520 */
521 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
522 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
5e6926da 523 up_write(&dc->writeback_lock);
5e6926da 524
bc2e6da1
CL
525 if (kthread_should_stop() ||
526 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
412c93e2 527 set_current_state(TASK_RUNNING);
2ec6bf71 528 break;
412c93e2 529 }
5e6926da 530
5e6926da
KO
531 schedule();
532 continue;
533 }
412c93e2 534 set_current_state(TASK_RUNNING);
5e6926da
KO
535
536 searched_full_index = refill_dirty(dc);
537
538 if (searched_full_index &&
539 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
540 atomic_set(&dc->has_dirty, 0);
5e6926da
KO
541 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
542 bch_write_bdev_super(dc, NULL);
9b76f79e
CL
543 /*
544 * If bcache device is detaching via sysfs interface,
545 * writeback thread should stop after there is no dirty
546 * data on cache. BCACHE_DEV_DETACHING flag is set in
547 * bch_cached_dev_detach().
548 */
5bc02837
SH
549 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
550 up_write(&dc->writeback_lock);
9b76f79e 551 break;
5bc02837 552 }
5e6926da
KO
553 }
554
555 up_write(&dc->writeback_lock);
556
5e6926da
KO
557 read_dirty(dc);
558
559 if (searched_full_index) {
560 unsigned delay = dc->writeback_delay * HZ;
561
562 while (delay &&
563 !kthread_should_stop() &&
bc2e6da1 564 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
c4d951dd 565 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
9e5c3535 566 delay = schedule_timeout_interruptible(delay);
a8500fc8
ML
567
568 bch_ratelimit_reset(&dc->writeback_rate);
5e6926da
KO
569 }
570 }
571
7c8e213f
CL
572 if (dc->writeback_write_wq) {
573 flush_workqueue(dc->writeback_write_wq);
574 destroy_workqueue(dc->writeback_write_wq);
575 }
2ec6bf71 576 cached_dev_put(dc);
bc2e6da1 577 wait_for_kthread_stop();
2ec6bf71 578
5e6926da 579 return 0;
cafe5635
KO
580}
581
444fc0b6
KO
582/* Init */
583
c18536a7
KO
584struct sectors_dirty_init {
585 struct btree_op op;
586 unsigned inode;
587};
588
589static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
48dad8ba 590 struct bkey *k)
444fc0b6 591{
c18536a7
KO
592 struct sectors_dirty_init *op = container_of(_op,
593 struct sectors_dirty_init, op);
48dad8ba
KO
594 if (KEY_INODE(k) > op->inode)
595 return MAP_DONE;
444fc0b6 596
48dad8ba
KO
597 if (KEY_DIRTY(k))
598 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
599 KEY_START(k), KEY_SIZE(k));
600
601 return MAP_CONTINUE;
444fc0b6
KO
602}
603
175206cf 604void bch_sectors_dirty_init(struct bcache_device *d)
444fc0b6 605{
c18536a7 606 struct sectors_dirty_init op;
444fc0b6 607
b54d6934 608 bch_btree_op_init(&op.op, -1);
175206cf 609 op.inode = d->id;
48dad8ba 610
175206cf 611 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
48dad8ba 612 sectors_dirty_init_fn, 0);
444fc0b6
KO
613}
614
9e5c3535 615void bch_cached_dev_writeback_init(struct cached_dev *dc)
cafe5635 616{
c2a4f318 617 sema_init(&dc->in_flight, 64);
cafe5635 618 init_rwsem(&dc->writeback_lock);
72c27061 619 bch_keybuf_init(&dc->writeback_keys);
cafe5635
KO
620
621 dc->writeback_metadata = true;
7f8988c0 622 dc->writeback_running = false;
cafe5635
KO
623 dc->writeback_percent = 10;
624 dc->writeback_delay = 30;
625 dc->writeback_rate.rate = 1024;
ae82ddbf 626 dc->writeback_rate_minimum = 8;
cafe5635 627
d3f674a6 628 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1d316e65
ML
629 dc->writeback_rate_p_term_inverse = 40;
630 dc->writeback_rate_i_term_inverse = 10000;
cafe5635 631
85c3a370 632 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
9e5c3535
SP
633 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
634}
635
636int bch_cached_dev_writeback_start(struct cached_dev *dc)
637{
9baf3097
TJ
638 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
639 WQ_MEM_RECLAIM, 0);
640 if (!dc->writeback_write_wq)
641 return -ENOMEM;
642
2ec6bf71 643 cached_dev_get(dc);
5e6926da
KO
644 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
645 "bcache_writeback");
2ec6bf71
CL
646 if (IS_ERR(dc->writeback_thread)) {
647 cached_dev_put(dc);
96eb7fba 648 destroy_workqueue(dc->writeback_write_wq);
5e6926da 649 return PTR_ERR(dc->writeback_thread);
2ec6bf71 650 }
7f8988c0 651 dc->writeback_running = true;
5e6926da 652
85c3a370 653 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
cafe5635
KO
654 schedule_delayed_work(&dc->writeback_rate_update,
655 dc->writeback_rate_update_seconds * HZ);
cafe5635 656
9e5c3535
SP
657 bch_writeback_queue(dc);
658
cafe5635
KO
659 return 0;
660}