]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/dm-cache-policy-smq.c
dm cache policy smq: allow demotions to happen even during continuous IO
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm-cache-policy-smq.c
CommitLineData
66a63635
JT
1/*
2 * Copyright (C) 2015 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
b29d4986 7#include "dm-cache-background-tracker.h"
66a63635 8#include "dm-cache-policy-internal.h"
b29d4986 9#include "dm-cache-policy.h"
66a63635
JT
10#include "dm.h"
11
12#include <linux/hash.h>
13#include <linux/jiffies.h>
14#include <linux/module.h>
15#include <linux/mutex.h>
16#include <linux/vmalloc.h>
17#include <linux/math64.h>
18
19#define DM_MSG_PREFIX "cache-policy-smq"
20
21/*----------------------------------------------------------------*/
22
23/*
24 * Safe division functions that return zero on divide by zero.
25 */
26static unsigned safe_div(unsigned n, unsigned d)
27{
28 return d ? n / d : 0u;
29}
30
31static unsigned safe_mod(unsigned n, unsigned d)
32{
33 return d ? n % d : 0u;
34}
35
36/*----------------------------------------------------------------*/
37
38struct entry {
39 unsigned hash_next:28;
40 unsigned prev:28;
41 unsigned next:28;
b29d4986 42 unsigned level:6;
66a63635
JT
43 bool dirty:1;
44 bool allocated:1;
45 bool sentinel:1;
b29d4986 46 bool pending_work:1;
66a63635
JT
47
48 dm_oblock_t oblock;
49};
50
51/*----------------------------------------------------------------*/
52
53#define INDEXER_NULL ((1u << 28u) - 1u)
54
55/*
56 * An entry_space manages a set of entries that we use for the queues.
57 * The clean and dirty queues share entries, so this object is separate
58 * from the queue itself.
59 */
60struct entry_space {
61 struct entry *begin;
62 struct entry *end;
63};
64
65static int space_init(struct entry_space *es, unsigned nr_entries)
66{
67 if (!nr_entries) {
68 es->begin = es->end = NULL;
69 return 0;
70 }
71
72 es->begin = vzalloc(sizeof(struct entry) * nr_entries);
73 if (!es->begin)
74 return -ENOMEM;
75
76 es->end = es->begin + nr_entries;
77 return 0;
78}
79
80static void space_exit(struct entry_space *es)
81{
82 vfree(es->begin);
83}
84
85static struct entry *__get_entry(struct entry_space *es, unsigned block)
86{
87 struct entry *e;
88
89 e = es->begin + block;
90 BUG_ON(e >= es->end);
91
92 return e;
93}
94
95static unsigned to_index(struct entry_space *es, struct entry *e)
96{
97 BUG_ON(e < es->begin || e >= es->end);
98 return e - es->begin;
99}
100
101static struct entry *to_entry(struct entry_space *es, unsigned block)
102{
103 if (block == INDEXER_NULL)
104 return NULL;
105
106 return __get_entry(es, block);
107}
108
109/*----------------------------------------------------------------*/
110
111struct ilist {
112 unsigned nr_elts; /* excluding sentinel entries */
113 unsigned head, tail;
114};
115
116static void l_init(struct ilist *l)
117{
118 l->nr_elts = 0;
119 l->head = l->tail = INDEXER_NULL;
120}
121
122static struct entry *l_head(struct entry_space *es, struct ilist *l)
123{
124 return to_entry(es, l->head);
125}
126
127static struct entry *l_tail(struct entry_space *es, struct ilist *l)
128{
129 return to_entry(es, l->tail);
130}
131
132static struct entry *l_next(struct entry_space *es, struct entry *e)
133{
134 return to_entry(es, e->next);
135}
136
137static struct entry *l_prev(struct entry_space *es, struct entry *e)
138{
139 return to_entry(es, e->prev);
140}
141
142static bool l_empty(struct ilist *l)
143{
144 return l->head == INDEXER_NULL;
145}
146
147static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
148{
149 struct entry *head = l_head(es, l);
150
151 e->next = l->head;
152 e->prev = INDEXER_NULL;
153
154 if (head)
155 head->prev = l->head = to_index(es, e);
156 else
157 l->head = l->tail = to_index(es, e);
158
159 if (!e->sentinel)
160 l->nr_elts++;
161}
162
163static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
164{
165 struct entry *tail = l_tail(es, l);
166
167 e->next = INDEXER_NULL;
168 e->prev = l->tail;
169
170 if (tail)
171 tail->next = l->tail = to_index(es, e);
172 else
173 l->head = l->tail = to_index(es, e);
174
175 if (!e->sentinel)
176 l->nr_elts++;
177}
178
179static void l_add_before(struct entry_space *es, struct ilist *l,
180 struct entry *old, struct entry *e)
181{
182 struct entry *prev = l_prev(es, old);
183
184 if (!prev)
185 l_add_head(es, l, e);
186
187 else {
188 e->prev = old->prev;
189 e->next = to_index(es, old);
190 prev->next = old->prev = to_index(es, e);
191
192 if (!e->sentinel)
193 l->nr_elts++;
194 }
195}
196
197static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
198{
199 struct entry *prev = l_prev(es, e);
200 struct entry *next = l_next(es, e);
201
202 if (prev)
203 prev->next = e->next;
204 else
205 l->head = e->next;
206
207 if (next)
208 next->prev = e->prev;
209 else
210 l->tail = e->prev;
211
212 if (!e->sentinel)
213 l->nr_elts--;
214}
215
216static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
217{
218 struct entry *e;
219
220 for (e = l_tail(es, l); e; e = l_prev(es, e))
221 if (!e->sentinel) {
222 l_del(es, l, e);
223 return e;
224 }
225
226 return NULL;
227}
228
229/*----------------------------------------------------------------*/
230
231/*
232 * The stochastic-multi-queue is a set of lru lists stacked into levels.
233 * Entries are moved up levels when they are used, which loosely orders the
234 * most accessed entries in the top levels and least in the bottom. This
235 * structure is *much* better than a single lru list.
236 */
237#define MAX_LEVELS 64u
238
239struct queue {
240 struct entry_space *es;
241
242 unsigned nr_elts;
243 unsigned nr_levels;
244 struct ilist qs[MAX_LEVELS];
245
246 /*
247 * We maintain a count of the number of entries we would like in each
248 * level.
249 */
250 unsigned last_target_nr_elts;
251 unsigned nr_top_levels;
252 unsigned nr_in_top_levels;
253 unsigned target_count[MAX_LEVELS];
254};
255
256static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
257{
258 unsigned i;
259
260 q->es = es;
261 q->nr_elts = 0;
262 q->nr_levels = nr_levels;
263
264 for (i = 0; i < q->nr_levels; i++) {
265 l_init(q->qs + i);
266 q->target_count[i] = 0u;
267 }
268
269 q->last_target_nr_elts = 0u;
270 q->nr_top_levels = 0u;
271 q->nr_in_top_levels = 0u;
272}
273
274static unsigned q_size(struct queue *q)
275{
276 return q->nr_elts;
277}
278
279/*
280 * Insert an entry to the back of the given level.
281 */
282static void q_push(struct queue *q, struct entry *e)
283{
b29d4986
JT
284 BUG_ON(e->pending_work);
285
66a63635
JT
286 if (!e->sentinel)
287 q->nr_elts++;
288
289 l_add_tail(q->es, q->qs + e->level, e);
290}
291
b29d4986
JT
292static void q_push_front(struct queue *q, struct entry *e)
293{
294 BUG_ON(e->pending_work);
295
296 if (!e->sentinel)
297 q->nr_elts++;
298
299 l_add_head(q->es, q->qs + e->level, e);
300}
301
66a63635
JT
302static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
303{
b29d4986
JT
304 BUG_ON(e->pending_work);
305
66a63635
JT
306 if (!e->sentinel)
307 q->nr_elts++;
308
309 l_add_before(q->es, q->qs + e->level, old, e);
310}
311
312static void q_del(struct queue *q, struct entry *e)
313{
314 l_del(q->es, q->qs + e->level, e);
315 if (!e->sentinel)
316 q->nr_elts--;
317}
318
319/*
320 * Return the oldest entry of the lowest populated level.
321 */
322static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
323{
324 unsigned level;
325 struct entry *e;
326
327 max_level = min(max_level, q->nr_levels);
328
329 for (level = 0; level < max_level; level++)
330 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
331 if (e->sentinel) {
332 if (can_cross_sentinel)
333 continue;
334 else
335 break;
336 }
337
338 return e;
339 }
340
341 return NULL;
342}
343
344static struct entry *q_pop(struct queue *q)
345{
346 struct entry *e = q_peek(q, q->nr_levels, true);
347
348 if (e)
349 q_del(q, e);
350
351 return e;
352}
353
66a63635
JT
354/*
355 * This function assumes there is a non-sentinel entry to pop. It's only
356 * used by redistribute, so we know this is true. It also doesn't adjust
357 * the q->nr_elts count.
358 */
359static struct entry *__redist_pop_from(struct queue *q, unsigned level)
360{
361 struct entry *e;
362
363 for (; level < q->nr_levels; level++)
364 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
365 if (!e->sentinel) {
366 l_del(q->es, q->qs + e->level, e);
367 return e;
368 }
369
370 return NULL;
371}
372
373static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
374{
375 unsigned level, nr_levels, entries_per_level, remainder;
376
377 BUG_ON(lbegin > lend);
378 BUG_ON(lend > q->nr_levels);
379 nr_levels = lend - lbegin;
380 entries_per_level = safe_div(nr_elts, nr_levels);
381 remainder = safe_mod(nr_elts, nr_levels);
382
383 for (level = lbegin; level < lend; level++)
384 q->target_count[level] =
385 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
386}
387
388/*
389 * Typically we have fewer elements in the top few levels which allows us
390 * to adjust the promote threshold nicely.
391 */
392static void q_set_targets(struct queue *q)
393{
394 if (q->last_target_nr_elts == q->nr_elts)
395 return;
396
397 q->last_target_nr_elts = q->nr_elts;
398
399 if (q->nr_top_levels > q->nr_levels)
400 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
401
402 else {
403 q_set_targets_subrange_(q, q->nr_in_top_levels,
404 q->nr_levels - q->nr_top_levels, q->nr_levels);
405
406 if (q->nr_in_top_levels < q->nr_elts)
407 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
408 0, q->nr_levels - q->nr_top_levels);
409 else
410 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
411 }
412}
413
414static void q_redistribute(struct queue *q)
415{
416 unsigned target, level;
417 struct ilist *l, *l_above;
418 struct entry *e;
419
420 q_set_targets(q);
421
422 for (level = 0u; level < q->nr_levels - 1u; level++) {
423 l = q->qs + level;
424 target = q->target_count[level];
425
426 /*
427 * Pull down some entries from the level above.
428 */
429 while (l->nr_elts < target) {
430 e = __redist_pop_from(q, level + 1u);
431 if (!e) {
432 /* bug in nr_elts */
433 break;
434 }
435
436 e->level = level;
437 l_add_tail(q->es, l, e);
438 }
439
440 /*
441 * Push some entries up.
442 */
443 l_above = q->qs + level + 1u;
444 while (l->nr_elts > target) {
445 e = l_pop_tail(q->es, l);
446
447 if (!e)
448 /* bug in nr_elts */
449 break;
450
451 e->level = level + 1u;
b29d4986 452 l_add_tail(q->es, l_above, e);
66a63635
JT
453 }
454 }
455}
456
b29d4986
JT
457static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels,
458 struct entry *s1, struct entry *s2)
66a63635
JT
459{
460 struct entry *de;
b29d4986
JT
461 unsigned sentinels_passed = 0;
462 unsigned new_level = min(q->nr_levels - 1u, e->level + extra_levels);
66a63635 463
b29d4986 464 /* try and find an entry to swap with */
66a63635 465 if (extra_levels && (e->level < q->nr_levels - 1u)) {
b29d4986
JT
466 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
467 sentinels_passed++;
66a63635 468
b29d4986 469 if (de) {
66a63635
JT
470 q_del(q, de);
471 de->level = e->level;
b29d4986
JT
472 if (s1) {
473 switch (sentinels_passed) {
474 case 0:
475 q_push_before(q, s1, de);
476 break;
477
478 case 1:
479 q_push_before(q, s2, de);
480 break;
66a63635 481
b29d4986
JT
482 default:
483 q_push(q, de);
484 }
485 } else
66a63635 486 q_push(q, de);
66a63635 487 }
66a63635
JT
488 }
489
b29d4986
JT
490 q_del(q, e);
491 e->level = new_level;
66a63635
JT
492 q_push(q, e);
493}
494
66a63635
JT
495/*----------------------------------------------------------------*/
496
497#define FP_SHIFT 8
498#define SIXTEENTH (1u << (FP_SHIFT - 4u))
499#define EIGHTH (1u << (FP_SHIFT - 3u))
500
501struct stats {
502 unsigned hit_threshold;
503 unsigned hits;
504 unsigned misses;
505};
506
507enum performance {
508 Q_POOR,
509 Q_FAIR,
510 Q_WELL
511};
512
513static void stats_init(struct stats *s, unsigned nr_levels)
514{
515 s->hit_threshold = (nr_levels * 3u) / 4u;
516 s->hits = 0u;
517 s->misses = 0u;
518}
519
520static void stats_reset(struct stats *s)
521{
522 s->hits = s->misses = 0u;
523}
524
525static void stats_level_accessed(struct stats *s, unsigned level)
526{
527 if (level >= s->hit_threshold)
528 s->hits++;
529 else
530 s->misses++;
531}
532
533static void stats_miss(struct stats *s)
534{
535 s->misses++;
536}
537
538/*
539 * There are times when we don't have any confidence in the hotspot queue.
540 * Such as when a fresh cache is created and the blocks have been spread
541 * out across the levels, or if an io load changes. We detect this by
542 * seeing how often a lookup is in the top levels of the hotspot queue.
543 */
544static enum performance stats_assess(struct stats *s)
545{
546 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
547
548 if (confidence < SIXTEENTH)
549 return Q_POOR;
550
551 else if (confidence < EIGHTH)
552 return Q_FAIR;
553
554 else
555 return Q_WELL;
556}
557
558/*----------------------------------------------------------------*/
559
b29d4986 560struct smq_hash_table {
66a63635
JT
561 struct entry_space *es;
562 unsigned long long hash_bits;
563 unsigned *buckets;
564};
565
566/*
567 * All cache entries are stored in a chained hash table. To save space we
568 * use indexing again, and only store indexes to the next entry.
569 */
b29d4986 570static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned nr_entries)
66a63635
JT
571{
572 unsigned i, nr_buckets;
573
574 ht->es = es;
575 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
a3d939ae 576 ht->hash_bits = __ffs(nr_buckets);
66a63635
JT
577
578 ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
579 if (!ht->buckets)
580 return -ENOMEM;
581
582 for (i = 0; i < nr_buckets; i++)
583 ht->buckets[i] = INDEXER_NULL;
584
585 return 0;
586}
587
b29d4986 588static void h_exit(struct smq_hash_table *ht)
66a63635
JT
589{
590 vfree(ht->buckets);
591}
592
b29d4986 593static struct entry *h_head(struct smq_hash_table *ht, unsigned bucket)
66a63635
JT
594{
595 return to_entry(ht->es, ht->buckets[bucket]);
596}
597
b29d4986 598static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
66a63635
JT
599{
600 return to_entry(ht->es, e->hash_next);
601}
602
b29d4986 603static void __h_insert(struct smq_hash_table *ht, unsigned bucket, struct entry *e)
66a63635
JT
604{
605 e->hash_next = ht->buckets[bucket];
606 ht->buckets[bucket] = to_index(ht->es, e);
607}
608
b29d4986 609static void h_insert(struct smq_hash_table *ht, struct entry *e)
66a63635
JT
610{
611 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
612 __h_insert(ht, h, e);
613}
614
b29d4986 615static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned h, dm_oblock_t oblock,
66a63635
JT
616 struct entry **prev)
617{
618 struct entry *e;
619
620 *prev = NULL;
621 for (e = h_head(ht, h); e; e = h_next(ht, e)) {
622 if (e->oblock == oblock)
623 return e;
624
625 *prev = e;
626 }
627
628 return NULL;
629}
630
b29d4986 631static void __h_unlink(struct smq_hash_table *ht, unsigned h,
66a63635
JT
632 struct entry *e, struct entry *prev)
633{
634 if (prev)
635 prev->hash_next = e->hash_next;
636 else
637 ht->buckets[h] = e->hash_next;
638}
639
640/*
641 * Also moves each entry to the front of the bucket.
642 */
b29d4986 643static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
66a63635
JT
644{
645 struct entry *e, *prev;
646 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
647
648 e = __h_lookup(ht, h, oblock, &prev);
649 if (e && prev) {
650 /*
651 * Move to the front because this entry is likely
652 * to be hit again.
653 */
654 __h_unlink(ht, h, e, prev);
655 __h_insert(ht, h, e);
656 }
657
658 return e;
659}
660
b29d4986 661static void h_remove(struct smq_hash_table *ht, struct entry *e)
66a63635
JT
662{
663 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
664 struct entry *prev;
665
666 /*
667 * The down side of using a singly linked list is we have to
668 * iterate the bucket to remove an item.
669 */
670 e = __h_lookup(ht, h, e->oblock, &prev);
671 if (e)
672 __h_unlink(ht, h, e, prev);
673}
674
675/*----------------------------------------------------------------*/
676
677struct entry_alloc {
678 struct entry_space *es;
679 unsigned begin;
680
681 unsigned nr_allocated;
682 struct ilist free;
683};
684
685static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
686 unsigned begin, unsigned end)
687{
688 unsigned i;
689
690 ea->es = es;
691 ea->nr_allocated = 0u;
692 ea->begin = begin;
693
694 l_init(&ea->free);
695 for (i = begin; i != end; i++)
696 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
697}
698
699static void init_entry(struct entry *e)
700{
701 /*
702 * We can't memset because that would clear the hotspot and
703 * sentinel bits which remain constant.
704 */
705 e->hash_next = INDEXER_NULL;
706 e->next = INDEXER_NULL;
707 e->prev = INDEXER_NULL;
708 e->level = 0u;
b29d4986 709 e->dirty = true; /* FIXME: audit */
66a63635 710 e->allocated = true;
b29d4986
JT
711 e->sentinel = false;
712 e->pending_work = false;
66a63635
JT
713}
714
715static struct entry *alloc_entry(struct entry_alloc *ea)
716{
717 struct entry *e;
718
719 if (l_empty(&ea->free))
720 return NULL;
721
722 e = l_pop_tail(ea->es, &ea->free);
723 init_entry(e);
724 ea->nr_allocated++;
725
726 return e;
727}
728
729/*
730 * This assumes the cblock hasn't already been allocated.
731 */
732static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
733{
734 struct entry *e = __get_entry(ea->es, ea->begin + i);
735
736 BUG_ON(e->allocated);
737
738 l_del(ea->es, &ea->free, e);
739 init_entry(e);
740 ea->nr_allocated++;
741
742 return e;
743}
744
745static void free_entry(struct entry_alloc *ea, struct entry *e)
746{
747 BUG_ON(!ea->nr_allocated);
748 BUG_ON(!e->allocated);
749
750 ea->nr_allocated--;
751 e->allocated = false;
752 l_add_tail(ea->es, &ea->free, e);
753}
754
755static bool allocator_empty(struct entry_alloc *ea)
756{
757 return l_empty(&ea->free);
758}
759
760static unsigned get_index(struct entry_alloc *ea, struct entry *e)
761{
762 return to_index(ea->es, e) - ea->begin;
763}
764
765static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
766{
767 return __get_entry(ea->es, ea->begin + index);
768}
769
770/*----------------------------------------------------------------*/
771
772#define NR_HOTSPOT_LEVELS 64u
773#define NR_CACHE_LEVELS 64u
774
b29d4986
JT
775#define WRITEBACK_PERIOD (10ul * HZ)
776#define DEMOTE_PERIOD (60ul * HZ)
66a63635
JT
777
778#define HOTSPOT_UPDATE_PERIOD (HZ)
b29d4986 779#define CACHE_UPDATE_PERIOD (60ul * HZ)
66a63635
JT
780
781struct smq_policy {
782 struct dm_cache_policy policy;
783
784 /* protects everything */
4051aab7 785 spinlock_t lock;
66a63635
JT
786 dm_cblock_t cache_size;
787 sector_t cache_block_size;
788
789 sector_t hotspot_block_size;
790 unsigned nr_hotspot_blocks;
791 unsigned cache_blocks_per_hotspot_block;
792 unsigned hotspot_level_jump;
793
794 struct entry_space es;
795 struct entry_alloc writeback_sentinel_alloc;
796 struct entry_alloc demote_sentinel_alloc;
797 struct entry_alloc hotspot_alloc;
798 struct entry_alloc cache_alloc;
799
800 unsigned long *hotspot_hit_bits;
801 unsigned long *cache_hit_bits;
802
803 /*
804 * We maintain three queues of entries. The cache proper,
805 * consisting of a clean and dirty queue, containing the currently
806 * active mappings. The hotspot queue uses a larger block size to
807 * track blocks that are being hit frequently and potential
808 * candidates for promotion to the cache.
809 */
810 struct queue hotspot;
811 struct queue clean;
812 struct queue dirty;
813
814 struct stats hotspot_stats;
815 struct stats cache_stats;
816
817 /*
818 * Keeps track of time, incremented by the core. We use this to
819 * avoid attributing multiple hits within the same tick.
66a63635 820 */
66a63635
JT
821 unsigned tick;
822
823 /*
824 * The hash tables allows us to quickly find an entry by origin
825 * block.
826 */
b29d4986
JT
827 struct smq_hash_table table;
828 struct smq_hash_table hotspot_table;
66a63635
JT
829
830 bool current_writeback_sentinels;
831 unsigned long next_writeback_period;
832
833 bool current_demote_sentinels;
834 unsigned long next_demote_period;
835
836 unsigned write_promote_level;
837 unsigned read_promote_level;
838
839 unsigned long next_hotspot_period;
840 unsigned long next_cache_period;
b29d4986
JT
841
842 struct background_tracker *bg_work;
843
844 bool migrations_allowed;
66a63635
JT
845};
846
847/*----------------------------------------------------------------*/
848
849static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
850{
851 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
852}
853
854static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
855{
856 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
857}
858
859static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
860{
861 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
862}
863
864static void __update_writeback_sentinels(struct smq_policy *mq)
865{
866 unsigned level;
867 struct queue *q = &mq->dirty;
868 struct entry *sentinel;
869
870 for (level = 0; level < q->nr_levels; level++) {
871 sentinel = writeback_sentinel(mq, level);
872 q_del(q, sentinel);
873 q_push(q, sentinel);
874 }
875}
876
877static void __update_demote_sentinels(struct smq_policy *mq)
878{
879 unsigned level;
880 struct queue *q = &mq->clean;
881 struct entry *sentinel;
882
883 for (level = 0; level < q->nr_levels; level++) {
884 sentinel = demote_sentinel(mq, level);
885 q_del(q, sentinel);
886 q_push(q, sentinel);
887 }
888}
889
890static void update_sentinels(struct smq_policy *mq)
891{
892 if (time_after(jiffies, mq->next_writeback_period)) {
66a63635
JT
893 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
894 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
b29d4986 895 __update_writeback_sentinels(mq);
66a63635
JT
896 }
897
898 if (time_after(jiffies, mq->next_demote_period)) {
66a63635
JT
899 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
900 mq->current_demote_sentinels = !mq->current_demote_sentinels;
b29d4986 901 __update_demote_sentinels(mq);
66a63635
JT
902 }
903}
904
905static void __sentinels_init(struct smq_policy *mq)
906{
907 unsigned level;
908 struct entry *sentinel;
909
910 for (level = 0; level < NR_CACHE_LEVELS; level++) {
911 sentinel = writeback_sentinel(mq, level);
912 sentinel->level = level;
913 q_push(&mq->dirty, sentinel);
914
915 sentinel = demote_sentinel(mq, level);
916 sentinel->level = level;
917 q_push(&mq->clean, sentinel);
918 }
919}
920
921static void sentinels_init(struct smq_policy *mq)
922{
923 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
924 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
925
926 mq->current_writeback_sentinels = false;
927 mq->current_demote_sentinels = false;
928 __sentinels_init(mq);
929
930 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
931 mq->current_demote_sentinels = !mq->current_demote_sentinels;
932 __sentinels_init(mq);
933}
934
935/*----------------------------------------------------------------*/
936
b29d4986 937static void del_queue(struct smq_policy *mq, struct entry *e)
66a63635 938{
b29d4986 939 q_del(e->dirty ? &mq->dirty : &mq->clean, e);
66a63635
JT
940}
941
b29d4986 942static void push_queue(struct smq_policy *mq, struct entry *e)
66a63635 943{
b29d4986
JT
944 if (e->dirty)
945 q_push(&mq->dirty, e);
946 else
947 q_push(&mq->clean, e);
66a63635
JT
948}
949
b29d4986
JT
950// !h, !q, a -> h, q, a
951static void push(struct smq_policy *mq, struct entry *e)
66a63635 952{
b29d4986
JT
953 h_insert(&mq->table, e);
954 if (!e->pending_work)
955 push_queue(mq, e);
66a63635
JT
956}
957
b29d4986 958static void push_queue_front(struct smq_policy *mq, struct entry *e)
66a63635 959{
b29d4986
JT
960 if (e->dirty)
961 q_push_front(&mq->dirty, e);
962 else
963 q_push_front(&mq->clean, e);
66a63635
JT
964}
965
b29d4986 966static void push_front(struct smq_policy *mq, struct entry *e)
66a63635 967{
b29d4986
JT
968 h_insert(&mq->table, e);
969 if (!e->pending_work)
970 push_queue_front(mq, e);
66a63635
JT
971}
972
973static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
974{
975 return to_cblock(get_index(&mq->cache_alloc, e));
976}
977
978static void requeue(struct smq_policy *mq, struct entry *e)
979{
b29d4986
JT
980 /*
981 * Pending work has temporarily been taken out of the queues.
982 */
983 if (e->pending_work)
984 return;
66a63635
JT
985
986 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
b29d4986
JT
987 if (!e->dirty) {
988 q_requeue(&mq->clean, e, 1u, NULL, NULL);
989 return;
66a63635 990 }
b29d4986
JT
991
992 q_requeue(&mq->dirty, e, 1u,
993 get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
994 get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
66a63635
JT
995 }
996}
997
998static unsigned default_promote_level(struct smq_policy *mq)
999{
1000 /*
1001 * The promote level depends on the current performance of the
1002 * cache.
1003 *
1004 * If the cache is performing badly, then we can't afford
1005 * to promote much without causing performance to drop below that
1006 * of the origin device.
1007 *
1008 * If the cache is performing well, then we don't need to promote
1009 * much. If it isn't broken, don't fix it.
1010 *
1011 * If the cache is middling then we promote more.
1012 *
1013 * This scheme reminds me of a graph of entropy vs probability of a
1014 * binary variable.
1015 */
1016 static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1017
1018 unsigned hits = mq->cache_stats.hits;
1019 unsigned misses = mq->cache_stats.misses;
1020 unsigned index = safe_div(hits << 4u, hits + misses);
1021 return table[index];
1022}
1023
1024static void update_promote_levels(struct smq_policy *mq)
1025{
1026 /*
1027 * If there are unused cache entries then we want to be really
1028 * eager to promote.
1029 */
1030 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1031 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1032
b29d4986
JT
1033 threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1034
66a63635
JT
1035 /*
1036 * If the hotspot queue is performing badly then we have little
1037 * confidence that we know which blocks to promote. So we cut down
1038 * the amount of promotions.
1039 */
1040 switch (stats_assess(&mq->hotspot_stats)) {
1041 case Q_POOR:
1042 threshold_level /= 4u;
1043 break;
1044
1045 case Q_FAIR:
1046 threshold_level /= 2u;
1047 break;
1048
1049 case Q_WELL:
1050 break;
1051 }
1052
1053 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
b29d4986 1054 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
66a63635
JT
1055}
1056
1057/*
1058 * If the hotspot queue is performing badly, then we try and move entries
1059 * around more quickly.
1060 */
1061static void update_level_jump(struct smq_policy *mq)
1062{
1063 switch (stats_assess(&mq->hotspot_stats)) {
1064 case Q_POOR:
1065 mq->hotspot_level_jump = 4u;
1066 break;
1067
1068 case Q_FAIR:
1069 mq->hotspot_level_jump = 2u;
1070 break;
1071
1072 case Q_WELL:
1073 mq->hotspot_level_jump = 1u;
1074 break;
1075 }
1076}
1077
1078static void end_hotspot_period(struct smq_policy *mq)
1079{
1080 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1081 update_promote_levels(mq);
1082
1083 if (time_after(jiffies, mq->next_hotspot_period)) {
1084 update_level_jump(mq);
1085 q_redistribute(&mq->hotspot);
1086 stats_reset(&mq->hotspot_stats);
1087 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1088 }
1089}
1090
1091static void end_cache_period(struct smq_policy *mq)
1092{
1093 if (time_after(jiffies, mq->next_cache_period)) {
1094 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1095
1096 q_redistribute(&mq->dirty);
1097 q_redistribute(&mq->clean);
1098 stats_reset(&mq->cache_stats);
1099
1100 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1101 }
1102}
1103
b29d4986
JT
1104/*----------------------------------------------------------------*/
1105
1106/*
1107 * Targets are given as a percentage.
1108 */
1109#define CLEAN_TARGET 25u
1110#define FREE_TARGET 25u
1111
1112static unsigned percent_to_target(struct smq_policy *mq, unsigned p)
66a63635 1113{
b29d4986
JT
1114 return from_cblock(mq->cache_size) * p / 100u;
1115}
1116
1117static bool clean_target_met(struct smq_policy *mq, bool idle)
1118{
1119 /*
1120 * Cache entries may not be populated. So we cannot rely on the
1121 * size of the clean queue.
1122 */
1123 unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
66a63635 1124
b29d4986 1125 if (idle)
66a63635 1126 /*
b29d4986 1127 * We'd like to clean everything.
66a63635 1128 */
b29d4986
JT
1129 return q_size(&mq->dirty) == 0u;
1130 else
1131 return (nr_clean + btracker_nr_writebacks_queued(mq->bg_work)) >=
1132 percent_to_target(mq, CLEAN_TARGET);
1133}
66a63635 1134
b29d4986
JT
1135static bool free_target_met(struct smq_policy *mq, bool idle)
1136{
1137 unsigned nr_free = from_cblock(mq->cache_size) -
1138 mq->cache_alloc.nr_allocated;
66a63635 1139
b29d4986
JT
1140 if (idle)
1141 return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1142 percent_to_target(mq, FREE_TARGET);
1143 else
1144 return true;
66a63635
JT
1145}
1146
b29d4986
JT
1147/*----------------------------------------------------------------*/
1148
1149static void mark_pending(struct smq_policy *mq, struct entry *e)
1150{
1151 BUG_ON(e->sentinel);
1152 BUG_ON(!e->allocated);
1153 BUG_ON(e->pending_work);
1154 e->pending_work = true;
1155}
1156
1157static void clear_pending(struct smq_policy *mq, struct entry *e)
1158{
1159 BUG_ON(!e->pending_work);
1160 e->pending_work = false;
1161}
1162
1163static void queue_writeback(struct smq_policy *mq)
1164{
1165 int r;
1166 struct policy_work work;
1167 struct entry *e;
1168
cc7e3940 1169 e = q_peek(&mq->dirty, mq->dirty.nr_levels, !mq->migrations_allowed);
b29d4986
JT
1170 if (e) {
1171 mark_pending(mq, e);
1172 q_del(&mq->dirty, e);
1173
1174 work.op = POLICY_WRITEBACK;
1175 work.oblock = e->oblock;
1176 work.cblock = infer_cblock(mq, e);
1177
1178 r = btracker_queue(mq->bg_work, &work, NULL);
1179 WARN_ON_ONCE(r); // FIXME: finish, I think we have to get rid of this race.
1180 }
1181}
1182
1183static void queue_demotion(struct smq_policy *mq)
1184{
1185 struct policy_work work;
1186 struct entry *e;
1187
1188 if (unlikely(WARN_ON_ONCE(!mq->migrations_allowed)))
1189 return;
1190
1191 e = q_peek(&mq->clean, mq->clean.nr_levels, true);
1192 if (!e) {
1193 if (!clean_target_met(mq, false))
1194 queue_writeback(mq);
1195 return;
1196 }
1197
1198 mark_pending(mq, e);
1199 q_del(&mq->clean, e);
1200
1201 work.op = POLICY_DEMOTE;
1202 work.oblock = e->oblock;
1203 work.cblock = infer_cblock(mq, e);
1204 btracker_queue(mq->bg_work, &work, NULL);
1205}
1206
1207static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1208 struct policy_work **workp)
1209{
1210 struct entry *e;
1211 struct policy_work work;
1212
1213 if (!mq->migrations_allowed)
1214 return;
1215
1216 if (allocator_empty(&mq->cache_alloc)) {
ce1d64e8
JT
1217 /*
1218 * We always claim to be 'idle' to ensure some demotions happen
1219 * with continuous loads.
1220 */
1221 if (!free_target_met(mq, true))
b29d4986
JT
1222 queue_demotion(mq);
1223 return;
1224 }
1225
1226 if (btracker_promotion_already_present(mq->bg_work, oblock))
1227 return;
1228
1229 /*
1230 * We allocate the entry now to reserve the cblock. If the
1231 * background work is aborted we must remember to free it.
1232 */
1233 e = alloc_entry(&mq->cache_alloc);
1234 BUG_ON(!e);
1235 e->pending_work = true;
1236 work.op = POLICY_PROMOTE;
1237 work.oblock = oblock;
1238 work.cblock = infer_cblock(mq, e);
1239 btracker_queue(mq->bg_work, &work, workp);
1240}
1241
1242/*----------------------------------------------------------------*/
1243
66a63635
JT
1244enum promote_result {
1245 PROMOTE_NOT,
1246 PROMOTE_TEMPORARY,
1247 PROMOTE_PERMANENT
1248};
1249
1250/*
1251 * Converts a boolean into a promote result.
1252 */
1253static enum promote_result maybe_promote(bool promote)
1254{
1255 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1256}
1257
b29d4986
JT
1258static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1259 int data_dir, bool fast_promote)
66a63635 1260{
b29d4986 1261 if (data_dir == WRITE) {
66a63635
JT
1262 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1263 return PROMOTE_TEMPORARY;
1264
b29d4986 1265 return maybe_promote(hs_e->level >= mq->write_promote_level);
66a63635
JT
1266 } else
1267 return maybe_promote(hs_e->level >= mq->read_promote_level);
1268}
1269
66a63635
JT
1270static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1271{
1272 sector_t r = from_oblock(b);
1273 (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1274 return to_oblock(r);
1275}
1276
b29d4986 1277static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
66a63635
JT
1278{
1279 unsigned hi;
1280 dm_oblock_t hb = to_hblock(mq, b);
1281 struct entry *e = h_lookup(&mq->hotspot_table, hb);
1282
1283 if (e) {
1284 stats_level_accessed(&mq->hotspot_stats, e->level);
1285
1286 hi = get_index(&mq->hotspot_alloc, e);
1287 q_requeue(&mq->hotspot, e,
1288 test_and_set_bit(hi, mq->hotspot_hit_bits) ?
b29d4986
JT
1289 0u : mq->hotspot_level_jump,
1290 NULL, NULL);
66a63635
JT
1291
1292 } else {
1293 stats_miss(&mq->hotspot_stats);
1294
1295 e = alloc_entry(&mq->hotspot_alloc);
1296 if (!e) {
1297 e = q_pop(&mq->hotspot);
1298 if (e) {
1299 h_remove(&mq->hotspot_table, e);
1300 hi = get_index(&mq->hotspot_alloc, e);
1301 clear_bit(hi, mq->hotspot_hit_bits);
1302 }
1303
1304 }
1305
1306 if (e) {
1307 e->oblock = hb;
1308 q_push(&mq->hotspot, e);
1309 h_insert(&mq->hotspot_table, e);
1310 }
1311 }
1312
1313 return e;
1314}
1315
66a63635
JT
1316/*----------------------------------------------------------------*/
1317
1318/*
1319 * Public interface, via the policy struct. See dm-cache-policy.h for a
1320 * description of these.
1321 */
1322
1323static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1324{
1325 return container_of(p, struct smq_policy, policy);
1326}
1327
1328static void smq_destroy(struct dm_cache_policy *p)
1329{
1330 struct smq_policy *mq = to_smq_policy(p);
1331
b29d4986 1332 btracker_destroy(mq->bg_work);
66a63635
JT
1333 h_exit(&mq->hotspot_table);
1334 h_exit(&mq->table);
1335 free_bitset(mq->hotspot_hit_bits);
1336 free_bitset(mq->cache_hit_bits);
1337 space_exit(&mq->es);
1338 kfree(mq);
1339}
1340
b29d4986 1341/*----------------------------------------------------------------*/
66a63635 1342
b29d4986
JT
1343static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1344 int data_dir, bool fast_copy,
1345 struct policy_work **work, bool *background_work)
66a63635 1346{
b29d4986
JT
1347 struct entry *e, *hs_e;
1348 enum promote_result pr;
1349
1350 *background_work = false;
66a63635 1351
66a63635
JT
1352 e = h_lookup(&mq->table, oblock);
1353 if (e) {
b29d4986
JT
1354 stats_level_accessed(&mq->cache_stats, e->level);
1355
1356 requeue(mq, e);
66a63635 1357 *cblock = infer_cblock(mq, e);
b29d4986 1358 return 0;
66a63635 1359
b29d4986
JT
1360 } else {
1361 stats_miss(&mq->cache_stats);
66a63635 1362
b29d4986
JT
1363 /*
1364 * The hotspot queue only gets updated with misses.
1365 */
1366 hs_e = update_hotspot_queue(mq, oblock);
66a63635 1367
b29d4986
JT
1368 pr = should_promote(mq, hs_e, data_dir, fast_copy);
1369 if (pr != PROMOTE_NOT) {
1370 queue_promotion(mq, oblock, work);
1371 *background_work = true;
1372 }
66a63635 1373
b29d4986
JT
1374 return -ENOENT;
1375 }
66a63635
JT
1376}
1377
b29d4986
JT
1378static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1379 int data_dir, bool fast_copy,
1380 bool *background_work)
66a63635 1381{
b29d4986 1382 int r;
4051aab7 1383 unsigned long flags;
66a63635
JT
1384 struct smq_policy *mq = to_smq_policy(p);
1385
4051aab7 1386 spin_lock_irqsave(&mq->lock, flags);
b29d4986
JT
1387 r = __lookup(mq, oblock, cblock,
1388 data_dir, fast_copy,
1389 NULL, background_work);
4051aab7 1390 spin_unlock_irqrestore(&mq->lock, flags);
b29d4986
JT
1391
1392 return r;
66a63635
JT
1393}
1394
b29d4986
JT
1395static int smq_lookup_with_work(struct dm_cache_policy *p,
1396 dm_oblock_t oblock, dm_cblock_t *cblock,
1397 int data_dir, bool fast_copy,
1398 struct policy_work **work)
66a63635 1399{
b29d4986
JT
1400 int r;
1401 bool background_queued;
4051aab7 1402 unsigned long flags;
b29d4986 1403 struct smq_policy *mq = to_smq_policy(p);
66a63635 1404
4051aab7 1405 spin_lock_irqsave(&mq->lock, flags);
b29d4986 1406 r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
4051aab7 1407 spin_unlock_irqrestore(&mq->lock, flags);
66a63635 1408
b29d4986 1409 return r;
9d1b404c
JT
1410}
1411
b29d4986
JT
1412static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1413 struct policy_work **result)
66a63635 1414{
b29d4986
JT
1415 int r;
1416 unsigned long flags;
66a63635 1417 struct smq_policy *mq = to_smq_policy(p);
66a63635 1418
b29d4986
JT
1419 spin_lock_irqsave(&mq->lock, flags);
1420 r = btracker_issue(mq->bg_work, result);
1421 if (r == -ENODATA) {
1422 /* find some writeback work to do */
1423 if (mq->migrations_allowed && !free_target_met(mq, idle))
1424 queue_demotion(mq);
66a63635 1425
b29d4986
JT
1426 else if (!clean_target_met(mq, idle))
1427 queue_writeback(mq);
66a63635 1428
b29d4986
JT
1429 r = btracker_issue(mq->bg_work, result);
1430 }
1431 spin_unlock_irqrestore(&mq->lock, flags);
66a63635 1432
b29d4986 1433 return r;
66a63635
JT
1434}
1435
b29d4986
JT
1436/*
1437 * We need to clear any pending work flags that have been set, and in the
1438 * case of promotion free the entry for the destination cblock.
1439 */
1440static void __complete_background_work(struct smq_policy *mq,
1441 struct policy_work *work,
1442 bool success)
1443{
1444 struct entry *e = get_entry(&mq->cache_alloc,
1445 from_cblock(work->cblock));
1446
1447 switch (work->op) {
1448 case POLICY_PROMOTE:
1449 // !h, !q, a
1450 clear_pending(mq, e);
1451 if (success) {
1452 e->oblock = work->oblock;
1453 push(mq, e);
1454 // h, q, a
1455 } else {
1456 free_entry(&mq->cache_alloc, e);
1457 // !h, !q, !a
1458 }
1459 break;
66a63635 1460
b29d4986
JT
1461 case POLICY_DEMOTE:
1462 // h, !q, a
1463 if (success) {
1464 h_remove(&mq->table, e);
1465 free_entry(&mq->cache_alloc, e);
1466 // !h, !q, !a
1467 } else {
1468 clear_pending(mq, e);
1469 push_queue(mq, e);
1470 // h, q, a
1471 }
1472 break;
66a63635 1473
b29d4986
JT
1474 case POLICY_WRITEBACK:
1475 // h, !q, a
1476 clear_pending(mq, e);
1477 push_queue(mq, e);
1478 // h, q, a
1479 break;
1480 }
1481
1482 btracker_complete(mq->bg_work, work);
66a63635
JT
1483}
1484
b29d4986
JT
1485static void smq_complete_background_work(struct dm_cache_policy *p,
1486 struct policy_work *work,
1487 bool success)
66a63635 1488{
4051aab7 1489 unsigned long flags;
b29d4986 1490 struct smq_policy *mq = to_smq_policy(p);
66a63635 1491
4051aab7 1492 spin_lock_irqsave(&mq->lock, flags);
b29d4986 1493 __complete_background_work(mq, work, success);
4051aab7 1494 spin_unlock_irqrestore(&mq->lock, flags);
66a63635
JT
1495}
1496
b29d4986
JT
1497// in_hash(oblock) -> in_hash(oblock)
1498static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
66a63635
JT
1499{
1500 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1501
b29d4986
JT
1502 if (e->pending_work)
1503 e->dirty = set;
1504 else {
1505 del_queue(mq, e);
1506 e->dirty = set;
1507 push_queue(mq, e);
1508 }
66a63635
JT
1509}
1510
b29d4986 1511static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
66a63635 1512{
4051aab7 1513 unsigned long flags;
66a63635
JT
1514 struct smq_policy *mq = to_smq_policy(p);
1515
4051aab7 1516 spin_lock_irqsave(&mq->lock, flags);
b29d4986 1517 __smq_set_clear_dirty(mq, cblock, true);
4051aab7 1518 spin_unlock_irqrestore(&mq->lock, flags);
66a63635
JT
1519}
1520
b29d4986 1521static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
66a63635 1522{
b29d4986
JT
1523 struct smq_policy *mq = to_smq_policy(p);
1524 unsigned long flags;
66a63635 1525
b29d4986
JT
1526 spin_lock_irqsave(&mq->lock, flags);
1527 __smq_set_clear_dirty(mq, cblock, false);
1528 spin_unlock_irqrestore(&mq->lock, flags);
66a63635
JT
1529}
1530
b29d4986 1531static unsigned random_level(dm_cblock_t cblock)
66a63635 1532{
b29d4986
JT
1533 return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1534}
66a63635 1535
b29d4986
JT
1536static int smq_load_mapping(struct dm_cache_policy *p,
1537 dm_oblock_t oblock, dm_cblock_t cblock,
1538 bool dirty, uint32_t hint, bool hint_valid)
1539{
1540 struct smq_policy *mq = to_smq_policy(p);
1541 struct entry *e;
66a63635 1542
b29d4986
JT
1543 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1544 e->oblock = oblock;
1545 e->dirty = dirty;
1546 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1547 e->pending_work = false;
66a63635 1548
b29d4986
JT
1549 /*
1550 * When we load mappings we push ahead of both sentinels in order to
1551 * allow demotions and cleaning to occur immediately.
1552 */
1553 push_front(mq, e);
66a63635
JT
1554
1555 return 0;
1556}
1557
b29d4986 1558static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
66a63635 1559{
66a63635 1560 struct smq_policy *mq = to_smq_policy(p);
b29d4986 1561 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
66a63635 1562
b29d4986
JT
1563 if (!e->allocated)
1564 return -ENODATA;
66a63635 1565
b29d4986
JT
1566 // FIXME: what if this block has pending background work?
1567 del_queue(mq, e);
1568 h_remove(&mq->table, e);
1569 free_entry(&mq->cache_alloc, e);
1570 return 0;
66a63635
JT
1571}
1572
b29d4986 1573static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
66a63635
JT
1574{
1575 struct smq_policy *mq = to_smq_policy(p);
b29d4986 1576 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
66a63635 1577
b29d4986
JT
1578 if (!e->allocated)
1579 return 0;
1580
1581 return e->level;
66a63635
JT
1582}
1583
1584static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1585{
1586 dm_cblock_t r;
4051aab7 1587 unsigned long flags;
66a63635
JT
1588 struct smq_policy *mq = to_smq_policy(p);
1589
4051aab7 1590 spin_lock_irqsave(&mq->lock, flags);
66a63635 1591 r = to_cblock(mq->cache_alloc.nr_allocated);
4051aab7 1592 spin_unlock_irqrestore(&mq->lock, flags);
66a63635
JT
1593
1594 return r;
1595}
1596
fba10109 1597static void smq_tick(struct dm_cache_policy *p, bool can_block)
66a63635
JT
1598{
1599 struct smq_policy *mq = to_smq_policy(p);
1600 unsigned long flags;
1601
4051aab7
JT
1602 spin_lock_irqsave(&mq->lock, flags);
1603 mq->tick++;
1604 update_sentinels(mq);
1605 end_hotspot_period(mq);
1606 end_cache_period(mq);
1607 spin_unlock_irqrestore(&mq->lock, flags);
66a63635
JT
1608}
1609
b29d4986
JT
1610static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1611{
1612 struct smq_policy *mq = to_smq_policy(p);
1613 mq->migrations_allowed = allow;
1614}
1615
9ed84698
JT
1616/*
1617 * smq has no config values, but the old mq policy did. To avoid breaking
1618 * software we continue to accept these configurables for the mq policy,
1619 * but they have no effect.
1620 */
1621static int mq_set_config_value(struct dm_cache_policy *p,
1622 const char *key, const char *value)
1623{
1624 unsigned long tmp;
1625
1626 if (kstrtoul(value, 10, &tmp))
1627 return -EINVAL;
1628
1629 if (!strcasecmp(key, "random_threshold") ||
1630 !strcasecmp(key, "sequential_threshold") ||
1631 !strcasecmp(key, "discard_promote_adjustment") ||
1632 !strcasecmp(key, "read_promote_adjustment") ||
1633 !strcasecmp(key, "write_promote_adjustment")) {
1634 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1635 return 0;
1636 }
1637
1638 return -EINVAL;
1639}
1640
1641static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1642 unsigned maxlen, ssize_t *sz_ptr)
1643{
1644 ssize_t sz = *sz_ptr;
1645
1646 DMEMIT("10 random_threshold 0 "
1647 "sequential_threshold 0 "
1648 "discard_promote_adjustment 0 "
1649 "read_promote_adjustment 0 "
1650 "write_promote_adjustment 0 ");
1651
1652 *sz_ptr = sz;
1653 return 0;
1654}
1655
66a63635 1656/* Init the policy plugin interface function pointers. */
9ed84698 1657static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
66a63635
JT
1658{
1659 mq->policy.destroy = smq_destroy;
66a63635 1660 mq->policy.lookup = smq_lookup;
b29d4986
JT
1661 mq->policy.lookup_with_work = smq_lookup_with_work;
1662 mq->policy.get_background_work = smq_get_background_work;
1663 mq->policy.complete_background_work = smq_complete_background_work;
66a63635
JT
1664 mq->policy.set_dirty = smq_set_dirty;
1665 mq->policy.clear_dirty = smq_clear_dirty;
1666 mq->policy.load_mapping = smq_load_mapping;
b29d4986 1667 mq->policy.invalidate_mapping = smq_invalidate_mapping;
4e781b49 1668 mq->policy.get_hint = smq_get_hint;
66a63635
JT
1669 mq->policy.residency = smq_residency;
1670 mq->policy.tick = smq_tick;
b29d4986 1671 mq->policy.allow_migrations = smq_allow_migrations;
9ed84698
JT
1672
1673 if (mimic_mq) {
1674 mq->policy.set_config_value = mq_set_config_value;
1675 mq->policy.emit_config_values = mq_emit_config_values;
1676 }
66a63635
JT
1677}
1678
1679static bool too_many_hotspot_blocks(sector_t origin_size,
1680 sector_t hotspot_block_size,
1681 unsigned nr_hotspot_blocks)
1682{
1683 return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1684}
1685
1686static void calc_hotspot_params(sector_t origin_size,
1687 sector_t cache_block_size,
1688 unsigned nr_cache_blocks,
1689 sector_t *hotspot_block_size,
1690 unsigned *nr_hotspot_blocks)
1691{
1692 *hotspot_block_size = cache_block_size * 16u;
1693 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1694
1695 while ((*hotspot_block_size > cache_block_size) &&
1696 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1697 *hotspot_block_size /= 2u;
1698}
1699
9ed84698
JT
1700static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1701 sector_t origin_size,
1702 sector_t cache_block_size,
b29d4986
JT
1703 bool mimic_mq,
1704 bool migrations_allowed)
66a63635
JT
1705{
1706 unsigned i;
1707 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1708 unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1709 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1710
1711 if (!mq)
1712 return NULL;
1713
9ed84698 1714 init_policy_functions(mq, mimic_mq);
66a63635
JT
1715 mq->cache_size = cache_size;
1716 mq->cache_block_size = cache_block_size;
1717
1718 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1719 &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1720
1721 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1722 mq->hotspot_level_jump = 1u;
1723 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1724 DMERR("couldn't initialize entry space");
1725 goto bad_pool_init;
1726 }
1727
1728 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
b29d4986 1729 for (i = 0; i < nr_sentinels_per_queue; i++)
66a63635
JT
1730 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1731
1732 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
b29d4986 1733 for (i = 0; i < nr_sentinels_per_queue; i++)
66a63635
JT
1734 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1735
1736 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1737 total_sentinels + mq->nr_hotspot_blocks);
1738
1739 init_allocator(&mq->cache_alloc, &mq->es,
1740 total_sentinels + mq->nr_hotspot_blocks,
1741 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1742
1743 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1744 if (!mq->hotspot_hit_bits) {
1745 DMERR("couldn't allocate hotspot hit bitset");
1746 goto bad_hotspot_hit_bits;
1747 }
1748 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1749
1750 if (from_cblock(cache_size)) {
1751 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
134bf30c 1752 if (!mq->cache_hit_bits) {
66a63635
JT
1753 DMERR("couldn't allocate cache hit bitset");
1754 goto bad_cache_hit_bits;
1755 }
1756 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1757 } else
1758 mq->cache_hit_bits = NULL;
1759
66a63635 1760 mq->tick = 0;
4051aab7 1761 spin_lock_init(&mq->lock);
66a63635
JT
1762
1763 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1764 mq->hotspot.nr_top_levels = 8;
1765 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1766 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1767
1768 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1769 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1770
1771 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1772 stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1773
1774 if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1775 goto bad_alloc_table;
1776
1777 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1778 goto bad_alloc_hotspot_table;
1779
1780 sentinels_init(mq);
1781 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1782
1783 mq->next_hotspot_period = jiffies;
1784 mq->next_cache_period = jiffies;
1785
b29d4986
JT
1786 mq->bg_work = btracker_create(10240); /* FIXME: hard coded value */
1787 if (!mq->bg_work)
1788 goto bad_btracker;
1789
1790 mq->migrations_allowed = migrations_allowed;
1791
66a63635
JT
1792 return &mq->policy;
1793
b29d4986
JT
1794bad_btracker:
1795 h_exit(&mq->hotspot_table);
66a63635
JT
1796bad_alloc_hotspot_table:
1797 h_exit(&mq->table);
1798bad_alloc_table:
1799 free_bitset(mq->cache_hit_bits);
1800bad_cache_hit_bits:
1801 free_bitset(mq->hotspot_hit_bits);
1802bad_hotspot_hit_bits:
1803 space_exit(&mq->es);
1804bad_pool_init:
1805 kfree(mq);
1806
1807 return NULL;
1808}
1809
9ed84698
JT
1810static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1811 sector_t origin_size,
1812 sector_t cache_block_size)
1813{
b29d4986 1814 return __smq_create(cache_size, origin_size, cache_block_size, false, true);
9ed84698
JT
1815}
1816
1817static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1818 sector_t origin_size,
1819 sector_t cache_block_size)
1820{
b29d4986
JT
1821 return __smq_create(cache_size, origin_size, cache_block_size, true, true);
1822}
1823
1824static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1825 sector_t origin_size,
1826 sector_t cache_block_size)
1827{
1828 return __smq_create(cache_size, origin_size, cache_block_size, false, false);
9ed84698
JT
1829}
1830
66a63635
JT
1831/*----------------------------------------------------------------*/
1832
1833static struct dm_cache_policy_type smq_policy_type = {
1834 .name = "smq",
b29d4986 1835 .version = {2, 0, 0},
66a63635
JT
1836 .hint_size = 4,
1837 .owner = THIS_MODULE,
1838 .create = smq_create
1839};
1840
9ed84698
JT
1841static struct dm_cache_policy_type mq_policy_type = {
1842 .name = "mq",
b29d4986 1843 .version = {2, 0, 0},
9ed84698
JT
1844 .hint_size = 4,
1845 .owner = THIS_MODULE,
1846 .create = mq_create,
1847};
1848
b29d4986
JT
1849static struct dm_cache_policy_type cleaner_policy_type = {
1850 .name = "cleaner",
1851 .version = {2, 0, 0},
1852 .hint_size = 4,
1853 .owner = THIS_MODULE,
1854 .create = cleaner_create,
1855};
1856
bccab6a0
MS
1857static struct dm_cache_policy_type default_policy_type = {
1858 .name = "default",
b29d4986 1859 .version = {2, 0, 0},
bccab6a0
MS
1860 .hint_size = 4,
1861 .owner = THIS_MODULE,
1862 .create = smq_create,
1863 .real = &smq_policy_type
1864};
1865
66a63635
JT
1866static int __init smq_init(void)
1867{
1868 int r;
1869
1870 r = dm_cache_policy_register(&smq_policy_type);
1871 if (r) {
1872 DMERR("register failed %d", r);
1873 return -ENOMEM;
1874 }
1875
9ed84698
JT
1876 r = dm_cache_policy_register(&mq_policy_type);
1877 if (r) {
7dd85bb0 1878 DMERR("register failed (as mq) %d", r);
b29d4986
JT
1879 goto out_mq;
1880 }
1881
1882 r = dm_cache_policy_register(&cleaner_policy_type);
1883 if (r) {
1884 DMERR("register failed (as cleaner) %d", r);
1885 goto out_cleaner;
9ed84698
JT
1886 }
1887
bccab6a0
MS
1888 r = dm_cache_policy_register(&default_policy_type);
1889 if (r) {
1890 DMERR("register failed (as default) %d", r);
b29d4986 1891 goto out_default;
bccab6a0
MS
1892 }
1893
66a63635 1894 return 0;
b29d4986
JT
1895
1896out_default:
1897 dm_cache_policy_unregister(&cleaner_policy_type);
1898out_cleaner:
1899 dm_cache_policy_unregister(&mq_policy_type);
1900out_mq:
1901 dm_cache_policy_unregister(&smq_policy_type);
1902
1903 return -ENOMEM;
66a63635
JT
1904}
1905
1906static void __exit smq_exit(void)
1907{
b29d4986 1908 dm_cache_policy_unregister(&cleaner_policy_type);
66a63635 1909 dm_cache_policy_unregister(&smq_policy_type);
9ed84698 1910 dm_cache_policy_unregister(&mq_policy_type);
bccab6a0 1911 dm_cache_policy_unregister(&default_policy_type);
66a63635
JT
1912}
1913
1914module_init(smq_init);
1915module_exit(smq_exit);
1916
1917MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1918MODULE_LICENSE("GPL");
1919MODULE_DESCRIPTION("smq cache policy");
34dd0517
YZ
1920
1921MODULE_ALIAS("dm-cache-default");
9ed84698 1922MODULE_ALIAS("dm-cache-mq");
b29d4986 1923MODULE_ALIAS("dm-cache-cleaner");