]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/dm-cache-target.c
Merge branch 'work.sane_pwd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-cache-target.c
CommitLineData
c6b4fcba
JT
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
b29d4986 8#include "dm-bio-prison-v2.h"
b844fe69 9#include "dm-bio-record.h"
c6b4fcba
JT
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
0f30af98 14#include <linux/jiffies.h>
c6b4fcba
JT
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
b29d4986 18#include <linux/rwsem.h>
c6b4fcba
JT
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
b29d4986
JT
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40/*----------------------------------------------------------------*/
77289d32
JT
41
42struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84}
85
86static void iot_io_begin(struct io_tracker *iot, sector_t len)
87{
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93}
94
95static void __iot_io_end(struct io_tracker *iot, sector_t len)
96{
97 iot->in_flight -= len;
98 if (!iot->in_flight)
99 iot->idle_time = jiffies;
100}
101
102static void iot_io_end(struct io_tracker *iot, sector_t len)
103{
104 unsigned long flags;
105
106 spin_lock_irqsave(&iot->lock, flags);
107 __iot_io_end(iot, len);
108 spin_unlock_irqrestore(&iot->lock, flags);
109}
110
111/*----------------------------------------------------------------*/
112
c6b4fcba 113/*
b29d4986
JT
114 * Represents a chunk of future work. 'input' allows continuations to pass
115 * values between themselves, typically error values.
c6b4fcba 116 */
b29d4986
JT
117struct continuation {
118 struct work_struct ws;
119 int input;
120};
121
122static inline void init_continuation(struct continuation *k,
123 void (*fn)(struct work_struct *))
124{
125 INIT_WORK(&k->ws, fn);
126 k->input = 0;
127}
128
129static inline void queue_continuation(struct workqueue_struct *wq,
130 struct continuation *k)
131{
132 queue_work(wq, &k->ws);
133}
c6b4fcba
JT
134
135/*----------------------------------------------------------------*/
136
b29d4986
JT
137/*
138 * The batcher collects together pieces of work that need a particular
139 * operation to occur before they can proceed (typically a commit).
140 */
141struct batcher {
142 /*
143 * The operation that everyone is waiting for.
144 */
145 int (*commit_op)(void *context);
146 void *commit_context;
147
148 /*
149 * This is how bios should be issued once the commit op is complete
150 * (accounted_request).
151 */
152 void (*issue_op)(struct bio *bio, void *context);
153 void *issue_context;
154
155 /*
156 * Queued work gets put on here after commit.
157 */
158 struct workqueue_struct *wq;
159
160 spinlock_t lock;
161 struct list_head work_items;
162 struct bio_list bios;
163 struct work_struct commit_work;
164
165 bool commit_scheduled;
166};
167
168static void __commit(struct work_struct *_ws)
169{
170 struct batcher *b = container_of(_ws, struct batcher, commit_work);
171
172 int r;
173 unsigned long flags;
174 struct list_head work_items;
175 struct work_struct *ws, *tmp;
176 struct continuation *k;
177 struct bio *bio;
178 struct bio_list bios;
179
180 INIT_LIST_HEAD(&work_items);
181 bio_list_init(&bios);
182
183 /*
184 * We have to grab these before the commit_op to avoid a race
185 * condition.
186 */
187 spin_lock_irqsave(&b->lock, flags);
188 list_splice_init(&b->work_items, &work_items);
189 bio_list_merge(&bios, &b->bios);
190 bio_list_init(&b->bios);
191 b->commit_scheduled = false;
192 spin_unlock_irqrestore(&b->lock, flags);
193
194 r = b->commit_op(b->commit_context);
195
196 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
197 k = container_of(ws, struct continuation, ws);
198 k->input = r;
199 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
200 queue_work(b->wq, ws);
201 }
202
203 while ((bio = bio_list_pop(&bios))) {
204 if (r) {
205 bio->bi_error = r;
206 bio_endio(bio);
207 } else
208 b->issue_op(bio, b->issue_context);
209 }
210}
211
212static void batcher_init(struct batcher *b,
213 int (*commit_op)(void *),
214 void *commit_context,
215 void (*issue_op)(struct bio *bio, void *),
216 void *issue_context,
217 struct workqueue_struct *wq)
218{
219 b->commit_op = commit_op;
220 b->commit_context = commit_context;
221 b->issue_op = issue_op;
222 b->issue_context = issue_context;
223 b->wq = wq;
224
225 spin_lock_init(&b->lock);
226 INIT_LIST_HEAD(&b->work_items);
227 bio_list_init(&b->bios);
228 INIT_WORK(&b->commit_work, __commit);
229 b->commit_scheduled = false;
230}
231
232static void async_commit(struct batcher *b)
233{
234 queue_work(b->wq, &b->commit_work);
235}
236
237static void continue_after_commit(struct batcher *b, struct continuation *k)
238{
239 unsigned long flags;
240 bool commit_scheduled;
241
242 spin_lock_irqsave(&b->lock, flags);
243 commit_scheduled = b->commit_scheduled;
244 list_add_tail(&k->ws.entry, &b->work_items);
245 spin_unlock_irqrestore(&b->lock, flags);
246
247 if (commit_scheduled)
248 async_commit(b);
249}
250
251/*
252 * Bios are errored if commit failed.
253 */
254static void issue_after_commit(struct batcher *b, struct bio *bio)
255{
256 unsigned long flags;
257 bool commit_scheduled;
258
259 spin_lock_irqsave(&b->lock, flags);
260 commit_scheduled = b->commit_scheduled;
261 bio_list_add(&b->bios, bio);
262 spin_unlock_irqrestore(&b->lock, flags);
263
264 if (commit_scheduled)
265 async_commit(b);
266}
267
268/*
269 * Call this if some urgent work is waiting for the commit to complete.
270 */
271static void schedule_commit(struct batcher *b)
272{
273 bool immediate;
274 unsigned long flags;
275
276 spin_lock_irqsave(&b->lock, flags);
277 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
278 b->commit_scheduled = true;
279 spin_unlock_irqrestore(&b->lock, flags);
280
281 if (immediate)
282 async_commit(b);
283}
284
c9d28d5d
JT
285/*
286 * There are a couple of places where we let a bio run, but want to do some
287 * work before calling its endio function. We do this by temporarily
288 * changing the endio fn.
289 */
290struct dm_hook_info {
291 bio_end_io_t *bi_end_io;
c9d28d5d
JT
292};
293
294static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
295 bio_end_io_t *bi_end_io, void *bi_private)
296{
297 h->bi_end_io = bio->bi_end_io;
c9d28d5d
JT
298
299 bio->bi_end_io = bi_end_io;
300 bio->bi_private = bi_private;
301}
302
303static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
304{
305 bio->bi_end_io = h->bi_end_io;
c9d28d5d
JT
306}
307
308/*----------------------------------------------------------------*/
309
c6b4fcba
JT
310#define MIGRATION_POOL_SIZE 128
311#define COMMIT_PERIOD HZ
312#define MIGRATION_COUNT_WINDOW 10
313
314/*
05473044
MS
315 * The block size of the device holding cache data must be
316 * between 32KB and 1GB.
c6b4fcba
JT
317 */
318#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
05473044 319#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
c6b4fcba 320
2ee57d58 321enum cache_metadata_mode {
c6b4fcba
JT
322 CM_WRITE, /* metadata may be changed */
323 CM_READ_ONLY, /* metadata may not be changed */
028ae9f7 324 CM_FAIL
c6b4fcba
JT
325};
326
2ee57d58
JT
327enum cache_io_mode {
328 /*
329 * Data is written to cached blocks only. These blocks are marked
330 * dirty. If you lose the cache device you will lose data.
331 * Potential performance increase for both reads and writes.
332 */
333 CM_IO_WRITEBACK,
334
335 /*
336 * Data is written to both cache and origin. Blocks are never
337 * dirty. Potential performance benfit for reads only.
338 */
339 CM_IO_WRITETHROUGH,
340
341 /*
342 * A degraded mode useful for various cache coherency situations
343 * (eg, rolling back snapshots). Reads and writes always go to the
344 * origin. If a write goes to a cached oblock, then the cache
345 * block is invalidated.
346 */
347 CM_IO_PASSTHROUGH
348};
349
c6b4fcba 350struct cache_features {
2ee57d58
JT
351 enum cache_metadata_mode mode;
352 enum cache_io_mode io_mode;
629d0a8a 353 unsigned metadata_version;
c6b4fcba
JT
354};
355
356struct cache_stats {
357 atomic_t read_hit;
358 atomic_t read_miss;
359 atomic_t write_hit;
360 atomic_t write_miss;
361 atomic_t demotion;
362 atomic_t promotion;
b29d4986 363 atomic_t writeback;
c6b4fcba
JT
364 atomic_t copies_avoided;
365 atomic_t cache_cell_clash;
366 atomic_t commit_count;
367 atomic_t discard_count;
368};
369
370struct cache {
371 struct dm_target *ti;
372 struct dm_target_callbacks callbacks;
373
c9ec5d7c
MS
374 struct dm_cache_metadata *cmd;
375
c6b4fcba
JT
376 /*
377 * Metadata is written to this device.
378 */
379 struct dm_dev *metadata_dev;
380
381 /*
382 * The slower of the two data devices. Typically a spindle.
383 */
384 struct dm_dev *origin_dev;
385
386 /*
387 * The faster of the two data devices. Typically an SSD.
388 */
389 struct dm_dev *cache_dev;
390
c6b4fcba
JT
391 /*
392 * Size of the origin device in _complete_ blocks and native sectors.
393 */
394 dm_oblock_t origin_blocks;
395 sector_t origin_sectors;
396
397 /*
398 * Size of the cache device in blocks.
399 */
400 dm_cblock_t cache_size;
401
402 /*
403 * Fields for converting from sectors to blocks.
404 */
ca763d0a 405 sector_t sectors_per_block;
c6b4fcba
JT
406 int sectors_per_block_shift;
407
c6b4fcba 408 spinlock_t lock;
651f5fa2 409 struct list_head deferred_cells;
c6b4fcba 410 struct bio_list deferred_bios;
e2e74d61 411 struct bio_list deferred_writethrough_bios;
c6b4fcba 412 sector_t migration_threshold;
c6b4fcba 413 wait_queue_head_t migration_wait;
a59db676
JT
414 atomic_t nr_allocated_migrations;
415
416 /*
417 * The number of in flight migrations that are performing
418 * background io. eg, promotion, writeback.
419 */
420 atomic_t nr_io_migrations;
c6b4fcba 421
b29d4986 422 struct rw_semaphore quiesce_lock;
66cb1910 423
c6b4fcba
JT
424 /*
425 * cache_size entries, dirty if set
426 */
44fa816b 427 atomic_t nr_dirty;
c6b4fcba
JT
428 unsigned long *dirty_bitset;
429
430 /*
431 * origin_blocks entries, discarded if set.
432 */
1bad9bc4 433 dm_dblock_t discard_nr_blocks;
c6b4fcba 434 unsigned long *discard_bitset;
08b18451 435 uint32_t discard_block_size; /* a power of 2 times sectors per block */
c9ec5d7c
MS
436
437 /*
438 * Rather than reconstructing the table line for the status we just
439 * save it and regurgitate.
440 */
441 unsigned nr_ctr_args;
442 const char **ctr_args;
c6b4fcba
JT
443
444 struct dm_kcopyd_client *copier;
445 struct workqueue_struct *wq;
b29d4986
JT
446 struct work_struct deferred_bio_worker;
447 struct work_struct deferred_writethrough_worker;
448 struct work_struct migration_worker;
c6b4fcba 449 struct delayed_work waker;
b29d4986 450 struct dm_bio_prison_v2 *prison;
c6b4fcba
JT
451
452 mempool_t *migration_pool;
c6b4fcba
JT
453
454 struct dm_cache_policy *policy;
455 unsigned policy_nr_args;
456
457 bool need_tick_bio:1;
458 bool sized:1;
65790ff9 459 bool invalidate:1;
c6b4fcba
JT
460 bool commit_requested:1;
461 bool loaded_mappings:1;
462 bool loaded_discards:1;
463
c6b4fcba 464 /*
c9ec5d7c 465 * Cache features such as write-through.
c6b4fcba 466 */
c9ec5d7c
MS
467 struct cache_features features;
468
469 struct cache_stats stats;
65790ff9
JT
470
471 /*
472 * Invalidation fields.
473 */
474 spinlock_t invalidation_lock;
475 struct list_head invalidation_requests;
066dbaa3
JT
476
477 struct io_tracker origin_tracker;
b29d4986
JT
478
479 struct work_struct commit_ws;
480 struct batcher committer;
481
482 struct rw_semaphore background_work_lock;
c6b4fcba
JT
483};
484
485struct per_bio_data {
486 bool tick:1;
487 unsigned req_nr:2;
b29d4986 488 struct dm_bio_prison_cell_v2 *cell;
c6eda5e8 489 struct dm_hook_info hook_info;
066dbaa3 490 sector_t len;
e2e74d61 491
19b0092e
MS
492 /*
493 * writethrough fields. These MUST remain at the end of this
494 * structure and the 'cache' member must be the first as it
aeed1420 495 * is used to determine the offset of the writethrough fields.
19b0092e 496 */
e2e74d61
JT
497 struct cache *cache;
498 dm_cblock_t cblock;
b844fe69 499 struct dm_bio_details bio_details;
c6b4fcba
JT
500};
501
502struct dm_cache_migration {
b29d4986 503 struct continuation k;
c6b4fcba
JT
504 struct cache *cache;
505
b29d4986
JT
506 struct policy_work *op;
507 struct bio *overwrite_bio;
508 struct dm_bio_prison_cell_v2 *cell;
c6b4fcba 509
b29d4986
JT
510 dm_cblock_t invalidate_cblock;
511 dm_oblock_t invalidate_oblock;
c6b4fcba
JT
512};
513
b29d4986
JT
514/*----------------------------------------------------------------*/
515
516static bool writethrough_mode(struct cache_features *f)
517{
518 return f->io_mode == CM_IO_WRITETHROUGH;
519}
520
521static bool writeback_mode(struct cache_features *f)
522{
523 return f->io_mode == CM_IO_WRITEBACK;
524}
525
526static inline bool passthrough_mode(struct cache_features *f)
527{
528 return unlikely(f->io_mode == CM_IO_PASSTHROUGH);
529}
530
531/*----------------------------------------------------------------*/
532
533static void wake_deferred_bio_worker(struct cache *cache)
534{
535 queue_work(cache->wq, &cache->deferred_bio_worker);
536}
c6b4fcba 537
b29d4986
JT
538static void wake_deferred_writethrough_worker(struct cache *cache)
539{
540 queue_work(cache->wq, &cache->deferred_writethrough_worker);
541}
028ae9f7 542
b29d4986 543static void wake_migration_worker(struct cache *cache)
c6b4fcba 544{
b29d4986
JT
545 if (passthrough_mode(&cache->features))
546 return;
547
548 queue_work(cache->wq, &cache->migration_worker);
c6b4fcba
JT
549}
550
551/*----------------------------------------------------------------*/
552
b29d4986 553static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
c6b4fcba 554{
b29d4986 555 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
c6b4fcba
JT
556}
557
b29d4986 558static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
c6b4fcba 559{
b29d4986 560 dm_bio_prison_free_cell_v2(cache->prison, cell);
c6b4fcba
JT
561}
562
a59db676
JT
563static struct dm_cache_migration *alloc_migration(struct cache *cache)
564{
565 struct dm_cache_migration *mg;
566
567 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
568 if (mg) {
569 mg->cache = cache;
570 atomic_inc(&mg->cache->nr_allocated_migrations);
571 }
572
573 return mg;
574}
575
576static void free_migration(struct dm_cache_migration *mg)
577{
88bf5184 578 struct cache *cache = mg->cache;
a59db676 579
88bf5184
JT
580 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
581 wake_up(&cache->migration_wait);
582
583 mempool_free(mg, cache->migration_pool);
a59db676
JT
584}
585
b29d4986 586/*----------------------------------------------------------------*/
c6b4fcba 587
b29d4986 588static inline dm_oblock_t oblock_succ(dm_oblock_t b)
c6b4fcba 589{
b29d4986 590 return to_oblock(from_oblock(b) + 1ull);
c6b4fcba
JT
591}
592
b29d4986 593static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
c6b4fcba 594{
b29d4986
JT
595 key->virtual = 0;
596 key->dev = 0;
597 key->block_begin = from_oblock(begin);
598 key->block_end = from_oblock(end);
c6b4fcba
JT
599}
600
601/*
b29d4986
JT
602 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
603 * level 1 which prevents *both* READs and WRITEs.
c6b4fcba 604 */
b29d4986
JT
605#define WRITE_LOCK_LEVEL 0
606#define READ_WRITE_LOCK_LEVEL 1
607
608static unsigned lock_level(struct bio *bio)
c6b4fcba 609{
b29d4986
JT
610 return bio_data_dir(bio) == WRITE ?
611 WRITE_LOCK_LEVEL :
612 READ_WRITE_LOCK_LEVEL;
613}
c6b4fcba 614
b29d4986
JT
615/*----------------------------------------------------------------
616 * Per bio data
617 *--------------------------------------------------------------*/
c6b4fcba 618
b29d4986
JT
619/*
620 * If using writeback, leave out struct per_bio_data's writethrough fields.
621 */
622#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
623#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
c6b4fcba 624
b29d4986
JT
625static size_t get_per_bio_data_size(struct cache *cache)
626{
627 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
c6b4fcba
JT
628}
629
b29d4986 630static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
c6b4fcba 631{
b29d4986
JT
632 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
633 BUG_ON(!pb);
634 return pb;
635}
c6b4fcba 636
b29d4986
JT
637static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
638{
639 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
c6b4fcba 640
b29d4986
JT
641 pb->tick = false;
642 pb->req_nr = dm_bio_get_target_bio_nr(bio);
643 pb->cell = NULL;
644 pb->len = 0;
645
646 return pb;
c6b4fcba
JT
647}
648
649/*----------------------------------------------------------------*/
650
b29d4986 651static void defer_bio(struct cache *cache, struct bio *bio)
c6b4fcba 652{
b29d4986 653 unsigned long flags;
c6b4fcba 654
b29d4986
JT
655 spin_lock_irqsave(&cache->lock, flags);
656 bio_list_add(&cache->deferred_bios, bio);
657 spin_unlock_irqrestore(&cache->lock, flags);
658
659 wake_deferred_bio_worker(cache);
660}
c6b4fcba 661
b29d4986 662static void defer_bios(struct cache *cache, struct bio_list *bios)
c6b4fcba 663{
b29d4986 664 unsigned long flags;
c6b4fcba 665
b29d4986
JT
666 spin_lock_irqsave(&cache->lock, flags);
667 bio_list_merge(&cache->deferred_bios, bios);
668 bio_list_init(bios);
669 spin_unlock_irqrestore(&cache->lock, flags);
c6b4fcba 670
b29d4986 671 wake_deferred_bio_worker(cache);
c6b4fcba
JT
672}
673
b29d4986
JT
674/*----------------------------------------------------------------*/
675
676static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
7ae34e77 677{
b29d4986
JT
678 bool r;
679 size_t pb_size;
680 struct per_bio_data *pb;
681 struct dm_cell_key_v2 key;
7ae34e77 682 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
b29d4986 683 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
7ae34e77 684
b29d4986
JT
685 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
686 if (!cell_prealloc) {
687 defer_bio(cache, bio);
688 return false;
689 }
690
691 build_key(oblock, end, &key);
692 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
693 if (!r) {
694 /*
695 * Failed to get the lock.
696 */
697 free_prison_cell(cache, cell_prealloc);
698 return r;
699 }
c6b4fcba 700
b29d4986
JT
701 if (cell != cell_prealloc)
702 free_prison_cell(cache, cell_prealloc);
c6b4fcba 703
b29d4986
JT
704 pb_size = get_per_bio_data_size(cache);
705 pb = get_per_bio_data(bio, pb_size);
706 pb->cell = cell;
c6b4fcba
JT
707
708 return r;
709}
710
aeed1420 711/*----------------------------------------------------------------*/
c6b4fcba
JT
712
713static bool is_dirty(struct cache *cache, dm_cblock_t b)
714{
715 return test_bit(from_cblock(b), cache->dirty_bitset);
716}
717
b29d4986 718static void set_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
719{
720 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 721 atomic_inc(&cache->nr_dirty);
b29d4986 722 policy_set_dirty(cache->policy, cblock);
c6b4fcba
JT
723 }
724}
725
b29d4986
JT
726/*
727 * These two are called when setting after migrations to force the policy
728 * and dirty bitset to be in sync.
729 */
730static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
731{
732 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
733 atomic_inc(&cache->nr_dirty);
734 policy_set_dirty(cache->policy, cblock);
735}
736
737static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
738{
739 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 740 if (atomic_dec_return(&cache->nr_dirty) == 0)
c6b4fcba
JT
741 dm_table_event(cache->ti->table);
742 }
b29d4986
JT
743
744 policy_clear_dirty(cache->policy, cblock);
c6b4fcba
JT
745}
746
747/*----------------------------------------------------------------*/
aeed1420 748
c6b4fcba
JT
749static bool block_size_is_power_of_two(struct cache *cache)
750{
751 return cache->sectors_per_block_shift >= 0;
752}
753
43aeaa29
MP
754/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
755#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
756__always_inline
757#endif
414dd67d
JT
758static dm_block_t block_div(dm_block_t b, uint32_t n)
759{
760 do_div(b, n);
761
762 return b;
763}
764
7ae34e77 765static dm_block_t oblocks_per_dblock(struct cache *cache)
1bad9bc4 766{
7ae34e77 767 dm_block_t oblocks = cache->discard_block_size;
1bad9bc4 768
7ae34e77
JT
769 if (block_size_is_power_of_two(cache))
770 oblocks >>= cache->sectors_per_block_shift;
1bad9bc4 771 else
7ae34e77 772 oblocks = block_div(oblocks, cache->sectors_per_block);
1bad9bc4 773
7ae34e77
JT
774 return oblocks;
775}
776
777static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
778{
779 return to_dblock(block_div(from_oblock(oblock),
780 oblocks_per_dblock(cache)));
781}
1bad9bc4 782
1bad9bc4 783static void set_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
784{
785 unsigned long flags;
786
7ae34e77 787 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
788 atomic_inc(&cache->stats.discard_count);
789
790 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 791 set_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
792 spin_unlock_irqrestore(&cache->lock, flags);
793}
794
1bad9bc4 795static void clear_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
796{
797 unsigned long flags;
798
799 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 800 clear_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
801 spin_unlock_irqrestore(&cache->lock, flags);
802}
803
1bad9bc4 804static bool is_discarded(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
805{
806 int r;
807 unsigned long flags;
808
809 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 810 r = test_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
811 spin_unlock_irqrestore(&cache->lock, flags);
812
813 return r;
814}
815
816static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
817{
818 int r;
819 unsigned long flags;
820
821 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4
JT
822 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
823 cache->discard_bitset);
c6b4fcba
JT
824 spin_unlock_irqrestore(&cache->lock, flags);
825
826 return r;
827}
828
b29d4986
JT
829/*----------------------------------------------------------------
830 * Remapping
831 *--------------------------------------------------------------*/
832static void remap_to_origin(struct cache *cache, struct bio *bio)
c6b4fcba 833{
b29d4986 834 bio->bi_bdev = cache->origin_dev->bdev;
c6b4fcba
JT
835}
836
837static void remap_to_cache(struct cache *cache, struct bio *bio,
838 dm_cblock_t cblock)
839{
4f024f37 840 sector_t bi_sector = bio->bi_iter.bi_sector;
e0d849fa 841 sector_t block = from_cblock(cblock);
c6b4fcba
JT
842
843 bio->bi_bdev = cache->cache_dev->bdev;
844 if (!block_size_is_power_of_two(cache))
4f024f37 845 bio->bi_iter.bi_sector =
e0d849fa 846 (block * cache->sectors_per_block) +
4f024f37 847 sector_div(bi_sector, cache->sectors_per_block);
c6b4fcba 848 else
4f024f37 849 bio->bi_iter.bi_sector =
e0d849fa 850 (block << cache->sectors_per_block_shift) |
4f024f37 851 (bi_sector & (cache->sectors_per_block - 1));
c6b4fcba
JT
852}
853
854static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
855{
856 unsigned long flags;
19b0092e
MS
857 size_t pb_data_size = get_per_bio_data_size(cache);
858 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c6b4fcba
JT
859
860 spin_lock_irqsave(&cache->lock, flags);
f73f44eb 861 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
e6047149 862 bio_op(bio) != REQ_OP_DISCARD) {
c6b4fcba
JT
863 pb->tick = true;
864 cache->need_tick_bio = false;
865 }
866 spin_unlock_irqrestore(&cache->lock, flags);
867}
868
869static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
b29d4986 870 dm_oblock_t oblock)
c6b4fcba 871{
b29d4986 872 // FIXME: this is called way too much.
c6b4fcba
JT
873 check_if_tick_bio_needed(cache, bio);
874 remap_to_origin(cache, bio);
875 if (bio_data_dir(bio) == WRITE)
1bad9bc4 876 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
877}
878
879static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
880 dm_oblock_t oblock, dm_cblock_t cblock)
881{
f8e5f01a 882 check_if_tick_bio_needed(cache, bio);
c6b4fcba
JT
883 remap_to_cache(cache, bio, cblock);
884 if (bio_data_dir(bio) == WRITE) {
b29d4986 885 set_dirty(cache, cblock);
1bad9bc4 886 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
887 }
888}
889
890static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
891{
4f024f37 892 sector_t block_nr = bio->bi_iter.bi_sector;
c6b4fcba
JT
893
894 if (!block_size_is_power_of_two(cache))
895 (void) sector_div(block_nr, cache->sectors_per_block);
896 else
897 block_nr >>= cache->sectors_per_block_shift;
898
899 return to_oblock(block_nr);
900}
901
066dbaa3
JT
902static bool accountable_bio(struct cache *cache, struct bio *bio)
903{
904 return ((bio->bi_bdev == cache->origin_dev->bdev) &&
e6047149 905 bio_op(bio) != REQ_OP_DISCARD);
066dbaa3
JT
906}
907
908static void accounted_begin(struct cache *cache, struct bio *bio)
909{
910 size_t pb_data_size = get_per_bio_data_size(cache);
911 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
912
913 if (accountable_bio(cache, bio)) {
914 pb->len = bio_sectors(bio);
915 iot_io_begin(&cache->origin_tracker, pb->len);
916 }
917}
918
919static void accounted_complete(struct cache *cache, struct bio *bio)
920{
921 size_t pb_data_size = get_per_bio_data_size(cache);
922 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
923
924 iot_io_end(&cache->origin_tracker, pb->len);
925}
926
927static void accounted_request(struct cache *cache, struct bio *bio)
928{
929 accounted_begin(cache, bio);
930 generic_make_request(bio);
931}
932
b29d4986 933static void issue_op(struct bio *bio, void *context)
8c081b52 934{
b29d4986
JT
935 struct cache *cache = context;
936 accounted_request(cache, bio);
8c081b52
JT
937}
938
e2e74d61
JT
939static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
940{
941 unsigned long flags;
942
943 spin_lock_irqsave(&cache->lock, flags);
944 bio_list_add(&cache->deferred_writethrough_bios, bio);
945 spin_unlock_irqrestore(&cache->lock, flags);
946
b29d4986 947 wake_deferred_writethrough_worker(cache);
e2e74d61
JT
948}
949
4246a0b6 950static void writethrough_endio(struct bio *bio)
e2e74d61 951{
19b0092e 952 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
c9d28d5d
JT
953
954 dm_unhook_bio(&pb->hook_info, bio);
e2e74d61 955
4246a0b6
CH
956 if (bio->bi_error) {
957 bio_endio(bio);
e2e74d61
JT
958 return;
959 }
960
b844fe69 961 dm_bio_restore(&pb->bio_details, bio);
e2e74d61
JT
962 remap_to_cache(pb->cache, bio, pb->cblock);
963
964 /*
965 * We can't issue this bio directly, since we're in interrupt
aeed1420 966 * context. So it gets put on a bio list for processing by the
e2e74d61
JT
967 * worker thread.
968 */
969 defer_writethrough_bio(pb->cache, bio);
970}
971
972/*
b29d4986 973 * FIXME: send in parallel, huge latency as is.
e2e74d61
JT
974 * When running in writethrough mode we need to send writes to clean blocks
975 * to both the cache and origin devices. In future we'd like to clone the
976 * bio and send them in parallel, but for now we're doing them in
977 * series as this is easier.
978 */
979static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
980 dm_oblock_t oblock, dm_cblock_t cblock)
981{
19b0092e 982 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
e2e74d61
JT
983
984 pb->cache = cache;
985 pb->cblock = cblock;
c9d28d5d 986 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
b844fe69 987 dm_bio_record(&pb->bio_details, bio);
e2e74d61
JT
988
989 remap_to_origin_clear_discard(pb->cache, bio, oblock);
990}
991
028ae9f7
JT
992/*----------------------------------------------------------------
993 * Failure modes
994 *--------------------------------------------------------------*/
995static enum cache_metadata_mode get_cache_mode(struct cache *cache)
996{
997 return cache->features.mode;
998}
999
b61d9509
MS
1000static const char *cache_device_name(struct cache *cache)
1001{
1002 return dm_device_name(dm_table_get_md(cache->ti->table));
1003}
1004
028ae9f7
JT
1005static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
1006{
1007 const char *descs[] = {
1008 "write",
1009 "read-only",
1010 "fail"
1011 };
1012
1013 dm_table_event(cache->ti->table);
b61d9509
MS
1014 DMINFO("%s: switching cache to %s mode",
1015 cache_device_name(cache), descs[(int)mode]);
028ae9f7
JT
1016}
1017
1018static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
1019{
d14fcf3d 1020 bool needs_check;
028ae9f7
JT
1021 enum cache_metadata_mode old_mode = get_cache_mode(cache);
1022
d14fcf3d 1023 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
23cab26d
MS
1024 DMERR("%s: unable to read needs_check flag, setting failure mode.",
1025 cache_device_name(cache));
d14fcf3d
JT
1026 new_mode = CM_FAIL;
1027 }
1028
028ae9f7 1029 if (new_mode == CM_WRITE && needs_check) {
b61d9509
MS
1030 DMERR("%s: unable to switch cache to write mode until repaired.",
1031 cache_device_name(cache));
028ae9f7
JT
1032 if (old_mode != new_mode)
1033 new_mode = old_mode;
1034 else
1035 new_mode = CM_READ_ONLY;
1036 }
1037
1038 /* Never move out of fail mode */
1039 if (old_mode == CM_FAIL)
1040 new_mode = CM_FAIL;
1041
1042 switch (new_mode) {
1043 case CM_FAIL:
1044 case CM_READ_ONLY:
1045 dm_cache_metadata_set_read_only(cache->cmd);
1046 break;
1047
1048 case CM_WRITE:
1049 dm_cache_metadata_set_read_write(cache->cmd);
1050 break;
1051 }
1052
1053 cache->features.mode = new_mode;
1054
1055 if (new_mode != old_mode)
1056 notify_mode_switch(cache, new_mode);
1057}
1058
1059static void abort_transaction(struct cache *cache)
1060{
b61d9509
MS
1061 const char *dev_name = cache_device_name(cache);
1062
028ae9f7
JT
1063 if (get_cache_mode(cache) >= CM_READ_ONLY)
1064 return;
1065
1066 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
b61d9509 1067 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
028ae9f7
JT
1068 set_cache_mode(cache, CM_FAIL);
1069 }
1070
b61d9509 1071 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
028ae9f7 1072 if (dm_cache_metadata_abort(cache->cmd)) {
b61d9509 1073 DMERR("%s: failed to abort metadata transaction", dev_name);
028ae9f7
JT
1074 set_cache_mode(cache, CM_FAIL);
1075 }
1076}
1077
1078static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1079{
b61d9509
MS
1080 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1081 cache_device_name(cache), op, r);
028ae9f7
JT
1082 abort_transaction(cache);
1083 set_cache_mode(cache, CM_READ_ONLY);
1084}
1085
b29d4986
JT
1086/*----------------------------------------------------------------*/
1087
1088static void load_stats(struct cache *cache)
1089{
1090 struct dm_cache_statistics stats;
1091
1092 dm_cache_metadata_get_stats(cache->cmd, &stats);
1093 atomic_set(&cache->stats.read_hit, stats.read_hits);
1094 atomic_set(&cache->stats.read_miss, stats.read_misses);
1095 atomic_set(&cache->stats.write_hit, stats.write_hits);
1096 atomic_set(&cache->stats.write_miss, stats.write_misses);
1097}
1098
1099static void save_stats(struct cache *cache)
1100{
1101 struct dm_cache_statistics stats;
1102
1103 if (get_cache_mode(cache) >= CM_READ_ONLY)
1104 return;
1105
1106 stats.read_hits = atomic_read(&cache->stats.read_hit);
1107 stats.read_misses = atomic_read(&cache->stats.read_miss);
1108 stats.write_hits = atomic_read(&cache->stats.write_hit);
1109 stats.write_misses = atomic_read(&cache->stats.write_miss);
1110
1111 dm_cache_metadata_set_stats(cache->cmd, &stats);
1112}
1113
1114static void update_stats(struct cache_stats *stats, enum policy_operation op)
1115{
1116 switch (op) {
1117 case POLICY_PROMOTE:
1118 atomic_inc(&stats->promotion);
1119 break;
1120
1121 case POLICY_DEMOTE:
1122 atomic_inc(&stats->demotion);
1123 break;
1124
1125 case POLICY_WRITEBACK:
1126 atomic_inc(&stats->writeback);
1127 break;
1128 }
1129}
1130
c6b4fcba
JT
1131/*----------------------------------------------------------------
1132 * Migration processing
1133 *
1134 * Migration covers moving data from the origin device to the cache, or
1135 * vice versa.
1136 *--------------------------------------------------------------*/
b29d4986 1137
a59db676 1138static void inc_io_migrations(struct cache *cache)
c6b4fcba 1139{
a59db676 1140 atomic_inc(&cache->nr_io_migrations);
c6b4fcba
JT
1141}
1142
a59db676 1143static void dec_io_migrations(struct cache *cache)
c6b4fcba 1144{
a59db676 1145 atomic_dec(&cache->nr_io_migrations);
c6b4fcba
JT
1146}
1147
651f5fa2
JT
1148static bool discard_or_flush(struct bio *bio)
1149{
f73f44eb 1150 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
651f5fa2
JT
1151}
1152
b29d4986
JT
1153static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1154 dm_dblock_t *b, dm_dblock_t *e)
c6b4fcba 1155{
b29d4986
JT
1156 sector_t sb = bio->bi_iter.bi_sector;
1157 sector_t se = bio_end_sector(bio);
651f5fa2 1158
b29d4986 1159 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
c6b4fcba 1160
b29d4986
JT
1161 if (se - sb < cache->discard_block_size)
1162 *e = *b;
1163 else
1164 *e = to_dblock(block_div(se, cache->discard_block_size));
c6b4fcba
JT
1165}
1166
b29d4986 1167/*----------------------------------------------------------------*/
651f5fa2 1168
b29d4986 1169static void prevent_background_work(struct cache *cache)
651f5fa2 1170{
b29d4986
JT
1171 lockdep_off();
1172 down_write(&cache->background_work_lock);
1173 lockdep_on();
651f5fa2
JT
1174}
1175
b29d4986 1176static void allow_background_work(struct cache *cache)
c6b4fcba 1177{
b29d4986
JT
1178 lockdep_off();
1179 up_write(&cache->background_work_lock);
1180 lockdep_on();
c6b4fcba
JT
1181}
1182
b29d4986 1183static bool background_work_begin(struct cache *cache)
c6b4fcba 1184{
b29d4986 1185 bool r;
c6b4fcba 1186
b29d4986
JT
1187 lockdep_off();
1188 r = down_read_trylock(&cache->background_work_lock);
1189 lockdep_on();
c6b4fcba 1190
b29d4986 1191 return r;
c6b4fcba
JT
1192}
1193
b29d4986 1194static void background_work_end(struct cache *cache)
c6b4fcba 1195{
b29d4986
JT
1196 lockdep_off();
1197 up_read(&cache->background_work_lock);
1198 lockdep_on();
1199}
c6b4fcba 1200
b29d4986 1201/*----------------------------------------------------------------*/
c6b4fcba 1202
b29d4986
JT
1203static void quiesce(struct dm_cache_migration *mg,
1204 void (*continuation)(struct work_struct *))
1205{
1206 init_continuation(&mg->k, continuation);
1207 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
c6b4fcba
JT
1208}
1209
b29d4986 1210static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
c6b4fcba 1211{
b29d4986
JT
1212 struct continuation *k = container_of(ws, struct continuation, ws);
1213 return container_of(k, struct dm_cache_migration, k);
c6b4fcba
JT
1214}
1215
1216static void copy_complete(int read_err, unsigned long write_err, void *context)
1217{
b29d4986 1218 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
c6b4fcba
JT
1219
1220 if (read_err || write_err)
b29d4986 1221 mg->k.input = -EIO;
c6b4fcba 1222
b29d4986 1223 queue_continuation(mg->cache->wq, &mg->k);
c6b4fcba
JT
1224}
1225
b29d4986 1226static int copy(struct dm_cache_migration *mg, bool promote)
c6b4fcba
JT
1227{
1228 int r;
1229 struct dm_io_region o_region, c_region;
1230 struct cache *cache = mg->cache;
1231
1232 o_region.bdev = cache->origin_dev->bdev;
b29d4986 1233 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
c6b4fcba
JT
1234 o_region.count = cache->sectors_per_block;
1235
1236 c_region.bdev = cache->cache_dev->bdev;
b29d4986 1237 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
c6b4fcba
JT
1238 c_region.count = cache->sectors_per_block;
1239
b29d4986
JT
1240 if (promote)
1241 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1242 else
1243 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
c6b4fcba 1244
b29d4986
JT
1245 return r;
1246}
1247
1248static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1249{
1250 size_t pb_data_size = get_per_bio_data_size(cache);
1251 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1252
1253 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1254 free_prison_cell(cache, pb->cell);
1255 pb->cell = NULL;
c6b4fcba
JT
1256}
1257
4246a0b6 1258static void overwrite_endio(struct bio *bio)
c9d28d5d
JT
1259{
1260 struct dm_cache_migration *mg = bio->bi_private;
1261 struct cache *cache = mg->cache;
1262 size_t pb_data_size = get_per_bio_data_size(cache);
1263 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c9d28d5d 1264
80ae49aa
MS
1265 dm_unhook_bio(&pb->hook_info, bio);
1266
4246a0b6 1267 if (bio->bi_error)
b29d4986 1268 mg->k.input = bio->bi_error;
80ae49aa 1269
b29d4986 1270 queue_continuation(mg->cache->wq, &mg->k);
c9d28d5d
JT
1271}
1272
b29d4986
JT
1273static void overwrite(struct dm_cache_migration *mg,
1274 void (*continuation)(struct work_struct *))
c9d28d5d 1275{
b29d4986 1276 struct bio *bio = mg->overwrite_bio;
c9d28d5d
JT
1277 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1278 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1279
1280 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
8c081b52
JT
1281
1282 /*
b29d4986
JT
1283 * The overwrite bio is part of the copy operation, as such it does
1284 * not set/clear discard or dirty flags.
8c081b52 1285 */
b29d4986
JT
1286 if (mg->op->op == POLICY_PROMOTE)
1287 remap_to_cache(mg->cache, bio, mg->op->cblock);
1288 else
1289 remap_to_origin(mg->cache, bio);
1290
1291 init_continuation(&mg->k, continuation);
066dbaa3 1292 accounted_request(mg->cache, bio);
c9d28d5d
JT
1293}
1294
b29d4986
JT
1295/*
1296 * Migration steps:
1297 *
1298 * 1) exclusive lock preventing WRITEs
1299 * 2) quiesce
1300 * 3) copy or issue overwrite bio
1301 * 4) upgrade to exclusive lock preventing READs and WRITEs
1302 * 5) quiesce
1303 * 6) update metadata and commit
1304 * 7) unlock
1305 */
1306static void mg_complete(struct dm_cache_migration *mg, bool success)
c9d28d5d 1307{
b29d4986
JT
1308 struct bio_list bios;
1309 struct cache *cache = mg->cache;
1310 struct policy_work *op = mg->op;
1311 dm_cblock_t cblock = op->cblock;
1312
1313 if (success)
1314 update_stats(&cache->stats, op->op);
1315
1316 switch (op->op) {
1317 case POLICY_PROMOTE:
1318 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1319 policy_complete_background_work(cache->policy, op, success);
1320
1321 if (mg->overwrite_bio) {
1322 if (success)
1323 force_set_dirty(cache, cblock);
1324 else
1325 mg->overwrite_bio->bi_error = (mg->k.input ? : -EIO);
1326 bio_endio(mg->overwrite_bio);
1327 } else {
1328 if (success)
1329 force_clear_dirty(cache, cblock);
1330 dec_io_migrations(cache);
1331 }
1332 break;
1333
1334 case POLICY_DEMOTE:
1335 /*
1336 * We clear dirty here to update the nr_dirty counter.
1337 */
1338 if (success)
1339 force_clear_dirty(cache, cblock);
1340 policy_complete_background_work(cache->policy, op, success);
1341 dec_io_migrations(cache);
1342 break;
1343
1344 case POLICY_WRITEBACK:
1345 if (success)
1346 force_clear_dirty(cache, cblock);
1347 policy_complete_background_work(cache->policy, op, success);
1348 dec_io_migrations(cache);
1349 break;
1350 }
1351
1352 bio_list_init(&bios);
1353 if (mg->cell) {
1354 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1355 free_prison_cell(cache, mg->cell);
1356 }
1357
1358 free_migration(mg);
1359 defer_bios(cache, &bios);
1360 wake_migration_worker(cache);
1361
1362 background_work_end(cache);
c9d28d5d
JT
1363}
1364
b29d4986 1365static void mg_success(struct work_struct *ws)
c6b4fcba 1366{
b29d4986
JT
1367 struct dm_cache_migration *mg = ws_to_mg(ws);
1368 mg_complete(mg, mg->k.input == 0);
c6b4fcba
JT
1369}
1370
b29d4986 1371static void mg_update_metadata(struct work_struct *ws)
7ae34e77 1372{
b29d4986
JT
1373 int r;
1374 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1375 struct cache *cache = mg->cache;
b29d4986 1376 struct policy_work *op = mg->op;
c6b4fcba 1377
b29d4986
JT
1378 switch (op->op) {
1379 case POLICY_PROMOTE:
1380 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1381 if (r) {
1382 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1383 cache_device_name(cache));
1384 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
7ae34e77 1385
b29d4986
JT
1386 mg_complete(mg, false);
1387 return;
1388 }
1389 mg_complete(mg, true);
1390 break;
c9d28d5d 1391
b29d4986
JT
1392 case POLICY_DEMOTE:
1393 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1394 if (r) {
1395 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1396 cache_device_name(cache));
1397 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
c6b4fcba 1398
b29d4986 1399 mg_complete(mg, false);
c9d28d5d
JT
1400 return;
1401 }
c9d28d5d 1402
b29d4986
JT
1403 /*
1404 * It would be nice if we only had to commit when a REQ_FLUSH
1405 * comes through. But there's one scenario that we have to
1406 * look out for:
1407 *
1408 * - vblock x in a cache block
1409 * - domotion occurs
1410 * - cache block gets reallocated and over written
1411 * - crash
1412 *
1413 * When we recover, because there was no commit the cache will
1414 * rollback to having the data for vblock x in the cache block.
1415 * But the cache block has since been overwritten, so it'll end
1416 * up pointing to data that was never in 'x' during the history
1417 * of the device.
1418 *
1419 * To avoid this issue we require a commit as part of the
1420 * demotion operation.
1421 */
1422 init_continuation(&mg->k, mg_success);
1423 continue_after_commit(&cache->committer, &mg->k);
1424 schedule_commit(&cache->committer);
1425 break;
1426
1427 case POLICY_WRITEBACK:
1428 mg_complete(mg, true);
1429 break;
7ae34e77 1430 }
c6b4fcba
JT
1431}
1432
b29d4986 1433static void mg_update_metadata_after_copy(struct work_struct *ws)
c6b4fcba 1434{
b29d4986
JT
1435 struct dm_cache_migration *mg = ws_to_mg(ws);
1436
1437 /*
1438 * Did the copy succeed?
1439 */
1440 if (mg->k.input)
1441 mg_complete(mg, false);
c6b4fcba 1442 else
b29d4986 1443 mg_update_metadata(ws);
c6b4fcba
JT
1444}
1445
b29d4986 1446static void mg_upgrade_lock(struct work_struct *ws)
c6b4fcba 1447{
b29d4986
JT
1448 int r;
1449 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1450
b29d4986
JT
1451 /*
1452 * Did the copy succeed?
1453 */
1454 if (mg->k.input)
1455 mg_complete(mg, false);
c6b4fcba 1456
c9d28d5d 1457 else {
b29d4986
JT
1458 /*
1459 * Now we want the lock to prevent both reads and writes.
1460 */
1461 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1462 READ_WRITE_LOCK_LEVEL);
1463 if (r < 0)
1464 mg_complete(mg, false);
c6b4fcba 1465
b29d4986
JT
1466 else if (r)
1467 quiesce(mg, mg_update_metadata);
c6b4fcba 1468
b29d4986
JT
1469 else
1470 mg_update_metadata(ws);
c9d28d5d 1471 }
c6b4fcba
JT
1472}
1473
b29d4986 1474static void mg_copy(struct work_struct *ws)
c6b4fcba 1475{
b29d4986
JT
1476 int r;
1477 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1478
b29d4986
JT
1479 if (mg->overwrite_bio) {
1480 /*
1481 * It's safe to do this here, even though it's new data
1482 * because all IO has been locked out of the block.
1483 *
1484 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1485 * so _not_ using mg_upgrade_lock() as continutation.
1486 */
1487 overwrite(mg, mg_update_metadata_after_copy);
c6b4fcba 1488
b29d4986
JT
1489 } else {
1490 struct cache *cache = mg->cache;
1491 struct policy_work *op = mg->op;
1492 bool is_policy_promote = (op->op == POLICY_PROMOTE);
c6b4fcba 1493
b29d4986
JT
1494 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1495 is_discarded_oblock(cache, op->oblock)) {
1496 mg_upgrade_lock(ws);
1497 return;
1498 }
c6b4fcba 1499
b29d4986 1500 init_continuation(&mg->k, mg_upgrade_lock);
c6b4fcba 1501
b29d4986
JT
1502 r = copy(mg, is_policy_promote);
1503 if (r) {
1504 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1505 mg->k.input = -EIO;
1506 mg_complete(mg, false);
1507 }
1508 }
c6b4fcba
JT
1509}
1510
b29d4986 1511static int mg_lock_writes(struct dm_cache_migration *mg)
c6b4fcba 1512{
b29d4986
JT
1513 int r;
1514 struct dm_cell_key_v2 key;
c6b4fcba 1515 struct cache *cache = mg->cache;
b29d4986 1516 struct dm_bio_prison_cell_v2 *prealloc;
c6b4fcba 1517
b29d4986
JT
1518 prealloc = alloc_prison_cell(cache);
1519 if (!prealloc) {
1520 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1521 mg_complete(mg, false);
1522 return -ENOMEM;
1523 }
c6b4fcba 1524
b29d4986
JT
1525 /*
1526 * Prevent writes to the block, but allow reads to continue.
1527 * Unless we're using an overwrite bio, in which case we lock
1528 * everything.
1529 */
1530 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1531 r = dm_cell_lock_v2(cache->prison, &key,
1532 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1533 prealloc, &mg->cell);
1534 if (r < 0) {
1535 free_prison_cell(cache, prealloc);
1536 mg_complete(mg, false);
1537 return r;
1538 }
c6b4fcba 1539
b29d4986
JT
1540 if (mg->cell != prealloc)
1541 free_prison_cell(cache, prealloc);
c6b4fcba 1542
b29d4986
JT
1543 if (r == 0)
1544 mg_copy(&mg->k.ws);
1545 else
1546 quiesce(mg, mg_copy);
c6b4fcba 1547
b29d4986 1548 return 0;
c6b4fcba
JT
1549}
1550
b29d4986 1551static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
c6b4fcba 1552{
b29d4986 1553 struct dm_cache_migration *mg;
c6b4fcba 1554
b29d4986
JT
1555 if (!background_work_begin(cache)) {
1556 policy_complete_background_work(cache->policy, op, false);
1557 return -EPERM;
1558 }
2ee57d58 1559
b29d4986
JT
1560 mg = alloc_migration(cache);
1561 if (!mg) {
1562 policy_complete_background_work(cache->policy, op, false);
1563 background_work_end(cache);
1564 return -ENOMEM;
1565 }
2ee57d58 1566
b29d4986 1567 memset(mg, 0, sizeof(*mg));
7ae34e77 1568
7ae34e77 1569 mg->cache = cache;
b29d4986
JT
1570 mg->op = op;
1571 mg->overwrite_bio = bio;
1572
1573 if (!bio)
1574 inc_io_migrations(cache);
7ae34e77 1575
b29d4986 1576 return mg_lock_writes(mg);
7ae34e77
JT
1577}
1578
c6b4fcba 1579/*----------------------------------------------------------------
b29d4986 1580 * invalidation processing
c6b4fcba 1581 *--------------------------------------------------------------*/
c6b4fcba 1582
b29d4986 1583static void invalidate_complete(struct dm_cache_migration *mg, bool success)
c6b4fcba 1584{
b29d4986
JT
1585 struct bio_list bios;
1586 struct cache *cache = mg->cache;
c6b4fcba 1587
b29d4986
JT
1588 bio_list_init(&bios);
1589 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1590 free_prison_cell(cache, mg->cell);
c6b4fcba 1591
b29d4986
JT
1592 if (!success && mg->overwrite_bio)
1593 bio_io_error(mg->overwrite_bio);
c6b4fcba 1594
b29d4986
JT
1595 free_migration(mg);
1596 defer_bios(cache, &bios);
c6b4fcba 1597
b29d4986 1598 background_work_end(cache);
c6b4fcba
JT
1599}
1600
b29d4986 1601static void invalidate_completed(struct work_struct *ws)
c6b4fcba 1602{
b29d4986
JT
1603 struct dm_cache_migration *mg = ws_to_mg(ws);
1604 invalidate_complete(mg, !mg->k.input);
c6b4fcba
JT
1605}
1606
b29d4986 1607static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
651f5fa2 1608{
b29d4986
JT
1609 int r = policy_invalidate_mapping(cache->policy, cblock);
1610 if (!r) {
1611 r = dm_cache_remove_mapping(cache->cmd, cblock);
1612 if (r) {
1613 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1614 cache_device_name(cache));
1615 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
651f5fa2
JT
1616 }
1617
b29d4986
JT
1618 } else if (r == -ENODATA) {
1619 /*
1620 * Harmless, already unmapped.
1621 */
1622 r = 0;
651f5fa2 1623
b29d4986
JT
1624 } else
1625 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
2ee57d58 1626
b29d4986 1627 return r;
651f5fa2
JT
1628}
1629
b29d4986 1630static void invalidate_remove(struct work_struct *ws)
651f5fa2 1631{
b29d4986
JT
1632 int r;
1633 struct dm_cache_migration *mg = ws_to_mg(ws);
1634 struct cache *cache = mg->cache;
651f5fa2 1635
b29d4986
JT
1636 r = invalidate_cblock(cache, mg->invalidate_cblock);
1637 if (r) {
1638 invalidate_complete(mg, false);
1639 return;
651f5fa2 1640 }
9153df74 1641
b29d4986
JT
1642 init_continuation(&mg->k, invalidate_completed);
1643 continue_after_commit(&cache->committer, &mg->k);
1644 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1645 mg->overwrite_bio = NULL;
1646 schedule_commit(&cache->committer);
651f5fa2
JT
1647}
1648
b29d4986 1649static int invalidate_lock(struct dm_cache_migration *mg)
651f5fa2 1650{
b29d4986
JT
1651 int r;
1652 struct dm_cell_key_v2 key;
1653 struct cache *cache = mg->cache;
1654 struct dm_bio_prison_cell_v2 *prealloc;
651f5fa2 1655
b29d4986
JT
1656 prealloc = alloc_prison_cell(cache);
1657 if (!prealloc) {
1658 invalidate_complete(mg, false);
1659 return -ENOMEM;
651f5fa2
JT
1660 }
1661
b29d4986
JT
1662 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1663 r = dm_cell_lock_v2(cache->prison, &key,
1664 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1665 if (r < 0) {
1666 free_prison_cell(cache, prealloc);
1667 invalidate_complete(mg, false);
1668 return r;
651f5fa2 1669 }
9153df74 1670
b29d4986
JT
1671 if (mg->cell != prealloc)
1672 free_prison_cell(cache, prealloc);
651f5fa2 1673
b29d4986
JT
1674 if (r)
1675 quiesce(mg, invalidate_remove);
651f5fa2 1676
b29d4986
JT
1677 else {
1678 /*
1679 * We can't call invalidate_remove() directly here because we
1680 * might still be in request context.
1681 */
1682 init_continuation(&mg->k, invalidate_remove);
1683 queue_work(cache->wq, &mg->k.ws);
1684 }
fb4100ae 1685
fb4100ae
JT
1686 return 0;
1687}
1688
b29d4986
JT
1689static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1690 dm_oblock_t oblock, struct bio *bio)
fb4100ae 1691{
b29d4986 1692 struct dm_cache_migration *mg;
2ee57d58 1693
b29d4986
JT
1694 if (!background_work_begin(cache))
1695 return -EPERM;
c6b4fcba 1696
b29d4986
JT
1697 mg = alloc_migration(cache);
1698 if (!mg) {
1699 background_work_end(cache);
1700 return -ENOMEM;
7ae34e77 1701 }
c6b4fcba 1702
b29d4986 1703 memset(mg, 0, sizeof(*mg));
c6b4fcba 1704
b29d4986
JT
1705 mg->cache = cache;
1706 mg->overwrite_bio = bio;
1707 mg->invalidate_cblock = cblock;
1708 mg->invalidate_oblock = oblock;
c6b4fcba 1709
b29d4986 1710 return invalidate_lock(mg);
c6b4fcba 1711}
c6b4fcba 1712
b29d4986
JT
1713/*----------------------------------------------------------------
1714 * bio processing
1715 *--------------------------------------------------------------*/
c6b4fcba 1716
b29d4986
JT
1717enum busy {
1718 IDLE,
1719 MODERATE,
1720 BUSY
1721};
c6b4fcba 1722
b29d4986 1723static enum busy spare_migration_bandwidth(struct cache *cache)
651f5fa2 1724{
b29d4986 1725 bool idle = iot_idle_for(&cache->origin_tracker, HZ);
a59db676 1726 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
c6b4fcba 1727 cache->sectors_per_block;
651f5fa2 1728
b29d4986
JT
1729 if (current_volume <= cache->migration_threshold)
1730 return idle ? IDLE : MODERATE;
1731 else
1732 return idle ? MODERATE : BUSY;
651f5fa2
JT
1733}
1734
c6b4fcba 1735static void inc_hit_counter(struct cache *cache, struct bio *bio)
c6b4fcba 1736{
c6b4fcba
JT
1737 atomic_inc(bio_data_dir(bio) == READ ?
1738 &cache->stats.read_hit : &cache->stats.write_hit);
c6b4fcba
JT
1739}
1740
c6b4fcba 1741static void inc_miss_counter(struct cache *cache, struct bio *bio)
028ae9f7 1742{
c6b4fcba
JT
1743 atomic_inc(bio_data_dir(bio) == READ ?
1744 &cache->stats.read_miss : &cache->stats.write_miss);
1745}
028ae9f7 1746
fb4100ae 1747/*----------------------------------------------------------------*/
028ae9f7 1748
b29d4986 1749static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
651f5fa2 1750{
b29d4986
JT
1751 return (bio_data_dir(bio) == WRITE) &&
1752 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
028ae9f7
JT
1753}
1754
b29d4986 1755static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
c6b4fcba 1756{
b29d4986
JT
1757 return writeback_mode(&cache->features) &&
1758 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
c6b4fcba
JT
1759}
1760
b29d4986
JT
1761static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1762 bool *commit_needed)
c6b4fcba 1763{
b29d4986
JT
1764 int r, data_dir;
1765 bool rb, background_queued;
1766 dm_cblock_t cblock;
1767 size_t pb_data_size = get_per_bio_data_size(cache);
1768 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c6b4fcba 1769
b29d4986 1770 *commit_needed = false;
c6b4fcba 1771
b29d4986
JT
1772 rb = bio_detain_shared(cache, block, bio);
1773 if (!rb) {
c6b4fcba 1774 /*
b29d4986
JT
1775 * An exclusive lock is held for this block, so we have to
1776 * wait. We set the commit_needed flag so the current
1777 * transaction will be committed asap, allowing this lock
1778 * to be dropped.
c6b4fcba 1779 */
b29d4986
JT
1780 *commit_needed = true;
1781 return DM_MAPIO_SUBMITTED;
651f5fa2 1782 }
9153df74 1783
b29d4986 1784 data_dir = bio_data_dir(bio);
651f5fa2 1785
b29d4986
JT
1786 if (optimisable_bio(cache, bio, block)) {
1787 struct policy_work *op = NULL;
fb4100ae 1788
b29d4986
JT
1789 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1790 if (unlikely(r && r != -ENOENT)) {
1791 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1792 cache_device_name(cache), r);
1793 bio_io_error(bio);
1794 return DM_MAPIO_SUBMITTED;
c6b4fcba
JT
1795 }
1796
b29d4986
JT
1797 if (r == -ENOENT && op) {
1798 bio_drop_shared_lock(cache, bio);
1799 BUG_ON(op->op != POLICY_PROMOTE);
1800 mg_start(cache, op, bio);
1801 return DM_MAPIO_SUBMITTED;
1802 }
1803 } else {
1804 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1805 if (unlikely(r && r != -ENOENT)) {
1806 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1807 cache_device_name(cache), r);
1808 bio_io_error(bio);
1809 return DM_MAPIO_SUBMITTED;
1810 }
c6b4fcba 1811
b29d4986
JT
1812 if (background_queued)
1813 wake_migration_worker(cache);
c6b4fcba
JT
1814 }
1815
b29d4986
JT
1816 if (r == -ENOENT) {
1817 /*
1818 * Miss.
1819 */
1820 inc_miss_counter(cache, bio);
1821 if (pb->req_nr == 0) {
1822 accounted_begin(cache, bio);
1823 remap_to_origin_clear_discard(cache, bio, block);
651f5fa2 1824
b29d4986 1825 } else {
2ee57d58 1826 /*
b29d4986
JT
1827 * This is a duplicate writethrough io that is no
1828 * longer needed because the block has been demoted.
2ee57d58 1829 */
b29d4986
JT
1830 bio_endio(bio);
1831 return DM_MAPIO_SUBMITTED;
1832 }
1833 } else {
1834 /*
1835 * Hit.
1836 */
1837 inc_hit_counter(cache, bio);
651f5fa2 1838
b29d4986
JT
1839 /*
1840 * Passthrough always maps to the origin, invalidating any
1841 * cache blocks that are written to.
1842 */
1843 if (passthrough_mode(&cache->features)) {
2ee57d58 1844 if (bio_data_dir(bio) == WRITE) {
b29d4986 1845 bio_drop_shared_lock(cache, bio);
2ee57d58 1846 atomic_inc(&cache->stats.demotion);
b29d4986
JT
1847 invalidate_start(cache, cblock, block, bio);
1848 } else
2ee57d58 1849 remap_to_origin_clear_discard(cache, bio, block);
651f5fa2 1850
2ee57d58 1851 } else {
b29d4986
JT
1852 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
1853 !is_dirty(cache, cblock)) {
1854 remap_to_origin_then_cache(cache, bio, block, cblock);
1855 accounted_begin(cache, bio);
1856 } else
1857 remap_to_cache_dirty(cache, bio, block, cblock);
2ee57d58 1858 }
c6b4fcba 1859 }
651f5fa2 1860
651f5fa2 1861 /*
b29d4986 1862 * dm core turns FUA requests into a separate payload and FLUSH req.
651f5fa2 1863 */
b29d4986 1864 if (bio->bi_opf & REQ_FUA) {
651f5fa2 1865 /*
b29d4986
JT
1866 * issue_after_commit will call accounted_begin a second time. So
1867 * we call accounted_complete() to avoid double accounting.
651f5fa2 1868 */
b29d4986
JT
1869 accounted_complete(cache, bio);
1870 issue_after_commit(&cache->committer, bio);
1871 *commit_needed = true;
1872 return DM_MAPIO_SUBMITTED;
651f5fa2
JT
1873 }
1874
b29d4986 1875 return DM_MAPIO_REMAPPED;
651f5fa2
JT
1876}
1877
b29d4986 1878static bool process_bio(struct cache *cache, struct bio *bio)
c6b4fcba 1879{
b29d4986 1880 bool commit_needed;
c6b4fcba 1881
b29d4986
JT
1882 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1883 generic_make_request(bio);
c6b4fcba 1884
b29d4986 1885 return commit_needed;
c6b4fcba
JT
1886}
1887
028ae9f7
JT
1888/*
1889 * A non-zero return indicates read_only or fail_io mode.
1890 */
1891static int commit(struct cache *cache, bool clean_shutdown)
e2e74d61 1892{
028ae9f7 1893 int r;
e2e74d61 1894
028ae9f7
JT
1895 if (get_cache_mode(cache) >= CM_READ_ONLY)
1896 return -EINVAL;
e2e74d61 1897
028ae9f7
JT
1898 atomic_inc(&cache->stats.commit_count);
1899 r = dm_cache_commit(cache->cmd, clean_shutdown);
1900 if (r)
1901 metadata_operation_failed(cache, "dm_cache_commit", r);
e2e74d61 1902
028ae9f7 1903 return r;
e2e74d61
JT
1904}
1905
b29d4986
JT
1906/*
1907 * Used by the batcher.
1908 */
1909static int commit_op(void *context)
c6b4fcba 1910{
b29d4986 1911 struct cache *cache = context;
c6b4fcba 1912
b29d4986
JT
1913 if (dm_cache_changed_this_transaction(cache->cmd))
1914 return commit(cache, false);
c6b4fcba 1915
b29d4986 1916 return 0;
c6b4fcba
JT
1917}
1918
b29d4986 1919/*----------------------------------------------------------------*/
65790ff9 1920
b29d4986 1921static bool process_flush_bio(struct cache *cache, struct bio *bio)
65790ff9 1922{
b29d4986
JT
1923 size_t pb_data_size = get_per_bio_data_size(cache);
1924 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
65790ff9 1925
b29d4986
JT
1926 if (!pb->req_nr)
1927 remap_to_origin(cache, bio);
1928 else
1929 remap_to_cache(cache, bio, 0);
65790ff9 1930
b29d4986
JT
1931 issue_after_commit(&cache->committer, bio);
1932 return true;
65790ff9
JT
1933}
1934
b29d4986 1935static bool process_discard_bio(struct cache *cache, struct bio *bio)
65790ff9 1936{
b29d4986 1937 dm_dblock_t b, e;
65790ff9 1938
b29d4986
JT
1939 // FIXME: do we need to lock the region? Or can we just assume the
1940 // user wont be so foolish as to issue discard concurrently with
1941 // other IO?
1942 calc_discard_block_range(cache, bio, &b, &e);
1943 while (b != e) {
1944 set_discard(cache, b);
1945 b = to_dblock(from_dblock(b) + 1);
651f5fa2 1946 }
65790ff9 1947
b29d4986 1948 bio_endio(bio);
65790ff9 1949
b29d4986 1950 return false;
c6b4fcba
JT
1951}
1952
b29d4986 1953static void process_deferred_bios(struct work_struct *ws)
66cb1910 1954{
b29d4986 1955 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
66cb1910 1956
c6b4fcba 1957 unsigned long flags;
b29d4986 1958 bool commit_needed = false;
c6b4fcba
JT
1959 struct bio_list bios;
1960 struct bio *bio;
66cb1910 1961
c6b4fcba 1962 bio_list_init(&bios);
c6b4fcba 1963
c6b4fcba 1964 spin_lock_irqsave(&cache->lock, flags);
b29d4986
JT
1965 bio_list_merge(&bios, &cache->deferred_bios);
1966 bio_list_init(&cache->deferred_bios);
c6b4fcba 1967 spin_unlock_irqrestore(&cache->lock, flags);
c6b4fcba 1968
b29d4986
JT
1969 while ((bio = bio_list_pop(&bios))) {
1970 if (bio->bi_opf & REQ_PREFLUSH)
1971 commit_needed = process_flush_bio(cache, bio) || commit_needed;
c6b4fcba 1972
b29d4986
JT
1973 else if (bio_op(bio) == REQ_OP_DISCARD)
1974 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1975
1976 else
1977 commit_needed = process_bio(cache, bio) || commit_needed;
1978 }
1979
1980 if (commit_needed)
1981 schedule_commit(&cache->committer);
c6b4fcba
JT
1982}
1983
b29d4986 1984static void process_deferred_writethrough_bios(struct work_struct *ws)
651f5fa2 1985{
b29d4986
JT
1986 struct cache *cache = container_of(ws, struct cache, deferred_writethrough_worker);
1987
651f5fa2 1988 unsigned long flags;
e2e74d61
JT
1989 struct bio_list bios;
1990 struct bio *bio;
1991
1992 bio_list_init(&bios);
651f5fa2 1993
651f5fa2 1994 spin_lock_irqsave(&cache->lock, flags);
e2e74d61
JT
1995 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1996 bio_list_init(&cache->deferred_writethrough_bios);
651f5fa2
JT
1997 spin_unlock_irqrestore(&cache->lock, flags);
1998
8c081b52 1999 /*
b29d4986 2000 * These bios have already been through accounted_begin()
8c081b52 2001 */
e2e74d61 2002 while ((bio = bio_list_pop(&bios)))
b29d4986 2003 generic_make_request(bio);
651f5fa2
JT
2004}
2005
c6b4fcba
JT
2006/*----------------------------------------------------------------
2007 * Main worker loop
2008 *--------------------------------------------------------------*/
651f5fa2
JT
2009
2010static void requeue_deferred_bios(struct cache *cache)
c6b4fcba
JT
2011{
2012 struct bio *bio;
2013 struct bio_list bios;
2014
2015 bio_list_init(&bios);
2016 bio_list_merge(&bios, &cache->deferred_bios);
2017 bio_list_init(&cache->deferred_bios);
2018
4246a0b6
CH
2019 while ((bio = bio_list_pop(&bios))) {
2020 bio->bi_error = DM_ENDIO_REQUEUE;
2021 bio_endio(bio);
2022 }
c6b4fcba
JT
2023}
2024
c6b4fcba
JT
2025/*
2026 * We want to commit periodically so that not too much
2027 * unwritten metadata builds up.
2028 */
2029static void do_waker(struct work_struct *ws)
2030{
2031 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
b29d4986 2032
fba10109 2033 policy_tick(cache->policy, true);
b29d4986
JT
2034 wake_migration_worker(cache);
2035 schedule_commit(&cache->committer);
c6b4fcba
JT
2036 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2037}
2038
b29d4986 2039static void check_migrations(struct work_struct *ws)
c6b4fcba 2040{
b29d4986
JT
2041 int r;
2042 struct policy_work *op;
2043 struct cache *cache = container_of(ws, struct cache, migration_worker);
2044 enum busy b;
c6b4fcba 2045
b29d4986
JT
2046 for (;;) {
2047 b = spare_migration_bandwidth(cache);
2048 if (b == BUSY)
2049 break;
c6b4fcba 2050
b29d4986
JT
2051 r = policy_get_background_work(cache->policy, b == IDLE, &op);
2052 if (r == -ENODATA)
2053 break;
2054
2055 if (r) {
2056 DMERR_LIMIT("%s: policy_background_work failed",
2057 cache_device_name(cache));
2058 break;
2059 }
2060
2061 r = mg_start(cache, op, NULL);
2062 if (r)
2063 break;
2064 }
c6b4fcba
JT
2065}
2066
2067/*----------------------------------------------------------------
2068 * Target methods
2069 *--------------------------------------------------------------*/
2070
2071/*
2072 * This function gets called on the error paths of the constructor, so we
2073 * have to cope with a partially initialised struct.
2074 */
2075static void destroy(struct cache *cache)
2076{
2077 unsigned i;
2078
6f65985e 2079 mempool_destroy(cache->migration_pool);
c6b4fcba 2080
c6b4fcba 2081 if (cache->prison)
b29d4986 2082 dm_bio_prison_destroy_v2(cache->prison);
c6b4fcba
JT
2083
2084 if (cache->wq)
2085 destroy_workqueue(cache->wq);
2086
2087 if (cache->dirty_bitset)
2088 free_bitset(cache->dirty_bitset);
2089
2090 if (cache->discard_bitset)
2091 free_bitset(cache->discard_bitset);
2092
2093 if (cache->copier)
2094 dm_kcopyd_client_destroy(cache->copier);
2095
2096 if (cache->cmd)
2097 dm_cache_metadata_close(cache->cmd);
2098
2099 if (cache->metadata_dev)
2100 dm_put_device(cache->ti, cache->metadata_dev);
2101
2102 if (cache->origin_dev)
2103 dm_put_device(cache->ti, cache->origin_dev);
2104
2105 if (cache->cache_dev)
2106 dm_put_device(cache->ti, cache->cache_dev);
2107
2108 if (cache->policy)
2109 dm_cache_policy_destroy(cache->policy);
2110
2111 for (i = 0; i < cache->nr_ctr_args ; i++)
2112 kfree(cache->ctr_args[i]);
2113 kfree(cache->ctr_args);
2114
2115 kfree(cache);
2116}
2117
2118static void cache_dtr(struct dm_target *ti)
2119{
2120 struct cache *cache = ti->private;
2121
2122 destroy(cache);
2123}
2124
2125static sector_t get_dev_size(struct dm_dev *dev)
2126{
2127 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2128}
2129
2130/*----------------------------------------------------------------*/
2131
2132/*
2133 * Construct a cache device mapping.
2134 *
2135 * cache <metadata dev> <cache dev> <origin dev> <block size>
2136 * <#feature args> [<feature arg>]*
2137 * <policy> <#policy args> [<policy arg>]*
2138 *
2139 * metadata dev : fast device holding the persistent metadata
2140 * cache dev : fast device holding cached data blocks
2141 * origin dev : slow device holding original data blocks
2142 * block size : cache unit size in sectors
2143 *
2144 * #feature args : number of feature arguments passed
2145 * feature args : writethrough. (The default is writeback.)
2146 *
2147 * policy : the replacement policy to use
2148 * #policy args : an even number of policy arguments corresponding
2149 * to key/value pairs passed to the policy
2150 * policy args : key/value pairs passed to the policy
2151 * E.g. 'sequential_threshold 1024'
2152 * See cache-policies.txt for details.
2153 *
2154 * Optional feature arguments are:
2155 * writethrough : write through caching that prohibits cache block
2156 * content from being different from origin block content.
2157 * Without this argument, the default behaviour is to write
2158 * back cache block contents later for performance reasons,
2159 * so they may differ from the corresponding origin blocks.
2160 */
2161struct cache_args {
2162 struct dm_target *ti;
2163
2164 struct dm_dev *metadata_dev;
2165
2166 struct dm_dev *cache_dev;
2167 sector_t cache_sectors;
2168
2169 struct dm_dev *origin_dev;
2170 sector_t origin_sectors;
2171
2172 uint32_t block_size;
2173
2174 const char *policy_name;
2175 int policy_argc;
2176 const char **policy_argv;
2177
2178 struct cache_features features;
2179};
2180
2181static void destroy_cache_args(struct cache_args *ca)
2182{
2183 if (ca->metadata_dev)
2184 dm_put_device(ca->ti, ca->metadata_dev);
2185
2186 if (ca->cache_dev)
2187 dm_put_device(ca->ti, ca->cache_dev);
2188
2189 if (ca->origin_dev)
2190 dm_put_device(ca->ti, ca->origin_dev);
2191
2192 kfree(ca);
2193}
2194
2195static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2196{
2197 if (!as->argc) {
2198 *error = "Insufficient args";
2199 return false;
2200 }
2201
2202 return true;
2203}
2204
2205static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2206 char **error)
2207{
2208 int r;
2209 sector_t metadata_dev_size;
2210 char b[BDEVNAME_SIZE];
2211
2212 if (!at_least_one_arg(as, error))
2213 return -EINVAL;
2214
2215 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2216 &ca->metadata_dev);
2217 if (r) {
2218 *error = "Error opening metadata device";
2219 return r;
2220 }
2221
2222 metadata_dev_size = get_dev_size(ca->metadata_dev);
2223 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2224 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2225 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2226
2227 return 0;
2228}
2229
2230static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2231 char **error)
2232{
2233 int r;
2234
2235 if (!at_least_one_arg(as, error))
2236 return -EINVAL;
2237
2238 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2239 &ca->cache_dev);
2240 if (r) {
2241 *error = "Error opening cache device";
2242 return r;
2243 }
2244 ca->cache_sectors = get_dev_size(ca->cache_dev);
2245
2246 return 0;
2247}
2248
2249static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2250 char **error)
2251{
2252 int r;
2253
2254 if (!at_least_one_arg(as, error))
2255 return -EINVAL;
2256
2257 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2258 &ca->origin_dev);
2259 if (r) {
2260 *error = "Error opening origin device";
2261 return r;
2262 }
2263
2264 ca->origin_sectors = get_dev_size(ca->origin_dev);
2265 if (ca->ti->len > ca->origin_sectors) {
2266 *error = "Device size larger than cached device";
2267 return -EINVAL;
2268 }
2269
2270 return 0;
2271}
2272
2273static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2274 char **error)
2275{
05473044 2276 unsigned long block_size;
c6b4fcba
JT
2277
2278 if (!at_least_one_arg(as, error))
2279 return -EINVAL;
2280
05473044
MS
2281 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2282 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2283 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2284 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
c6b4fcba
JT
2285 *error = "Invalid data block size";
2286 return -EINVAL;
2287 }
2288
05473044 2289 if (block_size > ca->cache_sectors) {
c6b4fcba
JT
2290 *error = "Data block size is larger than the cache device";
2291 return -EINVAL;
2292 }
2293
05473044 2294 ca->block_size = block_size;
c6b4fcba
JT
2295
2296 return 0;
2297}
2298
2299static void init_features(struct cache_features *cf)
2300{
2301 cf->mode = CM_WRITE;
2ee57d58 2302 cf->io_mode = CM_IO_WRITEBACK;
629d0a8a 2303 cf->metadata_version = 1;
c6b4fcba
JT
2304}
2305
2306static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2307 char **error)
2308{
2309 static struct dm_arg _args[] = {
629d0a8a 2310 {0, 2, "Invalid number of cache feature arguments"},
c6b4fcba
JT
2311 };
2312
2313 int r;
2314 unsigned argc;
2315 const char *arg;
2316 struct cache_features *cf = &ca->features;
2317
2318 init_features(cf);
2319
2320 r = dm_read_arg_group(_args, as, &argc, error);
2321 if (r)
2322 return -EINVAL;
2323
2324 while (argc--) {
2325 arg = dm_shift_arg(as);
2326
2327 if (!strcasecmp(arg, "writeback"))
2ee57d58 2328 cf->io_mode = CM_IO_WRITEBACK;
c6b4fcba
JT
2329
2330 else if (!strcasecmp(arg, "writethrough"))
2ee57d58
JT
2331 cf->io_mode = CM_IO_WRITETHROUGH;
2332
2333 else if (!strcasecmp(arg, "passthrough"))
2334 cf->io_mode = CM_IO_PASSTHROUGH;
c6b4fcba 2335
629d0a8a
JT
2336 else if (!strcasecmp(arg, "metadata2"))
2337 cf->metadata_version = 2;
2338
c6b4fcba
JT
2339 else {
2340 *error = "Unrecognised cache feature requested";
2341 return -EINVAL;
2342 }
2343 }
2344
2345 return 0;
2346}
2347
2348static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2349 char **error)
2350{
2351 static struct dm_arg _args[] = {
2352 {0, 1024, "Invalid number of policy arguments"},
2353 };
2354
2355 int r;
2356
2357 if (!at_least_one_arg(as, error))
2358 return -EINVAL;
2359
2360 ca->policy_name = dm_shift_arg(as);
2361
2362 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2363 if (r)
2364 return -EINVAL;
2365
2366 ca->policy_argv = (const char **)as->argv;
2367 dm_consume_args(as, ca->policy_argc);
2368
2369 return 0;
2370}
2371
2372static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2373 char **error)
2374{
2375 int r;
2376 struct dm_arg_set as;
2377
2378 as.argc = argc;
2379 as.argv = argv;
2380
2381 r = parse_metadata_dev(ca, &as, error);
2382 if (r)
2383 return r;
2384
2385 r = parse_cache_dev(ca, &as, error);
2386 if (r)
2387 return r;
2388
2389 r = parse_origin_dev(ca, &as, error);
2390 if (r)
2391 return r;
2392
2393 r = parse_block_size(ca, &as, error);
2394 if (r)
2395 return r;
2396
2397 r = parse_features(ca, &as, error);
2398 if (r)
2399 return r;
2400
2401 r = parse_policy(ca, &as, error);
2402 if (r)
2403 return r;
2404
2405 return 0;
2406}
2407
2408/*----------------------------------------------------------------*/
2409
2410static struct kmem_cache *migration_cache;
2411
2c73c471
AK
2412#define NOT_CORE_OPTION 1
2413
2f14f4b5 2414static int process_config_option(struct cache *cache, const char *key, const char *value)
2c73c471
AK
2415{
2416 unsigned long tmp;
2417
2f14f4b5
JT
2418 if (!strcasecmp(key, "migration_threshold")) {
2419 if (kstrtoul(value, 10, &tmp))
2c73c471
AK
2420 return -EINVAL;
2421
2422 cache->migration_threshold = tmp;
2423 return 0;
2424 }
2425
2426 return NOT_CORE_OPTION;
2427}
2428
2f14f4b5
JT
2429static int set_config_value(struct cache *cache, const char *key, const char *value)
2430{
2431 int r = process_config_option(cache, key, value);
2432
2433 if (r == NOT_CORE_OPTION)
2434 r = policy_set_config_value(cache->policy, key, value);
2435
2436 if (r)
2437 DMWARN("bad config value for %s: %s", key, value);
2438
2439 return r;
2440}
2441
2442static int set_config_values(struct cache *cache, int argc, const char **argv)
c6b4fcba
JT
2443{
2444 int r = 0;
2445
2446 if (argc & 1) {
2447 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2448 return -EINVAL;
2449 }
2450
2451 while (argc) {
2f14f4b5
JT
2452 r = set_config_value(cache, argv[0], argv[1]);
2453 if (r)
2454 break;
c6b4fcba
JT
2455
2456 argc -= 2;
2457 argv += 2;
2458 }
2459
2460 return r;
2461}
2462
2463static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2464 char **error)
2465{
4cb3e1db
MP
2466 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2467 cache->cache_size,
2468 cache->origin_sectors,
2469 cache->sectors_per_block);
2470 if (IS_ERR(p)) {
c6b4fcba 2471 *error = "Error creating cache's policy";
4cb3e1db 2472 return PTR_ERR(p);
c6b4fcba 2473 }
4cb3e1db 2474 cache->policy = p;
b29d4986 2475 BUG_ON(!cache->policy);
c6b4fcba 2476
2f14f4b5 2477 return 0;
c6b4fcba
JT
2478}
2479
08b18451 2480/*
2bb812df
JT
2481 * We want the discard block size to be at least the size of the cache
2482 * block size and have no more than 2^14 discard blocks across the origin.
08b18451
JT
2483 */
2484#define MAX_DISCARD_BLOCKS (1 << 14)
2485
2486static bool too_many_discard_blocks(sector_t discard_block_size,
2487 sector_t origin_size)
2488{
2489 (void) sector_div(origin_size, discard_block_size);
2490
2491 return origin_size > MAX_DISCARD_BLOCKS;
2492}
2493
2494static sector_t calculate_discard_block_size(sector_t cache_block_size,
2495 sector_t origin_size)
2496{
2bb812df 2497 sector_t discard_block_size = cache_block_size;
08b18451
JT
2498
2499 if (origin_size)
2500 while (too_many_discard_blocks(discard_block_size, origin_size))
2501 discard_block_size *= 2;
2502
2503 return discard_block_size;
2504}
2505
d1d9220c
JT
2506static void set_cache_size(struct cache *cache, dm_cblock_t size)
2507{
2508 dm_block_t nr_blocks = from_cblock(size);
2509
2510 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2511 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2512 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2513 "Please consider increasing the cache block size to reduce the overall cache block count.",
2514 (unsigned long long) nr_blocks);
2515
2516 cache->cache_size = size;
2517}
2518
b29d4986
JT
2519static int is_congested(struct dm_dev *dev, int bdi_bits)
2520{
2521 struct request_queue *q = bdev_get_queue(dev->bdev);
2522 return bdi_congested(q->backing_dev_info, bdi_bits);
2523}
2524
2525static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2526{
2527 struct cache *cache = container_of(cb, struct cache, callbacks);
2528
2529 return is_congested(cache->origin_dev, bdi_bits) ||
2530 is_congested(cache->cache_dev, bdi_bits);
2531}
2532
f8350daf 2533#define DEFAULT_MIGRATION_THRESHOLD 2048
c6b4fcba 2534
c6b4fcba
JT
2535static int cache_create(struct cache_args *ca, struct cache **result)
2536{
2537 int r = 0;
2538 char **error = &ca->ti->error;
2539 struct cache *cache;
2540 struct dm_target *ti = ca->ti;
2541 dm_block_t origin_blocks;
2542 struct dm_cache_metadata *cmd;
2543 bool may_format = ca->features.mode == CM_WRITE;
2544
2545 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2546 if (!cache)
2547 return -ENOMEM;
2548
2549 cache->ti = ca->ti;
2550 ti->private = cache;
c6b4fcba
JT
2551 ti->num_flush_bios = 2;
2552 ti->flush_supported = true;
2553
2554 ti->num_discard_bios = 1;
2555 ti->discards_supported = true;
2572629a 2556 ti->split_discard_bios = false;
c6b4fcba 2557
8c5008fa 2558 cache->features = ca->features;
30187e1d 2559 ti->per_io_data_size = get_per_bio_data_size(cache);
c6b4fcba 2560
c6b4fcba
JT
2561 cache->callbacks.congested_fn = cache_is_congested;
2562 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2563
2564 cache->metadata_dev = ca->metadata_dev;
2565 cache->origin_dev = ca->origin_dev;
2566 cache->cache_dev = ca->cache_dev;
2567
2568 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2569
c6b4fcba 2570 origin_blocks = cache->origin_sectors = ca->origin_sectors;
414dd67d 2571 origin_blocks = block_div(origin_blocks, ca->block_size);
c6b4fcba
JT
2572 cache->origin_blocks = to_oblock(origin_blocks);
2573
2574 cache->sectors_per_block = ca->block_size;
2575 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2576 r = -EINVAL;
2577 goto bad;
2578 }
2579
2580 if (ca->block_size & (ca->block_size - 1)) {
2581 dm_block_t cache_size = ca->cache_sectors;
2582
2583 cache->sectors_per_block_shift = -1;
414dd67d 2584 cache_size = block_div(cache_size, ca->block_size);
d1d9220c 2585 set_cache_size(cache, to_cblock(cache_size));
c6b4fcba
JT
2586 } else {
2587 cache->sectors_per_block_shift = __ffs(ca->block_size);
d1d9220c 2588 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
c6b4fcba
JT
2589 }
2590
2591 r = create_cache_policy(cache, ca, error);
2592 if (r)
2593 goto bad;
2f14f4b5 2594
c6b4fcba 2595 cache->policy_nr_args = ca->policy_argc;
2f14f4b5
JT
2596 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2597
2598 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2599 if (r) {
2600 *error = "Error setting cache policy's config values";
2601 goto bad;
2602 }
c6b4fcba
JT
2603
2604 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2605 ca->block_size, may_format,
629d0a8a
JT
2606 dm_cache_policy_get_hint_size(cache->policy),
2607 ca->features.metadata_version);
c6b4fcba
JT
2608 if (IS_ERR(cmd)) {
2609 *error = "Error creating metadata object";
2610 r = PTR_ERR(cmd);
2611 goto bad;
2612 }
2613 cache->cmd = cmd;
028ae9f7
JT
2614 set_cache_mode(cache, CM_WRITE);
2615 if (get_cache_mode(cache) != CM_WRITE) {
2616 *error = "Unable to get write access to metadata, please check/repair metadata.";
2617 r = -EINVAL;
2618 goto bad;
2619 }
c6b4fcba 2620
2ee57d58
JT
2621 if (passthrough_mode(&cache->features)) {
2622 bool all_clean;
2623
2624 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2625 if (r) {
2626 *error = "dm_cache_metadata_all_clean() failed";
2627 goto bad;
2628 }
2629
2630 if (!all_clean) {
2631 *error = "Cannot enter passthrough mode unless all blocks are clean";
2632 r = -EINVAL;
2633 goto bad;
2634 }
b29d4986
JT
2635
2636 policy_allow_migrations(cache->policy, false);
2ee57d58
JT
2637 }
2638
c6b4fcba 2639 spin_lock_init(&cache->lock);
651f5fa2 2640 INIT_LIST_HEAD(&cache->deferred_cells);
c6b4fcba 2641 bio_list_init(&cache->deferred_bios);
e2e74d61 2642 bio_list_init(&cache->deferred_writethrough_bios);
a59db676
JT
2643 atomic_set(&cache->nr_allocated_migrations, 0);
2644 atomic_set(&cache->nr_io_migrations, 0);
c6b4fcba
JT
2645 init_waitqueue_head(&cache->migration_wait);
2646
fa4d683a 2647 r = -ENOMEM;
44fa816b 2648 atomic_set(&cache->nr_dirty, 0);
c6b4fcba
JT
2649 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2650 if (!cache->dirty_bitset) {
2651 *error = "could not allocate dirty bitset";
2652 goto bad;
2653 }
2654 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2655
08b18451
JT
2656 cache->discard_block_size =
2657 calculate_discard_block_size(cache->sectors_per_block,
2658 cache->origin_sectors);
2572629a
JT
2659 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2660 cache->discard_block_size));
1bad9bc4 2661 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2662 if (!cache->discard_bitset) {
2663 *error = "could not allocate discard bitset";
2664 goto bad;
2665 }
1bad9bc4 2666 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2667
2668 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2669 if (IS_ERR(cache->copier)) {
2670 *error = "could not create kcopyd client";
2671 r = PTR_ERR(cache->copier);
2672 goto bad;
2673 }
2674
b29d4986 2675 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
c6b4fcba
JT
2676 if (!cache->wq) {
2677 *error = "could not create workqueue for metadata object";
2678 goto bad;
2679 }
b29d4986
JT
2680 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2681 INIT_WORK(&cache->deferred_writethrough_worker,
2682 process_deferred_writethrough_bios);
2683 INIT_WORK(&cache->migration_worker, check_migrations);
c6b4fcba 2684 INIT_DELAYED_WORK(&cache->waker, do_waker);
c6b4fcba 2685
b29d4986 2686 cache->prison = dm_bio_prison_create_v2(cache->wq);
c6b4fcba
JT
2687 if (!cache->prison) {
2688 *error = "could not create bio prison";
2689 goto bad;
2690 }
2691
c6b4fcba
JT
2692 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2693 migration_cache);
2694 if (!cache->migration_pool) {
2695 *error = "Error creating cache's migration mempool";
2696 goto bad;
2697 }
2698
c6b4fcba
JT
2699 cache->need_tick_bio = true;
2700 cache->sized = false;
65790ff9 2701 cache->invalidate = false;
c6b4fcba
JT
2702 cache->commit_requested = false;
2703 cache->loaded_mappings = false;
2704 cache->loaded_discards = false;
2705
2706 load_stats(cache);
2707
2708 atomic_set(&cache->stats.demotion, 0);
2709 atomic_set(&cache->stats.promotion, 0);
2710 atomic_set(&cache->stats.copies_avoided, 0);
2711 atomic_set(&cache->stats.cache_cell_clash, 0);
2712 atomic_set(&cache->stats.commit_count, 0);
2713 atomic_set(&cache->stats.discard_count, 0);
2714
65790ff9
JT
2715 spin_lock_init(&cache->invalidation_lock);
2716 INIT_LIST_HEAD(&cache->invalidation_requests);
2717
b29d4986
JT
2718 batcher_init(&cache->committer, commit_op, cache,
2719 issue_op, cache, cache->wq);
066dbaa3
JT
2720 iot_init(&cache->origin_tracker);
2721
b29d4986
JT
2722 init_rwsem(&cache->background_work_lock);
2723 prevent_background_work(cache);
2724
c6b4fcba
JT
2725 *result = cache;
2726 return 0;
c6b4fcba
JT
2727bad:
2728 destroy(cache);
2729 return r;
2730}
2731
2732static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2733{
2734 unsigned i;
2735 const char **copy;
2736
2737 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2738 if (!copy)
2739 return -ENOMEM;
2740 for (i = 0; i < argc; i++) {
2741 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2742 if (!copy[i]) {
2743 while (i--)
2744 kfree(copy[i]);
2745 kfree(copy);
2746 return -ENOMEM;
2747 }
2748 }
2749
2750 cache->nr_ctr_args = argc;
2751 cache->ctr_args = copy;
2752
2753 return 0;
2754}
2755
2756static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2757{
2758 int r = -EINVAL;
2759 struct cache_args *ca;
2760 struct cache *cache = NULL;
2761
2762 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2763 if (!ca) {
2764 ti->error = "Error allocating memory for cache";
2765 return -ENOMEM;
2766 }
2767 ca->ti = ti;
2768
2769 r = parse_cache_args(ca, argc, argv, &ti->error);
2770 if (r)
2771 goto out;
2772
2773 r = cache_create(ca, &cache);
617a0b89
HM
2774 if (r)
2775 goto out;
c6b4fcba
JT
2776
2777 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2778 if (r) {
2779 destroy(cache);
2780 goto out;
2781 }
2782
2783 ti->private = cache;
c6b4fcba
JT
2784out:
2785 destroy_cache_args(ca);
2786 return r;
2787}
2788
651f5fa2
JT
2789/*----------------------------------------------------------------*/
2790
2791static int cache_map(struct dm_target *ti, struct bio *bio)
c6b4fcba 2792{
651f5fa2
JT
2793 struct cache *cache = ti->private;
2794
c6b4fcba 2795 int r;
b29d4986 2796 bool commit_needed;
c6b4fcba 2797 dm_oblock_t block = get_bio_block(cache, bio);
19b0092e 2798 size_t pb_data_size = get_per_bio_data_size(cache);
c6b4fcba 2799
b29d4986 2800 init_per_bio_data(bio, pb_data_size);
e893fba9 2801 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
c6b4fcba
JT
2802 /*
2803 * This can only occur if the io goes to a partial block at
2804 * the end of the origin device. We don't cache these.
2805 * Just remap to the origin and carry on.
2806 */
e893fba9 2807 remap_to_origin(cache, bio);
651f5fa2 2808 accounted_begin(cache, bio);
c6b4fcba
JT
2809 return DM_MAPIO_REMAPPED;
2810 }
2811
651f5fa2 2812 if (discard_or_flush(bio)) {
c6b4fcba
JT
2813 defer_bio(cache, bio);
2814 return DM_MAPIO_SUBMITTED;
2815 }
2816
b29d4986
JT
2817 r = map_bio(cache, bio, block, &commit_needed);
2818 if (commit_needed)
2819 schedule_commit(&cache->committer);
c6b4fcba 2820
2ee57d58 2821 return r;
c6b4fcba
JT
2822}
2823
2824static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2825{
2826 struct cache *cache = ti->private;
2827 unsigned long flags;
19b0092e
MS
2828 size_t pb_data_size = get_per_bio_data_size(cache);
2829 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c6b4fcba
JT
2830
2831 if (pb->tick) {
fba10109 2832 policy_tick(cache->policy, false);
c6b4fcba
JT
2833
2834 spin_lock_irqsave(&cache->lock, flags);
2835 cache->need_tick_bio = true;
2836 spin_unlock_irqrestore(&cache->lock, flags);
2837 }
2838
b29d4986 2839 bio_drop_shared_lock(cache, bio);
066dbaa3 2840 accounted_complete(cache, bio);
c6b4fcba
JT
2841
2842 return 0;
2843}
2844
2845static int write_dirty_bitset(struct cache *cache)
2846{
629d0a8a 2847 int r;
c6b4fcba 2848
028ae9f7
JT
2849 if (get_cache_mode(cache) >= CM_READ_ONLY)
2850 return -EINVAL;
2851
629d0a8a
JT
2852 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2853 if (r)
2854 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
c6b4fcba 2855
629d0a8a 2856 return r;
c6b4fcba
JT
2857}
2858
2859static int write_discard_bitset(struct cache *cache)
2860{
2861 unsigned i, r;
2862
028ae9f7
JT
2863 if (get_cache_mode(cache) >= CM_READ_ONLY)
2864 return -EINVAL;
2865
1bad9bc4
JT
2866 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2867 cache->discard_nr_blocks);
c6b4fcba 2868 if (r) {
b61d9509 2869 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
028ae9f7 2870 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
c6b4fcba
JT
2871 return r;
2872 }
2873
1bad9bc4
JT
2874 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2875 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2876 is_discarded(cache, to_dblock(i)));
028ae9f7
JT
2877 if (r) {
2878 metadata_operation_failed(cache, "dm_cache_set_discard", r);
c6b4fcba 2879 return r;
028ae9f7
JT
2880 }
2881 }
2882
2883 return 0;
2884}
2885
2886static int write_hints(struct cache *cache)
2887{
2888 int r;
2889
2890 if (get_cache_mode(cache) >= CM_READ_ONLY)
2891 return -EINVAL;
2892
2893 r = dm_cache_write_hints(cache->cmd, cache->policy);
2894 if (r) {
2895 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2896 return r;
c6b4fcba
JT
2897 }
2898
2899 return 0;
2900}
2901
c6b4fcba
JT
2902/*
2903 * returns true on success
2904 */
2905static bool sync_metadata(struct cache *cache)
2906{
2907 int r1, r2, r3, r4;
2908
2909 r1 = write_dirty_bitset(cache);
2910 if (r1)
b61d9509 2911 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
c6b4fcba
JT
2912
2913 r2 = write_discard_bitset(cache);
2914 if (r2)
b61d9509 2915 DMERR("%s: could not write discard bitset", cache_device_name(cache));
c6b4fcba
JT
2916
2917 save_stats(cache);
2918
028ae9f7 2919 r3 = write_hints(cache);
c6b4fcba 2920 if (r3)
b61d9509 2921 DMERR("%s: could not write hints", cache_device_name(cache));
c6b4fcba
JT
2922
2923 /*
2924 * If writing the above metadata failed, we still commit, but don't
2925 * set the clean shutdown flag. This will effectively force every
2926 * dirty bit to be set on reload.
2927 */
028ae9f7 2928 r4 = commit(cache, !r1 && !r2 && !r3);
c6b4fcba 2929 if (r4)
b61d9509 2930 DMERR("%s: could not write cache metadata", cache_device_name(cache));
c6b4fcba
JT
2931
2932 return !r1 && !r2 && !r3 && !r4;
2933}
2934
2935static void cache_postsuspend(struct dm_target *ti)
2936{
2937 struct cache *cache = ti->private;
2938
b29d4986
JT
2939 prevent_background_work(cache);
2940 BUG_ON(atomic_read(&cache->nr_io_migrations));
2941
2942 cancel_delayed_work(&cache->waker);
2943 flush_workqueue(cache->wq);
2944 WARN_ON(cache->origin_tracker.in_flight);
2945
2946 /*
2947 * If it's a flush suspend there won't be any deferred bios, so this
2948 * call is harmless.
2949 */
651f5fa2 2950 requeue_deferred_bios(cache);
c6b4fcba 2951
028ae9f7
JT
2952 if (get_cache_mode(cache) == CM_WRITE)
2953 (void) sync_metadata(cache);
c6b4fcba
JT
2954}
2955
2956static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2957 bool dirty, uint32_t hint, bool hint_valid)
2958{
2959 int r;
2960 struct cache *cache = context;
2961
449b668c
JT
2962 if (dirty) {
2963 set_bit(from_cblock(cblock), cache->dirty_bitset);
2964 atomic_inc(&cache->nr_dirty);
2965 } else
2966 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2967
b29d4986 2968 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
c6b4fcba
JT
2969 if (r)
2970 return r;
2971
c6b4fcba
JT
2972 return 0;
2973}
2974
3e2e1c30
JT
2975/*
2976 * The discard block size in the on disk metadata is not
2977 * neccessarily the same as we're currently using. So we have to
2978 * be careful to only set the discarded attribute if we know it
2979 * covers a complete block of the new size.
2980 */
2981struct discard_load_info {
2982 struct cache *cache;
2983
2984 /*
2985 * These blocks are sized using the on disk dblock size, rather
2986 * than the current one.
2987 */
2988 dm_block_t block_size;
2989 dm_block_t discard_begin, discard_end;
2990};
2991
2992static void discard_load_info_init(struct cache *cache,
2993 struct discard_load_info *li)
2994{
2995 li->cache = cache;
2996 li->discard_begin = li->discard_end = 0;
2997}
2998
2999static void set_discard_range(struct discard_load_info *li)
3000{
3001 sector_t b, e;
3002
3003 if (li->discard_begin == li->discard_end)
3004 return;
3005
3006 /*
3007 * Convert to sectors.
3008 */
3009 b = li->discard_begin * li->block_size;
3010 e = li->discard_end * li->block_size;
3011
3012 /*
3013 * Then convert back to the current dblock size.
3014 */
3015 b = dm_sector_div_up(b, li->cache->discard_block_size);
3016 sector_div(e, li->cache->discard_block_size);
3017
3018 /*
3019 * The origin may have shrunk, so we need to check we're still in
3020 * bounds.
3021 */
3022 if (e > from_dblock(li->cache->discard_nr_blocks))
3023 e = from_dblock(li->cache->discard_nr_blocks);
3024
3025 for (; b < e; b++)
3026 set_discard(li->cache, to_dblock(b));
3027}
3028
c6b4fcba 3029static int load_discard(void *context, sector_t discard_block_size,
1bad9bc4 3030 dm_dblock_t dblock, bool discard)
c6b4fcba 3031{
3e2e1c30 3032 struct discard_load_info *li = context;
c6b4fcba 3033
3e2e1c30 3034 li->block_size = discard_block_size;
1bad9bc4 3035
3e2e1c30
JT
3036 if (discard) {
3037 if (from_dblock(dblock) == li->discard_end)
3038 /*
3039 * We're already in a discard range, just extend it.
3040 */
3041 li->discard_end = li->discard_end + 1ULL;
3042
3043 else {
3044 /*
3045 * Emit the old range and start a new one.
3046 */
3047 set_discard_range(li);
3048 li->discard_begin = from_dblock(dblock);
3049 li->discard_end = li->discard_begin + 1ULL;
3050 }
3051 } else {
3052 set_discard_range(li);
3053 li->discard_begin = li->discard_end = 0;
3054 }
c6b4fcba
JT
3055
3056 return 0;
3057}
3058
f494a9c6
JT
3059static dm_cblock_t get_cache_dev_size(struct cache *cache)
3060{
3061 sector_t size = get_dev_size(cache->cache_dev);
3062 (void) sector_div(size, cache->sectors_per_block);
3063 return to_cblock(size);
3064}
3065
3066static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3067{
3068 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3069 return true;
3070
3071 /*
3072 * We can't drop a dirty block when shrinking the cache.
3073 */
3074 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3075 new_size = to_cblock(from_cblock(new_size) + 1);
3076 if (is_dirty(cache, new_size)) {
b61d9509
MS
3077 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3078 cache_device_name(cache),
f494a9c6
JT
3079 (unsigned long long) from_cblock(new_size));
3080 return false;
3081 }
3082 }
3083
3084 return true;
3085}
3086
3087static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3088{
3089 int r;
3090
08844800 3091 r = dm_cache_resize(cache->cmd, new_size);
f494a9c6 3092 if (r) {
b61d9509 3093 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
028ae9f7 3094 metadata_operation_failed(cache, "dm_cache_resize", r);
f494a9c6
JT
3095 return r;
3096 }
3097
d1d9220c 3098 set_cache_size(cache, new_size);
f494a9c6
JT
3099
3100 return 0;
3101}
3102
c6b4fcba
JT
3103static int cache_preresume(struct dm_target *ti)
3104{
3105 int r = 0;
3106 struct cache *cache = ti->private;
f494a9c6 3107 dm_cblock_t csize = get_cache_dev_size(cache);
c6b4fcba
JT
3108
3109 /*
3110 * Check to see if the cache has resized.
3111 */
f494a9c6
JT
3112 if (!cache->sized) {
3113 r = resize_cache_dev(cache, csize);
3114 if (r)
c6b4fcba 3115 return r;
c6b4fcba
JT
3116
3117 cache->sized = true;
f494a9c6
JT
3118
3119 } else if (csize != cache->cache_size) {
3120 if (!can_resize(cache, csize))
3121 return -EINVAL;
3122
3123 r = resize_cache_dev(cache, csize);
3124 if (r)
3125 return r;
c6b4fcba
JT
3126 }
3127
3128 if (!cache->loaded_mappings) {
ea2dd8c1 3129 r = dm_cache_load_mappings(cache->cmd, cache->policy,
c6b4fcba
JT
3130 load_mapping, cache);
3131 if (r) {
b61d9509 3132 DMERR("%s: could not load cache mappings", cache_device_name(cache));
028ae9f7 3133 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
c6b4fcba
JT
3134 return r;
3135 }
3136
3137 cache->loaded_mappings = true;
3138 }
3139
3140 if (!cache->loaded_discards) {
3e2e1c30
JT
3141 struct discard_load_info li;
3142
3143 /*
3144 * The discard bitset could have been resized, or the
3145 * discard block size changed. To be safe we start by
3146 * setting every dblock to not discarded.
3147 */
3148 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3149
3150 discard_load_info_init(cache, &li);
3151 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
c6b4fcba 3152 if (r) {
b61d9509 3153 DMERR("%s: could not load origin discards", cache_device_name(cache));
028ae9f7 3154 metadata_operation_failed(cache, "dm_cache_load_discards", r);
c6b4fcba
JT
3155 return r;
3156 }
3e2e1c30 3157 set_discard_range(&li);
c6b4fcba
JT
3158
3159 cache->loaded_discards = true;
3160 }
3161
3162 return r;
3163}
3164
3165static void cache_resume(struct dm_target *ti)
3166{
3167 struct cache *cache = ti->private;
3168
3169 cache->need_tick_bio = true;
b29d4986 3170 allow_background_work(cache);
c6b4fcba
JT
3171 do_waker(&cache->waker.work);
3172}
3173
3174/*
3175 * Status format:
3176 *
6a388618
MS
3177 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3178 * <cache block size> <#used cache blocks>/<#total cache blocks>
c6b4fcba 3179 * <#read hits> <#read misses> <#write hits> <#write misses>
6a388618 3180 * <#demotions> <#promotions> <#dirty>
c6b4fcba
JT
3181 * <#features> <features>*
3182 * <#core args> <core args>
255eac20 3183 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
c6b4fcba
JT
3184 */
3185static void cache_status(struct dm_target *ti, status_type_t type,
3186 unsigned status_flags, char *result, unsigned maxlen)
3187{
3188 int r = 0;
3189 unsigned i;
3190 ssize_t sz = 0;
3191 dm_block_t nr_free_blocks_metadata = 0;
3192 dm_block_t nr_blocks_metadata = 0;
3193 char buf[BDEVNAME_SIZE];
3194 struct cache *cache = ti->private;
3195 dm_cblock_t residency;
d14fcf3d 3196 bool needs_check;
c6b4fcba
JT
3197
3198 switch (type) {
3199 case STATUSTYPE_INFO:
028ae9f7
JT
3200 if (get_cache_mode(cache) == CM_FAIL) {
3201 DMEMIT("Fail");
3202 break;
c6b4fcba
JT
3203 }
3204
028ae9f7
JT
3205 /* Commit to ensure statistics aren't out-of-date */
3206 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3207 (void) commit(cache, false);
3208
b61d9509 3209 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
c6b4fcba 3210 if (r) {
b61d9509
MS
3211 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3212 cache_device_name(cache), r);
c6b4fcba
JT
3213 goto err;
3214 }
3215
3216 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3217 if (r) {
b61d9509
MS
3218 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3219 cache_device_name(cache), r);
c6b4fcba
JT
3220 goto err;
3221 }
3222
3223 residency = policy_residency(cache->policy);
3224
ca763d0a 3225 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
895b47d7 3226 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
c6b4fcba
JT
3227 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3228 (unsigned long long)nr_blocks_metadata,
ca763d0a 3229 (unsigned long long)cache->sectors_per_block,
6a388618
MS
3230 (unsigned long long) from_cblock(residency),
3231 (unsigned long long) from_cblock(cache->cache_size),
c6b4fcba
JT
3232 (unsigned) atomic_read(&cache->stats.read_hit),
3233 (unsigned) atomic_read(&cache->stats.read_miss),
3234 (unsigned) atomic_read(&cache->stats.write_hit),
3235 (unsigned) atomic_read(&cache->stats.write_miss),
3236 (unsigned) atomic_read(&cache->stats.demotion),
3237 (unsigned) atomic_read(&cache->stats.promotion),
44fa816b 3238 (unsigned long) atomic_read(&cache->nr_dirty));
c6b4fcba 3239
629d0a8a
JT
3240 if (cache->features.metadata_version == 2)
3241 DMEMIT("2 metadata2 ");
3242 else
3243 DMEMIT("1 ");
3244
2ee57d58 3245 if (writethrough_mode(&cache->features))
629d0a8a 3246 DMEMIT("writethrough ");
2ee57d58
JT
3247
3248 else if (passthrough_mode(&cache->features))
629d0a8a 3249 DMEMIT("passthrough ");
2ee57d58
JT
3250
3251 else if (writeback_mode(&cache->features))
629d0a8a 3252 DMEMIT("writeback ");
2ee57d58
JT
3253
3254 else {
b61d9509
MS
3255 DMERR("%s: internal error: unknown io mode: %d",
3256 cache_device_name(cache), (int) cache->features.io_mode);
2ee57d58
JT
3257 goto err;
3258 }
c6b4fcba
JT
3259
3260 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2e68c4e6
MS
3261
3262 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
c6b4fcba 3263 if (sz < maxlen) {
028ae9f7 3264 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
c6b4fcba 3265 if (r)
b61d9509
MS
3266 DMERR("%s: policy_emit_config_values returned %d",
3267 cache_device_name(cache), r);
c6b4fcba
JT
3268 }
3269
028ae9f7
JT
3270 if (get_cache_mode(cache) == CM_READ_ONLY)
3271 DMEMIT("ro ");
3272 else
3273 DMEMIT("rw ");
3274
d14fcf3d
JT
3275 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3276
3277 if (r || needs_check)
255eac20
MS
3278 DMEMIT("needs_check ");
3279 else
3280 DMEMIT("- ");
3281
c6b4fcba
JT
3282 break;
3283
3284 case STATUSTYPE_TABLE:
3285 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3286 DMEMIT("%s ", buf);
3287 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3288 DMEMIT("%s ", buf);
3289 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3290 DMEMIT("%s", buf);
3291
3292 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3293 DMEMIT(" %s", cache->ctr_args[i]);
3294 if (cache->nr_ctr_args)
3295 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3296 }
3297
3298 return;
3299
3300err:
3301 DMEMIT("Error");
3302}
3303
b29d4986
JT
3304/*
3305 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3306 * the one-past-the-end value.
3307 */
3308struct cblock_range {
3309 dm_cblock_t begin;
3310 dm_cblock_t end;
3311};
3312
c6b4fcba 3313/*
65790ff9
JT
3314 * A cache block range can take two forms:
3315 *
3316 * i) A single cblock, eg. '3456'
b29d4986 3317 * ii) A begin and end cblock with a dash between, eg. 123-234
65790ff9
JT
3318 */
3319static int parse_cblock_range(struct cache *cache, const char *str,
3320 struct cblock_range *result)
3321{
3322 char dummy;
3323 uint64_t b, e;
3324 int r;
3325
3326 /*
3327 * Try and parse form (ii) first.
3328 */
3329 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3330 if (r < 0)
3331 return r;
3332
3333 if (r == 2) {
3334 result->begin = to_cblock(b);
3335 result->end = to_cblock(e);
3336 return 0;
3337 }
3338
3339 /*
3340 * That didn't work, try form (i).
3341 */
3342 r = sscanf(str, "%llu%c", &b, &dummy);
3343 if (r < 0)
3344 return r;
3345
3346 if (r == 1) {
3347 result->begin = to_cblock(b);
3348 result->end = to_cblock(from_cblock(result->begin) + 1u);
3349 return 0;
3350 }
3351
b61d9509 3352 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
65790ff9
JT
3353 return -EINVAL;
3354}
3355
3356static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3357{
3358 uint64_t b = from_cblock(range->begin);
3359 uint64_t e = from_cblock(range->end);
3360 uint64_t n = from_cblock(cache->cache_size);
3361
3362 if (b >= n) {
b61d9509
MS
3363 DMERR("%s: begin cblock out of range: %llu >= %llu",
3364 cache_device_name(cache), b, n);
65790ff9
JT
3365 return -EINVAL;
3366 }
3367
3368 if (e > n) {
b61d9509
MS
3369 DMERR("%s: end cblock out of range: %llu > %llu",
3370 cache_device_name(cache), e, n);
65790ff9
JT
3371 return -EINVAL;
3372 }
3373
3374 if (b >= e) {
b61d9509
MS
3375 DMERR("%s: invalid cblock range: %llu >= %llu",
3376 cache_device_name(cache), b, e);
65790ff9
JT
3377 return -EINVAL;
3378 }
3379
3380 return 0;
3381}
3382
b29d4986
JT
3383static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3384{
3385 return to_cblock(from_cblock(b) + 1);
3386}
3387
65790ff9
JT
3388static int request_invalidation(struct cache *cache, struct cblock_range *range)
3389{
b29d4986 3390 int r = 0;
65790ff9 3391
b29d4986
JT
3392 /*
3393 * We don't need to do any locking here because we know we're in
3394 * passthrough mode. There's is potential for a race between an
3395 * invalidation triggered by an io and an invalidation message. This
3396 * is harmless, we must not worry if the policy call fails.
3397 */
3398 while (range->begin != range->end) {
3399 r = invalidate_cblock(cache, range->begin);
3400 if (r)
3401 return r;
65790ff9 3402
b29d4986
JT
3403 range->begin = cblock_succ(range->begin);
3404 }
65790ff9 3405
b29d4986
JT
3406 cache->commit_requested = true;
3407 return r;
65790ff9
JT
3408}
3409
3410static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3411 const char **cblock_ranges)
3412{
3413 int r = 0;
3414 unsigned i;
3415 struct cblock_range range;
3416
3417 if (!passthrough_mode(&cache->features)) {
b61d9509
MS
3418 DMERR("%s: cache has to be in passthrough mode for invalidation",
3419 cache_device_name(cache));
65790ff9
JT
3420 return -EPERM;
3421 }
3422
3423 for (i = 0; i < count; i++) {
3424 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3425 if (r)
3426 break;
3427
3428 r = validate_cblock_range(cache, &range);
3429 if (r)
3430 break;
3431
3432 /*
3433 * Pass begin and end origin blocks to the worker and wake it.
3434 */
3435 r = request_invalidation(cache, &range);
3436 if (r)
3437 break;
3438 }
3439
3440 return r;
3441}
3442
3443/*
3444 * Supports
3445 * "<key> <value>"
3446 * and
3447 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
c6b4fcba
JT
3448 *
3449 * The key migration_threshold is supported by the cache target core.
3450 */
3451static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3452{
c6b4fcba
JT
3453 struct cache *cache = ti->private;
3454
65790ff9
JT
3455 if (!argc)
3456 return -EINVAL;
3457
028ae9f7 3458 if (get_cache_mode(cache) >= CM_READ_ONLY) {
b61d9509
MS
3459 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3460 cache_device_name(cache));
028ae9f7
JT
3461 return -EOPNOTSUPP;
3462 }
3463
7b6b2bc9 3464 if (!strcasecmp(argv[0], "invalidate_cblocks"))
65790ff9
JT
3465 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3466
c6b4fcba
JT
3467 if (argc != 2)
3468 return -EINVAL;
3469
2f14f4b5 3470 return set_config_value(cache, argv[0], argv[1]);
c6b4fcba
JT
3471}
3472
3473static int cache_iterate_devices(struct dm_target *ti,
3474 iterate_devices_callout_fn fn, void *data)
3475{
3476 int r = 0;
3477 struct cache *cache = ti->private;
3478
3479 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3480 if (!r)
3481 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3482
3483 return r;
3484}
3485
c6b4fcba
JT
3486static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3487{
3488 /*
3489 * FIXME: these limits may be incompatible with the cache device
3490 */
7ae34e77
JT
3491 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3492 cache->origin_sectors);
1bad9bc4 3493 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
c6b4fcba
JT
3494}
3495
3496static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3497{
3498 struct cache *cache = ti->private;
f6109372 3499 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
c6b4fcba 3500
f6109372
MS
3501 /*
3502 * If the system-determined stacked limits are compatible with the
3503 * cache's blocksize (io_opt is a factor) do not override them.
3504 */
3505 if (io_opt_sectors < cache->sectors_per_block ||
3506 do_div(io_opt_sectors, cache->sectors_per_block)) {
b0246530 3507 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
f6109372
MS
3508 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3509 }
c6b4fcba
JT
3510 set_discard_limits(cache, limits);
3511}
3512
3513/*----------------------------------------------------------------*/
3514
3515static struct target_type cache_target = {
3516 .name = "cache",
b29d4986 3517 .version = {2, 0, 0},
c6b4fcba
JT
3518 .module = THIS_MODULE,
3519 .ctr = cache_ctr,
3520 .dtr = cache_dtr,
3521 .map = cache_map,
3522 .end_io = cache_end_io,
3523 .postsuspend = cache_postsuspend,
3524 .preresume = cache_preresume,
3525 .resume = cache_resume,
3526 .status = cache_status,
3527 .message = cache_message,
3528 .iterate_devices = cache_iterate_devices,
c6b4fcba
JT
3529 .io_hints = cache_io_hints,
3530};
3531
3532static int __init dm_cache_init(void)
3533{
3534 int r;
3535
3536 r = dm_register_target(&cache_target);
3537 if (r) {
3538 DMERR("cache target registration failed: %d", r);
3539 return r;
3540 }
3541
3542 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3543 if (!migration_cache) {
3544 dm_unregister_target(&cache_target);
3545 return -ENOMEM;
3546 }
3547
3548 return 0;
3549}
3550
3551static void __exit dm_cache_exit(void)
3552{
3553 dm_unregister_target(&cache_target);
3554 kmem_cache_destroy(migration_cache);
3555}
3556
3557module_init(dm_cache_init);
3558module_exit(dm_cache_exit);
3559
3560MODULE_DESCRIPTION(DM_NAME " cache target");
3561MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3562MODULE_LICENSE("GPL");