]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/dm-cache-target.c
dm thin: fix passdown_double_checking_shared_status()
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm-cache-target.c
CommitLineData
c6b4fcba
JT
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
b29d4986 8#include "dm-bio-prison-v2.h"
b844fe69 9#include "dm-bio-record.h"
c6b4fcba
JT
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
0f30af98 14#include <linux/jiffies.h>
c6b4fcba
JT
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
b29d4986 18#include <linux/rwsem.h>
c6b4fcba
JT
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
b29d4986
JT
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40/*----------------------------------------------------------------*/
77289d32
JT
41
42struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84}
85
86static void iot_io_begin(struct io_tracker *iot, sector_t len)
87{
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93}
94
95static void __iot_io_end(struct io_tracker *iot, sector_t len)
96{
072792dc
JT
97 if (!len)
98 return;
99
77289d32
JT
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103}
104
105static void iot_io_end(struct io_tracker *iot, sector_t len)
106{
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112}
113
114/*----------------------------------------------------------------*/
115
c6b4fcba 116/*
b29d4986
JT
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
c6b4fcba 119 */
b29d4986
JT
120struct continuation {
121 struct work_struct ws;
4e4cbee9 122 blk_status_t input;
b29d4986
JT
123};
124
125static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127{
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130}
131
132static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134{
135 queue_work(wq, &k->ws);
136}
c6b4fcba
JT
137
138/*----------------------------------------------------------------*/
139
b29d4986
JT
140/*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
4e4cbee9 148 blk_status_t (*commit_op)(void *context);
b29d4986
JT
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169};
170
171static void __commit(struct work_struct *_ws)
172{
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
4e4cbee9 174 blk_status_t r;
b29d4986
JT
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
4e4cbee9 207 bio->bi_status = r;
b29d4986
JT
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212}
213
214static void batcher_init(struct batcher *b,
4e4cbee9 215 blk_status_t (*commit_op)(void *),
b29d4986
JT
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220{
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232}
233
234static void async_commit(struct batcher *b)
235{
236 queue_work(b->wq, &b->commit_work);
237}
238
239static void continue_after_commit(struct batcher *b, struct continuation *k)
240{
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251}
252
253/*
254 * Bios are errored if commit failed.
255 */
256static void issue_after_commit(struct batcher *b, struct bio *bio)
257{
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268}
269
270/*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
273static void schedule_commit(struct batcher *b)
274{
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285}
286
c9d28d5d
JT
287/*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
c9d28d5d
JT
294};
295
296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298{
299 h->bi_end_io = bio->bi_end_io;
c9d28d5d
JT
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303}
304
305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306{
307 bio->bi_end_io = h->bi_end_io;
c9d28d5d
JT
308}
309
310/*----------------------------------------------------------------*/
311
c6b4fcba
JT
312#define MIGRATION_POOL_SIZE 128
313#define COMMIT_PERIOD HZ
314#define MIGRATION_COUNT_WINDOW 10
315
316/*
05473044
MS
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
c6b4fcba
JT
319 */
320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
05473044 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
c6b4fcba 322
2ee57d58 323enum cache_metadata_mode {
c6b4fcba
JT
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
028ae9f7 326 CM_FAIL
c6b4fcba
JT
327};
328
2ee57d58
JT
329enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350};
351
c6b4fcba 352struct cache_features {
2ee57d58
JT
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
629d0a8a 355 unsigned metadata_version;
c6b4fcba
JT
356};
357
358struct cache_stats {
359 atomic_t read_hit;
360 atomic_t read_miss;
361 atomic_t write_hit;
362 atomic_t write_miss;
363 atomic_t demotion;
364 atomic_t promotion;
b29d4986 365 atomic_t writeback;
c6b4fcba
JT
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
370};
371
372struct cache {
373 struct dm_target *ti;
72d711c8
MS
374 spinlock_t lock;
375
376 /*
377 * Fields for converting from sectors to blocks.
378 */
379 int sectors_per_block_shift;
380 sector_t sectors_per_block;
c6b4fcba 381
c9ec5d7c
MS
382 struct dm_cache_metadata *cmd;
383
c6b4fcba
JT
384 /*
385 * Metadata is written to this device.
386 */
387 struct dm_dev *metadata_dev;
388
389 /*
390 * The slower of the two data devices. Typically a spindle.
391 */
392 struct dm_dev *origin_dev;
393
394 /*
395 * The faster of the two data devices. Typically an SSD.
396 */
397 struct dm_dev *cache_dev;
398
c6b4fcba
JT
399 /*
400 * Size of the origin device in _complete_ blocks and native sectors.
401 */
402 dm_oblock_t origin_blocks;
403 sector_t origin_sectors;
404
405 /*
406 * Size of the cache device in blocks.
407 */
408 dm_cblock_t cache_size;
409
410 /*
72d711c8 411 * Invalidation fields.
c6b4fcba 412 */
72d711c8
MS
413 spinlock_t invalidation_lock;
414 struct list_head invalidation_requests;
c6b4fcba 415
c6b4fcba 416 sector_t migration_threshold;
c6b4fcba 417 wait_queue_head_t migration_wait;
a59db676
JT
418 atomic_t nr_allocated_migrations;
419
420 /*
421 * The number of in flight migrations that are performing
422 * background io. eg, promotion, writeback.
423 */
424 atomic_t nr_io_migrations;
c6b4fcba 425
72d711c8
MS
426 struct bio_list deferred_bios;
427
b29d4986 428 struct rw_semaphore quiesce_lock;
66cb1910 429
72d711c8 430 struct dm_target_callbacks callbacks;
c6b4fcba
JT
431
432 /*
433 * origin_blocks entries, discarded if set.
434 */
1bad9bc4 435 dm_dblock_t discard_nr_blocks;
c6b4fcba 436 unsigned long *discard_bitset;
08b18451 437 uint32_t discard_block_size; /* a power of 2 times sectors per block */
c9ec5d7c
MS
438
439 /*
440 * Rather than reconstructing the table line for the status we just
441 * save it and regurgitate.
442 */
443 unsigned nr_ctr_args;
444 const char **ctr_args;
c6b4fcba
JT
445
446 struct dm_kcopyd_client *copier;
b29d4986 447 struct work_struct deferred_bio_worker;
b29d4986 448 struct work_struct migration_worker;
72d711c8 449 struct workqueue_struct *wq;
c6b4fcba 450 struct delayed_work waker;
b29d4986 451 struct dm_bio_prison_v2 *prison;
c6b4fcba 452
72d711c8
MS
453 /*
454 * cache_size entries, dirty if set
455 */
456 unsigned long *dirty_bitset;
457 atomic_t nr_dirty;
c6b4fcba 458
c6b4fcba 459 unsigned policy_nr_args;
72d711c8
MS
460 struct dm_cache_policy *policy;
461
462 /*
463 * Cache features such as write-through.
464 */
465 struct cache_features features;
466
467 struct cache_stats stats;
c6b4fcba
JT
468
469 bool need_tick_bio:1;
470 bool sized:1;
65790ff9 471 bool invalidate:1;
c6b4fcba
JT
472 bool commit_requested:1;
473 bool loaded_mappings:1;
474 bool loaded_discards:1;
475
72d711c8 476 struct rw_semaphore background_work_lock;
65790ff9 477
72d711c8
MS
478 struct batcher committer;
479 struct work_struct commit_ws;
066dbaa3 480
701e03e4 481 struct io_tracker tracker;
b29d4986 482
72d711c8 483 mempool_t migration_pool;
b29d4986 484
72d711c8 485 struct bio_set bs;
c6b4fcba
JT
486};
487
488struct per_bio_data {
489 bool tick:1;
490 unsigned req_nr:2;
b29d4986 491 struct dm_bio_prison_cell_v2 *cell;
c6eda5e8 492 struct dm_hook_info hook_info;
066dbaa3 493 sector_t len;
c6b4fcba
JT
494};
495
496struct dm_cache_migration {
b29d4986 497 struct continuation k;
c6b4fcba
JT
498 struct cache *cache;
499
b29d4986
JT
500 struct policy_work *op;
501 struct bio *overwrite_bio;
502 struct dm_bio_prison_cell_v2 *cell;
c6b4fcba 503
b29d4986
JT
504 dm_cblock_t invalidate_cblock;
505 dm_oblock_t invalidate_oblock;
c6b4fcba
JT
506};
507
b29d4986
JT
508/*----------------------------------------------------------------*/
509
8e3c3827 510static bool writethrough_mode(struct cache *cache)
b29d4986 511{
8e3c3827 512 return cache->features.io_mode == CM_IO_WRITETHROUGH;
b29d4986
JT
513}
514
8e3c3827 515static bool writeback_mode(struct cache *cache)
b29d4986 516{
8e3c3827 517 return cache->features.io_mode == CM_IO_WRITEBACK;
b29d4986
JT
518}
519
8e3c3827 520static inline bool passthrough_mode(struct cache *cache)
b29d4986 521{
8e3c3827 522 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
b29d4986
JT
523}
524
525/*----------------------------------------------------------------*/
526
527static void wake_deferred_bio_worker(struct cache *cache)
528{
529 queue_work(cache->wq, &cache->deferred_bio_worker);
530}
c6b4fcba 531
b29d4986 532static void wake_migration_worker(struct cache *cache)
c6b4fcba 533{
8e3c3827 534 if (passthrough_mode(cache))
b29d4986
JT
535 return;
536
537 queue_work(cache->wq, &cache->migration_worker);
c6b4fcba
JT
538}
539
540/*----------------------------------------------------------------*/
541
b29d4986 542static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
c6b4fcba 543{
b29d4986 544 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
c6b4fcba
JT
545}
546
b29d4986 547static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
c6b4fcba 548{
b29d4986 549 dm_bio_prison_free_cell_v2(cache->prison, cell);
c6b4fcba
JT
550}
551
a59db676
JT
552static struct dm_cache_migration *alloc_migration(struct cache *cache)
553{
554 struct dm_cache_migration *mg;
555
6f1c819c 556 mg = mempool_alloc(&cache->migration_pool, GFP_NOWAIT);
ef7afb36
MS
557 if (!mg)
558 return NULL;
559
560 memset(mg, 0, sizeof(*mg));
561
562 mg->cache = cache;
563 atomic_inc(&cache->nr_allocated_migrations);
a59db676
JT
564
565 return mg;
566}
567
568static void free_migration(struct dm_cache_migration *mg)
569{
88bf5184 570 struct cache *cache = mg->cache;
a59db676 571
88bf5184
JT
572 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
573 wake_up(&cache->migration_wait);
574
6f1c819c 575 mempool_free(mg, &cache->migration_pool);
a59db676
JT
576}
577
b29d4986 578/*----------------------------------------------------------------*/
c6b4fcba 579
b29d4986 580static inline dm_oblock_t oblock_succ(dm_oblock_t b)
c6b4fcba 581{
b29d4986 582 return to_oblock(from_oblock(b) + 1ull);
c6b4fcba
JT
583}
584
b29d4986 585static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
c6b4fcba 586{
b29d4986
JT
587 key->virtual = 0;
588 key->dev = 0;
589 key->block_begin = from_oblock(begin);
590 key->block_end = from_oblock(end);
c6b4fcba
JT
591}
592
593/*
b29d4986
JT
594 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
595 * level 1 which prevents *both* READs and WRITEs.
c6b4fcba 596 */
b29d4986
JT
597#define WRITE_LOCK_LEVEL 0
598#define READ_WRITE_LOCK_LEVEL 1
599
600static unsigned lock_level(struct bio *bio)
c6b4fcba 601{
b29d4986
JT
602 return bio_data_dir(bio) == WRITE ?
603 WRITE_LOCK_LEVEL :
604 READ_WRITE_LOCK_LEVEL;
605}
c6b4fcba 606
b29d4986
JT
607/*----------------------------------------------------------------
608 * Per bio data
609 *--------------------------------------------------------------*/
c6b4fcba 610
693b960e 611static struct per_bio_data *get_per_bio_data(struct bio *bio)
b29d4986 612{
693b960e 613 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
b29d4986
JT
614 BUG_ON(!pb);
615 return pb;
616}
c6b4fcba 617
693b960e 618static struct per_bio_data *init_per_bio_data(struct bio *bio)
b29d4986 619{
693b960e 620 struct per_bio_data *pb = get_per_bio_data(bio);
c6b4fcba 621
b29d4986
JT
622 pb->tick = false;
623 pb->req_nr = dm_bio_get_target_bio_nr(bio);
624 pb->cell = NULL;
625 pb->len = 0;
626
627 return pb;
c6b4fcba
JT
628}
629
630/*----------------------------------------------------------------*/
631
b29d4986 632static void defer_bio(struct cache *cache, struct bio *bio)
c6b4fcba 633{
b29d4986 634 unsigned long flags;
c6b4fcba 635
b29d4986
JT
636 spin_lock_irqsave(&cache->lock, flags);
637 bio_list_add(&cache->deferred_bios, bio);
638 spin_unlock_irqrestore(&cache->lock, flags);
639
640 wake_deferred_bio_worker(cache);
641}
c6b4fcba 642
b29d4986 643static void defer_bios(struct cache *cache, struct bio_list *bios)
c6b4fcba 644{
b29d4986 645 unsigned long flags;
c6b4fcba 646
b29d4986
JT
647 spin_lock_irqsave(&cache->lock, flags);
648 bio_list_merge(&cache->deferred_bios, bios);
649 bio_list_init(bios);
650 spin_unlock_irqrestore(&cache->lock, flags);
c6b4fcba 651
b29d4986 652 wake_deferred_bio_worker(cache);
c6b4fcba
JT
653}
654
b29d4986
JT
655/*----------------------------------------------------------------*/
656
657static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
7ae34e77 658{
b29d4986 659 bool r;
b29d4986
JT
660 struct per_bio_data *pb;
661 struct dm_cell_key_v2 key;
7ae34e77 662 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
b29d4986 663 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
7ae34e77 664
b29d4986
JT
665 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
666 if (!cell_prealloc) {
667 defer_bio(cache, bio);
668 return false;
669 }
670
671 build_key(oblock, end, &key);
672 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
673 if (!r) {
674 /*
675 * Failed to get the lock.
676 */
677 free_prison_cell(cache, cell_prealloc);
678 return r;
679 }
c6b4fcba 680
b29d4986
JT
681 if (cell != cell_prealloc)
682 free_prison_cell(cache, cell_prealloc);
c6b4fcba 683
693b960e 684 pb = get_per_bio_data(bio);
b29d4986 685 pb->cell = cell;
c6b4fcba
JT
686
687 return r;
688}
689
aeed1420 690/*----------------------------------------------------------------*/
c6b4fcba
JT
691
692static bool is_dirty(struct cache *cache, dm_cblock_t b)
693{
694 return test_bit(from_cblock(b), cache->dirty_bitset);
695}
696
b29d4986 697static void set_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
698{
699 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 700 atomic_inc(&cache->nr_dirty);
b29d4986 701 policy_set_dirty(cache->policy, cblock);
c6b4fcba
JT
702 }
703}
704
b29d4986
JT
705/*
706 * These two are called when setting after migrations to force the policy
707 * and dirty bitset to be in sync.
708 */
709static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
710{
711 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
712 atomic_inc(&cache->nr_dirty);
713 policy_set_dirty(cache->policy, cblock);
714}
715
716static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
717{
718 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 719 if (atomic_dec_return(&cache->nr_dirty) == 0)
c6b4fcba
JT
720 dm_table_event(cache->ti->table);
721 }
b29d4986
JT
722
723 policy_clear_dirty(cache->policy, cblock);
c6b4fcba
JT
724}
725
726/*----------------------------------------------------------------*/
aeed1420 727
c6b4fcba
JT
728static bool block_size_is_power_of_two(struct cache *cache)
729{
730 return cache->sectors_per_block_shift >= 0;
731}
732
43aeaa29
MP
733/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
734#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
735__always_inline
736#endif
414dd67d
JT
737static dm_block_t block_div(dm_block_t b, uint32_t n)
738{
739 do_div(b, n);
740
741 return b;
742}
743
7ae34e77 744static dm_block_t oblocks_per_dblock(struct cache *cache)
1bad9bc4 745{
7ae34e77 746 dm_block_t oblocks = cache->discard_block_size;
1bad9bc4 747
7ae34e77
JT
748 if (block_size_is_power_of_two(cache))
749 oblocks >>= cache->sectors_per_block_shift;
1bad9bc4 750 else
7ae34e77 751 oblocks = block_div(oblocks, cache->sectors_per_block);
1bad9bc4 752
7ae34e77
JT
753 return oblocks;
754}
755
756static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
757{
758 return to_dblock(block_div(from_oblock(oblock),
759 oblocks_per_dblock(cache)));
760}
1bad9bc4 761
1bad9bc4 762static void set_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
763{
764 unsigned long flags;
765
7ae34e77 766 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
767 atomic_inc(&cache->stats.discard_count);
768
769 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 770 set_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
771 spin_unlock_irqrestore(&cache->lock, flags);
772}
773
1bad9bc4 774static void clear_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
775{
776 unsigned long flags;
777
778 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 779 clear_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
780 spin_unlock_irqrestore(&cache->lock, flags);
781}
782
1bad9bc4 783static bool is_discarded(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
784{
785 int r;
786 unsigned long flags;
787
788 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 789 r = test_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
790 spin_unlock_irqrestore(&cache->lock, flags);
791
792 return r;
793}
794
795static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
796{
797 int r;
798 unsigned long flags;
799
800 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4
JT
801 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
802 cache->discard_bitset);
c6b4fcba
JT
803 spin_unlock_irqrestore(&cache->lock, flags);
804
805 return r;
806}
807
b29d4986
JT
808/*----------------------------------------------------------------
809 * Remapping
810 *--------------------------------------------------------------*/
811static void remap_to_origin(struct cache *cache, struct bio *bio)
c6b4fcba 812{
74d46992 813 bio_set_dev(bio, cache->origin_dev->bdev);
c6b4fcba
JT
814}
815
816static void remap_to_cache(struct cache *cache, struct bio *bio,
817 dm_cblock_t cblock)
818{
4f024f37 819 sector_t bi_sector = bio->bi_iter.bi_sector;
e0d849fa 820 sector_t block = from_cblock(cblock);
c6b4fcba 821
74d46992 822 bio_set_dev(bio, cache->cache_dev->bdev);
c6b4fcba 823 if (!block_size_is_power_of_two(cache))
4f024f37 824 bio->bi_iter.bi_sector =
e0d849fa 825 (block * cache->sectors_per_block) +
4f024f37 826 sector_div(bi_sector, cache->sectors_per_block);
c6b4fcba 827 else
4f024f37 828 bio->bi_iter.bi_sector =
e0d849fa 829 (block << cache->sectors_per_block_shift) |
4f024f37 830 (bi_sector & (cache->sectors_per_block - 1));
c6b4fcba
JT
831}
832
833static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
834{
835 unsigned long flags;
693b960e 836 struct per_bio_data *pb;
c6b4fcba
JT
837
838 spin_lock_irqsave(&cache->lock, flags);
f73f44eb 839 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
e6047149 840 bio_op(bio) != REQ_OP_DISCARD) {
693b960e 841 pb = get_per_bio_data(bio);
c6b4fcba
JT
842 pb->tick = true;
843 cache->need_tick_bio = false;
844 }
845 spin_unlock_irqrestore(&cache->lock, flags);
846}
847
2df3bae9
MS
848static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
849 dm_oblock_t oblock, bool bio_has_pbd)
c6b4fcba 850{
2df3bae9
MS
851 if (bio_has_pbd)
852 check_if_tick_bio_needed(cache, bio);
c6b4fcba
JT
853 remap_to_origin(cache, bio);
854 if (bio_data_dir(bio) == WRITE)
1bad9bc4 855 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
856}
857
2df3bae9
MS
858static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
859 dm_oblock_t oblock)
860{
861 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
862 __remap_to_origin_clear_discard(cache, bio, oblock, true);
863}
864
c6b4fcba
JT
865static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
866 dm_oblock_t oblock, dm_cblock_t cblock)
867{
f8e5f01a 868 check_if_tick_bio_needed(cache, bio);
c6b4fcba
JT
869 remap_to_cache(cache, bio, cblock);
870 if (bio_data_dir(bio) == WRITE) {
b29d4986 871 set_dirty(cache, cblock);
1bad9bc4 872 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
873 }
874}
875
876static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
877{
4f024f37 878 sector_t block_nr = bio->bi_iter.bi_sector;
c6b4fcba
JT
879
880 if (!block_size_is_power_of_two(cache))
881 (void) sector_div(block_nr, cache->sectors_per_block);
882 else
883 block_nr >>= cache->sectors_per_block_shift;
884
885 return to_oblock(block_nr);
886}
887
066dbaa3
JT
888static bool accountable_bio(struct cache *cache, struct bio *bio)
889{
701e03e4 890 return bio_op(bio) != REQ_OP_DISCARD;
066dbaa3
JT
891}
892
893static void accounted_begin(struct cache *cache, struct bio *bio)
894{
693b960e 895 struct per_bio_data *pb;
066dbaa3
JT
896
897 if (accountable_bio(cache, bio)) {
693b960e 898 pb = get_per_bio_data(bio);
066dbaa3 899 pb->len = bio_sectors(bio);
701e03e4 900 iot_io_begin(&cache->tracker, pb->len);
066dbaa3
JT
901 }
902}
903
904static void accounted_complete(struct cache *cache, struct bio *bio)
905{
693b960e 906 struct per_bio_data *pb = get_per_bio_data(bio);
066dbaa3 907
701e03e4 908 iot_io_end(&cache->tracker, pb->len);
066dbaa3
JT
909}
910
911static void accounted_request(struct cache *cache, struct bio *bio)
912{
913 accounted_begin(cache, bio);
914 generic_make_request(bio);
915}
916
b29d4986 917static void issue_op(struct bio *bio, void *context)
8c081b52 918{
b29d4986
JT
919 struct cache *cache = context;
920 accounted_request(cache, bio);
8c081b52
JT
921}
922
e2e74d61
JT
923/*
924 * When running in writethrough mode we need to send writes to clean blocks
2df3bae9 925 * to both the cache and origin devices. Clone the bio and send them in parallel.
e2e74d61 926 */
2df3bae9
MS
927static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
928 dm_oblock_t oblock, dm_cblock_t cblock)
e2e74d61 929{
6f1c819c 930 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
2df3bae9
MS
931
932 BUG_ON(!origin_bio);
e2e74d61 933
2df3bae9
MS
934 bio_chain(origin_bio, bio);
935 /*
936 * Passing false to __remap_to_origin_clear_discard() skips
937 * all code that might use per_bio_data (since clone doesn't have it)
938 */
939 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
940 submit_bio(origin_bio);
e2e74d61 941
2df3bae9 942 remap_to_cache(cache, bio, cblock);
e2e74d61
JT
943}
944
028ae9f7
JT
945/*----------------------------------------------------------------
946 * Failure modes
947 *--------------------------------------------------------------*/
948static enum cache_metadata_mode get_cache_mode(struct cache *cache)
949{
950 return cache->features.mode;
951}
952
b61d9509
MS
953static const char *cache_device_name(struct cache *cache)
954{
955 return dm_device_name(dm_table_get_md(cache->ti->table));
956}
957
028ae9f7
JT
958static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
959{
960 const char *descs[] = {
961 "write",
962 "read-only",
963 "fail"
964 };
965
966 dm_table_event(cache->ti->table);
b61d9509
MS
967 DMINFO("%s: switching cache to %s mode",
968 cache_device_name(cache), descs[(int)mode]);
028ae9f7
JT
969}
970
971static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
972{
d14fcf3d 973 bool needs_check;
028ae9f7
JT
974 enum cache_metadata_mode old_mode = get_cache_mode(cache);
975
d14fcf3d 976 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
23cab26d
MS
977 DMERR("%s: unable to read needs_check flag, setting failure mode.",
978 cache_device_name(cache));
d14fcf3d
JT
979 new_mode = CM_FAIL;
980 }
981
028ae9f7 982 if (new_mode == CM_WRITE && needs_check) {
b61d9509
MS
983 DMERR("%s: unable to switch cache to write mode until repaired.",
984 cache_device_name(cache));
028ae9f7
JT
985 if (old_mode != new_mode)
986 new_mode = old_mode;
987 else
988 new_mode = CM_READ_ONLY;
989 }
990
991 /* Never move out of fail mode */
992 if (old_mode == CM_FAIL)
993 new_mode = CM_FAIL;
994
995 switch (new_mode) {
996 case CM_FAIL:
997 case CM_READ_ONLY:
998 dm_cache_metadata_set_read_only(cache->cmd);
999 break;
1000
1001 case CM_WRITE:
1002 dm_cache_metadata_set_read_write(cache->cmd);
1003 break;
1004 }
1005
1006 cache->features.mode = new_mode;
1007
1008 if (new_mode != old_mode)
1009 notify_mode_switch(cache, new_mode);
1010}
1011
1012static void abort_transaction(struct cache *cache)
1013{
b61d9509
MS
1014 const char *dev_name = cache_device_name(cache);
1015
028ae9f7
JT
1016 if (get_cache_mode(cache) >= CM_READ_ONLY)
1017 return;
1018
1019 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
b61d9509 1020 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
028ae9f7
JT
1021 set_cache_mode(cache, CM_FAIL);
1022 }
1023
b61d9509 1024 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
028ae9f7 1025 if (dm_cache_metadata_abort(cache->cmd)) {
b61d9509 1026 DMERR("%s: failed to abort metadata transaction", dev_name);
028ae9f7
JT
1027 set_cache_mode(cache, CM_FAIL);
1028 }
1029}
1030
1031static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1032{
b61d9509
MS
1033 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1034 cache_device_name(cache), op, r);
028ae9f7
JT
1035 abort_transaction(cache);
1036 set_cache_mode(cache, CM_READ_ONLY);
1037}
1038
b29d4986
JT
1039/*----------------------------------------------------------------*/
1040
1041static void load_stats(struct cache *cache)
1042{
1043 struct dm_cache_statistics stats;
1044
1045 dm_cache_metadata_get_stats(cache->cmd, &stats);
1046 atomic_set(&cache->stats.read_hit, stats.read_hits);
1047 atomic_set(&cache->stats.read_miss, stats.read_misses);
1048 atomic_set(&cache->stats.write_hit, stats.write_hits);
1049 atomic_set(&cache->stats.write_miss, stats.write_misses);
1050}
1051
1052static void save_stats(struct cache *cache)
1053{
1054 struct dm_cache_statistics stats;
1055
1056 if (get_cache_mode(cache) >= CM_READ_ONLY)
1057 return;
1058
1059 stats.read_hits = atomic_read(&cache->stats.read_hit);
1060 stats.read_misses = atomic_read(&cache->stats.read_miss);
1061 stats.write_hits = atomic_read(&cache->stats.write_hit);
1062 stats.write_misses = atomic_read(&cache->stats.write_miss);
1063
1064 dm_cache_metadata_set_stats(cache->cmd, &stats);
1065}
1066
1067static void update_stats(struct cache_stats *stats, enum policy_operation op)
1068{
1069 switch (op) {
1070 case POLICY_PROMOTE:
1071 atomic_inc(&stats->promotion);
1072 break;
1073
1074 case POLICY_DEMOTE:
1075 atomic_inc(&stats->demotion);
1076 break;
1077
1078 case POLICY_WRITEBACK:
1079 atomic_inc(&stats->writeback);
1080 break;
1081 }
1082}
1083
c6b4fcba
JT
1084/*----------------------------------------------------------------
1085 * Migration processing
1086 *
1087 * Migration covers moving data from the origin device to the cache, or
1088 * vice versa.
1089 *--------------------------------------------------------------*/
b29d4986 1090
a59db676 1091static void inc_io_migrations(struct cache *cache)
c6b4fcba 1092{
a59db676 1093 atomic_inc(&cache->nr_io_migrations);
c6b4fcba
JT
1094}
1095
a59db676 1096static void dec_io_migrations(struct cache *cache)
c6b4fcba 1097{
a59db676 1098 atomic_dec(&cache->nr_io_migrations);
c6b4fcba
JT
1099}
1100
651f5fa2
JT
1101static bool discard_or_flush(struct bio *bio)
1102{
f73f44eb 1103 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
651f5fa2
JT
1104}
1105
b29d4986
JT
1106static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1107 dm_dblock_t *b, dm_dblock_t *e)
c6b4fcba 1108{
b29d4986
JT
1109 sector_t sb = bio->bi_iter.bi_sector;
1110 sector_t se = bio_end_sector(bio);
651f5fa2 1111
b29d4986 1112 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
c6b4fcba 1113
b29d4986
JT
1114 if (se - sb < cache->discard_block_size)
1115 *e = *b;
1116 else
1117 *e = to_dblock(block_div(se, cache->discard_block_size));
c6b4fcba
JT
1118}
1119
b29d4986 1120/*----------------------------------------------------------------*/
651f5fa2 1121
b29d4986 1122static void prevent_background_work(struct cache *cache)
651f5fa2 1123{
b29d4986
JT
1124 lockdep_off();
1125 down_write(&cache->background_work_lock);
1126 lockdep_on();
651f5fa2
JT
1127}
1128
b29d4986 1129static void allow_background_work(struct cache *cache)
c6b4fcba 1130{
b29d4986
JT
1131 lockdep_off();
1132 up_write(&cache->background_work_lock);
1133 lockdep_on();
c6b4fcba
JT
1134}
1135
b29d4986 1136static bool background_work_begin(struct cache *cache)
c6b4fcba 1137{
b29d4986 1138 bool r;
c6b4fcba 1139
b29d4986
JT
1140 lockdep_off();
1141 r = down_read_trylock(&cache->background_work_lock);
1142 lockdep_on();
c6b4fcba 1143
b29d4986 1144 return r;
c6b4fcba
JT
1145}
1146
b29d4986 1147static void background_work_end(struct cache *cache)
c6b4fcba 1148{
b29d4986
JT
1149 lockdep_off();
1150 up_read(&cache->background_work_lock);
1151 lockdep_on();
1152}
c6b4fcba 1153
b29d4986 1154/*----------------------------------------------------------------*/
c6b4fcba 1155
d1260e2a
JT
1156static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1157{
1158 return (bio_data_dir(bio) == WRITE) &&
1159 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1160}
1161
1162static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1163{
8e3c3827 1164 return writeback_mode(cache) &&
d1260e2a
JT
1165 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1166}
1167
b29d4986
JT
1168static void quiesce(struct dm_cache_migration *mg,
1169 void (*continuation)(struct work_struct *))
1170{
1171 init_continuation(&mg->k, continuation);
1172 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
c6b4fcba
JT
1173}
1174
b29d4986 1175static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
c6b4fcba 1176{
b29d4986
JT
1177 struct continuation *k = container_of(ws, struct continuation, ws);
1178 return container_of(k, struct dm_cache_migration, k);
c6b4fcba
JT
1179}
1180
1181static void copy_complete(int read_err, unsigned long write_err, void *context)
1182{
b29d4986 1183 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
c6b4fcba
JT
1184
1185 if (read_err || write_err)
4e4cbee9 1186 mg->k.input = BLK_STS_IOERR;
c6b4fcba 1187
b29d4986 1188 queue_continuation(mg->cache->wq, &mg->k);
c6b4fcba
JT
1189}
1190
7209049d 1191static void copy(struct dm_cache_migration *mg, bool promote)
c6b4fcba 1192{
c6b4fcba
JT
1193 struct dm_io_region o_region, c_region;
1194 struct cache *cache = mg->cache;
1195
1196 o_region.bdev = cache->origin_dev->bdev;
b29d4986 1197 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
c6b4fcba
JT
1198 o_region.count = cache->sectors_per_block;
1199
1200 c_region.bdev = cache->cache_dev->bdev;
b29d4986 1201 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
c6b4fcba
JT
1202 c_region.count = cache->sectors_per_block;
1203
b29d4986 1204 if (promote)
7209049d 1205 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
b29d4986 1206 else
7209049d 1207 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
b29d4986
JT
1208}
1209
1210static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1211{
693b960e 1212 struct per_bio_data *pb = get_per_bio_data(bio);
b29d4986
JT
1213
1214 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1215 free_prison_cell(cache, pb->cell);
1216 pb->cell = NULL;
c6b4fcba
JT
1217}
1218
4246a0b6 1219static void overwrite_endio(struct bio *bio)
c9d28d5d
JT
1220{
1221 struct dm_cache_migration *mg = bio->bi_private;
1222 struct cache *cache = mg->cache;
693b960e 1223 struct per_bio_data *pb = get_per_bio_data(bio);
c9d28d5d 1224
80ae49aa
MS
1225 dm_unhook_bio(&pb->hook_info, bio);
1226
4e4cbee9
CH
1227 if (bio->bi_status)
1228 mg->k.input = bio->bi_status;
80ae49aa 1229
693b960e 1230 queue_continuation(cache->wq, &mg->k);
c9d28d5d
JT
1231}
1232
b29d4986
JT
1233static void overwrite(struct dm_cache_migration *mg,
1234 void (*continuation)(struct work_struct *))
c9d28d5d 1235{
b29d4986 1236 struct bio *bio = mg->overwrite_bio;
693b960e 1237 struct per_bio_data *pb = get_per_bio_data(bio);
c9d28d5d
JT
1238
1239 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
8c081b52
JT
1240
1241 /*
b29d4986
JT
1242 * The overwrite bio is part of the copy operation, as such it does
1243 * not set/clear discard or dirty flags.
8c081b52 1244 */
b29d4986
JT
1245 if (mg->op->op == POLICY_PROMOTE)
1246 remap_to_cache(mg->cache, bio, mg->op->cblock);
1247 else
1248 remap_to_origin(mg->cache, bio);
1249
1250 init_continuation(&mg->k, continuation);
066dbaa3 1251 accounted_request(mg->cache, bio);
c9d28d5d
JT
1252}
1253
b29d4986
JT
1254/*
1255 * Migration steps:
1256 *
1257 * 1) exclusive lock preventing WRITEs
1258 * 2) quiesce
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1261 * 5) quiesce
1262 * 6) update metadata and commit
1263 * 7) unlock
1264 */
1265static void mg_complete(struct dm_cache_migration *mg, bool success)
c9d28d5d 1266{
b29d4986
JT
1267 struct bio_list bios;
1268 struct cache *cache = mg->cache;
1269 struct policy_work *op = mg->op;
1270 dm_cblock_t cblock = op->cblock;
1271
1272 if (success)
1273 update_stats(&cache->stats, op->op);
1274
1275 switch (op->op) {
1276 case POLICY_PROMOTE:
1277 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1278 policy_complete_background_work(cache->policy, op, success);
1279
1280 if (mg->overwrite_bio) {
1281 if (success)
1282 force_set_dirty(cache, cblock);
4e4cbee9
CH
1283 else if (mg->k.input)
1284 mg->overwrite_bio->bi_status = mg->k.input;
b29d4986 1285 else
4e4cbee9 1286 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
b29d4986
JT
1287 bio_endio(mg->overwrite_bio);
1288 } else {
1289 if (success)
1290 force_clear_dirty(cache, cblock);
1291 dec_io_migrations(cache);
1292 }
1293 break;
1294
1295 case POLICY_DEMOTE:
1296 /*
1297 * We clear dirty here to update the nr_dirty counter.
1298 */
1299 if (success)
1300 force_clear_dirty(cache, cblock);
1301 policy_complete_background_work(cache->policy, op, success);
1302 dec_io_migrations(cache);
1303 break;
1304
1305 case POLICY_WRITEBACK:
1306 if (success)
1307 force_clear_dirty(cache, cblock);
1308 policy_complete_background_work(cache->policy, op, success);
1309 dec_io_migrations(cache);
1310 break;
1311 }
1312
1313 bio_list_init(&bios);
1314 if (mg->cell) {
1315 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1316 free_prison_cell(cache, mg->cell);
1317 }
1318
1319 free_migration(mg);
1320 defer_bios(cache, &bios);
1321 wake_migration_worker(cache);
1322
1323 background_work_end(cache);
c9d28d5d
JT
1324}
1325
b29d4986 1326static void mg_success(struct work_struct *ws)
c6b4fcba 1327{
b29d4986
JT
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 mg_complete(mg, mg->k.input == 0);
c6b4fcba
JT
1330}
1331
b29d4986 1332static void mg_update_metadata(struct work_struct *ws)
7ae34e77 1333{
b29d4986
JT
1334 int r;
1335 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1336 struct cache *cache = mg->cache;
b29d4986 1337 struct policy_work *op = mg->op;
c6b4fcba 1338
b29d4986
JT
1339 switch (op->op) {
1340 case POLICY_PROMOTE:
1341 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1342 if (r) {
1343 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344 cache_device_name(cache));
1345 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
7ae34e77 1346
b29d4986
JT
1347 mg_complete(mg, false);
1348 return;
1349 }
1350 mg_complete(mg, true);
1351 break;
c9d28d5d 1352
b29d4986
JT
1353 case POLICY_DEMOTE:
1354 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1355 if (r) {
1356 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357 cache_device_name(cache));
1358 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
c6b4fcba 1359
b29d4986 1360 mg_complete(mg, false);
c9d28d5d
JT
1361 return;
1362 }
c9d28d5d 1363
b29d4986
JT
1364 /*
1365 * It would be nice if we only had to commit when a REQ_FLUSH
1366 * comes through. But there's one scenario that we have to
1367 * look out for:
1368 *
1369 * - vblock x in a cache block
1370 * - domotion occurs
1371 * - cache block gets reallocated and over written
1372 * - crash
1373 *
1374 * When we recover, because there was no commit the cache will
1375 * rollback to having the data for vblock x in the cache block.
1376 * But the cache block has since been overwritten, so it'll end
1377 * up pointing to data that was never in 'x' during the history
1378 * of the device.
1379 *
1380 * To avoid this issue we require a commit as part of the
1381 * demotion operation.
1382 */
1383 init_continuation(&mg->k, mg_success);
1384 continue_after_commit(&cache->committer, &mg->k);
1385 schedule_commit(&cache->committer);
1386 break;
1387
1388 case POLICY_WRITEBACK:
1389 mg_complete(mg, true);
1390 break;
7ae34e77 1391 }
c6b4fcba
JT
1392}
1393
b29d4986 1394static void mg_update_metadata_after_copy(struct work_struct *ws)
c6b4fcba 1395{
b29d4986
JT
1396 struct dm_cache_migration *mg = ws_to_mg(ws);
1397
1398 /*
1399 * Did the copy succeed?
1400 */
1401 if (mg->k.input)
1402 mg_complete(mg, false);
c6b4fcba 1403 else
b29d4986 1404 mg_update_metadata(ws);
c6b4fcba
JT
1405}
1406
b29d4986 1407static void mg_upgrade_lock(struct work_struct *ws)
c6b4fcba 1408{
b29d4986
JT
1409 int r;
1410 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1411
b29d4986
JT
1412 /*
1413 * Did the copy succeed?
1414 */
1415 if (mg->k.input)
1416 mg_complete(mg, false);
c6b4fcba 1417
c9d28d5d 1418 else {
b29d4986
JT
1419 /*
1420 * Now we want the lock to prevent both reads and writes.
1421 */
1422 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1423 READ_WRITE_LOCK_LEVEL);
1424 if (r < 0)
1425 mg_complete(mg, false);
c6b4fcba 1426
b29d4986
JT
1427 else if (r)
1428 quiesce(mg, mg_update_metadata);
c6b4fcba 1429
b29d4986
JT
1430 else
1431 mg_update_metadata(ws);
c9d28d5d 1432 }
c6b4fcba
JT
1433}
1434
d1260e2a
JT
1435static void mg_full_copy(struct work_struct *ws)
1436{
1437 struct dm_cache_migration *mg = ws_to_mg(ws);
1438 struct cache *cache = mg->cache;
1439 struct policy_work *op = mg->op;
1440 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1441
1442 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1443 is_discarded_oblock(cache, op->oblock)) {
1444 mg_upgrade_lock(ws);
1445 return;
1446 }
1447
1448 init_continuation(&mg->k, mg_upgrade_lock);
7209049d 1449 copy(mg, is_policy_promote);
d1260e2a
JT
1450}
1451
b29d4986 1452static void mg_copy(struct work_struct *ws)
c6b4fcba 1453{
b29d4986 1454 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1455
b29d4986 1456 if (mg->overwrite_bio) {
d1260e2a
JT
1457 /*
1458 * No exclusive lock was held when we last checked if the bio
1459 * was optimisable. So we have to check again in case things
1460 * have changed (eg, the block may no longer be discarded).
1461 */
1462 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1463 /*
1464 * Fallback to a real full copy after doing some tidying up.
1465 */
1466 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1467 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1468 mg->overwrite_bio = NULL;
1469 inc_io_migrations(mg->cache);
1470 mg_full_copy(ws);
1471 return;
1472 }
1473
b29d4986
JT
1474 /*
1475 * It's safe to do this here, even though it's new data
1476 * because all IO has been locked out of the block.
1477 *
1478 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1479 * so _not_ using mg_upgrade_lock() as continutation.
1480 */
1481 overwrite(mg, mg_update_metadata_after_copy);
c6b4fcba 1482
d1260e2a
JT
1483 } else
1484 mg_full_copy(ws);
c6b4fcba
JT
1485}
1486
b29d4986 1487static int mg_lock_writes(struct dm_cache_migration *mg)
c6b4fcba 1488{
b29d4986
JT
1489 int r;
1490 struct dm_cell_key_v2 key;
c6b4fcba 1491 struct cache *cache = mg->cache;
b29d4986 1492 struct dm_bio_prison_cell_v2 *prealloc;
c6b4fcba 1493
b29d4986
JT
1494 prealloc = alloc_prison_cell(cache);
1495 if (!prealloc) {
1496 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1497 mg_complete(mg, false);
1498 return -ENOMEM;
1499 }
c6b4fcba 1500
b29d4986
JT
1501 /*
1502 * Prevent writes to the block, but allow reads to continue.
1503 * Unless we're using an overwrite bio, in which case we lock
1504 * everything.
1505 */
1506 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1507 r = dm_cell_lock_v2(cache->prison, &key,
1508 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1509 prealloc, &mg->cell);
1510 if (r < 0) {
1511 free_prison_cell(cache, prealloc);
1512 mg_complete(mg, false);
1513 return r;
1514 }
c6b4fcba 1515
b29d4986
JT
1516 if (mg->cell != prealloc)
1517 free_prison_cell(cache, prealloc);
c6b4fcba 1518
b29d4986
JT
1519 if (r == 0)
1520 mg_copy(&mg->k.ws);
1521 else
1522 quiesce(mg, mg_copy);
c6b4fcba 1523
b29d4986 1524 return 0;
c6b4fcba
JT
1525}
1526
b29d4986 1527static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
c6b4fcba 1528{
b29d4986 1529 struct dm_cache_migration *mg;
c6b4fcba 1530
b29d4986
JT
1531 if (!background_work_begin(cache)) {
1532 policy_complete_background_work(cache->policy, op, false);
1533 return -EPERM;
1534 }
2ee57d58 1535
b29d4986
JT
1536 mg = alloc_migration(cache);
1537 if (!mg) {
1538 policy_complete_background_work(cache->policy, op, false);
1539 background_work_end(cache);
1540 return -ENOMEM;
1541 }
2ee57d58 1542
b29d4986
JT
1543 mg->op = op;
1544 mg->overwrite_bio = bio;
1545
1546 if (!bio)
1547 inc_io_migrations(cache);
7ae34e77 1548
b29d4986 1549 return mg_lock_writes(mg);
7ae34e77
JT
1550}
1551
c6b4fcba 1552/*----------------------------------------------------------------
b29d4986 1553 * invalidation processing
c6b4fcba 1554 *--------------------------------------------------------------*/
c6b4fcba 1555
b29d4986 1556static void invalidate_complete(struct dm_cache_migration *mg, bool success)
c6b4fcba 1557{
b29d4986
JT
1558 struct bio_list bios;
1559 struct cache *cache = mg->cache;
c6b4fcba 1560
b29d4986
JT
1561 bio_list_init(&bios);
1562 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1563 free_prison_cell(cache, mg->cell);
c6b4fcba 1564
b29d4986
JT
1565 if (!success && mg->overwrite_bio)
1566 bio_io_error(mg->overwrite_bio);
c6b4fcba 1567
b29d4986
JT
1568 free_migration(mg);
1569 defer_bios(cache, &bios);
c6b4fcba 1570
b29d4986 1571 background_work_end(cache);
c6b4fcba
JT
1572}
1573
b29d4986 1574static void invalidate_completed(struct work_struct *ws)
c6b4fcba 1575{
b29d4986
JT
1576 struct dm_cache_migration *mg = ws_to_mg(ws);
1577 invalidate_complete(mg, !mg->k.input);
c6b4fcba
JT
1578}
1579
b29d4986 1580static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
651f5fa2 1581{
b29d4986
JT
1582 int r = policy_invalidate_mapping(cache->policy, cblock);
1583 if (!r) {
1584 r = dm_cache_remove_mapping(cache->cmd, cblock);
1585 if (r) {
1586 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1587 cache_device_name(cache));
1588 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
651f5fa2
JT
1589 }
1590
b29d4986
JT
1591 } else if (r == -ENODATA) {
1592 /*
1593 * Harmless, already unmapped.
1594 */
1595 r = 0;
651f5fa2 1596
b29d4986
JT
1597 } else
1598 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
2ee57d58 1599
b29d4986 1600 return r;
651f5fa2
JT
1601}
1602
b29d4986 1603static void invalidate_remove(struct work_struct *ws)
651f5fa2 1604{
b29d4986
JT
1605 int r;
1606 struct dm_cache_migration *mg = ws_to_mg(ws);
1607 struct cache *cache = mg->cache;
651f5fa2 1608
b29d4986
JT
1609 r = invalidate_cblock(cache, mg->invalidate_cblock);
1610 if (r) {
1611 invalidate_complete(mg, false);
1612 return;
651f5fa2 1613 }
9153df74 1614
b29d4986
JT
1615 init_continuation(&mg->k, invalidate_completed);
1616 continue_after_commit(&cache->committer, &mg->k);
1617 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1618 mg->overwrite_bio = NULL;
1619 schedule_commit(&cache->committer);
651f5fa2
JT
1620}
1621
b29d4986 1622static int invalidate_lock(struct dm_cache_migration *mg)
651f5fa2 1623{
b29d4986
JT
1624 int r;
1625 struct dm_cell_key_v2 key;
1626 struct cache *cache = mg->cache;
1627 struct dm_bio_prison_cell_v2 *prealloc;
651f5fa2 1628
b29d4986
JT
1629 prealloc = alloc_prison_cell(cache);
1630 if (!prealloc) {
1631 invalidate_complete(mg, false);
1632 return -ENOMEM;
651f5fa2
JT
1633 }
1634
b29d4986
JT
1635 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1636 r = dm_cell_lock_v2(cache->prison, &key,
1637 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1638 if (r < 0) {
1639 free_prison_cell(cache, prealloc);
1640 invalidate_complete(mg, false);
1641 return r;
651f5fa2 1642 }
9153df74 1643
b29d4986
JT
1644 if (mg->cell != prealloc)
1645 free_prison_cell(cache, prealloc);
651f5fa2 1646
b29d4986
JT
1647 if (r)
1648 quiesce(mg, invalidate_remove);
651f5fa2 1649
b29d4986
JT
1650 else {
1651 /*
1652 * We can't call invalidate_remove() directly here because we
1653 * might still be in request context.
1654 */
1655 init_continuation(&mg->k, invalidate_remove);
1656 queue_work(cache->wq, &mg->k.ws);
1657 }
fb4100ae 1658
fb4100ae
JT
1659 return 0;
1660}
1661
b29d4986
JT
1662static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1663 dm_oblock_t oblock, struct bio *bio)
fb4100ae 1664{
b29d4986 1665 struct dm_cache_migration *mg;
2ee57d58 1666
b29d4986
JT
1667 if (!background_work_begin(cache))
1668 return -EPERM;
c6b4fcba 1669
b29d4986
JT
1670 mg = alloc_migration(cache);
1671 if (!mg) {
1672 background_work_end(cache);
1673 return -ENOMEM;
7ae34e77 1674 }
c6b4fcba 1675
b29d4986
JT
1676 mg->overwrite_bio = bio;
1677 mg->invalidate_cblock = cblock;
1678 mg->invalidate_oblock = oblock;
c6b4fcba 1679
b29d4986 1680 return invalidate_lock(mg);
c6b4fcba 1681}
c6b4fcba 1682
b29d4986
JT
1683/*----------------------------------------------------------------
1684 * bio processing
1685 *--------------------------------------------------------------*/
c6b4fcba 1686
b29d4986
JT
1687enum busy {
1688 IDLE,
b29d4986
JT
1689 BUSY
1690};
c6b4fcba 1691
b29d4986 1692static enum busy spare_migration_bandwidth(struct cache *cache)
651f5fa2 1693{
701e03e4 1694 bool idle = iot_idle_for(&cache->tracker, HZ);
a59db676 1695 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
c6b4fcba 1696 cache->sectors_per_block;
651f5fa2 1697
49b7f768
JT
1698 if (idle && current_volume <= cache->migration_threshold)
1699 return IDLE;
b29d4986 1700 else
49b7f768 1701 return BUSY;
651f5fa2
JT
1702}
1703
c6b4fcba 1704static void inc_hit_counter(struct cache *cache, struct bio *bio)
c6b4fcba 1705{
c6b4fcba
JT
1706 atomic_inc(bio_data_dir(bio) == READ ?
1707 &cache->stats.read_hit : &cache->stats.write_hit);
c6b4fcba
JT
1708}
1709
c6b4fcba 1710static void inc_miss_counter(struct cache *cache, struct bio *bio)
028ae9f7 1711{
c6b4fcba
JT
1712 atomic_inc(bio_data_dir(bio) == READ ?
1713 &cache->stats.read_miss : &cache->stats.write_miss);
1714}
028ae9f7 1715
fb4100ae 1716/*----------------------------------------------------------------*/
028ae9f7 1717
b29d4986
JT
1718static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1719 bool *commit_needed)
c6b4fcba 1720{
b29d4986
JT
1721 int r, data_dir;
1722 bool rb, background_queued;
1723 dm_cblock_t cblock;
c6b4fcba 1724
b29d4986 1725 *commit_needed = false;
c6b4fcba 1726
b29d4986
JT
1727 rb = bio_detain_shared(cache, block, bio);
1728 if (!rb) {
c6b4fcba 1729 /*
b29d4986
JT
1730 * An exclusive lock is held for this block, so we have to
1731 * wait. We set the commit_needed flag so the current
1732 * transaction will be committed asap, allowing this lock
1733 * to be dropped.
c6b4fcba 1734 */
b29d4986
JT
1735 *commit_needed = true;
1736 return DM_MAPIO_SUBMITTED;
651f5fa2 1737 }
9153df74 1738
b29d4986 1739 data_dir = bio_data_dir(bio);
651f5fa2 1740
b29d4986
JT
1741 if (optimisable_bio(cache, bio, block)) {
1742 struct policy_work *op = NULL;
fb4100ae 1743
b29d4986
JT
1744 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1745 if (unlikely(r && r != -ENOENT)) {
1746 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1747 cache_device_name(cache), r);
1748 bio_io_error(bio);
1749 return DM_MAPIO_SUBMITTED;
c6b4fcba
JT
1750 }
1751
b29d4986
JT
1752 if (r == -ENOENT && op) {
1753 bio_drop_shared_lock(cache, bio);
1754 BUG_ON(op->op != POLICY_PROMOTE);
1755 mg_start(cache, op, bio);
1756 return DM_MAPIO_SUBMITTED;
1757 }
1758 } else {
1759 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1760 if (unlikely(r && r != -ENOENT)) {
1761 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1762 cache_device_name(cache), r);
1763 bio_io_error(bio);
1764 return DM_MAPIO_SUBMITTED;
1765 }
c6b4fcba 1766
b29d4986
JT
1767 if (background_queued)
1768 wake_migration_worker(cache);
c6b4fcba
JT
1769 }
1770
b29d4986 1771 if (r == -ENOENT) {
693b960e
MS
1772 struct per_bio_data *pb = get_per_bio_data(bio);
1773
b29d4986
JT
1774 /*
1775 * Miss.
1776 */
1777 inc_miss_counter(cache, bio);
1778 if (pb->req_nr == 0) {
1779 accounted_begin(cache, bio);
1780 remap_to_origin_clear_discard(cache, bio, block);
b29d4986 1781 } else {
2ee57d58 1782 /*
b29d4986
JT
1783 * This is a duplicate writethrough io that is no
1784 * longer needed because the block has been demoted.
2ee57d58 1785 */
b29d4986
JT
1786 bio_endio(bio);
1787 return DM_MAPIO_SUBMITTED;
1788 }
1789 } else {
1790 /*
1791 * Hit.
1792 */
1793 inc_hit_counter(cache, bio);
651f5fa2 1794
b29d4986
JT
1795 /*
1796 * Passthrough always maps to the origin, invalidating any
1797 * cache blocks that are written to.
1798 */
8e3c3827 1799 if (passthrough_mode(cache)) {
2ee57d58 1800 if (bio_data_dir(bio) == WRITE) {
b29d4986 1801 bio_drop_shared_lock(cache, bio);
2ee57d58 1802 atomic_inc(&cache->stats.demotion);
b29d4986
JT
1803 invalidate_start(cache, cblock, block, bio);
1804 } else
2ee57d58 1805 remap_to_origin_clear_discard(cache, bio, block);
2ee57d58 1806 } else {
8e3c3827 1807 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
b29d4986 1808 !is_dirty(cache, cblock)) {
2df3bae9 1809 remap_to_origin_and_cache(cache, bio, block, cblock);
b29d4986
JT
1810 accounted_begin(cache, bio);
1811 } else
1812 remap_to_cache_dirty(cache, bio, block, cblock);
2ee57d58 1813 }
c6b4fcba 1814 }
651f5fa2 1815
651f5fa2 1816 /*
b29d4986 1817 * dm core turns FUA requests into a separate payload and FLUSH req.
651f5fa2 1818 */
b29d4986 1819 if (bio->bi_opf & REQ_FUA) {
651f5fa2 1820 /*
b29d4986
JT
1821 * issue_after_commit will call accounted_begin a second time. So
1822 * we call accounted_complete() to avoid double accounting.
651f5fa2 1823 */
b29d4986
JT
1824 accounted_complete(cache, bio);
1825 issue_after_commit(&cache->committer, bio);
1826 *commit_needed = true;
1827 return DM_MAPIO_SUBMITTED;
651f5fa2
JT
1828 }
1829
b29d4986 1830 return DM_MAPIO_REMAPPED;
651f5fa2
JT
1831}
1832
b29d4986 1833static bool process_bio(struct cache *cache, struct bio *bio)
c6b4fcba 1834{
b29d4986 1835 bool commit_needed;
c6b4fcba 1836
b29d4986
JT
1837 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1838 generic_make_request(bio);
c6b4fcba 1839
b29d4986 1840 return commit_needed;
c6b4fcba
JT
1841}
1842
028ae9f7
JT
1843/*
1844 * A non-zero return indicates read_only or fail_io mode.
1845 */
1846static int commit(struct cache *cache, bool clean_shutdown)
e2e74d61 1847{
028ae9f7 1848 int r;
e2e74d61 1849
028ae9f7
JT
1850 if (get_cache_mode(cache) >= CM_READ_ONLY)
1851 return -EINVAL;
e2e74d61 1852
028ae9f7
JT
1853 atomic_inc(&cache->stats.commit_count);
1854 r = dm_cache_commit(cache->cmd, clean_shutdown);
1855 if (r)
1856 metadata_operation_failed(cache, "dm_cache_commit", r);
e2e74d61 1857
028ae9f7 1858 return r;
e2e74d61
JT
1859}
1860
b29d4986
JT
1861/*
1862 * Used by the batcher.
1863 */
4e4cbee9 1864static blk_status_t commit_op(void *context)
c6b4fcba 1865{
b29d4986 1866 struct cache *cache = context;
c6b4fcba 1867
b29d4986 1868 if (dm_cache_changed_this_transaction(cache->cmd))
4e4cbee9 1869 return errno_to_blk_status(commit(cache, false));
c6b4fcba 1870
b29d4986 1871 return 0;
c6b4fcba
JT
1872}
1873
b29d4986 1874/*----------------------------------------------------------------*/
65790ff9 1875
b29d4986 1876static bool process_flush_bio(struct cache *cache, struct bio *bio)
65790ff9 1877{
693b960e 1878 struct per_bio_data *pb = get_per_bio_data(bio);
65790ff9 1879
b29d4986
JT
1880 if (!pb->req_nr)
1881 remap_to_origin(cache, bio);
1882 else
1883 remap_to_cache(cache, bio, 0);
65790ff9 1884
b29d4986
JT
1885 issue_after_commit(&cache->committer, bio);
1886 return true;
65790ff9
JT
1887}
1888
b29d4986 1889static bool process_discard_bio(struct cache *cache, struct bio *bio)
65790ff9 1890{
b29d4986 1891 dm_dblock_t b, e;
65790ff9 1892
b29d4986
JT
1893 // FIXME: do we need to lock the region? Or can we just assume the
1894 // user wont be so foolish as to issue discard concurrently with
1895 // other IO?
1896 calc_discard_block_range(cache, bio, &b, &e);
1897 while (b != e) {
1898 set_discard(cache, b);
1899 b = to_dblock(from_dblock(b) + 1);
651f5fa2 1900 }
65790ff9 1901
b29d4986 1902 bio_endio(bio);
65790ff9 1903
b29d4986 1904 return false;
c6b4fcba
JT
1905}
1906
b29d4986 1907static void process_deferred_bios(struct work_struct *ws)
66cb1910 1908{
b29d4986 1909 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
66cb1910 1910
c6b4fcba 1911 unsigned long flags;
b29d4986 1912 bool commit_needed = false;
c6b4fcba
JT
1913 struct bio_list bios;
1914 struct bio *bio;
66cb1910 1915
c6b4fcba 1916 bio_list_init(&bios);
c6b4fcba 1917
c6b4fcba 1918 spin_lock_irqsave(&cache->lock, flags);
b29d4986
JT
1919 bio_list_merge(&bios, &cache->deferred_bios);
1920 bio_list_init(&cache->deferred_bios);
c6b4fcba 1921 spin_unlock_irqrestore(&cache->lock, flags);
c6b4fcba 1922
b29d4986
JT
1923 while ((bio = bio_list_pop(&bios))) {
1924 if (bio->bi_opf & REQ_PREFLUSH)
1925 commit_needed = process_flush_bio(cache, bio) || commit_needed;
c6b4fcba 1926
b29d4986
JT
1927 else if (bio_op(bio) == REQ_OP_DISCARD)
1928 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1929
1930 else
1931 commit_needed = process_bio(cache, bio) || commit_needed;
1932 }
1933
1934 if (commit_needed)
1935 schedule_commit(&cache->committer);
c6b4fcba
JT
1936}
1937
c6b4fcba
JT
1938/*----------------------------------------------------------------
1939 * Main worker loop
1940 *--------------------------------------------------------------*/
651f5fa2
JT
1941
1942static void requeue_deferred_bios(struct cache *cache)
c6b4fcba
JT
1943{
1944 struct bio *bio;
1945 struct bio_list bios;
1946
1947 bio_list_init(&bios);
1948 bio_list_merge(&bios, &cache->deferred_bios);
1949 bio_list_init(&cache->deferred_bios);
1950
4246a0b6 1951 while ((bio = bio_list_pop(&bios))) {
4e4cbee9 1952 bio->bi_status = BLK_STS_DM_REQUEUE;
4246a0b6
CH
1953 bio_endio(bio);
1954 }
c6b4fcba
JT
1955}
1956
c6b4fcba
JT
1957/*
1958 * We want to commit periodically so that not too much
1959 * unwritten metadata builds up.
1960 */
1961static void do_waker(struct work_struct *ws)
1962{
1963 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
b29d4986 1964
fba10109 1965 policy_tick(cache->policy, true);
b29d4986
JT
1966 wake_migration_worker(cache);
1967 schedule_commit(&cache->committer);
c6b4fcba
JT
1968 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1969}
1970
b29d4986 1971static void check_migrations(struct work_struct *ws)
c6b4fcba 1972{
b29d4986
JT
1973 int r;
1974 struct policy_work *op;
1975 struct cache *cache = container_of(ws, struct cache, migration_worker);
1976 enum busy b;
c6b4fcba 1977
b29d4986
JT
1978 for (;;) {
1979 b = spare_migration_bandwidth(cache);
c6b4fcba 1980
b29d4986
JT
1981 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1982 if (r == -ENODATA)
1983 break;
1984
1985 if (r) {
1986 DMERR_LIMIT("%s: policy_background_work failed",
1987 cache_device_name(cache));
1988 break;
1989 }
1990
1991 r = mg_start(cache, op, NULL);
1992 if (r)
1993 break;
1994 }
c6b4fcba
JT
1995}
1996
1997/*----------------------------------------------------------------
1998 * Target methods
1999 *--------------------------------------------------------------*/
2000
2001/*
2002 * This function gets called on the error paths of the constructor, so we
2003 * have to cope with a partially initialised struct.
2004 */
2005static void destroy(struct cache *cache)
2006{
2007 unsigned i;
2008
6f1c819c 2009 mempool_exit(&cache->migration_pool);
c6b4fcba 2010
c6b4fcba 2011 if (cache->prison)
b29d4986 2012 dm_bio_prison_destroy_v2(cache->prison);
c6b4fcba
JT
2013
2014 if (cache->wq)
2015 destroy_workqueue(cache->wq);
2016
2017 if (cache->dirty_bitset)
2018 free_bitset(cache->dirty_bitset);
2019
2020 if (cache->discard_bitset)
2021 free_bitset(cache->discard_bitset);
2022
2023 if (cache->copier)
2024 dm_kcopyd_client_destroy(cache->copier);
2025
2026 if (cache->cmd)
2027 dm_cache_metadata_close(cache->cmd);
2028
2029 if (cache->metadata_dev)
2030 dm_put_device(cache->ti, cache->metadata_dev);
2031
2032 if (cache->origin_dev)
2033 dm_put_device(cache->ti, cache->origin_dev);
2034
2035 if (cache->cache_dev)
2036 dm_put_device(cache->ti, cache->cache_dev);
2037
2038 if (cache->policy)
2039 dm_cache_policy_destroy(cache->policy);
2040
2041 for (i = 0; i < cache->nr_ctr_args ; i++)
2042 kfree(cache->ctr_args[i]);
2043 kfree(cache->ctr_args);
2044
6f1c819c 2045 bioset_exit(&cache->bs);
2df3bae9 2046
c6b4fcba
JT
2047 kfree(cache);
2048}
2049
2050static void cache_dtr(struct dm_target *ti)
2051{
2052 struct cache *cache = ti->private;
2053
2054 destroy(cache);
2055}
2056
2057static sector_t get_dev_size(struct dm_dev *dev)
2058{
2059 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2060}
2061
2062/*----------------------------------------------------------------*/
2063
2064/*
2065 * Construct a cache device mapping.
2066 *
2067 * cache <metadata dev> <cache dev> <origin dev> <block size>
2068 * <#feature args> [<feature arg>]*
2069 * <policy> <#policy args> [<policy arg>]*
2070 *
2071 * metadata dev : fast device holding the persistent metadata
2072 * cache dev : fast device holding cached data blocks
2073 * origin dev : slow device holding original data blocks
2074 * block size : cache unit size in sectors
2075 *
2076 * #feature args : number of feature arguments passed
2077 * feature args : writethrough. (The default is writeback.)
2078 *
2079 * policy : the replacement policy to use
2080 * #policy args : an even number of policy arguments corresponding
2081 * to key/value pairs passed to the policy
2082 * policy args : key/value pairs passed to the policy
2083 * E.g. 'sequential_threshold 1024'
2084 * See cache-policies.txt for details.
2085 *
2086 * Optional feature arguments are:
2087 * writethrough : write through caching that prohibits cache block
2088 * content from being different from origin block content.
2089 * Without this argument, the default behaviour is to write
2090 * back cache block contents later for performance reasons,
2091 * so they may differ from the corresponding origin blocks.
2092 */
2093struct cache_args {
2094 struct dm_target *ti;
2095
2096 struct dm_dev *metadata_dev;
2097
2098 struct dm_dev *cache_dev;
2099 sector_t cache_sectors;
2100
2101 struct dm_dev *origin_dev;
2102 sector_t origin_sectors;
2103
2104 uint32_t block_size;
2105
2106 const char *policy_name;
2107 int policy_argc;
2108 const char **policy_argv;
2109
2110 struct cache_features features;
2111};
2112
2113static void destroy_cache_args(struct cache_args *ca)
2114{
2115 if (ca->metadata_dev)
2116 dm_put_device(ca->ti, ca->metadata_dev);
2117
2118 if (ca->cache_dev)
2119 dm_put_device(ca->ti, ca->cache_dev);
2120
2121 if (ca->origin_dev)
2122 dm_put_device(ca->ti, ca->origin_dev);
2123
2124 kfree(ca);
2125}
2126
2127static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2128{
2129 if (!as->argc) {
2130 *error = "Insufficient args";
2131 return false;
2132 }
2133
2134 return true;
2135}
2136
2137static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2138 char **error)
2139{
2140 int r;
2141 sector_t metadata_dev_size;
2142 char b[BDEVNAME_SIZE];
2143
2144 if (!at_least_one_arg(as, error))
2145 return -EINVAL;
2146
2147 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2148 &ca->metadata_dev);
2149 if (r) {
2150 *error = "Error opening metadata device";
2151 return r;
2152 }
2153
2154 metadata_dev_size = get_dev_size(ca->metadata_dev);
2155 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2156 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2157 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2158
2159 return 0;
2160}
2161
2162static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2163 char **error)
2164{
2165 int r;
2166
2167 if (!at_least_one_arg(as, error))
2168 return -EINVAL;
2169
2170 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171 &ca->cache_dev);
2172 if (r) {
2173 *error = "Error opening cache device";
2174 return r;
2175 }
2176 ca->cache_sectors = get_dev_size(ca->cache_dev);
2177
2178 return 0;
2179}
2180
2181static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2182 char **error)
2183{
2184 int r;
2185
2186 if (!at_least_one_arg(as, error))
2187 return -EINVAL;
2188
2189 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2190 &ca->origin_dev);
2191 if (r) {
2192 *error = "Error opening origin device";
2193 return r;
2194 }
2195
2196 ca->origin_sectors = get_dev_size(ca->origin_dev);
2197 if (ca->ti->len > ca->origin_sectors) {
2198 *error = "Device size larger than cached device";
2199 return -EINVAL;
2200 }
2201
2202 return 0;
2203}
2204
2205static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2206 char **error)
2207{
05473044 2208 unsigned long block_size;
c6b4fcba
JT
2209
2210 if (!at_least_one_arg(as, error))
2211 return -EINVAL;
2212
05473044
MS
2213 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2214 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2215 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2216 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
c6b4fcba
JT
2217 *error = "Invalid data block size";
2218 return -EINVAL;
2219 }
2220
05473044 2221 if (block_size > ca->cache_sectors) {
c6b4fcba
JT
2222 *error = "Data block size is larger than the cache device";
2223 return -EINVAL;
2224 }
2225
05473044 2226 ca->block_size = block_size;
c6b4fcba
JT
2227
2228 return 0;
2229}
2230
2231static void init_features(struct cache_features *cf)
2232{
2233 cf->mode = CM_WRITE;
2ee57d58 2234 cf->io_mode = CM_IO_WRITEBACK;
629d0a8a 2235 cf->metadata_version = 1;
c6b4fcba
JT
2236}
2237
2238static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2239 char **error)
2240{
5916a22b 2241 static const struct dm_arg _args[] = {
629d0a8a 2242 {0, 2, "Invalid number of cache feature arguments"},
c6b4fcba
JT
2243 };
2244
af9313c3 2245 int r, mode_ctr = 0;
c6b4fcba
JT
2246 unsigned argc;
2247 const char *arg;
2248 struct cache_features *cf = &ca->features;
2249
2250 init_features(cf);
2251
2252 r = dm_read_arg_group(_args, as, &argc, error);
2253 if (r)
2254 return -EINVAL;
2255
2256 while (argc--) {
2257 arg = dm_shift_arg(as);
2258
af9313c3 2259 if (!strcasecmp(arg, "writeback")) {
2ee57d58 2260 cf->io_mode = CM_IO_WRITEBACK;
af9313c3
JP
2261 mode_ctr++;
2262 }
c6b4fcba 2263
af9313c3 2264 else if (!strcasecmp(arg, "writethrough")) {
2ee57d58 2265 cf->io_mode = CM_IO_WRITETHROUGH;
af9313c3
JP
2266 mode_ctr++;
2267 }
2ee57d58 2268
af9313c3 2269 else if (!strcasecmp(arg, "passthrough")) {
2ee57d58 2270 cf->io_mode = CM_IO_PASSTHROUGH;
af9313c3
JP
2271 mode_ctr++;
2272 }
c6b4fcba 2273
629d0a8a
JT
2274 else if (!strcasecmp(arg, "metadata2"))
2275 cf->metadata_version = 2;
2276
c6b4fcba
JT
2277 else {
2278 *error = "Unrecognised cache feature requested";
2279 return -EINVAL;
2280 }
2281 }
2282
af9313c3
JP
2283 if (mode_ctr > 1) {
2284 *error = "Duplicate cache io_mode features requested";
2285 return -EINVAL;
2286 }
2287
c6b4fcba
JT
2288 return 0;
2289}
2290
2291static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2292 char **error)
2293{
5916a22b 2294 static const struct dm_arg _args[] = {
c6b4fcba
JT
2295 {0, 1024, "Invalid number of policy arguments"},
2296 };
2297
2298 int r;
2299
2300 if (!at_least_one_arg(as, error))
2301 return -EINVAL;
2302
2303 ca->policy_name = dm_shift_arg(as);
2304
2305 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2306 if (r)
2307 return -EINVAL;
2308
2309 ca->policy_argv = (const char **)as->argv;
2310 dm_consume_args(as, ca->policy_argc);
2311
2312 return 0;
2313}
2314
2315static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2316 char **error)
2317{
2318 int r;
2319 struct dm_arg_set as;
2320
2321 as.argc = argc;
2322 as.argv = argv;
2323
2324 r = parse_metadata_dev(ca, &as, error);
2325 if (r)
2326 return r;
2327
2328 r = parse_cache_dev(ca, &as, error);
2329 if (r)
2330 return r;
2331
2332 r = parse_origin_dev(ca, &as, error);
2333 if (r)
2334 return r;
2335
2336 r = parse_block_size(ca, &as, error);
2337 if (r)
2338 return r;
2339
2340 r = parse_features(ca, &as, error);
2341 if (r)
2342 return r;
2343
2344 r = parse_policy(ca, &as, error);
2345 if (r)
2346 return r;
2347
2348 return 0;
2349}
2350
2351/*----------------------------------------------------------------*/
2352
2353static struct kmem_cache *migration_cache;
2354
2c73c471
AK
2355#define NOT_CORE_OPTION 1
2356
2f14f4b5 2357static int process_config_option(struct cache *cache, const char *key, const char *value)
2c73c471
AK
2358{
2359 unsigned long tmp;
2360
2f14f4b5
JT
2361 if (!strcasecmp(key, "migration_threshold")) {
2362 if (kstrtoul(value, 10, &tmp))
2c73c471
AK
2363 return -EINVAL;
2364
2365 cache->migration_threshold = tmp;
2366 return 0;
2367 }
2368
2369 return NOT_CORE_OPTION;
2370}
2371
2f14f4b5
JT
2372static int set_config_value(struct cache *cache, const char *key, const char *value)
2373{
2374 int r = process_config_option(cache, key, value);
2375
2376 if (r == NOT_CORE_OPTION)
2377 r = policy_set_config_value(cache->policy, key, value);
2378
2379 if (r)
2380 DMWARN("bad config value for %s: %s", key, value);
2381
2382 return r;
2383}
2384
2385static int set_config_values(struct cache *cache, int argc, const char **argv)
c6b4fcba
JT
2386{
2387 int r = 0;
2388
2389 if (argc & 1) {
2390 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2391 return -EINVAL;
2392 }
2393
2394 while (argc) {
2f14f4b5
JT
2395 r = set_config_value(cache, argv[0], argv[1]);
2396 if (r)
2397 break;
c6b4fcba
JT
2398
2399 argc -= 2;
2400 argv += 2;
2401 }
2402
2403 return r;
2404}
2405
2406static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2407 char **error)
2408{
4cb3e1db
MP
2409 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2410 cache->cache_size,
2411 cache->origin_sectors,
2412 cache->sectors_per_block);
2413 if (IS_ERR(p)) {
c6b4fcba 2414 *error = "Error creating cache's policy";
4cb3e1db 2415 return PTR_ERR(p);
c6b4fcba 2416 }
4cb3e1db 2417 cache->policy = p;
b29d4986 2418 BUG_ON(!cache->policy);
c6b4fcba 2419
2f14f4b5 2420 return 0;
c6b4fcba
JT
2421}
2422
08b18451 2423/*
2bb812df
JT
2424 * We want the discard block size to be at least the size of the cache
2425 * block size and have no more than 2^14 discard blocks across the origin.
08b18451
JT
2426 */
2427#define MAX_DISCARD_BLOCKS (1 << 14)
2428
2429static bool too_many_discard_blocks(sector_t discard_block_size,
2430 sector_t origin_size)
2431{
2432 (void) sector_div(origin_size, discard_block_size);
2433
2434 return origin_size > MAX_DISCARD_BLOCKS;
2435}
2436
2437static sector_t calculate_discard_block_size(sector_t cache_block_size,
2438 sector_t origin_size)
2439{
2bb812df 2440 sector_t discard_block_size = cache_block_size;
08b18451
JT
2441
2442 if (origin_size)
2443 while (too_many_discard_blocks(discard_block_size, origin_size))
2444 discard_block_size *= 2;
2445
2446 return discard_block_size;
2447}
2448
d1d9220c
JT
2449static void set_cache_size(struct cache *cache, dm_cblock_t size)
2450{
2451 dm_block_t nr_blocks = from_cblock(size);
2452
2453 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2454 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2455 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2456 "Please consider increasing the cache block size to reduce the overall cache block count.",
2457 (unsigned long long) nr_blocks);
2458
2459 cache->cache_size = size;
2460}
2461
b29d4986
JT
2462static int is_congested(struct dm_dev *dev, int bdi_bits)
2463{
2464 struct request_queue *q = bdev_get_queue(dev->bdev);
2465 return bdi_congested(q->backing_dev_info, bdi_bits);
2466}
2467
2468static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2469{
2470 struct cache *cache = container_of(cb, struct cache, callbacks);
2471
2472 return is_congested(cache->origin_dev, bdi_bits) ||
2473 is_congested(cache->cache_dev, bdi_bits);
2474}
2475
f8350daf 2476#define DEFAULT_MIGRATION_THRESHOLD 2048
c6b4fcba 2477
c6b4fcba
JT
2478static int cache_create(struct cache_args *ca, struct cache **result)
2479{
2480 int r = 0;
2481 char **error = &ca->ti->error;
2482 struct cache *cache;
2483 struct dm_target *ti = ca->ti;
2484 dm_block_t origin_blocks;
2485 struct dm_cache_metadata *cmd;
2486 bool may_format = ca->features.mode == CM_WRITE;
2487
2488 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2489 if (!cache)
2490 return -ENOMEM;
2491
2492 cache->ti = ca->ti;
2493 ti->private = cache;
c6b4fcba
JT
2494 ti->num_flush_bios = 2;
2495 ti->flush_supported = true;
2496
2497 ti->num_discard_bios = 1;
2498 ti->discards_supported = true;
2572629a 2499 ti->split_discard_bios = false;
c6b4fcba 2500
693b960e 2501 ti->per_io_data_size = sizeof(struct per_bio_data);
c6b4fcba 2502
693b960e 2503 cache->features = ca->features;
2df3bae9
MS
2504 if (writethrough_mode(cache)) {
2505 /* Create bioset for writethrough bios issued to origin */
6f1c819c
KO
2506 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2507 if (r)
2df3bae9
MS
2508 goto bad;
2509 }
2510
c6b4fcba
JT
2511 cache->callbacks.congested_fn = cache_is_congested;
2512 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2513
2514 cache->metadata_dev = ca->metadata_dev;
2515 cache->origin_dev = ca->origin_dev;
2516 cache->cache_dev = ca->cache_dev;
2517
2518 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2519
c6b4fcba 2520 origin_blocks = cache->origin_sectors = ca->origin_sectors;
414dd67d 2521 origin_blocks = block_div(origin_blocks, ca->block_size);
c6b4fcba
JT
2522 cache->origin_blocks = to_oblock(origin_blocks);
2523
2524 cache->sectors_per_block = ca->block_size;
2525 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2526 r = -EINVAL;
2527 goto bad;
2528 }
2529
2530 if (ca->block_size & (ca->block_size - 1)) {
2531 dm_block_t cache_size = ca->cache_sectors;
2532
2533 cache->sectors_per_block_shift = -1;
414dd67d 2534 cache_size = block_div(cache_size, ca->block_size);
d1d9220c 2535 set_cache_size(cache, to_cblock(cache_size));
c6b4fcba
JT
2536 } else {
2537 cache->sectors_per_block_shift = __ffs(ca->block_size);
d1d9220c 2538 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
c6b4fcba
JT
2539 }
2540
2541 r = create_cache_policy(cache, ca, error);
2542 if (r)
2543 goto bad;
2f14f4b5 2544
c6b4fcba 2545 cache->policy_nr_args = ca->policy_argc;
2f14f4b5
JT
2546 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2547
2548 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2549 if (r) {
2550 *error = "Error setting cache policy's config values";
2551 goto bad;
2552 }
c6b4fcba
JT
2553
2554 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2555 ca->block_size, may_format,
629d0a8a
JT
2556 dm_cache_policy_get_hint_size(cache->policy),
2557 ca->features.metadata_version);
c6b4fcba
JT
2558 if (IS_ERR(cmd)) {
2559 *error = "Error creating metadata object";
2560 r = PTR_ERR(cmd);
2561 goto bad;
2562 }
2563 cache->cmd = cmd;
028ae9f7
JT
2564 set_cache_mode(cache, CM_WRITE);
2565 if (get_cache_mode(cache) != CM_WRITE) {
2566 *error = "Unable to get write access to metadata, please check/repair metadata.";
2567 r = -EINVAL;
2568 goto bad;
2569 }
c6b4fcba 2570
8e3c3827 2571 if (passthrough_mode(cache)) {
2ee57d58
JT
2572 bool all_clean;
2573
2574 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2575 if (r) {
2576 *error = "dm_cache_metadata_all_clean() failed";
2577 goto bad;
2578 }
2579
2580 if (!all_clean) {
2581 *error = "Cannot enter passthrough mode unless all blocks are clean";
2582 r = -EINVAL;
2583 goto bad;
2584 }
b29d4986
JT
2585
2586 policy_allow_migrations(cache->policy, false);
2ee57d58
JT
2587 }
2588
c6b4fcba
JT
2589 spin_lock_init(&cache->lock);
2590 bio_list_init(&cache->deferred_bios);
a59db676
JT
2591 atomic_set(&cache->nr_allocated_migrations, 0);
2592 atomic_set(&cache->nr_io_migrations, 0);
c6b4fcba
JT
2593 init_waitqueue_head(&cache->migration_wait);
2594
fa4d683a 2595 r = -ENOMEM;
44fa816b 2596 atomic_set(&cache->nr_dirty, 0);
c6b4fcba
JT
2597 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2598 if (!cache->dirty_bitset) {
2599 *error = "could not allocate dirty bitset";
2600 goto bad;
2601 }
2602 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2603
08b18451
JT
2604 cache->discard_block_size =
2605 calculate_discard_block_size(cache->sectors_per_block,
2606 cache->origin_sectors);
2572629a
JT
2607 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2608 cache->discard_block_size));
1bad9bc4 2609 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2610 if (!cache->discard_bitset) {
2611 *error = "could not allocate discard bitset";
2612 goto bad;
2613 }
1bad9bc4 2614 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2615
2616 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2617 if (IS_ERR(cache->copier)) {
2618 *error = "could not create kcopyd client";
2619 r = PTR_ERR(cache->copier);
2620 goto bad;
2621 }
2622
b29d4986 2623 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
c6b4fcba
JT
2624 if (!cache->wq) {
2625 *error = "could not create workqueue for metadata object";
2626 goto bad;
2627 }
b29d4986 2628 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
b29d4986 2629 INIT_WORK(&cache->migration_worker, check_migrations);
c6b4fcba 2630 INIT_DELAYED_WORK(&cache->waker, do_waker);
c6b4fcba 2631
b29d4986 2632 cache->prison = dm_bio_prison_create_v2(cache->wq);
c6b4fcba
JT
2633 if (!cache->prison) {
2634 *error = "could not create bio prison";
2635 goto bad;
2636 }
2637
6f1c819c
KO
2638 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2639 migration_cache);
2640 if (r) {
c6b4fcba
JT
2641 *error = "Error creating cache's migration mempool";
2642 goto bad;
2643 }
2644
c6b4fcba
JT
2645 cache->need_tick_bio = true;
2646 cache->sized = false;
65790ff9 2647 cache->invalidate = false;
c6b4fcba
JT
2648 cache->commit_requested = false;
2649 cache->loaded_mappings = false;
2650 cache->loaded_discards = false;
2651
2652 load_stats(cache);
2653
2654 atomic_set(&cache->stats.demotion, 0);
2655 atomic_set(&cache->stats.promotion, 0);
2656 atomic_set(&cache->stats.copies_avoided, 0);
2657 atomic_set(&cache->stats.cache_cell_clash, 0);
2658 atomic_set(&cache->stats.commit_count, 0);
2659 atomic_set(&cache->stats.discard_count, 0);
2660
65790ff9
JT
2661 spin_lock_init(&cache->invalidation_lock);
2662 INIT_LIST_HEAD(&cache->invalidation_requests);
2663
b29d4986
JT
2664 batcher_init(&cache->committer, commit_op, cache,
2665 issue_op, cache, cache->wq);
701e03e4 2666 iot_init(&cache->tracker);
066dbaa3 2667
b29d4986
JT
2668 init_rwsem(&cache->background_work_lock);
2669 prevent_background_work(cache);
2670
c6b4fcba
JT
2671 *result = cache;
2672 return 0;
c6b4fcba
JT
2673bad:
2674 destroy(cache);
2675 return r;
2676}
2677
2678static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2679{
2680 unsigned i;
2681 const char **copy;
2682
2683 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2684 if (!copy)
2685 return -ENOMEM;
2686 for (i = 0; i < argc; i++) {
2687 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2688 if (!copy[i]) {
2689 while (i--)
2690 kfree(copy[i]);
2691 kfree(copy);
2692 return -ENOMEM;
2693 }
2694 }
2695
2696 cache->nr_ctr_args = argc;
2697 cache->ctr_args = copy;
2698
2699 return 0;
2700}
2701
2702static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2703{
2704 int r = -EINVAL;
2705 struct cache_args *ca;
2706 struct cache *cache = NULL;
2707
2708 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2709 if (!ca) {
2710 ti->error = "Error allocating memory for cache";
2711 return -ENOMEM;
2712 }
2713 ca->ti = ti;
2714
2715 r = parse_cache_args(ca, argc, argv, &ti->error);
2716 if (r)
2717 goto out;
2718
2719 r = cache_create(ca, &cache);
617a0b89
HM
2720 if (r)
2721 goto out;
c6b4fcba
JT
2722
2723 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2724 if (r) {
2725 destroy(cache);
2726 goto out;
2727 }
2728
2729 ti->private = cache;
c6b4fcba
JT
2730out:
2731 destroy_cache_args(ca);
2732 return r;
2733}
2734
651f5fa2
JT
2735/*----------------------------------------------------------------*/
2736
2737static int cache_map(struct dm_target *ti, struct bio *bio)
c6b4fcba 2738{
651f5fa2
JT
2739 struct cache *cache = ti->private;
2740
c6b4fcba 2741 int r;
b29d4986 2742 bool commit_needed;
c6b4fcba 2743 dm_oblock_t block = get_bio_block(cache, bio);
c6b4fcba 2744
693b960e 2745 init_per_bio_data(bio);
e893fba9 2746 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
c6b4fcba
JT
2747 /*
2748 * This can only occur if the io goes to a partial block at
2749 * the end of the origin device. We don't cache these.
2750 * Just remap to the origin and carry on.
2751 */
e893fba9 2752 remap_to_origin(cache, bio);
651f5fa2 2753 accounted_begin(cache, bio);
c6b4fcba
JT
2754 return DM_MAPIO_REMAPPED;
2755 }
2756
651f5fa2 2757 if (discard_or_flush(bio)) {
c6b4fcba
JT
2758 defer_bio(cache, bio);
2759 return DM_MAPIO_SUBMITTED;
2760 }
2761
b29d4986
JT
2762 r = map_bio(cache, bio, block, &commit_needed);
2763 if (commit_needed)
2764 schedule_commit(&cache->committer);
c6b4fcba 2765
2ee57d58 2766 return r;
c6b4fcba
JT
2767}
2768
693b960e 2769static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
c6b4fcba
JT
2770{
2771 struct cache *cache = ti->private;
2772 unsigned long flags;
693b960e 2773 struct per_bio_data *pb = get_per_bio_data(bio);
c6b4fcba
JT
2774
2775 if (pb->tick) {
fba10109 2776 policy_tick(cache->policy, false);
c6b4fcba
JT
2777
2778 spin_lock_irqsave(&cache->lock, flags);
2779 cache->need_tick_bio = true;
2780 spin_unlock_irqrestore(&cache->lock, flags);
2781 }
2782
b29d4986 2783 bio_drop_shared_lock(cache, bio);
066dbaa3 2784 accounted_complete(cache, bio);
c6b4fcba 2785
1be56909 2786 return DM_ENDIO_DONE;
c6b4fcba
JT
2787}
2788
2789static int write_dirty_bitset(struct cache *cache)
2790{
629d0a8a 2791 int r;
c6b4fcba 2792
028ae9f7
JT
2793 if (get_cache_mode(cache) >= CM_READ_ONLY)
2794 return -EINVAL;
2795
629d0a8a
JT
2796 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2797 if (r)
2798 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
c6b4fcba 2799
629d0a8a 2800 return r;
c6b4fcba
JT
2801}
2802
2803static int write_discard_bitset(struct cache *cache)
2804{
2805 unsigned i, r;
2806
028ae9f7
JT
2807 if (get_cache_mode(cache) >= CM_READ_ONLY)
2808 return -EINVAL;
2809
1bad9bc4
JT
2810 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2811 cache->discard_nr_blocks);
c6b4fcba 2812 if (r) {
b61d9509 2813 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
028ae9f7 2814 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
c6b4fcba
JT
2815 return r;
2816 }
2817
1bad9bc4
JT
2818 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2819 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2820 is_discarded(cache, to_dblock(i)));
028ae9f7
JT
2821 if (r) {
2822 metadata_operation_failed(cache, "dm_cache_set_discard", r);
c6b4fcba 2823 return r;
028ae9f7
JT
2824 }
2825 }
2826
2827 return 0;
2828}
2829
2830static int write_hints(struct cache *cache)
2831{
2832 int r;
2833
2834 if (get_cache_mode(cache) >= CM_READ_ONLY)
2835 return -EINVAL;
2836
2837 r = dm_cache_write_hints(cache->cmd, cache->policy);
2838 if (r) {
2839 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2840 return r;
c6b4fcba
JT
2841 }
2842
2843 return 0;
2844}
2845
c6b4fcba
JT
2846/*
2847 * returns true on success
2848 */
2849static bool sync_metadata(struct cache *cache)
2850{
2851 int r1, r2, r3, r4;
2852
2853 r1 = write_dirty_bitset(cache);
2854 if (r1)
b61d9509 2855 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
c6b4fcba
JT
2856
2857 r2 = write_discard_bitset(cache);
2858 if (r2)
b61d9509 2859 DMERR("%s: could not write discard bitset", cache_device_name(cache));
c6b4fcba
JT
2860
2861 save_stats(cache);
2862
028ae9f7 2863 r3 = write_hints(cache);
c6b4fcba 2864 if (r3)
b61d9509 2865 DMERR("%s: could not write hints", cache_device_name(cache));
c6b4fcba
JT
2866
2867 /*
2868 * If writing the above metadata failed, we still commit, but don't
2869 * set the clean shutdown flag. This will effectively force every
2870 * dirty bit to be set on reload.
2871 */
028ae9f7 2872 r4 = commit(cache, !r1 && !r2 && !r3);
c6b4fcba 2873 if (r4)
b61d9509 2874 DMERR("%s: could not write cache metadata", cache_device_name(cache));
c6b4fcba
JT
2875
2876 return !r1 && !r2 && !r3 && !r4;
2877}
2878
2879static void cache_postsuspend(struct dm_target *ti)
2880{
2881 struct cache *cache = ti->private;
2882
b29d4986
JT
2883 prevent_background_work(cache);
2884 BUG_ON(atomic_read(&cache->nr_io_migrations));
2885
2886 cancel_delayed_work(&cache->waker);
2887 flush_workqueue(cache->wq);
701e03e4 2888 WARN_ON(cache->tracker.in_flight);
b29d4986
JT
2889
2890 /*
2891 * If it's a flush suspend there won't be any deferred bios, so this
2892 * call is harmless.
2893 */
651f5fa2 2894 requeue_deferred_bios(cache);
c6b4fcba 2895
028ae9f7
JT
2896 if (get_cache_mode(cache) == CM_WRITE)
2897 (void) sync_metadata(cache);
c6b4fcba
JT
2898}
2899
2900static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2901 bool dirty, uint32_t hint, bool hint_valid)
2902{
2903 int r;
2904 struct cache *cache = context;
2905
449b668c
JT
2906 if (dirty) {
2907 set_bit(from_cblock(cblock), cache->dirty_bitset);
2908 atomic_inc(&cache->nr_dirty);
2909 } else
2910 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2911
b29d4986 2912 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
c6b4fcba
JT
2913 if (r)
2914 return r;
2915
c6b4fcba
JT
2916 return 0;
2917}
2918
3e2e1c30
JT
2919/*
2920 * The discard block size in the on disk metadata is not
2921 * neccessarily the same as we're currently using. So we have to
2922 * be careful to only set the discarded attribute if we know it
2923 * covers a complete block of the new size.
2924 */
2925struct discard_load_info {
2926 struct cache *cache;
2927
2928 /*
2929 * These blocks are sized using the on disk dblock size, rather
2930 * than the current one.
2931 */
2932 dm_block_t block_size;
2933 dm_block_t discard_begin, discard_end;
2934};
2935
2936static void discard_load_info_init(struct cache *cache,
2937 struct discard_load_info *li)
2938{
2939 li->cache = cache;
2940 li->discard_begin = li->discard_end = 0;
2941}
2942
2943static void set_discard_range(struct discard_load_info *li)
2944{
2945 sector_t b, e;
2946
2947 if (li->discard_begin == li->discard_end)
2948 return;
2949
2950 /*
2951 * Convert to sectors.
2952 */
2953 b = li->discard_begin * li->block_size;
2954 e = li->discard_end * li->block_size;
2955
2956 /*
2957 * Then convert back to the current dblock size.
2958 */
2959 b = dm_sector_div_up(b, li->cache->discard_block_size);
2960 sector_div(e, li->cache->discard_block_size);
2961
2962 /*
2963 * The origin may have shrunk, so we need to check we're still in
2964 * bounds.
2965 */
2966 if (e > from_dblock(li->cache->discard_nr_blocks))
2967 e = from_dblock(li->cache->discard_nr_blocks);
2968
2969 for (; b < e; b++)
2970 set_discard(li->cache, to_dblock(b));
2971}
2972
c6b4fcba 2973static int load_discard(void *context, sector_t discard_block_size,
1bad9bc4 2974 dm_dblock_t dblock, bool discard)
c6b4fcba 2975{
3e2e1c30 2976 struct discard_load_info *li = context;
c6b4fcba 2977
3e2e1c30 2978 li->block_size = discard_block_size;
1bad9bc4 2979
3e2e1c30
JT
2980 if (discard) {
2981 if (from_dblock(dblock) == li->discard_end)
2982 /*
2983 * We're already in a discard range, just extend it.
2984 */
2985 li->discard_end = li->discard_end + 1ULL;
2986
2987 else {
2988 /*
2989 * Emit the old range and start a new one.
2990 */
2991 set_discard_range(li);
2992 li->discard_begin = from_dblock(dblock);
2993 li->discard_end = li->discard_begin + 1ULL;
2994 }
2995 } else {
2996 set_discard_range(li);
2997 li->discard_begin = li->discard_end = 0;
2998 }
c6b4fcba
JT
2999
3000 return 0;
3001}
3002
f494a9c6
JT
3003static dm_cblock_t get_cache_dev_size(struct cache *cache)
3004{
3005 sector_t size = get_dev_size(cache->cache_dev);
3006 (void) sector_div(size, cache->sectors_per_block);
3007 return to_cblock(size);
3008}
3009
3010static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3011{
5d07384a
MS
3012 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
3013 if (cache->sized) {
3014 DMERR("%s: unable to extend cache due to missing cache table reload",
3015 cache_device_name(cache));
3016 return false;
3017 }
3018 }
f494a9c6
JT
3019
3020 /*
3021 * We can't drop a dirty block when shrinking the cache.
3022 */
3023 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3024 new_size = to_cblock(from_cblock(new_size) + 1);
3025 if (is_dirty(cache, new_size)) {
b61d9509
MS
3026 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3027 cache_device_name(cache),
f494a9c6
JT
3028 (unsigned long long) from_cblock(new_size));
3029 return false;
3030 }
3031 }
3032
3033 return true;
3034}
3035
3036static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3037{
3038 int r;
3039
08844800 3040 r = dm_cache_resize(cache->cmd, new_size);
f494a9c6 3041 if (r) {
b61d9509 3042 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
028ae9f7 3043 metadata_operation_failed(cache, "dm_cache_resize", r);
f494a9c6
JT
3044 return r;
3045 }
3046
d1d9220c 3047 set_cache_size(cache, new_size);
f494a9c6
JT
3048
3049 return 0;
3050}
3051
c6b4fcba
JT
3052static int cache_preresume(struct dm_target *ti)
3053{
3054 int r = 0;
3055 struct cache *cache = ti->private;
f494a9c6 3056 dm_cblock_t csize = get_cache_dev_size(cache);
c6b4fcba
JT
3057
3058 /*
3059 * Check to see if the cache has resized.
3060 */
f494a9c6
JT
3061 if (!cache->sized) {
3062 r = resize_cache_dev(cache, csize);
3063 if (r)
c6b4fcba 3064 return r;
c6b4fcba
JT
3065
3066 cache->sized = true;
f494a9c6
JT
3067
3068 } else if (csize != cache->cache_size) {
3069 if (!can_resize(cache, csize))
3070 return -EINVAL;
3071
3072 r = resize_cache_dev(cache, csize);
3073 if (r)
3074 return r;
c6b4fcba
JT
3075 }
3076
3077 if (!cache->loaded_mappings) {
ea2dd8c1 3078 r = dm_cache_load_mappings(cache->cmd, cache->policy,
c6b4fcba
JT
3079 load_mapping, cache);
3080 if (r) {
b61d9509 3081 DMERR("%s: could not load cache mappings", cache_device_name(cache));
028ae9f7 3082 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
c6b4fcba
JT
3083 return r;
3084 }
3085
3086 cache->loaded_mappings = true;
3087 }
3088
3089 if (!cache->loaded_discards) {
3e2e1c30
JT
3090 struct discard_load_info li;
3091
3092 /*
3093 * The discard bitset could have been resized, or the
3094 * discard block size changed. To be safe we start by
3095 * setting every dblock to not discarded.
3096 */
3097 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3098
3099 discard_load_info_init(cache, &li);
3100 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
c6b4fcba 3101 if (r) {
b61d9509 3102 DMERR("%s: could not load origin discards", cache_device_name(cache));
028ae9f7 3103 metadata_operation_failed(cache, "dm_cache_load_discards", r);
c6b4fcba
JT
3104 return r;
3105 }
3e2e1c30 3106 set_discard_range(&li);
c6b4fcba
JT
3107
3108 cache->loaded_discards = true;
3109 }
3110
3111 return r;
3112}
3113
3114static void cache_resume(struct dm_target *ti)
3115{
3116 struct cache *cache = ti->private;
3117
3118 cache->need_tick_bio = true;
b29d4986 3119 allow_background_work(cache);
c6b4fcba
JT
3120 do_waker(&cache->waker.work);
3121}
3122
3123/*
3124 * Status format:
3125 *
6a388618
MS
3126 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3127 * <cache block size> <#used cache blocks>/<#total cache blocks>
c6b4fcba 3128 * <#read hits> <#read misses> <#write hits> <#write misses>
6a388618 3129 * <#demotions> <#promotions> <#dirty>
c6b4fcba
JT
3130 * <#features> <features>*
3131 * <#core args> <core args>
255eac20 3132 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
c6b4fcba
JT
3133 */
3134static void cache_status(struct dm_target *ti, status_type_t type,
3135 unsigned status_flags, char *result, unsigned maxlen)
3136{
3137 int r = 0;
3138 unsigned i;
3139 ssize_t sz = 0;
3140 dm_block_t nr_free_blocks_metadata = 0;
3141 dm_block_t nr_blocks_metadata = 0;
3142 char buf[BDEVNAME_SIZE];
3143 struct cache *cache = ti->private;
3144 dm_cblock_t residency;
d14fcf3d 3145 bool needs_check;
c6b4fcba
JT
3146
3147 switch (type) {
3148 case STATUSTYPE_INFO:
028ae9f7
JT
3149 if (get_cache_mode(cache) == CM_FAIL) {
3150 DMEMIT("Fail");
3151 break;
c6b4fcba
JT
3152 }
3153
028ae9f7
JT
3154 /* Commit to ensure statistics aren't out-of-date */
3155 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3156 (void) commit(cache, false);
3157
b61d9509 3158 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
c6b4fcba 3159 if (r) {
b61d9509
MS
3160 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3161 cache_device_name(cache), r);
c6b4fcba
JT
3162 goto err;
3163 }
3164
3165 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3166 if (r) {
b61d9509
MS
3167 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3168 cache_device_name(cache), r);
c6b4fcba
JT
3169 goto err;
3170 }
3171
3172 residency = policy_residency(cache->policy);
3173
ca763d0a 3174 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
895b47d7 3175 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
c6b4fcba
JT
3176 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3177 (unsigned long long)nr_blocks_metadata,
ca763d0a 3178 (unsigned long long)cache->sectors_per_block,
6a388618
MS
3179 (unsigned long long) from_cblock(residency),
3180 (unsigned long long) from_cblock(cache->cache_size),
c6b4fcba
JT
3181 (unsigned) atomic_read(&cache->stats.read_hit),
3182 (unsigned) atomic_read(&cache->stats.read_miss),
3183 (unsigned) atomic_read(&cache->stats.write_hit),
3184 (unsigned) atomic_read(&cache->stats.write_miss),
3185 (unsigned) atomic_read(&cache->stats.demotion),
3186 (unsigned) atomic_read(&cache->stats.promotion),
44fa816b 3187 (unsigned long) atomic_read(&cache->nr_dirty));
c6b4fcba 3188
629d0a8a
JT
3189 if (cache->features.metadata_version == 2)
3190 DMEMIT("2 metadata2 ");
3191 else
3192 DMEMIT("1 ");
3193
8e3c3827 3194 if (writethrough_mode(cache))
629d0a8a 3195 DMEMIT("writethrough ");
2ee57d58 3196
8e3c3827 3197 else if (passthrough_mode(cache))
629d0a8a 3198 DMEMIT("passthrough ");
2ee57d58 3199
8e3c3827 3200 else if (writeback_mode(cache))
629d0a8a 3201 DMEMIT("writeback ");
2ee57d58
JT
3202
3203 else {
b61d9509
MS
3204 DMERR("%s: internal error: unknown io mode: %d",
3205 cache_device_name(cache), (int) cache->features.io_mode);
2ee57d58
JT
3206 goto err;
3207 }
c6b4fcba
JT
3208
3209 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2e68c4e6
MS
3210
3211 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
c6b4fcba 3212 if (sz < maxlen) {
028ae9f7 3213 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
c6b4fcba 3214 if (r)
b61d9509
MS
3215 DMERR("%s: policy_emit_config_values returned %d",
3216 cache_device_name(cache), r);
c6b4fcba
JT
3217 }
3218
028ae9f7
JT
3219 if (get_cache_mode(cache) == CM_READ_ONLY)
3220 DMEMIT("ro ");
3221 else
3222 DMEMIT("rw ");
3223
d14fcf3d
JT
3224 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3225
3226 if (r || needs_check)
255eac20
MS
3227 DMEMIT("needs_check ");
3228 else
3229 DMEMIT("- ");
3230
c6b4fcba
JT
3231 break;
3232
3233 case STATUSTYPE_TABLE:
3234 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3235 DMEMIT("%s ", buf);
3236 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3237 DMEMIT("%s ", buf);
3238 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3239 DMEMIT("%s", buf);
3240
3241 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3242 DMEMIT(" %s", cache->ctr_args[i]);
3243 if (cache->nr_ctr_args)
3244 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3245 }
3246
3247 return;
3248
3249err:
3250 DMEMIT("Error");
3251}
3252
b29d4986
JT
3253/*
3254 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3255 * the one-past-the-end value.
3256 */
3257struct cblock_range {
3258 dm_cblock_t begin;
3259 dm_cblock_t end;
3260};
3261
c6b4fcba 3262/*
65790ff9
JT
3263 * A cache block range can take two forms:
3264 *
3265 * i) A single cblock, eg. '3456'
b29d4986 3266 * ii) A begin and end cblock with a dash between, eg. 123-234
65790ff9
JT
3267 */
3268static int parse_cblock_range(struct cache *cache, const char *str,
3269 struct cblock_range *result)
3270{
3271 char dummy;
3272 uint64_t b, e;
3273 int r;
3274
3275 /*
3276 * Try and parse form (ii) first.
3277 */
3278 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3279 if (r < 0)
3280 return r;
3281
3282 if (r == 2) {
3283 result->begin = to_cblock(b);
3284 result->end = to_cblock(e);
3285 return 0;
3286 }
3287
3288 /*
3289 * That didn't work, try form (i).
3290 */
3291 r = sscanf(str, "%llu%c", &b, &dummy);
3292 if (r < 0)
3293 return r;
3294
3295 if (r == 1) {
3296 result->begin = to_cblock(b);
3297 result->end = to_cblock(from_cblock(result->begin) + 1u);
3298 return 0;
3299 }
3300
b61d9509 3301 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
65790ff9
JT
3302 return -EINVAL;
3303}
3304
3305static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3306{
3307 uint64_t b = from_cblock(range->begin);
3308 uint64_t e = from_cblock(range->end);
3309 uint64_t n = from_cblock(cache->cache_size);
3310
3311 if (b >= n) {
b61d9509
MS
3312 DMERR("%s: begin cblock out of range: %llu >= %llu",
3313 cache_device_name(cache), b, n);
65790ff9
JT
3314 return -EINVAL;
3315 }
3316
3317 if (e > n) {
b61d9509
MS
3318 DMERR("%s: end cblock out of range: %llu > %llu",
3319 cache_device_name(cache), e, n);
65790ff9
JT
3320 return -EINVAL;
3321 }
3322
3323 if (b >= e) {
b61d9509
MS
3324 DMERR("%s: invalid cblock range: %llu >= %llu",
3325 cache_device_name(cache), b, e);
65790ff9
JT
3326 return -EINVAL;
3327 }
3328
3329 return 0;
3330}
3331
b29d4986
JT
3332static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3333{
3334 return to_cblock(from_cblock(b) + 1);
3335}
3336
65790ff9
JT
3337static int request_invalidation(struct cache *cache, struct cblock_range *range)
3338{
b29d4986 3339 int r = 0;
65790ff9 3340
b29d4986
JT
3341 /*
3342 * We don't need to do any locking here because we know we're in
3343 * passthrough mode. There's is potential for a race between an
3344 * invalidation triggered by an io and an invalidation message. This
3345 * is harmless, we must not worry if the policy call fails.
3346 */
3347 while (range->begin != range->end) {
3348 r = invalidate_cblock(cache, range->begin);
3349 if (r)
3350 return r;
65790ff9 3351
b29d4986
JT
3352 range->begin = cblock_succ(range->begin);
3353 }
65790ff9 3354
b29d4986
JT
3355 cache->commit_requested = true;
3356 return r;
65790ff9
JT
3357}
3358
3359static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3360 const char **cblock_ranges)
3361{
3362 int r = 0;
3363 unsigned i;
3364 struct cblock_range range;
3365
8e3c3827 3366 if (!passthrough_mode(cache)) {
b61d9509
MS
3367 DMERR("%s: cache has to be in passthrough mode for invalidation",
3368 cache_device_name(cache));
65790ff9
JT
3369 return -EPERM;
3370 }
3371
3372 for (i = 0; i < count; i++) {
3373 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3374 if (r)
3375 break;
3376
3377 r = validate_cblock_range(cache, &range);
3378 if (r)
3379 break;
3380
3381 /*
3382 * Pass begin and end origin blocks to the worker and wake it.
3383 */
3384 r = request_invalidation(cache, &range);
3385 if (r)
3386 break;
3387 }
3388
3389 return r;
3390}
3391
3392/*
3393 * Supports
3394 * "<key> <value>"
3395 * and
3396 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
c6b4fcba
JT
3397 *
3398 * The key migration_threshold is supported by the cache target core.
3399 */
1eb5fa84
MS
3400static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3401 char *result, unsigned maxlen)
c6b4fcba 3402{
c6b4fcba
JT
3403 struct cache *cache = ti->private;
3404
65790ff9
JT
3405 if (!argc)
3406 return -EINVAL;
3407
028ae9f7 3408 if (get_cache_mode(cache) >= CM_READ_ONLY) {
b61d9509
MS
3409 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3410 cache_device_name(cache));
028ae9f7
JT
3411 return -EOPNOTSUPP;
3412 }
3413
7b6b2bc9 3414 if (!strcasecmp(argv[0], "invalidate_cblocks"))
65790ff9
JT
3415 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3416
c6b4fcba
JT
3417 if (argc != 2)
3418 return -EINVAL;
3419
2f14f4b5 3420 return set_config_value(cache, argv[0], argv[1]);
c6b4fcba
JT
3421}
3422
3423static int cache_iterate_devices(struct dm_target *ti,
3424 iterate_devices_callout_fn fn, void *data)
3425{
3426 int r = 0;
3427 struct cache *cache = ti->private;
3428
3429 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3430 if (!r)
3431 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3432
3433 return r;
3434}
3435
c6b4fcba
JT
3436static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3437{
3438 /*
3439 * FIXME: these limits may be incompatible with the cache device
3440 */
7ae34e77
JT
3441 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3442 cache->origin_sectors);
1bad9bc4 3443 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
c6b4fcba
JT
3444}
3445
3446static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3447{
3448 struct cache *cache = ti->private;
f6109372 3449 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
c6b4fcba 3450
f6109372
MS
3451 /*
3452 * If the system-determined stacked limits are compatible with the
3453 * cache's blocksize (io_opt is a factor) do not override them.
3454 */
3455 if (io_opt_sectors < cache->sectors_per_block ||
3456 do_div(io_opt_sectors, cache->sectors_per_block)) {
b0246530 3457 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
f6109372
MS
3458 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3459 }
c6b4fcba
JT
3460 set_discard_limits(cache, limits);
3461}
3462
3463/*----------------------------------------------------------------*/
3464
3465static struct target_type cache_target = {
3466 .name = "cache",
b29d4986 3467 .version = {2, 0, 0},
c6b4fcba
JT
3468 .module = THIS_MODULE,
3469 .ctr = cache_ctr,
3470 .dtr = cache_dtr,
3471 .map = cache_map,
3472 .end_io = cache_end_io,
3473 .postsuspend = cache_postsuspend,
3474 .preresume = cache_preresume,
3475 .resume = cache_resume,
3476 .status = cache_status,
3477 .message = cache_message,
3478 .iterate_devices = cache_iterate_devices,
c6b4fcba
JT
3479 .io_hints = cache_io_hints,
3480};
3481
3482static int __init dm_cache_init(void)
3483{
3484 int r;
3485
c6b4fcba 3486 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
c7cd5550 3487 if (!migration_cache)
c6b4fcba 3488 return -ENOMEM;
c6b4fcba 3489
7e6358d2 3490 r = dm_register_target(&cache_target);
3491 if (r) {
3492 DMERR("cache target registration failed: %d", r);
c7cd5550 3493 kmem_cache_destroy(migration_cache);
7e6358d2 3494 return r;
3495 }
3496
c6b4fcba
JT
3497 return 0;
3498}
3499
3500static void __exit dm_cache_exit(void)
3501{
3502 dm_unregister_target(&cache_target);
3503 kmem_cache_destroy(migration_cache);
3504}
3505
3506module_init(dm_cache_init);
3507module_exit(dm_cache_exit);
3508
3509MODULE_DESCRIPTION(DM_NAME " cache target");
3510MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3511MODULE_LICENSE("GPL");