]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/dm-cache-target.c
x86/speculation: Add a common function for MD_CLEAR mitigation update
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm-cache-target.c
CommitLineData
c6b4fcba
JT
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
b29d4986 8#include "dm-bio-prison-v2.h"
b844fe69 9#include "dm-bio-record.h"
c6b4fcba 10#include "dm-cache-metadata.h"
dc4fa29f 11#include "dm-io-tracker.h"
c6b4fcba
JT
12
13#include <linux/dm-io.h>
14#include <linux/dm-kcopyd.h>
0f30af98 15#include <linux/jiffies.h>
c6b4fcba
JT
16#include <linux/init.h>
17#include <linux/mempool.h>
18#include <linux/module.h>
b29d4986 19#include <linux/rwsem.h>
c6b4fcba
JT
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22
23#define DM_MSG_PREFIX "cache"
24
25DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 "A percentage of time allocated for copying to and/or from cache");
27
28/*----------------------------------------------------------------*/
29
b29d4986
JT
30/*
31 * Glossary:
32 *
33 * oblock: index of an origin block
34 * cblock: index of a cache block
35 * promotion: movement of a block from origin to cache
36 * demotion: movement of a block from cache to origin
37 * migration: movement of a block between the origin and cache device,
38 * either direction
39 */
40
41/*----------------------------------------------------------------*/
77289d32 42
c6b4fcba 43/*
b29d4986
JT
44 * Represents a chunk of future work. 'input' allows continuations to pass
45 * values between themselves, typically error values.
c6b4fcba 46 */
b29d4986
JT
47struct continuation {
48 struct work_struct ws;
4e4cbee9 49 blk_status_t input;
b29d4986
JT
50};
51
52static inline void init_continuation(struct continuation *k,
53 void (*fn)(struct work_struct *))
54{
55 INIT_WORK(&k->ws, fn);
56 k->input = 0;
57}
58
59static inline void queue_continuation(struct workqueue_struct *wq,
60 struct continuation *k)
61{
62 queue_work(wq, &k->ws);
63}
c6b4fcba
JT
64
65/*----------------------------------------------------------------*/
66
b29d4986
JT
67/*
68 * The batcher collects together pieces of work that need a particular
69 * operation to occur before they can proceed (typically a commit).
70 */
71struct batcher {
72 /*
73 * The operation that everyone is waiting for.
74 */
4e4cbee9 75 blk_status_t (*commit_op)(void *context);
b29d4986
JT
76 void *commit_context;
77
78 /*
79 * This is how bios should be issued once the commit op is complete
80 * (accounted_request).
81 */
82 void (*issue_op)(struct bio *bio, void *context);
83 void *issue_context;
84
85 /*
86 * Queued work gets put on here after commit.
87 */
88 struct workqueue_struct *wq;
89
90 spinlock_t lock;
91 struct list_head work_items;
92 struct bio_list bios;
93 struct work_struct commit_work;
94
95 bool commit_scheduled;
96};
97
98static void __commit(struct work_struct *_ws)
99{
100 struct batcher *b = container_of(_ws, struct batcher, commit_work);
4e4cbee9 101 blk_status_t r;
b29d4986
JT
102 struct list_head work_items;
103 struct work_struct *ws, *tmp;
104 struct continuation *k;
105 struct bio *bio;
106 struct bio_list bios;
107
108 INIT_LIST_HEAD(&work_items);
109 bio_list_init(&bios);
110
111 /*
112 * We have to grab these before the commit_op to avoid a race
113 * condition.
114 */
26b924b9 115 spin_lock_irq(&b->lock);
b29d4986
JT
116 list_splice_init(&b->work_items, &work_items);
117 bio_list_merge(&bios, &b->bios);
118 bio_list_init(&b->bios);
119 b->commit_scheduled = false;
26b924b9 120 spin_unlock_irq(&b->lock);
b29d4986
JT
121
122 r = b->commit_op(b->commit_context);
123
124 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 k = container_of(ws, struct continuation, ws);
126 k->input = r;
127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 queue_work(b->wq, ws);
129 }
130
131 while ((bio = bio_list_pop(&bios))) {
132 if (r) {
4e4cbee9 133 bio->bi_status = r;
b29d4986
JT
134 bio_endio(bio);
135 } else
136 b->issue_op(bio, b->issue_context);
137 }
138}
139
140static void batcher_init(struct batcher *b,
4e4cbee9 141 blk_status_t (*commit_op)(void *),
b29d4986
JT
142 void *commit_context,
143 void (*issue_op)(struct bio *bio, void *),
144 void *issue_context,
145 struct workqueue_struct *wq)
146{
147 b->commit_op = commit_op;
148 b->commit_context = commit_context;
149 b->issue_op = issue_op;
150 b->issue_context = issue_context;
151 b->wq = wq;
152
153 spin_lock_init(&b->lock);
154 INIT_LIST_HEAD(&b->work_items);
155 bio_list_init(&b->bios);
156 INIT_WORK(&b->commit_work, __commit);
157 b->commit_scheduled = false;
158}
159
160static void async_commit(struct batcher *b)
161{
162 queue_work(b->wq, &b->commit_work);
163}
164
165static void continue_after_commit(struct batcher *b, struct continuation *k)
166{
b29d4986
JT
167 bool commit_scheduled;
168
26b924b9 169 spin_lock_irq(&b->lock);
b29d4986
JT
170 commit_scheduled = b->commit_scheduled;
171 list_add_tail(&k->ws.entry, &b->work_items);
26b924b9 172 spin_unlock_irq(&b->lock);
b29d4986
JT
173
174 if (commit_scheduled)
175 async_commit(b);
176}
177
178/*
179 * Bios are errored if commit failed.
180 */
181static void issue_after_commit(struct batcher *b, struct bio *bio)
182{
b29d4986
JT
183 bool commit_scheduled;
184
26b924b9 185 spin_lock_irq(&b->lock);
b29d4986
JT
186 commit_scheduled = b->commit_scheduled;
187 bio_list_add(&b->bios, bio);
26b924b9 188 spin_unlock_irq(&b->lock);
b29d4986
JT
189
190 if (commit_scheduled)
191 async_commit(b);
192}
193
194/*
195 * Call this if some urgent work is waiting for the commit to complete.
196 */
197static void schedule_commit(struct batcher *b)
198{
199 bool immediate;
b29d4986 200
26b924b9 201 spin_lock_irq(&b->lock);
b29d4986
JT
202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 b->commit_scheduled = true;
26b924b9 204 spin_unlock_irq(&b->lock);
b29d4986
JT
205
206 if (immediate)
207 async_commit(b);
208}
209
c9d28d5d
JT
210/*
211 * There are a couple of places where we let a bio run, but want to do some
212 * work before calling its endio function. We do this by temporarily
213 * changing the endio fn.
214 */
215struct dm_hook_info {
216 bio_end_io_t *bi_end_io;
c9d28d5d
JT
217};
218
219static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 bio_end_io_t *bi_end_io, void *bi_private)
221{
222 h->bi_end_io = bio->bi_end_io;
c9d28d5d
JT
223
224 bio->bi_end_io = bi_end_io;
225 bio->bi_private = bi_private;
226}
227
228static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229{
230 bio->bi_end_io = h->bi_end_io;
c9d28d5d
JT
231}
232
233/*----------------------------------------------------------------*/
234
c6b4fcba
JT
235#define MIGRATION_POOL_SIZE 128
236#define COMMIT_PERIOD HZ
237#define MIGRATION_COUNT_WINDOW 10
238
239/*
05473044
MS
240 * The block size of the device holding cache data must be
241 * between 32KB and 1GB.
c6b4fcba
JT
242 */
243#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
05473044 244#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
c6b4fcba 245
2ee57d58 246enum cache_metadata_mode {
c6b4fcba
JT
247 CM_WRITE, /* metadata may be changed */
248 CM_READ_ONLY, /* metadata may not be changed */
028ae9f7 249 CM_FAIL
c6b4fcba
JT
250};
251
2ee57d58
JT
252enum cache_io_mode {
253 /*
254 * Data is written to cached blocks only. These blocks are marked
255 * dirty. If you lose the cache device you will lose data.
256 * Potential performance increase for both reads and writes.
257 */
258 CM_IO_WRITEBACK,
259
260 /*
261 * Data is written to both cache and origin. Blocks are never
262 * dirty. Potential performance benfit for reads only.
263 */
264 CM_IO_WRITETHROUGH,
265
266 /*
267 * A degraded mode useful for various cache coherency situations
268 * (eg, rolling back snapshots). Reads and writes always go to the
269 * origin. If a write goes to a cached oblock, then the cache
270 * block is invalidated.
271 */
272 CM_IO_PASSTHROUGH
273};
274
c6b4fcba 275struct cache_features {
2ee57d58
JT
276 enum cache_metadata_mode mode;
277 enum cache_io_mode io_mode;
629d0a8a 278 unsigned metadata_version;
de7180ff 279 bool discard_passdown:1;
c6b4fcba
JT
280};
281
282struct cache_stats {
283 atomic_t read_hit;
284 atomic_t read_miss;
285 atomic_t write_hit;
286 atomic_t write_miss;
287 atomic_t demotion;
288 atomic_t promotion;
b29d4986 289 atomic_t writeback;
c6b4fcba
JT
290 atomic_t copies_avoided;
291 atomic_t cache_cell_clash;
292 atomic_t commit_count;
293 atomic_t discard_count;
294};
295
296struct cache {
297 struct dm_target *ti;
72d711c8
MS
298 spinlock_t lock;
299
300 /*
301 * Fields for converting from sectors to blocks.
302 */
303 int sectors_per_block_shift;
304 sector_t sectors_per_block;
c6b4fcba 305
c9ec5d7c
MS
306 struct dm_cache_metadata *cmd;
307
c6b4fcba
JT
308 /*
309 * Metadata is written to this device.
310 */
311 struct dm_dev *metadata_dev;
312
313 /*
314 * The slower of the two data devices. Typically a spindle.
315 */
316 struct dm_dev *origin_dev;
317
318 /*
319 * The faster of the two data devices. Typically an SSD.
320 */
321 struct dm_dev *cache_dev;
322
c6b4fcba
JT
323 /*
324 * Size of the origin device in _complete_ blocks and native sectors.
325 */
326 dm_oblock_t origin_blocks;
327 sector_t origin_sectors;
328
329 /*
330 * Size of the cache device in blocks.
331 */
332 dm_cblock_t cache_size;
333
334 /*
72d711c8 335 * Invalidation fields.
c6b4fcba 336 */
72d711c8
MS
337 spinlock_t invalidation_lock;
338 struct list_head invalidation_requests;
c6b4fcba 339
c6b4fcba 340 sector_t migration_threshold;
c6b4fcba 341 wait_queue_head_t migration_wait;
a59db676
JT
342 atomic_t nr_allocated_migrations;
343
344 /*
345 * The number of in flight migrations that are performing
346 * background io. eg, promotion, writeback.
347 */
348 atomic_t nr_io_migrations;
c6b4fcba 349
72d711c8
MS
350 struct bio_list deferred_bios;
351
b29d4986 352 struct rw_semaphore quiesce_lock;
66cb1910 353
c6b4fcba
JT
354 /*
355 * origin_blocks entries, discarded if set.
356 */
1bad9bc4 357 dm_dblock_t discard_nr_blocks;
c6b4fcba 358 unsigned long *discard_bitset;
08b18451 359 uint32_t discard_block_size; /* a power of 2 times sectors per block */
c9ec5d7c
MS
360
361 /*
362 * Rather than reconstructing the table line for the status we just
363 * save it and regurgitate.
364 */
365 unsigned nr_ctr_args;
366 const char **ctr_args;
c6b4fcba
JT
367
368 struct dm_kcopyd_client *copier;
b29d4986 369 struct work_struct deferred_bio_worker;
b29d4986 370 struct work_struct migration_worker;
72d711c8 371 struct workqueue_struct *wq;
c6b4fcba 372 struct delayed_work waker;
b29d4986 373 struct dm_bio_prison_v2 *prison;
c6b4fcba 374
72d711c8
MS
375 /*
376 * cache_size entries, dirty if set
377 */
378 unsigned long *dirty_bitset;
379 atomic_t nr_dirty;
c6b4fcba 380
c6b4fcba 381 unsigned policy_nr_args;
72d711c8
MS
382 struct dm_cache_policy *policy;
383
384 /*
385 * Cache features such as write-through.
386 */
387 struct cache_features features;
388
389 struct cache_stats stats;
c6b4fcba
JT
390
391 bool need_tick_bio:1;
392 bool sized:1;
65790ff9 393 bool invalidate:1;
c6b4fcba
JT
394 bool commit_requested:1;
395 bool loaded_mappings:1;
396 bool loaded_discards:1;
397
72d711c8 398 struct rw_semaphore background_work_lock;
65790ff9 399
72d711c8
MS
400 struct batcher committer;
401 struct work_struct commit_ws;
066dbaa3 402
dc4fa29f 403 struct dm_io_tracker tracker;
b29d4986 404
72d711c8 405 mempool_t migration_pool;
b29d4986 406
72d711c8 407 struct bio_set bs;
c6b4fcba
JT
408};
409
410struct per_bio_data {
411 bool tick:1;
412 unsigned req_nr:2;
b29d4986 413 struct dm_bio_prison_cell_v2 *cell;
c6eda5e8 414 struct dm_hook_info hook_info;
066dbaa3 415 sector_t len;
c6b4fcba
JT
416};
417
418struct dm_cache_migration {
b29d4986 419 struct continuation k;
c6b4fcba
JT
420 struct cache *cache;
421
b29d4986
JT
422 struct policy_work *op;
423 struct bio *overwrite_bio;
424 struct dm_bio_prison_cell_v2 *cell;
c6b4fcba 425
b29d4986
JT
426 dm_cblock_t invalidate_cblock;
427 dm_oblock_t invalidate_oblock;
c6b4fcba
JT
428};
429
b29d4986
JT
430/*----------------------------------------------------------------*/
431
8e3c3827 432static bool writethrough_mode(struct cache *cache)
b29d4986 433{
8e3c3827 434 return cache->features.io_mode == CM_IO_WRITETHROUGH;
b29d4986
JT
435}
436
8e3c3827 437static bool writeback_mode(struct cache *cache)
b29d4986 438{
8e3c3827 439 return cache->features.io_mode == CM_IO_WRITEBACK;
b29d4986
JT
440}
441
8e3c3827 442static inline bool passthrough_mode(struct cache *cache)
b29d4986 443{
8e3c3827 444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
b29d4986
JT
445}
446
447/*----------------------------------------------------------------*/
448
449static void wake_deferred_bio_worker(struct cache *cache)
450{
451 queue_work(cache->wq, &cache->deferred_bio_worker);
452}
c6b4fcba 453
b29d4986 454static void wake_migration_worker(struct cache *cache)
c6b4fcba 455{
8e3c3827 456 if (passthrough_mode(cache))
b29d4986
JT
457 return;
458
459 queue_work(cache->wq, &cache->migration_worker);
c6b4fcba
JT
460}
461
462/*----------------------------------------------------------------*/
463
b29d4986 464static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
c6b4fcba 465{
13bd677a 466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
c6b4fcba
JT
467}
468
b29d4986 469static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
c6b4fcba 470{
b29d4986 471 dm_bio_prison_free_cell_v2(cache->prison, cell);
c6b4fcba
JT
472}
473
a59db676
JT
474static struct dm_cache_migration *alloc_migration(struct cache *cache)
475{
476 struct dm_cache_migration *mg;
477
13bd677a 478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
ef7afb36
MS
479
480 memset(mg, 0, sizeof(*mg));
481
482 mg->cache = cache;
483 atomic_inc(&cache->nr_allocated_migrations);
a59db676
JT
484
485 return mg;
486}
487
488static void free_migration(struct dm_cache_migration *mg)
489{
88bf5184 490 struct cache *cache = mg->cache;
a59db676 491
88bf5184
JT
492 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 wake_up(&cache->migration_wait);
494
6f1c819c 495 mempool_free(mg, &cache->migration_pool);
a59db676
JT
496}
497
b29d4986 498/*----------------------------------------------------------------*/
c6b4fcba 499
b29d4986 500static inline dm_oblock_t oblock_succ(dm_oblock_t b)
c6b4fcba 501{
b29d4986 502 return to_oblock(from_oblock(b) + 1ull);
c6b4fcba
JT
503}
504
b29d4986 505static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
c6b4fcba 506{
b29d4986
JT
507 key->virtual = 0;
508 key->dev = 0;
509 key->block_begin = from_oblock(begin);
510 key->block_end = from_oblock(end);
c6b4fcba
JT
511}
512
513/*
b29d4986
JT
514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
515 * level 1 which prevents *both* READs and WRITEs.
c6b4fcba 516 */
b29d4986
JT
517#define WRITE_LOCK_LEVEL 0
518#define READ_WRITE_LOCK_LEVEL 1
519
520static unsigned lock_level(struct bio *bio)
c6b4fcba 521{
b29d4986
JT
522 return bio_data_dir(bio) == WRITE ?
523 WRITE_LOCK_LEVEL :
524 READ_WRITE_LOCK_LEVEL;
525}
c6b4fcba 526
b29d4986
JT
527/*----------------------------------------------------------------
528 * Per bio data
529 *--------------------------------------------------------------*/
c6b4fcba 530
693b960e 531static struct per_bio_data *get_per_bio_data(struct bio *bio)
b29d4986 532{
693b960e 533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
b29d4986
JT
534 BUG_ON(!pb);
535 return pb;
536}
c6b4fcba 537
693b960e 538static struct per_bio_data *init_per_bio_data(struct bio *bio)
b29d4986 539{
693b960e 540 struct per_bio_data *pb = get_per_bio_data(bio);
c6b4fcba 541
b29d4986
JT
542 pb->tick = false;
543 pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 pb->cell = NULL;
545 pb->len = 0;
546
547 return pb;
c6b4fcba
JT
548}
549
550/*----------------------------------------------------------------*/
551
b29d4986 552static void defer_bio(struct cache *cache, struct bio *bio)
c6b4fcba 553{
26b924b9 554 spin_lock_irq(&cache->lock);
b29d4986 555 bio_list_add(&cache->deferred_bios, bio);
26b924b9 556 spin_unlock_irq(&cache->lock);
b29d4986
JT
557
558 wake_deferred_bio_worker(cache);
559}
c6b4fcba 560
b29d4986 561static void defer_bios(struct cache *cache, struct bio_list *bios)
c6b4fcba 562{
26b924b9 563 spin_lock_irq(&cache->lock);
b29d4986
JT
564 bio_list_merge(&cache->deferred_bios, bios);
565 bio_list_init(bios);
26b924b9 566 spin_unlock_irq(&cache->lock);
c6b4fcba 567
b29d4986 568 wake_deferred_bio_worker(cache);
c6b4fcba
JT
569}
570
b29d4986
JT
571/*----------------------------------------------------------------*/
572
573static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
7ae34e77 574{
b29d4986 575 bool r;
b29d4986
JT
576 struct per_bio_data *pb;
577 struct dm_cell_key_v2 key;
7ae34e77 578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
b29d4986 579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
7ae34e77 580
b29d4986 581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
b29d4986
JT
582
583 build_key(oblock, end, &key);
584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 if (!r) {
586 /*
587 * Failed to get the lock.
588 */
589 free_prison_cell(cache, cell_prealloc);
590 return r;
591 }
c6b4fcba 592
b29d4986
JT
593 if (cell != cell_prealloc)
594 free_prison_cell(cache, cell_prealloc);
c6b4fcba 595
693b960e 596 pb = get_per_bio_data(bio);
b29d4986 597 pb->cell = cell;
c6b4fcba
JT
598
599 return r;
600}
601
aeed1420 602/*----------------------------------------------------------------*/
c6b4fcba
JT
603
604static bool is_dirty(struct cache *cache, dm_cblock_t b)
605{
606 return test_bit(from_cblock(b), cache->dirty_bitset);
607}
608
b29d4986 609static void set_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
610{
611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 612 atomic_inc(&cache->nr_dirty);
b29d4986 613 policy_set_dirty(cache->policy, cblock);
c6b4fcba
JT
614 }
615}
616
b29d4986
JT
617/*
618 * These two are called when setting after migrations to force the policy
619 * and dirty bitset to be in sync.
620 */
621static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622{
623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 atomic_inc(&cache->nr_dirty);
625 policy_set_dirty(cache->policy, cblock);
626}
627
628static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
629{
630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 631 if (atomic_dec_return(&cache->nr_dirty) == 0)
c6b4fcba
JT
632 dm_table_event(cache->ti->table);
633 }
b29d4986
JT
634
635 policy_clear_dirty(cache->policy, cblock);
c6b4fcba
JT
636}
637
638/*----------------------------------------------------------------*/
aeed1420 639
c6b4fcba
JT
640static bool block_size_is_power_of_two(struct cache *cache)
641{
642 return cache->sectors_per_block_shift >= 0;
643}
644
414dd67d
JT
645static dm_block_t block_div(dm_block_t b, uint32_t n)
646{
647 do_div(b, n);
648
649 return b;
650}
651
7ae34e77 652static dm_block_t oblocks_per_dblock(struct cache *cache)
1bad9bc4 653{
7ae34e77 654 dm_block_t oblocks = cache->discard_block_size;
1bad9bc4 655
7ae34e77
JT
656 if (block_size_is_power_of_two(cache))
657 oblocks >>= cache->sectors_per_block_shift;
1bad9bc4 658 else
7ae34e77 659 oblocks = block_div(oblocks, cache->sectors_per_block);
1bad9bc4 660
7ae34e77
JT
661 return oblocks;
662}
663
664static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665{
666 return to_dblock(block_div(from_oblock(oblock),
667 oblocks_per_dblock(cache)));
668}
1bad9bc4 669
1bad9bc4 670static void set_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba 671{
7ae34e77 672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
673 atomic_inc(&cache->stats.discard_count);
674
26b924b9 675 spin_lock_irq(&cache->lock);
1bad9bc4 676 set_bit(from_dblock(b), cache->discard_bitset);
26b924b9 677 spin_unlock_irq(&cache->lock);
c6b4fcba
JT
678}
679
1bad9bc4 680static void clear_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba 681{
26b924b9 682 spin_lock_irq(&cache->lock);
1bad9bc4 683 clear_bit(from_dblock(b), cache->discard_bitset);
26b924b9 684 spin_unlock_irq(&cache->lock);
c6b4fcba
JT
685}
686
1bad9bc4 687static bool is_discarded(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
688{
689 int r;
26b924b9 690 spin_lock_irq(&cache->lock);
1bad9bc4 691 r = test_bit(from_dblock(b), cache->discard_bitset);
26b924b9 692 spin_unlock_irq(&cache->lock);
c6b4fcba
JT
693
694 return r;
695}
696
697static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698{
699 int r;
26b924b9 700 spin_lock_irq(&cache->lock);
1bad9bc4
JT
701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 cache->discard_bitset);
26b924b9 703 spin_unlock_irq(&cache->lock);
c6b4fcba
JT
704
705 return r;
706}
707
b29d4986
JT
708/*----------------------------------------------------------------
709 * Remapping
710 *--------------------------------------------------------------*/
711static void remap_to_origin(struct cache *cache, struct bio *bio)
c6b4fcba 712{
74d46992 713 bio_set_dev(bio, cache->origin_dev->bdev);
c6b4fcba
JT
714}
715
716static void remap_to_cache(struct cache *cache, struct bio *bio,
717 dm_cblock_t cblock)
718{
4f024f37 719 sector_t bi_sector = bio->bi_iter.bi_sector;
e0d849fa 720 sector_t block = from_cblock(cblock);
c6b4fcba 721
74d46992 722 bio_set_dev(bio, cache->cache_dev->bdev);
c6b4fcba 723 if (!block_size_is_power_of_two(cache))
4f024f37 724 bio->bi_iter.bi_sector =
e0d849fa 725 (block * cache->sectors_per_block) +
4f024f37 726 sector_div(bi_sector, cache->sectors_per_block);
c6b4fcba 727 else
4f024f37 728 bio->bi_iter.bi_sector =
e0d849fa 729 (block << cache->sectors_per_block_shift) |
4f024f37 730 (bi_sector & (cache->sectors_per_block - 1));
c6b4fcba
JT
731}
732
733static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734{
693b960e 735 struct per_bio_data *pb;
c6b4fcba 736
26b924b9 737 spin_lock_irq(&cache->lock);
f73f44eb 738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
e6047149 739 bio_op(bio) != REQ_OP_DISCARD) {
693b960e 740 pb = get_per_bio_data(bio);
c6b4fcba
JT
741 pb->tick = true;
742 cache->need_tick_bio = false;
743 }
26b924b9 744 spin_unlock_irq(&cache->lock);
c6b4fcba
JT
745}
746
2df3bae9
MS
747static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 dm_oblock_t oblock, bool bio_has_pbd)
c6b4fcba 749{
2df3bae9
MS
750 if (bio_has_pbd)
751 check_if_tick_bio_needed(cache, bio);
c6b4fcba
JT
752 remap_to_origin(cache, bio);
753 if (bio_data_dir(bio) == WRITE)
1bad9bc4 754 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
755}
756
2df3bae9
MS
757static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
758 dm_oblock_t oblock)
759{
760 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
761 __remap_to_origin_clear_discard(cache, bio, oblock, true);
762}
763
c6b4fcba
JT
764static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
765 dm_oblock_t oblock, dm_cblock_t cblock)
766{
f8e5f01a 767 check_if_tick_bio_needed(cache, bio);
c6b4fcba
JT
768 remap_to_cache(cache, bio, cblock);
769 if (bio_data_dir(bio) == WRITE) {
b29d4986 770 set_dirty(cache, cblock);
1bad9bc4 771 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
772 }
773}
774
775static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
776{
4f024f37 777 sector_t block_nr = bio->bi_iter.bi_sector;
c6b4fcba
JT
778
779 if (!block_size_is_power_of_two(cache))
780 (void) sector_div(block_nr, cache->sectors_per_block);
781 else
782 block_nr >>= cache->sectors_per_block_shift;
783
784 return to_oblock(block_nr);
785}
786
066dbaa3
JT
787static bool accountable_bio(struct cache *cache, struct bio *bio)
788{
701e03e4 789 return bio_op(bio) != REQ_OP_DISCARD;
066dbaa3
JT
790}
791
792static void accounted_begin(struct cache *cache, struct bio *bio)
793{
693b960e 794 struct per_bio_data *pb;
066dbaa3
JT
795
796 if (accountable_bio(cache, bio)) {
693b960e 797 pb = get_per_bio_data(bio);
066dbaa3 798 pb->len = bio_sectors(bio);
dc4fa29f 799 dm_iot_io_begin(&cache->tracker, pb->len);
066dbaa3
JT
800 }
801}
802
803static void accounted_complete(struct cache *cache, struct bio *bio)
804{
693b960e 805 struct per_bio_data *pb = get_per_bio_data(bio);
066dbaa3 806
dc4fa29f 807 dm_iot_io_end(&cache->tracker, pb->len);
066dbaa3
JT
808}
809
810static void accounted_request(struct cache *cache, struct bio *bio)
811{
812 accounted_begin(cache, bio);
ed00aabd 813 submit_bio_noacct(bio);
066dbaa3
JT
814}
815
b29d4986 816static void issue_op(struct bio *bio, void *context)
8c081b52 817{
b29d4986
JT
818 struct cache *cache = context;
819 accounted_request(cache, bio);
8c081b52
JT
820}
821
e2e74d61
JT
822/*
823 * When running in writethrough mode we need to send writes to clean blocks
2df3bae9 824 * to both the cache and origin devices. Clone the bio and send them in parallel.
e2e74d61 825 */
2df3bae9
MS
826static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
827 dm_oblock_t oblock, dm_cblock_t cblock)
e2e74d61 828{
6f1c819c 829 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
2df3bae9
MS
830
831 BUG_ON(!origin_bio);
e2e74d61 832
2df3bae9
MS
833 bio_chain(origin_bio, bio);
834 /*
835 * Passing false to __remap_to_origin_clear_discard() skips
836 * all code that might use per_bio_data (since clone doesn't have it)
837 */
838 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
839 submit_bio(origin_bio);
e2e74d61 840
2df3bae9 841 remap_to_cache(cache, bio, cblock);
e2e74d61
JT
842}
843
028ae9f7
JT
844/*----------------------------------------------------------------
845 * Failure modes
846 *--------------------------------------------------------------*/
847static enum cache_metadata_mode get_cache_mode(struct cache *cache)
848{
849 return cache->features.mode;
850}
851
b61d9509
MS
852static const char *cache_device_name(struct cache *cache)
853{
d4a512ed 854 return dm_table_device_name(cache->ti->table);
b61d9509
MS
855}
856
028ae9f7
JT
857static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
858{
859 const char *descs[] = {
860 "write",
861 "read-only",
862 "fail"
863 };
864
865 dm_table_event(cache->ti->table);
b61d9509
MS
866 DMINFO("%s: switching cache to %s mode",
867 cache_device_name(cache), descs[(int)mode]);
028ae9f7
JT
868}
869
870static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
871{
d14fcf3d 872 bool needs_check;
028ae9f7
JT
873 enum cache_metadata_mode old_mode = get_cache_mode(cache);
874
d14fcf3d 875 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
23cab26d
MS
876 DMERR("%s: unable to read needs_check flag, setting failure mode.",
877 cache_device_name(cache));
d14fcf3d
JT
878 new_mode = CM_FAIL;
879 }
880
028ae9f7 881 if (new_mode == CM_WRITE && needs_check) {
b61d9509
MS
882 DMERR("%s: unable to switch cache to write mode until repaired.",
883 cache_device_name(cache));
028ae9f7
JT
884 if (old_mode != new_mode)
885 new_mode = old_mode;
886 else
887 new_mode = CM_READ_ONLY;
888 }
889
890 /* Never move out of fail mode */
891 if (old_mode == CM_FAIL)
892 new_mode = CM_FAIL;
893
894 switch (new_mode) {
895 case CM_FAIL:
896 case CM_READ_ONLY:
897 dm_cache_metadata_set_read_only(cache->cmd);
898 break;
899
900 case CM_WRITE:
901 dm_cache_metadata_set_read_write(cache->cmd);
902 break;
903 }
904
905 cache->features.mode = new_mode;
906
907 if (new_mode != old_mode)
908 notify_mode_switch(cache, new_mode);
909}
910
911static void abort_transaction(struct cache *cache)
912{
b61d9509
MS
913 const char *dev_name = cache_device_name(cache);
914
028ae9f7
JT
915 if (get_cache_mode(cache) >= CM_READ_ONLY)
916 return;
917
918 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
b61d9509 919 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
028ae9f7
JT
920 set_cache_mode(cache, CM_FAIL);
921 }
922
b61d9509 923 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
028ae9f7 924 if (dm_cache_metadata_abort(cache->cmd)) {
b61d9509 925 DMERR("%s: failed to abort metadata transaction", dev_name);
028ae9f7
JT
926 set_cache_mode(cache, CM_FAIL);
927 }
928}
929
930static void metadata_operation_failed(struct cache *cache, const char *op, int r)
931{
b61d9509
MS
932 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
933 cache_device_name(cache), op, r);
028ae9f7
JT
934 abort_transaction(cache);
935 set_cache_mode(cache, CM_READ_ONLY);
936}
937
b29d4986
JT
938/*----------------------------------------------------------------*/
939
940static void load_stats(struct cache *cache)
941{
942 struct dm_cache_statistics stats;
943
944 dm_cache_metadata_get_stats(cache->cmd, &stats);
945 atomic_set(&cache->stats.read_hit, stats.read_hits);
946 atomic_set(&cache->stats.read_miss, stats.read_misses);
947 atomic_set(&cache->stats.write_hit, stats.write_hits);
948 atomic_set(&cache->stats.write_miss, stats.write_misses);
949}
950
951static void save_stats(struct cache *cache)
952{
953 struct dm_cache_statistics stats;
954
955 if (get_cache_mode(cache) >= CM_READ_ONLY)
956 return;
957
958 stats.read_hits = atomic_read(&cache->stats.read_hit);
959 stats.read_misses = atomic_read(&cache->stats.read_miss);
960 stats.write_hits = atomic_read(&cache->stats.write_hit);
961 stats.write_misses = atomic_read(&cache->stats.write_miss);
962
963 dm_cache_metadata_set_stats(cache->cmd, &stats);
964}
965
966static void update_stats(struct cache_stats *stats, enum policy_operation op)
967{
968 switch (op) {
969 case POLICY_PROMOTE:
970 atomic_inc(&stats->promotion);
971 break;
972
973 case POLICY_DEMOTE:
974 atomic_inc(&stats->demotion);
975 break;
976
977 case POLICY_WRITEBACK:
978 atomic_inc(&stats->writeback);
979 break;
980 }
981}
982
c6b4fcba
JT
983/*----------------------------------------------------------------
984 * Migration processing
985 *
986 * Migration covers moving data from the origin device to the cache, or
987 * vice versa.
988 *--------------------------------------------------------------*/
b29d4986 989
a59db676 990static void inc_io_migrations(struct cache *cache)
c6b4fcba 991{
a59db676 992 atomic_inc(&cache->nr_io_migrations);
c6b4fcba
JT
993}
994
a59db676 995static void dec_io_migrations(struct cache *cache)
c6b4fcba 996{
a59db676 997 atomic_dec(&cache->nr_io_migrations);
c6b4fcba
JT
998}
999
651f5fa2
JT
1000static bool discard_or_flush(struct bio *bio)
1001{
f73f44eb 1002 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
651f5fa2
JT
1003}
1004
b29d4986
JT
1005static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1006 dm_dblock_t *b, dm_dblock_t *e)
c6b4fcba 1007{
b29d4986
JT
1008 sector_t sb = bio->bi_iter.bi_sector;
1009 sector_t se = bio_end_sector(bio);
651f5fa2 1010
b29d4986 1011 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
c6b4fcba 1012
b29d4986
JT
1013 if (se - sb < cache->discard_block_size)
1014 *e = *b;
1015 else
1016 *e = to_dblock(block_div(se, cache->discard_block_size));
c6b4fcba
JT
1017}
1018
b29d4986 1019/*----------------------------------------------------------------*/
651f5fa2 1020
b29d4986 1021static void prevent_background_work(struct cache *cache)
651f5fa2 1022{
b29d4986
JT
1023 lockdep_off();
1024 down_write(&cache->background_work_lock);
1025 lockdep_on();
651f5fa2
JT
1026}
1027
b29d4986 1028static void allow_background_work(struct cache *cache)
c6b4fcba 1029{
b29d4986
JT
1030 lockdep_off();
1031 up_write(&cache->background_work_lock);
1032 lockdep_on();
c6b4fcba
JT
1033}
1034
b29d4986 1035static bool background_work_begin(struct cache *cache)
c6b4fcba 1036{
b29d4986 1037 bool r;
c6b4fcba 1038
b29d4986
JT
1039 lockdep_off();
1040 r = down_read_trylock(&cache->background_work_lock);
1041 lockdep_on();
c6b4fcba 1042
b29d4986 1043 return r;
c6b4fcba
JT
1044}
1045
b29d4986 1046static void background_work_end(struct cache *cache)
c6b4fcba 1047{
b29d4986
JT
1048 lockdep_off();
1049 up_read(&cache->background_work_lock);
1050 lockdep_on();
1051}
c6b4fcba 1052
b29d4986 1053/*----------------------------------------------------------------*/
c6b4fcba 1054
d1260e2a
JT
1055static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1056{
1057 return (bio_data_dir(bio) == WRITE) &&
1058 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1059}
1060
1061static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1062{
8e3c3827 1063 return writeback_mode(cache) &&
d1260e2a
JT
1064 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1065}
1066
b29d4986
JT
1067static void quiesce(struct dm_cache_migration *mg,
1068 void (*continuation)(struct work_struct *))
1069{
1070 init_continuation(&mg->k, continuation);
1071 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
c6b4fcba
JT
1072}
1073
b29d4986 1074static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
c6b4fcba 1075{
b29d4986
JT
1076 struct continuation *k = container_of(ws, struct continuation, ws);
1077 return container_of(k, struct dm_cache_migration, k);
c6b4fcba
JT
1078}
1079
1080static void copy_complete(int read_err, unsigned long write_err, void *context)
1081{
b29d4986 1082 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
c6b4fcba
JT
1083
1084 if (read_err || write_err)
4e4cbee9 1085 mg->k.input = BLK_STS_IOERR;
c6b4fcba 1086
b29d4986 1087 queue_continuation(mg->cache->wq, &mg->k);
c6b4fcba
JT
1088}
1089
7209049d 1090static void copy(struct dm_cache_migration *mg, bool promote)
c6b4fcba 1091{
c6b4fcba
JT
1092 struct dm_io_region o_region, c_region;
1093 struct cache *cache = mg->cache;
1094
1095 o_region.bdev = cache->origin_dev->bdev;
b29d4986 1096 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
c6b4fcba
JT
1097 o_region.count = cache->sectors_per_block;
1098
1099 c_region.bdev = cache->cache_dev->bdev;
b29d4986 1100 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
c6b4fcba
JT
1101 c_region.count = cache->sectors_per_block;
1102
b29d4986 1103 if (promote)
7209049d 1104 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
b29d4986 1105 else
7209049d 1106 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
b29d4986
JT
1107}
1108
1109static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1110{
693b960e 1111 struct per_bio_data *pb = get_per_bio_data(bio);
b29d4986
JT
1112
1113 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1114 free_prison_cell(cache, pb->cell);
1115 pb->cell = NULL;
c6b4fcba
JT
1116}
1117
4246a0b6 1118static void overwrite_endio(struct bio *bio)
c9d28d5d
JT
1119{
1120 struct dm_cache_migration *mg = bio->bi_private;
1121 struct cache *cache = mg->cache;
693b960e 1122 struct per_bio_data *pb = get_per_bio_data(bio);
c9d28d5d 1123
80ae49aa
MS
1124 dm_unhook_bio(&pb->hook_info, bio);
1125
4e4cbee9
CH
1126 if (bio->bi_status)
1127 mg->k.input = bio->bi_status;
80ae49aa 1128
693b960e 1129 queue_continuation(cache->wq, &mg->k);
c9d28d5d
JT
1130}
1131
b29d4986
JT
1132static void overwrite(struct dm_cache_migration *mg,
1133 void (*continuation)(struct work_struct *))
c9d28d5d 1134{
b29d4986 1135 struct bio *bio = mg->overwrite_bio;
693b960e 1136 struct per_bio_data *pb = get_per_bio_data(bio);
c9d28d5d
JT
1137
1138 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
8c081b52
JT
1139
1140 /*
b29d4986
JT
1141 * The overwrite bio is part of the copy operation, as such it does
1142 * not set/clear discard or dirty flags.
8c081b52 1143 */
b29d4986
JT
1144 if (mg->op->op == POLICY_PROMOTE)
1145 remap_to_cache(mg->cache, bio, mg->op->cblock);
1146 else
1147 remap_to_origin(mg->cache, bio);
1148
1149 init_continuation(&mg->k, continuation);
066dbaa3 1150 accounted_request(mg->cache, bio);
c9d28d5d
JT
1151}
1152
b29d4986
JT
1153/*
1154 * Migration steps:
1155 *
1156 * 1) exclusive lock preventing WRITEs
1157 * 2) quiesce
1158 * 3) copy or issue overwrite bio
1159 * 4) upgrade to exclusive lock preventing READs and WRITEs
1160 * 5) quiesce
1161 * 6) update metadata and commit
1162 * 7) unlock
1163 */
1164static void mg_complete(struct dm_cache_migration *mg, bool success)
c9d28d5d 1165{
b29d4986
JT
1166 struct bio_list bios;
1167 struct cache *cache = mg->cache;
1168 struct policy_work *op = mg->op;
1169 dm_cblock_t cblock = op->cblock;
1170
1171 if (success)
1172 update_stats(&cache->stats, op->op);
1173
1174 switch (op->op) {
1175 case POLICY_PROMOTE:
1176 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1177 policy_complete_background_work(cache->policy, op, success);
1178
1179 if (mg->overwrite_bio) {
1180 if (success)
1181 force_set_dirty(cache, cblock);
4e4cbee9
CH
1182 else if (mg->k.input)
1183 mg->overwrite_bio->bi_status = mg->k.input;
b29d4986 1184 else
4e4cbee9 1185 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
b29d4986
JT
1186 bio_endio(mg->overwrite_bio);
1187 } else {
1188 if (success)
1189 force_clear_dirty(cache, cblock);
1190 dec_io_migrations(cache);
1191 }
1192 break;
1193
1194 case POLICY_DEMOTE:
1195 /*
1196 * We clear dirty here to update the nr_dirty counter.
1197 */
1198 if (success)
1199 force_clear_dirty(cache, cblock);
1200 policy_complete_background_work(cache->policy, op, success);
1201 dec_io_migrations(cache);
1202 break;
1203
1204 case POLICY_WRITEBACK:
1205 if (success)
1206 force_clear_dirty(cache, cblock);
1207 policy_complete_background_work(cache->policy, op, success);
1208 dec_io_migrations(cache);
1209 break;
1210 }
1211
1212 bio_list_init(&bios);
1213 if (mg->cell) {
1214 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1215 free_prison_cell(cache, mg->cell);
1216 }
1217
1218 free_migration(mg);
1219 defer_bios(cache, &bios);
1220 wake_migration_worker(cache);
1221
1222 background_work_end(cache);
c9d28d5d
JT
1223}
1224
b29d4986 1225static void mg_success(struct work_struct *ws)
c6b4fcba 1226{
b29d4986
JT
1227 struct dm_cache_migration *mg = ws_to_mg(ws);
1228 mg_complete(mg, mg->k.input == 0);
c6b4fcba
JT
1229}
1230
b29d4986 1231static void mg_update_metadata(struct work_struct *ws)
7ae34e77 1232{
b29d4986
JT
1233 int r;
1234 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1235 struct cache *cache = mg->cache;
b29d4986 1236 struct policy_work *op = mg->op;
c6b4fcba 1237
b29d4986
JT
1238 switch (op->op) {
1239 case POLICY_PROMOTE:
1240 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1241 if (r) {
1242 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1243 cache_device_name(cache));
1244 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
7ae34e77 1245
b29d4986
JT
1246 mg_complete(mg, false);
1247 return;
1248 }
1249 mg_complete(mg, true);
1250 break;
c9d28d5d 1251
b29d4986
JT
1252 case POLICY_DEMOTE:
1253 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1254 if (r) {
1255 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1256 cache_device_name(cache));
1257 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
c6b4fcba 1258
b29d4986 1259 mg_complete(mg, false);
c9d28d5d
JT
1260 return;
1261 }
c9d28d5d 1262
b29d4986
JT
1263 /*
1264 * It would be nice if we only had to commit when a REQ_FLUSH
1265 * comes through. But there's one scenario that we have to
1266 * look out for:
1267 *
1268 * - vblock x in a cache block
1269 * - domotion occurs
1270 * - cache block gets reallocated and over written
1271 * - crash
1272 *
1273 * When we recover, because there was no commit the cache will
1274 * rollback to having the data for vblock x in the cache block.
1275 * But the cache block has since been overwritten, so it'll end
1276 * up pointing to data that was never in 'x' during the history
1277 * of the device.
1278 *
1279 * To avoid this issue we require a commit as part of the
1280 * demotion operation.
1281 */
1282 init_continuation(&mg->k, mg_success);
1283 continue_after_commit(&cache->committer, &mg->k);
1284 schedule_commit(&cache->committer);
1285 break;
1286
1287 case POLICY_WRITEBACK:
1288 mg_complete(mg, true);
1289 break;
7ae34e77 1290 }
c6b4fcba
JT
1291}
1292
b29d4986 1293static void mg_update_metadata_after_copy(struct work_struct *ws)
c6b4fcba 1294{
b29d4986
JT
1295 struct dm_cache_migration *mg = ws_to_mg(ws);
1296
1297 /*
1298 * Did the copy succeed?
1299 */
1300 if (mg->k.input)
1301 mg_complete(mg, false);
c6b4fcba 1302 else
b29d4986 1303 mg_update_metadata(ws);
c6b4fcba
JT
1304}
1305
b29d4986 1306static void mg_upgrade_lock(struct work_struct *ws)
c6b4fcba 1307{
b29d4986
JT
1308 int r;
1309 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1310
b29d4986
JT
1311 /*
1312 * Did the copy succeed?
1313 */
1314 if (mg->k.input)
1315 mg_complete(mg, false);
c6b4fcba 1316
c9d28d5d 1317 else {
b29d4986
JT
1318 /*
1319 * Now we want the lock to prevent both reads and writes.
1320 */
1321 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1322 READ_WRITE_LOCK_LEVEL);
1323 if (r < 0)
1324 mg_complete(mg, false);
c6b4fcba 1325
b29d4986
JT
1326 else if (r)
1327 quiesce(mg, mg_update_metadata);
c6b4fcba 1328
b29d4986
JT
1329 else
1330 mg_update_metadata(ws);
c9d28d5d 1331 }
c6b4fcba
JT
1332}
1333
d1260e2a
JT
1334static void mg_full_copy(struct work_struct *ws)
1335{
1336 struct dm_cache_migration *mg = ws_to_mg(ws);
1337 struct cache *cache = mg->cache;
1338 struct policy_work *op = mg->op;
1339 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1340
1341 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1342 is_discarded_oblock(cache, op->oblock)) {
1343 mg_upgrade_lock(ws);
1344 return;
1345 }
1346
1347 init_continuation(&mg->k, mg_upgrade_lock);
7209049d 1348 copy(mg, is_policy_promote);
d1260e2a
JT
1349}
1350
b29d4986 1351static void mg_copy(struct work_struct *ws)
c6b4fcba 1352{
b29d4986 1353 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1354
b29d4986 1355 if (mg->overwrite_bio) {
d1260e2a
JT
1356 /*
1357 * No exclusive lock was held when we last checked if the bio
1358 * was optimisable. So we have to check again in case things
1359 * have changed (eg, the block may no longer be discarded).
1360 */
1361 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1362 /*
1363 * Fallback to a real full copy after doing some tidying up.
1364 */
1365 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1366 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1367 mg->overwrite_bio = NULL;
1368 inc_io_migrations(mg->cache);
1369 mg_full_copy(ws);
1370 return;
1371 }
1372
b29d4986
JT
1373 /*
1374 * It's safe to do this here, even though it's new data
1375 * because all IO has been locked out of the block.
1376 *
1377 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1378 * so _not_ using mg_upgrade_lock() as continutation.
1379 */
1380 overwrite(mg, mg_update_metadata_after_copy);
c6b4fcba 1381
d1260e2a
JT
1382 } else
1383 mg_full_copy(ws);
c6b4fcba
JT
1384}
1385
b29d4986 1386static int mg_lock_writes(struct dm_cache_migration *mg)
c6b4fcba 1387{
b29d4986
JT
1388 int r;
1389 struct dm_cell_key_v2 key;
c6b4fcba 1390 struct cache *cache = mg->cache;
b29d4986 1391 struct dm_bio_prison_cell_v2 *prealloc;
c6b4fcba 1392
b29d4986 1393 prealloc = alloc_prison_cell(cache);
c6b4fcba 1394
b29d4986
JT
1395 /*
1396 * Prevent writes to the block, but allow reads to continue.
1397 * Unless we're using an overwrite bio, in which case we lock
1398 * everything.
1399 */
1400 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1401 r = dm_cell_lock_v2(cache->prison, &key,
1402 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1403 prealloc, &mg->cell);
1404 if (r < 0) {
1405 free_prison_cell(cache, prealloc);
1406 mg_complete(mg, false);
1407 return r;
1408 }
c6b4fcba 1409
b29d4986
JT
1410 if (mg->cell != prealloc)
1411 free_prison_cell(cache, prealloc);
c6b4fcba 1412
b29d4986
JT
1413 if (r == 0)
1414 mg_copy(&mg->k.ws);
1415 else
1416 quiesce(mg, mg_copy);
c6b4fcba 1417
b29d4986 1418 return 0;
c6b4fcba
JT
1419}
1420
b29d4986 1421static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
c6b4fcba 1422{
b29d4986 1423 struct dm_cache_migration *mg;
c6b4fcba 1424
b29d4986
JT
1425 if (!background_work_begin(cache)) {
1426 policy_complete_background_work(cache->policy, op, false);
1427 return -EPERM;
1428 }
2ee57d58 1429
b29d4986 1430 mg = alloc_migration(cache);
2ee57d58 1431
b29d4986
JT
1432 mg->op = op;
1433 mg->overwrite_bio = bio;
1434
1435 if (!bio)
1436 inc_io_migrations(cache);
7ae34e77 1437
b29d4986 1438 return mg_lock_writes(mg);
7ae34e77
JT
1439}
1440
c6b4fcba 1441/*----------------------------------------------------------------
b29d4986 1442 * invalidation processing
c6b4fcba 1443 *--------------------------------------------------------------*/
c6b4fcba 1444
b29d4986 1445static void invalidate_complete(struct dm_cache_migration *mg, bool success)
c6b4fcba 1446{
b29d4986
JT
1447 struct bio_list bios;
1448 struct cache *cache = mg->cache;
c6b4fcba 1449
b29d4986
JT
1450 bio_list_init(&bios);
1451 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1452 free_prison_cell(cache, mg->cell);
c6b4fcba 1453
b29d4986
JT
1454 if (!success && mg->overwrite_bio)
1455 bio_io_error(mg->overwrite_bio);
c6b4fcba 1456
b29d4986
JT
1457 free_migration(mg);
1458 defer_bios(cache, &bios);
c6b4fcba 1459
b29d4986 1460 background_work_end(cache);
c6b4fcba
JT
1461}
1462
b29d4986 1463static void invalidate_completed(struct work_struct *ws)
c6b4fcba 1464{
b29d4986
JT
1465 struct dm_cache_migration *mg = ws_to_mg(ws);
1466 invalidate_complete(mg, !mg->k.input);
c6b4fcba
JT
1467}
1468
b29d4986 1469static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
651f5fa2 1470{
b29d4986
JT
1471 int r = policy_invalidate_mapping(cache->policy, cblock);
1472 if (!r) {
1473 r = dm_cache_remove_mapping(cache->cmd, cblock);
1474 if (r) {
1475 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1476 cache_device_name(cache));
1477 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
651f5fa2
JT
1478 }
1479
b29d4986
JT
1480 } else if (r == -ENODATA) {
1481 /*
1482 * Harmless, already unmapped.
1483 */
1484 r = 0;
651f5fa2 1485
b29d4986
JT
1486 } else
1487 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
2ee57d58 1488
b29d4986 1489 return r;
651f5fa2
JT
1490}
1491
b29d4986 1492static void invalidate_remove(struct work_struct *ws)
651f5fa2 1493{
b29d4986
JT
1494 int r;
1495 struct dm_cache_migration *mg = ws_to_mg(ws);
1496 struct cache *cache = mg->cache;
651f5fa2 1497
b29d4986
JT
1498 r = invalidate_cblock(cache, mg->invalidate_cblock);
1499 if (r) {
1500 invalidate_complete(mg, false);
1501 return;
651f5fa2 1502 }
9153df74 1503
b29d4986
JT
1504 init_continuation(&mg->k, invalidate_completed);
1505 continue_after_commit(&cache->committer, &mg->k);
1506 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1507 mg->overwrite_bio = NULL;
1508 schedule_commit(&cache->committer);
651f5fa2
JT
1509}
1510
b29d4986 1511static int invalidate_lock(struct dm_cache_migration *mg)
651f5fa2 1512{
b29d4986
JT
1513 int r;
1514 struct dm_cell_key_v2 key;
1515 struct cache *cache = mg->cache;
1516 struct dm_bio_prison_cell_v2 *prealloc;
651f5fa2 1517
b29d4986 1518 prealloc = alloc_prison_cell(cache);
651f5fa2 1519
b29d4986
JT
1520 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1521 r = dm_cell_lock_v2(cache->prison, &key,
1522 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1523 if (r < 0) {
1524 free_prison_cell(cache, prealloc);
1525 invalidate_complete(mg, false);
1526 return r;
651f5fa2 1527 }
9153df74 1528
b29d4986
JT
1529 if (mg->cell != prealloc)
1530 free_prison_cell(cache, prealloc);
651f5fa2 1531
b29d4986
JT
1532 if (r)
1533 quiesce(mg, invalidate_remove);
651f5fa2 1534
b29d4986
JT
1535 else {
1536 /*
1537 * We can't call invalidate_remove() directly here because we
1538 * might still be in request context.
1539 */
1540 init_continuation(&mg->k, invalidate_remove);
1541 queue_work(cache->wq, &mg->k.ws);
1542 }
fb4100ae 1543
fb4100ae
JT
1544 return 0;
1545}
1546
b29d4986
JT
1547static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1548 dm_oblock_t oblock, struct bio *bio)
fb4100ae 1549{
b29d4986 1550 struct dm_cache_migration *mg;
2ee57d58 1551
b29d4986
JT
1552 if (!background_work_begin(cache))
1553 return -EPERM;
c6b4fcba 1554
b29d4986 1555 mg = alloc_migration(cache);
c6b4fcba 1556
b29d4986
JT
1557 mg->overwrite_bio = bio;
1558 mg->invalidate_cblock = cblock;
1559 mg->invalidate_oblock = oblock;
c6b4fcba 1560
b29d4986 1561 return invalidate_lock(mg);
c6b4fcba 1562}
c6b4fcba 1563
b29d4986
JT
1564/*----------------------------------------------------------------
1565 * bio processing
1566 *--------------------------------------------------------------*/
c6b4fcba 1567
b29d4986
JT
1568enum busy {
1569 IDLE,
b29d4986
JT
1570 BUSY
1571};
c6b4fcba 1572
b29d4986 1573static enum busy spare_migration_bandwidth(struct cache *cache)
651f5fa2 1574{
dc4fa29f 1575 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
a59db676 1576 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
c6b4fcba 1577 cache->sectors_per_block;
651f5fa2 1578
49b7f768
JT
1579 if (idle && current_volume <= cache->migration_threshold)
1580 return IDLE;
b29d4986 1581 else
49b7f768 1582 return BUSY;
651f5fa2
JT
1583}
1584
c6b4fcba 1585static void inc_hit_counter(struct cache *cache, struct bio *bio)
c6b4fcba 1586{
c6b4fcba
JT
1587 atomic_inc(bio_data_dir(bio) == READ ?
1588 &cache->stats.read_hit : &cache->stats.write_hit);
c6b4fcba
JT
1589}
1590
c6b4fcba 1591static void inc_miss_counter(struct cache *cache, struct bio *bio)
028ae9f7 1592{
c6b4fcba
JT
1593 atomic_inc(bio_data_dir(bio) == READ ?
1594 &cache->stats.read_miss : &cache->stats.write_miss);
1595}
028ae9f7 1596
fb4100ae 1597/*----------------------------------------------------------------*/
028ae9f7 1598
b29d4986
JT
1599static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1600 bool *commit_needed)
c6b4fcba 1601{
b29d4986
JT
1602 int r, data_dir;
1603 bool rb, background_queued;
1604 dm_cblock_t cblock;
c6b4fcba 1605
b29d4986 1606 *commit_needed = false;
c6b4fcba 1607
b29d4986
JT
1608 rb = bio_detain_shared(cache, block, bio);
1609 if (!rb) {
c6b4fcba 1610 /*
b29d4986
JT
1611 * An exclusive lock is held for this block, so we have to
1612 * wait. We set the commit_needed flag so the current
1613 * transaction will be committed asap, allowing this lock
1614 * to be dropped.
c6b4fcba 1615 */
b29d4986
JT
1616 *commit_needed = true;
1617 return DM_MAPIO_SUBMITTED;
651f5fa2 1618 }
9153df74 1619
b29d4986 1620 data_dir = bio_data_dir(bio);
651f5fa2 1621
b29d4986
JT
1622 if (optimisable_bio(cache, bio, block)) {
1623 struct policy_work *op = NULL;
fb4100ae 1624
b29d4986
JT
1625 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1626 if (unlikely(r && r != -ENOENT)) {
1627 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1628 cache_device_name(cache), r);
1629 bio_io_error(bio);
1630 return DM_MAPIO_SUBMITTED;
c6b4fcba
JT
1631 }
1632
b29d4986
JT
1633 if (r == -ENOENT && op) {
1634 bio_drop_shared_lock(cache, bio);
1635 BUG_ON(op->op != POLICY_PROMOTE);
1636 mg_start(cache, op, bio);
1637 return DM_MAPIO_SUBMITTED;
1638 }
1639 } else {
1640 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1641 if (unlikely(r && r != -ENOENT)) {
1642 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1643 cache_device_name(cache), r);
1644 bio_io_error(bio);
1645 return DM_MAPIO_SUBMITTED;
1646 }
c6b4fcba 1647
b29d4986
JT
1648 if (background_queued)
1649 wake_migration_worker(cache);
c6b4fcba
JT
1650 }
1651
b29d4986 1652 if (r == -ENOENT) {
693b960e
MS
1653 struct per_bio_data *pb = get_per_bio_data(bio);
1654
b29d4986
JT
1655 /*
1656 * Miss.
1657 */
1658 inc_miss_counter(cache, bio);
1659 if (pb->req_nr == 0) {
1660 accounted_begin(cache, bio);
1661 remap_to_origin_clear_discard(cache, bio, block);
b29d4986 1662 } else {
2ee57d58 1663 /*
b29d4986
JT
1664 * This is a duplicate writethrough io that is no
1665 * longer needed because the block has been demoted.
2ee57d58 1666 */
b29d4986
JT
1667 bio_endio(bio);
1668 return DM_MAPIO_SUBMITTED;
1669 }
1670 } else {
1671 /*
1672 * Hit.
1673 */
1674 inc_hit_counter(cache, bio);
651f5fa2 1675
b29d4986
JT
1676 /*
1677 * Passthrough always maps to the origin, invalidating any
1678 * cache blocks that are written to.
1679 */
8e3c3827 1680 if (passthrough_mode(cache)) {
2ee57d58 1681 if (bio_data_dir(bio) == WRITE) {
b29d4986 1682 bio_drop_shared_lock(cache, bio);
2ee57d58 1683 atomic_inc(&cache->stats.demotion);
b29d4986
JT
1684 invalidate_start(cache, cblock, block, bio);
1685 } else
2ee57d58 1686 remap_to_origin_clear_discard(cache, bio, block);
2ee57d58 1687 } else {
8e3c3827 1688 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
b29d4986 1689 !is_dirty(cache, cblock)) {
2df3bae9 1690 remap_to_origin_and_cache(cache, bio, block, cblock);
b29d4986
JT
1691 accounted_begin(cache, bio);
1692 } else
1693 remap_to_cache_dirty(cache, bio, block, cblock);
2ee57d58 1694 }
c6b4fcba 1695 }
651f5fa2 1696
651f5fa2 1697 /*
b29d4986 1698 * dm core turns FUA requests into a separate payload and FLUSH req.
651f5fa2 1699 */
b29d4986 1700 if (bio->bi_opf & REQ_FUA) {
651f5fa2 1701 /*
b29d4986
JT
1702 * issue_after_commit will call accounted_begin a second time. So
1703 * we call accounted_complete() to avoid double accounting.
651f5fa2 1704 */
b29d4986
JT
1705 accounted_complete(cache, bio);
1706 issue_after_commit(&cache->committer, bio);
1707 *commit_needed = true;
1708 return DM_MAPIO_SUBMITTED;
651f5fa2
JT
1709 }
1710
b29d4986 1711 return DM_MAPIO_REMAPPED;
651f5fa2
JT
1712}
1713
b29d4986 1714static bool process_bio(struct cache *cache, struct bio *bio)
c6b4fcba 1715{
b29d4986 1716 bool commit_needed;
c6b4fcba 1717
b29d4986 1718 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
ed00aabd 1719 submit_bio_noacct(bio);
c6b4fcba 1720
b29d4986 1721 return commit_needed;
c6b4fcba
JT
1722}
1723
028ae9f7
JT
1724/*
1725 * A non-zero return indicates read_only or fail_io mode.
1726 */
1727static int commit(struct cache *cache, bool clean_shutdown)
e2e74d61 1728{
028ae9f7 1729 int r;
e2e74d61 1730
028ae9f7
JT
1731 if (get_cache_mode(cache) >= CM_READ_ONLY)
1732 return -EINVAL;
e2e74d61 1733
028ae9f7
JT
1734 atomic_inc(&cache->stats.commit_count);
1735 r = dm_cache_commit(cache->cmd, clean_shutdown);
1736 if (r)
1737 metadata_operation_failed(cache, "dm_cache_commit", r);
e2e74d61 1738
028ae9f7 1739 return r;
e2e74d61
JT
1740}
1741
b29d4986
JT
1742/*
1743 * Used by the batcher.
1744 */
4e4cbee9 1745static blk_status_t commit_op(void *context)
c6b4fcba 1746{
b29d4986 1747 struct cache *cache = context;
c6b4fcba 1748
b29d4986 1749 if (dm_cache_changed_this_transaction(cache->cmd))
4e4cbee9 1750 return errno_to_blk_status(commit(cache, false));
c6b4fcba 1751
b29d4986 1752 return 0;
c6b4fcba
JT
1753}
1754
b29d4986 1755/*----------------------------------------------------------------*/
65790ff9 1756
b29d4986 1757static bool process_flush_bio(struct cache *cache, struct bio *bio)
65790ff9 1758{
693b960e 1759 struct per_bio_data *pb = get_per_bio_data(bio);
65790ff9 1760
b29d4986
JT
1761 if (!pb->req_nr)
1762 remap_to_origin(cache, bio);
1763 else
1764 remap_to_cache(cache, bio, 0);
65790ff9 1765
b29d4986
JT
1766 issue_after_commit(&cache->committer, bio);
1767 return true;
65790ff9
JT
1768}
1769
b29d4986 1770static bool process_discard_bio(struct cache *cache, struct bio *bio)
65790ff9 1771{
b29d4986 1772 dm_dblock_t b, e;
65790ff9 1773
b29d4986
JT
1774 // FIXME: do we need to lock the region? Or can we just assume the
1775 // user wont be so foolish as to issue discard concurrently with
1776 // other IO?
1777 calc_discard_block_range(cache, bio, &b, &e);
1778 while (b != e) {
1779 set_discard(cache, b);
1780 b = to_dblock(from_dblock(b) + 1);
651f5fa2 1781 }
65790ff9 1782
de7180ff
MS
1783 if (cache->features.discard_passdown) {
1784 remap_to_origin(cache, bio);
ed00aabd 1785 submit_bio_noacct(bio);
de7180ff
MS
1786 } else
1787 bio_endio(bio);
65790ff9 1788
b29d4986 1789 return false;
c6b4fcba
JT
1790}
1791
b29d4986 1792static void process_deferred_bios(struct work_struct *ws)
66cb1910 1793{
b29d4986 1794 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
66cb1910 1795
b29d4986 1796 bool commit_needed = false;
c6b4fcba
JT
1797 struct bio_list bios;
1798 struct bio *bio;
66cb1910 1799
c6b4fcba 1800 bio_list_init(&bios);
c6b4fcba 1801
26b924b9 1802 spin_lock_irq(&cache->lock);
b29d4986
JT
1803 bio_list_merge(&bios, &cache->deferred_bios);
1804 bio_list_init(&cache->deferred_bios);
26b924b9 1805 spin_unlock_irq(&cache->lock);
c6b4fcba 1806
b29d4986
JT
1807 while ((bio = bio_list_pop(&bios))) {
1808 if (bio->bi_opf & REQ_PREFLUSH)
1809 commit_needed = process_flush_bio(cache, bio) || commit_needed;
c6b4fcba 1810
b29d4986
JT
1811 else if (bio_op(bio) == REQ_OP_DISCARD)
1812 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1813
1814 else
1815 commit_needed = process_bio(cache, bio) || commit_needed;
1816 }
1817
1818 if (commit_needed)
1819 schedule_commit(&cache->committer);
c6b4fcba
JT
1820}
1821
c6b4fcba
JT
1822/*----------------------------------------------------------------
1823 * Main worker loop
1824 *--------------------------------------------------------------*/
651f5fa2
JT
1825
1826static void requeue_deferred_bios(struct cache *cache)
c6b4fcba
JT
1827{
1828 struct bio *bio;
1829 struct bio_list bios;
1830
1831 bio_list_init(&bios);
1832 bio_list_merge(&bios, &cache->deferred_bios);
1833 bio_list_init(&cache->deferred_bios);
1834
4246a0b6 1835 while ((bio = bio_list_pop(&bios))) {
4e4cbee9 1836 bio->bi_status = BLK_STS_DM_REQUEUE;
4246a0b6
CH
1837 bio_endio(bio);
1838 }
c6b4fcba
JT
1839}
1840
c6b4fcba
JT
1841/*
1842 * We want to commit periodically so that not too much
1843 * unwritten metadata builds up.
1844 */
1845static void do_waker(struct work_struct *ws)
1846{
1847 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
b29d4986 1848
fba10109 1849 policy_tick(cache->policy, true);
b29d4986
JT
1850 wake_migration_worker(cache);
1851 schedule_commit(&cache->committer);
c6b4fcba
JT
1852 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1853}
1854
b29d4986 1855static void check_migrations(struct work_struct *ws)
c6b4fcba 1856{
b29d4986
JT
1857 int r;
1858 struct policy_work *op;
1859 struct cache *cache = container_of(ws, struct cache, migration_worker);
1860 enum busy b;
c6b4fcba 1861
b29d4986
JT
1862 for (;;) {
1863 b = spare_migration_bandwidth(cache);
c6b4fcba 1864
b29d4986
JT
1865 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1866 if (r == -ENODATA)
1867 break;
1868
1869 if (r) {
1870 DMERR_LIMIT("%s: policy_background_work failed",
1871 cache_device_name(cache));
1872 break;
1873 }
1874
1875 r = mg_start(cache, op, NULL);
1876 if (r)
1877 break;
1878 }
c6b4fcba
JT
1879}
1880
1881/*----------------------------------------------------------------
1882 * Target methods
1883 *--------------------------------------------------------------*/
1884
1885/*
1886 * This function gets called on the error paths of the constructor, so we
1887 * have to cope with a partially initialised struct.
1888 */
1889static void destroy(struct cache *cache)
1890{
1891 unsigned i;
1892
6f1c819c 1893 mempool_exit(&cache->migration_pool);
c6b4fcba 1894
c6b4fcba 1895 if (cache->prison)
b29d4986 1896 dm_bio_prison_destroy_v2(cache->prison);
c6b4fcba
JT
1897
1898 if (cache->wq)
1899 destroy_workqueue(cache->wq);
1900
1901 if (cache->dirty_bitset)
1902 free_bitset(cache->dirty_bitset);
1903
1904 if (cache->discard_bitset)
1905 free_bitset(cache->discard_bitset);
1906
1907 if (cache->copier)
1908 dm_kcopyd_client_destroy(cache->copier);
1909
1910 if (cache->cmd)
1911 dm_cache_metadata_close(cache->cmd);
1912
1913 if (cache->metadata_dev)
1914 dm_put_device(cache->ti, cache->metadata_dev);
1915
1916 if (cache->origin_dev)
1917 dm_put_device(cache->ti, cache->origin_dev);
1918
1919 if (cache->cache_dev)
1920 dm_put_device(cache->ti, cache->cache_dev);
1921
1922 if (cache->policy)
1923 dm_cache_policy_destroy(cache->policy);
1924
1925 for (i = 0; i < cache->nr_ctr_args ; i++)
1926 kfree(cache->ctr_args[i]);
1927 kfree(cache->ctr_args);
1928
6f1c819c 1929 bioset_exit(&cache->bs);
2df3bae9 1930
c6b4fcba
JT
1931 kfree(cache);
1932}
1933
1934static void cache_dtr(struct dm_target *ti)
1935{
1936 struct cache *cache = ti->private;
1937
1938 destroy(cache);
1939}
1940
1941static sector_t get_dev_size(struct dm_dev *dev)
1942{
1943 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1944}
1945
1946/*----------------------------------------------------------------*/
1947
1948/*
1949 * Construct a cache device mapping.
1950 *
1951 * cache <metadata dev> <cache dev> <origin dev> <block size>
1952 * <#feature args> [<feature arg>]*
1953 * <policy> <#policy args> [<policy arg>]*
1954 *
1955 * metadata dev : fast device holding the persistent metadata
1956 * cache dev : fast device holding cached data blocks
1957 * origin dev : slow device holding original data blocks
1958 * block size : cache unit size in sectors
1959 *
1960 * #feature args : number of feature arguments passed
1961 * feature args : writethrough. (The default is writeback.)
1962 *
1963 * policy : the replacement policy to use
1964 * #policy args : an even number of policy arguments corresponding
1965 * to key/value pairs passed to the policy
1966 * policy args : key/value pairs passed to the policy
1967 * E.g. 'sequential_threshold 1024'
1968 * See cache-policies.txt for details.
1969 *
1970 * Optional feature arguments are:
1971 * writethrough : write through caching that prohibits cache block
1972 * content from being different from origin block content.
1973 * Without this argument, the default behaviour is to write
1974 * back cache block contents later for performance reasons,
1975 * so they may differ from the corresponding origin blocks.
1976 */
1977struct cache_args {
1978 struct dm_target *ti;
1979
1980 struct dm_dev *metadata_dev;
1981
1982 struct dm_dev *cache_dev;
1983 sector_t cache_sectors;
1984
1985 struct dm_dev *origin_dev;
1986 sector_t origin_sectors;
1987
1988 uint32_t block_size;
1989
1990 const char *policy_name;
1991 int policy_argc;
1992 const char **policy_argv;
1993
1994 struct cache_features features;
1995};
1996
1997static void destroy_cache_args(struct cache_args *ca)
1998{
1999 if (ca->metadata_dev)
2000 dm_put_device(ca->ti, ca->metadata_dev);
2001
2002 if (ca->cache_dev)
2003 dm_put_device(ca->ti, ca->cache_dev);
2004
2005 if (ca->origin_dev)
2006 dm_put_device(ca->ti, ca->origin_dev);
2007
2008 kfree(ca);
2009}
2010
2011static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2012{
2013 if (!as->argc) {
2014 *error = "Insufficient args";
2015 return false;
2016 }
2017
2018 return true;
2019}
2020
2021static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2022 char **error)
2023{
2024 int r;
2025 sector_t metadata_dev_size;
2026 char b[BDEVNAME_SIZE];
2027
2028 if (!at_least_one_arg(as, error))
2029 return -EINVAL;
2030
2031 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2032 &ca->metadata_dev);
2033 if (r) {
2034 *error = "Error opening metadata device";
2035 return r;
2036 }
2037
2038 metadata_dev_size = get_dev_size(ca->metadata_dev);
2039 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2040 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2041 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2042
2043 return 0;
2044}
2045
2046static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2047 char **error)
2048{
2049 int r;
2050
2051 if (!at_least_one_arg(as, error))
2052 return -EINVAL;
2053
2054 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2055 &ca->cache_dev);
2056 if (r) {
2057 *error = "Error opening cache device";
2058 return r;
2059 }
2060 ca->cache_sectors = get_dev_size(ca->cache_dev);
2061
2062 return 0;
2063}
2064
2065static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2066 char **error)
2067{
2068 int r;
2069
2070 if (!at_least_one_arg(as, error))
2071 return -EINVAL;
2072
2073 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2074 &ca->origin_dev);
2075 if (r) {
2076 *error = "Error opening origin device";
2077 return r;
2078 }
2079
2080 ca->origin_sectors = get_dev_size(ca->origin_dev);
2081 if (ca->ti->len > ca->origin_sectors) {
2082 *error = "Device size larger than cached device";
2083 return -EINVAL;
2084 }
2085
2086 return 0;
2087}
2088
2089static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2090 char **error)
2091{
05473044 2092 unsigned long block_size;
c6b4fcba
JT
2093
2094 if (!at_least_one_arg(as, error))
2095 return -EINVAL;
2096
05473044
MS
2097 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2098 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2099 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2100 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
c6b4fcba
JT
2101 *error = "Invalid data block size";
2102 return -EINVAL;
2103 }
2104
05473044 2105 if (block_size > ca->cache_sectors) {
c6b4fcba
JT
2106 *error = "Data block size is larger than the cache device";
2107 return -EINVAL;
2108 }
2109
05473044 2110 ca->block_size = block_size;
c6b4fcba
JT
2111
2112 return 0;
2113}
2114
2115static void init_features(struct cache_features *cf)
2116{
2117 cf->mode = CM_WRITE;
2ee57d58 2118 cf->io_mode = CM_IO_WRITEBACK;
629d0a8a 2119 cf->metadata_version = 1;
de7180ff 2120 cf->discard_passdown = true;
c6b4fcba
JT
2121}
2122
2123static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2124 char **error)
2125{
5916a22b 2126 static const struct dm_arg _args[] = {
de7180ff 2127 {0, 3, "Invalid number of cache feature arguments"},
c6b4fcba
JT
2128 };
2129
af9313c3 2130 int r, mode_ctr = 0;
c6b4fcba
JT
2131 unsigned argc;
2132 const char *arg;
2133 struct cache_features *cf = &ca->features;
2134
2135 init_features(cf);
2136
2137 r = dm_read_arg_group(_args, as, &argc, error);
2138 if (r)
2139 return -EINVAL;
2140
2141 while (argc--) {
2142 arg = dm_shift_arg(as);
2143
af9313c3 2144 if (!strcasecmp(arg, "writeback")) {
2ee57d58 2145 cf->io_mode = CM_IO_WRITEBACK;
af9313c3
JP
2146 mode_ctr++;
2147 }
c6b4fcba 2148
af9313c3 2149 else if (!strcasecmp(arg, "writethrough")) {
2ee57d58 2150 cf->io_mode = CM_IO_WRITETHROUGH;
af9313c3
JP
2151 mode_ctr++;
2152 }
2ee57d58 2153
af9313c3 2154 else if (!strcasecmp(arg, "passthrough")) {
2ee57d58 2155 cf->io_mode = CM_IO_PASSTHROUGH;
af9313c3
JP
2156 mode_ctr++;
2157 }
c6b4fcba 2158
629d0a8a
JT
2159 else if (!strcasecmp(arg, "metadata2"))
2160 cf->metadata_version = 2;
2161
de7180ff
MS
2162 else if (!strcasecmp(arg, "no_discard_passdown"))
2163 cf->discard_passdown = false;
2164
c6b4fcba
JT
2165 else {
2166 *error = "Unrecognised cache feature requested";
2167 return -EINVAL;
2168 }
2169 }
2170
af9313c3
JP
2171 if (mode_ctr > 1) {
2172 *error = "Duplicate cache io_mode features requested";
2173 return -EINVAL;
2174 }
2175
c6b4fcba
JT
2176 return 0;
2177}
2178
2179static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2180 char **error)
2181{
5916a22b 2182 static const struct dm_arg _args[] = {
c6b4fcba
JT
2183 {0, 1024, "Invalid number of policy arguments"},
2184 };
2185
2186 int r;
2187
2188 if (!at_least_one_arg(as, error))
2189 return -EINVAL;
2190
2191 ca->policy_name = dm_shift_arg(as);
2192
2193 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2194 if (r)
2195 return -EINVAL;
2196
2197 ca->policy_argv = (const char **)as->argv;
2198 dm_consume_args(as, ca->policy_argc);
2199
2200 return 0;
2201}
2202
2203static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2204 char **error)
2205{
2206 int r;
2207 struct dm_arg_set as;
2208
2209 as.argc = argc;
2210 as.argv = argv;
2211
2212 r = parse_metadata_dev(ca, &as, error);
2213 if (r)
2214 return r;
2215
2216 r = parse_cache_dev(ca, &as, error);
2217 if (r)
2218 return r;
2219
2220 r = parse_origin_dev(ca, &as, error);
2221 if (r)
2222 return r;
2223
2224 r = parse_block_size(ca, &as, error);
2225 if (r)
2226 return r;
2227
2228 r = parse_features(ca, &as, error);
2229 if (r)
2230 return r;
2231
2232 r = parse_policy(ca, &as, error);
2233 if (r)
2234 return r;
2235
2236 return 0;
2237}
2238
2239/*----------------------------------------------------------------*/
2240
2241static struct kmem_cache *migration_cache;
2242
2c73c471
AK
2243#define NOT_CORE_OPTION 1
2244
2f14f4b5 2245static int process_config_option(struct cache *cache, const char *key, const char *value)
2c73c471
AK
2246{
2247 unsigned long tmp;
2248
2f14f4b5
JT
2249 if (!strcasecmp(key, "migration_threshold")) {
2250 if (kstrtoul(value, 10, &tmp))
2c73c471
AK
2251 return -EINVAL;
2252
2253 cache->migration_threshold = tmp;
2254 return 0;
2255 }
2256
2257 return NOT_CORE_OPTION;
2258}
2259
2f14f4b5
JT
2260static int set_config_value(struct cache *cache, const char *key, const char *value)
2261{
2262 int r = process_config_option(cache, key, value);
2263
2264 if (r == NOT_CORE_OPTION)
2265 r = policy_set_config_value(cache->policy, key, value);
2266
2267 if (r)
2268 DMWARN("bad config value for %s: %s", key, value);
2269
2270 return r;
2271}
2272
2273static int set_config_values(struct cache *cache, int argc, const char **argv)
c6b4fcba
JT
2274{
2275 int r = 0;
2276
2277 if (argc & 1) {
2278 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2279 return -EINVAL;
2280 }
2281
2282 while (argc) {
2f14f4b5
JT
2283 r = set_config_value(cache, argv[0], argv[1]);
2284 if (r)
2285 break;
c6b4fcba
JT
2286
2287 argc -= 2;
2288 argv += 2;
2289 }
2290
2291 return r;
2292}
2293
2294static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2295 char **error)
2296{
4cb3e1db
MP
2297 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2298 cache->cache_size,
2299 cache->origin_sectors,
2300 cache->sectors_per_block);
2301 if (IS_ERR(p)) {
c6b4fcba 2302 *error = "Error creating cache's policy";
4cb3e1db 2303 return PTR_ERR(p);
c6b4fcba 2304 }
4cb3e1db 2305 cache->policy = p;
b29d4986 2306 BUG_ON(!cache->policy);
c6b4fcba 2307
2f14f4b5 2308 return 0;
c6b4fcba
JT
2309}
2310
08b18451 2311/*
2bb812df
JT
2312 * We want the discard block size to be at least the size of the cache
2313 * block size and have no more than 2^14 discard blocks across the origin.
08b18451
JT
2314 */
2315#define MAX_DISCARD_BLOCKS (1 << 14)
2316
2317static bool too_many_discard_blocks(sector_t discard_block_size,
2318 sector_t origin_size)
2319{
2320 (void) sector_div(origin_size, discard_block_size);
2321
2322 return origin_size > MAX_DISCARD_BLOCKS;
2323}
2324
2325static sector_t calculate_discard_block_size(sector_t cache_block_size,
2326 sector_t origin_size)
2327{
2bb812df 2328 sector_t discard_block_size = cache_block_size;
08b18451
JT
2329
2330 if (origin_size)
2331 while (too_many_discard_blocks(discard_block_size, origin_size))
2332 discard_block_size *= 2;
2333
2334 return discard_block_size;
2335}
2336
d1d9220c
JT
2337static void set_cache_size(struct cache *cache, dm_cblock_t size)
2338{
2339 dm_block_t nr_blocks = from_cblock(size);
2340
2341 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2342 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2343 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2344 "Please consider increasing the cache block size to reduce the overall cache block count.",
2345 (unsigned long long) nr_blocks);
2346
2347 cache->cache_size = size;
2348}
2349
f8350daf 2350#define DEFAULT_MIGRATION_THRESHOLD 2048
c6b4fcba 2351
c6b4fcba
JT
2352static int cache_create(struct cache_args *ca, struct cache **result)
2353{
2354 int r = 0;
2355 char **error = &ca->ti->error;
2356 struct cache *cache;
2357 struct dm_target *ti = ca->ti;
2358 dm_block_t origin_blocks;
2359 struct dm_cache_metadata *cmd;
2360 bool may_format = ca->features.mode == CM_WRITE;
2361
2362 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2363 if (!cache)
2364 return -ENOMEM;
2365
2366 cache->ti = ca->ti;
2367 ti->private = cache;
c6b4fcba
JT
2368 ti->num_flush_bios = 2;
2369 ti->flush_supported = true;
2370
2371 ti->num_discard_bios = 1;
2372 ti->discards_supported = true;
c6b4fcba 2373
693b960e 2374 ti->per_io_data_size = sizeof(struct per_bio_data);
c6b4fcba 2375
693b960e 2376 cache->features = ca->features;
2df3bae9
MS
2377 if (writethrough_mode(cache)) {
2378 /* Create bioset for writethrough bios issued to origin */
6f1c819c
KO
2379 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2380 if (r)
2df3bae9
MS
2381 goto bad;
2382 }
2383
c6b4fcba
JT
2384 cache->metadata_dev = ca->metadata_dev;
2385 cache->origin_dev = ca->origin_dev;
2386 cache->cache_dev = ca->cache_dev;
2387
2388 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2389
c6b4fcba 2390 origin_blocks = cache->origin_sectors = ca->origin_sectors;
414dd67d 2391 origin_blocks = block_div(origin_blocks, ca->block_size);
c6b4fcba
JT
2392 cache->origin_blocks = to_oblock(origin_blocks);
2393
2394 cache->sectors_per_block = ca->block_size;
2395 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2396 r = -EINVAL;
2397 goto bad;
2398 }
2399
2400 if (ca->block_size & (ca->block_size - 1)) {
2401 dm_block_t cache_size = ca->cache_sectors;
2402
2403 cache->sectors_per_block_shift = -1;
414dd67d 2404 cache_size = block_div(cache_size, ca->block_size);
d1d9220c 2405 set_cache_size(cache, to_cblock(cache_size));
c6b4fcba
JT
2406 } else {
2407 cache->sectors_per_block_shift = __ffs(ca->block_size);
d1d9220c 2408 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
c6b4fcba
JT
2409 }
2410
2411 r = create_cache_policy(cache, ca, error);
2412 if (r)
2413 goto bad;
2f14f4b5 2414
c6b4fcba 2415 cache->policy_nr_args = ca->policy_argc;
2f14f4b5
JT
2416 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2417
2418 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2419 if (r) {
2420 *error = "Error setting cache policy's config values";
2421 goto bad;
2422 }
c6b4fcba
JT
2423
2424 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2425 ca->block_size, may_format,
629d0a8a
JT
2426 dm_cache_policy_get_hint_size(cache->policy),
2427 ca->features.metadata_version);
c6b4fcba
JT
2428 if (IS_ERR(cmd)) {
2429 *error = "Error creating metadata object";
2430 r = PTR_ERR(cmd);
2431 goto bad;
2432 }
2433 cache->cmd = cmd;
028ae9f7
JT
2434 set_cache_mode(cache, CM_WRITE);
2435 if (get_cache_mode(cache) != CM_WRITE) {
2436 *error = "Unable to get write access to metadata, please check/repair metadata.";
2437 r = -EINVAL;
2438 goto bad;
2439 }
c6b4fcba 2440
8e3c3827 2441 if (passthrough_mode(cache)) {
2ee57d58
JT
2442 bool all_clean;
2443
2444 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2445 if (r) {
2446 *error = "dm_cache_metadata_all_clean() failed";
2447 goto bad;
2448 }
2449
2450 if (!all_clean) {
2451 *error = "Cannot enter passthrough mode unless all blocks are clean";
2452 r = -EINVAL;
2453 goto bad;
2454 }
b29d4986
JT
2455
2456 policy_allow_migrations(cache->policy, false);
2ee57d58
JT
2457 }
2458
c6b4fcba
JT
2459 spin_lock_init(&cache->lock);
2460 bio_list_init(&cache->deferred_bios);
a59db676
JT
2461 atomic_set(&cache->nr_allocated_migrations, 0);
2462 atomic_set(&cache->nr_io_migrations, 0);
c6b4fcba
JT
2463 init_waitqueue_head(&cache->migration_wait);
2464
fa4d683a 2465 r = -ENOMEM;
44fa816b 2466 atomic_set(&cache->nr_dirty, 0);
c6b4fcba
JT
2467 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2468 if (!cache->dirty_bitset) {
2469 *error = "could not allocate dirty bitset";
2470 goto bad;
2471 }
2472 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2473
08b18451
JT
2474 cache->discard_block_size =
2475 calculate_discard_block_size(cache->sectors_per_block,
2476 cache->origin_sectors);
2572629a
JT
2477 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2478 cache->discard_block_size));
1bad9bc4 2479 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2480 if (!cache->discard_bitset) {
2481 *error = "could not allocate discard bitset";
2482 goto bad;
2483 }
1bad9bc4 2484 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2485
2486 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2487 if (IS_ERR(cache->copier)) {
2488 *error = "could not create kcopyd client";
2489 r = PTR_ERR(cache->copier);
2490 goto bad;
2491 }
2492
b29d4986 2493 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
c6b4fcba
JT
2494 if (!cache->wq) {
2495 *error = "could not create workqueue for metadata object";
2496 goto bad;
2497 }
b29d4986 2498 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
b29d4986 2499 INIT_WORK(&cache->migration_worker, check_migrations);
c6b4fcba 2500 INIT_DELAYED_WORK(&cache->waker, do_waker);
c6b4fcba 2501
b29d4986 2502 cache->prison = dm_bio_prison_create_v2(cache->wq);
c6b4fcba
JT
2503 if (!cache->prison) {
2504 *error = "could not create bio prison";
2505 goto bad;
2506 }
2507
6f1c819c
KO
2508 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2509 migration_cache);
2510 if (r) {
c6b4fcba
JT
2511 *error = "Error creating cache's migration mempool";
2512 goto bad;
2513 }
2514
c6b4fcba
JT
2515 cache->need_tick_bio = true;
2516 cache->sized = false;
65790ff9 2517 cache->invalidate = false;
c6b4fcba
JT
2518 cache->commit_requested = false;
2519 cache->loaded_mappings = false;
2520 cache->loaded_discards = false;
2521
2522 load_stats(cache);
2523
2524 atomic_set(&cache->stats.demotion, 0);
2525 atomic_set(&cache->stats.promotion, 0);
2526 atomic_set(&cache->stats.copies_avoided, 0);
2527 atomic_set(&cache->stats.cache_cell_clash, 0);
2528 atomic_set(&cache->stats.commit_count, 0);
2529 atomic_set(&cache->stats.discard_count, 0);
2530
65790ff9
JT
2531 spin_lock_init(&cache->invalidation_lock);
2532 INIT_LIST_HEAD(&cache->invalidation_requests);
2533
b29d4986
JT
2534 batcher_init(&cache->committer, commit_op, cache,
2535 issue_op, cache, cache->wq);
dc4fa29f 2536 dm_iot_init(&cache->tracker);
066dbaa3 2537
b29d4986
JT
2538 init_rwsem(&cache->background_work_lock);
2539 prevent_background_work(cache);
2540
c6b4fcba
JT
2541 *result = cache;
2542 return 0;
c6b4fcba
JT
2543bad:
2544 destroy(cache);
2545 return r;
2546}
2547
2548static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2549{
2550 unsigned i;
2551 const char **copy;
2552
2553 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2554 if (!copy)
2555 return -ENOMEM;
2556 for (i = 0; i < argc; i++) {
2557 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2558 if (!copy[i]) {
2559 while (i--)
2560 kfree(copy[i]);
2561 kfree(copy);
2562 return -ENOMEM;
2563 }
2564 }
2565
2566 cache->nr_ctr_args = argc;
2567 cache->ctr_args = copy;
2568
2569 return 0;
2570}
2571
2572static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2573{
2574 int r = -EINVAL;
2575 struct cache_args *ca;
2576 struct cache *cache = NULL;
2577
2578 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2579 if (!ca) {
2580 ti->error = "Error allocating memory for cache";
2581 return -ENOMEM;
2582 }
2583 ca->ti = ti;
2584
2585 r = parse_cache_args(ca, argc, argv, &ti->error);
2586 if (r)
2587 goto out;
2588
2589 r = cache_create(ca, &cache);
617a0b89
HM
2590 if (r)
2591 goto out;
c6b4fcba
JT
2592
2593 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2594 if (r) {
2595 destroy(cache);
2596 goto out;
2597 }
2598
2599 ti->private = cache;
c6b4fcba
JT
2600out:
2601 destroy_cache_args(ca);
2602 return r;
2603}
2604
651f5fa2
JT
2605/*----------------------------------------------------------------*/
2606
2607static int cache_map(struct dm_target *ti, struct bio *bio)
c6b4fcba 2608{
651f5fa2
JT
2609 struct cache *cache = ti->private;
2610
c6b4fcba 2611 int r;
b29d4986 2612 bool commit_needed;
c6b4fcba 2613 dm_oblock_t block = get_bio_block(cache, bio);
c6b4fcba 2614
693b960e 2615 init_per_bio_data(bio);
e893fba9 2616 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
c6b4fcba
JT
2617 /*
2618 * This can only occur if the io goes to a partial block at
2619 * the end of the origin device. We don't cache these.
2620 * Just remap to the origin and carry on.
2621 */
e893fba9 2622 remap_to_origin(cache, bio);
651f5fa2 2623 accounted_begin(cache, bio);
c6b4fcba
JT
2624 return DM_MAPIO_REMAPPED;
2625 }
2626
651f5fa2 2627 if (discard_or_flush(bio)) {
c6b4fcba
JT
2628 defer_bio(cache, bio);
2629 return DM_MAPIO_SUBMITTED;
2630 }
2631
b29d4986
JT
2632 r = map_bio(cache, bio, block, &commit_needed);
2633 if (commit_needed)
2634 schedule_commit(&cache->committer);
c6b4fcba 2635
2ee57d58 2636 return r;
c6b4fcba
JT
2637}
2638
693b960e 2639static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
c6b4fcba
JT
2640{
2641 struct cache *cache = ti->private;
2642 unsigned long flags;
693b960e 2643 struct per_bio_data *pb = get_per_bio_data(bio);
c6b4fcba
JT
2644
2645 if (pb->tick) {
fba10109 2646 policy_tick(cache->policy, false);
c6b4fcba
JT
2647
2648 spin_lock_irqsave(&cache->lock, flags);
2649 cache->need_tick_bio = true;
2650 spin_unlock_irqrestore(&cache->lock, flags);
2651 }
2652
b29d4986 2653 bio_drop_shared_lock(cache, bio);
066dbaa3 2654 accounted_complete(cache, bio);
c6b4fcba 2655
1be56909 2656 return DM_ENDIO_DONE;
c6b4fcba
JT
2657}
2658
2659static int write_dirty_bitset(struct cache *cache)
2660{
629d0a8a 2661 int r;
c6b4fcba 2662
028ae9f7
JT
2663 if (get_cache_mode(cache) >= CM_READ_ONLY)
2664 return -EINVAL;
2665
629d0a8a
JT
2666 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2667 if (r)
2668 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
c6b4fcba 2669
629d0a8a 2670 return r;
c6b4fcba
JT
2671}
2672
2673static int write_discard_bitset(struct cache *cache)
2674{
2675 unsigned i, r;
2676
028ae9f7
JT
2677 if (get_cache_mode(cache) >= CM_READ_ONLY)
2678 return -EINVAL;
2679
1bad9bc4
JT
2680 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2681 cache->discard_nr_blocks);
c6b4fcba 2682 if (r) {
b61d9509 2683 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
028ae9f7 2684 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
c6b4fcba
JT
2685 return r;
2686 }
2687
1bad9bc4
JT
2688 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2689 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2690 is_discarded(cache, to_dblock(i)));
028ae9f7
JT
2691 if (r) {
2692 metadata_operation_failed(cache, "dm_cache_set_discard", r);
c6b4fcba 2693 return r;
028ae9f7
JT
2694 }
2695 }
2696
2697 return 0;
2698}
2699
2700static int write_hints(struct cache *cache)
2701{
2702 int r;
2703
2704 if (get_cache_mode(cache) >= CM_READ_ONLY)
2705 return -EINVAL;
2706
2707 r = dm_cache_write_hints(cache->cmd, cache->policy);
2708 if (r) {
2709 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2710 return r;
c6b4fcba
JT
2711 }
2712
2713 return 0;
2714}
2715
c6b4fcba
JT
2716/*
2717 * returns true on success
2718 */
2719static bool sync_metadata(struct cache *cache)
2720{
2721 int r1, r2, r3, r4;
2722
2723 r1 = write_dirty_bitset(cache);
2724 if (r1)
b61d9509 2725 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
c6b4fcba
JT
2726
2727 r2 = write_discard_bitset(cache);
2728 if (r2)
b61d9509 2729 DMERR("%s: could not write discard bitset", cache_device_name(cache));
c6b4fcba
JT
2730
2731 save_stats(cache);
2732
028ae9f7 2733 r3 = write_hints(cache);
c6b4fcba 2734 if (r3)
b61d9509 2735 DMERR("%s: could not write hints", cache_device_name(cache));
c6b4fcba
JT
2736
2737 /*
2738 * If writing the above metadata failed, we still commit, but don't
2739 * set the clean shutdown flag. This will effectively force every
2740 * dirty bit to be set on reload.
2741 */
028ae9f7 2742 r4 = commit(cache, !r1 && !r2 && !r3);
c6b4fcba 2743 if (r4)
b61d9509 2744 DMERR("%s: could not write cache metadata", cache_device_name(cache));
c6b4fcba
JT
2745
2746 return !r1 && !r2 && !r3 && !r4;
2747}
2748
2749static void cache_postsuspend(struct dm_target *ti)
2750{
2751 struct cache *cache = ti->private;
2752
b29d4986
JT
2753 prevent_background_work(cache);
2754 BUG_ON(atomic_read(&cache->nr_io_migrations));
2755
7cdf6a0a
MP
2756 cancel_delayed_work_sync(&cache->waker);
2757 drain_workqueue(cache->wq);
701e03e4 2758 WARN_ON(cache->tracker.in_flight);
b29d4986
JT
2759
2760 /*
2761 * If it's a flush suspend there won't be any deferred bios, so this
2762 * call is harmless.
2763 */
651f5fa2 2764 requeue_deferred_bios(cache);
c6b4fcba 2765
028ae9f7
JT
2766 if (get_cache_mode(cache) == CM_WRITE)
2767 (void) sync_metadata(cache);
c6b4fcba
JT
2768}
2769
2770static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2771 bool dirty, uint32_t hint, bool hint_valid)
2772{
c6b4fcba
JT
2773 struct cache *cache = context;
2774
449b668c
JT
2775 if (dirty) {
2776 set_bit(from_cblock(cblock), cache->dirty_bitset);
2777 atomic_inc(&cache->nr_dirty);
2778 } else
2779 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2780
b7770923 2781 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
c6b4fcba
JT
2782}
2783
3e2e1c30
JT
2784/*
2785 * The discard block size in the on disk metadata is not
2786 * neccessarily the same as we're currently using. So we have to
2787 * be careful to only set the discarded attribute if we know it
2788 * covers a complete block of the new size.
2789 */
2790struct discard_load_info {
2791 struct cache *cache;
2792
2793 /*
2794 * These blocks are sized using the on disk dblock size, rather
2795 * than the current one.
2796 */
2797 dm_block_t block_size;
2798 dm_block_t discard_begin, discard_end;
2799};
2800
2801static void discard_load_info_init(struct cache *cache,
2802 struct discard_load_info *li)
2803{
2804 li->cache = cache;
2805 li->discard_begin = li->discard_end = 0;
2806}
2807
2808static void set_discard_range(struct discard_load_info *li)
2809{
2810 sector_t b, e;
2811
2812 if (li->discard_begin == li->discard_end)
2813 return;
2814
2815 /*
2816 * Convert to sectors.
2817 */
2818 b = li->discard_begin * li->block_size;
2819 e = li->discard_end * li->block_size;
2820
2821 /*
2822 * Then convert back to the current dblock size.
2823 */
2824 b = dm_sector_div_up(b, li->cache->discard_block_size);
2825 sector_div(e, li->cache->discard_block_size);
2826
2827 /*
2828 * The origin may have shrunk, so we need to check we're still in
2829 * bounds.
2830 */
2831 if (e > from_dblock(li->cache->discard_nr_blocks))
2832 e = from_dblock(li->cache->discard_nr_blocks);
2833
2834 for (; b < e; b++)
2835 set_discard(li->cache, to_dblock(b));
2836}
2837
c6b4fcba 2838static int load_discard(void *context, sector_t discard_block_size,
1bad9bc4 2839 dm_dblock_t dblock, bool discard)
c6b4fcba 2840{
3e2e1c30 2841 struct discard_load_info *li = context;
c6b4fcba 2842
3e2e1c30 2843 li->block_size = discard_block_size;
1bad9bc4 2844
3e2e1c30
JT
2845 if (discard) {
2846 if (from_dblock(dblock) == li->discard_end)
2847 /*
2848 * We're already in a discard range, just extend it.
2849 */
2850 li->discard_end = li->discard_end + 1ULL;
2851
2852 else {
2853 /*
2854 * Emit the old range and start a new one.
2855 */
2856 set_discard_range(li);
2857 li->discard_begin = from_dblock(dblock);
2858 li->discard_end = li->discard_begin + 1ULL;
2859 }
2860 } else {
2861 set_discard_range(li);
2862 li->discard_begin = li->discard_end = 0;
2863 }
c6b4fcba
JT
2864
2865 return 0;
2866}
2867
f494a9c6
JT
2868static dm_cblock_t get_cache_dev_size(struct cache *cache)
2869{
2870 sector_t size = get_dev_size(cache->cache_dev);
2871 (void) sector_div(size, cache->sectors_per_block);
2872 return to_cblock(size);
2873}
2874
2875static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2876{
5d07384a
MS
2877 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2878 if (cache->sized) {
2879 DMERR("%s: unable to extend cache due to missing cache table reload",
2880 cache_device_name(cache));
2881 return false;
2882 }
2883 }
f494a9c6
JT
2884
2885 /*
2886 * We can't drop a dirty block when shrinking the cache.
2887 */
2888 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2889 new_size = to_cblock(from_cblock(new_size) + 1);
2890 if (is_dirty(cache, new_size)) {
b61d9509
MS
2891 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2892 cache_device_name(cache),
f494a9c6
JT
2893 (unsigned long long) from_cblock(new_size));
2894 return false;
2895 }
2896 }
2897
2898 return true;
2899}
2900
2901static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2902{
2903 int r;
2904
08844800 2905 r = dm_cache_resize(cache->cmd, new_size);
f494a9c6 2906 if (r) {
b61d9509 2907 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
028ae9f7 2908 metadata_operation_failed(cache, "dm_cache_resize", r);
f494a9c6
JT
2909 return r;
2910 }
2911
d1d9220c 2912 set_cache_size(cache, new_size);
f494a9c6
JT
2913
2914 return 0;
2915}
2916
c6b4fcba
JT
2917static int cache_preresume(struct dm_target *ti)
2918{
2919 int r = 0;
2920 struct cache *cache = ti->private;
f494a9c6 2921 dm_cblock_t csize = get_cache_dev_size(cache);
c6b4fcba
JT
2922
2923 /*
2924 * Check to see if the cache has resized.
2925 */
f494a9c6
JT
2926 if (!cache->sized) {
2927 r = resize_cache_dev(cache, csize);
2928 if (r)
c6b4fcba 2929 return r;
c6b4fcba
JT
2930
2931 cache->sized = true;
f494a9c6
JT
2932
2933 } else if (csize != cache->cache_size) {
2934 if (!can_resize(cache, csize))
2935 return -EINVAL;
2936
2937 r = resize_cache_dev(cache, csize);
2938 if (r)
2939 return r;
c6b4fcba
JT
2940 }
2941
2942 if (!cache->loaded_mappings) {
ea2dd8c1 2943 r = dm_cache_load_mappings(cache->cmd, cache->policy,
c6b4fcba
JT
2944 load_mapping, cache);
2945 if (r) {
b61d9509 2946 DMERR("%s: could not load cache mappings", cache_device_name(cache));
028ae9f7 2947 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
c6b4fcba
JT
2948 return r;
2949 }
2950
2951 cache->loaded_mappings = true;
2952 }
2953
2954 if (!cache->loaded_discards) {
3e2e1c30
JT
2955 struct discard_load_info li;
2956
2957 /*
2958 * The discard bitset could have been resized, or the
2959 * discard block size changed. To be safe we start by
2960 * setting every dblock to not discarded.
2961 */
2962 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2963
2964 discard_load_info_init(cache, &li);
2965 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
c6b4fcba 2966 if (r) {
b61d9509 2967 DMERR("%s: could not load origin discards", cache_device_name(cache));
028ae9f7 2968 metadata_operation_failed(cache, "dm_cache_load_discards", r);
c6b4fcba
JT
2969 return r;
2970 }
3e2e1c30 2971 set_discard_range(&li);
c6b4fcba
JT
2972
2973 cache->loaded_discards = true;
2974 }
2975
2976 return r;
2977}
2978
2979static void cache_resume(struct dm_target *ti)
2980{
2981 struct cache *cache = ti->private;
2982
2983 cache->need_tick_bio = true;
b29d4986 2984 allow_background_work(cache);
c6b4fcba
JT
2985 do_waker(&cache->waker.work);
2986}
2987
de7180ff
MS
2988static void emit_flags(struct cache *cache, char *result,
2989 unsigned maxlen, ssize_t *sz_ptr)
2990{
2991 ssize_t sz = *sz_ptr;
2992 struct cache_features *cf = &cache->features;
2993 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2994
2995 DMEMIT("%u ", count);
2996
2997 if (cf->metadata_version == 2)
2998 DMEMIT("metadata2 ");
2999
3000 if (writethrough_mode(cache))
3001 DMEMIT("writethrough ");
3002
3003 else if (passthrough_mode(cache))
3004 DMEMIT("passthrough ");
3005
3006 else if (writeback_mode(cache))
3007 DMEMIT("writeback ");
3008
3009 else {
3010 DMEMIT("unknown ");
3011 DMERR("%s: internal error: unknown io mode: %d",
3012 cache_device_name(cache), (int) cf->io_mode);
3013 }
3014
3015 if (!cf->discard_passdown)
3016 DMEMIT("no_discard_passdown ");
3017
3018 *sz_ptr = sz;
3019}
3020
c6b4fcba
JT
3021/*
3022 * Status format:
3023 *
6a388618
MS
3024 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3025 * <cache block size> <#used cache blocks>/<#total cache blocks>
c6b4fcba 3026 * <#read hits> <#read misses> <#write hits> <#write misses>
6a388618 3027 * <#demotions> <#promotions> <#dirty>
c6b4fcba
JT
3028 * <#features> <features>*
3029 * <#core args> <core args>
255eac20 3030 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
c6b4fcba
JT
3031 */
3032static void cache_status(struct dm_target *ti, status_type_t type,
3033 unsigned status_flags, char *result, unsigned maxlen)
3034{
3035 int r = 0;
3036 unsigned i;
3037 ssize_t sz = 0;
3038 dm_block_t nr_free_blocks_metadata = 0;
3039 dm_block_t nr_blocks_metadata = 0;
3040 char buf[BDEVNAME_SIZE];
3041 struct cache *cache = ti->private;
3042 dm_cblock_t residency;
d14fcf3d 3043 bool needs_check;
c6b4fcba
JT
3044
3045 switch (type) {
3046 case STATUSTYPE_INFO:
028ae9f7
JT
3047 if (get_cache_mode(cache) == CM_FAIL) {
3048 DMEMIT("Fail");
3049 break;
c6b4fcba
JT
3050 }
3051
028ae9f7
JT
3052 /* Commit to ensure statistics aren't out-of-date */
3053 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3054 (void) commit(cache, false);
3055
b61d9509 3056 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
c6b4fcba 3057 if (r) {
b61d9509
MS
3058 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3059 cache_device_name(cache), r);
c6b4fcba
JT
3060 goto err;
3061 }
3062
3063 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3064 if (r) {
b61d9509
MS
3065 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3066 cache_device_name(cache), r);
c6b4fcba
JT
3067 goto err;
3068 }
3069
3070 residency = policy_residency(cache->policy);
3071
ca763d0a 3072 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
895b47d7 3073 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
c6b4fcba
JT
3074 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3075 (unsigned long long)nr_blocks_metadata,
ca763d0a 3076 (unsigned long long)cache->sectors_per_block,
6a388618
MS
3077 (unsigned long long) from_cblock(residency),
3078 (unsigned long long) from_cblock(cache->cache_size),
c6b4fcba
JT
3079 (unsigned) atomic_read(&cache->stats.read_hit),
3080 (unsigned) atomic_read(&cache->stats.read_miss),
3081 (unsigned) atomic_read(&cache->stats.write_hit),
3082 (unsigned) atomic_read(&cache->stats.write_miss),
3083 (unsigned) atomic_read(&cache->stats.demotion),
3084 (unsigned) atomic_read(&cache->stats.promotion),
44fa816b 3085 (unsigned long) atomic_read(&cache->nr_dirty));
c6b4fcba 3086
de7180ff 3087 emit_flags(cache, result, maxlen, &sz);
c6b4fcba
JT
3088
3089 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2e68c4e6
MS
3090
3091 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
c6b4fcba 3092 if (sz < maxlen) {
028ae9f7 3093 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
c6b4fcba 3094 if (r)
b61d9509
MS
3095 DMERR("%s: policy_emit_config_values returned %d",
3096 cache_device_name(cache), r);
c6b4fcba
JT
3097 }
3098
028ae9f7
JT
3099 if (get_cache_mode(cache) == CM_READ_ONLY)
3100 DMEMIT("ro ");
3101 else
3102 DMEMIT("rw ");
3103
d14fcf3d
JT
3104 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3105
3106 if (r || needs_check)
255eac20
MS
3107 DMEMIT("needs_check ");
3108 else
3109 DMEMIT("- ");
3110
c6b4fcba
JT
3111 break;
3112
3113 case STATUSTYPE_TABLE:
3114 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3115 DMEMIT("%s ", buf);
3116 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3117 DMEMIT("%s ", buf);
3118 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3119 DMEMIT("%s", buf);
3120
3121 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3122 DMEMIT(" %s", cache->ctr_args[i]);
3123 if (cache->nr_ctr_args)
3124 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
8ec45662
TS
3125 break;
3126
3127 case STATUSTYPE_IMA:
3128 DMEMIT_TARGET_NAME_VERSION(ti->type);
3129 if (get_cache_mode(cache) == CM_FAIL)
3130 DMEMIT(",metadata_mode=fail");
3131 else if (get_cache_mode(cache) == CM_READ_ONLY)
3132 DMEMIT(",metadata_mode=ro");
3133 else
3134 DMEMIT(",metadata_mode=rw");
3135
3136 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3137 DMEMIT(",cache_metadata_device=%s", buf);
3138 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3139 DMEMIT(",cache_device=%s", buf);
3140 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3141 DMEMIT(",cache_origin_device=%s", buf);
3142 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3143 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3144 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3145 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3146 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3147 DMEMIT(";");
3148 break;
c6b4fcba
JT
3149 }
3150
3151 return;
3152
3153err:
3154 DMEMIT("Error");
3155}
3156
b29d4986
JT
3157/*
3158 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3159 * the one-past-the-end value.
3160 */
3161struct cblock_range {
3162 dm_cblock_t begin;
3163 dm_cblock_t end;
3164};
3165
c6b4fcba 3166/*
65790ff9
JT
3167 * A cache block range can take two forms:
3168 *
3169 * i) A single cblock, eg. '3456'
b29d4986 3170 * ii) A begin and end cblock with a dash between, eg. 123-234
65790ff9
JT
3171 */
3172static int parse_cblock_range(struct cache *cache, const char *str,
3173 struct cblock_range *result)
3174{
3175 char dummy;
3176 uint64_t b, e;
3177 int r;
3178
3179 /*
3180 * Try and parse form (ii) first.
3181 */
3182 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3183 if (r < 0)
3184 return r;
3185
3186 if (r == 2) {
3187 result->begin = to_cblock(b);
3188 result->end = to_cblock(e);
3189 return 0;
3190 }
3191
3192 /*
3193 * That didn't work, try form (i).
3194 */
3195 r = sscanf(str, "%llu%c", &b, &dummy);
3196 if (r < 0)
3197 return r;
3198
3199 if (r == 1) {
3200 result->begin = to_cblock(b);
3201 result->end = to_cblock(from_cblock(result->begin) + 1u);
3202 return 0;
3203 }
3204
b61d9509 3205 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
65790ff9
JT
3206 return -EINVAL;
3207}
3208
3209static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3210{
3211 uint64_t b = from_cblock(range->begin);
3212 uint64_t e = from_cblock(range->end);
3213 uint64_t n = from_cblock(cache->cache_size);
3214
3215 if (b >= n) {
b61d9509
MS
3216 DMERR("%s: begin cblock out of range: %llu >= %llu",
3217 cache_device_name(cache), b, n);
65790ff9
JT
3218 return -EINVAL;
3219 }
3220
3221 if (e > n) {
b61d9509
MS
3222 DMERR("%s: end cblock out of range: %llu > %llu",
3223 cache_device_name(cache), e, n);
65790ff9
JT
3224 return -EINVAL;
3225 }
3226
3227 if (b >= e) {
b61d9509
MS
3228 DMERR("%s: invalid cblock range: %llu >= %llu",
3229 cache_device_name(cache), b, e);
65790ff9
JT
3230 return -EINVAL;
3231 }
3232
3233 return 0;
3234}
3235
b29d4986
JT
3236static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3237{
3238 return to_cblock(from_cblock(b) + 1);
3239}
3240
65790ff9
JT
3241static int request_invalidation(struct cache *cache, struct cblock_range *range)
3242{
b29d4986 3243 int r = 0;
65790ff9 3244
b29d4986
JT
3245 /*
3246 * We don't need to do any locking here because we know we're in
3247 * passthrough mode. There's is potential for a race between an
3248 * invalidation triggered by an io and an invalidation message. This
3249 * is harmless, we must not worry if the policy call fails.
3250 */
3251 while (range->begin != range->end) {
3252 r = invalidate_cblock(cache, range->begin);
3253 if (r)
3254 return r;
65790ff9 3255
b29d4986
JT
3256 range->begin = cblock_succ(range->begin);
3257 }
65790ff9 3258
b29d4986
JT
3259 cache->commit_requested = true;
3260 return r;
65790ff9
JT
3261}
3262
3263static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3264 const char **cblock_ranges)
3265{
3266 int r = 0;
3267 unsigned i;
3268 struct cblock_range range;
3269
8e3c3827 3270 if (!passthrough_mode(cache)) {
b61d9509
MS
3271 DMERR("%s: cache has to be in passthrough mode for invalidation",
3272 cache_device_name(cache));
65790ff9
JT
3273 return -EPERM;
3274 }
3275
3276 for (i = 0; i < count; i++) {
3277 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3278 if (r)
3279 break;
3280
3281 r = validate_cblock_range(cache, &range);
3282 if (r)
3283 break;
3284
3285 /*
3286 * Pass begin and end origin blocks to the worker and wake it.
3287 */
3288 r = request_invalidation(cache, &range);
3289 if (r)
3290 break;
3291 }
3292
3293 return r;
3294}
3295
3296/*
3297 * Supports
3298 * "<key> <value>"
3299 * and
3300 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
c6b4fcba
JT
3301 *
3302 * The key migration_threshold is supported by the cache target core.
3303 */
1eb5fa84
MS
3304static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3305 char *result, unsigned maxlen)
c6b4fcba 3306{
c6b4fcba
JT
3307 struct cache *cache = ti->private;
3308
65790ff9
JT
3309 if (!argc)
3310 return -EINVAL;
3311
028ae9f7 3312 if (get_cache_mode(cache) >= CM_READ_ONLY) {
b61d9509
MS
3313 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3314 cache_device_name(cache));
028ae9f7
JT
3315 return -EOPNOTSUPP;
3316 }
3317
7b6b2bc9 3318 if (!strcasecmp(argv[0], "invalidate_cblocks"))
65790ff9
JT
3319 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3320
c6b4fcba
JT
3321 if (argc != 2)
3322 return -EINVAL;
3323
2f14f4b5 3324 return set_config_value(cache, argv[0], argv[1]);
c6b4fcba
JT
3325}
3326
3327static int cache_iterate_devices(struct dm_target *ti,
3328 iterate_devices_callout_fn fn, void *data)
3329{
3330 int r = 0;
3331 struct cache *cache = ti->private;
3332
3333 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3334 if (!r)
3335 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3336
3337 return r;
3338}
3339
de7180ff
MS
3340static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3341{
3342 struct request_queue *q = bdev_get_queue(origin_bdev);
3343
63508e38 3344 return blk_queue_discard(q);
de7180ff
MS
3345}
3346
3347/*
3348 * If discard_passdown was enabled verify that the origin device
3349 * supports discards. Disable discard_passdown if not.
3350 */
3351static void disable_passdown_if_not_supported(struct cache *cache)
3352{
3353 struct block_device *origin_bdev = cache->origin_dev->bdev;
3354 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3355 const char *reason = NULL;
3356 char buf[BDEVNAME_SIZE];
3357
3358 if (!cache->features.discard_passdown)
3359 return;
3360
3361 if (!origin_dev_supports_discard(origin_bdev))
3362 reason = "discard unsupported";
3363
3364 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3365 reason = "max discard sectors smaller than a block";
3366
3367 if (reason) {
3368 DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3369 bdevname(origin_bdev, buf), reason);
3370 cache->features.discard_passdown = false;
3371 }
3372}
3373
c6b4fcba
JT
3374static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3375{
de7180ff
MS
3376 struct block_device *origin_bdev = cache->origin_dev->bdev;
3377 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3378
3379 if (!cache->features.discard_passdown) {
3380 /* No passdown is done so setting own virtual limits */
3381 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3382 cache->origin_sectors);
3383 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3384 return;
3385 }
3386
c6b4fcba 3387 /*
de7180ff
MS
3388 * cache_iterate_devices() is stacking both origin and fast device limits
3389 * but discards aren't passed to fast device, so inherit origin's limits.
c6b4fcba 3390 */
de7180ff
MS
3391 limits->max_discard_sectors = origin_limits->max_discard_sectors;
3392 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3393 limits->discard_granularity = origin_limits->discard_granularity;
3394 limits->discard_alignment = origin_limits->discard_alignment;
3395 limits->discard_misaligned = origin_limits->discard_misaligned;
c6b4fcba
JT
3396}
3397
3398static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3399{
3400 struct cache *cache = ti->private;
f6109372 3401 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
c6b4fcba 3402
f6109372
MS
3403 /*
3404 * If the system-determined stacked limits are compatible with the
3405 * cache's blocksize (io_opt is a factor) do not override them.
3406 */
3407 if (io_opt_sectors < cache->sectors_per_block ||
3408 do_div(io_opt_sectors, cache->sectors_per_block)) {
b0246530 3409 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
f6109372
MS
3410 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3411 }
de7180ff
MS
3412
3413 disable_passdown_if_not_supported(cache);
c6b4fcba
JT
3414 set_discard_limits(cache, limits);
3415}
3416
3417/*----------------------------------------------------------------*/
3418
3419static struct target_type cache_target = {
3420 .name = "cache",
636be424 3421 .version = {2, 2, 0},
c6b4fcba
JT
3422 .module = THIS_MODULE,
3423 .ctr = cache_ctr,
3424 .dtr = cache_dtr,
3425 .map = cache_map,
3426 .end_io = cache_end_io,
3427 .postsuspend = cache_postsuspend,
3428 .preresume = cache_preresume,
3429 .resume = cache_resume,
3430 .status = cache_status,
3431 .message = cache_message,
3432 .iterate_devices = cache_iterate_devices,
c6b4fcba
JT
3433 .io_hints = cache_io_hints,
3434};
3435
3436static int __init dm_cache_init(void)
3437{
3438 int r;
3439
c6b4fcba 3440 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
c7cd5550 3441 if (!migration_cache)
c6b4fcba 3442 return -ENOMEM;
c6b4fcba 3443
7e6358d2 3444 r = dm_register_target(&cache_target);
3445 if (r) {
3446 DMERR("cache target registration failed: %d", r);
c7cd5550 3447 kmem_cache_destroy(migration_cache);
7e6358d2 3448 return r;
3449 }
3450
c6b4fcba
JT
3451 return 0;
3452}
3453
3454static void __exit dm_cache_exit(void)
3455{
3456 dm_unregister_target(&cache_target);
3457 kmem_cache_destroy(migration_cache);
3458}
3459
3460module_init(dm_cache_init);
3461module_exit(dm_cache_exit);
3462
3463MODULE_DESCRIPTION(DM_NAME " cache target");
3464MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3465MODULE_LICENSE("GPL");