]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/dm-cache-target.c
dm cache: pass cache structure to mode functions
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm-cache-target.c
CommitLineData
c6b4fcba
JT
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
b29d4986 8#include "dm-bio-prison-v2.h"
b844fe69 9#include "dm-bio-record.h"
c6b4fcba
JT
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
0f30af98 14#include <linux/jiffies.h>
c6b4fcba
JT
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
b29d4986 18#include <linux/rwsem.h>
c6b4fcba
JT
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
b29d4986
JT
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40/*----------------------------------------------------------------*/
77289d32
JT
41
42struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84}
85
86static void iot_io_begin(struct io_tracker *iot, sector_t len)
87{
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93}
94
95static void __iot_io_end(struct io_tracker *iot, sector_t len)
96{
072792dc
JT
97 if (!len)
98 return;
99
77289d32
JT
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103}
104
105static void iot_io_end(struct io_tracker *iot, sector_t len)
106{
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112}
113
114/*----------------------------------------------------------------*/
115
c6b4fcba 116/*
b29d4986
JT
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
c6b4fcba 119 */
b29d4986
JT
120struct continuation {
121 struct work_struct ws;
4e4cbee9 122 blk_status_t input;
b29d4986
JT
123};
124
125static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127{
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130}
131
132static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134{
135 queue_work(wq, &k->ws);
136}
c6b4fcba
JT
137
138/*----------------------------------------------------------------*/
139
b29d4986
JT
140/*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
4e4cbee9 148 blk_status_t (*commit_op)(void *context);
b29d4986
JT
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169};
170
171static void __commit(struct work_struct *_ws)
172{
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
4e4cbee9 174 blk_status_t r;
b29d4986
JT
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
4e4cbee9 207 bio->bi_status = r;
b29d4986
JT
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212}
213
214static void batcher_init(struct batcher *b,
4e4cbee9 215 blk_status_t (*commit_op)(void *),
b29d4986
JT
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220{
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232}
233
234static void async_commit(struct batcher *b)
235{
236 queue_work(b->wq, &b->commit_work);
237}
238
239static void continue_after_commit(struct batcher *b, struct continuation *k)
240{
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251}
252
253/*
254 * Bios are errored if commit failed.
255 */
256static void issue_after_commit(struct batcher *b, struct bio *bio)
257{
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268}
269
270/*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
273static void schedule_commit(struct batcher *b)
274{
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285}
286
c9d28d5d
JT
287/*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
c9d28d5d
JT
294};
295
296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298{
299 h->bi_end_io = bio->bi_end_io;
c9d28d5d
JT
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303}
304
305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306{
307 bio->bi_end_io = h->bi_end_io;
c9d28d5d
JT
308}
309
310/*----------------------------------------------------------------*/
311
c6b4fcba
JT
312#define MIGRATION_POOL_SIZE 128
313#define COMMIT_PERIOD HZ
314#define MIGRATION_COUNT_WINDOW 10
315
316/*
05473044
MS
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
c6b4fcba
JT
319 */
320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
05473044 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
c6b4fcba 322
2ee57d58 323enum cache_metadata_mode {
c6b4fcba
JT
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
028ae9f7 326 CM_FAIL
c6b4fcba
JT
327};
328
2ee57d58
JT
329enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350};
351
c6b4fcba 352struct cache_features {
2ee57d58
JT
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
629d0a8a 355 unsigned metadata_version;
c6b4fcba
JT
356};
357
358struct cache_stats {
359 atomic_t read_hit;
360 atomic_t read_miss;
361 atomic_t write_hit;
362 atomic_t write_miss;
363 atomic_t demotion;
364 atomic_t promotion;
b29d4986 365 atomic_t writeback;
c6b4fcba
JT
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
370};
371
372struct cache {
373 struct dm_target *ti;
374 struct dm_target_callbacks callbacks;
375
c9ec5d7c
MS
376 struct dm_cache_metadata *cmd;
377
c6b4fcba
JT
378 /*
379 * Metadata is written to this device.
380 */
381 struct dm_dev *metadata_dev;
382
383 /*
384 * The slower of the two data devices. Typically a spindle.
385 */
386 struct dm_dev *origin_dev;
387
388 /*
389 * The faster of the two data devices. Typically an SSD.
390 */
391 struct dm_dev *cache_dev;
392
c6b4fcba
JT
393 /*
394 * Size of the origin device in _complete_ blocks and native sectors.
395 */
396 dm_oblock_t origin_blocks;
397 sector_t origin_sectors;
398
399 /*
400 * Size of the cache device in blocks.
401 */
402 dm_cblock_t cache_size;
403
404 /*
405 * Fields for converting from sectors to blocks.
406 */
ca763d0a 407 sector_t sectors_per_block;
c6b4fcba
JT
408 int sectors_per_block_shift;
409
c6b4fcba 410 spinlock_t lock;
651f5fa2 411 struct list_head deferred_cells;
c6b4fcba 412 struct bio_list deferred_bios;
e2e74d61 413 struct bio_list deferred_writethrough_bios;
c6b4fcba 414 sector_t migration_threshold;
c6b4fcba 415 wait_queue_head_t migration_wait;
a59db676
JT
416 atomic_t nr_allocated_migrations;
417
418 /*
419 * The number of in flight migrations that are performing
420 * background io. eg, promotion, writeback.
421 */
422 atomic_t nr_io_migrations;
c6b4fcba 423
b29d4986 424 struct rw_semaphore quiesce_lock;
66cb1910 425
c6b4fcba
JT
426 /*
427 * cache_size entries, dirty if set
428 */
44fa816b 429 atomic_t nr_dirty;
c6b4fcba
JT
430 unsigned long *dirty_bitset;
431
432 /*
433 * origin_blocks entries, discarded if set.
434 */
1bad9bc4 435 dm_dblock_t discard_nr_blocks;
c6b4fcba 436 unsigned long *discard_bitset;
08b18451 437 uint32_t discard_block_size; /* a power of 2 times sectors per block */
c9ec5d7c
MS
438
439 /*
440 * Rather than reconstructing the table line for the status we just
441 * save it and regurgitate.
442 */
443 unsigned nr_ctr_args;
444 const char **ctr_args;
c6b4fcba
JT
445
446 struct dm_kcopyd_client *copier;
447 struct workqueue_struct *wq;
b29d4986
JT
448 struct work_struct deferred_bio_worker;
449 struct work_struct deferred_writethrough_worker;
450 struct work_struct migration_worker;
c6b4fcba 451 struct delayed_work waker;
b29d4986 452 struct dm_bio_prison_v2 *prison;
c6b4fcba
JT
453
454 mempool_t *migration_pool;
c6b4fcba
JT
455
456 struct dm_cache_policy *policy;
457 unsigned policy_nr_args;
458
459 bool need_tick_bio:1;
460 bool sized:1;
65790ff9 461 bool invalidate:1;
c6b4fcba
JT
462 bool commit_requested:1;
463 bool loaded_mappings:1;
464 bool loaded_discards:1;
465
c6b4fcba 466 /*
c9ec5d7c 467 * Cache features such as write-through.
c6b4fcba 468 */
c9ec5d7c
MS
469 struct cache_features features;
470
471 struct cache_stats stats;
65790ff9
JT
472
473 /*
474 * Invalidation fields.
475 */
476 spinlock_t invalidation_lock;
477 struct list_head invalidation_requests;
066dbaa3 478
701e03e4 479 struct io_tracker tracker;
b29d4986
JT
480
481 struct work_struct commit_ws;
482 struct batcher committer;
483
484 struct rw_semaphore background_work_lock;
c6b4fcba
JT
485};
486
487struct per_bio_data {
488 bool tick:1;
489 unsigned req_nr:2;
b29d4986 490 struct dm_bio_prison_cell_v2 *cell;
c6eda5e8 491 struct dm_hook_info hook_info;
066dbaa3 492 sector_t len;
e2e74d61 493
19b0092e
MS
494 /*
495 * writethrough fields. These MUST remain at the end of this
496 * structure and the 'cache' member must be the first as it
aeed1420 497 * is used to determine the offset of the writethrough fields.
19b0092e 498 */
e2e74d61
JT
499 struct cache *cache;
500 dm_cblock_t cblock;
b844fe69 501 struct dm_bio_details bio_details;
c6b4fcba
JT
502};
503
504struct dm_cache_migration {
b29d4986 505 struct continuation k;
c6b4fcba
JT
506 struct cache *cache;
507
b29d4986
JT
508 struct policy_work *op;
509 struct bio *overwrite_bio;
510 struct dm_bio_prison_cell_v2 *cell;
c6b4fcba 511
b29d4986
JT
512 dm_cblock_t invalidate_cblock;
513 dm_oblock_t invalidate_oblock;
c6b4fcba
JT
514};
515
b29d4986
JT
516/*----------------------------------------------------------------*/
517
8e3c3827 518static bool writethrough_mode(struct cache *cache)
b29d4986 519{
8e3c3827 520 return cache->features.io_mode == CM_IO_WRITETHROUGH;
b29d4986
JT
521}
522
8e3c3827 523static bool writeback_mode(struct cache *cache)
b29d4986 524{
8e3c3827 525 return cache->features.io_mode == CM_IO_WRITEBACK;
b29d4986
JT
526}
527
8e3c3827 528static inline bool passthrough_mode(struct cache *cache)
b29d4986 529{
8e3c3827 530 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
b29d4986
JT
531}
532
533/*----------------------------------------------------------------*/
534
535static void wake_deferred_bio_worker(struct cache *cache)
536{
537 queue_work(cache->wq, &cache->deferred_bio_worker);
538}
c6b4fcba 539
b29d4986
JT
540static void wake_deferred_writethrough_worker(struct cache *cache)
541{
542 queue_work(cache->wq, &cache->deferred_writethrough_worker);
543}
028ae9f7 544
b29d4986 545static void wake_migration_worker(struct cache *cache)
c6b4fcba 546{
8e3c3827 547 if (passthrough_mode(cache))
b29d4986
JT
548 return;
549
550 queue_work(cache->wq, &cache->migration_worker);
c6b4fcba
JT
551}
552
553/*----------------------------------------------------------------*/
554
b29d4986 555static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
c6b4fcba 556{
b29d4986 557 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
c6b4fcba
JT
558}
559
b29d4986 560static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
c6b4fcba 561{
b29d4986 562 dm_bio_prison_free_cell_v2(cache->prison, cell);
c6b4fcba
JT
563}
564
a59db676
JT
565static struct dm_cache_migration *alloc_migration(struct cache *cache)
566{
567 struct dm_cache_migration *mg;
568
569 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
570 if (mg) {
571 mg->cache = cache;
572 atomic_inc(&mg->cache->nr_allocated_migrations);
573 }
574
575 return mg;
576}
577
578static void free_migration(struct dm_cache_migration *mg)
579{
88bf5184 580 struct cache *cache = mg->cache;
a59db676 581
88bf5184
JT
582 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
583 wake_up(&cache->migration_wait);
584
585 mempool_free(mg, cache->migration_pool);
a59db676
JT
586}
587
b29d4986 588/*----------------------------------------------------------------*/
c6b4fcba 589
b29d4986 590static inline dm_oblock_t oblock_succ(dm_oblock_t b)
c6b4fcba 591{
b29d4986 592 return to_oblock(from_oblock(b) + 1ull);
c6b4fcba
JT
593}
594
b29d4986 595static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
c6b4fcba 596{
b29d4986
JT
597 key->virtual = 0;
598 key->dev = 0;
599 key->block_begin = from_oblock(begin);
600 key->block_end = from_oblock(end);
c6b4fcba
JT
601}
602
603/*
b29d4986
JT
604 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
605 * level 1 which prevents *both* READs and WRITEs.
c6b4fcba 606 */
b29d4986
JT
607#define WRITE_LOCK_LEVEL 0
608#define READ_WRITE_LOCK_LEVEL 1
609
610static unsigned lock_level(struct bio *bio)
c6b4fcba 611{
b29d4986
JT
612 return bio_data_dir(bio) == WRITE ?
613 WRITE_LOCK_LEVEL :
614 READ_WRITE_LOCK_LEVEL;
615}
c6b4fcba 616
b29d4986
JT
617/*----------------------------------------------------------------
618 * Per bio data
619 *--------------------------------------------------------------*/
c6b4fcba 620
b29d4986
JT
621/*
622 * If using writeback, leave out struct per_bio_data's writethrough fields.
623 */
624#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
625#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
c6b4fcba 626
b29d4986
JT
627static size_t get_per_bio_data_size(struct cache *cache)
628{
8e3c3827 629 return writethrough_mode(cache) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
c6b4fcba
JT
630}
631
b29d4986 632static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
c6b4fcba 633{
b29d4986
JT
634 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
635 BUG_ON(!pb);
636 return pb;
637}
c6b4fcba 638
b29d4986
JT
639static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
640{
641 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
c6b4fcba 642
b29d4986
JT
643 pb->tick = false;
644 pb->req_nr = dm_bio_get_target_bio_nr(bio);
645 pb->cell = NULL;
646 pb->len = 0;
647
648 return pb;
c6b4fcba
JT
649}
650
651/*----------------------------------------------------------------*/
652
b29d4986 653static void defer_bio(struct cache *cache, struct bio *bio)
c6b4fcba 654{
b29d4986 655 unsigned long flags;
c6b4fcba 656
b29d4986
JT
657 spin_lock_irqsave(&cache->lock, flags);
658 bio_list_add(&cache->deferred_bios, bio);
659 spin_unlock_irqrestore(&cache->lock, flags);
660
661 wake_deferred_bio_worker(cache);
662}
c6b4fcba 663
b29d4986 664static void defer_bios(struct cache *cache, struct bio_list *bios)
c6b4fcba 665{
b29d4986 666 unsigned long flags;
c6b4fcba 667
b29d4986
JT
668 spin_lock_irqsave(&cache->lock, flags);
669 bio_list_merge(&cache->deferred_bios, bios);
670 bio_list_init(bios);
671 spin_unlock_irqrestore(&cache->lock, flags);
c6b4fcba 672
b29d4986 673 wake_deferred_bio_worker(cache);
c6b4fcba
JT
674}
675
b29d4986
JT
676/*----------------------------------------------------------------*/
677
678static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
7ae34e77 679{
b29d4986
JT
680 bool r;
681 size_t pb_size;
682 struct per_bio_data *pb;
683 struct dm_cell_key_v2 key;
7ae34e77 684 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
b29d4986 685 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
7ae34e77 686
b29d4986
JT
687 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
688 if (!cell_prealloc) {
689 defer_bio(cache, bio);
690 return false;
691 }
692
693 build_key(oblock, end, &key);
694 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
695 if (!r) {
696 /*
697 * Failed to get the lock.
698 */
699 free_prison_cell(cache, cell_prealloc);
700 return r;
701 }
c6b4fcba 702
b29d4986
JT
703 if (cell != cell_prealloc)
704 free_prison_cell(cache, cell_prealloc);
c6b4fcba 705
b29d4986
JT
706 pb_size = get_per_bio_data_size(cache);
707 pb = get_per_bio_data(bio, pb_size);
708 pb->cell = cell;
c6b4fcba
JT
709
710 return r;
711}
712
aeed1420 713/*----------------------------------------------------------------*/
c6b4fcba
JT
714
715static bool is_dirty(struct cache *cache, dm_cblock_t b)
716{
717 return test_bit(from_cblock(b), cache->dirty_bitset);
718}
719
b29d4986 720static void set_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
721{
722 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 723 atomic_inc(&cache->nr_dirty);
b29d4986 724 policy_set_dirty(cache->policy, cblock);
c6b4fcba
JT
725 }
726}
727
b29d4986
JT
728/*
729 * These two are called when setting after migrations to force the policy
730 * and dirty bitset to be in sync.
731 */
732static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
733{
734 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
735 atomic_inc(&cache->nr_dirty);
736 policy_set_dirty(cache->policy, cblock);
737}
738
739static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
c6b4fcba
JT
740{
741 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
44fa816b 742 if (atomic_dec_return(&cache->nr_dirty) == 0)
c6b4fcba
JT
743 dm_table_event(cache->ti->table);
744 }
b29d4986
JT
745
746 policy_clear_dirty(cache->policy, cblock);
c6b4fcba
JT
747}
748
749/*----------------------------------------------------------------*/
aeed1420 750
c6b4fcba
JT
751static bool block_size_is_power_of_two(struct cache *cache)
752{
753 return cache->sectors_per_block_shift >= 0;
754}
755
43aeaa29
MP
756/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
757#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
758__always_inline
759#endif
414dd67d
JT
760static dm_block_t block_div(dm_block_t b, uint32_t n)
761{
762 do_div(b, n);
763
764 return b;
765}
766
7ae34e77 767static dm_block_t oblocks_per_dblock(struct cache *cache)
1bad9bc4 768{
7ae34e77 769 dm_block_t oblocks = cache->discard_block_size;
1bad9bc4 770
7ae34e77
JT
771 if (block_size_is_power_of_two(cache))
772 oblocks >>= cache->sectors_per_block_shift;
1bad9bc4 773 else
7ae34e77 774 oblocks = block_div(oblocks, cache->sectors_per_block);
1bad9bc4 775
7ae34e77
JT
776 return oblocks;
777}
778
779static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
780{
781 return to_dblock(block_div(from_oblock(oblock),
782 oblocks_per_dblock(cache)));
783}
1bad9bc4 784
1bad9bc4 785static void set_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
786{
787 unsigned long flags;
788
7ae34e77 789 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
790 atomic_inc(&cache->stats.discard_count);
791
792 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 793 set_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
794 spin_unlock_irqrestore(&cache->lock, flags);
795}
796
1bad9bc4 797static void clear_discard(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
798{
799 unsigned long flags;
800
801 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 802 clear_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
803 spin_unlock_irqrestore(&cache->lock, flags);
804}
805
1bad9bc4 806static bool is_discarded(struct cache *cache, dm_dblock_t b)
c6b4fcba
JT
807{
808 int r;
809 unsigned long flags;
810
811 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4 812 r = test_bit(from_dblock(b), cache->discard_bitset);
c6b4fcba
JT
813 spin_unlock_irqrestore(&cache->lock, flags);
814
815 return r;
816}
817
818static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
819{
820 int r;
821 unsigned long flags;
822
823 spin_lock_irqsave(&cache->lock, flags);
1bad9bc4
JT
824 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
825 cache->discard_bitset);
c6b4fcba
JT
826 spin_unlock_irqrestore(&cache->lock, flags);
827
828 return r;
829}
830
b29d4986
JT
831/*----------------------------------------------------------------
832 * Remapping
833 *--------------------------------------------------------------*/
834static void remap_to_origin(struct cache *cache, struct bio *bio)
c6b4fcba 835{
74d46992 836 bio_set_dev(bio, cache->origin_dev->bdev);
c6b4fcba
JT
837}
838
839static void remap_to_cache(struct cache *cache, struct bio *bio,
840 dm_cblock_t cblock)
841{
4f024f37 842 sector_t bi_sector = bio->bi_iter.bi_sector;
e0d849fa 843 sector_t block = from_cblock(cblock);
c6b4fcba 844
74d46992 845 bio_set_dev(bio, cache->cache_dev->bdev);
c6b4fcba 846 if (!block_size_is_power_of_two(cache))
4f024f37 847 bio->bi_iter.bi_sector =
e0d849fa 848 (block * cache->sectors_per_block) +
4f024f37 849 sector_div(bi_sector, cache->sectors_per_block);
c6b4fcba 850 else
4f024f37 851 bio->bi_iter.bi_sector =
e0d849fa 852 (block << cache->sectors_per_block_shift) |
4f024f37 853 (bi_sector & (cache->sectors_per_block - 1));
c6b4fcba
JT
854}
855
856static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
857{
858 unsigned long flags;
19b0092e
MS
859 size_t pb_data_size = get_per_bio_data_size(cache);
860 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c6b4fcba
JT
861
862 spin_lock_irqsave(&cache->lock, flags);
f73f44eb 863 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
e6047149 864 bio_op(bio) != REQ_OP_DISCARD) {
c6b4fcba
JT
865 pb->tick = true;
866 cache->need_tick_bio = false;
867 }
868 spin_unlock_irqrestore(&cache->lock, flags);
869}
870
871static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
b29d4986 872 dm_oblock_t oblock)
c6b4fcba 873{
b29d4986 874 // FIXME: this is called way too much.
c6b4fcba
JT
875 check_if_tick_bio_needed(cache, bio);
876 remap_to_origin(cache, bio);
877 if (bio_data_dir(bio) == WRITE)
1bad9bc4 878 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
879}
880
881static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
882 dm_oblock_t oblock, dm_cblock_t cblock)
883{
f8e5f01a 884 check_if_tick_bio_needed(cache, bio);
c6b4fcba
JT
885 remap_to_cache(cache, bio, cblock);
886 if (bio_data_dir(bio) == WRITE) {
b29d4986 887 set_dirty(cache, cblock);
1bad9bc4 888 clear_discard(cache, oblock_to_dblock(cache, oblock));
c6b4fcba
JT
889 }
890}
891
892static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
893{
4f024f37 894 sector_t block_nr = bio->bi_iter.bi_sector;
c6b4fcba
JT
895
896 if (!block_size_is_power_of_two(cache))
897 (void) sector_div(block_nr, cache->sectors_per_block);
898 else
899 block_nr >>= cache->sectors_per_block_shift;
900
901 return to_oblock(block_nr);
902}
903
066dbaa3
JT
904static bool accountable_bio(struct cache *cache, struct bio *bio)
905{
701e03e4 906 return bio_op(bio) != REQ_OP_DISCARD;
066dbaa3
JT
907}
908
909static void accounted_begin(struct cache *cache, struct bio *bio)
910{
911 size_t pb_data_size = get_per_bio_data_size(cache);
912 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
913
914 if (accountable_bio(cache, bio)) {
915 pb->len = bio_sectors(bio);
701e03e4 916 iot_io_begin(&cache->tracker, pb->len);
066dbaa3
JT
917 }
918}
919
920static void accounted_complete(struct cache *cache, struct bio *bio)
921{
922 size_t pb_data_size = get_per_bio_data_size(cache);
923 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
924
701e03e4 925 iot_io_end(&cache->tracker, pb->len);
066dbaa3
JT
926}
927
928static void accounted_request(struct cache *cache, struct bio *bio)
929{
930 accounted_begin(cache, bio);
931 generic_make_request(bio);
932}
933
b29d4986 934static void issue_op(struct bio *bio, void *context)
8c081b52 935{
b29d4986
JT
936 struct cache *cache = context;
937 accounted_request(cache, bio);
8c081b52
JT
938}
939
e2e74d61
JT
940static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
941{
942 unsigned long flags;
943
944 spin_lock_irqsave(&cache->lock, flags);
945 bio_list_add(&cache->deferred_writethrough_bios, bio);
946 spin_unlock_irqrestore(&cache->lock, flags);
947
b29d4986 948 wake_deferred_writethrough_worker(cache);
e2e74d61
JT
949}
950
4246a0b6 951static void writethrough_endio(struct bio *bio)
e2e74d61 952{
19b0092e 953 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
c9d28d5d
JT
954
955 dm_unhook_bio(&pb->hook_info, bio);
e2e74d61 956
4e4cbee9 957 if (bio->bi_status) {
4246a0b6 958 bio_endio(bio);
e2e74d61
JT
959 return;
960 }
961
b844fe69 962 dm_bio_restore(&pb->bio_details, bio);
e2e74d61
JT
963 remap_to_cache(pb->cache, bio, pb->cblock);
964
965 /*
966 * We can't issue this bio directly, since we're in interrupt
aeed1420 967 * context. So it gets put on a bio list for processing by the
e2e74d61
JT
968 * worker thread.
969 */
970 defer_writethrough_bio(pb->cache, bio);
971}
972
973/*
b29d4986 974 * FIXME: send in parallel, huge latency as is.
e2e74d61
JT
975 * When running in writethrough mode we need to send writes to clean blocks
976 * to both the cache and origin devices. In future we'd like to clone the
977 * bio and send them in parallel, but for now we're doing them in
978 * series as this is easier.
979 */
980static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
981 dm_oblock_t oblock, dm_cblock_t cblock)
982{
19b0092e 983 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
e2e74d61
JT
984
985 pb->cache = cache;
986 pb->cblock = cblock;
c9d28d5d 987 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
b844fe69 988 dm_bio_record(&pb->bio_details, bio);
e2e74d61
JT
989
990 remap_to_origin_clear_discard(pb->cache, bio, oblock);
991}
992
028ae9f7
JT
993/*----------------------------------------------------------------
994 * Failure modes
995 *--------------------------------------------------------------*/
996static enum cache_metadata_mode get_cache_mode(struct cache *cache)
997{
998 return cache->features.mode;
999}
1000
b61d9509
MS
1001static const char *cache_device_name(struct cache *cache)
1002{
1003 return dm_device_name(dm_table_get_md(cache->ti->table));
1004}
1005
028ae9f7
JT
1006static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
1007{
1008 const char *descs[] = {
1009 "write",
1010 "read-only",
1011 "fail"
1012 };
1013
1014 dm_table_event(cache->ti->table);
b61d9509
MS
1015 DMINFO("%s: switching cache to %s mode",
1016 cache_device_name(cache), descs[(int)mode]);
028ae9f7
JT
1017}
1018
1019static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
1020{
d14fcf3d 1021 bool needs_check;
028ae9f7
JT
1022 enum cache_metadata_mode old_mode = get_cache_mode(cache);
1023
d14fcf3d 1024 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
23cab26d
MS
1025 DMERR("%s: unable to read needs_check flag, setting failure mode.",
1026 cache_device_name(cache));
d14fcf3d
JT
1027 new_mode = CM_FAIL;
1028 }
1029
028ae9f7 1030 if (new_mode == CM_WRITE && needs_check) {
b61d9509
MS
1031 DMERR("%s: unable to switch cache to write mode until repaired.",
1032 cache_device_name(cache));
028ae9f7
JT
1033 if (old_mode != new_mode)
1034 new_mode = old_mode;
1035 else
1036 new_mode = CM_READ_ONLY;
1037 }
1038
1039 /* Never move out of fail mode */
1040 if (old_mode == CM_FAIL)
1041 new_mode = CM_FAIL;
1042
1043 switch (new_mode) {
1044 case CM_FAIL:
1045 case CM_READ_ONLY:
1046 dm_cache_metadata_set_read_only(cache->cmd);
1047 break;
1048
1049 case CM_WRITE:
1050 dm_cache_metadata_set_read_write(cache->cmd);
1051 break;
1052 }
1053
1054 cache->features.mode = new_mode;
1055
1056 if (new_mode != old_mode)
1057 notify_mode_switch(cache, new_mode);
1058}
1059
1060static void abort_transaction(struct cache *cache)
1061{
b61d9509
MS
1062 const char *dev_name = cache_device_name(cache);
1063
028ae9f7
JT
1064 if (get_cache_mode(cache) >= CM_READ_ONLY)
1065 return;
1066
1067 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
b61d9509 1068 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
028ae9f7
JT
1069 set_cache_mode(cache, CM_FAIL);
1070 }
1071
b61d9509 1072 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
028ae9f7 1073 if (dm_cache_metadata_abort(cache->cmd)) {
b61d9509 1074 DMERR("%s: failed to abort metadata transaction", dev_name);
028ae9f7
JT
1075 set_cache_mode(cache, CM_FAIL);
1076 }
1077}
1078
1079static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1080{
b61d9509
MS
1081 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1082 cache_device_name(cache), op, r);
028ae9f7
JT
1083 abort_transaction(cache);
1084 set_cache_mode(cache, CM_READ_ONLY);
1085}
1086
b29d4986
JT
1087/*----------------------------------------------------------------*/
1088
1089static void load_stats(struct cache *cache)
1090{
1091 struct dm_cache_statistics stats;
1092
1093 dm_cache_metadata_get_stats(cache->cmd, &stats);
1094 atomic_set(&cache->stats.read_hit, stats.read_hits);
1095 atomic_set(&cache->stats.read_miss, stats.read_misses);
1096 atomic_set(&cache->stats.write_hit, stats.write_hits);
1097 atomic_set(&cache->stats.write_miss, stats.write_misses);
1098}
1099
1100static void save_stats(struct cache *cache)
1101{
1102 struct dm_cache_statistics stats;
1103
1104 if (get_cache_mode(cache) >= CM_READ_ONLY)
1105 return;
1106
1107 stats.read_hits = atomic_read(&cache->stats.read_hit);
1108 stats.read_misses = atomic_read(&cache->stats.read_miss);
1109 stats.write_hits = atomic_read(&cache->stats.write_hit);
1110 stats.write_misses = atomic_read(&cache->stats.write_miss);
1111
1112 dm_cache_metadata_set_stats(cache->cmd, &stats);
1113}
1114
1115static void update_stats(struct cache_stats *stats, enum policy_operation op)
1116{
1117 switch (op) {
1118 case POLICY_PROMOTE:
1119 atomic_inc(&stats->promotion);
1120 break;
1121
1122 case POLICY_DEMOTE:
1123 atomic_inc(&stats->demotion);
1124 break;
1125
1126 case POLICY_WRITEBACK:
1127 atomic_inc(&stats->writeback);
1128 break;
1129 }
1130}
1131
c6b4fcba
JT
1132/*----------------------------------------------------------------
1133 * Migration processing
1134 *
1135 * Migration covers moving data from the origin device to the cache, or
1136 * vice versa.
1137 *--------------------------------------------------------------*/
b29d4986 1138
a59db676 1139static void inc_io_migrations(struct cache *cache)
c6b4fcba 1140{
a59db676 1141 atomic_inc(&cache->nr_io_migrations);
c6b4fcba
JT
1142}
1143
a59db676 1144static void dec_io_migrations(struct cache *cache)
c6b4fcba 1145{
a59db676 1146 atomic_dec(&cache->nr_io_migrations);
c6b4fcba
JT
1147}
1148
651f5fa2
JT
1149static bool discard_or_flush(struct bio *bio)
1150{
f73f44eb 1151 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
651f5fa2
JT
1152}
1153
b29d4986
JT
1154static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1155 dm_dblock_t *b, dm_dblock_t *e)
c6b4fcba 1156{
b29d4986
JT
1157 sector_t sb = bio->bi_iter.bi_sector;
1158 sector_t se = bio_end_sector(bio);
651f5fa2 1159
b29d4986 1160 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
c6b4fcba 1161
b29d4986
JT
1162 if (se - sb < cache->discard_block_size)
1163 *e = *b;
1164 else
1165 *e = to_dblock(block_div(se, cache->discard_block_size));
c6b4fcba
JT
1166}
1167
b29d4986 1168/*----------------------------------------------------------------*/
651f5fa2 1169
b29d4986 1170static void prevent_background_work(struct cache *cache)
651f5fa2 1171{
b29d4986
JT
1172 lockdep_off();
1173 down_write(&cache->background_work_lock);
1174 lockdep_on();
651f5fa2
JT
1175}
1176
b29d4986 1177static void allow_background_work(struct cache *cache)
c6b4fcba 1178{
b29d4986
JT
1179 lockdep_off();
1180 up_write(&cache->background_work_lock);
1181 lockdep_on();
c6b4fcba
JT
1182}
1183
b29d4986 1184static bool background_work_begin(struct cache *cache)
c6b4fcba 1185{
b29d4986 1186 bool r;
c6b4fcba 1187
b29d4986
JT
1188 lockdep_off();
1189 r = down_read_trylock(&cache->background_work_lock);
1190 lockdep_on();
c6b4fcba 1191
b29d4986 1192 return r;
c6b4fcba
JT
1193}
1194
b29d4986 1195static void background_work_end(struct cache *cache)
c6b4fcba 1196{
b29d4986
JT
1197 lockdep_off();
1198 up_read(&cache->background_work_lock);
1199 lockdep_on();
1200}
c6b4fcba 1201
b29d4986 1202/*----------------------------------------------------------------*/
c6b4fcba 1203
d1260e2a
JT
1204static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1205{
1206 return (bio_data_dir(bio) == WRITE) &&
1207 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1208}
1209
1210static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1211{
8e3c3827 1212 return writeback_mode(cache) &&
d1260e2a
JT
1213 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1214}
1215
b29d4986
JT
1216static void quiesce(struct dm_cache_migration *mg,
1217 void (*continuation)(struct work_struct *))
1218{
1219 init_continuation(&mg->k, continuation);
1220 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
c6b4fcba
JT
1221}
1222
b29d4986 1223static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
c6b4fcba 1224{
b29d4986
JT
1225 struct continuation *k = container_of(ws, struct continuation, ws);
1226 return container_of(k, struct dm_cache_migration, k);
c6b4fcba
JT
1227}
1228
1229static void copy_complete(int read_err, unsigned long write_err, void *context)
1230{
b29d4986 1231 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
c6b4fcba
JT
1232
1233 if (read_err || write_err)
4e4cbee9 1234 mg->k.input = BLK_STS_IOERR;
c6b4fcba 1235
b29d4986 1236 queue_continuation(mg->cache->wq, &mg->k);
c6b4fcba
JT
1237}
1238
b29d4986 1239static int copy(struct dm_cache_migration *mg, bool promote)
c6b4fcba
JT
1240{
1241 int r;
1242 struct dm_io_region o_region, c_region;
1243 struct cache *cache = mg->cache;
1244
1245 o_region.bdev = cache->origin_dev->bdev;
b29d4986 1246 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
c6b4fcba
JT
1247 o_region.count = cache->sectors_per_block;
1248
1249 c_region.bdev = cache->cache_dev->bdev;
b29d4986 1250 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
c6b4fcba
JT
1251 c_region.count = cache->sectors_per_block;
1252
b29d4986
JT
1253 if (promote)
1254 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1255 else
1256 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
c6b4fcba 1257
b29d4986
JT
1258 return r;
1259}
1260
1261static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1262{
1263 size_t pb_data_size = get_per_bio_data_size(cache);
1264 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1265
1266 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1267 free_prison_cell(cache, pb->cell);
1268 pb->cell = NULL;
c6b4fcba
JT
1269}
1270
4246a0b6 1271static void overwrite_endio(struct bio *bio)
c9d28d5d
JT
1272{
1273 struct dm_cache_migration *mg = bio->bi_private;
1274 struct cache *cache = mg->cache;
1275 size_t pb_data_size = get_per_bio_data_size(cache);
1276 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c9d28d5d 1277
80ae49aa
MS
1278 dm_unhook_bio(&pb->hook_info, bio);
1279
4e4cbee9
CH
1280 if (bio->bi_status)
1281 mg->k.input = bio->bi_status;
80ae49aa 1282
b29d4986 1283 queue_continuation(mg->cache->wq, &mg->k);
c9d28d5d
JT
1284}
1285
b29d4986
JT
1286static void overwrite(struct dm_cache_migration *mg,
1287 void (*continuation)(struct work_struct *))
c9d28d5d 1288{
b29d4986 1289 struct bio *bio = mg->overwrite_bio;
c9d28d5d
JT
1290 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1291 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1292
1293 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
8c081b52
JT
1294
1295 /*
b29d4986
JT
1296 * The overwrite bio is part of the copy operation, as such it does
1297 * not set/clear discard or dirty flags.
8c081b52 1298 */
b29d4986
JT
1299 if (mg->op->op == POLICY_PROMOTE)
1300 remap_to_cache(mg->cache, bio, mg->op->cblock);
1301 else
1302 remap_to_origin(mg->cache, bio);
1303
1304 init_continuation(&mg->k, continuation);
066dbaa3 1305 accounted_request(mg->cache, bio);
c9d28d5d
JT
1306}
1307
b29d4986
JT
1308/*
1309 * Migration steps:
1310 *
1311 * 1) exclusive lock preventing WRITEs
1312 * 2) quiesce
1313 * 3) copy or issue overwrite bio
1314 * 4) upgrade to exclusive lock preventing READs and WRITEs
1315 * 5) quiesce
1316 * 6) update metadata and commit
1317 * 7) unlock
1318 */
1319static void mg_complete(struct dm_cache_migration *mg, bool success)
c9d28d5d 1320{
b29d4986
JT
1321 struct bio_list bios;
1322 struct cache *cache = mg->cache;
1323 struct policy_work *op = mg->op;
1324 dm_cblock_t cblock = op->cblock;
1325
1326 if (success)
1327 update_stats(&cache->stats, op->op);
1328
1329 switch (op->op) {
1330 case POLICY_PROMOTE:
1331 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1332 policy_complete_background_work(cache->policy, op, success);
1333
1334 if (mg->overwrite_bio) {
1335 if (success)
1336 force_set_dirty(cache, cblock);
4e4cbee9
CH
1337 else if (mg->k.input)
1338 mg->overwrite_bio->bi_status = mg->k.input;
b29d4986 1339 else
4e4cbee9 1340 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
b29d4986
JT
1341 bio_endio(mg->overwrite_bio);
1342 } else {
1343 if (success)
1344 force_clear_dirty(cache, cblock);
1345 dec_io_migrations(cache);
1346 }
1347 break;
1348
1349 case POLICY_DEMOTE:
1350 /*
1351 * We clear dirty here to update the nr_dirty counter.
1352 */
1353 if (success)
1354 force_clear_dirty(cache, cblock);
1355 policy_complete_background_work(cache->policy, op, success);
1356 dec_io_migrations(cache);
1357 break;
1358
1359 case POLICY_WRITEBACK:
1360 if (success)
1361 force_clear_dirty(cache, cblock);
1362 policy_complete_background_work(cache->policy, op, success);
1363 dec_io_migrations(cache);
1364 break;
1365 }
1366
1367 bio_list_init(&bios);
1368 if (mg->cell) {
1369 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1370 free_prison_cell(cache, mg->cell);
1371 }
1372
1373 free_migration(mg);
1374 defer_bios(cache, &bios);
1375 wake_migration_worker(cache);
1376
1377 background_work_end(cache);
c9d28d5d
JT
1378}
1379
b29d4986 1380static void mg_success(struct work_struct *ws)
c6b4fcba 1381{
b29d4986
JT
1382 struct dm_cache_migration *mg = ws_to_mg(ws);
1383 mg_complete(mg, mg->k.input == 0);
c6b4fcba
JT
1384}
1385
b29d4986 1386static void mg_update_metadata(struct work_struct *ws)
7ae34e77 1387{
b29d4986
JT
1388 int r;
1389 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1390 struct cache *cache = mg->cache;
b29d4986 1391 struct policy_work *op = mg->op;
c6b4fcba 1392
b29d4986
JT
1393 switch (op->op) {
1394 case POLICY_PROMOTE:
1395 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1396 if (r) {
1397 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1398 cache_device_name(cache));
1399 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
7ae34e77 1400
b29d4986
JT
1401 mg_complete(mg, false);
1402 return;
1403 }
1404 mg_complete(mg, true);
1405 break;
c9d28d5d 1406
b29d4986
JT
1407 case POLICY_DEMOTE:
1408 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1409 if (r) {
1410 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1411 cache_device_name(cache));
1412 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
c6b4fcba 1413
b29d4986 1414 mg_complete(mg, false);
c9d28d5d
JT
1415 return;
1416 }
c9d28d5d 1417
b29d4986
JT
1418 /*
1419 * It would be nice if we only had to commit when a REQ_FLUSH
1420 * comes through. But there's one scenario that we have to
1421 * look out for:
1422 *
1423 * - vblock x in a cache block
1424 * - domotion occurs
1425 * - cache block gets reallocated and over written
1426 * - crash
1427 *
1428 * When we recover, because there was no commit the cache will
1429 * rollback to having the data for vblock x in the cache block.
1430 * But the cache block has since been overwritten, so it'll end
1431 * up pointing to data that was never in 'x' during the history
1432 * of the device.
1433 *
1434 * To avoid this issue we require a commit as part of the
1435 * demotion operation.
1436 */
1437 init_continuation(&mg->k, mg_success);
1438 continue_after_commit(&cache->committer, &mg->k);
1439 schedule_commit(&cache->committer);
1440 break;
1441
1442 case POLICY_WRITEBACK:
1443 mg_complete(mg, true);
1444 break;
7ae34e77 1445 }
c6b4fcba
JT
1446}
1447
b29d4986 1448static void mg_update_metadata_after_copy(struct work_struct *ws)
c6b4fcba 1449{
b29d4986
JT
1450 struct dm_cache_migration *mg = ws_to_mg(ws);
1451
1452 /*
1453 * Did the copy succeed?
1454 */
1455 if (mg->k.input)
1456 mg_complete(mg, false);
c6b4fcba 1457 else
b29d4986 1458 mg_update_metadata(ws);
c6b4fcba
JT
1459}
1460
b29d4986 1461static void mg_upgrade_lock(struct work_struct *ws)
c6b4fcba 1462{
b29d4986
JT
1463 int r;
1464 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1465
b29d4986
JT
1466 /*
1467 * Did the copy succeed?
1468 */
1469 if (mg->k.input)
1470 mg_complete(mg, false);
c6b4fcba 1471
c9d28d5d 1472 else {
b29d4986
JT
1473 /*
1474 * Now we want the lock to prevent both reads and writes.
1475 */
1476 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1477 READ_WRITE_LOCK_LEVEL);
1478 if (r < 0)
1479 mg_complete(mg, false);
c6b4fcba 1480
b29d4986
JT
1481 else if (r)
1482 quiesce(mg, mg_update_metadata);
c6b4fcba 1483
b29d4986
JT
1484 else
1485 mg_update_metadata(ws);
c9d28d5d 1486 }
c6b4fcba
JT
1487}
1488
d1260e2a
JT
1489static void mg_full_copy(struct work_struct *ws)
1490{
1491 struct dm_cache_migration *mg = ws_to_mg(ws);
1492 struct cache *cache = mg->cache;
1493 struct policy_work *op = mg->op;
1494 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1495
1496 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1497 is_discarded_oblock(cache, op->oblock)) {
1498 mg_upgrade_lock(ws);
1499 return;
1500 }
1501
1502 init_continuation(&mg->k, mg_upgrade_lock);
1503
1504 if (copy(mg, is_policy_promote)) {
1505 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1506 mg->k.input = BLK_STS_IOERR;
1507 mg_complete(mg, false);
1508 }
1509}
1510
b29d4986 1511static void mg_copy(struct work_struct *ws)
c6b4fcba 1512{
b29d4986 1513 struct dm_cache_migration *mg = ws_to_mg(ws);
c6b4fcba 1514
b29d4986 1515 if (mg->overwrite_bio) {
d1260e2a
JT
1516 /*
1517 * No exclusive lock was held when we last checked if the bio
1518 * was optimisable. So we have to check again in case things
1519 * have changed (eg, the block may no longer be discarded).
1520 */
1521 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1522 /*
1523 * Fallback to a real full copy after doing some tidying up.
1524 */
1525 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1526 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1527 mg->overwrite_bio = NULL;
1528 inc_io_migrations(mg->cache);
1529 mg_full_copy(ws);
1530 return;
1531 }
1532
b29d4986
JT
1533 /*
1534 * It's safe to do this here, even though it's new data
1535 * because all IO has been locked out of the block.
1536 *
1537 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1538 * so _not_ using mg_upgrade_lock() as continutation.
1539 */
1540 overwrite(mg, mg_update_metadata_after_copy);
c6b4fcba 1541
d1260e2a
JT
1542 } else
1543 mg_full_copy(ws);
c6b4fcba
JT
1544}
1545
b29d4986 1546static int mg_lock_writes(struct dm_cache_migration *mg)
c6b4fcba 1547{
b29d4986
JT
1548 int r;
1549 struct dm_cell_key_v2 key;
c6b4fcba 1550 struct cache *cache = mg->cache;
b29d4986 1551 struct dm_bio_prison_cell_v2 *prealloc;
c6b4fcba 1552
b29d4986
JT
1553 prealloc = alloc_prison_cell(cache);
1554 if (!prealloc) {
1555 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1556 mg_complete(mg, false);
1557 return -ENOMEM;
1558 }
c6b4fcba 1559
b29d4986
JT
1560 /*
1561 * Prevent writes to the block, but allow reads to continue.
1562 * Unless we're using an overwrite bio, in which case we lock
1563 * everything.
1564 */
1565 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1566 r = dm_cell_lock_v2(cache->prison, &key,
1567 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1568 prealloc, &mg->cell);
1569 if (r < 0) {
1570 free_prison_cell(cache, prealloc);
1571 mg_complete(mg, false);
1572 return r;
1573 }
c6b4fcba 1574
b29d4986
JT
1575 if (mg->cell != prealloc)
1576 free_prison_cell(cache, prealloc);
c6b4fcba 1577
b29d4986
JT
1578 if (r == 0)
1579 mg_copy(&mg->k.ws);
1580 else
1581 quiesce(mg, mg_copy);
c6b4fcba 1582
b29d4986 1583 return 0;
c6b4fcba
JT
1584}
1585
b29d4986 1586static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
c6b4fcba 1587{
b29d4986 1588 struct dm_cache_migration *mg;
c6b4fcba 1589
b29d4986
JT
1590 if (!background_work_begin(cache)) {
1591 policy_complete_background_work(cache->policy, op, false);
1592 return -EPERM;
1593 }
2ee57d58 1594
b29d4986
JT
1595 mg = alloc_migration(cache);
1596 if (!mg) {
1597 policy_complete_background_work(cache->policy, op, false);
1598 background_work_end(cache);
1599 return -ENOMEM;
1600 }
2ee57d58 1601
b29d4986 1602 memset(mg, 0, sizeof(*mg));
7ae34e77 1603
7ae34e77 1604 mg->cache = cache;
b29d4986
JT
1605 mg->op = op;
1606 mg->overwrite_bio = bio;
1607
1608 if (!bio)
1609 inc_io_migrations(cache);
7ae34e77 1610
b29d4986 1611 return mg_lock_writes(mg);
7ae34e77
JT
1612}
1613
c6b4fcba 1614/*----------------------------------------------------------------
b29d4986 1615 * invalidation processing
c6b4fcba 1616 *--------------------------------------------------------------*/
c6b4fcba 1617
b29d4986 1618static void invalidate_complete(struct dm_cache_migration *mg, bool success)
c6b4fcba 1619{
b29d4986
JT
1620 struct bio_list bios;
1621 struct cache *cache = mg->cache;
c6b4fcba 1622
b29d4986
JT
1623 bio_list_init(&bios);
1624 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1625 free_prison_cell(cache, mg->cell);
c6b4fcba 1626
b29d4986
JT
1627 if (!success && mg->overwrite_bio)
1628 bio_io_error(mg->overwrite_bio);
c6b4fcba 1629
b29d4986
JT
1630 free_migration(mg);
1631 defer_bios(cache, &bios);
c6b4fcba 1632
b29d4986 1633 background_work_end(cache);
c6b4fcba
JT
1634}
1635
b29d4986 1636static void invalidate_completed(struct work_struct *ws)
c6b4fcba 1637{
b29d4986
JT
1638 struct dm_cache_migration *mg = ws_to_mg(ws);
1639 invalidate_complete(mg, !mg->k.input);
c6b4fcba
JT
1640}
1641
b29d4986 1642static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
651f5fa2 1643{
b29d4986
JT
1644 int r = policy_invalidate_mapping(cache->policy, cblock);
1645 if (!r) {
1646 r = dm_cache_remove_mapping(cache->cmd, cblock);
1647 if (r) {
1648 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1649 cache_device_name(cache));
1650 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
651f5fa2
JT
1651 }
1652
b29d4986
JT
1653 } else if (r == -ENODATA) {
1654 /*
1655 * Harmless, already unmapped.
1656 */
1657 r = 0;
651f5fa2 1658
b29d4986
JT
1659 } else
1660 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
2ee57d58 1661
b29d4986 1662 return r;
651f5fa2
JT
1663}
1664
b29d4986 1665static void invalidate_remove(struct work_struct *ws)
651f5fa2 1666{
b29d4986
JT
1667 int r;
1668 struct dm_cache_migration *mg = ws_to_mg(ws);
1669 struct cache *cache = mg->cache;
651f5fa2 1670
b29d4986
JT
1671 r = invalidate_cblock(cache, mg->invalidate_cblock);
1672 if (r) {
1673 invalidate_complete(mg, false);
1674 return;
651f5fa2 1675 }
9153df74 1676
b29d4986
JT
1677 init_continuation(&mg->k, invalidate_completed);
1678 continue_after_commit(&cache->committer, &mg->k);
1679 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1680 mg->overwrite_bio = NULL;
1681 schedule_commit(&cache->committer);
651f5fa2
JT
1682}
1683
b29d4986 1684static int invalidate_lock(struct dm_cache_migration *mg)
651f5fa2 1685{
b29d4986
JT
1686 int r;
1687 struct dm_cell_key_v2 key;
1688 struct cache *cache = mg->cache;
1689 struct dm_bio_prison_cell_v2 *prealloc;
651f5fa2 1690
b29d4986
JT
1691 prealloc = alloc_prison_cell(cache);
1692 if (!prealloc) {
1693 invalidate_complete(mg, false);
1694 return -ENOMEM;
651f5fa2
JT
1695 }
1696
b29d4986
JT
1697 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1698 r = dm_cell_lock_v2(cache->prison, &key,
1699 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1700 if (r < 0) {
1701 free_prison_cell(cache, prealloc);
1702 invalidate_complete(mg, false);
1703 return r;
651f5fa2 1704 }
9153df74 1705
b29d4986
JT
1706 if (mg->cell != prealloc)
1707 free_prison_cell(cache, prealloc);
651f5fa2 1708
b29d4986
JT
1709 if (r)
1710 quiesce(mg, invalidate_remove);
651f5fa2 1711
b29d4986
JT
1712 else {
1713 /*
1714 * We can't call invalidate_remove() directly here because we
1715 * might still be in request context.
1716 */
1717 init_continuation(&mg->k, invalidate_remove);
1718 queue_work(cache->wq, &mg->k.ws);
1719 }
fb4100ae 1720
fb4100ae
JT
1721 return 0;
1722}
1723
b29d4986
JT
1724static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1725 dm_oblock_t oblock, struct bio *bio)
fb4100ae 1726{
b29d4986 1727 struct dm_cache_migration *mg;
2ee57d58 1728
b29d4986
JT
1729 if (!background_work_begin(cache))
1730 return -EPERM;
c6b4fcba 1731
b29d4986
JT
1732 mg = alloc_migration(cache);
1733 if (!mg) {
1734 background_work_end(cache);
1735 return -ENOMEM;
7ae34e77 1736 }
c6b4fcba 1737
b29d4986 1738 memset(mg, 0, sizeof(*mg));
c6b4fcba 1739
b29d4986
JT
1740 mg->cache = cache;
1741 mg->overwrite_bio = bio;
1742 mg->invalidate_cblock = cblock;
1743 mg->invalidate_oblock = oblock;
c6b4fcba 1744
b29d4986 1745 return invalidate_lock(mg);
c6b4fcba 1746}
c6b4fcba 1747
b29d4986
JT
1748/*----------------------------------------------------------------
1749 * bio processing
1750 *--------------------------------------------------------------*/
c6b4fcba 1751
b29d4986
JT
1752enum busy {
1753 IDLE,
b29d4986
JT
1754 BUSY
1755};
c6b4fcba 1756
b29d4986 1757static enum busy spare_migration_bandwidth(struct cache *cache)
651f5fa2 1758{
701e03e4 1759 bool idle = iot_idle_for(&cache->tracker, HZ);
a59db676 1760 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
c6b4fcba 1761 cache->sectors_per_block;
651f5fa2 1762
49b7f768
JT
1763 if (idle && current_volume <= cache->migration_threshold)
1764 return IDLE;
b29d4986 1765 else
49b7f768 1766 return BUSY;
651f5fa2
JT
1767}
1768
c6b4fcba 1769static void inc_hit_counter(struct cache *cache, struct bio *bio)
c6b4fcba 1770{
c6b4fcba
JT
1771 atomic_inc(bio_data_dir(bio) == READ ?
1772 &cache->stats.read_hit : &cache->stats.write_hit);
c6b4fcba
JT
1773}
1774
c6b4fcba 1775static void inc_miss_counter(struct cache *cache, struct bio *bio)
028ae9f7 1776{
c6b4fcba
JT
1777 atomic_inc(bio_data_dir(bio) == READ ?
1778 &cache->stats.read_miss : &cache->stats.write_miss);
1779}
028ae9f7 1780
fb4100ae 1781/*----------------------------------------------------------------*/
028ae9f7 1782
b29d4986
JT
1783static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1784 bool *commit_needed)
c6b4fcba 1785{
b29d4986
JT
1786 int r, data_dir;
1787 bool rb, background_queued;
1788 dm_cblock_t cblock;
1789 size_t pb_data_size = get_per_bio_data_size(cache);
1790 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c6b4fcba 1791
b29d4986 1792 *commit_needed = false;
c6b4fcba 1793
b29d4986
JT
1794 rb = bio_detain_shared(cache, block, bio);
1795 if (!rb) {
c6b4fcba 1796 /*
b29d4986
JT
1797 * An exclusive lock is held for this block, so we have to
1798 * wait. We set the commit_needed flag so the current
1799 * transaction will be committed asap, allowing this lock
1800 * to be dropped.
c6b4fcba 1801 */
b29d4986
JT
1802 *commit_needed = true;
1803 return DM_MAPIO_SUBMITTED;
651f5fa2 1804 }
9153df74 1805
b29d4986 1806 data_dir = bio_data_dir(bio);
651f5fa2 1807
b29d4986
JT
1808 if (optimisable_bio(cache, bio, block)) {
1809 struct policy_work *op = NULL;
fb4100ae 1810
b29d4986
JT
1811 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1812 if (unlikely(r && r != -ENOENT)) {
1813 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1814 cache_device_name(cache), r);
1815 bio_io_error(bio);
1816 return DM_MAPIO_SUBMITTED;
c6b4fcba
JT
1817 }
1818
b29d4986
JT
1819 if (r == -ENOENT && op) {
1820 bio_drop_shared_lock(cache, bio);
1821 BUG_ON(op->op != POLICY_PROMOTE);
1822 mg_start(cache, op, bio);
1823 return DM_MAPIO_SUBMITTED;
1824 }
1825 } else {
1826 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1827 if (unlikely(r && r != -ENOENT)) {
1828 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1829 cache_device_name(cache), r);
1830 bio_io_error(bio);
1831 return DM_MAPIO_SUBMITTED;
1832 }
c6b4fcba 1833
b29d4986
JT
1834 if (background_queued)
1835 wake_migration_worker(cache);
c6b4fcba
JT
1836 }
1837
b29d4986
JT
1838 if (r == -ENOENT) {
1839 /*
1840 * Miss.
1841 */
1842 inc_miss_counter(cache, bio);
1843 if (pb->req_nr == 0) {
1844 accounted_begin(cache, bio);
1845 remap_to_origin_clear_discard(cache, bio, block);
651f5fa2 1846
b29d4986 1847 } else {
2ee57d58 1848 /*
b29d4986
JT
1849 * This is a duplicate writethrough io that is no
1850 * longer needed because the block has been demoted.
2ee57d58 1851 */
b29d4986
JT
1852 bio_endio(bio);
1853 return DM_MAPIO_SUBMITTED;
1854 }
1855 } else {
1856 /*
1857 * Hit.
1858 */
1859 inc_hit_counter(cache, bio);
651f5fa2 1860
b29d4986
JT
1861 /*
1862 * Passthrough always maps to the origin, invalidating any
1863 * cache blocks that are written to.
1864 */
8e3c3827 1865 if (passthrough_mode(cache)) {
2ee57d58 1866 if (bio_data_dir(bio) == WRITE) {
b29d4986 1867 bio_drop_shared_lock(cache, bio);
2ee57d58 1868 atomic_inc(&cache->stats.demotion);
b29d4986
JT
1869 invalidate_start(cache, cblock, block, bio);
1870 } else
2ee57d58 1871 remap_to_origin_clear_discard(cache, bio, block);
651f5fa2 1872
2ee57d58 1873 } else {
8e3c3827 1874 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
b29d4986
JT
1875 !is_dirty(cache, cblock)) {
1876 remap_to_origin_then_cache(cache, bio, block, cblock);
1877 accounted_begin(cache, bio);
1878 } else
1879 remap_to_cache_dirty(cache, bio, block, cblock);
2ee57d58 1880 }
c6b4fcba 1881 }
651f5fa2 1882
651f5fa2 1883 /*
b29d4986 1884 * dm core turns FUA requests into a separate payload and FLUSH req.
651f5fa2 1885 */
b29d4986 1886 if (bio->bi_opf & REQ_FUA) {
651f5fa2 1887 /*
b29d4986
JT
1888 * issue_after_commit will call accounted_begin a second time. So
1889 * we call accounted_complete() to avoid double accounting.
651f5fa2 1890 */
b29d4986
JT
1891 accounted_complete(cache, bio);
1892 issue_after_commit(&cache->committer, bio);
1893 *commit_needed = true;
1894 return DM_MAPIO_SUBMITTED;
651f5fa2
JT
1895 }
1896
b29d4986 1897 return DM_MAPIO_REMAPPED;
651f5fa2
JT
1898}
1899
b29d4986 1900static bool process_bio(struct cache *cache, struct bio *bio)
c6b4fcba 1901{
b29d4986 1902 bool commit_needed;
c6b4fcba 1903
b29d4986
JT
1904 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1905 generic_make_request(bio);
c6b4fcba 1906
b29d4986 1907 return commit_needed;
c6b4fcba
JT
1908}
1909
028ae9f7
JT
1910/*
1911 * A non-zero return indicates read_only or fail_io mode.
1912 */
1913static int commit(struct cache *cache, bool clean_shutdown)
e2e74d61 1914{
028ae9f7 1915 int r;
e2e74d61 1916
028ae9f7
JT
1917 if (get_cache_mode(cache) >= CM_READ_ONLY)
1918 return -EINVAL;
e2e74d61 1919
028ae9f7
JT
1920 atomic_inc(&cache->stats.commit_count);
1921 r = dm_cache_commit(cache->cmd, clean_shutdown);
1922 if (r)
1923 metadata_operation_failed(cache, "dm_cache_commit", r);
e2e74d61 1924
028ae9f7 1925 return r;
e2e74d61
JT
1926}
1927
b29d4986
JT
1928/*
1929 * Used by the batcher.
1930 */
4e4cbee9 1931static blk_status_t commit_op(void *context)
c6b4fcba 1932{
b29d4986 1933 struct cache *cache = context;
c6b4fcba 1934
b29d4986 1935 if (dm_cache_changed_this_transaction(cache->cmd))
4e4cbee9 1936 return errno_to_blk_status(commit(cache, false));
c6b4fcba 1937
b29d4986 1938 return 0;
c6b4fcba
JT
1939}
1940
b29d4986 1941/*----------------------------------------------------------------*/
65790ff9 1942
b29d4986 1943static bool process_flush_bio(struct cache *cache, struct bio *bio)
65790ff9 1944{
b29d4986
JT
1945 size_t pb_data_size = get_per_bio_data_size(cache);
1946 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
65790ff9 1947
b29d4986
JT
1948 if (!pb->req_nr)
1949 remap_to_origin(cache, bio);
1950 else
1951 remap_to_cache(cache, bio, 0);
65790ff9 1952
b29d4986
JT
1953 issue_after_commit(&cache->committer, bio);
1954 return true;
65790ff9
JT
1955}
1956
b29d4986 1957static bool process_discard_bio(struct cache *cache, struct bio *bio)
65790ff9 1958{
b29d4986 1959 dm_dblock_t b, e;
65790ff9 1960
b29d4986
JT
1961 // FIXME: do we need to lock the region? Or can we just assume the
1962 // user wont be so foolish as to issue discard concurrently with
1963 // other IO?
1964 calc_discard_block_range(cache, bio, &b, &e);
1965 while (b != e) {
1966 set_discard(cache, b);
1967 b = to_dblock(from_dblock(b) + 1);
651f5fa2 1968 }
65790ff9 1969
b29d4986 1970 bio_endio(bio);
65790ff9 1971
b29d4986 1972 return false;
c6b4fcba
JT
1973}
1974
b29d4986 1975static void process_deferred_bios(struct work_struct *ws)
66cb1910 1976{
b29d4986 1977 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
66cb1910 1978
c6b4fcba 1979 unsigned long flags;
b29d4986 1980 bool commit_needed = false;
c6b4fcba
JT
1981 struct bio_list bios;
1982 struct bio *bio;
66cb1910 1983
c6b4fcba 1984 bio_list_init(&bios);
c6b4fcba 1985
c6b4fcba 1986 spin_lock_irqsave(&cache->lock, flags);
b29d4986
JT
1987 bio_list_merge(&bios, &cache->deferred_bios);
1988 bio_list_init(&cache->deferred_bios);
c6b4fcba 1989 spin_unlock_irqrestore(&cache->lock, flags);
c6b4fcba 1990
b29d4986
JT
1991 while ((bio = bio_list_pop(&bios))) {
1992 if (bio->bi_opf & REQ_PREFLUSH)
1993 commit_needed = process_flush_bio(cache, bio) || commit_needed;
c6b4fcba 1994
b29d4986
JT
1995 else if (bio_op(bio) == REQ_OP_DISCARD)
1996 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1997
1998 else
1999 commit_needed = process_bio(cache, bio) || commit_needed;
2000 }
2001
2002 if (commit_needed)
2003 schedule_commit(&cache->committer);
c6b4fcba
JT
2004}
2005
b29d4986 2006static void process_deferred_writethrough_bios(struct work_struct *ws)
651f5fa2 2007{
b29d4986
JT
2008 struct cache *cache = container_of(ws, struct cache, deferred_writethrough_worker);
2009
651f5fa2 2010 unsigned long flags;
e2e74d61
JT
2011 struct bio_list bios;
2012 struct bio *bio;
2013
2014 bio_list_init(&bios);
651f5fa2 2015
651f5fa2 2016 spin_lock_irqsave(&cache->lock, flags);
e2e74d61
JT
2017 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2018 bio_list_init(&cache->deferred_writethrough_bios);
651f5fa2
JT
2019 spin_unlock_irqrestore(&cache->lock, flags);
2020
8c081b52 2021 /*
b29d4986 2022 * These bios have already been through accounted_begin()
8c081b52 2023 */
e2e74d61 2024 while ((bio = bio_list_pop(&bios)))
b29d4986 2025 generic_make_request(bio);
651f5fa2
JT
2026}
2027
c6b4fcba
JT
2028/*----------------------------------------------------------------
2029 * Main worker loop
2030 *--------------------------------------------------------------*/
651f5fa2
JT
2031
2032static void requeue_deferred_bios(struct cache *cache)
c6b4fcba
JT
2033{
2034 struct bio *bio;
2035 struct bio_list bios;
2036
2037 bio_list_init(&bios);
2038 bio_list_merge(&bios, &cache->deferred_bios);
2039 bio_list_init(&cache->deferred_bios);
2040
4246a0b6 2041 while ((bio = bio_list_pop(&bios))) {
4e4cbee9 2042 bio->bi_status = BLK_STS_DM_REQUEUE;
4246a0b6
CH
2043 bio_endio(bio);
2044 }
c6b4fcba
JT
2045}
2046
c6b4fcba
JT
2047/*
2048 * We want to commit periodically so that not too much
2049 * unwritten metadata builds up.
2050 */
2051static void do_waker(struct work_struct *ws)
2052{
2053 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
b29d4986 2054
fba10109 2055 policy_tick(cache->policy, true);
b29d4986
JT
2056 wake_migration_worker(cache);
2057 schedule_commit(&cache->committer);
c6b4fcba
JT
2058 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2059}
2060
b29d4986 2061static void check_migrations(struct work_struct *ws)
c6b4fcba 2062{
b29d4986
JT
2063 int r;
2064 struct policy_work *op;
2065 struct cache *cache = container_of(ws, struct cache, migration_worker);
2066 enum busy b;
c6b4fcba 2067
b29d4986
JT
2068 for (;;) {
2069 b = spare_migration_bandwidth(cache);
c6b4fcba 2070
b29d4986
JT
2071 r = policy_get_background_work(cache->policy, b == IDLE, &op);
2072 if (r == -ENODATA)
2073 break;
2074
2075 if (r) {
2076 DMERR_LIMIT("%s: policy_background_work failed",
2077 cache_device_name(cache));
2078 break;
2079 }
2080
2081 r = mg_start(cache, op, NULL);
2082 if (r)
2083 break;
2084 }
c6b4fcba
JT
2085}
2086
2087/*----------------------------------------------------------------
2088 * Target methods
2089 *--------------------------------------------------------------*/
2090
2091/*
2092 * This function gets called on the error paths of the constructor, so we
2093 * have to cope with a partially initialised struct.
2094 */
2095static void destroy(struct cache *cache)
2096{
2097 unsigned i;
2098
6f65985e 2099 mempool_destroy(cache->migration_pool);
c6b4fcba 2100
c6b4fcba 2101 if (cache->prison)
b29d4986 2102 dm_bio_prison_destroy_v2(cache->prison);
c6b4fcba
JT
2103
2104 if (cache->wq)
2105 destroy_workqueue(cache->wq);
2106
2107 if (cache->dirty_bitset)
2108 free_bitset(cache->dirty_bitset);
2109
2110 if (cache->discard_bitset)
2111 free_bitset(cache->discard_bitset);
2112
2113 if (cache->copier)
2114 dm_kcopyd_client_destroy(cache->copier);
2115
2116 if (cache->cmd)
2117 dm_cache_metadata_close(cache->cmd);
2118
2119 if (cache->metadata_dev)
2120 dm_put_device(cache->ti, cache->metadata_dev);
2121
2122 if (cache->origin_dev)
2123 dm_put_device(cache->ti, cache->origin_dev);
2124
2125 if (cache->cache_dev)
2126 dm_put_device(cache->ti, cache->cache_dev);
2127
2128 if (cache->policy)
2129 dm_cache_policy_destroy(cache->policy);
2130
2131 for (i = 0; i < cache->nr_ctr_args ; i++)
2132 kfree(cache->ctr_args[i]);
2133 kfree(cache->ctr_args);
2134
2135 kfree(cache);
2136}
2137
2138static void cache_dtr(struct dm_target *ti)
2139{
2140 struct cache *cache = ti->private;
2141
2142 destroy(cache);
2143}
2144
2145static sector_t get_dev_size(struct dm_dev *dev)
2146{
2147 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2148}
2149
2150/*----------------------------------------------------------------*/
2151
2152/*
2153 * Construct a cache device mapping.
2154 *
2155 * cache <metadata dev> <cache dev> <origin dev> <block size>
2156 * <#feature args> [<feature arg>]*
2157 * <policy> <#policy args> [<policy arg>]*
2158 *
2159 * metadata dev : fast device holding the persistent metadata
2160 * cache dev : fast device holding cached data blocks
2161 * origin dev : slow device holding original data blocks
2162 * block size : cache unit size in sectors
2163 *
2164 * #feature args : number of feature arguments passed
2165 * feature args : writethrough. (The default is writeback.)
2166 *
2167 * policy : the replacement policy to use
2168 * #policy args : an even number of policy arguments corresponding
2169 * to key/value pairs passed to the policy
2170 * policy args : key/value pairs passed to the policy
2171 * E.g. 'sequential_threshold 1024'
2172 * See cache-policies.txt for details.
2173 *
2174 * Optional feature arguments are:
2175 * writethrough : write through caching that prohibits cache block
2176 * content from being different from origin block content.
2177 * Without this argument, the default behaviour is to write
2178 * back cache block contents later for performance reasons,
2179 * so they may differ from the corresponding origin blocks.
2180 */
2181struct cache_args {
2182 struct dm_target *ti;
2183
2184 struct dm_dev *metadata_dev;
2185
2186 struct dm_dev *cache_dev;
2187 sector_t cache_sectors;
2188
2189 struct dm_dev *origin_dev;
2190 sector_t origin_sectors;
2191
2192 uint32_t block_size;
2193
2194 const char *policy_name;
2195 int policy_argc;
2196 const char **policy_argv;
2197
2198 struct cache_features features;
2199};
2200
2201static void destroy_cache_args(struct cache_args *ca)
2202{
2203 if (ca->metadata_dev)
2204 dm_put_device(ca->ti, ca->metadata_dev);
2205
2206 if (ca->cache_dev)
2207 dm_put_device(ca->ti, ca->cache_dev);
2208
2209 if (ca->origin_dev)
2210 dm_put_device(ca->ti, ca->origin_dev);
2211
2212 kfree(ca);
2213}
2214
2215static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2216{
2217 if (!as->argc) {
2218 *error = "Insufficient args";
2219 return false;
2220 }
2221
2222 return true;
2223}
2224
2225static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2226 char **error)
2227{
2228 int r;
2229 sector_t metadata_dev_size;
2230 char b[BDEVNAME_SIZE];
2231
2232 if (!at_least_one_arg(as, error))
2233 return -EINVAL;
2234
2235 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2236 &ca->metadata_dev);
2237 if (r) {
2238 *error = "Error opening metadata device";
2239 return r;
2240 }
2241
2242 metadata_dev_size = get_dev_size(ca->metadata_dev);
2243 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2244 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2245 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2246
2247 return 0;
2248}
2249
2250static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2251 char **error)
2252{
2253 int r;
2254
2255 if (!at_least_one_arg(as, error))
2256 return -EINVAL;
2257
2258 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2259 &ca->cache_dev);
2260 if (r) {
2261 *error = "Error opening cache device";
2262 return r;
2263 }
2264 ca->cache_sectors = get_dev_size(ca->cache_dev);
2265
2266 return 0;
2267}
2268
2269static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2270 char **error)
2271{
2272 int r;
2273
2274 if (!at_least_one_arg(as, error))
2275 return -EINVAL;
2276
2277 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2278 &ca->origin_dev);
2279 if (r) {
2280 *error = "Error opening origin device";
2281 return r;
2282 }
2283
2284 ca->origin_sectors = get_dev_size(ca->origin_dev);
2285 if (ca->ti->len > ca->origin_sectors) {
2286 *error = "Device size larger than cached device";
2287 return -EINVAL;
2288 }
2289
2290 return 0;
2291}
2292
2293static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2294 char **error)
2295{
05473044 2296 unsigned long block_size;
c6b4fcba
JT
2297
2298 if (!at_least_one_arg(as, error))
2299 return -EINVAL;
2300
05473044
MS
2301 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2302 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2303 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2304 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
c6b4fcba
JT
2305 *error = "Invalid data block size";
2306 return -EINVAL;
2307 }
2308
05473044 2309 if (block_size > ca->cache_sectors) {
c6b4fcba
JT
2310 *error = "Data block size is larger than the cache device";
2311 return -EINVAL;
2312 }
2313
05473044 2314 ca->block_size = block_size;
c6b4fcba
JT
2315
2316 return 0;
2317}
2318
2319static void init_features(struct cache_features *cf)
2320{
2321 cf->mode = CM_WRITE;
2ee57d58 2322 cf->io_mode = CM_IO_WRITEBACK;
629d0a8a 2323 cf->metadata_version = 1;
c6b4fcba
JT
2324}
2325
2326static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2327 char **error)
2328{
5916a22b 2329 static const struct dm_arg _args[] = {
629d0a8a 2330 {0, 2, "Invalid number of cache feature arguments"},
c6b4fcba
JT
2331 };
2332
2333 int r;
2334 unsigned argc;
2335 const char *arg;
2336 struct cache_features *cf = &ca->features;
2337
2338 init_features(cf);
2339
2340 r = dm_read_arg_group(_args, as, &argc, error);
2341 if (r)
2342 return -EINVAL;
2343
2344 while (argc--) {
2345 arg = dm_shift_arg(as);
2346
2347 if (!strcasecmp(arg, "writeback"))
2ee57d58 2348 cf->io_mode = CM_IO_WRITEBACK;
c6b4fcba
JT
2349
2350 else if (!strcasecmp(arg, "writethrough"))
2ee57d58
JT
2351 cf->io_mode = CM_IO_WRITETHROUGH;
2352
2353 else if (!strcasecmp(arg, "passthrough"))
2354 cf->io_mode = CM_IO_PASSTHROUGH;
c6b4fcba 2355
629d0a8a
JT
2356 else if (!strcasecmp(arg, "metadata2"))
2357 cf->metadata_version = 2;
2358
c6b4fcba
JT
2359 else {
2360 *error = "Unrecognised cache feature requested";
2361 return -EINVAL;
2362 }
2363 }
2364
2365 return 0;
2366}
2367
2368static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2369 char **error)
2370{
5916a22b 2371 static const struct dm_arg _args[] = {
c6b4fcba
JT
2372 {0, 1024, "Invalid number of policy arguments"},
2373 };
2374
2375 int r;
2376
2377 if (!at_least_one_arg(as, error))
2378 return -EINVAL;
2379
2380 ca->policy_name = dm_shift_arg(as);
2381
2382 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2383 if (r)
2384 return -EINVAL;
2385
2386 ca->policy_argv = (const char **)as->argv;
2387 dm_consume_args(as, ca->policy_argc);
2388
2389 return 0;
2390}
2391
2392static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2393 char **error)
2394{
2395 int r;
2396 struct dm_arg_set as;
2397
2398 as.argc = argc;
2399 as.argv = argv;
2400
2401 r = parse_metadata_dev(ca, &as, error);
2402 if (r)
2403 return r;
2404
2405 r = parse_cache_dev(ca, &as, error);
2406 if (r)
2407 return r;
2408
2409 r = parse_origin_dev(ca, &as, error);
2410 if (r)
2411 return r;
2412
2413 r = parse_block_size(ca, &as, error);
2414 if (r)
2415 return r;
2416
2417 r = parse_features(ca, &as, error);
2418 if (r)
2419 return r;
2420
2421 r = parse_policy(ca, &as, error);
2422 if (r)
2423 return r;
2424
2425 return 0;
2426}
2427
2428/*----------------------------------------------------------------*/
2429
2430static struct kmem_cache *migration_cache;
2431
2c73c471
AK
2432#define NOT_CORE_OPTION 1
2433
2f14f4b5 2434static int process_config_option(struct cache *cache, const char *key, const char *value)
2c73c471
AK
2435{
2436 unsigned long tmp;
2437
2f14f4b5
JT
2438 if (!strcasecmp(key, "migration_threshold")) {
2439 if (kstrtoul(value, 10, &tmp))
2c73c471
AK
2440 return -EINVAL;
2441
2442 cache->migration_threshold = tmp;
2443 return 0;
2444 }
2445
2446 return NOT_CORE_OPTION;
2447}
2448
2f14f4b5
JT
2449static int set_config_value(struct cache *cache, const char *key, const char *value)
2450{
2451 int r = process_config_option(cache, key, value);
2452
2453 if (r == NOT_CORE_OPTION)
2454 r = policy_set_config_value(cache->policy, key, value);
2455
2456 if (r)
2457 DMWARN("bad config value for %s: %s", key, value);
2458
2459 return r;
2460}
2461
2462static int set_config_values(struct cache *cache, int argc, const char **argv)
c6b4fcba
JT
2463{
2464 int r = 0;
2465
2466 if (argc & 1) {
2467 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2468 return -EINVAL;
2469 }
2470
2471 while (argc) {
2f14f4b5
JT
2472 r = set_config_value(cache, argv[0], argv[1]);
2473 if (r)
2474 break;
c6b4fcba
JT
2475
2476 argc -= 2;
2477 argv += 2;
2478 }
2479
2480 return r;
2481}
2482
2483static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2484 char **error)
2485{
4cb3e1db
MP
2486 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2487 cache->cache_size,
2488 cache->origin_sectors,
2489 cache->sectors_per_block);
2490 if (IS_ERR(p)) {
c6b4fcba 2491 *error = "Error creating cache's policy";
4cb3e1db 2492 return PTR_ERR(p);
c6b4fcba 2493 }
4cb3e1db 2494 cache->policy = p;
b29d4986 2495 BUG_ON(!cache->policy);
c6b4fcba 2496
2f14f4b5 2497 return 0;
c6b4fcba
JT
2498}
2499
08b18451 2500/*
2bb812df
JT
2501 * We want the discard block size to be at least the size of the cache
2502 * block size and have no more than 2^14 discard blocks across the origin.
08b18451
JT
2503 */
2504#define MAX_DISCARD_BLOCKS (1 << 14)
2505
2506static bool too_many_discard_blocks(sector_t discard_block_size,
2507 sector_t origin_size)
2508{
2509 (void) sector_div(origin_size, discard_block_size);
2510
2511 return origin_size > MAX_DISCARD_BLOCKS;
2512}
2513
2514static sector_t calculate_discard_block_size(sector_t cache_block_size,
2515 sector_t origin_size)
2516{
2bb812df 2517 sector_t discard_block_size = cache_block_size;
08b18451
JT
2518
2519 if (origin_size)
2520 while (too_many_discard_blocks(discard_block_size, origin_size))
2521 discard_block_size *= 2;
2522
2523 return discard_block_size;
2524}
2525
d1d9220c
JT
2526static void set_cache_size(struct cache *cache, dm_cblock_t size)
2527{
2528 dm_block_t nr_blocks = from_cblock(size);
2529
2530 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2531 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2532 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2533 "Please consider increasing the cache block size to reduce the overall cache block count.",
2534 (unsigned long long) nr_blocks);
2535
2536 cache->cache_size = size;
2537}
2538
b29d4986
JT
2539static int is_congested(struct dm_dev *dev, int bdi_bits)
2540{
2541 struct request_queue *q = bdev_get_queue(dev->bdev);
2542 return bdi_congested(q->backing_dev_info, bdi_bits);
2543}
2544
2545static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2546{
2547 struct cache *cache = container_of(cb, struct cache, callbacks);
2548
2549 return is_congested(cache->origin_dev, bdi_bits) ||
2550 is_congested(cache->cache_dev, bdi_bits);
2551}
2552
f8350daf 2553#define DEFAULT_MIGRATION_THRESHOLD 2048
c6b4fcba 2554
c6b4fcba
JT
2555static int cache_create(struct cache_args *ca, struct cache **result)
2556{
2557 int r = 0;
2558 char **error = &ca->ti->error;
2559 struct cache *cache;
2560 struct dm_target *ti = ca->ti;
2561 dm_block_t origin_blocks;
2562 struct dm_cache_metadata *cmd;
2563 bool may_format = ca->features.mode == CM_WRITE;
2564
2565 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2566 if (!cache)
2567 return -ENOMEM;
2568
2569 cache->ti = ca->ti;
2570 ti->private = cache;
c6b4fcba
JT
2571 ti->num_flush_bios = 2;
2572 ti->flush_supported = true;
2573
2574 ti->num_discard_bios = 1;
2575 ti->discards_supported = true;
2572629a 2576 ti->split_discard_bios = false;
c6b4fcba 2577
8c5008fa 2578 cache->features = ca->features;
30187e1d 2579 ti->per_io_data_size = get_per_bio_data_size(cache);
c6b4fcba 2580
c6b4fcba
JT
2581 cache->callbacks.congested_fn = cache_is_congested;
2582 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2583
2584 cache->metadata_dev = ca->metadata_dev;
2585 cache->origin_dev = ca->origin_dev;
2586 cache->cache_dev = ca->cache_dev;
2587
2588 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2589
c6b4fcba 2590 origin_blocks = cache->origin_sectors = ca->origin_sectors;
414dd67d 2591 origin_blocks = block_div(origin_blocks, ca->block_size);
c6b4fcba
JT
2592 cache->origin_blocks = to_oblock(origin_blocks);
2593
2594 cache->sectors_per_block = ca->block_size;
2595 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2596 r = -EINVAL;
2597 goto bad;
2598 }
2599
2600 if (ca->block_size & (ca->block_size - 1)) {
2601 dm_block_t cache_size = ca->cache_sectors;
2602
2603 cache->sectors_per_block_shift = -1;
414dd67d 2604 cache_size = block_div(cache_size, ca->block_size);
d1d9220c 2605 set_cache_size(cache, to_cblock(cache_size));
c6b4fcba
JT
2606 } else {
2607 cache->sectors_per_block_shift = __ffs(ca->block_size);
d1d9220c 2608 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
c6b4fcba
JT
2609 }
2610
2611 r = create_cache_policy(cache, ca, error);
2612 if (r)
2613 goto bad;
2f14f4b5 2614
c6b4fcba 2615 cache->policy_nr_args = ca->policy_argc;
2f14f4b5
JT
2616 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2617
2618 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2619 if (r) {
2620 *error = "Error setting cache policy's config values";
2621 goto bad;
2622 }
c6b4fcba
JT
2623
2624 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2625 ca->block_size, may_format,
629d0a8a
JT
2626 dm_cache_policy_get_hint_size(cache->policy),
2627 ca->features.metadata_version);
c6b4fcba
JT
2628 if (IS_ERR(cmd)) {
2629 *error = "Error creating metadata object";
2630 r = PTR_ERR(cmd);
2631 goto bad;
2632 }
2633 cache->cmd = cmd;
028ae9f7
JT
2634 set_cache_mode(cache, CM_WRITE);
2635 if (get_cache_mode(cache) != CM_WRITE) {
2636 *error = "Unable to get write access to metadata, please check/repair metadata.";
2637 r = -EINVAL;
2638 goto bad;
2639 }
c6b4fcba 2640
8e3c3827 2641 if (passthrough_mode(cache)) {
2ee57d58
JT
2642 bool all_clean;
2643
2644 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2645 if (r) {
2646 *error = "dm_cache_metadata_all_clean() failed";
2647 goto bad;
2648 }
2649
2650 if (!all_clean) {
2651 *error = "Cannot enter passthrough mode unless all blocks are clean";
2652 r = -EINVAL;
2653 goto bad;
2654 }
b29d4986
JT
2655
2656 policy_allow_migrations(cache->policy, false);
2ee57d58
JT
2657 }
2658
c6b4fcba 2659 spin_lock_init(&cache->lock);
651f5fa2 2660 INIT_LIST_HEAD(&cache->deferred_cells);
c6b4fcba 2661 bio_list_init(&cache->deferred_bios);
e2e74d61 2662 bio_list_init(&cache->deferred_writethrough_bios);
a59db676
JT
2663 atomic_set(&cache->nr_allocated_migrations, 0);
2664 atomic_set(&cache->nr_io_migrations, 0);
c6b4fcba
JT
2665 init_waitqueue_head(&cache->migration_wait);
2666
fa4d683a 2667 r = -ENOMEM;
44fa816b 2668 atomic_set(&cache->nr_dirty, 0);
c6b4fcba
JT
2669 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2670 if (!cache->dirty_bitset) {
2671 *error = "could not allocate dirty bitset";
2672 goto bad;
2673 }
2674 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2675
08b18451
JT
2676 cache->discard_block_size =
2677 calculate_discard_block_size(cache->sectors_per_block,
2678 cache->origin_sectors);
2572629a
JT
2679 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2680 cache->discard_block_size));
1bad9bc4 2681 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2682 if (!cache->discard_bitset) {
2683 *error = "could not allocate discard bitset";
2684 goto bad;
2685 }
1bad9bc4 2686 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
c6b4fcba
JT
2687
2688 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2689 if (IS_ERR(cache->copier)) {
2690 *error = "could not create kcopyd client";
2691 r = PTR_ERR(cache->copier);
2692 goto bad;
2693 }
2694
b29d4986 2695 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
c6b4fcba
JT
2696 if (!cache->wq) {
2697 *error = "could not create workqueue for metadata object";
2698 goto bad;
2699 }
b29d4986
JT
2700 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2701 INIT_WORK(&cache->deferred_writethrough_worker,
2702 process_deferred_writethrough_bios);
2703 INIT_WORK(&cache->migration_worker, check_migrations);
c6b4fcba 2704 INIT_DELAYED_WORK(&cache->waker, do_waker);
c6b4fcba 2705
b29d4986 2706 cache->prison = dm_bio_prison_create_v2(cache->wq);
c6b4fcba
JT
2707 if (!cache->prison) {
2708 *error = "could not create bio prison";
2709 goto bad;
2710 }
2711
c6b4fcba
JT
2712 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2713 migration_cache);
2714 if (!cache->migration_pool) {
2715 *error = "Error creating cache's migration mempool";
2716 goto bad;
2717 }
2718
c6b4fcba
JT
2719 cache->need_tick_bio = true;
2720 cache->sized = false;
65790ff9 2721 cache->invalidate = false;
c6b4fcba
JT
2722 cache->commit_requested = false;
2723 cache->loaded_mappings = false;
2724 cache->loaded_discards = false;
2725
2726 load_stats(cache);
2727
2728 atomic_set(&cache->stats.demotion, 0);
2729 atomic_set(&cache->stats.promotion, 0);
2730 atomic_set(&cache->stats.copies_avoided, 0);
2731 atomic_set(&cache->stats.cache_cell_clash, 0);
2732 atomic_set(&cache->stats.commit_count, 0);
2733 atomic_set(&cache->stats.discard_count, 0);
2734
65790ff9
JT
2735 spin_lock_init(&cache->invalidation_lock);
2736 INIT_LIST_HEAD(&cache->invalidation_requests);
2737
b29d4986
JT
2738 batcher_init(&cache->committer, commit_op, cache,
2739 issue_op, cache, cache->wq);
701e03e4 2740 iot_init(&cache->tracker);
066dbaa3 2741
b29d4986
JT
2742 init_rwsem(&cache->background_work_lock);
2743 prevent_background_work(cache);
2744
c6b4fcba
JT
2745 *result = cache;
2746 return 0;
c6b4fcba
JT
2747bad:
2748 destroy(cache);
2749 return r;
2750}
2751
2752static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2753{
2754 unsigned i;
2755 const char **copy;
2756
2757 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2758 if (!copy)
2759 return -ENOMEM;
2760 for (i = 0; i < argc; i++) {
2761 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2762 if (!copy[i]) {
2763 while (i--)
2764 kfree(copy[i]);
2765 kfree(copy);
2766 return -ENOMEM;
2767 }
2768 }
2769
2770 cache->nr_ctr_args = argc;
2771 cache->ctr_args = copy;
2772
2773 return 0;
2774}
2775
2776static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2777{
2778 int r = -EINVAL;
2779 struct cache_args *ca;
2780 struct cache *cache = NULL;
2781
2782 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2783 if (!ca) {
2784 ti->error = "Error allocating memory for cache";
2785 return -ENOMEM;
2786 }
2787 ca->ti = ti;
2788
2789 r = parse_cache_args(ca, argc, argv, &ti->error);
2790 if (r)
2791 goto out;
2792
2793 r = cache_create(ca, &cache);
617a0b89
HM
2794 if (r)
2795 goto out;
c6b4fcba
JT
2796
2797 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2798 if (r) {
2799 destroy(cache);
2800 goto out;
2801 }
2802
2803 ti->private = cache;
c6b4fcba
JT
2804out:
2805 destroy_cache_args(ca);
2806 return r;
2807}
2808
651f5fa2
JT
2809/*----------------------------------------------------------------*/
2810
2811static int cache_map(struct dm_target *ti, struct bio *bio)
c6b4fcba 2812{
651f5fa2
JT
2813 struct cache *cache = ti->private;
2814
c6b4fcba 2815 int r;
b29d4986 2816 bool commit_needed;
c6b4fcba 2817 dm_oblock_t block = get_bio_block(cache, bio);
19b0092e 2818 size_t pb_data_size = get_per_bio_data_size(cache);
c6b4fcba 2819
b29d4986 2820 init_per_bio_data(bio, pb_data_size);
e893fba9 2821 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
c6b4fcba
JT
2822 /*
2823 * This can only occur if the io goes to a partial block at
2824 * the end of the origin device. We don't cache these.
2825 * Just remap to the origin and carry on.
2826 */
e893fba9 2827 remap_to_origin(cache, bio);
651f5fa2 2828 accounted_begin(cache, bio);
c6b4fcba
JT
2829 return DM_MAPIO_REMAPPED;
2830 }
2831
651f5fa2 2832 if (discard_or_flush(bio)) {
c6b4fcba
JT
2833 defer_bio(cache, bio);
2834 return DM_MAPIO_SUBMITTED;
2835 }
2836
b29d4986
JT
2837 r = map_bio(cache, bio, block, &commit_needed);
2838 if (commit_needed)
2839 schedule_commit(&cache->committer);
c6b4fcba 2840
2ee57d58 2841 return r;
c6b4fcba
JT
2842}
2843
4e4cbee9
CH
2844static int cache_end_io(struct dm_target *ti, struct bio *bio,
2845 blk_status_t *error)
c6b4fcba
JT
2846{
2847 struct cache *cache = ti->private;
2848 unsigned long flags;
19b0092e
MS
2849 size_t pb_data_size = get_per_bio_data_size(cache);
2850 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
c6b4fcba
JT
2851
2852 if (pb->tick) {
fba10109 2853 policy_tick(cache->policy, false);
c6b4fcba
JT
2854
2855 spin_lock_irqsave(&cache->lock, flags);
2856 cache->need_tick_bio = true;
2857 spin_unlock_irqrestore(&cache->lock, flags);
2858 }
2859
b29d4986 2860 bio_drop_shared_lock(cache, bio);
066dbaa3 2861 accounted_complete(cache, bio);
c6b4fcba 2862
1be56909 2863 return DM_ENDIO_DONE;
c6b4fcba
JT
2864}
2865
2866static int write_dirty_bitset(struct cache *cache)
2867{
629d0a8a 2868 int r;
c6b4fcba 2869
028ae9f7
JT
2870 if (get_cache_mode(cache) >= CM_READ_ONLY)
2871 return -EINVAL;
2872
629d0a8a
JT
2873 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2874 if (r)
2875 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
c6b4fcba 2876
629d0a8a 2877 return r;
c6b4fcba
JT
2878}
2879
2880static int write_discard_bitset(struct cache *cache)
2881{
2882 unsigned i, r;
2883
028ae9f7
JT
2884 if (get_cache_mode(cache) >= CM_READ_ONLY)
2885 return -EINVAL;
2886
1bad9bc4
JT
2887 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2888 cache->discard_nr_blocks);
c6b4fcba 2889 if (r) {
b61d9509 2890 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
028ae9f7 2891 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
c6b4fcba
JT
2892 return r;
2893 }
2894
1bad9bc4
JT
2895 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2896 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2897 is_discarded(cache, to_dblock(i)));
028ae9f7
JT
2898 if (r) {
2899 metadata_operation_failed(cache, "dm_cache_set_discard", r);
c6b4fcba 2900 return r;
028ae9f7
JT
2901 }
2902 }
2903
2904 return 0;
2905}
2906
2907static int write_hints(struct cache *cache)
2908{
2909 int r;
2910
2911 if (get_cache_mode(cache) >= CM_READ_ONLY)
2912 return -EINVAL;
2913
2914 r = dm_cache_write_hints(cache->cmd, cache->policy);
2915 if (r) {
2916 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2917 return r;
c6b4fcba
JT
2918 }
2919
2920 return 0;
2921}
2922
c6b4fcba
JT
2923/*
2924 * returns true on success
2925 */
2926static bool sync_metadata(struct cache *cache)
2927{
2928 int r1, r2, r3, r4;
2929
2930 r1 = write_dirty_bitset(cache);
2931 if (r1)
b61d9509 2932 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
c6b4fcba
JT
2933
2934 r2 = write_discard_bitset(cache);
2935 if (r2)
b61d9509 2936 DMERR("%s: could not write discard bitset", cache_device_name(cache));
c6b4fcba
JT
2937
2938 save_stats(cache);
2939
028ae9f7 2940 r3 = write_hints(cache);
c6b4fcba 2941 if (r3)
b61d9509 2942 DMERR("%s: could not write hints", cache_device_name(cache));
c6b4fcba
JT
2943
2944 /*
2945 * If writing the above metadata failed, we still commit, but don't
2946 * set the clean shutdown flag. This will effectively force every
2947 * dirty bit to be set on reload.
2948 */
028ae9f7 2949 r4 = commit(cache, !r1 && !r2 && !r3);
c6b4fcba 2950 if (r4)
b61d9509 2951 DMERR("%s: could not write cache metadata", cache_device_name(cache));
c6b4fcba
JT
2952
2953 return !r1 && !r2 && !r3 && !r4;
2954}
2955
2956static void cache_postsuspend(struct dm_target *ti)
2957{
2958 struct cache *cache = ti->private;
2959
b29d4986
JT
2960 prevent_background_work(cache);
2961 BUG_ON(atomic_read(&cache->nr_io_migrations));
2962
2963 cancel_delayed_work(&cache->waker);
2964 flush_workqueue(cache->wq);
701e03e4 2965 WARN_ON(cache->tracker.in_flight);
b29d4986
JT
2966
2967 /*
2968 * If it's a flush suspend there won't be any deferred bios, so this
2969 * call is harmless.
2970 */
651f5fa2 2971 requeue_deferred_bios(cache);
c6b4fcba 2972
028ae9f7
JT
2973 if (get_cache_mode(cache) == CM_WRITE)
2974 (void) sync_metadata(cache);
c6b4fcba
JT
2975}
2976
2977static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2978 bool dirty, uint32_t hint, bool hint_valid)
2979{
2980 int r;
2981 struct cache *cache = context;
2982
449b668c
JT
2983 if (dirty) {
2984 set_bit(from_cblock(cblock), cache->dirty_bitset);
2985 atomic_inc(&cache->nr_dirty);
2986 } else
2987 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2988
b29d4986 2989 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
c6b4fcba
JT
2990 if (r)
2991 return r;
2992
c6b4fcba
JT
2993 return 0;
2994}
2995
3e2e1c30
JT
2996/*
2997 * The discard block size in the on disk metadata is not
2998 * neccessarily the same as we're currently using. So we have to
2999 * be careful to only set the discarded attribute if we know it
3000 * covers a complete block of the new size.
3001 */
3002struct discard_load_info {
3003 struct cache *cache;
3004
3005 /*
3006 * These blocks are sized using the on disk dblock size, rather
3007 * than the current one.
3008 */
3009 dm_block_t block_size;
3010 dm_block_t discard_begin, discard_end;
3011};
3012
3013static void discard_load_info_init(struct cache *cache,
3014 struct discard_load_info *li)
3015{
3016 li->cache = cache;
3017 li->discard_begin = li->discard_end = 0;
3018}
3019
3020static void set_discard_range(struct discard_load_info *li)
3021{
3022 sector_t b, e;
3023
3024 if (li->discard_begin == li->discard_end)
3025 return;
3026
3027 /*
3028 * Convert to sectors.
3029 */
3030 b = li->discard_begin * li->block_size;
3031 e = li->discard_end * li->block_size;
3032
3033 /*
3034 * Then convert back to the current dblock size.
3035 */
3036 b = dm_sector_div_up(b, li->cache->discard_block_size);
3037 sector_div(e, li->cache->discard_block_size);
3038
3039 /*
3040 * The origin may have shrunk, so we need to check we're still in
3041 * bounds.
3042 */
3043 if (e > from_dblock(li->cache->discard_nr_blocks))
3044 e = from_dblock(li->cache->discard_nr_blocks);
3045
3046 for (; b < e; b++)
3047 set_discard(li->cache, to_dblock(b));
3048}
3049
c6b4fcba 3050static int load_discard(void *context, sector_t discard_block_size,
1bad9bc4 3051 dm_dblock_t dblock, bool discard)
c6b4fcba 3052{
3e2e1c30 3053 struct discard_load_info *li = context;
c6b4fcba 3054
3e2e1c30 3055 li->block_size = discard_block_size;
1bad9bc4 3056
3e2e1c30
JT
3057 if (discard) {
3058 if (from_dblock(dblock) == li->discard_end)
3059 /*
3060 * We're already in a discard range, just extend it.
3061 */
3062 li->discard_end = li->discard_end + 1ULL;
3063
3064 else {
3065 /*
3066 * Emit the old range and start a new one.
3067 */
3068 set_discard_range(li);
3069 li->discard_begin = from_dblock(dblock);
3070 li->discard_end = li->discard_begin + 1ULL;
3071 }
3072 } else {
3073 set_discard_range(li);
3074 li->discard_begin = li->discard_end = 0;
3075 }
c6b4fcba
JT
3076
3077 return 0;
3078}
3079
f494a9c6
JT
3080static dm_cblock_t get_cache_dev_size(struct cache *cache)
3081{
3082 sector_t size = get_dev_size(cache->cache_dev);
3083 (void) sector_div(size, cache->sectors_per_block);
3084 return to_cblock(size);
3085}
3086
3087static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3088{
3089 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3090 return true;
3091
3092 /*
3093 * We can't drop a dirty block when shrinking the cache.
3094 */
3095 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3096 new_size = to_cblock(from_cblock(new_size) + 1);
3097 if (is_dirty(cache, new_size)) {
b61d9509
MS
3098 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3099 cache_device_name(cache),
f494a9c6
JT
3100 (unsigned long long) from_cblock(new_size));
3101 return false;
3102 }
3103 }
3104
3105 return true;
3106}
3107
3108static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3109{
3110 int r;
3111
08844800 3112 r = dm_cache_resize(cache->cmd, new_size);
f494a9c6 3113 if (r) {
b61d9509 3114 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
028ae9f7 3115 metadata_operation_failed(cache, "dm_cache_resize", r);
f494a9c6
JT
3116 return r;
3117 }
3118
d1d9220c 3119 set_cache_size(cache, new_size);
f494a9c6
JT
3120
3121 return 0;
3122}
3123
c6b4fcba
JT
3124static int cache_preresume(struct dm_target *ti)
3125{
3126 int r = 0;
3127 struct cache *cache = ti->private;
f494a9c6 3128 dm_cblock_t csize = get_cache_dev_size(cache);
c6b4fcba
JT
3129
3130 /*
3131 * Check to see if the cache has resized.
3132 */
f494a9c6
JT
3133 if (!cache->sized) {
3134 r = resize_cache_dev(cache, csize);
3135 if (r)
c6b4fcba 3136 return r;
c6b4fcba
JT
3137
3138 cache->sized = true;
f494a9c6
JT
3139
3140 } else if (csize != cache->cache_size) {
3141 if (!can_resize(cache, csize))
3142 return -EINVAL;
3143
3144 r = resize_cache_dev(cache, csize);
3145 if (r)
3146 return r;
c6b4fcba
JT
3147 }
3148
3149 if (!cache->loaded_mappings) {
ea2dd8c1 3150 r = dm_cache_load_mappings(cache->cmd, cache->policy,
c6b4fcba
JT
3151 load_mapping, cache);
3152 if (r) {
b61d9509 3153 DMERR("%s: could not load cache mappings", cache_device_name(cache));
028ae9f7 3154 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
c6b4fcba
JT
3155 return r;
3156 }
3157
3158 cache->loaded_mappings = true;
3159 }
3160
3161 if (!cache->loaded_discards) {
3e2e1c30
JT
3162 struct discard_load_info li;
3163
3164 /*
3165 * The discard bitset could have been resized, or the
3166 * discard block size changed. To be safe we start by
3167 * setting every dblock to not discarded.
3168 */
3169 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3170
3171 discard_load_info_init(cache, &li);
3172 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
c6b4fcba 3173 if (r) {
b61d9509 3174 DMERR("%s: could not load origin discards", cache_device_name(cache));
028ae9f7 3175 metadata_operation_failed(cache, "dm_cache_load_discards", r);
c6b4fcba
JT
3176 return r;
3177 }
3e2e1c30 3178 set_discard_range(&li);
c6b4fcba
JT
3179
3180 cache->loaded_discards = true;
3181 }
3182
3183 return r;
3184}
3185
3186static void cache_resume(struct dm_target *ti)
3187{
3188 struct cache *cache = ti->private;
3189
3190 cache->need_tick_bio = true;
b29d4986 3191 allow_background_work(cache);
c6b4fcba
JT
3192 do_waker(&cache->waker.work);
3193}
3194
3195/*
3196 * Status format:
3197 *
6a388618
MS
3198 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3199 * <cache block size> <#used cache blocks>/<#total cache blocks>
c6b4fcba 3200 * <#read hits> <#read misses> <#write hits> <#write misses>
6a388618 3201 * <#demotions> <#promotions> <#dirty>
c6b4fcba
JT
3202 * <#features> <features>*
3203 * <#core args> <core args>
255eac20 3204 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
c6b4fcba
JT
3205 */
3206static void cache_status(struct dm_target *ti, status_type_t type,
3207 unsigned status_flags, char *result, unsigned maxlen)
3208{
3209 int r = 0;
3210 unsigned i;
3211 ssize_t sz = 0;
3212 dm_block_t nr_free_blocks_metadata = 0;
3213 dm_block_t nr_blocks_metadata = 0;
3214 char buf[BDEVNAME_SIZE];
3215 struct cache *cache = ti->private;
3216 dm_cblock_t residency;
d14fcf3d 3217 bool needs_check;
c6b4fcba
JT
3218
3219 switch (type) {
3220 case STATUSTYPE_INFO:
028ae9f7
JT
3221 if (get_cache_mode(cache) == CM_FAIL) {
3222 DMEMIT("Fail");
3223 break;
c6b4fcba
JT
3224 }
3225
028ae9f7
JT
3226 /* Commit to ensure statistics aren't out-of-date */
3227 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3228 (void) commit(cache, false);
3229
b61d9509 3230 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
c6b4fcba 3231 if (r) {
b61d9509
MS
3232 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3233 cache_device_name(cache), r);
c6b4fcba
JT
3234 goto err;
3235 }
3236
3237 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3238 if (r) {
b61d9509
MS
3239 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3240 cache_device_name(cache), r);
c6b4fcba
JT
3241 goto err;
3242 }
3243
3244 residency = policy_residency(cache->policy);
3245
ca763d0a 3246 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
895b47d7 3247 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
c6b4fcba
JT
3248 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3249 (unsigned long long)nr_blocks_metadata,
ca763d0a 3250 (unsigned long long)cache->sectors_per_block,
6a388618
MS
3251 (unsigned long long) from_cblock(residency),
3252 (unsigned long long) from_cblock(cache->cache_size),
c6b4fcba
JT
3253 (unsigned) atomic_read(&cache->stats.read_hit),
3254 (unsigned) atomic_read(&cache->stats.read_miss),
3255 (unsigned) atomic_read(&cache->stats.write_hit),
3256 (unsigned) atomic_read(&cache->stats.write_miss),
3257 (unsigned) atomic_read(&cache->stats.demotion),
3258 (unsigned) atomic_read(&cache->stats.promotion),
44fa816b 3259 (unsigned long) atomic_read(&cache->nr_dirty));
c6b4fcba 3260
629d0a8a
JT
3261 if (cache->features.metadata_version == 2)
3262 DMEMIT("2 metadata2 ");
3263 else
3264 DMEMIT("1 ");
3265
8e3c3827 3266 if (writethrough_mode(cache))
629d0a8a 3267 DMEMIT("writethrough ");
2ee57d58 3268
8e3c3827 3269 else if (passthrough_mode(cache))
629d0a8a 3270 DMEMIT("passthrough ");
2ee57d58 3271
8e3c3827 3272 else if (writeback_mode(cache))
629d0a8a 3273 DMEMIT("writeback ");
2ee57d58
JT
3274
3275 else {
b61d9509
MS
3276 DMERR("%s: internal error: unknown io mode: %d",
3277 cache_device_name(cache), (int) cache->features.io_mode);
2ee57d58
JT
3278 goto err;
3279 }
c6b4fcba
JT
3280
3281 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2e68c4e6
MS
3282
3283 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
c6b4fcba 3284 if (sz < maxlen) {
028ae9f7 3285 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
c6b4fcba 3286 if (r)
b61d9509
MS
3287 DMERR("%s: policy_emit_config_values returned %d",
3288 cache_device_name(cache), r);
c6b4fcba
JT
3289 }
3290
028ae9f7
JT
3291 if (get_cache_mode(cache) == CM_READ_ONLY)
3292 DMEMIT("ro ");
3293 else
3294 DMEMIT("rw ");
3295
d14fcf3d
JT
3296 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3297
3298 if (r || needs_check)
255eac20
MS
3299 DMEMIT("needs_check ");
3300 else
3301 DMEMIT("- ");
3302
c6b4fcba
JT
3303 break;
3304
3305 case STATUSTYPE_TABLE:
3306 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3307 DMEMIT("%s ", buf);
3308 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3309 DMEMIT("%s ", buf);
3310 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3311 DMEMIT("%s", buf);
3312
3313 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3314 DMEMIT(" %s", cache->ctr_args[i]);
3315 if (cache->nr_ctr_args)
3316 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3317 }
3318
3319 return;
3320
3321err:
3322 DMEMIT("Error");
3323}
3324
b29d4986
JT
3325/*
3326 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3327 * the one-past-the-end value.
3328 */
3329struct cblock_range {
3330 dm_cblock_t begin;
3331 dm_cblock_t end;
3332};
3333
c6b4fcba 3334/*
65790ff9
JT
3335 * A cache block range can take two forms:
3336 *
3337 * i) A single cblock, eg. '3456'
b29d4986 3338 * ii) A begin and end cblock with a dash between, eg. 123-234
65790ff9
JT
3339 */
3340static int parse_cblock_range(struct cache *cache, const char *str,
3341 struct cblock_range *result)
3342{
3343 char dummy;
3344 uint64_t b, e;
3345 int r;
3346
3347 /*
3348 * Try and parse form (ii) first.
3349 */
3350 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3351 if (r < 0)
3352 return r;
3353
3354 if (r == 2) {
3355 result->begin = to_cblock(b);
3356 result->end = to_cblock(e);
3357 return 0;
3358 }
3359
3360 /*
3361 * That didn't work, try form (i).
3362 */
3363 r = sscanf(str, "%llu%c", &b, &dummy);
3364 if (r < 0)
3365 return r;
3366
3367 if (r == 1) {
3368 result->begin = to_cblock(b);
3369 result->end = to_cblock(from_cblock(result->begin) + 1u);
3370 return 0;
3371 }
3372
b61d9509 3373 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
65790ff9
JT
3374 return -EINVAL;
3375}
3376
3377static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3378{
3379 uint64_t b = from_cblock(range->begin);
3380 uint64_t e = from_cblock(range->end);
3381 uint64_t n = from_cblock(cache->cache_size);
3382
3383 if (b >= n) {
b61d9509
MS
3384 DMERR("%s: begin cblock out of range: %llu >= %llu",
3385 cache_device_name(cache), b, n);
65790ff9
JT
3386 return -EINVAL;
3387 }
3388
3389 if (e > n) {
b61d9509
MS
3390 DMERR("%s: end cblock out of range: %llu > %llu",
3391 cache_device_name(cache), e, n);
65790ff9
JT
3392 return -EINVAL;
3393 }
3394
3395 if (b >= e) {
b61d9509
MS
3396 DMERR("%s: invalid cblock range: %llu >= %llu",
3397 cache_device_name(cache), b, e);
65790ff9
JT
3398 return -EINVAL;
3399 }
3400
3401 return 0;
3402}
3403
b29d4986
JT
3404static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3405{
3406 return to_cblock(from_cblock(b) + 1);
3407}
3408
65790ff9
JT
3409static int request_invalidation(struct cache *cache, struct cblock_range *range)
3410{
b29d4986 3411 int r = 0;
65790ff9 3412
b29d4986
JT
3413 /*
3414 * We don't need to do any locking here because we know we're in
3415 * passthrough mode. There's is potential for a race between an
3416 * invalidation triggered by an io and an invalidation message. This
3417 * is harmless, we must not worry if the policy call fails.
3418 */
3419 while (range->begin != range->end) {
3420 r = invalidate_cblock(cache, range->begin);
3421 if (r)
3422 return r;
65790ff9 3423
b29d4986
JT
3424 range->begin = cblock_succ(range->begin);
3425 }
65790ff9 3426
b29d4986
JT
3427 cache->commit_requested = true;
3428 return r;
65790ff9
JT
3429}
3430
3431static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3432 const char **cblock_ranges)
3433{
3434 int r = 0;
3435 unsigned i;
3436 struct cblock_range range;
3437
8e3c3827 3438 if (!passthrough_mode(cache)) {
b61d9509
MS
3439 DMERR("%s: cache has to be in passthrough mode for invalidation",
3440 cache_device_name(cache));
65790ff9
JT
3441 return -EPERM;
3442 }
3443
3444 for (i = 0; i < count; i++) {
3445 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3446 if (r)
3447 break;
3448
3449 r = validate_cblock_range(cache, &range);
3450 if (r)
3451 break;
3452
3453 /*
3454 * Pass begin and end origin blocks to the worker and wake it.
3455 */
3456 r = request_invalidation(cache, &range);
3457 if (r)
3458 break;
3459 }
3460
3461 return r;
3462}
3463
3464/*
3465 * Supports
3466 * "<key> <value>"
3467 * and
3468 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
c6b4fcba
JT
3469 *
3470 * The key migration_threshold is supported by the cache target core.
3471 */
3472static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3473{
c6b4fcba
JT
3474 struct cache *cache = ti->private;
3475
65790ff9
JT
3476 if (!argc)
3477 return -EINVAL;
3478
028ae9f7 3479 if (get_cache_mode(cache) >= CM_READ_ONLY) {
b61d9509
MS
3480 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3481 cache_device_name(cache));
028ae9f7
JT
3482 return -EOPNOTSUPP;
3483 }
3484
7b6b2bc9 3485 if (!strcasecmp(argv[0], "invalidate_cblocks"))
65790ff9
JT
3486 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3487
c6b4fcba
JT
3488 if (argc != 2)
3489 return -EINVAL;
3490
2f14f4b5 3491 return set_config_value(cache, argv[0], argv[1]);
c6b4fcba
JT
3492}
3493
3494static int cache_iterate_devices(struct dm_target *ti,
3495 iterate_devices_callout_fn fn, void *data)
3496{
3497 int r = 0;
3498 struct cache *cache = ti->private;
3499
3500 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3501 if (!r)
3502 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3503
3504 return r;
3505}
3506
c6b4fcba
JT
3507static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3508{
3509 /*
3510 * FIXME: these limits may be incompatible with the cache device
3511 */
7ae34e77
JT
3512 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3513 cache->origin_sectors);
1bad9bc4 3514 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
c6b4fcba
JT
3515}
3516
3517static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3518{
3519 struct cache *cache = ti->private;
f6109372 3520 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
c6b4fcba 3521
f6109372
MS
3522 /*
3523 * If the system-determined stacked limits are compatible with the
3524 * cache's blocksize (io_opt is a factor) do not override them.
3525 */
3526 if (io_opt_sectors < cache->sectors_per_block ||
3527 do_div(io_opt_sectors, cache->sectors_per_block)) {
b0246530 3528 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
f6109372
MS
3529 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3530 }
c6b4fcba
JT
3531 set_discard_limits(cache, limits);
3532}
3533
3534/*----------------------------------------------------------------*/
3535
3536static struct target_type cache_target = {
3537 .name = "cache",
b29d4986 3538 .version = {2, 0, 0},
c6b4fcba
JT
3539 .module = THIS_MODULE,
3540 .ctr = cache_ctr,
3541 .dtr = cache_dtr,
3542 .map = cache_map,
3543 .end_io = cache_end_io,
3544 .postsuspend = cache_postsuspend,
3545 .preresume = cache_preresume,
3546 .resume = cache_resume,
3547 .status = cache_status,
3548 .message = cache_message,
3549 .iterate_devices = cache_iterate_devices,
c6b4fcba
JT
3550 .io_hints = cache_io_hints,
3551};
3552
3553static int __init dm_cache_init(void)
3554{
3555 int r;
3556
3557 r = dm_register_target(&cache_target);
3558 if (r) {
3559 DMERR("cache target registration failed: %d", r);
3560 return r;
3561 }
3562
3563 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3564 if (!migration_cache) {
3565 dm_unregister_target(&cache_target);
3566 return -ENOMEM;
3567 }
3568
3569 return 0;
3570}
3571
3572static void __exit dm_cache_exit(void)
3573{
3574 dm_unregister_target(&cache_target);
3575 kmem_cache_destroy(migration_cache);
3576}
3577
3578module_init(dm_cache_init);
3579module_exit(dm_cache_exit);
3580
3581MODULE_DESCRIPTION(DM_NAME " cache target");
3582MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3583MODULE_LICENSE("GPL");