]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/dm-raid.c
dm raid: various code cleanups
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-raid.c
CommitLineData
9d09e663
N
1/*
2 * Copyright (C) 2010-2011 Neil Brown
702108d1 3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
9d09e663
N
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
056075c7 9#include <linux/module.h>
9d09e663
N
10
11#include "md.h"
32737279 12#include "raid1.h"
9d09e663 13#include "raid5.h"
63f33b8d 14#include "raid10.h"
9d09e663
N
15#include "bitmap.h"
16
3e8dbb7f
AK
17#include <linux/device-mapper.h>
18
9d09e663 19#define DM_MSG_PREFIX "raid"
92c83d79 20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
9d09e663 21
48cf06bc
HM
22static bool devices_handle_discard_safely = false;
23
9d09e663 24/*
b12d437b
JB
25 * The following flags are used by dm-raid.c to set up the array state.
26 * They must be cleared before md_run is called.
9d09e663 27 */
43157840 28#define FirstUse 10 /* rdev flag */
9d09e663
N
29
30struct raid_dev {
31 /*
32 * Two DM devices, one to hold metadata and one to hold the
43157840 33 * actual data/parity. The reason for this is to not confuse
9d09e663
N
34 * ti->len and give more flexibility in altering size and
35 * characteristics.
36 *
37 * While it is possible for this device to be associated
38 * with a different physical device than the data_dev, it
39 * is intended for it to be the same.
40 * |--------- Physical Device ---------|
41 * |- meta_dev -|------ data_dev ------|
42 */
43 struct dm_dev *meta_dev;
44 struct dm_dev *data_dev;
3cb03002 45 struct md_rdev rdev;
9d09e663
N
46};
47
48/*
4286325b 49 * Bits for establishing rs->ctr_flags
702108d1
HM
50 *
51 * 1 = no flag value
52 * 2 = flag with value
9d09e663 53 */
4286325b
MS
54#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
55#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
56#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
57#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
58#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
59#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
60#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
61#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
62#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
63#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
64#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
65#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
9b6e5423 66/* New for v1.9.0 */
4286325b
MS
67#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
68#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
69#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
70
71/*
72 * Flags for rs->ctr_flags field.
73 */
74#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
75#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
76#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
77#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
78#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
79#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
80#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
81#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
82#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
83#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
84#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
85#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
86#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
87#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
88#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
63f33b8d 89
f090279e
HM
90/*
91 * Definitions of various constructor flags to
92 * be used in checks of valid / invalid flags
93 * per raid level.
94 */
95/* Define all any sync flags */
96#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
97
98/* Define flags for options without argument (e.g. 'nosync') */
33e53f06
HM
99#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
100 CTR_FLAG_RAID10_USE_NEAR_SETS)
f090279e
HM
101
102/* Define flags for options with one argument (e.g. 'delta_disks +2') */
103#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
104 CTR_FLAG_WRITE_MOSTLY | \
105 CTR_FLAG_DAEMON_SLEEP | \
106 CTR_FLAG_MIN_RECOVERY_RATE | \
107 CTR_FLAG_MAX_RECOVERY_RATE | \
108 CTR_FLAG_MAX_WRITE_BEHIND | \
109 CTR_FLAG_STRIPE_CACHE | \
110 CTR_FLAG_REGION_SIZE | \
111 CTR_FLAG_RAID10_COPIES | \
33e53f06
HM
112 CTR_FLAG_RAID10_FORMAT | \
113 CTR_FLAG_DELTA_DISKS | \
114 CTR_FLAG_DATA_OFFSET)
f090279e
HM
115
116/* All ctr optional arguments */
117#define ALL_CTR_FLAGS (CTR_FLAG_OPTIONS_NO_ARGS | \
118 CTR_FLAG_OPTIONS_ONE_ARG)
119
120/* Invalid options definitions per raid level... */
121
122/* "raid0" does not accept any options */
123#define RAID0_INVALID_FLAGS ALL_CTR_FLAGS
124
125/* "raid1" does not accept stripe cache or any raid10 options */
126#define RAID1_INVALID_FLAGS (CTR_FLAG_STRIPE_CACHE | \
127 CTR_FLAG_RAID10_COPIES | \
33e53f06
HM
128 CTR_FLAG_RAID10_FORMAT | \
129 CTR_FLAG_DELTA_DISKS | \
130 CTR_FLAG_DATA_OFFSET)
f090279e
HM
131
132/* "raid10" does not accept any raid1 or stripe cache options */
133#define RAID10_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \
134 CTR_FLAG_MAX_WRITE_BEHIND | \
135 CTR_FLAG_STRIPE_CACHE)
136/*
137 * "raid4/5/6" do not accept any raid1 or raid10 specific options
138 *
139 * "raid6" does not accept "nosync", because it is not guaranteed
140 * that both parity and q-syndrome are being written properly with
141 * any writes
142 */
143#define RAID45_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \
144 CTR_FLAG_MAX_WRITE_BEHIND | \
145 CTR_FLAG_RAID10_FORMAT | \
33e53f06
HM
146 CTR_FLAG_RAID10_COPIES | \
147 CTR_FLAG_RAID10_USE_NEAR_SETS)
f090279e
HM
148#define RAID6_INVALID_FLAGS (CTR_FLAG_NOSYNC | RAID45_INVALID_FLAGS)
149/* ...invalid options definitions per raid level */
150
ecbfb9f1
HM
151/*
152 * Flags for rs->runtime_flags field
153 * (RT_FLAG prefix meaning "runtime flag")
154 *
155 * These are all internal and used to define runtime state,
156 * e.g. to prevent another resume from preresume processing
157 * the raid set all over again.
158 */
159#define RT_FLAG_RS_PRERESUMED 0x1
160#define RT_FLAG_RS_RESUMED 0x2
161#define RT_FLAG_RS_BITMAP_LOADED 0x4
162#define RT_FLAG_UPDATE_SBS 0x8
163
33e53f06
HM
164/* Array elements of 64 bit needed for rebuild/write_mostly bits */
165#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
166
ecbfb9f1
HM
167/*
168 * raid set level, layout and chunk sectors backup/restore
169 */
170struct rs_layout {
171 int new_level;
172 int new_layout;
173 int new_chunk_sectors;
174};
175
9d09e663
N
176struct raid_set {
177 struct dm_target *ti;
178
34f8ac6d 179 uint32_t bitmap_loaded;
4286325b
MS
180 unsigned long ctr_flags;
181 unsigned long runtime_flags;
ecbfb9f1
HM
182
183 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
9d09e663 184
33e53f06
HM
185 int raid_disks;
186 int delta_disks;
4763e543 187 int data_offset;
33e53f06
HM
188 int raid10_copies;
189
fd01b88c 190 struct mddev md;
9d09e663
N
191 struct raid_type *raid_type;
192 struct dm_target_callbacks callbacks;
ecbfb9f1 193 struct rs_layout rs_layout;
9d09e663
N
194
195 struct raid_dev dev[0];
196};
197
e6ca5e1a 198static void rs_config_backup(struct raid_set *rs)
ecbfb9f1
HM
199{
200 struct mddev *mddev = &rs->md;
e6ca5e1a 201 struct rs_layout *l = &rs->rs_layout;
ecbfb9f1
HM
202
203 l->new_level = mddev->new_level;
204 l->new_layout = mddev->new_layout;
205 l->new_chunk_sectors = mddev->new_chunk_sectors;
206}
207
e6ca5e1a 208static void rs_config_restore(struct raid_set *rs)
ecbfb9f1
HM
209{
210 struct mddev *mddev = &rs->md;
e6ca5e1a 211 struct rs_layout *l = &rs->rs_layout;
ecbfb9f1
HM
212
213 mddev->new_level = l->new_level;
214 mddev->new_layout = l->new_layout;
215 mddev->new_chunk_sectors = l->new_chunk_sectors;
216}
217
33e53f06
HM
218/* raid10 algorithms (i.e. formats) */
219#define ALGORITHM_RAID10_DEFAULT 0
220#define ALGORITHM_RAID10_NEAR 1
221#define ALGORITHM_RAID10_OFFSET 2
222#define ALGORITHM_RAID10_FAR 3
223
9d09e663
N
224/* Supported raid types and properties. */
225static struct raid_type {
226 const char *name; /* RAID algorithm. */
227 const char *descr; /* Descriptor text for logging. */
228 const unsigned parity_devs; /* # of parity devices. */
229 const unsigned minimal_devs; /* minimal # of devices in set. */
230 const unsigned level; /* RAID level. */
231 const unsigned algorithm; /* RAID algorithm. */
232} raid_types[] = {
43157840
MS
233 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
234 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
235 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
33e53f06 236 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
43157840
MS
237 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
238 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
239 {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
240 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
241 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
242 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
243 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
244 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
245 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
246 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
247 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
248 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
249 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
250 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
251 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
252 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
9d09e663
N
253};
254
92c83d79 255/* True, if @v is in inclusive range [@min, @max] */
bb91a63f 256static bool __within_range(long v, long min, long max)
92c83d79
HM
257{
258 return v >= min && v <= max;
259}
260
702108d1
HM
261/* All table line arguments are defined here */
262static struct arg_name_flag {
4286325b 263 const unsigned long flag;
702108d1 264 const char *name;
e6ca5e1a 265} __arg_name_flags[] = {
702108d1
HM
266 { CTR_FLAG_SYNC, "sync"},
267 { CTR_FLAG_NOSYNC, "nosync"},
268 { CTR_FLAG_REBUILD, "rebuild"},
269 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
270 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
271 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
272 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
273 { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
274 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
275 { CTR_FLAG_REGION_SIZE, "region_size"},
276 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
277 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
4763e543
HM
278 { CTR_FLAG_DATA_OFFSET, "data_offset"},
279 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
280 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
702108d1
HM
281};
282
283/* Return argument name string for given @flag */
3fa6cf38 284static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
702108d1
HM
285{
286 if (hweight32(flag) == 1) {
e6ca5e1a 287 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
702108d1 288
e6ca5e1a 289 while (anf-- > __arg_name_flags)
4286325b 290 if (flag & anf->flag)
702108d1
HM
291 return anf->name;
292
293 } else
294 DMERR("%s called with more than one flag!", __func__);
295
296 return NULL;
297}
298
33e53f06
HM
299/*
300 * bool helpers to test for various raid levels of a raid set,
301 * is. it's level as reported by the superblock rather than
302 * the requested raid_type passed to the constructor.
303 */
304/* Return true, if raid set in @rs is raid0 */
305static bool rs_is_raid0(struct raid_set *rs)
306{
307 return !rs->md.level;
308}
309
310/* Return true, if raid set in @rs is raid10 */
311static bool rs_is_raid10(struct raid_set *rs)
312{
313 return rs->md.level == 10;
314}
315
f090279e
HM
316/*
317 * bool helpers to test for various raid levels of a raid type
318 */
319
320/* Return true, if raid type in @rt is raid0 */
321static bool rt_is_raid0(struct raid_type *rt)
322{
323 return !rt->level;
324}
325
326/* Return true, if raid type in @rt is raid1 */
327static bool rt_is_raid1(struct raid_type *rt)
328{
329 return rt->level == 1;
330}
331
332/* Return true, if raid type in @rt is raid10 */
333static bool rt_is_raid10(struct raid_type *rt)
334{
335 return rt->level == 10;
336}
337
338/* Return true, if raid type in @rt is raid4/5 */
339static bool rt_is_raid45(struct raid_type *rt)
340{
bb91a63f 341 return __within_range(rt->level, 4, 5);
f090279e
HM
342}
343
344/* Return true, if raid type in @rt is raid6 */
345static bool rt_is_raid6(struct raid_type *rt)
346{
347 return rt->level == 6;
348}
676fa5ad
HM
349
350/* Return true, if raid type in @rt is raid4/5/6 */
351static bool rt_is_raid456(struct raid_type *rt)
352{
bb91a63f 353 return __within_range(rt->level, 4, 6);
676fa5ad 354}
f090279e
HM
355/* END: raid level bools */
356
f090279e 357/* Return invalid ctr flags for the raid level of @rs */
e6ca5e1a 358static uint32_t __invalid_flags(struct raid_set *rs)
f090279e
HM
359{
360 if (rt_is_raid0(rs->raid_type))
361 return RAID0_INVALID_FLAGS;
362 else if (rt_is_raid1(rs->raid_type))
363 return RAID1_INVALID_FLAGS;
364 else if (rt_is_raid10(rs->raid_type))
365 return RAID10_INVALID_FLAGS;
366 else if (rt_is_raid45(rs->raid_type))
367 return RAID45_INVALID_FLAGS;
368 else if (rt_is_raid6(rs->raid_type))
369 return RAID6_INVALID_FLAGS;
370
371 return ~0;
372}
373
374/*
375 * Check for any invalid flags set on @rs defined by bitset @invalid_flags
376 *
377 * Has to be called after parsing of the ctr flags!
378 */
379static int rs_check_for_invalid_flags(struct raid_set *rs)
380{
e6ca5e1a 381 if (rs->ctr_flags & __invalid_flags(rs)) {
4286325b 382 rs->ti->error = "Invalid flags combination";
bd83a4c4
MS
383 return -EINVAL;
384 }
f090279e
HM
385
386 return 0;
387}
388
33e53f06
HM
389/* MD raid10 bit definitions and helpers */
390#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
391#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
392#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
393#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
394
395/* Return md raid10 near copies for @layout */
e6ca5e1a 396static unsigned int __raid10_near_copies(int layout)
33e53f06
HM
397{
398 return layout & 0xFF;
399}
400
401/* Return md raid10 far copies for @layout */
e6ca5e1a 402static unsigned int __raid10_far_copies(int layout)
33e53f06 403{
e6ca5e1a 404 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
33e53f06
HM
405}
406
407/* Return true if md raid10 offset for @layout */
e6ca5e1a 408static unsigned int __is_raid10_offset(int layout)
33e53f06
HM
409{
410 return layout & RAID10_OFFSET;
411}
412
413/* Return true if md raid10 near for @layout */
e6ca5e1a 414static unsigned int __is_raid10_near(int layout)
33e53f06 415{
e6ca5e1a 416 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
33e53f06
HM
417}
418
419/* Return true if md raid10 far for @layout */
e6ca5e1a 420static unsigned int __is_raid10_far(int layout)
33e53f06 421{
e6ca5e1a 422 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
33e53f06
HM
423}
424
425/* Return md raid10 layout string for @layout */
426static const char *raid10_md_layout_to_format(int layout)
fe5d2f4a
JB
427{
428 /*
33e53f06
HM
429 * Bit 16 stands for "offset"
430 * (i.e. adjacent stripes hold copies)
431 *
fe5d2f4a
JB
432 * Refer to MD's raid10.c for details
433 */
e6ca5e1a 434 if (__is_raid10_offset(layout))
fe5d2f4a
JB
435 return "offset";
436
e6ca5e1a 437 if (__raid10_near_copies(layout) > 1)
fe5d2f4a
JB
438 return "near";
439
e6ca5e1a 440 WARN_ON(__raid10_far_copies(layout) < 2);
33e53f06 441
fe5d2f4a
JB
442 return "far";
443}
444
33e53f06
HM
445/* Return md raid10 algorithm for @name */
446static const int raid10_name_to_format(const char *name)
447{
448 if (!strcasecmp(name, "near"))
449 return ALGORITHM_RAID10_NEAR;
450 else if (!strcasecmp(name, "offset"))
451 return ALGORITHM_RAID10_OFFSET;
452 else if (!strcasecmp(name, "far"))
453 return ALGORITHM_RAID10_FAR;
454
455 return -EINVAL;
456}
457
33e53f06
HM
458/* Return md raid10 copies for @layout */
459static unsigned int raid10_md_layout_to_copies(int layout)
63f33b8d 460{
e6ca5e1a
MS
461 return __raid10_near_copies(layout) > 1 ?
462 __raid10_near_copies(layout) : __raid10_far_copies(layout);
63f33b8d
JB
463}
464
33e53f06
HM
465/* Return md raid10 format id for @format string */
466static int raid10_format_to_md_layout(struct raid_set *rs,
467 unsigned int algorithm,
468 unsigned int copies)
63f33b8d 469{
33e53f06 470 unsigned int n = 1, f = 1, r = 0;
fe5d2f4a 471
33e53f06
HM
472 /*
473 * MD resilienece flaw:
474 *
475 * enabling use_far_sets for far/offset formats causes copies
476 * to be colocated on the same devs together with their origins!
477 *
478 * -> disable it for now in the definition above
479 */
480 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
481 algorithm == ALGORITHM_RAID10_NEAR)
fe5d2f4a 482 n = copies;
33e53f06
HM
483
484 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
485 f = copies;
486 r = RAID10_OFFSET;
4286325b 487 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
33e53f06
HM
488 r |= RAID10_USE_FAR_SETS;
489
490 } else if (algorithm == ALGORITHM_RAID10_FAR) {
fe5d2f4a 491 f = copies;
33e53f06 492 r = !RAID10_OFFSET;
4286325b 493 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
33e53f06 494 r |= RAID10_USE_FAR_SETS;
fe5d2f4a 495
33e53f06
HM
496 } else
497 return -EINVAL;
498
499 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
500}
501/* END: MD raid10 bit definitions and helpers */
fe5d2f4a 502
33e53f06 503/* Check for any of the raid10 algorithms */
e6ca5e1a 504static int __got_raid10(struct raid_type *rtp, const int layout)
33e53f06
HM
505{
506 if (rtp->level == 10) {
507 switch (rtp->algorithm) {
508 case ALGORITHM_RAID10_DEFAULT:
509 case ALGORITHM_RAID10_NEAR:
e6ca5e1a 510 return __is_raid10_near(layout);
33e53f06 511 case ALGORITHM_RAID10_OFFSET:
e6ca5e1a 512 return __is_raid10_offset(layout);
33e53f06 513 case ALGORITHM_RAID10_FAR:
e6ca5e1a 514 return __is_raid10_far(layout);
33e53f06
HM
515 default:
516 break;
517 }
518 }
fe5d2f4a 519
33e53f06 520 return 0;
63f33b8d
JB
521}
522
33e53f06 523/* Return raid_type for @name */
92c83d79 524static struct raid_type *get_raid_type(const char *name)
9d09e663 525{
33e53f06 526 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
9d09e663 527
33e53f06
HM
528 while (rtp-- > raid_types)
529 if (!strcasecmp(rtp->name, name))
530 return rtp;
9d09e663
N
531
532 return NULL;
533}
534
33e53f06
HM
535/* Return raid_type for @name based derived from @level and @layout */
536static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
537{
538 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
539
540 while (rtp-- > raid_types) {
541 /* RAID10 special checks based on @layout flags/properties */
542 if (rtp->level == level &&
e6ca5e1a 543 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
33e53f06
HM
544 return rtp;
545 }
546
547 return NULL;
548}
549
3a1c1ef2
HM
550/*
551 * Set the mddev properties in @rs to the current
552 * ones retrieved from the freshest superblock
553 */
554static void rs_set_cur(struct raid_set *rs)
555{
556 struct mddev *mddev = &rs->md;
557
558 mddev->new_level = mddev->level;
559 mddev->new_layout = mddev->layout;
560 mddev->new_chunk_sectors = mddev->chunk_sectors;
561}
562
33e53f06
HM
563/*
564 * Set the mddev properties in @rs to the new
565 * ones requested by the ctr
566 */
567static void rs_set_new(struct raid_set *rs)
568{
569 struct mddev *mddev = &rs->md;
570
571 mddev->level = mddev->new_level;
572 mddev->layout = mddev->new_layout;
573 mddev->chunk_sectors = mddev->new_chunk_sectors;
3a1c1ef2 574 mddev->raid_disks = rs->raid_disks;
33e53f06
HM
575 mddev->delta_disks = 0;
576}
577
bfcee0e3
MS
578static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
579 unsigned raid_devs)
9d09e663
N
580{
581 unsigned i;
582 struct raid_set *rs;
9d09e663 583
bd83a4c4
MS
584 if (raid_devs <= raid_type->parity_devs) {
585 ti->error = "Insufficient number of devices";
586 return ERR_PTR(-EINVAL);
587 }
9d09e663 588
9d09e663 589 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
bd83a4c4
MS
590 if (!rs) {
591 ti->error = "Cannot allocate raid context";
592 return ERR_PTR(-ENOMEM);
593 }
9d09e663
N
594
595 mddev_init(&rs->md);
596
33e53f06
HM
597 rs->raid_disks = raid_devs;
598 rs->delta_disks = 0;
599
9d09e663
N
600 rs->ti = ti;
601 rs->raid_type = raid_type;
602 rs->md.raid_disks = raid_devs;
603 rs->md.level = raid_type->level;
604 rs->md.new_level = rs->md.level;
9d09e663
N
605 rs->md.layout = raid_type->algorithm;
606 rs->md.new_layout = rs->md.layout;
607 rs->md.delta_disks = 0;
ecbfb9f1 608 rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0;
9d09e663
N
609
610 for (i = 0; i < raid_devs; i++)
611 md_rdev_init(&rs->dev[i].rdev);
612
613 /*
614 * Remaining items to be initialized by further RAID params:
615 * rs->md.persistent
616 * rs->md.external
617 * rs->md.chunk_sectors
618 * rs->md.new_chunk_sectors
c039c332 619 * rs->md.dev_sectors
9d09e663
N
620 */
621
622 return rs;
623}
624
bfcee0e3 625static void raid_set_free(struct raid_set *rs)
9d09e663
N
626{
627 int i;
628
b12d437b
JB
629 for (i = 0; i < rs->md.raid_disks; i++) {
630 if (rs->dev[i].meta_dev)
631 dm_put_device(rs->ti, rs->dev[i].meta_dev);
545c8795 632 md_rdev_clear(&rs->dev[i].rdev);
9d09e663
N
633 if (rs->dev[i].data_dev)
634 dm_put_device(rs->ti, rs->dev[i].data_dev);
b12d437b 635 }
9d09e663
N
636
637 kfree(rs);
638}
639
640/*
641 * For every device we have two words
642 * <meta_dev>: meta device name or '-' if missing
643 * <data_dev>: data device name or '-' if missing
644 *
b12d437b
JB
645 * The following are permitted:
646 * - -
647 * - <data_dev>
648 * <meta_dev> <data_dev>
649 *
650 * The following is not allowed:
651 * <meta_dev> -
652 *
653 * This code parses those words. If there is a failure,
bfcee0e3 654 * the caller must use raid_set_free() to unwind the operations.
9d09e663 655 */
702108d1 656static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
9d09e663
N
657{
658 int i;
659 int rebuild = 0;
660 int metadata_available = 0;
73c6f239 661 int r = 0;
92c83d79 662 const char *arg;
9d09e663 663
92c83d79
HM
664 /* Put off the number of raid devices argument to get to dev pairs */
665 arg = dm_shift_arg(as);
666 if (!arg)
667 return -EINVAL;
668
669 for (i = 0; i < rs->md.raid_disks; i++) {
9d09e663
N
670 rs->dev[i].rdev.raid_disk = i;
671
672 rs->dev[i].meta_dev = NULL;
673 rs->dev[i].data_dev = NULL;
674
675 /*
676 * There are no offsets, since there is a separate device
677 * for data and metadata.
678 */
679 rs->dev[i].rdev.data_offset = 0;
680 rs->dev[i].rdev.mddev = &rs->md;
681
92c83d79
HM
682 arg = dm_shift_arg(as);
683 if (!arg)
684 return -EINVAL;
685
686 if (strcmp(arg, "-")) {
bd83a4c4
MS
687 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
688 &rs->dev[i].meta_dev);
689 if (r) {
690 rs->ti->error = "RAID metadata device lookup failure";
691 return r;
692 }
b12d437b
JB
693
694 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
bd83a4c4
MS
695 if (!rs->dev[i].rdev.sb_page) {
696 rs->ti->error = "Failed to allocate superblock page";
697 return -ENOMEM;
698 }
9d09e663
N
699 }
700
92c83d79
HM
701 arg = dm_shift_arg(as);
702 if (!arg)
703 return -EINVAL;
704
705 if (!strcmp(arg, "-")) {
9d09e663 706 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
bd83a4c4
MS
707 (!rs->dev[i].rdev.recovery_offset)) {
708 rs->ti->error = "Drive designated for rebuild not specified";
709 return -EINVAL;
710 }
9d09e663 711
bd83a4c4
MS
712 if (rs->dev[i].meta_dev) {
713 rs->ti->error = "No data device supplied with metadata device";
714 return -EINVAL;
715 }
b12d437b 716
9d09e663
N
717 continue;
718 }
719
bd83a4c4
MS
720 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
721 &rs->dev[i].data_dev);
722 if (r) {
723 rs->ti->error = "RAID device lookup failure";
724 return r;
725 }
9d09e663 726
b12d437b
JB
727 if (rs->dev[i].meta_dev) {
728 metadata_available = 1;
729 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
730 }
9d09e663 731 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
3a1c1ef2 732 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
9d09e663
N
733 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
734 rebuild++;
735 }
736
737 if (metadata_available) {
738 rs->md.external = 0;
739 rs->md.persistent = 1;
740 rs->md.major_version = 2;
741 } else if (rebuild && !rs->md.recovery_cp) {
742 /*
743 * Without metadata, we will not be able to tell if the array
744 * is in-sync or not - we must assume it is not. Therefore,
745 * it is impossible to rebuild a drive.
746 *
747 * Even if there is metadata, the on-disk information may
748 * indicate that the array is not in-sync and it will then
749 * fail at that time.
750 *
751 * User could specify 'nosync' option if desperate.
752 */
bd83a4c4
MS
753 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
754 return -EINVAL;
9d09e663
N
755 }
756
757 return 0;
758}
759
c1084561
JB
760/*
761 * validate_region_size
762 * @rs
763 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
764 *
765 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
766 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
767 *
768 * Returns: 0 on success, -EINVAL on failure.
769 */
770static int validate_region_size(struct raid_set *rs, unsigned long region_size)
771{
772 unsigned long min_region_size = rs->ti->len / (1 << 21);
773
774 if (!region_size) {
775 /*
43157840 776 * Choose a reasonable default. All figures in sectors.
c1084561
JB
777 */
778 if (min_region_size > (1 << 13)) {
3a0f9aae 779 /* If not a power of 2, make it the next power of 2 */
042745ee 780 region_size = roundup_pow_of_two(min_region_size);
c1084561
JB
781 DMINFO("Choosing default region size of %lu sectors",
782 region_size);
c1084561
JB
783 } else {
784 DMINFO("Choosing default region size of 4MiB");
785 region_size = 1 << 13; /* sectors */
786 }
787 } else {
788 /*
789 * Validate user-supplied value.
790 */
bd83a4c4
MS
791 if (region_size > rs->ti->len) {
792 rs->ti->error = "Supplied region size is too large";
793 return -EINVAL;
794 }
c1084561
JB
795
796 if (region_size < min_region_size) {
797 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
798 region_size, min_region_size);
bd83a4c4
MS
799 rs->ti->error = "Supplied region size is too small";
800 return -EINVAL;
c1084561
JB
801 }
802
bd83a4c4
MS
803 if (!is_power_of_2(region_size)) {
804 rs->ti->error = "Region size is not a power of 2";
805 return -EINVAL;
806 }
c1084561 807
bd83a4c4
MS
808 if (region_size < rs->md.chunk_sectors) {
809 rs->ti->error = "Region size is smaller than the chunk size";
810 return -EINVAL;
811 }
c1084561
JB
812 }
813
814 /*
815 * Convert sectors to bytes.
816 */
817 rs->md.bitmap_info.chunksize = (region_size << 9);
818
819 return 0;
820}
821
eb649123 822/*
55ebbb59 823 * validate_raid_redundancy
eb649123
JB
824 * @rs
825 *
55ebbb59
JB
826 * Determine if there are enough devices in the array that haven't
827 * failed (or are being rebuilt) to form a usable array.
eb649123
JB
828 *
829 * Returns: 0 on success, -EINVAL on failure.
830 */
55ebbb59 831static int validate_raid_redundancy(struct raid_set *rs)
eb649123
JB
832{
833 unsigned i, rebuild_cnt = 0;
3f6bbd3f 834 unsigned rebuilds_per_group = 0, copies, d;
fe5d2f4a 835 unsigned group_size, last_group_start;
eb649123 836
eb649123 837 for (i = 0; i < rs->md.raid_disks; i++)
55ebbb59
JB
838 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
839 !rs->dev[i].rdev.sb_page)
eb649123
JB
840 rebuild_cnt++;
841
842 switch (rs->raid_type->level) {
843 case 1:
844 if (rebuild_cnt >= rs->md.raid_disks)
845 goto too_many;
846 break;
847 case 4:
848 case 5:
849 case 6:
850 if (rebuild_cnt > rs->raid_type->parity_devs)
851 goto too_many;
852 break;
853 case 10:
4ec1e369
JB
854 copies = raid10_md_layout_to_copies(rs->md.layout);
855 if (rebuild_cnt < copies)
856 break;
857
858 /*
859 * It is possible to have a higher rebuild count for RAID10,
860 * as long as the failed devices occur in different mirror
861 * groups (i.e. different stripes).
862 *
4ec1e369
JB
863 * When checking "near" format, make sure no adjacent devices
864 * have failed beyond what can be handled. In addition to the
865 * simple case where the number of devices is a multiple of the
866 * number of copies, we must also handle cases where the number
867 * of devices is not a multiple of the number of copies.
43157840
MS
868 * E.g. dev1 dev2 dev3 dev4 dev5
869 * A A B B C
870 * C D D E E
4ec1e369 871 */
fe5d2f4a
JB
872 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
873 for (i = 0; i < rs->md.raid_disks * copies; i++) {
874 if (!(i % copies))
875 rebuilds_per_group = 0;
876 d = i % rs->md.raid_disks;
877 if ((!rs->dev[d].rdev.sb_page ||
878 !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
879 (++rebuilds_per_group >= copies))
880 goto too_many;
881 }
882 break;
883 }
884
885 /*
886 * When checking "far" and "offset" formats, we need to ensure
887 * that the device that holds its copy is not also dead or
888 * being rebuilt. (Note that "far" and "offset" formats only
889 * support two copies right now. These formats also only ever
890 * use the 'use_far_sets' variant.)
891 *
892 * This check is somewhat complicated by the need to account
43157840 893 * for arrays that are not a multiple of (far) copies. This
fe5d2f4a
JB
894 * results in the need to treat the last (potentially larger)
895 * set differently.
896 */
897 group_size = (rs->md.raid_disks / copies);
898 last_group_start = (rs->md.raid_disks / group_size) - 1;
899 last_group_start *= group_size;
900 for (i = 0; i < rs->md.raid_disks; i++) {
901 if (!(i % copies) && !(i > last_group_start))
55ebbb59 902 rebuilds_per_group = 0;
fe5d2f4a
JB
903 if ((!rs->dev[i].rdev.sb_page ||
904 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
4ec1e369 905 (++rebuilds_per_group >= copies))
fe5d2f4a 906 goto too_many;
4ec1e369
JB
907 }
908 break;
eb649123 909 default:
55ebbb59
JB
910 if (rebuild_cnt)
911 return -EINVAL;
eb649123
JB
912 }
913
914 return 0;
915
916too_many:
eb649123
JB
917 return -EINVAL;
918}
919
9d09e663
N
920/*
921 * Possible arguments are...
9d09e663
N
922 * <chunk_size> [optional_args]
923 *
32737279
JB
924 * Argument definitions
925 * <chunk_size> The number of sectors per disk that
43157840 926 * will form the "stripe"
32737279 927 * [[no]sync] Force or prevent recovery of the
43157840 928 * entire array
9d09e663 929 * [rebuild <idx>] Rebuild the drive indicated by the index
32737279 930 * [daemon_sleep <ms>] Time between bitmap daemon work to
43157840 931 * clear bits
9d09e663
N
932 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
933 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
46bed2b5 934 * [write_mostly <idx>] Indicate a write mostly drive via index
9d09e663
N
935 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
936 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
43157840 937 * [region_size <sectors>] Defines granularity of bitmap
63f33b8d
JB
938 *
939 * RAID10-only options:
43157840 940 * [raid10_copies <# copies>] Number of copies. (Default: 2)
fe5d2f4a 941 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
9d09e663 942 */
92c83d79 943static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
9d09e663
N
944 unsigned num_raid_params)
945{
33e53f06 946 int raid10_format = ALGORITHM_RAID10_DEFAULT;
63f33b8d 947 unsigned raid10_copies = 2;
eb649123 948 unsigned i;
92c83d79 949 unsigned value, region_size = 0;
c039c332 950 sector_t sectors_per_dev = rs->ti->len;
542f9038 951 sector_t max_io_len;
92c83d79 952 const char *arg, *key;
702108d1 953 struct raid_dev *rd;
33e53f06 954 struct raid_type *rt = rs->raid_type;
92c83d79
HM
955
956 arg = dm_shift_arg(as);
957 num_raid_params--; /* Account for chunk_size argument */
958
bd83a4c4
MS
959 if (kstrtouint(arg, 10, &value) < 0) {
960 rs->ti->error = "Bad numerical argument given for chunk_size";
961 return -EINVAL;
962 }
9d09e663
N
963
964 /*
965 * First, parse the in-order required arguments
32737279 966 * "chunk_size" is the only argument of this type.
9d09e663 967 */
33e53f06 968 if (rt_is_raid1(rt)) {
32737279
JB
969 if (value)
970 DMERR("Ignoring chunk size parameter for RAID 1");
971 value = 0;
bd83a4c4
MS
972 } else if (!is_power_of_2(value)) {
973 rs->ti->error = "Chunk size must be a power of 2";
974 return -EINVAL;
975 } else if (value < 8) {
976 rs->ti->error = "Chunk size value is too small";
977 return -EINVAL;
978 }
9d09e663
N
979
980 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
9d09e663
N
981
982 /*
b12d437b
JB
983 * We set each individual device as In_sync with a completed
984 * 'recovery_offset'. If there has been a device failure or
985 * replacement then one of the following cases applies:
986 *
987 * 1) User specifies 'rebuild'.
43157840 988 * - Device is reset when param is read.
b12d437b 989 * 2) A new device is supplied.
43157840 990 * - No matching superblock found, resets device.
b12d437b 991 * 3) Device failure was transient and returns on reload.
43157840 992 * - Failure noticed, resets device for bitmap replay.
b12d437b 993 * 4) Device hadn't completed recovery after previous failure.
43157840 994 * - Superblock is read and overrides recovery_offset.
b12d437b
JB
995 *
996 * What is found in the superblocks of the devices is always
997 * authoritative, unless 'rebuild' or '[no]sync' was specified.
9d09e663 998 */
b12d437b 999 for (i = 0; i < rs->md.raid_disks; i++) {
9d09e663 1000 set_bit(In_sync, &rs->dev[i].rdev.flags);
b12d437b
JB
1001 rs->dev[i].rdev.recovery_offset = MaxSector;
1002 }
9d09e663 1003
b12d437b
JB
1004 /*
1005 * Second, parse the unordered optional arguments
1006 */
9d09e663 1007 for (i = 0; i < num_raid_params; i++) {
4763e543 1008 key = dm_shift_arg(as);
bd83a4c4
MS
1009 if (!key) {
1010 rs->ti->error = "Not enough raid parameters given";
1011 return -EINVAL;
1012 }
92c83d79 1013
3fa6cf38 1014 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
4286325b 1015 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
bd83a4c4
MS
1016 rs->ti->error = "Only one 'nosync' argument allowed";
1017 return -EINVAL;
1018 }
9d09e663 1019 rs->md.recovery_cp = MaxSector;
9d09e663
N
1020 continue;
1021 }
3fa6cf38 1022 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
4286325b 1023 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
bd83a4c4
MS
1024 rs->ti->error = "Only one 'sync' argument allowed";
1025 return -EINVAL;
1026 }
9d09e663 1027 rs->md.recovery_cp = 0;
4763e543
HM
1028 continue;
1029 }
3fa6cf38 1030 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
4286325b 1031 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
bd83a4c4
MS
1032 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1033 return -EINVAL;
1034 }
9d09e663
N
1035 continue;
1036 }
1037
92c83d79
HM
1038 arg = dm_shift_arg(as);
1039 i++; /* Account for the argument pairs */
bd83a4c4
MS
1040 if (!arg) {
1041 rs->ti->error = "Wrong number of raid parameters given";
1042 return -EINVAL;
1043 }
63f33b8d 1044
702108d1
HM
1045 /*
1046 * Parameters that take a string value are checked here.
1047 */
1048
3fa6cf38 1049 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
4286325b 1050 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
bd83a4c4
MS
1051 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1052 return -EINVAL;
1053 }
1054 if (!rt_is_raid10(rt)) {
1055 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1056 return -EINVAL;
1057 }
33e53f06 1058 raid10_format = raid10_name_to_format(arg);
bd83a4c4
MS
1059 if (raid10_format < 0) {
1060 rs->ti->error = "Invalid 'raid10_format' value given";
1061 return raid10_format;
1062 }
63f33b8d
JB
1063 continue;
1064 }
1065
bd83a4c4
MS
1066 if (kstrtouint(arg, 10, &value) < 0) {
1067 rs->ti->error = "Bad numerical argument given in raid params";
1068 return -EINVAL;
1069 }
702108d1 1070
3fa6cf38 1071 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
702108d1
HM
1072 /*
1073 * "rebuild" is being passed in by userspace to provide
1074 * indexes of replaced devices and to set up additional
1075 * devices on raid level takeover.
43157840 1076 */
bb91a63f 1077 if (!__within_range(value, 0, rs->raid_disks - 1)) {
bd83a4c4
MS
1078 rs->ti->error = "Invalid rebuild index given";
1079 return -EINVAL;
1080 }
702108d1 1081
bd83a4c4
MS
1082 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1083 rs->ti->error = "rebuild for this index already given";
1084 return -EINVAL;
1085 }
ecbfb9f1 1086
702108d1
HM
1087 rd = rs->dev + value;
1088 clear_bit(In_sync, &rd->rdev.flags);
1089 clear_bit(Faulty, &rd->rdev.flags);
1090 rd->rdev.recovery_offset = 0;
4286325b 1091 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
3fa6cf38 1092 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
bd83a4c4
MS
1093 if (!rt_is_raid1(rt)) {
1094 rs->ti->error = "write_mostly option is only valid for RAID1";
1095 return -EINVAL;
1096 }
702108d1 1097
bb91a63f 1098 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
bd83a4c4
MS
1099 rs->ti->error = "Invalid write_mostly index given";
1100 return -EINVAL;
1101 }
9d09e663 1102
46bed2b5 1103 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
4286325b 1104 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
3fa6cf38 1105 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
bd83a4c4
MS
1106 if (!rt_is_raid1(rt)) {
1107 rs->ti->error = "max_write_behind option is only valid for RAID1";
1108 return -EINVAL;
1109 }
702108d1 1110
4286325b 1111 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
bd83a4c4
MS
1112 rs->ti->error = "Only one max_write_behind argument pair allowed";
1113 return -EINVAL;
1114 }
9d09e663
N
1115
1116 /*
1117 * In device-mapper, we specify things in sectors, but
1118 * MD records this value in kB
1119 */
1120 value /= 2;
bd83a4c4
MS
1121 if (value > COUNTER_MAX) {
1122 rs->ti->error = "Max write-behind limit out of range";
1123 return -EINVAL;
1124 }
702108d1 1125
9d09e663 1126 rs->md.bitmap_info.max_write_behind = value;
3fa6cf38 1127 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
4286325b 1128 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
bd83a4c4
MS
1129 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1130 return -EINVAL;
1131 }
1132 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1133 rs->ti->error = "daemon sleep period out of range";
1134 return -EINVAL;
1135 }
9d09e663 1136 rs->md.bitmap_info.daemon_sleep = value;
3fa6cf38 1137 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
4763e543 1138 /* Userspace passes new data_offset after having extended the the data image LV */
4286325b 1139 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
bd83a4c4
MS
1140 rs->ti->error = "Only one data_offset argument pair allowed";
1141 return -EINVAL;
1142 }
4763e543 1143 /* Ensure sensible data offset */
bd83a4c4
MS
1144 if (value < 0) {
1145 rs->ti->error = "Bogus data_offset value";
1146 return -EINVAL;
1147 }
4763e543 1148 rs->data_offset = value;
3fa6cf38 1149 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
4763e543 1150 /* Define the +/-# of disks to add to/remove from the given raid set */
4286325b 1151 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
bd83a4c4
MS
1152 rs->ti->error = "Only one delta_disks argument pair allowed";
1153 return -EINVAL;
1154 }
4763e543 1155 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
bb91a63f 1156 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
bd83a4c4
MS
1157 rs->ti->error = "Too many delta_disk requested";
1158 return -EINVAL;
1159 }
4763e543
HM
1160
1161 rs->delta_disks = value;
3fa6cf38 1162 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
4286325b 1163 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
bd83a4c4
MS
1164 rs->ti->error = "Only one stripe_cache argument pair allowed";
1165 return -EINVAL;
1166 }
1167
9d09e663
N
1168 /*
1169 * In device-mapper, we specify things in sectors, but
1170 * MD records this value in kB
1171 */
1172 value /= 2;
1173
bd83a4c4
MS
1174 if (!rt_is_raid456(rt)) {
1175 rs->ti->error = "Inappropriate argument: stripe_cache";
1176 return -EINVAL;
1177 }
1178 if (raid5_set_cache_size(&rs->md, (int)value)) {
1179 rs->ti->error = "Bad stripe_cache size";
1180 return -EINVAL;
1181 }
702108d1 1182
3fa6cf38 1183 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
4286325b 1184 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
bd83a4c4
MS
1185 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1186 return -EINVAL;
1187 }
1188 if (value > INT_MAX) {
1189 rs->ti->error = "min_recovery_rate out of range";
1190 return -EINVAL;
1191 }
9d09e663 1192 rs->md.sync_speed_min = (int)value;
3fa6cf38 1193 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
4286325b 1194 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
bd83a4c4
MS
1195 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1196 return -EINVAL;
1197 }
1198 if (value > INT_MAX) {
1199 rs->ti->error = "max_recovery_rate out of range";
1200 return -EINVAL;
1201 }
9d09e663 1202 rs->md.sync_speed_max = (int)value;
3fa6cf38 1203 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
4286325b 1204 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
bd83a4c4
MS
1205 rs->ti->error = "Only one region_size argument pair allowed";
1206 return -EINVAL;
1207 }
702108d1 1208
c1084561 1209 region_size = value;
3fa6cf38 1210 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
4286325b 1211 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
bd83a4c4
MS
1212 rs->ti->error = "Only one raid10_copies argument pair allowed";
1213 return -EINVAL;
1214 }
702108d1 1215
bb91a63f 1216 if (!__within_range(value, 2, rs->md.raid_disks)) {
bd83a4c4
MS
1217 rs->ti->error = "Bad value for 'raid10_copies'";
1218 return -EINVAL;
1219 }
702108d1 1220
63f33b8d 1221 raid10_copies = value;
9d09e663
N
1222 } else {
1223 DMERR("Unable to parse RAID parameter: %s", key);
bd83a4c4
MS
1224 rs->ti->error = "Unable to parse RAID parameter";
1225 return -EINVAL;
9d09e663
N
1226 }
1227 }
1228
c1084561
JB
1229 if (validate_region_size(rs, region_size))
1230 return -EINVAL;
1231
1232 if (rs->md.chunk_sectors)
542f9038 1233 max_io_len = rs->md.chunk_sectors;
c1084561 1234 else
542f9038 1235 max_io_len = region_size;
c1084561 1236
542f9038
MS
1237 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1238 return -EINVAL;
32737279 1239
33e53f06 1240 if (rt_is_raid10(rt)) {
bd83a4c4
MS
1241 if (raid10_copies > rs->md.raid_disks) {
1242 rs->ti->error = "Not enough devices to satisfy specification";
1243 return -EINVAL;
1244 }
63f33b8d 1245
33e53f06 1246 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
bd83a4c4
MS
1247 if (rs->md.new_layout < 0) {
1248 rs->ti->error = "Error getting raid10 format";
1249 return rs->md.new_layout;
1250 }
33e53f06
HM
1251
1252 rt = get_raid_type_by_ll(10, rs->md.new_layout);
bd83a4c4
MS
1253 if (!rt) {
1254 rs->ti->error = "Failed to recognize new raid10 layout";
1255 return -EINVAL;
1256 }
33e53f06
HM
1257
1258 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1259 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
4286325b 1260 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
bd83a4c4
MS
1261 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1262 return -EINVAL;
1263 }
fe5d2f4a 1264
63f33b8d
JB
1265 /* (Len * #mirrors) / #devices */
1266 sectors_per_dev = rs->ti->len * raid10_copies;
1267 sector_div(sectors_per_dev, rs->md.raid_disks);
1268
33e53f06 1269 rs->md.layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
63f33b8d 1270 rs->md.new_layout = rs->md.layout;
33e53f06 1271 } else if (!rt_is_raid1(rt) &&
bd83a4c4
MS
1272 sector_div(sectors_per_dev, (rs->md.raid_disks - rt->parity_devs))) {
1273 rs->ti->error = "Target length not divisible by number of data devices";
1274 return -EINVAL;
1275 }
702108d1 1276
33e53f06 1277 rs->raid10_copies = raid10_copies;
c039c332
JB
1278 rs->md.dev_sectors = sectors_per_dev;
1279
9d09e663
N
1280 /* Assume there are no metadata devices until the drives are parsed */
1281 rs->md.persistent = 0;
1282 rs->md.external = 1;
1283
f090279e
HM
1284 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1285 return rs_check_for_invalid_flags(rs);
9d09e663
N
1286}
1287
3a1c1ef2
HM
1288/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1289static unsigned int mddev_data_stripes(struct raid_set *rs)
1290{
1291 return rs->md.raid_disks - rs->raid_type->parity_devs;
1292}
1293
9d09e663
N
1294static void do_table_event(struct work_struct *ws)
1295{
1296 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1297
1298 dm_table_event(rs->ti->table);
1299}
1300
1301static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1302{
1303 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1304
5c675f83 1305 return mddev_congested(&rs->md, bits);
9d09e663
N
1306}
1307
ecbfb9f1
HM
1308/*
1309 * Make sure a valid takover (level switch) is being requested on @rs
1310 *
1311 * Conversions of raid sets from one MD personality to another
1312 * have to conform to restrictions which are enforced here.
1313 *
1314 * Degration is already checked for in rs_check_conversion() below.
1315 */
1316static int rs_check_takeover(struct raid_set *rs)
1317{
1318 struct mddev *mddev = &rs->md;
1319 unsigned int near_copies;
1320
1321 switch (mddev->level) {
1322 case 0:
1323 /* raid0 -> raid1/5 with one disk */
1324 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1325 mddev->raid_disks == 1)
1326 return 0;
1327
1328 /* raid0 -> raid10 */
1329 if (mddev->new_level == 10 &&
1330 !(rs->raid_disks % 2))
1331 return 0;
1332
1333 /* raid0 with multiple disks -> raid4/5/6 */
bb91a63f 1334 if (__within_range(mddev->new_level, 4, 6) &&
ecbfb9f1
HM
1335 mddev->new_layout == ALGORITHM_PARITY_N &&
1336 mddev->raid_disks > 1)
1337 return 0;
1338
1339 break;
1340
1341 case 10:
1342 /* Can't takeover raid10_offset! */
e6ca5e1a 1343 if (__is_raid10_offset(mddev->layout))
ecbfb9f1
HM
1344 break;
1345
e6ca5e1a 1346 near_copies = __raid10_near_copies(mddev->layout);
ecbfb9f1
HM
1347
1348 /* raid10* -> raid0 */
1349 if (mddev->new_level == 0) {
1350 /* Can takeover raid10_near with raid disks divisable by data copies! */
1351 if (near_copies > 1 &&
1352 !(mddev->raid_disks % near_copies)) {
1353 mddev->raid_disks /= near_copies;
1354 mddev->delta_disks = mddev->raid_disks;
1355 return 0;
1356 }
1357
1358 /* Can takeover raid10_far */
1359 if (near_copies == 1 &&
e6ca5e1a 1360 __raid10_far_copies(mddev->layout) > 1)
ecbfb9f1
HM
1361 return 0;
1362
1363 break;
1364 }
1365
1366 /* raid10_{near,far} -> raid1 */
1367 if (mddev->new_level == 1 &&
e6ca5e1a 1368 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
ecbfb9f1
HM
1369 return 0;
1370
1371 /* raid10_{near,far} with 2 disks -> raid4/5 */
bb91a63f 1372 if (__within_range(mddev->new_level, 4, 5) &&
ecbfb9f1
HM
1373 mddev->raid_disks == 2)
1374 return 0;
1375 break;
1376
1377 case 1:
1378 /* raid1 with 2 disks -> raid4/5 */
bb91a63f 1379 if (__within_range(mddev->new_level, 4, 5) &&
ecbfb9f1
HM
1380 mddev->raid_disks == 2) {
1381 mddev->degraded = 1;
1382 return 0;
1383 }
1384
1385 /* raid1 -> raid0 */
1386 if (mddev->new_level == 0 &&
1387 mddev->raid_disks == 1)
1388 return 0;
1389
1390 /* raid1 -> raid10 */
1391 if (mddev->new_level == 10)
1392 return 0;
1393
1394 break;
1395
1396 case 4:
1397 /* raid4 -> raid0 */
1398 if (mddev->new_level == 0)
1399 return 0;
1400
1401 /* raid4 -> raid1/5 with 2 disks */
1402 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1403 mddev->raid_disks == 2)
1404 return 0;
1405
1406 /* raid4 -> raid5/6 with parity N */
bb91a63f 1407 if (__within_range(mddev->new_level, 5, 6) &&
ecbfb9f1
HM
1408 mddev->layout == ALGORITHM_PARITY_N)
1409 return 0;
1410 break;
1411
1412 case 5:
1413 /* raid5 with parity N -> raid0 */
1414 if (mddev->new_level == 0 &&
1415 mddev->layout == ALGORITHM_PARITY_N)
1416 return 0;
1417
1418 /* raid5 with parity N -> raid4 */
1419 if (mddev->new_level == 4 &&
1420 mddev->layout == ALGORITHM_PARITY_N)
1421 return 0;
1422
1423 /* raid5 with 2 disks -> raid1/4/10 */
1424 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1425 mddev->raid_disks == 2)
1426 return 0;
1427
1428 /* raid5 with parity N -> raid6 with parity N */
1429 if (mddev->new_level == 6 &&
1430 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
bb91a63f 1431 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
ecbfb9f1
HM
1432 return 0;
1433 break;
1434
1435 case 6:
1436 /* raid6 with parity N -> raid0 */
1437 if (mddev->new_level == 0 &&
1438 mddev->layout == ALGORITHM_PARITY_N)
1439 return 0;
1440
1441 /* raid6 with parity N -> raid4 */
1442 if (mddev->new_level == 4 &&
1443 mddev->layout == ALGORITHM_PARITY_N)
1444 return 0;
1445
1446 /* raid6_*_n with parity N -> raid5_* */
1447 if (mddev->new_level == 5 &&
1448 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
bb91a63f 1449 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
ecbfb9f1
HM
1450 return 0;
1451
1452 default:
1453 break;
1454 }
1455
bd83a4c4
MS
1456 rs->ti->error = "takeover not possible";
1457 return -EINVAL;
ecbfb9f1
HM
1458}
1459
1460/* True if @rs requested to be taken over */
1461static bool rs_takeover_requested(struct raid_set *rs)
1462{
1463 return rs->md.new_level != rs->md.level;
1464}
1465
33e53f06 1466/* Features */
9b6e5423 1467#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
33e53f06
HM
1468
1469/* State flags for sb->flags */
1470#define SB_FLAG_RESHAPE_ACTIVE 0x1
1471#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1472
b12d437b
JB
1473/*
1474 * This structure is never routinely used by userspace, unlike md superblocks.
1475 * Devices with this superblock should only ever be accessed via device-mapper.
1476 */
1477#define DM_RAID_MAGIC 0x64526D44
1478struct dm_raid_superblock {
1479 __le32 magic; /* "DmRd" */
9b6e5423 1480 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
b12d437b 1481
33e53f06
HM
1482 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1483 __le32 array_position; /* The position of this drive in the raid set */
b12d437b
JB
1484
1485 __le64 events; /* Incremented by md when superblock updated */
9b6e5423 1486 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
33e53f06 1487 /* indicate failures (see extension below) */
b12d437b
JB
1488
1489 /*
1490 * This offset tracks the progress of the repair or replacement of
1491 * an individual drive.
1492 */
1493 __le64 disk_recovery_offset;
1494
1495 /*
33e53f06 1496 * This offset tracks the progress of the initial raid set
b12d437b
JB
1497 * synchronisation/parity calculation.
1498 */
1499 __le64 array_resync_offset;
1500
1501 /*
33e53f06 1502 * raid characteristics
b12d437b
JB
1503 */
1504 __le32 level;
1505 __le32 layout;
1506 __le32 stripe_sectors;
1507
33e53f06 1508 /********************************************************************
9b6e5423 1509 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
33e53f06 1510 *
9b6e5423 1511 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
33e53f06
HM
1512 */
1513
1514 __le32 flags; /* Flags defining array states for reshaping */
1515
1516 /*
1517 * This offset tracks the progress of a raid
1518 * set reshape in order to be able to restart it
1519 */
1520 __le64 reshape_position;
1521
1522 /*
1523 * These define the properties of the array in case of an interrupted reshape
1524 */
1525 __le32 new_level;
1526 __le32 new_layout;
1527 __le32 new_stripe_sectors;
1528 __le32 delta_disks;
1529
1530 __le64 array_sectors; /* Array size in sectors */
1531
1532 /*
1533 * Sector offsets to data on devices (reshaping).
1534 * Needed to support out of place reshaping, thus
1535 * not writing over any stripes whilst converting
1536 * them from old to new layout
1537 */
1538 __le64 data_offset;
1539 __le64 new_data_offset;
1540
1541 __le64 sectors; /* Used device size in sectors */
1542
1543 /*
1544 * Additonal Bit field of devices indicating failures to support
9b6e5423 1545 * up to 256 devices with the 1.9.0 on-disk metadata format
33e53f06
HM
1546 */
1547 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1548
1549 __le32 incompat_features; /* Used to indicate any incompatible features */
1550
1551 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
b12d437b
JB
1552} __packed;
1553
3cb03002 1554static int read_disk_sb(struct md_rdev *rdev, int size)
b12d437b
JB
1555{
1556 BUG_ON(!rdev->sb_page);
1557
1558 if (rdev->sb_loaded)
1559 return 0;
1560
796a5cf0 1561 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) {
0447568f
JB
1562 DMERR("Failed to read superblock of device at position %d",
1563 rdev->raid_disk);
c32fb9e7 1564 md_error(rdev->mddev, rdev);
b12d437b
JB
1565 return -EINVAL;
1566 }
1567
1568 rdev->sb_loaded = 1;
1569
1570 return 0;
1571}
1572
33e53f06
HM
1573static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1574{
1575 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1576 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1577
4286325b 1578 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
33e53f06
HM
1579 int i = ARRAY_SIZE(sb->extended_failed_devices);
1580
1581 while (i--)
1582 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1583 }
1584}
1585
7b34df74
HM
1586static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1587{
1588 int i = ARRAY_SIZE(sb->extended_failed_devices);
1589
1590 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1591 while (i--)
1592 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1593}
1594
1595/*
1596 * Synchronize the superblock members with the raid set properties
1597 *
1598 * All superblock data is little endian.
1599 */
fd01b88c 1600static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
b12d437b 1601{
7b34df74
HM
1602 bool update_failed_devices = false;
1603 unsigned int i;
1604 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
b12d437b 1605 struct dm_raid_superblock *sb;
81f382f9 1606 struct raid_set *rs = container_of(mddev, struct raid_set, md);
b12d437b 1607
7b34df74
HM
1608 /* No metadata device, no superblock */
1609 if (!rdev->meta_bdev)
1610 return;
1611
1612 BUG_ON(!rdev->sb_page);
1613
b12d437b 1614 sb = page_address(rdev->sb_page);
b12d437b 1615
7b34df74 1616 sb_retrieve_failed_devices(sb, failed_devices);
b12d437b 1617
7b34df74
HM
1618 for (i = 0; i < rs->raid_disks; i++)
1619 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1620 update_failed_devices = true;
1621 set_bit(i, (void *) failed_devices);
1622 }
1623
1624 if (update_failed_devices)
1625 sb_update_failed_devices(sb, failed_devices);
b12d437b
JB
1626
1627 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
9b6e5423 1628 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
b12d437b
JB
1629
1630 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1631 sb->array_position = cpu_to_le32(rdev->raid_disk);
1632
1633 sb->events = cpu_to_le64(mddev->events);
b12d437b
JB
1634
1635 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1636 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1637
1638 sb->level = cpu_to_le32(mddev->level);
1639 sb->layout = cpu_to_le32(mddev->layout);
1640 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
7b34df74
HM
1641
1642 sb->new_level = cpu_to_le32(mddev->new_level);
1643 sb->new_layout = cpu_to_le32(mddev->new_layout);
1644 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1645
1646 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1647
1648 smp_rmb(); /* Make sure we access most recent reshape position */
1649 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1650 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1651 /* Flag ongoing reshape */
1652 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1653
1654 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1655 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
4286325b
MS
1656 } else {
1657 /* Clear reshape flags */
1658 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1659 }
7b34df74
HM
1660
1661 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1662 sb->data_offset = cpu_to_le64(rdev->data_offset);
1663 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1664 sb->sectors = cpu_to_le64(rdev->sectors);
1665
1666 /* Zero out the rest of the payload after the size of the superblock */
1667 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
b12d437b
JB
1668}
1669
1670/*
1671 * super_load
1672 *
1673 * This function creates a superblock if one is not found on the device
1674 * and will decide which superblock to use if there's a choice.
1675 *
1676 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1677 */
3cb03002 1678static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
b12d437b 1679{
73c6f239 1680 int r;
b12d437b
JB
1681 struct dm_raid_superblock *sb;
1682 struct dm_raid_superblock *refsb;
1683 uint64_t events_sb, events_refsb;
1684
1685 rdev->sb_start = 0;
40d43c4b
HM
1686 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1687 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1688 DMERR("superblock size of a logical block is no longer valid");
1689 return -EINVAL;
1690 }
b12d437b 1691
73c6f239
HM
1692 r = read_disk_sb(rdev, rdev->sb_size);
1693 if (r)
1694 return r;
b12d437b
JB
1695
1696 sb = page_address(rdev->sb_page);
3aa3b2b2
JB
1697
1698 /*
1699 * Two cases that we want to write new superblocks and rebuild:
1700 * 1) New device (no matching magic number)
1701 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1702 */
1703 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1704 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
b12d437b
JB
1705 super_sync(rdev->mddev, rdev);
1706
1707 set_bit(FirstUse, &rdev->flags);
9b6e5423 1708 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
b12d437b
JB
1709
1710 /* Force writing of superblocks to disk */
1711 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1712
1713 /* Any superblock is better than none, choose that if given */
1714 return refdev ? 0 : 1;
1715 }
1716
1717 if (!refdev)
1718 return 1;
1719
1720 events_sb = le64_to_cpu(sb->events);
1721
1722 refsb = page_address(refdev->sb_page);
1723 events_refsb = le64_to_cpu(refsb->events);
1724
1725 return (events_sb > events_refsb) ? 1 : 0;
1726}
1727
33e53f06 1728static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
b12d437b
JB
1729{
1730 int role;
33e53f06
HM
1731 unsigned int d;
1732 struct mddev *mddev = &rs->md;
b12d437b 1733 uint64_t events_sb;
33e53f06 1734 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
b12d437b 1735 struct dm_raid_superblock *sb;
33e53f06 1736 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
dafb20fa 1737 struct md_rdev *r;
b12d437b
JB
1738 struct dm_raid_superblock *sb2;
1739
1740 sb = page_address(rdev->sb_page);
1741 events_sb = le64_to_cpu(sb->events);
b12d437b
JB
1742
1743 /*
1744 * Initialise to 1 if this is a new superblock.
1745 */
1746 mddev->events = events_sb ? : 1;
1747
33e53f06
HM
1748 mddev->reshape_position = MaxSector;
1749
b12d437b 1750 /*
33e53f06
HM
1751 * Reshaping is supported, e.g. reshape_position is valid
1752 * in superblock and superblock content is authoritative.
b12d437b 1753 */
4286325b 1754 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
33e53f06
HM
1755 /* Superblock is authoritative wrt given raid set layout! */
1756 mddev->raid_disks = le32_to_cpu(sb->num_devices);
1757 mddev->level = le32_to_cpu(sb->level);
1758 mddev->layout = le32_to_cpu(sb->layout);
1759 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
1760 mddev->new_level = le32_to_cpu(sb->new_level);
1761 mddev->new_layout = le32_to_cpu(sb->new_layout);
1762 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
1763 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1764 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
1765
1766 /* raid was reshaping and got interrupted */
4286325b
MS
1767 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
1768 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
33e53f06
HM
1769 DMERR("Reshape requested but raid set is still reshaping");
1770 return -EINVAL;
1771 }
b12d437b 1772
33e53f06 1773 if (mddev->delta_disks < 0 ||
4286325b 1774 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
33e53f06
HM
1775 mddev->reshape_backwards = 1;
1776 else
1777 mddev->reshape_backwards = 0;
1778
1779 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1780 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
1781 }
1782
1783 } else {
1784 /*
9b6e5423 1785 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
33e53f06
HM
1786 */
1787 if (le32_to_cpu(sb->level) != mddev->level) {
1788 DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
1789 return -EINVAL;
1790 }
1791 if (le32_to_cpu(sb->layout) != mddev->layout) {
1792 DMERR("Reshaping raid sets not yet supported. (raid layout change)");
43157840
MS
1793 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
1794 DMERR(" Old layout: %s w/ %d copies",
33e53f06
HM
1795 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
1796 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
43157840 1797 DMERR(" New layout: %s w/ %d copies",
33e53f06
HM
1798 raid10_md_layout_to_format(mddev->layout),
1799 raid10_md_layout_to_copies(mddev->layout));
1800 return -EINVAL;
1801 }
1802 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
1803 DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
1804 return -EINVAL;
1805 }
1806
1807 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
1808 if (!rt_is_raid1(rs->raid_type) &&
1809 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
1810 DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
1811 sb->num_devices, mddev->raid_disks);
1812 return -EINVAL;
1813 }
1814
1815 /* Table line is checked vs. authoritative superblock */
1816 rs_set_new(rs);
b12d437b
JB
1817 }
1818
4286325b 1819 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
b12d437b
JB
1820 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
1821
1822 /*
1823 * During load, we set FirstUse if a new superblock was written.
1824 * There are two reasons we might not have a superblock:
33e53f06 1825 * 1) The raid set is brand new - in which case, all of the
43157840 1826 * devices must have their In_sync bit set. Also,
b12d437b 1827 * recovery_cp must be 0, unless forced.
33e53f06 1828 * 2) This is a new device being added to an old raid set
b12d437b
JB
1829 * and the new device needs to be rebuilt - in which
1830 * case the In_sync bit will /not/ be set and
1831 * recovery_cp must be MaxSector.
1832 */
33e53f06 1833 d = 0;
dafb20fa 1834 rdev_for_each(r, mddev) {
33e53f06
HM
1835 if (test_bit(FirstUse, &r->flags))
1836 new_devs++;
1837
b12d437b 1838 if (!test_bit(In_sync, &r->flags)) {
33e53f06
HM
1839 DMINFO("Device %d specified for rebuild; clearing superblock",
1840 r->raid_disk);
b12d437b 1841 rebuilds++;
33e53f06
HM
1842
1843 if (test_bit(FirstUse, &r->flags))
1844 rebuild_and_new++;
1845 }
1846
1847 d++;
b12d437b
JB
1848 }
1849
33e53f06
HM
1850 if (new_devs == rs->raid_disks || !rebuilds) {
1851 /* Replace a broken device */
1852 if (new_devs == 1 && !rs->delta_disks)
1853 ;
1854 if (new_devs == rs->raid_disks) {
1855 DMINFO("Superblocks created for new raid set");
b12d437b 1856 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
4286325b 1857 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
33e53f06
HM
1858 mddev->recovery_cp = 0;
1859 } else if (new_devs && new_devs != rs->raid_disks && !rebuilds) {
1860 DMERR("New device injected into existing raid set without "
1861 "'delta_disks' or 'rebuild' parameter specified");
b12d437b
JB
1862 return -EINVAL;
1863 }
33e53f06
HM
1864 } else if (new_devs && new_devs != rebuilds) {
1865 DMERR("%u 'rebuild' devices cannot be injected into"
1866 " a raid set with %u other first-time devices",
1867 rebuilds, new_devs);
b12d437b 1868 return -EINVAL;
33e53f06
HM
1869 } else if (rebuilds) {
1870 if (rebuild_and_new && rebuilds != rebuild_and_new) {
1871 DMERR("new device%s provided without 'rebuild'",
1872 new_devs > 1 ? "s" : "");
1873 return -EINVAL;
1874 } else if (mddev->recovery_cp != MaxSector) {
1875 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
1876 (unsigned long long) mddev->recovery_cp);
1877 return -EINVAL;
1878 } else if (mddev->reshape_position != MaxSector) {
1879 DMERR("'rebuild' specified while raid set is being reshaped");
1880 return -EINVAL;
1881 }
b12d437b
JB
1882 }
1883
1884 /*
1885 * Now we set the Faulty bit for those devices that are
1886 * recorded in the superblock as failed.
1887 */
33e53f06 1888 sb_retrieve_failed_devices(sb, failed_devices);
dafb20fa 1889 rdev_for_each(r, mddev) {
b12d437b
JB
1890 if (!r->sb_page)
1891 continue;
1892 sb2 = page_address(r->sb_page);
1893 sb2->failed_devices = 0;
33e53f06 1894 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
b12d437b
JB
1895
1896 /*
1897 * Check for any device re-ordering.
1898 */
1899 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1900 role = le32_to_cpu(sb2->array_position);
33e53f06
HM
1901 if (role < 0)
1902 continue;
1903
b12d437b 1904 if (role != r->raid_disk) {
e6ca5e1a
MS
1905 if (__is_raid10_near(mddev->layout)) {
1906 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
bd83a4c4
MS
1907 rs->raid_disks % rs->raid10_copies) {
1908 rs->ti->error =
1909 "Cannot change raid10 near set to odd # of devices!";
1910 return -EINVAL;
1911 }
33e53f06
HM
1912
1913 sb2->array_position = cpu_to_le32(r->raid_disk);
1914
1915 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
bd83a4c4
MS
1916 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
1917 !rt_is_raid1(rs->raid_type)) {
1918 rs->ti->error = "Cannot change device positions in raid set";
1919 return -EINVAL;
1920 }
33e53f06 1921
bd83a4c4 1922 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
b12d437b
JB
1923 }
1924
1925 /*
1926 * Partial recovery is performed on
1927 * returning failed devices.
1928 */
33e53f06 1929 if (test_bit(role, (void *) failed_devices))
b12d437b
JB
1930 set_bit(Faulty, &r->flags);
1931 }
1932 }
1933
1934 return 0;
1935}
1936
0cf45031 1937static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
b12d437b 1938{
0cf45031 1939 struct mddev *mddev = &rs->md;
33e53f06
HM
1940 struct dm_raid_superblock *sb;
1941
3a1c1ef2 1942 if (rs_is_raid0(rs) || !rdev->sb_page)
33e53f06
HM
1943 return 0;
1944
1945 sb = page_address(rdev->sb_page);
b12d437b
JB
1946
1947 /*
1948 * If mddev->events is not set, we know we have not yet initialized
1949 * the array.
1950 */
33e53f06 1951 if (!mddev->events && super_init_validation(rs, rdev))
b12d437b
JB
1952 return -EINVAL;
1953
9b6e5423
MS
1954 if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
1955 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
1956 return -EINVAL;
1957 }
1958
1959 if (sb->incompat_features) {
ecbfb9f1 1960 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
4c9971ca
HM
1961 return -EINVAL;
1962 }
1963
0cf45031 1964 /* Enable bitmap creation for RAID levels != 0 */
676fa5ad 1965 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
0cf45031
HM
1966 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
1967
33e53f06
HM
1968 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
1969 /* Retrieve device size stored in superblock to be prepared for shrink */
1970 rdev->sectors = le64_to_cpu(sb->sectors);
b12d437b 1971 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
33e53f06
HM
1972 if (rdev->recovery_offset == MaxSector)
1973 set_bit(In_sync, &rdev->flags);
1974 /*
1975 * If no reshape in progress -> we're recovering single
1976 * disk(s) and have to set the device(s) to out-of-sync
1977 */
1978 else if (rs->md.reshape_position == MaxSector)
1979 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
b12d437b
JB
1980 }
1981
1982 /*
1983 * If a device comes back, set it as not In_sync and no longer faulty.
1984 */
33e53f06
HM
1985 if (test_and_clear_bit(Faulty, &rdev->flags)) {
1986 rdev->recovery_offset = 0;
b12d437b
JB
1987 clear_bit(In_sync, &rdev->flags);
1988 rdev->saved_raid_disk = rdev->raid_disk;
b12d437b
JB
1989 }
1990
33e53f06
HM
1991 /* Reshape support -> restore repective data offsets */
1992 rdev->data_offset = le64_to_cpu(sb->data_offset);
1993 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
b12d437b
JB
1994
1995 return 0;
1996}
1997
1998/*
1999 * Analyse superblocks and select the freshest.
2000 */
2001static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2002{
73c6f239 2003 int r;
0447568f 2004 struct raid_dev *dev;
a9ad8526 2005 struct md_rdev *rdev, *tmp, *freshest;
fd01b88c 2006 struct mddev *mddev = &rs->md;
b12d437b
JB
2007
2008 freshest = NULL;
a9ad8526 2009 rdev_for_each_safe(rdev, tmp, mddev) {
761becff 2010 /*
c76d53f4 2011 * Skipping super_load due to CTR_FLAG_SYNC will cause
761becff 2012 * the array to undergo initialization again as
43157840 2013 * though it were new. This is the intended effect
761becff
JB
2014 * of the "sync" directive.
2015 *
2016 * When reshaping capability is added, we must ensure
2017 * that the "sync" directive is disallowed during the
2018 * reshape.
2019 */
4286325b 2020 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
761becff
JB
2021 continue;
2022
b12d437b
JB
2023 if (!rdev->meta_bdev)
2024 continue;
2025
73c6f239 2026 r = super_load(rdev, freshest);
b12d437b 2027
73c6f239 2028 switch (r) {
b12d437b
JB
2029 case 1:
2030 freshest = rdev;
2031 break;
2032 case 0:
2033 break;
2034 default:
0447568f 2035 dev = container_of(rdev, struct raid_dev, rdev);
55ebbb59
JB
2036 if (dev->meta_dev)
2037 dm_put_device(ti, dev->meta_dev);
0447568f 2038
55ebbb59
JB
2039 dev->meta_dev = NULL;
2040 rdev->meta_bdev = NULL;
0447568f 2041
55ebbb59
JB
2042 if (rdev->sb_page)
2043 put_page(rdev->sb_page);
0447568f 2044
55ebbb59 2045 rdev->sb_page = NULL;
0447568f 2046
55ebbb59 2047 rdev->sb_loaded = 0;
0447568f 2048
55ebbb59
JB
2049 /*
2050 * We might be able to salvage the data device
2051 * even though the meta device has failed. For
2052 * now, we behave as though '- -' had been
2053 * set for this device in the table.
2054 */
2055 if (dev->data_dev)
2056 dm_put_device(ti, dev->data_dev);
0447568f 2057
55ebbb59
JB
2058 dev->data_dev = NULL;
2059 rdev->bdev = NULL;
0447568f 2060
55ebbb59 2061 list_del(&rdev->same_set);
b12d437b
JB
2062 }
2063 }
2064
2065 if (!freshest)
2066 return 0;
2067
bd83a4c4
MS
2068 if (validate_raid_redundancy(rs)) {
2069 rs->ti->error = "Insufficient redundancy to activate array";
2070 return -EINVAL;
2071 }
55ebbb59 2072
b12d437b
JB
2073 /*
2074 * Validation of the freshest device provides the source of
2075 * validation for the remaining devices.
2076 */
bd83a4c4
MS
2077 if (super_validate(rs, freshest)) {
2078 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2079 return -EINVAL;
2080 }
b12d437b 2081
dafb20fa 2082 rdev_for_each(rdev, mddev)
0cf45031 2083 if ((rdev != freshest) && super_validate(rs, rdev))
b12d437b
JB
2084 return -EINVAL;
2085
2086 return 0;
2087}
2088
ecbfb9f1 2089/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
e6ca5e1a 2090static void __reorder_raid_disk_indexes(struct raid_set *rs)
ecbfb9f1
HM
2091{
2092 int i = 0;
2093 struct md_rdev *rdev;
2094
2095 rdev_for_each(rdev, &rs->md) {
2096 rdev->raid_disk = i++;
2097 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2098 }
2099}
2100
2101/*
2102 * Setup @rs for takeover by a different raid level
2103 */
2104static int rs_setup_takeover(struct raid_set *rs)
2105{
2106 struct mddev *mddev = &rs->md;
2107 struct md_rdev *rdev;
2108 unsigned int d = mddev->raid_disks = rs->raid_disks;
2109 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2110
2111 if (rt_is_raid10(rs->raid_type)) {
2112 if (mddev->level == 0) {
2113 /* Userpace reordered disks -> adjust raid_disk indexes */
e6ca5e1a 2114 __reorder_raid_disk_indexes(rs);
ecbfb9f1
HM
2115
2116 /* raid0 -> raid10_far layout */
2117 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2118 rs->raid10_copies);
2119 } else if (mddev->level == 1)
2120 /* raid1 -> raid10_near layout */
2121 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2122 rs->raid_disks);
2123 else
2124 return -EINVAL;
2125
2126 }
2127
2128 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2129 mddev->recovery_cp = MaxSector;
2130
2131 while (d--) {
2132 rdev = &rs->dev[d].rdev;
2133
2134 if (test_bit(d, (void *) rs->rebuild_disks)) {
2135 clear_bit(In_sync, &rdev->flags);
2136 clear_bit(Faulty, &rdev->flags);
2137 mddev->recovery_cp = rdev->recovery_offset = 0;
2138 /* Bitmap has to be created when we do an "up" takeover */
2139 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2140 }
2141
2142 rdev->new_data_offset = new_data_offset;
2143 }
2144
ecbfb9f1
HM
2145 return 0;
2146}
2147
75b8e04b 2148/*
48cf06bc
HM
2149 * Enable/disable discard support on RAID set depending on
2150 * RAID level and discard properties of underlying RAID members.
75b8e04b 2151 */
ecbfb9f1 2152static void configure_discard_support(struct raid_set *rs)
75b8e04b 2153{
48cf06bc
HM
2154 int i;
2155 bool raid456;
ecbfb9f1 2156 struct dm_target *ti = rs->ti;
48cf06bc 2157
75b8e04b
HM
2158 /* Assume discards not supported until after checks below. */
2159 ti->discards_supported = false;
2160
2161 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
48cf06bc 2162 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
75b8e04b 2163
48cf06bc 2164 for (i = 0; i < rs->md.raid_disks; i++) {
d20c4b08 2165 struct request_queue *q;
48cf06bc 2166
d20c4b08
HM
2167 if (!rs->dev[i].rdev.bdev)
2168 continue;
2169
2170 q = bdev_get_queue(rs->dev[i].rdev.bdev);
48cf06bc
HM
2171 if (!q || !blk_queue_discard(q))
2172 return;
2173
2174 if (raid456) {
2175 if (!q->limits.discard_zeroes_data)
2176 return;
2177 if (!devices_handle_discard_safely) {
2178 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2179 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2180 return;
2181 }
2182 }
2183 }
2184
2185 /* All RAID members properly support discards */
75b8e04b
HM
2186 ti->discards_supported = true;
2187
2188 /*
2189 * RAID1 and RAID10 personalities require bio splitting,
48cf06bc 2190 * RAID0/4/5/6 don't and process large discard bios properly.
75b8e04b 2191 */
48cf06bc 2192 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
75b8e04b
HM
2193 ti->num_discard_bios = 1;
2194}
2195
9d09e663 2196/*
73c6f239 2197 * Construct a RAID0/1/10/4/5/6 mapping:
9d09e663 2198 * Args:
43157840
MS
2199 * <raid_type> <#raid_params> <raid_params>{0,} \
2200 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
9d09e663 2201 *
43157840 2202 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
9d09e663 2203 * details on possible <raid_params>.
73c6f239
HM
2204 *
2205 * Userspace is free to initialize the metadata devices, hence the superblocks to
2206 * enforce recreation based on the passed in table parameters.
2207 *
9d09e663
N
2208 */
2209static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2210{
73c6f239 2211 int r;
9d09e663 2212 struct raid_type *rt;
92c83d79 2213 unsigned num_raid_params, num_raid_devs;
9d09e663 2214 struct raid_set *rs = NULL;
92c83d79
HM
2215 const char *arg;
2216 struct dm_arg_set as = { argc, argv }, as_nrd;
2217 struct dm_arg _args[] = {
2218 { 0, as.argc, "Cannot understand number of raid parameters" },
2219 { 1, 254, "Cannot understand number of raid devices parameters" }
2220 };
2221
2222 /* Must have <raid_type> */
2223 arg = dm_shift_arg(&as);
bd83a4c4
MS
2224 if (!arg) {
2225 ti->error = "No arguments";
2226 return -EINVAL;
2227 }
9d09e663 2228
92c83d79 2229 rt = get_raid_type(arg);
bd83a4c4
MS
2230 if (!rt) {
2231 ti->error = "Unrecognised raid_type";
2232 return -EINVAL;
2233 }
9d09e663 2234
92c83d79
HM
2235 /* Must have <#raid_params> */
2236 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
43157840 2237 return -EINVAL;
9d09e663 2238
92c83d79
HM
2239 /* number of raid device tupples <meta_dev data_dev> */
2240 as_nrd = as;
2241 dm_consume_args(&as_nrd, num_raid_params);
2242 _args[1].max = (as_nrd.argc - 1) / 2;
2243 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
43157840 2244 return -EINVAL;
9d09e663 2245
bb91a63f 2246 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
bd83a4c4
MS
2247 ti->error = "Invalid number of supplied raid devices";
2248 return -EINVAL;
2249 }
3ca5a21a 2250
bfcee0e3 2251 rs = raid_set_alloc(ti, rt, num_raid_devs);
9d09e663
N
2252 if (IS_ERR(rs))
2253 return PTR_ERR(rs);
2254
92c83d79 2255 r = parse_raid_params(rs, &as, num_raid_params);
73c6f239 2256 if (r)
9d09e663
N
2257 goto bad;
2258
702108d1 2259 r = parse_dev_params(rs, &as);
73c6f239 2260 if (r)
9d09e663
N
2261 goto bad;
2262
b12d437b 2263 rs->md.sync_super = super_sync;
ecbfb9f1
HM
2264
2265 /*
2266 * Backup any new raid set level, layout, ...
2267 * requested to be able to compare to superblock
2268 * members for conversion decisions.
2269 */
2270 rs_config_backup(rs);
2271
73c6f239
HM
2272 r = analyse_superblocks(ti, rs);
2273 if (r)
b12d437b
JB
2274 goto bad;
2275
9d09e663 2276 INIT_WORK(&rs->md.event_work, do_table_event);
9d09e663 2277 ti->private = rs;
55a62eef 2278 ti->num_flush_bios = 1;
9d09e663 2279
ecbfb9f1
HM
2280 /* Restore any requested new layout for conversion decision */
2281 rs_config_restore(rs);
2282
75b8e04b 2283 /*
ecbfb9f1
HM
2284 * If a takeover is needed, just set the level to
2285 * the new requested one and allow the raid set to run.
75b8e04b 2286 */
ecbfb9f1
HM
2287 if (rs_takeover_requested(rs)) {
2288 r = rs_check_takeover(rs);
2289 if (r)
2290 return r;
2291
2292 r = rs_setup_takeover(rs);
2293 if (r)
2294 return r;
2295
3a1c1ef2 2296 /* Tell preresume to update superblocks with new layout */
4286325b 2297 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3a1c1ef2
HM
2298 rs_set_new(rs);
2299 } else
2300 rs_set_cur(rs);
ecbfb9f1
HM
2301
2302 /* Start raid set read-only and assumed clean to change in raid_resume() */
2303 rs->md.ro = 1;
2304 rs->md.in_sync = 1;
2305 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
75b8e04b 2306
0cf45031
HM
2307 /* Has to be held on running the array */
2308 mddev_lock_nointr(&rs->md);
73c6f239 2309 r = md_run(&rs->md);
9d09e663 2310 rs->md.in_sync = 0; /* Assume already marked dirty */
0cf45031 2311 mddev_unlock(&rs->md);
9d09e663 2312
73c6f239 2313 if (r) {
9d09e663
N
2314 ti->error = "Fail to run raid array";
2315 goto bad;
2316 }
2317
63f33b8d 2318 if (ti->len != rs->md.array_sectors) {
bd83a4c4
MS
2319 ti->error = "Array size does not match requested target length";
2320 r = -EINVAL;
63f33b8d
JB
2321 goto size_mismatch;
2322 }
9d09e663 2323 rs->callbacks.congested_fn = raid_is_congested;
9d09e663
N
2324 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2325
32737279 2326 mddev_suspend(&rs->md);
9d09e663
N
2327 return 0;
2328
63f33b8d
JB
2329size_mismatch:
2330 md_stop(&rs->md);
9d09e663 2331bad:
bfcee0e3 2332 raid_set_free(rs);
9d09e663 2333
73c6f239 2334 return r;
9d09e663
N
2335}
2336
2337static void raid_dtr(struct dm_target *ti)
2338{
2339 struct raid_set *rs = ti->private;
2340
2341 list_del_init(&rs->callbacks.list);
2342 md_stop(&rs->md);
bfcee0e3 2343 raid_set_free(rs);
9d09e663
N
2344}
2345
7de3ee57 2346static int raid_map(struct dm_target *ti, struct bio *bio)
9d09e663
N
2347{
2348 struct raid_set *rs = ti->private;
fd01b88c 2349 struct mddev *mddev = &rs->md;
9d09e663
N
2350
2351 mddev->pers->make_request(mddev, bio);
2352
2353 return DM_MAPIO_SUBMITTED;
2354}
2355
3a1c1ef2 2356/* Return string describing the current sync action of @mddev */
be83651f
JB
2357static const char *decipher_sync_action(struct mddev *mddev)
2358{
2359 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2360 return "frozen";
2361
2362 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2363 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2364 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2365 return "reshape";
2366
2367 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2368 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2369 return "resync";
2370 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2371 return "check";
2372 return "repair";
2373 }
2374
2375 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2376 return "recover";
2377 }
2378
2379 return "idle";
2380}
2381
3a1c1ef2
HM
2382/*
2383 * Return status string @rdev
2384 *
2385 * Status characters:
2386 *
2387 * 'D' = Dead/Failed device
2388 * 'a' = Alive but not in-sync
2389 * 'A' = Alive and in-sync
2390 */
e6ca5e1a 2391static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
9d09e663 2392{
3a1c1ef2
HM
2393 if (test_bit(Faulty, &rdev->flags))
2394 return "D";
2395 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2396 return "a";
2397 else
2398 return "A";
2399}
9d09e663 2400
3a1c1ef2
HM
2401/* Helper to return resync/reshape progress for @rs and @array_in_sync */
2402static sector_t rs_get_progress(struct raid_set *rs,
2403 sector_t resync_max_sectors, bool *array_in_sync)
2404{
2405 sector_t r, recovery_cp, curr_resync_completed;
2406 struct mddev *mddev = &rs->md;
9d09e663 2407
3a1c1ef2
HM
2408 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2409 recovery_cp = mddev->recovery_cp;
2410 *array_in_sync = false;
2411
2412 if (rs_is_raid0(rs)) {
2413 r = resync_max_sectors;
2414 *array_in_sync = true;
2415
2416 } else {
2417 r = mddev->reshape_position;
2418
2419 /* Reshape is relative to the array size */
2420 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2421 r != MaxSector) {
2422 if (r == MaxSector) {
2423 *array_in_sync = true;
2424 r = resync_max_sectors;
0cf45031 2425 } else {
3a1c1ef2
HM
2426 /* Got to reverse on backward reshape */
2427 if (mddev->reshape_backwards)
2428 r = mddev->array_sectors - r;
2429
2430 /* Devide by # of data stripes */
2431 sector_div(r, mddev_data_stripes(rs));
0cf45031 2432 }
3a1c1ef2
HM
2433
2434 /* Sync is relative to the component device size */
2435 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2436 r = curr_resync_completed;
2437 else
2438 r = recovery_cp;
2439
2440 if (r == MaxSector) {
2441 /*
2442 * Sync complete.
2443 */
2444 *array_in_sync = true;
2445 r = resync_max_sectors;
2446 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2447 /*
2448 * If "check" or "repair" is occurring, the raid set has
2449 * undergone an initial sync and the health characters
2450 * should not be 'a' anymore.
2451 */
2452 *array_in_sync = true;
0cf45031 2453 } else {
3a1c1ef2 2454 struct md_rdev *rdev;
be83651f 2455
3a1c1ef2
HM
2456 /*
2457 * The raid set may be doing an initial sync, or it may
43157840 2458 * be rebuilding individual components. If all the
3a1c1ef2
HM
2459 * devices are In_sync, then it is the raid set that is
2460 * being initialized.
2461 */
2462 rdev_for_each(rdev, mddev)
2463 if (!test_bit(In_sync, &rdev->flags))
2464 *array_in_sync = true;
2465#if 0
2466 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
2467#endif
2e727c3c 2468 }
3a1c1ef2
HM
2469 }
2470
2471 return r;
2472}
2473
2474/* Helper to return @dev name or "-" if !@dev */
e6ca5e1a 2475static const char *__get_dev_name(struct dm_dev *dev)
3a1c1ef2
HM
2476{
2477 return dev ? dev->name : "-";
2478}
2479
2480static void raid_status(struct dm_target *ti, status_type_t type,
2481 unsigned int status_flags, char *result, unsigned int maxlen)
2482{
2483 struct raid_set *rs = ti->private;
2484 struct mddev *mddev = &rs->md;
2485 struct r5conf *conf = mddev->private;
2486 int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
2487 bool array_in_sync;
2488 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
2489 unsigned int sz = 0;
2490 unsigned int write_mostly_params = 0;
2491 sector_t progress, resync_max_sectors, resync_mismatches;
2492 const char *sync_action;
2493 struct raid_type *rt;
2494 struct md_rdev *rdev;
2495
2496 switch (type) {
2497 case STATUSTYPE_INFO:
2498 /* *Should* always succeed */
2499 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2500 if (!rt)
2501 return;
2502
2503 DMEMIT("%s %d ", rt ? rt->name : "unknown", mddev->raid_disks);
2504
2505 /* Access most recent mddev properties for status output */
2506 smp_rmb();
2507 /* Get sensible max sectors even if raid set not yet started */
4286325b 2508 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3a1c1ef2
HM
2509 mddev->resync_max_sectors : mddev->dev_sectors;
2510 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
2511 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
2512 (unsigned int) atomic64_read(&mddev->resync_mismatches) : 0;
2513 sync_action = decipher_sync_action(&rs->md);
2514
2515 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
2516 rdev_for_each(rdev, mddev)
e6ca5e1a 2517 DMEMIT(__raid_dev_status(rdev, array_in_sync));
9d09e663 2518
2e727c3c 2519 /*
3a1c1ef2 2520 * In-sync/Reshape ratio:
2e727c3c 2521 * The in-sync ratio shows the progress of:
3a1c1ef2
HM
2522 * - Initializing the raid set
2523 * - Rebuilding a subset of devices of the raid set
2e727c3c
JB
2524 * The user can distinguish between the two by referring
2525 * to the status characters.
3a1c1ef2
HM
2526 *
2527 * The reshape ratio shows the progress of
2528 * changing the raid layout or the number of
2529 * disks of a raid set
2e727c3c 2530 */
3a1c1ef2
HM
2531 DMEMIT(" %llu/%llu", (unsigned long long) progress,
2532 (unsigned long long) resync_max_sectors);
9d09e663 2533
be83651f 2534 /*
3a1c1ef2
HM
2535 * v1.5.0+:
2536 *
be83651f 2537 * Sync action:
3a1c1ef2 2538 * See Documentation/device-mapper/dm-raid.txt for
be83651f
JB
2539 * information on each of these states.
2540 */
3a1c1ef2 2541 DMEMIT(" %s", sync_action);
be83651f
JB
2542
2543 /*
3a1c1ef2
HM
2544 * v1.5.0+:
2545 *
be83651f
JB
2546 * resync_mismatches/mismatch_cnt
2547 * This field shows the number of discrepancies found when
3a1c1ef2 2548 * performing a "check" of the raid set.
be83651f 2549 */
3a1c1ef2 2550 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
9d09e663 2551
3a1c1ef2 2552 /*
9b6e5423 2553 * v1.9.0+:
3a1c1ef2
HM
2554 *
2555 * data_offset (needed for out of space reshaping)
2556 * This field shows the data offset into the data
2557 * image LV where the first stripes data starts.
2558 *
2559 * We keep data_offset equal on all raid disks of the set,
2560 * so retrieving it from the first raid disk is sufficient.
2561 */
2562 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
2563 break;
9d09e663 2564
3a1c1ef2
HM
2565 case STATUSTYPE_TABLE:
2566 /* Report the table line string you would use to construct this raid set */
2567
2568 /* Calculate raid parameter count */
2569 rdev_for_each(rdev, mddev)
2570 if (test_bit(WriteMostly, &rdev->flags))
2571 write_mostly_params += 2;
2572 raid_param_cnt += memweight(rs->rebuild_disks,
2573 DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
2574 write_mostly_params +
2575 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
2576 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
2577 /* Emit table line */
2578 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
4286325b 2579 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3fa6cf38 2580 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3a1c1ef2 2581 raid10_md_layout_to_format(mddev->layout));
4286325b 2582 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3fa6cf38 2583 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3a1c1ef2 2584 raid10_md_layout_to_copies(mddev->layout));
4286325b 2585 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3fa6cf38 2586 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
4286325b 2587 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3fa6cf38 2588 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
4286325b 2589 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3fa6cf38 2590 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3a1c1ef2 2591 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
4286325b 2592 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3fa6cf38 2593 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3a1c1ef2 2594 (unsigned long long) rs->data_offset);
4286325b 2595 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3fa6cf38 2596 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3a1c1ef2 2597 mddev->bitmap_info.daemon_sleep);
4286325b 2598 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3fa6cf38 2599 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3a1c1ef2 2600 mddev->delta_disks);
4286325b 2601 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3fa6cf38 2602 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3a1c1ef2
HM
2603 max_nr_stripes);
2604 rdev_for_each(rdev, mddev)
2605 if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3fa6cf38 2606 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3a1c1ef2
HM
2607 rdev->raid_disk);
2608 rdev_for_each(rdev, mddev)
2609 if (test_bit(WriteMostly, &rdev->flags))
3fa6cf38 2610 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3a1c1ef2 2611 rdev->raid_disk);
4286325b 2612 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3fa6cf38 2613 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3a1c1ef2 2614 mddev->bitmap_info.max_write_behind);
4286325b 2615 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3fa6cf38 2616 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3a1c1ef2 2617 mddev->sync_speed_max);
4286325b 2618 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3fa6cf38 2619 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3a1c1ef2
HM
2620 mddev->sync_speed_min);
2621 DMEMIT(" %d", rs->raid_disks);
2622 rdev_for_each(rdev, mddev) {
2623 struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
2624
e6ca5e1a
MS
2625 DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
2626 __get_dev_name(rd->data_dev));
9d09e663
N
2627 }
2628 }
9d09e663
N
2629}
2630
be83651f
JB
2631static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
2632{
2633 struct raid_set *rs = ti->private;
2634 struct mddev *mddev = &rs->md;
2635
2636 if (!strcasecmp(argv[0], "reshape")) {
2637 DMERR("Reshape not supported.");
2638 return -EINVAL;
2639 }
2640
2641 if (!mddev->pers || !mddev->pers->sync_request)
2642 return -EINVAL;
2643
2644 if (!strcasecmp(argv[0], "frozen"))
2645 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2646 else
2647 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2648
2649 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
2650 if (mddev->sync_thread) {
2651 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2652 md_reap_sync_thread(mddev);
2653 }
2654 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2655 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2656 return -EBUSY;
2657 else if (!strcasecmp(argv[0], "resync"))
3a1c1ef2
HM
2658 ; /* MD_RECOVERY_NEEDED set below */
2659 else if (!strcasecmp(argv[0], "recover"))
be83651f 2660 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3a1c1ef2 2661 else {
be83651f
JB
2662 if (!strcasecmp(argv[0], "check"))
2663 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2664 else if (!!strcasecmp(argv[0], "repair"))
2665 return -EINVAL;
2666 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2667 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2668 }
2669 if (mddev->ro == 2) {
2670 /* A write to sync_action is enough to justify
2671 * canceling read-auto mode
2672 */
2673 mddev->ro = 0;
3a1c1ef2 2674 if (!mddev->suspended && mddev->sync_thread)
be83651f
JB
2675 md_wakeup_thread(mddev->sync_thread);
2676 }
2677 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3a1c1ef2 2678 if (!mddev->suspended && mddev->thread)
be83651f
JB
2679 md_wakeup_thread(mddev->thread);
2680
2681 return 0;
2682}
2683
2684static int raid_iterate_devices(struct dm_target *ti,
2685 iterate_devices_callout_fn fn, void *data)
9d09e663
N
2686{
2687 struct raid_set *rs = ti->private;
2688 unsigned i;
73c6f239 2689 int r = 0;
9d09e663 2690
73c6f239 2691 for (i = 0; !r && i < rs->md.raid_disks; i++)
9d09e663 2692 if (rs->dev[i].data_dev)
73c6f239 2693 r = fn(ti,
9d09e663
N
2694 rs->dev[i].data_dev,
2695 0, /* No offset on data devs */
2696 rs->md.dev_sectors,
2697 data);
2698
73c6f239 2699 return r;
9d09e663
N
2700}
2701
2702static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
2703{
2704 struct raid_set *rs = ti->private;
2705 unsigned chunk_size = rs->md.chunk_sectors << 9;
d1688a6d 2706 struct r5conf *conf = rs->md.private;
9d09e663
N
2707
2708 blk_limits_io_min(limits, chunk_size);
2709 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
2710}
2711
2712static void raid_presuspend(struct dm_target *ti)
2713{
2714 struct raid_set *rs = ti->private;
2715
2716 md_stop_writes(&rs->md);
2717}
2718
2719static void raid_postsuspend(struct dm_target *ti)
2720{
2721 struct raid_set *rs = ti->private;
2722
2723 mddev_suspend(&rs->md);
2724}
2725
f381e71b 2726static void attempt_restore_of_faulty_devices(struct raid_set *rs)
9d09e663 2727{
9092c02d
JB
2728 int i;
2729 uint64_t failed_devices, cleared_failed_devices = 0;
2730 unsigned long flags;
2731 struct dm_raid_superblock *sb;
9092c02d 2732 struct md_rdev *r;
9d09e663 2733
f381e71b
JB
2734 for (i = 0; i < rs->md.raid_disks; i++) {
2735 r = &rs->dev[i].rdev;
2736 if (test_bit(Faulty, &r->flags) && r->sb_page &&
796a5cf0
MC
2737 sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0,
2738 1)) {
f381e71b
JB
2739 DMINFO("Faulty %s device #%d has readable super block."
2740 " Attempting to revive it.",
2741 rs->raid_type->name, i);
a4dc163a
JB
2742
2743 /*
2744 * Faulty bit may be set, but sometimes the array can
2745 * be suspended before the personalities can respond
2746 * by removing the device from the array (i.e. calling
43157840 2747 * 'hot_remove_disk'). If they haven't yet removed
a4dc163a
JB
2748 * the failed device, its 'raid_disk' number will be
2749 * '>= 0' - meaning we must call this function
2750 * ourselves.
2751 */
2752 if ((r->raid_disk >= 0) &&
2753 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
2754 /* Failed to revive this device, try next */
2755 continue;
2756
f381e71b
JB
2757 r->raid_disk = i;
2758 r->saved_raid_disk = i;
2759 flags = r->flags;
2760 clear_bit(Faulty, &r->flags);
2761 clear_bit(WriteErrorSeen, &r->flags);
2762 clear_bit(In_sync, &r->flags);
2763 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
2764 r->raid_disk = -1;
2765 r->saved_raid_disk = -1;
2766 r->flags = flags;
2767 } else {
2768 r->recovery_offset = 0;
2769 cleared_failed_devices |= 1 << i;
2770 }
2771 }
2772 }
2773 if (cleared_failed_devices) {
2774 rdev_for_each(r, &rs->md) {
2775 sb = page_address(r->sb_page);
2776 failed_devices = le64_to_cpu(sb->failed_devices);
2777 failed_devices &= ~cleared_failed_devices;
2778 sb->failed_devices = cpu_to_le64(failed_devices);
2779 }
2780 }
2781}
2782
e6ca5e1a 2783static int __load_dirty_region_bitmap(struct raid_set *rs)
ecbfb9f1
HM
2784{
2785 int r = 0;
2786
2787 /* Try loading the bitmap unless "raid0", which does not have one */
2788 if (!rs_is_raid0(rs) &&
4286325b 2789 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
ecbfb9f1
HM
2790 r = bitmap_load(&rs->md);
2791 if (r)
2792 DMERR("Failed to load bitmap");
2793 }
2794
2795 return r;
2796}
2797
2798static int raid_preresume(struct dm_target *ti)
2799{
2800 struct raid_set *rs = ti->private;
2801 struct mddev *mddev = &rs->md;
2802
2803 /* This is a resume after a suspend of the set -> it's already started */
4286325b 2804 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
ecbfb9f1
HM
2805 return 0;
2806
2807 /*
2808 * The superblocks need to be updated on disk if the
e6ca5e1a 2809 * array is new or __load_dirty_region_bitmap will overwrite them
ecbfb9f1
HM
2810 * in core with old data.
2811 *
2812 * In case the array got modified (takeover/reshape/resize)
2813 * or the data offsets on the component devices changed, they
2814 * have to be updated as well.
2815 *
2816 * Have to switch to readwrite and back in order to
2817 * allow for the superblock updates.
2818 */
4286325b 2819 if (test_and_clear_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) {
ecbfb9f1
HM
2820 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2821 mddev->ro = 0;
2822 md_update_sb(mddev, 1);
2823 mddev->ro = 1;
2824 }
2825
2826 /*
2827 * Disable/enable discard support on raid set after any
2828 * conversion, because devices can have been added
2829 */
2830 configure_discard_support(rs);
2831
2832 /* Load the bitmap from disk unless raid0 */
e6ca5e1a 2833 return __load_dirty_region_bitmap(rs);
ecbfb9f1
HM
2834}
2835
f381e71b
JB
2836static void raid_resume(struct dm_target *ti)
2837{
2838 struct raid_set *rs = ti->private;
ecbfb9f1 2839 struct mddev *mddev = &rs->md;
f381e71b 2840
4286325b 2841 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
ecbfb9f1
HM
2842 /*
2843 * A secondary resume while the device is active.
2844 * Take this opportunity to check whether any failed
2845 * devices are reachable again.
2846 */
2847 attempt_restore_of_faulty_devices(rs);
47525e59 2848 }
34f8ac6d 2849
ecbfb9f1 2850 mddev->ro = 0;
3a1c1ef2
HM
2851 mddev->in_sync = 0;
2852 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
2853
ecbfb9f1
HM
2854 if (mddev->suspended)
2855 mddev_resume(mddev);
9d09e663
N
2856}
2857
2858static struct target_type raid_target = {
2859 .name = "raid",
9b6e5423 2860 .version = {1, 9, 0},
9d09e663
N
2861 .module = THIS_MODULE,
2862 .ctr = raid_ctr,
2863 .dtr = raid_dtr,
2864 .map = raid_map,
2865 .status = raid_status,
be83651f 2866 .message = raid_message,
9d09e663
N
2867 .iterate_devices = raid_iterate_devices,
2868 .io_hints = raid_io_hints,
2869 .presuspend = raid_presuspend,
2870 .postsuspend = raid_postsuspend,
ecbfb9f1 2871 .preresume = raid_preresume,
9d09e663
N
2872 .resume = raid_resume,
2873};
2874
2875static int __init dm_raid_init(void)
2876{
fe5d2f4a
JB
2877 DMINFO("Loading target version %u.%u.%u",
2878 raid_target.version[0],
2879 raid_target.version[1],
2880 raid_target.version[2]);
9d09e663
N
2881 return dm_register_target(&raid_target);
2882}
2883
2884static void __exit dm_raid_exit(void)
2885{
2886 dm_unregister_target(&raid_target);
2887}
2888
2889module_init(dm_raid_init);
2890module_exit(dm_raid_exit);
2891
48cf06bc
HM
2892module_param(devices_handle_discard_safely, bool, 0644);
2893MODULE_PARM_DESC(devices_handle_discard_safely,
2894 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
2895
ef9b85a6
MS
2896MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
2897MODULE_ALIAS("dm-raid0");
63f33b8d
JB
2898MODULE_ALIAS("dm-raid1");
2899MODULE_ALIAS("dm-raid10");
9d09e663
N
2900MODULE_ALIAS("dm-raid4");
2901MODULE_ALIAS("dm-raid5");
2902MODULE_ALIAS("dm-raid6");
2903MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3a1c1ef2 2904MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
9d09e663 2905MODULE_LICENSE("GPL");