]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/dm-thin.c
dm thin: fix unprotected use of prepared_discards list
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0
JT
1/*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define DM_MSG_PREFIX "thin"
18
19/*
20 * Tunable constants
21 */
22#define ENDIO_HOOK_POOL_SIZE 10240
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
905e51b3 26#define COMMIT_PERIOD HZ
991d9fa0
JT
27
28/*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
991d9fa0
JT
35/*
36 * Device id is restricted to 24 bits.
37 */
38#define MAX_DEV_ID ((1 << 24) - 1)
39
40/*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
fe878f34 66 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98/*----------------------------------------------------------------*/
99
100/*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106struct bio_prison;
107
108struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112};
113
114struct cell {
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
6f94a4c4 118 struct bio *holder;
991d9fa0
JT
119 struct bio_list bios;
120};
121
122struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129};
130
131static uint32_t calc_nr_buckets(unsigned nr_cells)
132{
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142}
143
144/*
145 * @nr_cells should be the number of cells you want in use _concurrently_.
146 * Don't confuse it with the number of distinct keys.
147 */
148static struct bio_prison *prison_create(unsigned nr_cells)
149{
150 unsigned i;
151 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 size_t len = sizeof(struct bio_prison) +
153 (sizeof(struct hlist_head) * nr_buckets);
154 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
155
156 if (!prison)
157 return NULL;
158
159 spin_lock_init(&prison->lock);
160 prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 sizeof(struct cell));
162 if (!prison->cell_pool) {
163 kfree(prison);
164 return NULL;
165 }
166
167 prison->nr_buckets = nr_buckets;
168 prison->hash_mask = nr_buckets - 1;
169 prison->cells = (struct hlist_head *) (prison + 1);
170 for (i = 0; i < nr_buckets; i++)
171 INIT_HLIST_HEAD(prison->cells + i);
172
173 return prison;
174}
175
176static void prison_destroy(struct bio_prison *prison)
177{
178 mempool_destroy(prison->cell_pool);
179 kfree(prison);
180}
181
182static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
183{
184 const unsigned long BIG_PRIME = 4294967291UL;
185 uint64_t hash = key->block * BIG_PRIME;
186
187 return (uint32_t) (hash & prison->hash_mask);
188}
189
190static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
191{
192 return (lhs->virtual == rhs->virtual) &&
193 (lhs->dev == rhs->dev) &&
194 (lhs->block == rhs->block);
195}
196
197static struct cell *__search_bucket(struct hlist_head *bucket,
198 struct cell_key *key)
199{
200 struct cell *cell;
201 struct hlist_node *tmp;
202
203 hlist_for_each_entry(cell, tmp, bucket, list)
204 if (keys_equal(&cell->key, key))
205 return cell;
206
207 return NULL;
208}
209
210/*
211 * This may block if a new cell needs allocating. You must ensure that
212 * cells will be unlocked even if the calling thread is blocked.
213 *
6f94a4c4 214 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
991d9fa0
JT
215 */
216static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 struct bio *inmate, struct cell **ref)
218{
6f94a4c4 219 int r = 1;
991d9fa0
JT
220 unsigned long flags;
221 uint32_t hash = hash_key(prison, key);
6f94a4c4 222 struct cell *cell, *cell2;
991d9fa0
JT
223
224 BUG_ON(hash > prison->nr_buckets);
225
226 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 227
6f94a4c4
JT
228 cell = __search_bucket(prison->cells + hash, key);
229 if (cell) {
230 bio_list_add(&cell->bios, inmate);
231 goto out;
991d9fa0
JT
232 }
233
6f94a4c4
JT
234 /*
235 * Allocate a new cell
236 */
991d9fa0 237 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
238 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 240
6f94a4c4
JT
241 /*
242 * We've been unlocked, so we have to double check that
243 * nobody else has inserted this cell in the meantime.
244 */
245 cell = __search_bucket(prison->cells + hash, key);
246 if (cell) {
991d9fa0 247 mempool_free(cell2, prison->cell_pool);
6f94a4c4
JT
248 bio_list_add(&cell->bios, inmate);
249 goto out;
250 }
251
252 /*
253 * Use new cell.
254 */
255 cell = cell2;
256
257 cell->prison = prison;
258 memcpy(&cell->key, key, sizeof(cell->key));
259 cell->holder = inmate;
260 bio_list_init(&cell->bios);
261 hlist_add_head(&cell->list, prison->cells + hash);
262
263 r = 0;
264
265out:
266 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
267
268 *ref = cell;
269
270 return r;
271}
272
273/*
274 * @inmates must have been initialised prior to this call
275 */
276static void __cell_release(struct cell *cell, struct bio_list *inmates)
277{
278 struct bio_prison *prison = cell->prison;
279
280 hlist_del(&cell->list);
281
03aaae7c
MS
282 if (inmates) {
283 bio_list_add(inmates, cell->holder);
284 bio_list_merge(inmates, &cell->bios);
285 }
991d9fa0
JT
286
287 mempool_free(cell, prison->cell_pool);
288}
289
290static void cell_release(struct cell *cell, struct bio_list *bios)
291{
292 unsigned long flags;
293 struct bio_prison *prison = cell->prison;
294
295 spin_lock_irqsave(&prison->lock, flags);
296 __cell_release(cell, bios);
297 spin_unlock_irqrestore(&prison->lock, flags);
298}
299
300/*
301 * There are a couple of places where we put a bio into a cell briefly
302 * before taking it out again. In these situations we know that no other
303 * bio may be in the cell. This function releases the cell, and also does
304 * a sanity check.
305 */
6f94a4c4
JT
306static void __cell_release_singleton(struct cell *cell, struct bio *bio)
307{
6f94a4c4
JT
308 BUG_ON(cell->holder != bio);
309 BUG_ON(!bio_list_empty(&cell->bios));
03aaae7c
MS
310
311 __cell_release(cell, NULL);
6f94a4c4
JT
312}
313
991d9fa0
JT
314static void cell_release_singleton(struct cell *cell, struct bio *bio)
315{
991d9fa0 316 unsigned long flags;
6f94a4c4 317 struct bio_prison *prison = cell->prison;
991d9fa0
JT
318
319 spin_lock_irqsave(&prison->lock, flags);
6f94a4c4 320 __cell_release_singleton(cell, bio);
991d9fa0 321 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
322}
323
324/*
325 * Sometimes we don't want the holder, just the additional bios.
326 */
327static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
328{
329 struct bio_prison *prison = cell->prison;
330
331 hlist_del(&cell->list);
332 bio_list_merge(inmates, &cell->bios);
333
334 mempool_free(cell, prison->cell_pool);
335}
336
337static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
338{
339 unsigned long flags;
340 struct bio_prison *prison = cell->prison;
991d9fa0 341
6f94a4c4
JT
342 spin_lock_irqsave(&prison->lock, flags);
343 __cell_release_no_holder(cell, inmates);
344 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
345}
346
347static void cell_error(struct cell *cell)
348{
349 struct bio_prison *prison = cell->prison;
350 struct bio_list bios;
351 struct bio *bio;
352 unsigned long flags;
353
354 bio_list_init(&bios);
355
356 spin_lock_irqsave(&prison->lock, flags);
357 __cell_release(cell, &bios);
358 spin_unlock_irqrestore(&prison->lock, flags);
359
360 while ((bio = bio_list_pop(&bios)))
361 bio_io_error(bio);
362}
363
364/*----------------------------------------------------------------*/
365
366/*
367 * We use the deferred set to keep track of pending reads to shared blocks.
368 * We do this to ensure the new mapping caused by a write isn't performed
369 * until these prior reads have completed. Otherwise the insertion of the
370 * new mapping could free the old block that the read bios are mapped to.
371 */
372
373struct deferred_set;
374struct deferred_entry {
375 struct deferred_set *ds;
376 unsigned count;
377 struct list_head work_items;
378};
379
380struct deferred_set {
381 spinlock_t lock;
382 unsigned current_entry;
383 unsigned sweeper;
384 struct deferred_entry entries[DEFERRED_SET_SIZE];
385};
386
387static void ds_init(struct deferred_set *ds)
388{
389 int i;
390
391 spin_lock_init(&ds->lock);
392 ds->current_entry = 0;
393 ds->sweeper = 0;
394 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
395 ds->entries[i].ds = ds;
396 ds->entries[i].count = 0;
397 INIT_LIST_HEAD(&ds->entries[i].work_items);
398 }
399}
400
401static struct deferred_entry *ds_inc(struct deferred_set *ds)
402{
403 unsigned long flags;
404 struct deferred_entry *entry;
405
406 spin_lock_irqsave(&ds->lock, flags);
407 entry = ds->entries + ds->current_entry;
408 entry->count++;
409 spin_unlock_irqrestore(&ds->lock, flags);
410
411 return entry;
412}
413
414static unsigned ds_next(unsigned index)
415{
416 return (index + 1) % DEFERRED_SET_SIZE;
417}
418
419static void __sweep(struct deferred_set *ds, struct list_head *head)
420{
421 while ((ds->sweeper != ds->current_entry) &&
422 !ds->entries[ds->sweeper].count) {
423 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
424 ds->sweeper = ds_next(ds->sweeper);
425 }
426
427 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
428 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
429}
430
431static void ds_dec(struct deferred_entry *entry, struct list_head *head)
432{
433 unsigned long flags;
434
435 spin_lock_irqsave(&entry->ds->lock, flags);
436 BUG_ON(!entry->count);
437 --entry->count;
438 __sweep(entry->ds, head);
439 spin_unlock_irqrestore(&entry->ds->lock, flags);
440}
441
442/*
443 * Returns 1 if deferred or 0 if no pending items to delay job.
444 */
445static int ds_add_work(struct deferred_set *ds, struct list_head *work)
446{
447 int r = 1;
448 unsigned long flags;
449 unsigned next_entry;
450
451 spin_lock_irqsave(&ds->lock, flags);
452 if ((ds->sweeper == ds->current_entry) &&
453 !ds->entries[ds->current_entry].count)
454 r = 0;
455 else {
456 list_add(work, &ds->entries[ds->current_entry].work_items);
457 next_entry = ds_next(ds->current_entry);
458 if (!ds->entries[next_entry].count)
459 ds->current_entry = next_entry;
460 }
461 spin_unlock_irqrestore(&ds->lock, flags);
462
463 return r;
464}
465
466/*----------------------------------------------------------------*/
467
468/*
469 * Key building.
470 */
471static void build_data_key(struct dm_thin_device *td,
472 dm_block_t b, struct cell_key *key)
473{
474 key->virtual = 0;
475 key->dev = dm_thin_dev_id(td);
476 key->block = b;
477}
478
479static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
480 struct cell_key *key)
481{
482 key->virtual = 1;
483 key->dev = dm_thin_dev_id(td);
484 key->block = b;
485}
486
487/*----------------------------------------------------------------*/
488
489/*
490 * A pool device ties together a metadata device and a data device. It
491 * also provides the interface for creating and destroying internal
492 * devices.
493 */
494struct new_mapping;
67e2e2b2
JT
495
496struct pool_features {
497 unsigned zero_new_blocks:1;
498 unsigned discard_enabled:1;
499 unsigned discard_passdown:1;
500};
501
991d9fa0
JT
502struct pool {
503 struct list_head list;
504 struct dm_target *ti; /* Only set if a pool target is bound */
505
506 struct mapped_device *pool_md;
507 struct block_device *md_dev;
508 struct dm_pool_metadata *pmd;
509
510 uint32_t sectors_per_block;
511 unsigned block_shift;
512 dm_block_t offset_mask;
513 dm_block_t low_water_blocks;
514
67e2e2b2 515 struct pool_features pf;
991d9fa0
JT
516 unsigned low_water_triggered:1; /* A dm event has been sent */
517 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
518
519 struct bio_prison *prison;
520 struct dm_kcopyd_client *copier;
521
522 struct workqueue_struct *wq;
523 struct work_struct worker;
905e51b3 524 struct delayed_work waker;
991d9fa0
JT
525
526 unsigned ref_count;
905e51b3 527 unsigned long last_commit_jiffies;
991d9fa0
JT
528
529 spinlock_t lock;
530 struct bio_list deferred_bios;
531 struct bio_list deferred_flush_bios;
532 struct list_head prepared_mappings;
104655fd 533 struct list_head prepared_discards;
991d9fa0
JT
534
535 struct bio_list retry_on_resume_list;
536
eb2aa48d 537 struct deferred_set shared_read_ds;
104655fd 538 struct deferred_set all_io_ds;
991d9fa0
JT
539
540 struct new_mapping *next_mapping;
541 mempool_t *mapping_pool;
542 mempool_t *endio_hook_pool;
543};
544
545/*
546 * Target context for a pool.
547 */
548struct pool_c {
549 struct dm_target *ti;
550 struct pool *pool;
551 struct dm_dev *data_dev;
552 struct dm_dev *metadata_dev;
553 struct dm_target_callbacks callbacks;
554
555 dm_block_t low_water_blocks;
67e2e2b2 556 struct pool_features pf;
991d9fa0
JT
557};
558
559/*
560 * Target context for a thin.
561 */
562struct thin_c {
563 struct dm_dev *pool_dev;
2dd9c257 564 struct dm_dev *origin_dev;
991d9fa0
JT
565 dm_thin_id dev_id;
566
567 struct pool *pool;
568 struct dm_thin_device *td;
569};
570
571/*----------------------------------------------------------------*/
572
573/*
574 * A global list of pools that uses a struct mapped_device as a key.
575 */
576static struct dm_thin_pool_table {
577 struct mutex mutex;
578 struct list_head pools;
579} dm_thin_pool_table;
580
581static void pool_table_init(void)
582{
583 mutex_init(&dm_thin_pool_table.mutex);
584 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
585}
586
587static void __pool_table_insert(struct pool *pool)
588{
589 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
590 list_add(&pool->list, &dm_thin_pool_table.pools);
591}
592
593static void __pool_table_remove(struct pool *pool)
594{
595 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
596 list_del(&pool->list);
597}
598
599static struct pool *__pool_table_lookup(struct mapped_device *md)
600{
601 struct pool *pool = NULL, *tmp;
602
603 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
604
605 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
606 if (tmp->pool_md == md) {
607 pool = tmp;
608 break;
609 }
610 }
611
612 return pool;
613}
614
615static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
616{
617 struct pool *pool = NULL, *tmp;
618
619 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
620
621 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
622 if (tmp->md_dev == md_dev) {
623 pool = tmp;
624 break;
625 }
626 }
627
628 return pool;
629}
630
631/*----------------------------------------------------------------*/
632
eb2aa48d
JT
633struct endio_hook {
634 struct thin_c *tc;
635 struct deferred_entry *shared_read_entry;
104655fd 636 struct deferred_entry *all_io_entry;
eb2aa48d
JT
637 struct new_mapping *overwrite_mapping;
638};
639
991d9fa0
JT
640static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
641{
642 struct bio *bio;
643 struct bio_list bios;
644
645 bio_list_init(&bios);
646 bio_list_merge(&bios, master);
647 bio_list_init(master);
648
649 while ((bio = bio_list_pop(&bios))) {
eb2aa48d
JT
650 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
651 if (h->tc == tc)
991d9fa0
JT
652 bio_endio(bio, DM_ENDIO_REQUEUE);
653 else
654 bio_list_add(master, bio);
655 }
656}
657
658static void requeue_io(struct thin_c *tc)
659{
660 struct pool *pool = tc->pool;
661 unsigned long flags;
662
663 spin_lock_irqsave(&pool->lock, flags);
664 __requeue_bio_list(tc, &pool->deferred_bios);
665 __requeue_bio_list(tc, &pool->retry_on_resume_list);
666 spin_unlock_irqrestore(&pool->lock, flags);
667}
668
669/*
670 * This section of code contains the logic for processing a thin device's IO.
671 * Much of the code depends on pool object resources (lists, workqueues, etc)
672 * but most is exclusively called from the thin target rather than the thin-pool
673 * target.
674 */
675
676static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677{
678 return bio->bi_sector >> tc->pool->block_shift;
679}
680
681static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
682{
683 struct pool *pool = tc->pool;
684
685 bio->bi_bdev = tc->pool_dev->bdev;
686 bio->bi_sector = (block << pool->block_shift) +
687 (bio->bi_sector & pool->offset_mask);
688}
689
2dd9c257
JT
690static void remap_to_origin(struct thin_c *tc, struct bio *bio)
691{
692 bio->bi_bdev = tc->origin_dev->bdev;
693}
694
695static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
696{
697 struct pool *pool = tc->pool;
698 unsigned long flags;
699
991d9fa0
JT
700 /*
701 * Batch together any FUA/FLUSH bios we find and then issue
702 * a single commit for them in process_deferred_bios().
703 */
704 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
705 spin_lock_irqsave(&pool->lock, flags);
706 bio_list_add(&pool->deferred_flush_bios, bio);
707 spin_unlock_irqrestore(&pool->lock, flags);
708 } else
709 generic_make_request(bio);
710}
711
2dd9c257
JT
712static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
713{
714 remap_to_origin(tc, bio);
715 issue(tc, bio);
716}
717
718static void remap_and_issue(struct thin_c *tc, struct bio *bio,
719 dm_block_t block)
720{
721 remap(tc, bio, block);
722 issue(tc, bio);
723}
724
991d9fa0
JT
725/*
726 * wake_worker() is used when new work is queued and when pool_resume is
727 * ready to continue deferred IO processing.
728 */
729static void wake_worker(struct pool *pool)
730{
731 queue_work(pool->wq, &pool->worker);
732}
733
734/*----------------------------------------------------------------*/
735
736/*
737 * Bio endio functions.
738 */
991d9fa0
JT
739struct new_mapping {
740 struct list_head list;
741
eb2aa48d
JT
742 unsigned quiesced:1;
743 unsigned prepared:1;
104655fd 744 unsigned pass_discard:1;
991d9fa0
JT
745
746 struct thin_c *tc;
747 dm_block_t virt_block;
748 dm_block_t data_block;
104655fd 749 struct cell *cell, *cell2;
991d9fa0
JT
750 int err;
751
752 /*
753 * If the bio covers the whole area of a block then we can avoid
754 * zeroing or copying. Instead this bio is hooked. The bio will
755 * still be in the cell, so care has to be taken to avoid issuing
756 * the bio twice.
757 */
758 struct bio *bio;
759 bio_end_io_t *saved_bi_end_io;
760};
761
762static void __maybe_add_mapping(struct new_mapping *m)
763{
764 struct pool *pool = m->tc->pool;
765
eb2aa48d 766 if (m->quiesced && m->prepared) {
991d9fa0
JT
767 list_add(&m->list, &pool->prepared_mappings);
768 wake_worker(pool);
769 }
770}
771
772static void copy_complete(int read_err, unsigned long write_err, void *context)
773{
774 unsigned long flags;
775 struct new_mapping *m = context;
776 struct pool *pool = m->tc->pool;
777
778 m->err = read_err || write_err ? -EIO : 0;
779
780 spin_lock_irqsave(&pool->lock, flags);
781 m->prepared = 1;
782 __maybe_add_mapping(m);
783 spin_unlock_irqrestore(&pool->lock, flags);
784}
785
786static void overwrite_endio(struct bio *bio, int err)
787{
788 unsigned long flags;
eb2aa48d
JT
789 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
790 struct new_mapping *m = h->overwrite_mapping;
991d9fa0
JT
791 struct pool *pool = m->tc->pool;
792
793 m->err = err;
794
795 spin_lock_irqsave(&pool->lock, flags);
796 m->prepared = 1;
797 __maybe_add_mapping(m);
798 spin_unlock_irqrestore(&pool->lock, flags);
799}
800
991d9fa0
JT
801/*----------------------------------------------------------------*/
802
803/*
804 * Workqueue.
805 */
806
807/*
808 * Prepared mapping jobs.
809 */
810
811/*
812 * This sends the bios in the cell back to the deferred_bios list.
813 */
814static void cell_defer(struct thin_c *tc, struct cell *cell,
815 dm_block_t data_block)
816{
817 struct pool *pool = tc->pool;
818 unsigned long flags;
819
820 spin_lock_irqsave(&pool->lock, flags);
821 cell_release(cell, &pool->deferred_bios);
822 spin_unlock_irqrestore(&tc->pool->lock, flags);
823
824 wake_worker(pool);
825}
826
827/*
828 * Same as cell_defer above, except it omits one particular detainee,
829 * a write bio that covers the block and has already been processed.
830 */
6f94a4c4 831static void cell_defer_except(struct thin_c *tc, struct cell *cell)
991d9fa0
JT
832{
833 struct bio_list bios;
991d9fa0
JT
834 struct pool *pool = tc->pool;
835 unsigned long flags;
836
837 bio_list_init(&bios);
991d9fa0
JT
838
839 spin_lock_irqsave(&pool->lock, flags);
6f94a4c4 840 cell_release_no_holder(cell, &pool->deferred_bios);
991d9fa0
JT
841 spin_unlock_irqrestore(&pool->lock, flags);
842
843 wake_worker(pool);
844}
845
846static void process_prepared_mapping(struct new_mapping *m)
847{
848 struct thin_c *tc = m->tc;
849 struct bio *bio;
850 int r;
851
852 bio = m->bio;
853 if (bio)
854 bio->bi_end_io = m->saved_bi_end_io;
855
856 if (m->err) {
857 cell_error(m->cell);
858 return;
859 }
860
861 /*
862 * Commit the prepared block into the mapping btree.
863 * Any I/O for this block arriving after this point will get
864 * remapped to it directly.
865 */
866 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
867 if (r) {
868 DMERR("dm_thin_insert_block() failed");
869 cell_error(m->cell);
870 return;
871 }
872
873 /*
874 * Release any bios held while the block was being provisioned.
875 * If we are processing a write bio that completely covers the block,
876 * we already processed it so can ignore it now when processing
877 * the bios in the cell.
878 */
879 if (bio) {
6f94a4c4 880 cell_defer_except(tc, m->cell);
991d9fa0
JT
881 bio_endio(bio, 0);
882 } else
883 cell_defer(tc, m->cell, m->data_block);
884
885 list_del(&m->list);
886 mempool_free(m, tc->pool->mapping_pool);
887}
888
104655fd
JT
889static void process_prepared_discard(struct new_mapping *m)
890{
891 int r;
892 struct thin_c *tc = m->tc;
893
894 r = dm_thin_remove_block(tc->td, m->virt_block);
895 if (r)
896 DMERR("dm_thin_remove_block() failed");
897
898 /*
899 * Pass the discard down to the underlying device?
900 */
901 if (m->pass_discard)
902 remap_and_issue(tc, m->bio, m->data_block);
903 else
904 bio_endio(m->bio, 0);
905
906 cell_defer_except(tc, m->cell);
907 cell_defer_except(tc, m->cell2);
908 mempool_free(m, tc->pool->mapping_pool);
909}
910
911static void process_prepared(struct pool *pool, struct list_head *head,
912 void (*fn)(struct new_mapping *))
991d9fa0
JT
913{
914 unsigned long flags;
915 struct list_head maps;
916 struct new_mapping *m, *tmp;
917
918 INIT_LIST_HEAD(&maps);
919 spin_lock_irqsave(&pool->lock, flags);
104655fd 920 list_splice_init(head, &maps);
991d9fa0
JT
921 spin_unlock_irqrestore(&pool->lock, flags);
922
923 list_for_each_entry_safe(m, tmp, &maps, list)
104655fd 924 fn(m);
991d9fa0
JT
925}
926
927/*
928 * Deferred bio jobs.
929 */
104655fd 930static int io_overlaps_block(struct pool *pool, struct bio *bio)
991d9fa0 931{
104655fd 932 return !(bio->bi_sector & pool->offset_mask) &&
991d9fa0 933 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
104655fd
JT
934
935}
936
937static int io_overwrites_block(struct pool *pool, struct bio *bio)
938{
939 return (bio_data_dir(bio) == WRITE) &&
940 io_overlaps_block(pool, bio);
991d9fa0
JT
941}
942
943static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
944 bio_end_io_t *fn)
945{
946 *save = bio->bi_end_io;
947 bio->bi_end_io = fn;
948}
949
950static int ensure_next_mapping(struct pool *pool)
951{
952 if (pool->next_mapping)
953 return 0;
954
955 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
956
957 return pool->next_mapping ? 0 : -ENOMEM;
958}
959
960static struct new_mapping *get_next_mapping(struct pool *pool)
961{
962 struct new_mapping *r = pool->next_mapping;
963
964 BUG_ON(!pool->next_mapping);
965
966 pool->next_mapping = NULL;
967
968 return r;
969}
970
971static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
972 struct dm_dev *origin, dm_block_t data_origin,
973 dm_block_t data_dest,
991d9fa0
JT
974 struct cell *cell, struct bio *bio)
975{
976 int r;
977 struct pool *pool = tc->pool;
978 struct new_mapping *m = get_next_mapping(pool);
979
980 INIT_LIST_HEAD(&m->list);
eb2aa48d 981 m->quiesced = 0;
991d9fa0
JT
982 m->prepared = 0;
983 m->tc = tc;
984 m->virt_block = virt_block;
985 m->data_block = data_dest;
986 m->cell = cell;
987 m->err = 0;
988 m->bio = NULL;
989
eb2aa48d
JT
990 if (!ds_add_work(&pool->shared_read_ds, &m->list))
991 m->quiesced = 1;
991d9fa0
JT
992
993 /*
994 * IO to pool_dev remaps to the pool target's data_dev.
995 *
996 * If the whole block of data is being overwritten, we can issue the
997 * bio immediately. Otherwise we use kcopyd to clone the data first.
998 */
999 if (io_overwrites_block(pool, bio)) {
eb2aa48d
JT
1000 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1001 h->overwrite_mapping = m;
991d9fa0
JT
1002 m->bio = bio;
1003 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1004 remap_and_issue(tc, bio, data_dest);
1005 } else {
1006 struct dm_io_region from, to;
1007
2dd9c257 1008 from.bdev = origin->bdev;
991d9fa0
JT
1009 from.sector = data_origin * pool->sectors_per_block;
1010 from.count = pool->sectors_per_block;
1011
1012 to.bdev = tc->pool_dev->bdev;
1013 to.sector = data_dest * pool->sectors_per_block;
1014 to.count = pool->sectors_per_block;
1015
1016 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1017 0, copy_complete, m);
1018 if (r < 0) {
1019 mempool_free(m, pool->mapping_pool);
1020 DMERR("dm_kcopyd_copy() failed");
1021 cell_error(cell);
1022 }
1023 }
1024}
1025
2dd9c257
JT
1026static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1027 dm_block_t data_origin, dm_block_t data_dest,
1028 struct cell *cell, struct bio *bio)
1029{
1030 schedule_copy(tc, virt_block, tc->pool_dev,
1031 data_origin, data_dest, cell, bio);
1032}
1033
1034static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1035 dm_block_t data_dest,
1036 struct cell *cell, struct bio *bio)
1037{
1038 schedule_copy(tc, virt_block, tc->origin_dev,
1039 virt_block, data_dest, cell, bio);
1040}
1041
991d9fa0
JT
1042static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1043 dm_block_t data_block, struct cell *cell,
1044 struct bio *bio)
1045{
1046 struct pool *pool = tc->pool;
1047 struct new_mapping *m = get_next_mapping(pool);
1048
1049 INIT_LIST_HEAD(&m->list);
eb2aa48d 1050 m->quiesced = 1;
991d9fa0
JT
1051 m->prepared = 0;
1052 m->tc = tc;
1053 m->virt_block = virt_block;
1054 m->data_block = data_block;
1055 m->cell = cell;
1056 m->err = 0;
1057 m->bio = NULL;
1058
1059 /*
1060 * If the whole block of data is being overwritten or we are not
1061 * zeroing pre-existing data, we can issue the bio immediately.
1062 * Otherwise we use kcopyd to zero the data first.
1063 */
67e2e2b2 1064 if (!pool->pf.zero_new_blocks)
991d9fa0
JT
1065 process_prepared_mapping(m);
1066
1067 else if (io_overwrites_block(pool, bio)) {
eb2aa48d
JT
1068 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1069 h->overwrite_mapping = m;
991d9fa0
JT
1070 m->bio = bio;
1071 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1072 remap_and_issue(tc, bio, data_block);
1073
1074 } else {
1075 int r;
1076 struct dm_io_region to;
1077
1078 to.bdev = tc->pool_dev->bdev;
1079 to.sector = data_block * pool->sectors_per_block;
1080 to.count = pool->sectors_per_block;
1081
1082 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1083 if (r < 0) {
1084 mempool_free(m, pool->mapping_pool);
1085 DMERR("dm_kcopyd_zero() failed");
1086 cell_error(cell);
1087 }
1088 }
1089}
1090
1091static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1092{
1093 int r;
1094 dm_block_t free_blocks;
1095 unsigned long flags;
1096 struct pool *pool = tc->pool;
1097
1098 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1099 if (r)
1100 return r;
1101
1102 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1103 DMWARN("%s: reached low water mark, sending event.",
1104 dm_device_name(pool->pool_md));
1105 spin_lock_irqsave(&pool->lock, flags);
1106 pool->low_water_triggered = 1;
1107 spin_unlock_irqrestore(&pool->lock, flags);
1108 dm_table_event(pool->ti->table);
1109 }
1110
1111 if (!free_blocks) {
1112 if (pool->no_free_space)
1113 return -ENOSPC;
1114 else {
1115 /*
1116 * Try to commit to see if that will free up some
1117 * more space.
1118 */
1119 r = dm_pool_commit_metadata(pool->pmd);
1120 if (r) {
1121 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1122 __func__, r);
1123 return r;
1124 }
1125
1126 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1127 if (r)
1128 return r;
1129
1130 /*
1131 * If we still have no space we set a flag to avoid
1132 * doing all this checking and return -ENOSPC.
1133 */
1134 if (!free_blocks) {
1135 DMWARN("%s: no free space available.",
1136 dm_device_name(pool->pool_md));
1137 spin_lock_irqsave(&pool->lock, flags);
1138 pool->no_free_space = 1;
1139 spin_unlock_irqrestore(&pool->lock, flags);
1140 return -ENOSPC;
1141 }
1142 }
1143 }
1144
1145 r = dm_pool_alloc_data_block(pool->pmd, result);
1146 if (r)
1147 return r;
1148
1149 return 0;
1150}
1151
1152/*
1153 * If we have run out of space, queue bios until the device is
1154 * resumed, presumably after having been reloaded with more space.
1155 */
1156static void retry_on_resume(struct bio *bio)
1157{
eb2aa48d
JT
1158 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1159 struct thin_c *tc = h->tc;
991d9fa0
JT
1160 struct pool *pool = tc->pool;
1161 unsigned long flags;
1162
1163 spin_lock_irqsave(&pool->lock, flags);
1164 bio_list_add(&pool->retry_on_resume_list, bio);
1165 spin_unlock_irqrestore(&pool->lock, flags);
1166}
1167
1168static void no_space(struct cell *cell)
1169{
1170 struct bio *bio;
1171 struct bio_list bios;
1172
1173 bio_list_init(&bios);
1174 cell_release(cell, &bios);
1175
1176 while ((bio = bio_list_pop(&bios)))
1177 retry_on_resume(bio);
1178}
1179
104655fd
JT
1180static void process_discard(struct thin_c *tc, struct bio *bio)
1181{
1182 int r;
c3a0ce2e 1183 unsigned long flags;
104655fd
JT
1184 struct pool *pool = tc->pool;
1185 struct cell *cell, *cell2;
1186 struct cell_key key, key2;
1187 dm_block_t block = get_bio_block(tc, bio);
1188 struct dm_thin_lookup_result lookup_result;
1189 struct new_mapping *m;
1190
1191 build_virtual_key(tc->td, block, &key);
1192 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1193 return;
1194
1195 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1196 switch (r) {
1197 case 0:
1198 /*
1199 * Check nobody is fiddling with this pool block. This can
1200 * happen if someone's in the process of breaking sharing
1201 * on this block.
1202 */
1203 build_data_key(tc->td, lookup_result.block, &key2);
1204 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1205 cell_release_singleton(cell, bio);
1206 break;
1207 }
1208
1209 if (io_overlaps_block(pool, bio)) {
1210 /*
1211 * IO may still be going to the destination block. We must
1212 * quiesce before we can do the removal.
1213 */
1214 m = get_next_mapping(pool);
1215 m->tc = tc;
67e2e2b2 1216 m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
104655fd
JT
1217 m->virt_block = block;
1218 m->data_block = lookup_result.block;
1219 m->cell = cell;
1220 m->cell2 = cell2;
1221 m->err = 0;
1222 m->bio = bio;
1223
1224 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
c3a0ce2e 1225 spin_lock_irqsave(&pool->lock, flags);
104655fd 1226 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 1227 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
1228 wake_worker(pool);
1229 }
1230 } else {
1231 /*
1232 * This path is hit if people are ignoring
1233 * limits->discard_granularity. It ignores any
1234 * part of the discard that is in a subsequent
1235 * block.
1236 */
1237 sector_t offset = bio->bi_sector - (block << pool->block_shift);
1238 unsigned remaining = (pool->sectors_per_block - offset) << 9;
1239 bio->bi_size = min(bio->bi_size, remaining);
1240
1241 cell_release_singleton(cell, bio);
1242 cell_release_singleton(cell2, bio);
1243 remap_and_issue(tc, bio, lookup_result.block);
1244 }
1245 break;
1246
1247 case -ENODATA:
1248 /*
1249 * It isn't provisioned, just forget it.
1250 */
1251 cell_release_singleton(cell, bio);
1252 bio_endio(bio, 0);
1253 break;
1254
1255 default:
1256 DMERR("discard: find block unexpectedly returned %d", r);
1257 cell_release_singleton(cell, bio);
1258 bio_io_error(bio);
1259 break;
1260 }
1261}
1262
991d9fa0
JT
1263static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1264 struct cell_key *key,
1265 struct dm_thin_lookup_result *lookup_result,
1266 struct cell *cell)
1267{
1268 int r;
1269 dm_block_t data_block;
1270
1271 r = alloc_data_block(tc, &data_block);
1272 switch (r) {
1273 case 0:
2dd9c257
JT
1274 schedule_internal_copy(tc, block, lookup_result->block,
1275 data_block, cell, bio);
991d9fa0
JT
1276 break;
1277
1278 case -ENOSPC:
1279 no_space(cell);
1280 break;
1281
1282 default:
1283 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1284 cell_error(cell);
1285 break;
1286 }
1287}
1288
1289static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1290 dm_block_t block,
1291 struct dm_thin_lookup_result *lookup_result)
1292{
1293 struct cell *cell;
1294 struct pool *pool = tc->pool;
1295 struct cell_key key;
1296
1297 /*
1298 * If cell is already occupied, then sharing is already in the process
1299 * of being broken so we have nothing further to do here.
1300 */
1301 build_data_key(tc->td, lookup_result->block, &key);
1302 if (bio_detain(pool->prison, &key, bio, &cell))
1303 return;
1304
1305 if (bio_data_dir(bio) == WRITE)
1306 break_sharing(tc, bio, block, &key, lookup_result, cell);
1307 else {
eb2aa48d 1308 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
991d9fa0 1309
eb2aa48d 1310 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
991d9fa0
JT
1311
1312 cell_release_singleton(cell, bio);
1313 remap_and_issue(tc, bio, lookup_result->block);
1314 }
1315}
1316
1317static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1318 struct cell *cell)
1319{
1320 int r;
1321 dm_block_t data_block;
1322
1323 /*
1324 * Remap empty bios (flushes) immediately, without provisioning.
1325 */
1326 if (!bio->bi_size) {
1327 cell_release_singleton(cell, bio);
1328 remap_and_issue(tc, bio, 0);
1329 return;
1330 }
1331
1332 /*
1333 * Fill read bios with zeroes and complete them immediately.
1334 */
1335 if (bio_data_dir(bio) == READ) {
1336 zero_fill_bio(bio);
1337 cell_release_singleton(cell, bio);
1338 bio_endio(bio, 0);
1339 return;
1340 }
1341
1342 r = alloc_data_block(tc, &data_block);
1343 switch (r) {
1344 case 0:
2dd9c257
JT
1345 if (tc->origin_dev)
1346 schedule_external_copy(tc, block, data_block, cell, bio);
1347 else
1348 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1349 break;
1350
1351 case -ENOSPC:
1352 no_space(cell);
1353 break;
1354
1355 default:
1356 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1357 cell_error(cell);
1358 break;
1359 }
1360}
1361
1362static void process_bio(struct thin_c *tc, struct bio *bio)
1363{
1364 int r;
1365 dm_block_t block = get_bio_block(tc, bio);
1366 struct cell *cell;
1367 struct cell_key key;
1368 struct dm_thin_lookup_result lookup_result;
1369
1370 /*
1371 * If cell is already occupied, then the block is already
1372 * being provisioned so we have nothing further to do here.
1373 */
1374 build_virtual_key(tc->td, block, &key);
1375 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1376 return;
1377
1378 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1379 switch (r) {
1380 case 0:
1381 /*
1382 * We can release this cell now. This thread is the only
1383 * one that puts bios into a cell, and we know there were
1384 * no preceding bios.
1385 */
1386 /*
1387 * TODO: this will probably have to change when discard goes
1388 * back in.
1389 */
1390 cell_release_singleton(cell, bio);
1391
1392 if (lookup_result.shared)
1393 process_shared_bio(tc, bio, block, &lookup_result);
1394 else
1395 remap_and_issue(tc, bio, lookup_result.block);
1396 break;
1397
1398 case -ENODATA:
2dd9c257
JT
1399 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1400 cell_release_singleton(cell, bio);
1401 remap_to_origin_and_issue(tc, bio);
1402 } else
1403 provision_block(tc, bio, block, cell);
991d9fa0
JT
1404 break;
1405
1406 default:
1407 DMERR("dm_thin_find_block() failed, error = %d", r);
104655fd 1408 cell_release_singleton(cell, bio);
991d9fa0
JT
1409 bio_io_error(bio);
1410 break;
1411 }
1412}
1413
905e51b3
JT
1414static int need_commit_due_to_time(struct pool *pool)
1415{
1416 return jiffies < pool->last_commit_jiffies ||
1417 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1418}
1419
991d9fa0
JT
1420static void process_deferred_bios(struct pool *pool)
1421{
1422 unsigned long flags;
1423 struct bio *bio;
1424 struct bio_list bios;
1425 int r;
1426
1427 bio_list_init(&bios);
1428
1429 spin_lock_irqsave(&pool->lock, flags);
1430 bio_list_merge(&bios, &pool->deferred_bios);
1431 bio_list_init(&pool->deferred_bios);
1432 spin_unlock_irqrestore(&pool->lock, flags);
1433
1434 while ((bio = bio_list_pop(&bios))) {
eb2aa48d
JT
1435 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1436 struct thin_c *tc = h->tc;
1437
991d9fa0
JT
1438 /*
1439 * If we've got no free new_mapping structs, and processing
1440 * this bio might require one, we pause until there are some
1441 * prepared mappings to process.
1442 */
1443 if (ensure_next_mapping(pool)) {
1444 spin_lock_irqsave(&pool->lock, flags);
1445 bio_list_merge(&pool->deferred_bios, &bios);
1446 spin_unlock_irqrestore(&pool->lock, flags);
1447
1448 break;
1449 }
104655fd
JT
1450
1451 if (bio->bi_rw & REQ_DISCARD)
1452 process_discard(tc, bio);
1453 else
1454 process_bio(tc, bio);
991d9fa0
JT
1455 }
1456
1457 /*
1458 * If there are any deferred flush bios, we must commit
1459 * the metadata before issuing them.
1460 */
1461 bio_list_init(&bios);
1462 spin_lock_irqsave(&pool->lock, flags);
1463 bio_list_merge(&bios, &pool->deferred_flush_bios);
1464 bio_list_init(&pool->deferred_flush_bios);
1465 spin_unlock_irqrestore(&pool->lock, flags);
1466
905e51b3 1467 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
991d9fa0
JT
1468 return;
1469
1470 r = dm_pool_commit_metadata(pool->pmd);
1471 if (r) {
1472 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1473 __func__, r);
1474 while ((bio = bio_list_pop(&bios)))
1475 bio_io_error(bio);
1476 return;
1477 }
905e51b3 1478 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1479
1480 while ((bio = bio_list_pop(&bios)))
1481 generic_make_request(bio);
1482}
1483
1484static void do_worker(struct work_struct *ws)
1485{
1486 struct pool *pool = container_of(ws, struct pool, worker);
1487
104655fd
JT
1488 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1489 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
991d9fa0
JT
1490 process_deferred_bios(pool);
1491}
1492
905e51b3
JT
1493/*
1494 * We want to commit periodically so that not too much
1495 * unwritten data builds up.
1496 */
1497static void do_waker(struct work_struct *ws)
1498{
1499 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1500 wake_worker(pool);
1501 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1502}
1503
991d9fa0
JT
1504/*----------------------------------------------------------------*/
1505
1506/*
1507 * Mapping functions.
1508 */
1509
1510/*
1511 * Called only while mapping a thin bio to hand it over to the workqueue.
1512 */
1513static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1514{
1515 unsigned long flags;
1516 struct pool *pool = tc->pool;
1517
1518 spin_lock_irqsave(&pool->lock, flags);
1519 bio_list_add(&pool->deferred_bios, bio);
1520 spin_unlock_irqrestore(&pool->lock, flags);
1521
1522 wake_worker(pool);
1523}
1524
eb2aa48d
JT
1525static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1526{
1527 struct pool *pool = tc->pool;
1528 struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1529
1530 h->tc = tc;
1531 h->shared_read_entry = NULL;
104655fd 1532 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
eb2aa48d
JT
1533 h->overwrite_mapping = NULL;
1534
1535 return h;
1536}
1537
991d9fa0
JT
1538/*
1539 * Non-blocking function called from the thin target's map function.
1540 */
1541static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1542 union map_info *map_context)
1543{
1544 int r;
1545 struct thin_c *tc = ti->private;
1546 dm_block_t block = get_bio_block(tc, bio);
1547 struct dm_thin_device *td = tc->td;
1548 struct dm_thin_lookup_result result;
1549
eb2aa48d 1550 map_context->ptr = thin_hook_bio(tc, bio);
104655fd 1551 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
991d9fa0
JT
1552 thin_defer_bio(tc, bio);
1553 return DM_MAPIO_SUBMITTED;
1554 }
1555
1556 r = dm_thin_find_block(td, block, 0, &result);
1557
1558 /*
1559 * Note that we defer readahead too.
1560 */
1561 switch (r) {
1562 case 0:
1563 if (unlikely(result.shared)) {
1564 /*
1565 * We have a race condition here between the
1566 * result.shared value returned by the lookup and
1567 * snapshot creation, which may cause new
1568 * sharing.
1569 *
1570 * To avoid this always quiesce the origin before
1571 * taking the snap. You want to do this anyway to
1572 * ensure a consistent application view
1573 * (i.e. lockfs).
1574 *
1575 * More distant ancestors are irrelevant. The
1576 * shared flag will be set in their case.
1577 */
1578 thin_defer_bio(tc, bio);
1579 r = DM_MAPIO_SUBMITTED;
1580 } else {
1581 remap(tc, bio, result.block);
1582 r = DM_MAPIO_REMAPPED;
1583 }
1584 break;
1585
1586 case -ENODATA:
1587 /*
1588 * In future, the failed dm_thin_find_block above could
1589 * provide the hint to load the metadata into cache.
1590 */
1591 case -EWOULDBLOCK:
1592 thin_defer_bio(tc, bio);
1593 r = DM_MAPIO_SUBMITTED;
1594 break;
1595 }
1596
1597 return r;
1598}
1599
1600static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1601{
1602 int r;
1603 unsigned long flags;
1604 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1605
1606 spin_lock_irqsave(&pt->pool->lock, flags);
1607 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1608 spin_unlock_irqrestore(&pt->pool->lock, flags);
1609
1610 if (!r) {
1611 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1612 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1613 }
1614
1615 return r;
1616}
1617
1618static void __requeue_bios(struct pool *pool)
1619{
1620 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1621 bio_list_init(&pool->retry_on_resume_list);
1622}
1623
1624/*----------------------------------------------------------------
1625 * Binding of control targets to a pool object
1626 *--------------------------------------------------------------*/
1627static int bind_control_target(struct pool *pool, struct dm_target *ti)
1628{
1629 struct pool_c *pt = ti->private;
1630
1631 pool->ti = ti;
1632 pool->low_water_blocks = pt->low_water_blocks;
67e2e2b2 1633 pool->pf = pt->pf;
991d9fa0
JT
1634
1635 return 0;
1636}
1637
1638static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1639{
1640 if (pool->ti == ti)
1641 pool->ti = NULL;
1642}
1643
1644/*----------------------------------------------------------------
1645 * Pool creation
1646 *--------------------------------------------------------------*/
67e2e2b2
JT
1647/* Initialize pool features. */
1648static void pool_features_init(struct pool_features *pf)
1649{
1650 pf->zero_new_blocks = 1;
1651 pf->discard_enabled = 1;
1652 pf->discard_passdown = 1;
1653}
1654
991d9fa0
JT
1655static void __pool_destroy(struct pool *pool)
1656{
1657 __pool_table_remove(pool);
1658
1659 if (dm_pool_metadata_close(pool->pmd) < 0)
1660 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1661
1662 prison_destroy(pool->prison);
1663 dm_kcopyd_client_destroy(pool->copier);
1664
1665 if (pool->wq)
1666 destroy_workqueue(pool->wq);
1667
1668 if (pool->next_mapping)
1669 mempool_free(pool->next_mapping, pool->mapping_pool);
1670 mempool_destroy(pool->mapping_pool);
1671 mempool_destroy(pool->endio_hook_pool);
1672 kfree(pool);
1673}
1674
1675static struct pool *pool_create(struct mapped_device *pool_md,
1676 struct block_device *metadata_dev,
1677 unsigned long block_size, char **error)
1678{
1679 int r;
1680 void *err_p;
1681 struct pool *pool;
1682 struct dm_pool_metadata *pmd;
1683
1684 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1685 if (IS_ERR(pmd)) {
1686 *error = "Error creating metadata object";
1687 return (struct pool *)pmd;
1688 }
1689
1690 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1691 if (!pool) {
1692 *error = "Error allocating memory for pool";
1693 err_p = ERR_PTR(-ENOMEM);
1694 goto bad_pool;
1695 }
1696
1697 pool->pmd = pmd;
1698 pool->sectors_per_block = block_size;
1699 pool->block_shift = ffs(block_size) - 1;
1700 pool->offset_mask = block_size - 1;
1701 pool->low_water_blocks = 0;
67e2e2b2 1702 pool_features_init(&pool->pf);
991d9fa0
JT
1703 pool->prison = prison_create(PRISON_CELLS);
1704 if (!pool->prison) {
1705 *error = "Error creating pool's bio prison";
1706 err_p = ERR_PTR(-ENOMEM);
1707 goto bad_prison;
1708 }
1709
1710 pool->copier = dm_kcopyd_client_create();
1711 if (IS_ERR(pool->copier)) {
1712 r = PTR_ERR(pool->copier);
1713 *error = "Error creating pool's kcopyd client";
1714 err_p = ERR_PTR(r);
1715 goto bad_kcopyd_client;
1716 }
1717
1718 /*
1719 * Create singlethreaded workqueue that will service all devices
1720 * that use this metadata.
1721 */
1722 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1723 if (!pool->wq) {
1724 *error = "Error creating pool's workqueue";
1725 err_p = ERR_PTR(-ENOMEM);
1726 goto bad_wq;
1727 }
1728
1729 INIT_WORK(&pool->worker, do_worker);
905e51b3 1730 INIT_DELAYED_WORK(&pool->waker, do_waker);
991d9fa0
JT
1731 spin_lock_init(&pool->lock);
1732 bio_list_init(&pool->deferred_bios);
1733 bio_list_init(&pool->deferred_flush_bios);
1734 INIT_LIST_HEAD(&pool->prepared_mappings);
104655fd 1735 INIT_LIST_HEAD(&pool->prepared_discards);
991d9fa0
JT
1736 pool->low_water_triggered = 0;
1737 pool->no_free_space = 0;
1738 bio_list_init(&pool->retry_on_resume_list);
eb2aa48d 1739 ds_init(&pool->shared_read_ds);
104655fd 1740 ds_init(&pool->all_io_ds);
991d9fa0
JT
1741
1742 pool->next_mapping = NULL;
1743 pool->mapping_pool =
1744 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1745 if (!pool->mapping_pool) {
1746 *error = "Error creating pool's mapping mempool";
1747 err_p = ERR_PTR(-ENOMEM);
1748 goto bad_mapping_pool;
1749 }
1750
1751 pool->endio_hook_pool =
1752 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1753 if (!pool->endio_hook_pool) {
1754 *error = "Error creating pool's endio_hook mempool";
1755 err_p = ERR_PTR(-ENOMEM);
1756 goto bad_endio_hook_pool;
1757 }
1758 pool->ref_count = 1;
905e51b3 1759 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1760 pool->pool_md = pool_md;
1761 pool->md_dev = metadata_dev;
1762 __pool_table_insert(pool);
1763
1764 return pool;
1765
1766bad_endio_hook_pool:
1767 mempool_destroy(pool->mapping_pool);
1768bad_mapping_pool:
1769 destroy_workqueue(pool->wq);
1770bad_wq:
1771 dm_kcopyd_client_destroy(pool->copier);
1772bad_kcopyd_client:
1773 prison_destroy(pool->prison);
1774bad_prison:
1775 kfree(pool);
1776bad_pool:
1777 if (dm_pool_metadata_close(pmd))
1778 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1779
1780 return err_p;
1781}
1782
1783static void __pool_inc(struct pool *pool)
1784{
1785 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1786 pool->ref_count++;
1787}
1788
1789static void __pool_dec(struct pool *pool)
1790{
1791 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1792 BUG_ON(!pool->ref_count);
1793 if (!--pool->ref_count)
1794 __pool_destroy(pool);
1795}
1796
1797static struct pool *__pool_find(struct mapped_device *pool_md,
1798 struct block_device *metadata_dev,
67e2e2b2
JT
1799 unsigned long block_size, char **error,
1800 int *created)
991d9fa0
JT
1801{
1802 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1803
1804 if (pool) {
1805 if (pool->pool_md != pool_md)
1806 return ERR_PTR(-EBUSY);
1807 __pool_inc(pool);
1808
1809 } else {
1810 pool = __pool_table_lookup(pool_md);
1811 if (pool) {
1812 if (pool->md_dev != metadata_dev)
1813 return ERR_PTR(-EINVAL);
1814 __pool_inc(pool);
1815
67e2e2b2 1816 } else {
991d9fa0 1817 pool = pool_create(pool_md, metadata_dev, block_size, error);
67e2e2b2
JT
1818 *created = 1;
1819 }
991d9fa0
JT
1820 }
1821
1822 return pool;
1823}
1824
1825/*----------------------------------------------------------------
1826 * Pool target methods
1827 *--------------------------------------------------------------*/
1828static void pool_dtr(struct dm_target *ti)
1829{
1830 struct pool_c *pt = ti->private;
1831
1832 mutex_lock(&dm_thin_pool_table.mutex);
1833
1834 unbind_control_target(pt->pool, ti);
1835 __pool_dec(pt->pool);
1836 dm_put_device(ti, pt->metadata_dev);
1837 dm_put_device(ti, pt->data_dev);
1838 kfree(pt);
1839
1840 mutex_unlock(&dm_thin_pool_table.mutex);
1841}
1842
991d9fa0
JT
1843static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1844 struct dm_target *ti)
1845{
1846 int r;
1847 unsigned argc;
1848 const char *arg_name;
1849
1850 static struct dm_arg _args[] = {
67e2e2b2 1851 {0, 3, "Invalid number of pool feature arguments"},
991d9fa0
JT
1852 };
1853
1854 /*
1855 * No feature arguments supplied.
1856 */
1857 if (!as->argc)
1858 return 0;
1859
1860 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1861 if (r)
1862 return -EINVAL;
1863
1864 while (argc && !r) {
1865 arg_name = dm_shift_arg(as);
1866 argc--;
1867
1868 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1869 pf->zero_new_blocks = 0;
1870 continue;
67e2e2b2
JT
1871 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1872 pf->discard_enabled = 0;
1873 continue;
1874 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1875 pf->discard_passdown = 0;
1876 continue;
991d9fa0
JT
1877 }
1878
1879 ti->error = "Unrecognised pool feature requested";
1880 r = -EINVAL;
1881 }
1882
1883 return r;
1884}
1885
1886/*
1887 * thin-pool <metadata dev> <data dev>
1888 * <data block size (sectors)>
1889 * <low water mark (blocks)>
1890 * [<#feature args> [<arg>]*]
1891 *
1892 * Optional feature arguments are:
1893 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
67e2e2b2
JT
1894 * ignore_discard: disable discard
1895 * no_discard_passdown: don't pass discards down to the data device
991d9fa0
JT
1896 */
1897static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1898{
67e2e2b2 1899 int r, pool_created = 0;
991d9fa0
JT
1900 struct pool_c *pt;
1901 struct pool *pool;
1902 struct pool_features pf;
1903 struct dm_arg_set as;
1904 struct dm_dev *data_dev;
1905 unsigned long block_size;
1906 dm_block_t low_water_blocks;
1907 struct dm_dev *metadata_dev;
1908 sector_t metadata_dev_size;
c4a69ecd 1909 char b[BDEVNAME_SIZE];
991d9fa0
JT
1910
1911 /*
1912 * FIXME Remove validation from scope of lock.
1913 */
1914 mutex_lock(&dm_thin_pool_table.mutex);
1915
1916 if (argc < 4) {
1917 ti->error = "Invalid argument count";
1918 r = -EINVAL;
1919 goto out_unlock;
1920 }
1921 as.argc = argc;
1922 as.argv = argv;
1923
1924 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1925 if (r) {
1926 ti->error = "Error opening metadata block device";
1927 goto out_unlock;
1928 }
1929
1930 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
c4a69ecd
MS
1931 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1932 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1933 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
991d9fa0
JT
1934
1935 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1936 if (r) {
1937 ti->error = "Error getting data device";
1938 goto out_metadata;
1939 }
1940
1941 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1942 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1943 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1944 !is_power_of_2(block_size)) {
1945 ti->error = "Invalid block size";
1946 r = -EINVAL;
1947 goto out;
1948 }
1949
1950 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1951 ti->error = "Invalid low water mark";
1952 r = -EINVAL;
1953 goto out;
1954 }
1955
1956 /*
1957 * Set default pool features.
1958 */
67e2e2b2 1959 pool_features_init(&pf);
991d9fa0
JT
1960
1961 dm_consume_args(&as, 4);
1962 r = parse_pool_features(&as, &pf, ti);
1963 if (r)
1964 goto out;
1965
1966 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1967 if (!pt) {
1968 r = -ENOMEM;
1969 goto out;
1970 }
1971
1972 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
67e2e2b2 1973 block_size, &ti->error, &pool_created);
991d9fa0
JT
1974 if (IS_ERR(pool)) {
1975 r = PTR_ERR(pool);
1976 goto out_free_pt;
1977 }
1978
67e2e2b2
JT
1979 /*
1980 * 'pool_created' reflects whether this is the first table load.
1981 * Top level discard support is not allowed to be changed after
1982 * initial load. This would require a pool reload to trigger thin
1983 * device changes.
1984 */
1985 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1986 ti->error = "Discard support cannot be disabled once enabled";
1987 r = -EINVAL;
1988 goto out_flags_changed;
1989 }
1990
1991 /*
1992 * If discard_passdown was enabled verify that the data device
1993 * supports discards. Disable discard_passdown if not; otherwise
1994 * -EOPNOTSUPP will be returned.
1995 */
1996 if (pf.discard_passdown) {
1997 struct request_queue *q = bdev_get_queue(data_dev->bdev);
1998 if (!q || !blk_queue_discard(q)) {
1999 DMWARN("Discard unsupported by data device: Disabling discard passdown.");
2000 pf.discard_passdown = 0;
2001 }
2002 }
2003
991d9fa0
JT
2004 pt->pool = pool;
2005 pt->ti = ti;
2006 pt->metadata_dev = metadata_dev;
2007 pt->data_dev = data_dev;
2008 pt->low_water_blocks = low_water_blocks;
67e2e2b2 2009 pt->pf = pf;
991d9fa0 2010 ti->num_flush_requests = 1;
67e2e2b2
JT
2011 /*
2012 * Only need to enable discards if the pool should pass
2013 * them down to the data device. The thin device's discard
2014 * processing will cause mappings to be removed from the btree.
2015 */
2016 if (pf.discard_enabled && pf.discard_passdown) {
2017 ti->num_discard_requests = 1;
2018 /*
2019 * Setting 'discards_supported' circumvents the normal
2020 * stacking of discard limits (this keeps the pool and
2021 * thin devices' discard limits consistent).
2022 */
2023 ti->discards_supported = 1;
2024 }
991d9fa0
JT
2025 ti->private = pt;
2026
2027 pt->callbacks.congested_fn = pool_is_congested;
2028 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2029
2030 mutex_unlock(&dm_thin_pool_table.mutex);
2031
2032 return 0;
2033
67e2e2b2
JT
2034out_flags_changed:
2035 __pool_dec(pool);
991d9fa0
JT
2036out_free_pt:
2037 kfree(pt);
2038out:
2039 dm_put_device(ti, data_dev);
2040out_metadata:
2041 dm_put_device(ti, metadata_dev);
2042out_unlock:
2043 mutex_unlock(&dm_thin_pool_table.mutex);
2044
2045 return r;
2046}
2047
2048static int pool_map(struct dm_target *ti, struct bio *bio,
2049 union map_info *map_context)
2050{
2051 int r;
2052 struct pool_c *pt = ti->private;
2053 struct pool *pool = pt->pool;
2054 unsigned long flags;
2055
2056 /*
2057 * As this is a singleton target, ti->begin is always zero.
2058 */
2059 spin_lock_irqsave(&pool->lock, flags);
2060 bio->bi_bdev = pt->data_dev->bdev;
2061 r = DM_MAPIO_REMAPPED;
2062 spin_unlock_irqrestore(&pool->lock, flags);
2063
2064 return r;
2065}
2066
2067/*
2068 * Retrieves the number of blocks of the data device from
2069 * the superblock and compares it to the actual device size,
2070 * thus resizing the data device in case it has grown.
2071 *
2072 * This both copes with opening preallocated data devices in the ctr
2073 * being followed by a resume
2074 * -and-
2075 * calling the resume method individually after userspace has
2076 * grown the data device in reaction to a table event.
2077 */
2078static int pool_preresume(struct dm_target *ti)
2079{
2080 int r;
2081 struct pool_c *pt = ti->private;
2082 struct pool *pool = pt->pool;
2083 dm_block_t data_size, sb_data_size;
2084
2085 /*
2086 * Take control of the pool object.
2087 */
2088 r = bind_control_target(pool, ti);
2089 if (r)
2090 return r;
2091
2092 data_size = ti->len >> pool->block_shift;
2093 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2094 if (r) {
2095 DMERR("failed to retrieve data device size");
2096 return r;
2097 }
2098
2099 if (data_size < sb_data_size) {
2100 DMERR("pool target too small, is %llu blocks (expected %llu)",
2101 data_size, sb_data_size);
2102 return -EINVAL;
2103
2104 } else if (data_size > sb_data_size) {
2105 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2106 if (r) {
2107 DMERR("failed to resize data device");
2108 return r;
2109 }
2110
2111 r = dm_pool_commit_metadata(pool->pmd);
2112 if (r) {
2113 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2114 __func__, r);
2115 return r;
2116 }
2117 }
2118
2119 return 0;
2120}
2121
2122static void pool_resume(struct dm_target *ti)
2123{
2124 struct pool_c *pt = ti->private;
2125 struct pool *pool = pt->pool;
2126 unsigned long flags;
2127
2128 spin_lock_irqsave(&pool->lock, flags);
2129 pool->low_water_triggered = 0;
2130 pool->no_free_space = 0;
2131 __requeue_bios(pool);
2132 spin_unlock_irqrestore(&pool->lock, flags);
2133
905e51b3 2134 do_waker(&pool->waker.work);
991d9fa0
JT
2135}
2136
2137static void pool_postsuspend(struct dm_target *ti)
2138{
2139 int r;
2140 struct pool_c *pt = ti->private;
2141 struct pool *pool = pt->pool;
2142
905e51b3 2143 cancel_delayed_work(&pool->waker);
991d9fa0
JT
2144 flush_workqueue(pool->wq);
2145
2146 r = dm_pool_commit_metadata(pool->pmd);
2147 if (r < 0) {
2148 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2149 __func__, r);
2150 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2151 }
2152}
2153
2154static int check_arg_count(unsigned argc, unsigned args_required)
2155{
2156 if (argc != args_required) {
2157 DMWARN("Message received with %u arguments instead of %u.",
2158 argc, args_required);
2159 return -EINVAL;
2160 }
2161
2162 return 0;
2163}
2164
2165static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2166{
2167 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2168 *dev_id <= MAX_DEV_ID)
2169 return 0;
2170
2171 if (warning)
2172 DMWARN("Message received with invalid device id: %s", arg);
2173
2174 return -EINVAL;
2175}
2176
2177static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2178{
2179 dm_thin_id dev_id;
2180 int r;
2181
2182 r = check_arg_count(argc, 2);
2183 if (r)
2184 return r;
2185
2186 r = read_dev_id(argv[1], &dev_id, 1);
2187 if (r)
2188 return r;
2189
2190 r = dm_pool_create_thin(pool->pmd, dev_id);
2191 if (r) {
2192 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2193 argv[1]);
2194 return r;
2195 }
2196
2197 return 0;
2198}
2199
2200static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2201{
2202 dm_thin_id dev_id;
2203 dm_thin_id origin_dev_id;
2204 int r;
2205
2206 r = check_arg_count(argc, 3);
2207 if (r)
2208 return r;
2209
2210 r = read_dev_id(argv[1], &dev_id, 1);
2211 if (r)
2212 return r;
2213
2214 r = read_dev_id(argv[2], &origin_dev_id, 1);
2215 if (r)
2216 return r;
2217
2218 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2219 if (r) {
2220 DMWARN("Creation of new snapshot %s of device %s failed.",
2221 argv[1], argv[2]);
2222 return r;
2223 }
2224
2225 return 0;
2226}
2227
2228static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2229{
2230 dm_thin_id dev_id;
2231 int r;
2232
2233 r = check_arg_count(argc, 2);
2234 if (r)
2235 return r;
2236
2237 r = read_dev_id(argv[1], &dev_id, 1);
2238 if (r)
2239 return r;
2240
2241 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2242 if (r)
2243 DMWARN("Deletion of thin device %s failed.", argv[1]);
2244
2245 return r;
2246}
2247
2248static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2249{
2250 dm_thin_id old_id, new_id;
2251 int r;
2252
2253 r = check_arg_count(argc, 3);
2254 if (r)
2255 return r;
2256
2257 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2258 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2259 return -EINVAL;
2260 }
2261
2262 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2263 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2264 return -EINVAL;
2265 }
2266
2267 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2268 if (r) {
2269 DMWARN("Failed to change transaction id from %s to %s.",
2270 argv[1], argv[2]);
2271 return r;
2272 }
2273
2274 return 0;
2275}
2276
2277/*
2278 * Messages supported:
2279 * create_thin <dev_id>
2280 * create_snap <dev_id> <origin_id>
2281 * delete <dev_id>
2282 * trim <dev_id> <new_size_in_sectors>
2283 * set_transaction_id <current_trans_id> <new_trans_id>
2284 */
2285static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2286{
2287 int r = -EINVAL;
2288 struct pool_c *pt = ti->private;
2289 struct pool *pool = pt->pool;
2290
2291 if (!strcasecmp(argv[0], "create_thin"))
2292 r = process_create_thin_mesg(argc, argv, pool);
2293
2294 else if (!strcasecmp(argv[0], "create_snap"))
2295 r = process_create_snap_mesg(argc, argv, pool);
2296
2297 else if (!strcasecmp(argv[0], "delete"))
2298 r = process_delete_mesg(argc, argv, pool);
2299
2300 else if (!strcasecmp(argv[0], "set_transaction_id"))
2301 r = process_set_transaction_id_mesg(argc, argv, pool);
2302
2303 else
2304 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2305
2306 if (!r) {
2307 r = dm_pool_commit_metadata(pool->pmd);
2308 if (r)
2309 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2310 argv[0], r);
2311 }
2312
2313 return r;
2314}
2315
2316/*
2317 * Status line is:
2318 * <transaction id> <used metadata sectors>/<total metadata sectors>
2319 * <used data sectors>/<total data sectors> <held metadata root>
2320 */
2321static int pool_status(struct dm_target *ti, status_type_t type,
2322 char *result, unsigned maxlen)
2323{
67e2e2b2 2324 int r, count;
991d9fa0
JT
2325 unsigned sz = 0;
2326 uint64_t transaction_id;
2327 dm_block_t nr_free_blocks_data;
2328 dm_block_t nr_free_blocks_metadata;
2329 dm_block_t nr_blocks_data;
2330 dm_block_t nr_blocks_metadata;
2331 dm_block_t held_root;
2332 char buf[BDEVNAME_SIZE];
2333 char buf2[BDEVNAME_SIZE];
2334 struct pool_c *pt = ti->private;
2335 struct pool *pool = pt->pool;
2336
2337 switch (type) {
2338 case STATUSTYPE_INFO:
2339 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2340 &transaction_id);
2341 if (r)
2342 return r;
2343
2344 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2345 &nr_free_blocks_metadata);
2346 if (r)
2347 return r;
2348
2349 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2350 if (r)
2351 return r;
2352
2353 r = dm_pool_get_free_block_count(pool->pmd,
2354 &nr_free_blocks_data);
2355 if (r)
2356 return r;
2357
2358 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2359 if (r)
2360 return r;
2361
2362 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2363 if (r)
2364 return r;
2365
2366 DMEMIT("%llu %llu/%llu %llu/%llu ",
2367 (unsigned long long)transaction_id,
2368 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2369 (unsigned long long)nr_blocks_metadata,
2370 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2371 (unsigned long long)nr_blocks_data);
2372
2373 if (held_root)
2374 DMEMIT("%llu", held_root);
2375 else
2376 DMEMIT("-");
2377
2378 break;
2379
2380 case STATUSTYPE_TABLE:
2381 DMEMIT("%s %s %lu %llu ",
2382 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2383 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2384 (unsigned long)pool->sectors_per_block,
2385 (unsigned long long)pt->low_water_blocks);
2386
67e2e2b2
JT
2387 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2388 !pool->pf.discard_passdown;
2389 DMEMIT("%u ", count);
991d9fa0 2390
67e2e2b2 2391 if (!pool->pf.zero_new_blocks)
991d9fa0 2392 DMEMIT("skip_block_zeroing ");
67e2e2b2
JT
2393
2394 if (!pool->pf.discard_enabled)
2395 DMEMIT("ignore_discard ");
2396
2397 if (!pool->pf.discard_passdown)
2398 DMEMIT("no_discard_passdown ");
2399
991d9fa0
JT
2400 break;
2401 }
2402
2403 return 0;
2404}
2405
2406static int pool_iterate_devices(struct dm_target *ti,
2407 iterate_devices_callout_fn fn, void *data)
2408{
2409 struct pool_c *pt = ti->private;
2410
2411 return fn(ti, pt->data_dev, 0, ti->len, data);
2412}
2413
2414static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2415 struct bio_vec *biovec, int max_size)
2416{
2417 struct pool_c *pt = ti->private;
2418 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2419
2420 if (!q->merge_bvec_fn)
2421 return max_size;
2422
2423 bvm->bi_bdev = pt->data_dev->bdev;
2424
2425 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2426}
2427
104655fd
JT
2428static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2429{
67e2e2b2
JT
2430 /*
2431 * FIXME: these limits may be incompatible with the pool's data device
2432 */
104655fd
JT
2433 limits->max_discard_sectors = pool->sectors_per_block;
2434
2435 /*
2436 * This is just a hint, and not enforced. We have to cope with
2437 * bios that overlap 2 blocks.
2438 */
2439 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
67e2e2b2 2440 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
104655fd
JT
2441}
2442
991d9fa0
JT
2443static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2444{
2445 struct pool_c *pt = ti->private;
2446 struct pool *pool = pt->pool;
2447
2448 blk_limits_io_min(limits, 0);
2449 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
67e2e2b2
JT
2450 if (pool->pf.discard_enabled)
2451 set_discard_limits(pool, limits);
991d9fa0
JT
2452}
2453
2454static struct target_type pool_target = {
2455 .name = "thin-pool",
2456 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2457 DM_TARGET_IMMUTABLE,
67e2e2b2 2458 .version = {1, 1, 0},
991d9fa0
JT
2459 .module = THIS_MODULE,
2460 .ctr = pool_ctr,
2461 .dtr = pool_dtr,
2462 .map = pool_map,
2463 .postsuspend = pool_postsuspend,
2464 .preresume = pool_preresume,
2465 .resume = pool_resume,
2466 .message = pool_message,
2467 .status = pool_status,
2468 .merge = pool_merge,
2469 .iterate_devices = pool_iterate_devices,
2470 .io_hints = pool_io_hints,
2471};
2472
2473/*----------------------------------------------------------------
2474 * Thin target methods
2475 *--------------------------------------------------------------*/
2476static void thin_dtr(struct dm_target *ti)
2477{
2478 struct thin_c *tc = ti->private;
2479
2480 mutex_lock(&dm_thin_pool_table.mutex);
2481
2482 __pool_dec(tc->pool);
2483 dm_pool_close_thin_device(tc->td);
2484 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
2485 if (tc->origin_dev)
2486 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
2487 kfree(tc);
2488
2489 mutex_unlock(&dm_thin_pool_table.mutex);
2490}
2491
2492/*
2493 * Thin target parameters:
2494 *
2dd9c257 2495 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
2496 *
2497 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2498 * dev_id: the internal device identifier
2dd9c257 2499 * origin_dev: a device external to the pool that should act as the origin
67e2e2b2
JT
2500 *
2501 * If the pool device has discards disabled, they get disabled for the thin
2502 * device as well.
991d9fa0
JT
2503 */
2504static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2505{
2506 int r;
2507 struct thin_c *tc;
2dd9c257 2508 struct dm_dev *pool_dev, *origin_dev;
991d9fa0
JT
2509 struct mapped_device *pool_md;
2510
2511 mutex_lock(&dm_thin_pool_table.mutex);
2512
2dd9c257 2513 if (argc != 2 && argc != 3) {
991d9fa0
JT
2514 ti->error = "Invalid argument count";
2515 r = -EINVAL;
2516 goto out_unlock;
2517 }
2518
2519 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2520 if (!tc) {
2521 ti->error = "Out of memory";
2522 r = -ENOMEM;
2523 goto out_unlock;
2524 }
2525
2dd9c257
JT
2526 if (argc == 3) {
2527 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2528 if (r) {
2529 ti->error = "Error opening origin device";
2530 goto bad_origin_dev;
2531 }
2532 tc->origin_dev = origin_dev;
2533 }
2534
991d9fa0
JT
2535 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2536 if (r) {
2537 ti->error = "Error opening pool device";
2538 goto bad_pool_dev;
2539 }
2540 tc->pool_dev = pool_dev;
2541
2542 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2543 ti->error = "Invalid device id";
2544 r = -EINVAL;
2545 goto bad_common;
2546 }
2547
2548 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2549 if (!pool_md) {
2550 ti->error = "Couldn't get pool mapped device";
2551 r = -EINVAL;
2552 goto bad_common;
2553 }
2554
2555 tc->pool = __pool_table_lookup(pool_md);
2556 if (!tc->pool) {
2557 ti->error = "Couldn't find pool object";
2558 r = -EINVAL;
2559 goto bad_pool_lookup;
2560 }
2561 __pool_inc(tc->pool);
2562
2563 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2564 if (r) {
2565 ti->error = "Couldn't open thin internal device";
2566 goto bad_thin_open;
2567 }
2568
2569 ti->split_io = tc->pool->sectors_per_block;
2570 ti->num_flush_requests = 1;
67e2e2b2
JT
2571
2572 /* In case the pool supports discards, pass them on. */
2573 if (tc->pool->pf.discard_enabled) {
2574 ti->discards_supported = 1;
2575 ti->num_discard_requests = 1;
2576 }
991d9fa0
JT
2577
2578 dm_put(pool_md);
2579
2580 mutex_unlock(&dm_thin_pool_table.mutex);
2581
2582 return 0;
2583
2584bad_thin_open:
2585 __pool_dec(tc->pool);
2586bad_pool_lookup:
2587 dm_put(pool_md);
2588bad_common:
2589 dm_put_device(ti, tc->pool_dev);
2590bad_pool_dev:
2dd9c257
JT
2591 if (tc->origin_dev)
2592 dm_put_device(ti, tc->origin_dev);
2593bad_origin_dev:
991d9fa0
JT
2594 kfree(tc);
2595out_unlock:
2596 mutex_unlock(&dm_thin_pool_table.mutex);
2597
2598 return r;
2599}
2600
2601static int thin_map(struct dm_target *ti, struct bio *bio,
2602 union map_info *map_context)
2603{
6efd6e83 2604 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
991d9fa0
JT
2605
2606 return thin_bio_map(ti, bio, map_context);
2607}
2608
eb2aa48d
JT
2609static int thin_endio(struct dm_target *ti,
2610 struct bio *bio, int err,
2611 union map_info *map_context)
2612{
2613 unsigned long flags;
2614 struct endio_hook *h = map_context->ptr;
2615 struct list_head work;
2616 struct new_mapping *m, *tmp;
2617 struct pool *pool = h->tc->pool;
2618
2619 if (h->shared_read_entry) {
2620 INIT_LIST_HEAD(&work);
2621 ds_dec(h->shared_read_entry, &work);
2622
2623 spin_lock_irqsave(&pool->lock, flags);
2624 list_for_each_entry_safe(m, tmp, &work, list) {
2625 list_del(&m->list);
2626 m->quiesced = 1;
2627 __maybe_add_mapping(m);
2628 }
2629 spin_unlock_irqrestore(&pool->lock, flags);
2630 }
2631
104655fd
JT
2632 if (h->all_io_entry) {
2633 INIT_LIST_HEAD(&work);
2634 ds_dec(h->all_io_entry, &work);
c3a0ce2e 2635 spin_lock_irqsave(&pool->lock, flags);
104655fd
JT
2636 list_for_each_entry_safe(m, tmp, &work, list)
2637 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 2638 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
2639 }
2640
eb2aa48d
JT
2641 mempool_free(h, pool->endio_hook_pool);
2642
2643 return 0;
2644}
2645
991d9fa0
JT
2646static void thin_postsuspend(struct dm_target *ti)
2647{
2648 if (dm_noflush_suspending(ti))
2649 requeue_io((struct thin_c *)ti->private);
2650}
2651
2652/*
2653 * <nr mapped sectors> <highest mapped sector>
2654 */
2655static int thin_status(struct dm_target *ti, status_type_t type,
2656 char *result, unsigned maxlen)
2657{
2658 int r;
2659 ssize_t sz = 0;
2660 dm_block_t mapped, highest;
2661 char buf[BDEVNAME_SIZE];
2662 struct thin_c *tc = ti->private;
2663
2664 if (!tc->td)
2665 DMEMIT("-");
2666 else {
2667 switch (type) {
2668 case STATUSTYPE_INFO:
2669 r = dm_thin_get_mapped_count(tc->td, &mapped);
2670 if (r)
2671 return r;
2672
2673 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2674 if (r < 0)
2675 return r;
2676
2677 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2678 if (r)
2679 DMEMIT("%llu", ((highest + 1) *
2680 tc->pool->sectors_per_block) - 1);
2681 else
2682 DMEMIT("-");
2683 break;
2684
2685 case STATUSTYPE_TABLE:
2686 DMEMIT("%s %lu",
2687 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2688 (unsigned long) tc->dev_id);
2dd9c257
JT
2689 if (tc->origin_dev)
2690 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
2691 break;
2692 }
2693 }
2694
2695 return 0;
2696}
2697
2698static int thin_iterate_devices(struct dm_target *ti,
2699 iterate_devices_callout_fn fn, void *data)
2700{
2701 dm_block_t blocks;
2702 struct thin_c *tc = ti->private;
2703
2704 /*
2705 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2706 * we follow a more convoluted path through to the pool's target.
2707 */
2708 if (!tc->pool->ti)
2709 return 0; /* nothing is bound */
2710
2711 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2712 if (blocks)
2713 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2714
2715 return 0;
2716}
2717
2718static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2719{
2720 struct thin_c *tc = ti->private;
104655fd 2721 struct pool *pool = tc->pool;
991d9fa0
JT
2722
2723 blk_limits_io_min(limits, 0);
104655fd
JT
2724 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2725 set_discard_limits(pool, limits);
991d9fa0
JT
2726}
2727
2728static struct target_type thin_target = {
2729 .name = "thin",
2dd9c257 2730 .version = {1, 1, 0},
991d9fa0
JT
2731 .module = THIS_MODULE,
2732 .ctr = thin_ctr,
2733 .dtr = thin_dtr,
2734 .map = thin_map,
eb2aa48d 2735 .end_io = thin_endio,
991d9fa0
JT
2736 .postsuspend = thin_postsuspend,
2737 .status = thin_status,
2738 .iterate_devices = thin_iterate_devices,
2739 .io_hints = thin_io_hints,
2740};
2741
2742/*----------------------------------------------------------------*/
2743
2744static int __init dm_thin_init(void)
2745{
2746 int r;
2747
2748 pool_table_init();
2749
2750 r = dm_register_target(&thin_target);
2751 if (r)
2752 return r;
2753
2754 r = dm_register_target(&pool_target);
2755 if (r)
2756 dm_unregister_target(&thin_target);
2757
2758 return r;
2759}
2760
2761static void dm_thin_exit(void)
2762{
2763 dm_unregister_target(&thin_target);
2764 dm_unregister_target(&pool_target);
2765}
2766
2767module_init(dm_thin_init);
2768module_exit(dm_thin_exit);
2769
2770MODULE_DESCRIPTION(DM_NAME "device-mapper thin provisioning target");
2771MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2772MODULE_LICENSE("GPL");