]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/dm-verity-fec.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-verity-fec.c
CommitLineData
a739ff3f
ST
1/*
2 * Copyright (C) 2015 Google, Inc.
3 *
4 * Author: Sami Tolvanen <samitolvanen@google.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 */
11
12#include "dm-verity-fec.h"
13#include <linux/math64.h>
14
15#define DM_MSG_PREFIX "verity-fec"
16
17/*
18 * If error correction has been configured, returns true.
19 */
20bool verity_fec_is_enabled(struct dm_verity *v)
21{
22 return v->fec && v->fec->dev;
23}
24
25/*
26 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
27 * length fields.
28 */
29static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
30{
31 return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
32}
33
34/*
35 * Return an interleaved offset for a byte in RS block.
36 */
37static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
38{
39 u32 mod;
40
41 mod = do_div(offset, v->fec->rsn);
42 return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
43}
44
45/*
46 * Decode an RS block using Reed-Solomon.
47 */
48static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
49 u8 *data, u8 *fec, int neras)
50{
51 int i;
52 uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
53
54 for (i = 0; i < v->fec->roots; i++)
55 par[i] = fec[i];
56
57 return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
58 fio->erasures, 0, NULL);
59}
60
61/*
62 * Read error-correcting codes for the requested RS block. Returns a pointer
63 * to the data block. Caller is responsible for releasing buf.
64 */
65static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
66 unsigned *offset, struct dm_buffer **buf)
67{
68 u64 position, block;
69 u8 *res;
70
71 position = (index + rsb) * v->fec->roots;
72 block = position >> v->data_dev_block_bits;
73 *offset = (unsigned)(position - (block << v->data_dev_block_bits));
74
75 res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
76 if (unlikely(IS_ERR(res))) {
77 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
78 v->data_dev->name, (unsigned long long)rsb,
79 (unsigned long long)(v->fec->start + block),
80 PTR_ERR(res));
81 *buf = NULL;
82 }
83
84 return res;
85}
86
87/* Loop over each preallocated buffer slot. */
88#define fec_for_each_prealloc_buffer(__i) \
89 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
90
91/* Loop over each extra buffer slot. */
92#define fec_for_each_extra_buffer(io, __i) \
93 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
94
95/* Loop over each allocated buffer. */
96#define fec_for_each_buffer(io, __i) \
97 for (__i = 0; __i < (io)->nbufs; __i++)
98
99/* Loop over each RS block in each allocated buffer. */
100#define fec_for_each_buffer_rs_block(io, __i, __j) \
101 fec_for_each_buffer(io, __i) \
102 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
103
104/*
105 * Return a pointer to the current RS block when called inside
106 * fec_for_each_buffer_rs_block.
107 */
108static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
109 struct dm_verity_fec_io *fio,
110 unsigned i, unsigned j)
111{
112 return &fio->bufs[i][j * v->fec->rsn];
113}
114
115/*
116 * Return an index to the current RS block when called inside
117 * fec_for_each_buffer_rs_block.
118 */
119static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
120{
121 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
122}
123
124/*
125 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
126 * starting from block_offset.
127 */
128static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
129 u64 rsb, int byte_index, unsigned block_offset,
130 int neras)
131{
132 int r, corrected = 0, res;
133 struct dm_buffer *buf;
134 unsigned n, i, offset;
135 u8 *par, *block;
136
137 par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
138 if (IS_ERR(par))
139 return PTR_ERR(par);
140
141 /*
142 * Decode the RS blocks we have in bufs. Each RS block results in
143 * one corrected target byte and consumes fec->roots parity bytes.
144 */
145 fec_for_each_buffer_rs_block(fio, n, i) {
146 block = fec_buffer_rs_block(v, fio, n, i);
147 res = fec_decode_rs8(v, fio, block, &par[offset], neras);
148 if (res < 0) {
a739ff3f
ST
149 r = res;
150 goto error;
151 }
152
153 corrected += res;
154 fio->output[block_offset] = block[byte_index];
155
156 block_offset++;
157 if (block_offset >= 1 << v->data_dev_block_bits)
158 goto done;
159
160 /* read the next block when we run out of parity bytes */
161 offset += v->fec->roots;
162 if (offset >= 1 << v->data_dev_block_bits) {
163 dm_bufio_release(buf);
164
165 par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
166 if (unlikely(IS_ERR(par)))
167 return PTR_ERR(par);
168 }
169 }
170done:
171 r = corrected;
172error:
86e3e83b
ST
173 dm_bufio_release(buf);
174
a739ff3f
ST
175 if (r < 0 && neras)
176 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
177 v->data_dev->name, (unsigned long long)rsb, r);
178 else if (r > 0)
179 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
180 v->data_dev->name, (unsigned long long)rsb, r);
181
182 return r;
183}
184
185/*
186 * Locate data block erasures using verity hashes.
187 */
188static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
189 u8 *want_digest, u8 *data)
190{
d1ac3ff0 191 if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
a739ff3f
ST
192 data, 1 << v->data_dev_block_bits,
193 verity_io_real_digest(v, io))))
194 return 0;
195
196 return memcmp(verity_io_real_digest(v, io), want_digest,
197 v->digest_size) != 0;
198}
199
200/*
201 * Read data blocks that are part of the RS block and deinterleave as much as
202 * fits into buffers. Check for erasure locations if @neras is non-NULL.
203 */
204static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
205 u64 rsb, u64 target, unsigned block_offset,
206 int *neras)
207{
0cc37c2d 208 bool is_zero;
a739ff3f
ST
209 int i, j, target_index = -1;
210 struct dm_buffer *buf;
211 struct dm_bufio_client *bufio;
212 struct dm_verity_fec_io *fio = fec_io(io);
213 u64 block, ileaved;
214 u8 *bbuf, *rs_block;
215 u8 want_digest[v->digest_size];
216 unsigned n, k;
217
218 if (neras)
219 *neras = 0;
220
221 /*
222 * read each of the rsn data blocks that are part of the RS block, and
223 * interleave contents to available bufs
224 */
225 for (i = 0; i < v->fec->rsn; i++) {
226 ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
227
228 /*
229 * target is the data block we want to correct, target_index is
230 * the index of this block within the rsn RS blocks
231 */
232 if (ileaved == target)
233 target_index = i;
234
235 block = ileaved >> v->data_dev_block_bits;
236 bufio = v->fec->data_bufio;
237
238 if (block >= v->data_blocks) {
239 block -= v->data_blocks;
240
241 /*
242 * blocks outside the area were assumed to contain
243 * zeros when encoding data was generated
244 */
245 if (unlikely(block >= v->fec->hash_blocks))
246 continue;
247
248 block += v->hash_start;
249 bufio = v->bufio;
250 }
251
252 bbuf = dm_bufio_read(bufio, block, &buf);
253 if (unlikely(IS_ERR(bbuf))) {
254 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
255 v->data_dev->name,
256 (unsigned long long)rsb,
257 (unsigned long long)block, PTR_ERR(bbuf));
258
259 /* assume the block is corrupted */
260 if (neras && *neras <= v->fec->roots)
261 fio->erasures[(*neras)++] = i;
262
263 continue;
264 }
265
266 /* locate erasures if the block is on the data device */
267 if (bufio == v->fec->data_bufio &&
0cc37c2d
ST
268 verity_hash_for_block(v, io, block, want_digest,
269 &is_zero) == 0) {
270 /* skip known zero blocks entirely */
271 if (is_zero)
86e3e83b 272 goto done;
0cc37c2d 273
a739ff3f
ST
274 /*
275 * skip if we have already found the theoretical
276 * maximum number (i.e. fec->roots) of erasures
277 */
278 if (neras && *neras <= v->fec->roots &&
279 fec_is_erasure(v, io, want_digest, bbuf))
280 fio->erasures[(*neras)++] = i;
281 }
282
283 /*
284 * deinterleave and copy the bytes that fit into bufs,
285 * starting from block_offset
286 */
287 fec_for_each_buffer_rs_block(fio, n, j) {
288 k = fec_buffer_rs_index(n, j) + block_offset;
289
290 if (k >= 1 << v->data_dev_block_bits)
291 goto done;
292
293 rs_block = fec_buffer_rs_block(v, fio, n, j);
294 rs_block[i] = bbuf[k];
295 }
296done:
297 dm_bufio_release(buf);
298 }
299
300 return target_index;
301}
302
303/*
304 * Allocate RS control structure and FEC buffers from preallocated mempools,
305 * and attempt to allocate as many extra buffers as available.
306 */
307static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
308{
309 unsigned n;
310
34c96507
N
311 if (!fio->rs)
312 fio->rs = mempool_alloc(v->fec->rs_pool, GFP_NOIO);
a739ff3f
ST
313
314 fec_for_each_prealloc_buffer(n) {
315 if (fio->bufs[n])
316 continue;
317
34c96507 318 fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOWAIT);
a739ff3f
ST
319 if (unlikely(!fio->bufs[n])) {
320 DMERR("failed to allocate FEC buffer");
321 return -ENOMEM;
322 }
323 }
324
325 /* try to allocate the maximum number of buffers */
326 fec_for_each_extra_buffer(fio, n) {
327 if (fio->bufs[n])
328 continue;
329
34c96507 330 fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOWAIT);
a739ff3f
ST
331 /* we can manage with even one buffer if necessary */
332 if (unlikely(!fio->bufs[n]))
333 break;
334 }
335 fio->nbufs = n;
336
34c96507 337 if (!fio->output)
a739ff3f
ST
338 fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
339
a739ff3f
ST
340 return 0;
341}
342
343/*
344 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
345 * zeroed before deinterleaving.
346 */
347static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
348{
349 unsigned n;
350
351 fec_for_each_buffer(fio, n)
352 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
353
354 memset(fio->erasures, 0, sizeof(fio->erasures));
355}
356
357/*
358 * Decode all RS blocks in a single data block and return the target block
359 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
360 * hashes to locate erasures.
361 */
362static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
363 struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
364 bool use_erasures)
365{
366 int r, neras = 0;
367 unsigned pos;
368
369 r = fec_alloc_bufs(v, fio);
370 if (unlikely(r < 0))
371 return r;
372
373 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
374 fec_init_bufs(v, fio);
375
376 r = fec_read_bufs(v, io, rsb, offset, pos,
377 use_erasures ? &neras : NULL);
378 if (unlikely(r < 0))
379 return r;
380
381 r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
382 if (r < 0)
383 return r;
384
385 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
386 }
387
388 /* Always re-validate the corrected block against the expected hash */
d1ac3ff0 389 r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
a739ff3f
ST
390 1 << v->data_dev_block_bits,
391 verity_io_real_digest(v, io));
392 if (unlikely(r < 0))
393 return r;
394
395 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
396 v->digest_size)) {
397 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
398 v->data_dev->name, (unsigned long long)rsb, neras);
399 return -EILSEQ;
400 }
401
402 return 0;
403}
404
405static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
406 size_t len)
407{
408 struct dm_verity_fec_io *fio = fec_io(io);
409
410 memcpy(data, &fio->output[fio->output_pos], len);
411 fio->output_pos += len;
412
413 return 0;
414}
415
416/*
417 * Correct errors in a block. Copies corrected block to dest if non-NULL,
418 * otherwise to a bio_vec starting from iter.
419 */
420int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
421 enum verity_block_type type, sector_t block, u8 *dest,
422 struct bvec_iter *iter)
423{
424 int r;
425 struct dm_verity_fec_io *fio = fec_io(io);
426 u64 offset, res, rsb;
427
428 if (!verity_fec_is_enabled(v))
429 return -EOPNOTSUPP;
430
f1a880a9
ST
431 if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
432 DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
433 return -EIO;
434 }
435
436 fio->level++;
437
a739ff3f
ST
438 if (type == DM_VERITY_BLOCK_TYPE_METADATA)
439 block += v->data_blocks;
440
441 /*
442 * For RS(M, N), the continuous FEC data is divided into blocks of N
443 * bytes. Since block size may not be divisible by N, the last block
444 * is zero padded when decoding.
445 *
446 * Each byte of the block is covered by a different RS(M, N) code,
447 * and each code is interleaved over N blocks to make it less likely
448 * that bursty corruption will leave us in unrecoverable state.
449 */
450
451 offset = block << v->data_dev_block_bits;
602d1657 452 res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
a739ff3f
ST
453
454 /*
455 * The base RS block we can feed to the interleaver to find out all
456 * blocks required for decoding.
457 */
458 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
459
460 /*
461 * Locating erasures is slow, so attempt to recover the block without
462 * them first. Do a second attempt with erasures if the corruption is
463 * bad enough.
464 */
465 r = fec_decode_rsb(v, io, fio, rsb, offset, false);
466 if (r < 0) {
467 r = fec_decode_rsb(v, io, fio, rsb, offset, true);
468 if (r < 0)
f1a880a9 469 goto done;
a739ff3f
ST
470 }
471
472 if (dest)
473 memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
474 else if (iter) {
475 fio->output_pos = 0;
476 r = verity_for_bv_block(v, io, iter, fec_bv_copy);
477 }
478
f1a880a9
ST
479done:
480 fio->level--;
a739ff3f
ST
481 return r;
482}
483
484/*
485 * Clean up per-bio data.
486 */
487void verity_fec_finish_io(struct dm_verity_io *io)
488{
489 unsigned n;
490 struct dm_verity_fec *f = io->v->fec;
491 struct dm_verity_fec_io *fio = fec_io(io);
492
493 if (!verity_fec_is_enabled(io->v))
494 return;
495
496 mempool_free(fio->rs, f->rs_pool);
497
498 fec_for_each_prealloc_buffer(n)
499 mempool_free(fio->bufs[n], f->prealloc_pool);
500
501 fec_for_each_extra_buffer(fio, n)
502 mempool_free(fio->bufs[n], f->extra_pool);
503
504 mempool_free(fio->output, f->output_pool);
505}
506
507/*
508 * Initialize per-bio data.
509 */
510void verity_fec_init_io(struct dm_verity_io *io)
511{
512 struct dm_verity_fec_io *fio = fec_io(io);
513
514 if (!verity_fec_is_enabled(io->v))
515 return;
516
517 fio->rs = NULL;
518 memset(fio->bufs, 0, sizeof(fio->bufs));
519 fio->nbufs = 0;
520 fio->output = NULL;
f1a880a9 521 fio->level = 0;
a739ff3f
ST
522}
523
524/*
525 * Append feature arguments and values to the status table.
526 */
527unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
528 char *result, unsigned maxlen)
529{
530 if (!verity_fec_is_enabled(v))
531 return sz;
532
533 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
534 DM_VERITY_OPT_FEC_BLOCKS " %llu "
535 DM_VERITY_OPT_FEC_START " %llu "
536 DM_VERITY_OPT_FEC_ROOTS " %d",
537 v->fec->dev->name,
538 (unsigned long long)v->fec->blocks,
539 (unsigned long long)v->fec->start,
540 v->fec->roots);
541
542 return sz;
543}
544
545void verity_fec_dtr(struct dm_verity *v)
546{
547 struct dm_verity_fec *f = v->fec;
548
549 if (!verity_fec_is_enabled(v))
550 goto out;
551
552 mempool_destroy(f->rs_pool);
553 mempool_destroy(f->prealloc_pool);
554 mempool_destroy(f->extra_pool);
555 kmem_cache_destroy(f->cache);
556
557 if (f->data_bufio)
558 dm_bufio_client_destroy(f->data_bufio);
559 if (f->bufio)
560 dm_bufio_client_destroy(f->bufio);
561
562 if (f->dev)
563 dm_put_device(v->ti, f->dev);
564out:
565 kfree(f);
566 v->fec = NULL;
567}
568
569static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
570{
571 struct dm_verity *v = (struct dm_verity *)pool_data;
572
573 return init_rs(8, 0x11d, 0, 1, v->fec->roots);
574}
575
576static void fec_rs_free(void *element, void *pool_data)
577{
578 struct rs_control *rs = (struct rs_control *)element;
579
580 if (rs)
581 free_rs(rs);
582}
583
584bool verity_is_fec_opt_arg(const char *arg_name)
585{
586 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
587 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
588 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
589 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
590}
591
592int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
593 unsigned *argc, const char *arg_name)
594{
595 int r;
596 struct dm_target *ti = v->ti;
597 const char *arg_value;
598 unsigned long long num_ll;
599 unsigned char num_c;
600 char dummy;
601
602 if (!*argc) {
603 ti->error = "FEC feature arguments require a value";
604 return -EINVAL;
605 }
606
607 arg_value = dm_shift_arg(as);
608 (*argc)--;
609
610 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
611 r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
612 if (r) {
613 ti->error = "FEC device lookup failed";
614 return r;
615 }
616
617 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
618 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
619 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
620 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
621 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
622 return -EINVAL;
623 }
624 v->fec->blocks = num_ll;
625
626 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
627 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
628 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
629 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
630 ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
631 return -EINVAL;
632 }
633 v->fec->start = num_ll;
634
635 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
636 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
637 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
638 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
639 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
640 return -EINVAL;
641 }
642 v->fec->roots = num_c;
643
644 } else {
645 ti->error = "Unrecognized verity FEC feature request";
646 return -EINVAL;
647 }
648
649 return 0;
650}
651
652/*
653 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
654 */
655int verity_fec_ctr_alloc(struct dm_verity *v)
656{
657 struct dm_verity_fec *f;
658
659 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
660 if (!f) {
661 v->ti->error = "Cannot allocate FEC structure";
662 return -ENOMEM;
663 }
664 v->fec = f;
665
666 return 0;
667}
668
669/*
670 * Validate arguments and preallocate memory. Must be called after arguments
671 * have been parsed using verity_fec_parse_opt_args.
672 */
673int verity_fec_ctr(struct dm_verity *v)
674{
675 struct dm_verity_fec *f = v->fec;
676 struct dm_target *ti = v->ti;
677 u64 hash_blocks;
678
679 if (!verity_fec_is_enabled(v)) {
680 verity_fec_dtr(v);
681 return 0;
682 }
683
684 /*
685 * FEC is computed over data blocks, possible metadata, and
686 * hash blocks. In other words, FEC covers total of fec_blocks
687 * blocks consisting of the following:
688 *
689 * data blocks | hash blocks | metadata (optional)
690 *
691 * We allow metadata after hash blocks to support a use case
692 * where all data is stored on the same device and FEC covers
693 * the entire area.
694 *
695 * If metadata is included, we require it to be available on the
696 * hash device after the hash blocks.
697 */
698
699 hash_blocks = v->hash_blocks - v->hash_start;
700
701 /*
702 * Require matching block sizes for data and hash devices for
703 * simplicity.
704 */
705 if (v->data_dev_block_bits != v->hash_dev_block_bits) {
706 ti->error = "Block sizes must match to use FEC";
707 return -EINVAL;
708 }
709
710 if (!f->roots) {
711 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
712 return -EINVAL;
713 }
714 f->rsn = DM_VERITY_FEC_RSM - f->roots;
715
716 if (!f->blocks) {
717 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
718 return -EINVAL;
719 }
720
721 f->rounds = f->blocks;
722 if (sector_div(f->rounds, f->rsn))
723 f->rounds++;
724
725 /*
726 * Due to optional metadata, f->blocks can be larger than
727 * data_blocks and hash_blocks combined.
728 */
729 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
730 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
731 return -EINVAL;
732 }
733
734 /*
735 * Metadata is accessed through the hash device, so we require
736 * it to be large enough.
737 */
738 f->hash_blocks = f->blocks - v->data_blocks;
739 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
740 ti->error = "Hash device is too small for "
741 DM_VERITY_OPT_FEC_BLOCKS;
742 return -E2BIG;
743 }
744
745 f->bufio = dm_bufio_client_create(f->dev->bdev,
746 1 << v->data_dev_block_bits,
747 1, 0, NULL, NULL);
748 if (IS_ERR(f->bufio)) {
749 ti->error = "Cannot initialize FEC bufio client";
750 return PTR_ERR(f->bufio);
751 }
752
753 if (dm_bufio_get_device_size(f->bufio) <
754 ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
755 ti->error = "FEC device is too small";
756 return -E2BIG;
757 }
758
759 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
760 1 << v->data_dev_block_bits,
761 1, 0, NULL, NULL);
762 if (IS_ERR(f->data_bufio)) {
763 ti->error = "Cannot initialize FEC data bufio client";
764 return PTR_ERR(f->data_bufio);
765 }
766
767 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
768 ti->error = "Data device is too small";
769 return -E2BIG;
770 }
771
772 /* Preallocate an rs_control structure for each worker thread */
773 f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
774 fec_rs_free, (void *) v);
775 if (!f->rs_pool) {
776 ti->error = "Cannot allocate RS pool";
777 return -ENOMEM;
778 }
779
780 f->cache = kmem_cache_create("dm_verity_fec_buffers",
781 f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
782 0, 0, NULL);
783 if (!f->cache) {
784 ti->error = "Cannot create FEC buffer cache";
785 return -ENOMEM;
786 }
787
788 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
789 f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
790 DM_VERITY_FEC_BUF_PREALLOC,
791 f->cache);
792 if (!f->prealloc_pool) {
793 ti->error = "Cannot allocate FEC buffer prealloc pool";
794 return -ENOMEM;
795 }
796
797 f->extra_pool = mempool_create_slab_pool(0, f->cache);
798 if (!f->extra_pool) {
799 ti->error = "Cannot allocate FEC buffer extra pool";
800 return -ENOMEM;
801 }
802
803 /* Preallocate an output buffer for each thread */
804 f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
805 1 << v->data_dev_block_bits);
806 if (!f->output_pool) {
807 ti->error = "Cannot allocate FEC output pool";
808 return -ENOMEM;
809 }
810
811 /* Reserve space for our per-bio data */
30187e1d 812 ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
a739ff3f
ST
813
814 return 0;
815}