]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/md/dm.c
block: Create bip slabs with embedded integrity vectors
[mirror_ubuntu-zesty-kernel.git] / drivers / md / dm.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
784aae73 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
1da177e4
LT
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
51e5b2bd 9#include "dm-uevent.h"
1da177e4
LT
10
11#include <linux/init.h>
12#include <linux/module.h>
48c9c27b 13#include <linux/mutex.h>
1da177e4
LT
14#include <linux/moduleparam.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/buffer_head.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/idr.h>
3ac51e74 21#include <linux/hdreg.h>
55782138
LZ
22
23#include <trace/events/block.h>
1da177e4 24
72d94861
AK
25#define DM_MSG_PREFIX "core"
26
60935eb2
MB
27/*
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
30 */
31#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32#define DM_COOKIE_LENGTH 24
33
1da177e4
LT
34static const char *_name = DM_NAME;
35
36static unsigned int major = 0;
37static unsigned int _major = 0;
38
f32c10b0 39static DEFINE_SPINLOCK(_minor_lock);
1da177e4 40/*
8fbf26ad 41 * For bio-based dm.
1da177e4
LT
42 * One of these is allocated per bio.
43 */
44struct dm_io {
45 struct mapped_device *md;
46 int error;
1da177e4 47 atomic_t io_count;
6ae2fa67 48 struct bio *bio;
3eaf840e 49 unsigned long start_time;
1da177e4
LT
50};
51
52/*
8fbf26ad 53 * For bio-based dm.
1da177e4
LT
54 * One of these is allocated per target within a bio. Hopefully
55 * this will be simplified out one day.
56 */
028867ac 57struct dm_target_io {
1da177e4
LT
58 struct dm_io *io;
59 struct dm_target *ti;
60 union map_info info;
61};
62
8fbf26ad
KU
63/*
64 * For request-based dm.
65 * One of these is allocated per request.
66 */
67struct dm_rq_target_io {
68 struct mapped_device *md;
69 struct dm_target *ti;
70 struct request *orig, clone;
71 int error;
72 union map_info info;
73};
74
75/*
76 * For request-based dm.
77 * One of these is allocated per bio.
78 */
79struct dm_rq_clone_bio_info {
80 struct bio *orig;
cec47e3d 81 struct dm_rq_target_io *tio;
8fbf26ad
KU
82};
83
1da177e4
LT
84union map_info *dm_get_mapinfo(struct bio *bio)
85{
17b2f66f 86 if (bio && bio->bi_private)
028867ac 87 return &((struct dm_target_io *)bio->bi_private)->info;
17b2f66f 88 return NULL;
1da177e4
LT
89}
90
cec47e3d
KU
91union map_info *dm_get_rq_mapinfo(struct request *rq)
92{
93 if (rq && rq->end_io_data)
94 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
95 return NULL;
96}
97EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
98
ba61fdd1
JM
99#define MINOR_ALLOCED ((void *)-1)
100
1da177e4
LT
101/*
102 * Bits for the md->flags field.
103 */
1eb787ec 104#define DMF_BLOCK_IO_FOR_SUSPEND 0
1da177e4 105#define DMF_SUSPENDED 1
aa8d7c2f 106#define DMF_FROZEN 2
fba9f90e 107#define DMF_FREEING 3
5c6bd75d 108#define DMF_DELETING 4
2e93ccc1 109#define DMF_NOFLUSH_SUSPENDING 5
1eb787ec 110#define DMF_QUEUE_IO_TO_THREAD 6
1da177e4 111
304f3f6a
MB
112/*
113 * Work processed by per-device workqueue.
114 */
1da177e4 115struct mapped_device {
2ca3310e 116 struct rw_semaphore io_lock;
e61290a4 117 struct mutex suspend_lock;
1da177e4
LT
118 rwlock_t map_lock;
119 atomic_t holders;
5c6bd75d 120 atomic_t open_count;
1da177e4
LT
121
122 unsigned long flags;
123
165125e1 124 struct request_queue *queue;
1da177e4 125 struct gendisk *disk;
7e51f257 126 char name[16];
1da177e4
LT
127
128 void *interface_ptr;
129
130 /*
131 * A list of ios that arrived while we were suspended.
132 */
133 atomic_t pending;
134 wait_queue_head_t wait;
53d5914f 135 struct work_struct work;
74859364 136 struct bio_list deferred;
022c2611 137 spinlock_t deferred_lock;
1da177e4 138
af7e466a
MP
139 /*
140 * An error from the barrier request currently being processed.
141 */
142 int barrier_error;
143
304f3f6a
MB
144 /*
145 * Processing queue (flush/barriers)
146 */
147 struct workqueue_struct *wq;
148
1da177e4
LT
149 /*
150 * The current mapping.
151 */
152 struct dm_table *map;
153
154 /*
155 * io objects are allocated from here.
156 */
157 mempool_t *io_pool;
158 mempool_t *tio_pool;
159
9faf400f
SB
160 struct bio_set *bs;
161
1da177e4
LT
162 /*
163 * Event handling.
164 */
165 atomic_t event_nr;
166 wait_queue_head_t eventq;
7a8c3d3b
MA
167 atomic_t uevent_seq;
168 struct list_head uevent_list;
169 spinlock_t uevent_lock; /* Protect access to uevent_list */
1da177e4
LT
170
171 /*
172 * freeze/thaw support require holding onto a super block
173 */
174 struct super_block *frozen_sb;
db8fef4f 175 struct block_device *bdev;
3ac51e74
DW
176
177 /* forced geometry settings */
178 struct hd_geometry geometry;
784aae73 179
cec47e3d
KU
180 /* marker of flush suspend for request-based dm */
181 struct request suspend_rq;
182
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn *saved_make_request_fn;
185
784aae73
MB
186 /* sysfs handle */
187 struct kobject kobj;
52b1fd5a
MP
188
189 /* zero-length barrier that will be cloned and submitted to targets */
190 struct bio barrier_bio;
1da177e4
LT
191};
192
e6ee8c0b
KU
193/*
194 * For mempools pre-allocation at the table loading time.
195 */
196struct dm_md_mempools {
197 mempool_t *io_pool;
198 mempool_t *tio_pool;
199 struct bio_set *bs;
200};
201
1da177e4 202#define MIN_IOS 256
e18b890b
CL
203static struct kmem_cache *_io_cache;
204static struct kmem_cache *_tio_cache;
8fbf26ad
KU
205static struct kmem_cache *_rq_tio_cache;
206static struct kmem_cache *_rq_bio_info_cache;
1da177e4 207
1da177e4
LT
208static int __init local_init(void)
209{
51157b4a 210 int r = -ENOMEM;
1da177e4 211
1da177e4 212 /* allocate a slab for the dm_ios */
028867ac 213 _io_cache = KMEM_CACHE(dm_io, 0);
1da177e4 214 if (!_io_cache)
51157b4a 215 return r;
1da177e4
LT
216
217 /* allocate a slab for the target ios */
028867ac 218 _tio_cache = KMEM_CACHE(dm_target_io, 0);
51157b4a
KU
219 if (!_tio_cache)
220 goto out_free_io_cache;
1da177e4 221
8fbf26ad
KU
222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 if (!_rq_tio_cache)
224 goto out_free_tio_cache;
225
226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 if (!_rq_bio_info_cache)
228 goto out_free_rq_tio_cache;
229
51e5b2bd 230 r = dm_uevent_init();
51157b4a 231 if (r)
8fbf26ad 232 goto out_free_rq_bio_info_cache;
51e5b2bd 233
1da177e4
LT
234 _major = major;
235 r = register_blkdev(_major, _name);
51157b4a
KU
236 if (r < 0)
237 goto out_uevent_exit;
1da177e4
LT
238
239 if (!_major)
240 _major = r;
241
242 return 0;
51157b4a
KU
243
244out_uevent_exit:
245 dm_uevent_exit();
8fbf26ad
KU
246out_free_rq_bio_info_cache:
247 kmem_cache_destroy(_rq_bio_info_cache);
248out_free_rq_tio_cache:
249 kmem_cache_destroy(_rq_tio_cache);
51157b4a
KU
250out_free_tio_cache:
251 kmem_cache_destroy(_tio_cache);
252out_free_io_cache:
253 kmem_cache_destroy(_io_cache);
254
255 return r;
1da177e4
LT
256}
257
258static void local_exit(void)
259{
8fbf26ad
KU
260 kmem_cache_destroy(_rq_bio_info_cache);
261 kmem_cache_destroy(_rq_tio_cache);
1da177e4
LT
262 kmem_cache_destroy(_tio_cache);
263 kmem_cache_destroy(_io_cache);
00d59405 264 unregister_blkdev(_major, _name);
51e5b2bd 265 dm_uevent_exit();
1da177e4
LT
266
267 _major = 0;
268
269 DMINFO("cleaned up");
270}
271
b9249e55 272static int (*_inits[])(void) __initdata = {
1da177e4
LT
273 local_init,
274 dm_target_init,
275 dm_linear_init,
276 dm_stripe_init,
945fa4d2 277 dm_kcopyd_init,
1da177e4
LT
278 dm_interface_init,
279};
280
b9249e55 281static void (*_exits[])(void) = {
1da177e4
LT
282 local_exit,
283 dm_target_exit,
284 dm_linear_exit,
285 dm_stripe_exit,
945fa4d2 286 dm_kcopyd_exit,
1da177e4
LT
287 dm_interface_exit,
288};
289
290static int __init dm_init(void)
291{
292 const int count = ARRAY_SIZE(_inits);
293
294 int r, i;
295
296 for (i = 0; i < count; i++) {
297 r = _inits[i]();
298 if (r)
299 goto bad;
300 }
301
302 return 0;
303
304 bad:
305 while (i--)
306 _exits[i]();
307
308 return r;
309}
310
311static void __exit dm_exit(void)
312{
313 int i = ARRAY_SIZE(_exits);
314
315 while (i--)
316 _exits[i]();
317}
318
319/*
320 * Block device functions
321 */
fe5f9f2c 322static int dm_blk_open(struct block_device *bdev, fmode_t mode)
1da177e4
LT
323{
324 struct mapped_device *md;
325
fba9f90e
JM
326 spin_lock(&_minor_lock);
327
fe5f9f2c 328 md = bdev->bd_disk->private_data;
fba9f90e
JM
329 if (!md)
330 goto out;
331
5c6bd75d
AK
332 if (test_bit(DMF_FREEING, &md->flags) ||
333 test_bit(DMF_DELETING, &md->flags)) {
fba9f90e
JM
334 md = NULL;
335 goto out;
336 }
337
1da177e4 338 dm_get(md);
5c6bd75d 339 atomic_inc(&md->open_count);
fba9f90e
JM
340
341out:
342 spin_unlock(&_minor_lock);
343
344 return md ? 0 : -ENXIO;
1da177e4
LT
345}
346
fe5f9f2c 347static int dm_blk_close(struct gendisk *disk, fmode_t mode)
1da177e4 348{
fe5f9f2c 349 struct mapped_device *md = disk->private_data;
5c6bd75d 350 atomic_dec(&md->open_count);
1da177e4
LT
351 dm_put(md);
352 return 0;
353}
354
5c6bd75d
AK
355int dm_open_count(struct mapped_device *md)
356{
357 return atomic_read(&md->open_count);
358}
359
360/*
361 * Guarantees nothing is using the device before it's deleted.
362 */
363int dm_lock_for_deletion(struct mapped_device *md)
364{
365 int r = 0;
366
367 spin_lock(&_minor_lock);
368
369 if (dm_open_count(md))
370 r = -EBUSY;
371 else
372 set_bit(DMF_DELETING, &md->flags);
373
374 spin_unlock(&_minor_lock);
375
376 return r;
377}
378
3ac51e74
DW
379static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
380{
381 struct mapped_device *md = bdev->bd_disk->private_data;
382
383 return dm_get_geometry(md, geo);
384}
385
fe5f9f2c 386static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
aa129a22
MB
387 unsigned int cmd, unsigned long arg)
388{
fe5f9f2c
AV
389 struct mapped_device *md = bdev->bd_disk->private_data;
390 struct dm_table *map = dm_get_table(md);
aa129a22
MB
391 struct dm_target *tgt;
392 int r = -ENOTTY;
393
aa129a22
MB
394 if (!map || !dm_table_get_size(map))
395 goto out;
396
397 /* We only support devices that have a single target */
398 if (dm_table_get_num_targets(map) != 1)
399 goto out;
400
401 tgt = dm_table_get_target(map, 0);
402
403 if (dm_suspended(md)) {
404 r = -EAGAIN;
405 goto out;
406 }
407
408 if (tgt->type->ioctl)
647b3d00 409 r = tgt->type->ioctl(tgt, cmd, arg);
aa129a22
MB
410
411out:
412 dm_table_put(map);
413
aa129a22
MB
414 return r;
415}
416
028867ac 417static struct dm_io *alloc_io(struct mapped_device *md)
1da177e4
LT
418{
419 return mempool_alloc(md->io_pool, GFP_NOIO);
420}
421
028867ac 422static void free_io(struct mapped_device *md, struct dm_io *io)
1da177e4
LT
423{
424 mempool_free(io, md->io_pool);
425}
426
028867ac 427static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
1da177e4
LT
428{
429 mempool_free(tio, md->tio_pool);
430}
431
cec47e3d
KU
432static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
433{
434 return mempool_alloc(md->tio_pool, GFP_ATOMIC);
435}
436
437static void free_rq_tio(struct dm_rq_target_io *tio)
438{
439 mempool_free(tio, tio->md->tio_pool);
440}
441
442static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
443{
444 return mempool_alloc(md->io_pool, GFP_ATOMIC);
445}
446
447static void free_bio_info(struct dm_rq_clone_bio_info *info)
448{
449 mempool_free(info, info->tio->md->io_pool);
450}
451
3eaf840e
JNN
452static void start_io_acct(struct dm_io *io)
453{
454 struct mapped_device *md = io->md;
c9959059 455 int cpu;
3eaf840e
JNN
456
457 io->start_time = jiffies;
458
074a7aca
TH
459 cpu = part_stat_lock();
460 part_round_stats(cpu, &dm_disk(md)->part0);
461 part_stat_unlock();
462 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
3eaf840e
JNN
463}
464
d221d2e7 465static void end_io_acct(struct dm_io *io)
3eaf840e
JNN
466{
467 struct mapped_device *md = io->md;
468 struct bio *bio = io->bio;
469 unsigned long duration = jiffies - io->start_time;
c9959059 470 int pending, cpu;
3eaf840e
JNN
471 int rw = bio_data_dir(bio);
472
074a7aca
TH
473 cpu = part_stat_lock();
474 part_round_stats(cpu, &dm_disk(md)->part0);
475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 part_stat_unlock();
3eaf840e 477
af7e466a
MP
478 /*
479 * After this is decremented the bio must not be touched if it is
480 * a barrier.
481 */
074a7aca
TH
482 dm_disk(md)->part0.in_flight = pending =
483 atomic_dec_return(&md->pending);
3eaf840e 484
d221d2e7
MP
485 /* nudge anyone waiting on suspend queue */
486 if (!pending)
487 wake_up(&md->wait);
3eaf840e
JNN
488}
489
1da177e4
LT
490/*
491 * Add the bio to the list of deferred io.
492 */
92c63902 493static void queue_io(struct mapped_device *md, struct bio *bio)
1da177e4 494{
2ca3310e 495 down_write(&md->io_lock);
1da177e4 496
022c2611 497 spin_lock_irq(&md->deferred_lock);
1da177e4 498 bio_list_add(&md->deferred, bio);
022c2611 499 spin_unlock_irq(&md->deferred_lock);
1da177e4 500
92c63902
MP
501 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
502 queue_work(md->wq, &md->work);
503
2ca3310e 504 up_write(&md->io_lock);
1da177e4
LT
505}
506
507/*
508 * Everyone (including functions in this file), should use this
509 * function to access the md->map field, and make sure they call
510 * dm_table_put() when finished.
511 */
512struct dm_table *dm_get_table(struct mapped_device *md)
513{
514 struct dm_table *t;
523d9297 515 unsigned long flags;
1da177e4 516
523d9297 517 read_lock_irqsave(&md->map_lock, flags);
1da177e4
LT
518 t = md->map;
519 if (t)
520 dm_table_get(t);
523d9297 521 read_unlock_irqrestore(&md->map_lock, flags);
1da177e4
LT
522
523 return t;
524}
525
3ac51e74
DW
526/*
527 * Get the geometry associated with a dm device
528 */
529int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
530{
531 *geo = md->geometry;
532
533 return 0;
534}
535
536/*
537 * Set the geometry of a device.
538 */
539int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
540{
541 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
542
543 if (geo->start > sz) {
544 DMWARN("Start sector is beyond the geometry limits.");
545 return -EINVAL;
546 }
547
548 md->geometry = *geo;
549
550 return 0;
551}
552
1da177e4
LT
553/*-----------------------------------------------------------------
554 * CRUD START:
555 * A more elegant soln is in the works that uses the queue
556 * merge fn, unfortunately there are a couple of changes to
557 * the block layer that I want to make for this. So in the
558 * interests of getting something for people to use I give
559 * you this clearly demarcated crap.
560 *---------------------------------------------------------------*/
561
2e93ccc1
KU
562static int __noflush_suspending(struct mapped_device *md)
563{
564 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
565}
566
1da177e4
LT
567/*
568 * Decrements the number of outstanding ios that a bio has been
569 * cloned into, completing the original io if necc.
570 */
858119e1 571static void dec_pending(struct dm_io *io, int error)
1da177e4 572{
2e93ccc1 573 unsigned long flags;
b35f8caa
MB
574 int io_error;
575 struct bio *bio;
576 struct mapped_device *md = io->md;
2e93ccc1
KU
577
578 /* Push-back supersedes any I/O errors */
b35f8caa 579 if (error && !(io->error > 0 && __noflush_suspending(md)))
1da177e4
LT
580 io->error = error;
581
582 if (atomic_dec_and_test(&io->io_count)) {
2e93ccc1
KU
583 if (io->error == DM_ENDIO_REQUEUE) {
584 /*
585 * Target requested pushing back the I/O.
2e93ccc1 586 */
022c2611 587 spin_lock_irqsave(&md->deferred_lock, flags);
2761e95f
MP
588 if (__noflush_suspending(md)) {
589 if (!bio_barrier(io->bio))
590 bio_list_add_head(&md->deferred,
591 io->bio);
592 } else
2e93ccc1
KU
593 /* noflush suspend was interrupted. */
594 io->error = -EIO;
022c2611 595 spin_unlock_irqrestore(&md->deferred_lock, flags);
2e93ccc1
KU
596 }
597
b35f8caa
MB
598 io_error = io->error;
599 bio = io->bio;
2e93ccc1 600
af7e466a
MP
601 if (bio_barrier(bio)) {
602 /*
603 * There can be just one barrier request so we use
604 * a per-device variable for error reporting.
605 * Note that you can't touch the bio after end_io_acct
606 */
fdb9572b 607 if (!md->barrier_error && io_error != -EOPNOTSUPP)
5aa2781d 608 md->barrier_error = io_error;
af7e466a
MP
609 end_io_acct(io);
610 } else {
611 end_io_acct(io);
b35f8caa 612
af7e466a
MP
613 if (io_error != DM_ENDIO_REQUEUE) {
614 trace_block_bio_complete(md->queue, bio);
2056a782 615
af7e466a
MP
616 bio_endio(bio, io_error);
617 }
b35f8caa 618 }
af7e466a
MP
619
620 free_io(md, io);
1da177e4
LT
621 }
622}
623
6712ecf8 624static void clone_endio(struct bio *bio, int error)
1da177e4
LT
625{
626 int r = 0;
028867ac 627 struct dm_target_io *tio = bio->bi_private;
b35f8caa 628 struct dm_io *io = tio->io;
9faf400f 629 struct mapped_device *md = tio->io->md;
1da177e4
LT
630 dm_endio_fn endio = tio->ti->type->end_io;
631
1da177e4
LT
632 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
633 error = -EIO;
634
635 if (endio) {
636 r = endio(tio->ti, bio, error, &tio->info);
2e93ccc1
KU
637 if (r < 0 || r == DM_ENDIO_REQUEUE)
638 /*
639 * error and requeue request are handled
640 * in dec_pending().
641 */
1da177e4 642 error = r;
45cbcd79
KU
643 else if (r == DM_ENDIO_INCOMPLETE)
644 /* The target will handle the io */
6712ecf8 645 return;
45cbcd79
KU
646 else if (r) {
647 DMWARN("unimplemented target endio return value: %d", r);
648 BUG();
649 }
1da177e4
LT
650 }
651
9faf400f
SB
652 /*
653 * Store md for cleanup instead of tio which is about to get freed.
654 */
655 bio->bi_private = md->bs;
656
9faf400f 657 free_tio(md, tio);
b35f8caa
MB
658 bio_put(bio);
659 dec_pending(io, error);
1da177e4
LT
660}
661
cec47e3d
KU
662/*
663 * Partial completion handling for request-based dm
664 */
665static void end_clone_bio(struct bio *clone, int error)
666{
667 struct dm_rq_clone_bio_info *info = clone->bi_private;
668 struct dm_rq_target_io *tio = info->tio;
669 struct bio *bio = info->orig;
670 unsigned int nr_bytes = info->orig->bi_size;
671
672 bio_put(clone);
673
674 if (tio->error)
675 /*
676 * An error has already been detected on the request.
677 * Once error occurred, just let clone->end_io() handle
678 * the remainder.
679 */
680 return;
681 else if (error) {
682 /*
683 * Don't notice the error to the upper layer yet.
684 * The error handling decision is made by the target driver,
685 * when the request is completed.
686 */
687 tio->error = error;
688 return;
689 }
690
691 /*
692 * I/O for the bio successfully completed.
693 * Notice the data completion to the upper layer.
694 */
695
696 /*
697 * bios are processed from the head of the list.
698 * So the completing bio should always be rq->bio.
699 * If it's not, something wrong is happening.
700 */
701 if (tio->orig->bio != bio)
702 DMERR("bio completion is going in the middle of the request");
703
704 /*
705 * Update the original request.
706 * Do not use blk_end_request() here, because it may complete
707 * the original request before the clone, and break the ordering.
708 */
709 blk_update_request(tio->orig, 0, nr_bytes);
710}
711
712/*
713 * Don't touch any member of the md after calling this function because
714 * the md may be freed in dm_put() at the end of this function.
715 * Or do dm_get() before calling this function and dm_put() later.
716 */
717static void rq_completed(struct mapped_device *md, int run_queue)
718{
719 int wakeup_waiters = 0;
720 struct request_queue *q = md->queue;
721 unsigned long flags;
722
723 spin_lock_irqsave(q->queue_lock, flags);
724 if (!queue_in_flight(q))
725 wakeup_waiters = 1;
726 spin_unlock_irqrestore(q->queue_lock, flags);
727
728 /* nudge anyone waiting on suspend queue */
729 if (wakeup_waiters)
730 wake_up(&md->wait);
731
732 if (run_queue)
733 blk_run_queue(q);
734
735 /*
736 * dm_put() must be at the end of this function. See the comment above
737 */
738 dm_put(md);
739}
740
741static void dm_unprep_request(struct request *rq)
742{
743 struct request *clone = rq->special;
744 struct dm_rq_target_io *tio = clone->end_io_data;
745
746 rq->special = NULL;
747 rq->cmd_flags &= ~REQ_DONTPREP;
748
749 blk_rq_unprep_clone(clone);
750 free_rq_tio(tio);
751}
752
753/*
754 * Requeue the original request of a clone.
755 */
756void dm_requeue_unmapped_request(struct request *clone)
757{
758 struct dm_rq_target_io *tio = clone->end_io_data;
759 struct mapped_device *md = tio->md;
760 struct request *rq = tio->orig;
761 struct request_queue *q = rq->q;
762 unsigned long flags;
763
764 dm_unprep_request(rq);
765
766 spin_lock_irqsave(q->queue_lock, flags);
767 if (elv_queue_empty(q))
768 blk_plug_device(q);
769 blk_requeue_request(q, rq);
770 spin_unlock_irqrestore(q->queue_lock, flags);
771
772 rq_completed(md, 0);
773}
774EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
775
776static void __stop_queue(struct request_queue *q)
777{
778 blk_stop_queue(q);
779}
780
781static void stop_queue(struct request_queue *q)
782{
783 unsigned long flags;
784
785 spin_lock_irqsave(q->queue_lock, flags);
786 __stop_queue(q);
787 spin_unlock_irqrestore(q->queue_lock, flags);
788}
789
790static void __start_queue(struct request_queue *q)
791{
792 if (blk_queue_stopped(q))
793 blk_start_queue(q);
794}
795
796static void start_queue(struct request_queue *q)
797{
798 unsigned long flags;
799
800 spin_lock_irqsave(q->queue_lock, flags);
801 __start_queue(q);
802 spin_unlock_irqrestore(q->queue_lock, flags);
803}
804
805/*
806 * Complete the clone and the original request.
807 * Must be called without queue lock.
808 */
809static void dm_end_request(struct request *clone, int error)
810{
811 struct dm_rq_target_io *tio = clone->end_io_data;
812 struct mapped_device *md = tio->md;
813 struct request *rq = tio->orig;
814
815 if (blk_pc_request(rq)) {
816 rq->errors = clone->errors;
817 rq->resid_len = clone->resid_len;
818
819 if (rq->sense)
820 /*
821 * We are using the sense buffer of the original
822 * request.
823 * So setting the length of the sense data is enough.
824 */
825 rq->sense_len = clone->sense_len;
826 }
827
828 BUG_ON(clone->bio);
829 free_rq_tio(tio);
830
831 blk_end_request_all(rq, error);
832
833 rq_completed(md, 1);
834}
835
836/*
837 * Request completion handler for request-based dm
838 */
839static void dm_softirq_done(struct request *rq)
840{
841 struct request *clone = rq->completion_data;
842 struct dm_rq_target_io *tio = clone->end_io_data;
843 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
844 int error = tio->error;
845
846 if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
847 error = rq_end_io(tio->ti, clone, error, &tio->info);
848
849 if (error <= 0)
850 /* The target wants to complete the I/O */
851 dm_end_request(clone, error);
852 else if (error == DM_ENDIO_INCOMPLETE)
853 /* The target will handle the I/O */
854 return;
855 else if (error == DM_ENDIO_REQUEUE)
856 /* The target wants to requeue the I/O */
857 dm_requeue_unmapped_request(clone);
858 else {
859 DMWARN("unimplemented target endio return value: %d", error);
860 BUG();
861 }
862}
863
864/*
865 * Complete the clone and the original request with the error status
866 * through softirq context.
867 */
868static void dm_complete_request(struct request *clone, int error)
869{
870 struct dm_rq_target_io *tio = clone->end_io_data;
871 struct request *rq = tio->orig;
872
873 tio->error = error;
874 rq->completion_data = clone;
875 blk_complete_request(rq);
876}
877
878/*
879 * Complete the not-mapped clone and the original request with the error status
880 * through softirq context.
881 * Target's rq_end_io() function isn't called.
882 * This may be used when the target's map_rq() function fails.
883 */
884void dm_kill_unmapped_request(struct request *clone, int error)
885{
886 struct dm_rq_target_io *tio = clone->end_io_data;
887 struct request *rq = tio->orig;
888
889 rq->cmd_flags |= REQ_FAILED;
890 dm_complete_request(clone, error);
891}
892EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
893
894/*
895 * Called with the queue lock held
896 */
897static void end_clone_request(struct request *clone, int error)
898{
899 /*
900 * For just cleaning up the information of the queue in which
901 * the clone was dispatched.
902 * The clone is *NOT* freed actually here because it is alloced from
903 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
904 */
905 __blk_put_request(clone->q, clone);
906
907 /*
908 * Actual request completion is done in a softirq context which doesn't
909 * hold the queue lock. Otherwise, deadlock could occur because:
910 * - another request may be submitted by the upper level driver
911 * of the stacking during the completion
912 * - the submission which requires queue lock may be done
913 * against this queue
914 */
915 dm_complete_request(clone, error);
916}
917
1da177e4
LT
918static sector_t max_io_len(struct mapped_device *md,
919 sector_t sector, struct dm_target *ti)
920{
921 sector_t offset = sector - ti->begin;
922 sector_t len = ti->len - offset;
923
924 /*
925 * Does the target need to split even further ?
926 */
927 if (ti->split_io) {
928 sector_t boundary;
929 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
930 - offset;
931 if (len > boundary)
932 len = boundary;
933 }
934
935 return len;
936}
937
938static void __map_bio(struct dm_target *ti, struct bio *clone,
028867ac 939 struct dm_target_io *tio)
1da177e4
LT
940{
941 int r;
2056a782 942 sector_t sector;
9faf400f 943 struct mapped_device *md;
1da177e4 944
1da177e4
LT
945 clone->bi_end_io = clone_endio;
946 clone->bi_private = tio;
947
948 /*
949 * Map the clone. If r == 0 we don't need to do
950 * anything, the target has assumed ownership of
951 * this io.
952 */
953 atomic_inc(&tio->io->io_count);
2056a782 954 sector = clone->bi_sector;
1da177e4 955 r = ti->type->map(ti, clone, &tio->info);
45cbcd79 956 if (r == DM_MAPIO_REMAPPED) {
1da177e4 957 /* the bio has been remapped so dispatch it */
2056a782 958
5f3ea37c 959 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
22a7c31a 960 tio->io->bio->bi_bdev->bd_dev, sector);
2056a782 961
1da177e4 962 generic_make_request(clone);
2e93ccc1
KU
963 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
964 /* error the io and bail out, or requeue it if needed */
9faf400f
SB
965 md = tio->io->md;
966 dec_pending(tio->io, r);
967 /*
968 * Store bio_set for cleanup.
969 */
970 clone->bi_private = md->bs;
1da177e4 971 bio_put(clone);
9faf400f 972 free_tio(md, tio);
45cbcd79
KU
973 } else if (r) {
974 DMWARN("unimplemented target map return value: %d", r);
975 BUG();
1da177e4
LT
976 }
977}
978
979struct clone_info {
980 struct mapped_device *md;
981 struct dm_table *map;
982 struct bio *bio;
983 struct dm_io *io;
984 sector_t sector;
985 sector_t sector_count;
986 unsigned short idx;
987};
988
3676347a
PO
989static void dm_bio_destructor(struct bio *bio)
990{
9faf400f
SB
991 struct bio_set *bs = bio->bi_private;
992
993 bio_free(bio, bs);
3676347a
PO
994}
995
1da177e4
LT
996/*
997 * Creates a little bio that is just does part of a bvec.
998 */
999static struct bio *split_bvec(struct bio *bio, sector_t sector,
1000 unsigned short idx, unsigned int offset,
9faf400f 1001 unsigned int len, struct bio_set *bs)
1da177e4
LT
1002{
1003 struct bio *clone;
1004 struct bio_vec *bv = bio->bi_io_vec + idx;
1005
9faf400f 1006 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
3676347a 1007 clone->bi_destructor = dm_bio_destructor;
1da177e4
LT
1008 *clone->bi_io_vec = *bv;
1009
1010 clone->bi_sector = sector;
1011 clone->bi_bdev = bio->bi_bdev;
af7e466a 1012 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1da177e4
LT
1013 clone->bi_vcnt = 1;
1014 clone->bi_size = to_bytes(len);
1015 clone->bi_io_vec->bv_offset = offset;
1016 clone->bi_io_vec->bv_len = clone->bi_size;
f3e1d26e 1017 clone->bi_flags |= 1 << BIO_CLONED;
1da177e4 1018
9c47008d 1019 if (bio_integrity(bio)) {
7878cba9 1020 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
9c47008d
MP
1021 bio_integrity_trim(clone,
1022 bio_sector_offset(bio, idx, offset), len);
1023 }
1024
1da177e4
LT
1025 return clone;
1026}
1027
1028/*
1029 * Creates a bio that consists of range of complete bvecs.
1030 */
1031static struct bio *clone_bio(struct bio *bio, sector_t sector,
1032 unsigned short idx, unsigned short bv_count,
9faf400f 1033 unsigned int len, struct bio_set *bs)
1da177e4
LT
1034{
1035 struct bio *clone;
1036
9faf400f
SB
1037 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1038 __bio_clone(clone, bio);
af7e466a 1039 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
9faf400f 1040 clone->bi_destructor = dm_bio_destructor;
1da177e4
LT
1041 clone->bi_sector = sector;
1042 clone->bi_idx = idx;
1043 clone->bi_vcnt = idx + bv_count;
1044 clone->bi_size = to_bytes(len);
1045 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1046
9c47008d 1047 if (bio_integrity(bio)) {
7878cba9 1048 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
9c47008d
MP
1049
1050 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1051 bio_integrity_trim(clone,
1052 bio_sector_offset(bio, idx, 0), len);
1053 }
1054
1da177e4
LT
1055 return clone;
1056}
1057
9015df24
AK
1058static struct dm_target_io *alloc_tio(struct clone_info *ci,
1059 struct dm_target *ti)
f9ab94ce 1060{
9015df24 1061 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
f9ab94ce
MP
1062
1063 tio->io = ci->io;
1064 tio->ti = ti;
f9ab94ce 1065 memset(&tio->info, 0, sizeof(tio->info));
9015df24
AK
1066
1067 return tio;
1068}
1069
1070static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1071 unsigned flush_nr)
1072{
1073 struct dm_target_io *tio = alloc_tio(ci, ti);
1074 struct bio *clone;
1075
f9ab94ce
MP
1076 tio->info.flush_request = flush_nr;
1077
1078 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1079 __bio_clone(clone, ci->bio);
1080 clone->bi_destructor = dm_bio_destructor;
1081
1082 __map_bio(ti, clone, tio);
1083}
1084
1085static int __clone_and_map_empty_barrier(struct clone_info *ci)
1086{
1087 unsigned target_nr = 0, flush_nr;
1088 struct dm_target *ti;
1089
1090 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1091 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1092 flush_nr++)
1093 __flush_target(ci, ti, flush_nr);
1094
1095 ci->sector_count = 0;
1096
1097 return 0;
1098}
1099
512875bd 1100static int __clone_and_map(struct clone_info *ci)
1da177e4
LT
1101{
1102 struct bio *clone, *bio = ci->bio;
512875bd
JN
1103 struct dm_target *ti;
1104 sector_t len = 0, max;
028867ac 1105 struct dm_target_io *tio;
1da177e4 1106
f9ab94ce
MP
1107 if (unlikely(bio_empty_barrier(bio)))
1108 return __clone_and_map_empty_barrier(ci);
1109
512875bd
JN
1110 ti = dm_table_find_target(ci->map, ci->sector);
1111 if (!dm_target_is_valid(ti))
1112 return -EIO;
1113
1114 max = max_io_len(ci->md, ci->sector, ti);
1115
1da177e4
LT
1116 /*
1117 * Allocate a target io object.
1118 */
9015df24 1119 tio = alloc_tio(ci, ti);
1da177e4
LT
1120
1121 if (ci->sector_count <= max) {
1122 /*
1123 * Optimise for the simple case where we can do all of
1124 * the remaining io with a single clone.
1125 */
1126 clone = clone_bio(bio, ci->sector, ci->idx,
9faf400f
SB
1127 bio->bi_vcnt - ci->idx, ci->sector_count,
1128 ci->md->bs);
1da177e4
LT
1129 __map_bio(ti, clone, tio);
1130 ci->sector_count = 0;
1131
1132 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1133 /*
1134 * There are some bvecs that don't span targets.
1135 * Do as many of these as possible.
1136 */
1137 int i;
1138 sector_t remaining = max;
1139 sector_t bv_len;
1140
1141 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1142 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1143
1144 if (bv_len > remaining)
1145 break;
1146
1147 remaining -= bv_len;
1148 len += bv_len;
1149 }
1150
9faf400f
SB
1151 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1152 ci->md->bs);
1da177e4
LT
1153 __map_bio(ti, clone, tio);
1154
1155 ci->sector += len;
1156 ci->sector_count -= len;
1157 ci->idx = i;
1158
1159 } else {
1160 /*
d2044a94 1161 * Handle a bvec that must be split between two or more targets.
1da177e4
LT
1162 */
1163 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
d2044a94
AK
1164 sector_t remaining = to_sector(bv->bv_len);
1165 unsigned int offset = 0;
1da177e4 1166
d2044a94
AK
1167 do {
1168 if (offset) {
1169 ti = dm_table_find_target(ci->map, ci->sector);
512875bd
JN
1170 if (!dm_target_is_valid(ti))
1171 return -EIO;
1172
d2044a94 1173 max = max_io_len(ci->md, ci->sector, ti);
1da177e4 1174
9015df24 1175 tio = alloc_tio(ci, ti);
d2044a94
AK
1176 }
1177
1178 len = min(remaining, max);
1179
1180 clone = split_bvec(bio, ci->sector, ci->idx,
9faf400f
SB
1181 bv->bv_offset + offset, len,
1182 ci->md->bs);
d2044a94
AK
1183
1184 __map_bio(ti, clone, tio);
1185
1186 ci->sector += len;
1187 ci->sector_count -= len;
1188 offset += to_bytes(len);
1189 } while (remaining -= len);
1da177e4 1190
1da177e4
LT
1191 ci->idx++;
1192 }
512875bd
JN
1193
1194 return 0;
1da177e4
LT
1195}
1196
1197/*
8a53c28d 1198 * Split the bio into several clones and submit it to targets.
1da177e4 1199 */
f0b9a450 1200static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1da177e4
LT
1201{
1202 struct clone_info ci;
512875bd 1203 int error = 0;
1da177e4
LT
1204
1205 ci.map = dm_get_table(md);
f0b9a450 1206 if (unlikely(!ci.map)) {
af7e466a
MP
1207 if (!bio_barrier(bio))
1208 bio_io_error(bio);
1209 else
5aa2781d
MP
1210 if (!md->barrier_error)
1211 md->barrier_error = -EIO;
f0b9a450
MP
1212 return;
1213 }
692d0eb9 1214
1da177e4
LT
1215 ci.md = md;
1216 ci.bio = bio;
1217 ci.io = alloc_io(md);
1218 ci.io->error = 0;
1219 atomic_set(&ci.io->io_count, 1);
1220 ci.io->bio = bio;
1221 ci.io->md = md;
1222 ci.sector = bio->bi_sector;
1223 ci.sector_count = bio_sectors(bio);
f9ab94ce
MP
1224 if (unlikely(bio_empty_barrier(bio)))
1225 ci.sector_count = 1;
1da177e4
LT
1226 ci.idx = bio->bi_idx;
1227
3eaf840e 1228 start_io_acct(ci.io);
512875bd
JN
1229 while (ci.sector_count && !error)
1230 error = __clone_and_map(&ci);
1da177e4
LT
1231
1232 /* drop the extra reference count */
512875bd 1233 dec_pending(ci.io, error);
1da177e4
LT
1234 dm_table_put(ci.map);
1235}
1236/*-----------------------------------------------------------------
1237 * CRUD END
1238 *---------------------------------------------------------------*/
1239
f6fccb12
MB
1240static int dm_merge_bvec(struct request_queue *q,
1241 struct bvec_merge_data *bvm,
1242 struct bio_vec *biovec)
1243{
1244 struct mapped_device *md = q->queuedata;
1245 struct dm_table *map = dm_get_table(md);
1246 struct dm_target *ti;
1247 sector_t max_sectors;
5037108a 1248 int max_size = 0;
f6fccb12
MB
1249
1250 if (unlikely(!map))
5037108a 1251 goto out;
f6fccb12
MB
1252
1253 ti = dm_table_find_target(map, bvm->bi_sector);
b01cd5ac
MP
1254 if (!dm_target_is_valid(ti))
1255 goto out_table;
f6fccb12
MB
1256
1257 /*
1258 * Find maximum amount of I/O that won't need splitting
1259 */
1260 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1261 (sector_t) BIO_MAX_SECTORS);
1262 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1263 if (max_size < 0)
1264 max_size = 0;
1265
1266 /*
1267 * merge_bvec_fn() returns number of bytes
1268 * it can accept at this offset
1269 * max is precomputed maximal io size
1270 */
1271 if (max_size && ti->type->merge)
1272 max_size = ti->type->merge(ti, bvm, biovec, max_size);
8cbeb67a
MP
1273 /*
1274 * If the target doesn't support merge method and some of the devices
1275 * provided their merge_bvec method (we know this by looking at
1276 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1277 * entries. So always set max_size to 0, and the code below allows
1278 * just one page.
1279 */
1280 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1281
1282 max_size = 0;
f6fccb12 1283
b01cd5ac 1284out_table:
5037108a
MP
1285 dm_table_put(map);
1286
1287out:
f6fccb12
MB
1288 /*
1289 * Always allow an entire first page
1290 */
1291 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1292 max_size = biovec->bv_len;
1293
f6fccb12
MB
1294 return max_size;
1295}
1296
1da177e4
LT
1297/*
1298 * The request function that just remaps the bio built up by
1299 * dm_merge_bvec.
1300 */
cec47e3d 1301static int _dm_request(struct request_queue *q, struct bio *bio)
1da177e4 1302{
12f03a49 1303 int rw = bio_data_dir(bio);
1da177e4 1304 struct mapped_device *md = q->queuedata;
c9959059 1305 int cpu;
1da177e4 1306
2ca3310e 1307 down_read(&md->io_lock);
1da177e4 1308
074a7aca
TH
1309 cpu = part_stat_lock();
1310 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1311 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1312 part_stat_unlock();
12f03a49 1313
1da177e4 1314 /*
1eb787ec
AK
1315 * If we're suspended or the thread is processing barriers
1316 * we have to queue this io for later.
1da177e4 1317 */
af7e466a
MP
1318 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1319 unlikely(bio_barrier(bio))) {
2ca3310e 1320 up_read(&md->io_lock);
1da177e4 1321
54d9a1b4
AK
1322 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1323 bio_rw(bio) == READA) {
1324 bio_io_error(bio);
1325 return 0;
1326 }
1da177e4 1327
92c63902 1328 queue_io(md, bio);
1da177e4 1329
92c63902 1330 return 0;
1da177e4
LT
1331 }
1332
f0b9a450 1333 __split_and_process_bio(md, bio);
2ca3310e 1334 up_read(&md->io_lock);
f0b9a450 1335 return 0;
1da177e4
LT
1336}
1337
cec47e3d
KU
1338static int dm_make_request(struct request_queue *q, struct bio *bio)
1339{
1340 struct mapped_device *md = q->queuedata;
1341
1342 if (unlikely(bio_barrier(bio))) {
1343 bio_endio(bio, -EOPNOTSUPP);
1344 return 0;
1345 }
1346
1347 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1348}
1349
1350static int dm_request_based(struct mapped_device *md)
1351{
1352 return blk_queue_stackable(md->queue);
1353}
1354
1355static int dm_request(struct request_queue *q, struct bio *bio)
1356{
1357 struct mapped_device *md = q->queuedata;
1358
1359 if (dm_request_based(md))
1360 return dm_make_request(q, bio);
1361
1362 return _dm_request(q, bio);
1363}
1364
1365void dm_dispatch_request(struct request *rq)
1366{
1367 int r;
1368
1369 if (blk_queue_io_stat(rq->q))
1370 rq->cmd_flags |= REQ_IO_STAT;
1371
1372 rq->start_time = jiffies;
1373 r = blk_insert_cloned_request(rq->q, rq);
1374 if (r)
1375 dm_complete_request(rq, r);
1376}
1377EXPORT_SYMBOL_GPL(dm_dispatch_request);
1378
1379static void dm_rq_bio_destructor(struct bio *bio)
1380{
1381 struct dm_rq_clone_bio_info *info = bio->bi_private;
1382 struct mapped_device *md = info->tio->md;
1383
1384 free_bio_info(info);
1385 bio_free(bio, md->bs);
1386}
1387
1388static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1389 void *data)
1390{
1391 struct dm_rq_target_io *tio = data;
1392 struct mapped_device *md = tio->md;
1393 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1394
1395 if (!info)
1396 return -ENOMEM;
1397
1398 info->orig = bio_orig;
1399 info->tio = tio;
1400 bio->bi_end_io = end_clone_bio;
1401 bio->bi_private = info;
1402 bio->bi_destructor = dm_rq_bio_destructor;
1403
1404 return 0;
1405}
1406
1407static int setup_clone(struct request *clone, struct request *rq,
1408 struct dm_rq_target_io *tio)
1409{
1410 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1411 dm_rq_bio_constructor, tio);
1412
1413 if (r)
1414 return r;
1415
1416 clone->cmd = rq->cmd;
1417 clone->cmd_len = rq->cmd_len;
1418 clone->sense = rq->sense;
1419 clone->buffer = rq->buffer;
1420 clone->end_io = end_clone_request;
1421 clone->end_io_data = tio;
1422
1423 return 0;
1424}
1425
1426static int dm_rq_flush_suspending(struct mapped_device *md)
1427{
1428 return !md->suspend_rq.special;
1429}
1430
1431/*
1432 * Called with the queue lock held.
1433 */
1434static int dm_prep_fn(struct request_queue *q, struct request *rq)
1435{
1436 struct mapped_device *md = q->queuedata;
1437 struct dm_rq_target_io *tio;
1438 struct request *clone;
1439
1440 if (unlikely(rq == &md->suspend_rq)) {
1441 if (dm_rq_flush_suspending(md))
1442 return BLKPREP_OK;
1443 else
1444 /* The flush suspend was interrupted */
1445 return BLKPREP_KILL;
1446 }
1447
1448 if (unlikely(rq->special)) {
1449 DMWARN("Already has something in rq->special.");
1450 return BLKPREP_KILL;
1451 }
1452
1453 tio = alloc_rq_tio(md); /* Only one for each original request */
1454 if (!tio)
1455 /* -ENOMEM */
1456 return BLKPREP_DEFER;
1457
1458 tio->md = md;
1459 tio->ti = NULL;
1460 tio->orig = rq;
1461 tio->error = 0;
1462 memset(&tio->info, 0, sizeof(tio->info));
1463
1464 clone = &tio->clone;
1465 if (setup_clone(clone, rq, tio)) {
1466 /* -ENOMEM */
1467 free_rq_tio(tio);
1468 return BLKPREP_DEFER;
1469 }
1470
1471 rq->special = clone;
1472 rq->cmd_flags |= REQ_DONTPREP;
1473
1474 return BLKPREP_OK;
1475}
1476
1477static void map_request(struct dm_target *ti, struct request *rq,
1478 struct mapped_device *md)
1479{
1480 int r;
1481 struct request *clone = rq->special;
1482 struct dm_rq_target_io *tio = clone->end_io_data;
1483
1484 /*
1485 * Hold the md reference here for the in-flight I/O.
1486 * We can't rely on the reference count by device opener,
1487 * because the device may be closed during the request completion
1488 * when all bios are completed.
1489 * See the comment in rq_completed() too.
1490 */
1491 dm_get(md);
1492
1493 tio->ti = ti;
1494 r = ti->type->map_rq(ti, clone, &tio->info);
1495 switch (r) {
1496 case DM_MAPIO_SUBMITTED:
1497 /* The target has taken the I/O to submit by itself later */
1498 break;
1499 case DM_MAPIO_REMAPPED:
1500 /* The target has remapped the I/O so dispatch it */
1501 dm_dispatch_request(clone);
1502 break;
1503 case DM_MAPIO_REQUEUE:
1504 /* The target wants to requeue the I/O */
1505 dm_requeue_unmapped_request(clone);
1506 break;
1507 default:
1508 if (r > 0) {
1509 DMWARN("unimplemented target map return value: %d", r);
1510 BUG();
1511 }
1512
1513 /* The target wants to complete the I/O */
1514 dm_kill_unmapped_request(clone, r);
1515 break;
1516 }
1517}
1518
1519/*
1520 * q->request_fn for request-based dm.
1521 * Called with the queue lock held.
1522 */
1523static void dm_request_fn(struct request_queue *q)
1524{
1525 struct mapped_device *md = q->queuedata;
1526 struct dm_table *map = dm_get_table(md);
1527 struct dm_target *ti;
1528 struct request *rq;
1529
1530 /*
1531 * For noflush suspend, check blk_queue_stopped() to immediately
1532 * quit I/O dispatching.
1533 */
1534 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1535 rq = blk_peek_request(q);
1536 if (!rq)
1537 goto plug_and_out;
1538
1539 if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1540 if (queue_in_flight(q))
1541 /* Not quiet yet. Wait more */
1542 goto plug_and_out;
1543
1544 /* This device should be quiet now */
1545 __stop_queue(q);
1546 blk_start_request(rq);
1547 __blk_end_request_all(rq, 0);
1548 wake_up(&md->wait);
1549 goto out;
1550 }
1551
1552 ti = dm_table_find_target(map, blk_rq_pos(rq));
1553 if (ti->type->busy && ti->type->busy(ti))
1554 goto plug_and_out;
1555
1556 blk_start_request(rq);
1557 spin_unlock(q->queue_lock);
1558 map_request(ti, rq, md);
1559 spin_lock_irq(q->queue_lock);
1560 }
1561
1562 goto out;
1563
1564plug_and_out:
1565 if (!elv_queue_empty(q))
1566 /* Some requests still remain, retry later */
1567 blk_plug_device(q);
1568
1569out:
1570 dm_table_put(map);
1571
1572 return;
1573}
1574
1575int dm_underlying_device_busy(struct request_queue *q)
1576{
1577 return blk_lld_busy(q);
1578}
1579EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1580
1581static int dm_lld_busy(struct request_queue *q)
1582{
1583 int r;
1584 struct mapped_device *md = q->queuedata;
1585 struct dm_table *map = dm_get_table(md);
1586
1587 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1588 r = 1;
1589 else
1590 r = dm_table_any_busy_target(map);
1591
1592 dm_table_put(map);
1593
1594 return r;
1595}
1596
165125e1 1597static void dm_unplug_all(struct request_queue *q)
1da177e4
LT
1598{
1599 struct mapped_device *md = q->queuedata;
1600 struct dm_table *map = dm_get_table(md);
1601
1602 if (map) {
cec47e3d
KU
1603 if (dm_request_based(md))
1604 generic_unplug_device(q);
1605
1da177e4
LT
1606 dm_table_unplug_all(map);
1607 dm_table_put(map);
1608 }
1609}
1610
1611static int dm_any_congested(void *congested_data, int bdi_bits)
1612{
8a57dfc6
CS
1613 int r = bdi_bits;
1614 struct mapped_device *md = congested_data;
1615 struct dm_table *map;
1da177e4 1616
1eb787ec 1617 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
8a57dfc6
CS
1618 map = dm_get_table(md);
1619 if (map) {
cec47e3d
KU
1620 /*
1621 * Request-based dm cares about only own queue for
1622 * the query about congestion status of request_queue
1623 */
1624 if (dm_request_based(md))
1625 r = md->queue->backing_dev_info.state &
1626 bdi_bits;
1627 else
1628 r = dm_table_any_congested(map, bdi_bits);
1629
8a57dfc6
CS
1630 dm_table_put(map);
1631 }
1632 }
1633
1da177e4
LT
1634 return r;
1635}
1636
1637/*-----------------------------------------------------------------
1638 * An IDR is used to keep track of allocated minor numbers.
1639 *---------------------------------------------------------------*/
1da177e4
LT
1640static DEFINE_IDR(_minor_idr);
1641
2b06cfff 1642static void free_minor(int minor)
1da177e4 1643{
f32c10b0 1644 spin_lock(&_minor_lock);
1da177e4 1645 idr_remove(&_minor_idr, minor);
f32c10b0 1646 spin_unlock(&_minor_lock);
1da177e4
LT
1647}
1648
1649/*
1650 * See if the device with a specific minor # is free.
1651 */
cf13ab8e 1652static int specific_minor(int minor)
1da177e4
LT
1653{
1654 int r, m;
1655
1656 if (minor >= (1 << MINORBITS))
1657 return -EINVAL;
1658
62f75c2f
JM
1659 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1660 if (!r)
1661 return -ENOMEM;
1662
f32c10b0 1663 spin_lock(&_minor_lock);
1da177e4
LT
1664
1665 if (idr_find(&_minor_idr, minor)) {
1666 r = -EBUSY;
1667 goto out;
1668 }
1669
ba61fdd1 1670 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
62f75c2f 1671 if (r)
1da177e4 1672 goto out;
1da177e4
LT
1673
1674 if (m != minor) {
1675 idr_remove(&_minor_idr, m);
1676 r = -EBUSY;
1677 goto out;
1678 }
1679
1680out:
f32c10b0 1681 spin_unlock(&_minor_lock);
1da177e4
LT
1682 return r;
1683}
1684
cf13ab8e 1685static int next_free_minor(int *minor)
1da177e4 1686{
2b06cfff 1687 int r, m;
1da177e4 1688
1da177e4 1689 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
62f75c2f
JM
1690 if (!r)
1691 return -ENOMEM;
1692
f32c10b0 1693 spin_lock(&_minor_lock);
1da177e4 1694
ba61fdd1 1695 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
cf13ab8e 1696 if (r)
1da177e4 1697 goto out;
1da177e4
LT
1698
1699 if (m >= (1 << MINORBITS)) {
1700 idr_remove(&_minor_idr, m);
1701 r = -ENOSPC;
1702 goto out;
1703 }
1704
1705 *minor = m;
1706
1707out:
f32c10b0 1708 spin_unlock(&_minor_lock);
1da177e4
LT
1709 return r;
1710}
1711
1712static struct block_device_operations dm_blk_dops;
1713
53d5914f
MP
1714static void dm_wq_work(struct work_struct *work);
1715
1da177e4
LT
1716/*
1717 * Allocate and initialise a blank device with a given minor.
1718 */
2b06cfff 1719static struct mapped_device *alloc_dev(int minor)
1da177e4
LT
1720{
1721 int r;
cf13ab8e 1722 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
ba61fdd1 1723 void *old_md;
1da177e4
LT
1724
1725 if (!md) {
1726 DMWARN("unable to allocate device, out of memory.");
1727 return NULL;
1728 }
1729
10da4f79 1730 if (!try_module_get(THIS_MODULE))
6ed7ade8 1731 goto bad_module_get;
10da4f79 1732
1da177e4 1733 /* get a minor number for the dev */
2b06cfff 1734 if (minor == DM_ANY_MINOR)
cf13ab8e 1735 r = next_free_minor(&minor);
2b06cfff 1736 else
cf13ab8e 1737 r = specific_minor(minor);
1da177e4 1738 if (r < 0)
6ed7ade8 1739 goto bad_minor;
1da177e4 1740
2ca3310e 1741 init_rwsem(&md->io_lock);
e61290a4 1742 mutex_init(&md->suspend_lock);
022c2611 1743 spin_lock_init(&md->deferred_lock);
1da177e4
LT
1744 rwlock_init(&md->map_lock);
1745 atomic_set(&md->holders, 1);
5c6bd75d 1746 atomic_set(&md->open_count, 0);
1da177e4 1747 atomic_set(&md->event_nr, 0);
7a8c3d3b
MA
1748 atomic_set(&md->uevent_seq, 0);
1749 INIT_LIST_HEAD(&md->uevent_list);
1750 spin_lock_init(&md->uevent_lock);
1da177e4 1751
e6ee8c0b 1752 md->queue = blk_init_queue(dm_request_fn, NULL);
1da177e4 1753 if (!md->queue)
6ed7ade8 1754 goto bad_queue;
1da177e4 1755
e6ee8c0b
KU
1756 /*
1757 * Request-based dm devices cannot be stacked on top of bio-based dm
1758 * devices. The type of this dm device has not been decided yet,
1759 * although we initialized the queue using blk_init_queue().
1760 * The type is decided at the first table loading time.
1761 * To prevent problematic device stacking, clear the queue flag
1762 * for request stacking support until then.
1763 *
1764 * This queue is new, so no concurrency on the queue_flags.
1765 */
1766 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1767 md->saved_make_request_fn = md->queue->make_request_fn;
1da177e4
LT
1768 md->queue->queuedata = md;
1769 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1770 md->queue->backing_dev_info.congested_data = md;
1771 blk_queue_make_request(md->queue, dm_request);
daef265f 1772 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1da177e4 1773 md->queue->unplug_fn = dm_unplug_all;
f6fccb12 1774 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
e6ee8c0b
KU
1775 blk_queue_softirq_done(md->queue, dm_softirq_done);
1776 blk_queue_prep_rq(md->queue, dm_prep_fn);
1777 blk_queue_lld_busy(md->queue, dm_lld_busy);
9faf400f 1778
1da177e4
LT
1779 md->disk = alloc_disk(1);
1780 if (!md->disk)
6ed7ade8 1781 goto bad_disk;
1da177e4 1782
f0b04115
JM
1783 atomic_set(&md->pending, 0);
1784 init_waitqueue_head(&md->wait);
53d5914f 1785 INIT_WORK(&md->work, dm_wq_work);
f0b04115
JM
1786 init_waitqueue_head(&md->eventq);
1787
1da177e4
LT
1788 md->disk->major = _major;
1789 md->disk->first_minor = minor;
1790 md->disk->fops = &dm_blk_dops;
1791 md->disk->queue = md->queue;
1792 md->disk->private_data = md;
1793 sprintf(md->disk->disk_name, "dm-%d", minor);
1794 add_disk(md->disk);
7e51f257 1795 format_dev_t(md->name, MKDEV(_major, minor));
1da177e4 1796
304f3f6a
MB
1797 md->wq = create_singlethread_workqueue("kdmflush");
1798 if (!md->wq)
1799 goto bad_thread;
1800
32a926da
MP
1801 md->bdev = bdget_disk(md->disk, 0);
1802 if (!md->bdev)
1803 goto bad_bdev;
1804
ba61fdd1 1805 /* Populate the mapping, nobody knows we exist yet */
f32c10b0 1806 spin_lock(&_minor_lock);
ba61fdd1 1807 old_md = idr_replace(&_minor_idr, md, minor);
f32c10b0 1808 spin_unlock(&_minor_lock);
ba61fdd1
JM
1809
1810 BUG_ON(old_md != MINOR_ALLOCED);
1811
1da177e4
LT
1812 return md;
1813
32a926da
MP
1814bad_bdev:
1815 destroy_workqueue(md->wq);
304f3f6a
MB
1816bad_thread:
1817 put_disk(md->disk);
6ed7ade8 1818bad_disk:
1312f40e 1819 blk_cleanup_queue(md->queue);
6ed7ade8 1820bad_queue:
1da177e4 1821 free_minor(minor);
6ed7ade8 1822bad_minor:
10da4f79 1823 module_put(THIS_MODULE);
6ed7ade8 1824bad_module_get:
1da177e4
LT
1825 kfree(md);
1826 return NULL;
1827}
1828
ae9da83f
JN
1829static void unlock_fs(struct mapped_device *md);
1830
1da177e4
LT
1831static void free_dev(struct mapped_device *md)
1832{
f331c029 1833 int minor = MINOR(disk_devt(md->disk));
63d94e48 1834
32a926da
MP
1835 unlock_fs(md);
1836 bdput(md->bdev);
304f3f6a 1837 destroy_workqueue(md->wq);
e6ee8c0b
KU
1838 if (md->tio_pool)
1839 mempool_destroy(md->tio_pool);
1840 if (md->io_pool)
1841 mempool_destroy(md->io_pool);
1842 if (md->bs)
1843 bioset_free(md->bs);
9c47008d 1844 blk_integrity_unregister(md->disk);
1da177e4 1845 del_gendisk(md->disk);
63d94e48 1846 free_minor(minor);
fba9f90e
JM
1847
1848 spin_lock(&_minor_lock);
1849 md->disk->private_data = NULL;
1850 spin_unlock(&_minor_lock);
1851
1da177e4 1852 put_disk(md->disk);
1312f40e 1853 blk_cleanup_queue(md->queue);
10da4f79 1854 module_put(THIS_MODULE);
1da177e4
LT
1855 kfree(md);
1856}
1857
e6ee8c0b
KU
1858static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1859{
1860 struct dm_md_mempools *p;
1861
1862 if (md->io_pool && md->tio_pool && md->bs)
1863 /* the md already has necessary mempools */
1864 goto out;
1865
1866 p = dm_table_get_md_mempools(t);
1867 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1868
1869 md->io_pool = p->io_pool;
1870 p->io_pool = NULL;
1871 md->tio_pool = p->tio_pool;
1872 p->tio_pool = NULL;
1873 md->bs = p->bs;
1874 p->bs = NULL;
1875
1876out:
1877 /* mempool bind completed, now no need any mempools in the table */
1878 dm_table_free_md_mempools(t);
1879}
1880
1da177e4
LT
1881/*
1882 * Bind a table to the device.
1883 */
1884static void event_callback(void *context)
1885{
7a8c3d3b
MA
1886 unsigned long flags;
1887 LIST_HEAD(uevents);
1da177e4
LT
1888 struct mapped_device *md = (struct mapped_device *) context;
1889
7a8c3d3b
MA
1890 spin_lock_irqsave(&md->uevent_lock, flags);
1891 list_splice_init(&md->uevent_list, &uevents);
1892 spin_unlock_irqrestore(&md->uevent_lock, flags);
1893
ed9e1982 1894 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
7a8c3d3b 1895
1da177e4
LT
1896 atomic_inc(&md->event_nr);
1897 wake_up(&md->eventq);
1898}
1899
4e90188b 1900static void __set_size(struct mapped_device *md, sector_t size)
1da177e4 1901{
4e90188b 1902 set_capacity(md->disk, size);
1da177e4 1903
db8fef4f
MP
1904 mutex_lock(&md->bdev->bd_inode->i_mutex);
1905 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1906 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1da177e4
LT
1907}
1908
754c5fc7
MS
1909static int __bind(struct mapped_device *md, struct dm_table *t,
1910 struct queue_limits *limits)
1da177e4 1911{
165125e1 1912 struct request_queue *q = md->queue;
1da177e4 1913 sector_t size;
523d9297 1914 unsigned long flags;
1da177e4
LT
1915
1916 size = dm_table_get_size(t);
3ac51e74
DW
1917
1918 /*
1919 * Wipe any geometry if the size of the table changed.
1920 */
1921 if (size != get_capacity(md->disk))
1922 memset(&md->geometry, 0, sizeof(md->geometry));
1923
32a926da 1924 __set_size(md, size);
d5816876
MP
1925
1926 if (!size) {
1927 dm_table_destroy(t);
1da177e4 1928 return 0;
d5816876 1929 }
1da177e4 1930
2ca3310e
AK
1931 dm_table_event_callback(t, event_callback, md);
1932
e6ee8c0b
KU
1933 /*
1934 * The queue hasn't been stopped yet, if the old table type wasn't
1935 * for request-based during suspension. So stop it to prevent
1936 * I/O mapping before resume.
1937 * This must be done before setting the queue restrictions,
1938 * because request-based dm may be run just after the setting.
1939 */
1940 if (dm_table_request_based(t) && !blk_queue_stopped(q))
1941 stop_queue(q);
1942
1943 __bind_mempools(md, t);
1944
523d9297 1945 write_lock_irqsave(&md->map_lock, flags);
1da177e4 1946 md->map = t;
754c5fc7 1947 dm_table_set_restrictions(t, q, limits);
523d9297 1948 write_unlock_irqrestore(&md->map_lock, flags);
1da177e4 1949
1da177e4
LT
1950 return 0;
1951}
1952
1953static void __unbind(struct mapped_device *md)
1954{
1955 struct dm_table *map = md->map;
523d9297 1956 unsigned long flags;
1da177e4
LT
1957
1958 if (!map)
1959 return;
1960
1961 dm_table_event_callback(map, NULL, NULL);
523d9297 1962 write_lock_irqsave(&md->map_lock, flags);
1da177e4 1963 md->map = NULL;
523d9297 1964 write_unlock_irqrestore(&md->map_lock, flags);
d5816876 1965 dm_table_destroy(map);
1da177e4
LT
1966}
1967
1968/*
1969 * Constructor for a new device.
1970 */
2b06cfff 1971int dm_create(int minor, struct mapped_device **result)
1da177e4
LT
1972{
1973 struct mapped_device *md;
1974
2b06cfff 1975 md = alloc_dev(minor);
1da177e4
LT
1976 if (!md)
1977 return -ENXIO;
1978
784aae73
MB
1979 dm_sysfs_init(md);
1980
1da177e4
LT
1981 *result = md;
1982 return 0;
1983}
1984
637842cf 1985static struct mapped_device *dm_find_md(dev_t dev)
1da177e4
LT
1986{
1987 struct mapped_device *md;
1da177e4
LT
1988 unsigned minor = MINOR(dev);
1989
1990 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1991 return NULL;
1992
f32c10b0 1993 spin_lock(&_minor_lock);
1da177e4
LT
1994
1995 md = idr_find(&_minor_idr, minor);
fba9f90e 1996 if (md && (md == MINOR_ALLOCED ||
f331c029 1997 (MINOR(disk_devt(dm_disk(md))) != minor) ||
17b2f66f 1998 test_bit(DMF_FREEING, &md->flags))) {
637842cf 1999 md = NULL;
fba9f90e
JM
2000 goto out;
2001 }
1da177e4 2002
fba9f90e 2003out:
f32c10b0 2004 spin_unlock(&_minor_lock);
1da177e4 2005
637842cf
DT
2006 return md;
2007}
2008
d229a958
DT
2009struct mapped_device *dm_get_md(dev_t dev)
2010{
2011 struct mapped_device *md = dm_find_md(dev);
2012
2013 if (md)
2014 dm_get(md);
2015
2016 return md;
2017}
2018
9ade92a9 2019void *dm_get_mdptr(struct mapped_device *md)
637842cf 2020{
9ade92a9 2021 return md->interface_ptr;
1da177e4
LT
2022}
2023
2024void dm_set_mdptr(struct mapped_device *md, void *ptr)
2025{
2026 md->interface_ptr = ptr;
2027}
2028
2029void dm_get(struct mapped_device *md)
2030{
2031 atomic_inc(&md->holders);
2032}
2033
72d94861
AK
2034const char *dm_device_name(struct mapped_device *md)
2035{
2036 return md->name;
2037}
2038EXPORT_SYMBOL_GPL(dm_device_name);
2039
1da177e4
LT
2040void dm_put(struct mapped_device *md)
2041{
1134e5ae 2042 struct dm_table *map;
1da177e4 2043
fba9f90e
JM
2044 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2045
f32c10b0 2046 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1134e5ae 2047 map = dm_get_table(md);
f331c029
TH
2048 idr_replace(&_minor_idr, MINOR_ALLOCED,
2049 MINOR(disk_devt(dm_disk(md))));
fba9f90e 2050 set_bit(DMF_FREEING, &md->flags);
f32c10b0 2051 spin_unlock(&_minor_lock);
cf222b37 2052 if (!dm_suspended(md)) {
1da177e4
LT
2053 dm_table_presuspend_targets(map);
2054 dm_table_postsuspend_targets(map);
2055 }
784aae73 2056 dm_sysfs_exit(md);
1134e5ae 2057 dm_table_put(map);
a1b51e98 2058 __unbind(md);
1da177e4
LT
2059 free_dev(md);
2060 }
1da177e4 2061}
79eb885c 2062EXPORT_SYMBOL_GPL(dm_put);
1da177e4 2063
401600df 2064static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
46125c1c
MB
2065{
2066 int r = 0;
b44ebeb0 2067 DECLARE_WAITQUEUE(wait, current);
cec47e3d
KU
2068 struct request_queue *q = md->queue;
2069 unsigned long flags;
b44ebeb0
MP
2070
2071 dm_unplug_all(md->queue);
2072
2073 add_wait_queue(&md->wait, &wait);
46125c1c
MB
2074
2075 while (1) {
401600df 2076 set_current_state(interruptible);
46125c1c
MB
2077
2078 smp_mb();
cec47e3d
KU
2079 if (dm_request_based(md)) {
2080 spin_lock_irqsave(q->queue_lock, flags);
2081 if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2082 spin_unlock_irqrestore(q->queue_lock, flags);
2083 break;
2084 }
2085 spin_unlock_irqrestore(q->queue_lock, flags);
2086 } else if (!atomic_read(&md->pending))
46125c1c
MB
2087 break;
2088
401600df
MP
2089 if (interruptible == TASK_INTERRUPTIBLE &&
2090 signal_pending(current)) {
46125c1c
MB
2091 r = -EINTR;
2092 break;
2093 }
2094
2095 io_schedule();
2096 }
2097 set_current_state(TASK_RUNNING);
2098
b44ebeb0
MP
2099 remove_wait_queue(&md->wait, &wait);
2100
46125c1c
MB
2101 return r;
2102}
2103
531fe963 2104static void dm_flush(struct mapped_device *md)
af7e466a
MP
2105{
2106 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
52b1fd5a
MP
2107
2108 bio_init(&md->barrier_bio);
2109 md->barrier_bio.bi_bdev = md->bdev;
2110 md->barrier_bio.bi_rw = WRITE_BARRIER;
2111 __split_and_process_bio(md, &md->barrier_bio);
2112
2113 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
af7e466a
MP
2114}
2115
2116static void process_barrier(struct mapped_device *md, struct bio *bio)
2117{
5aa2781d
MP
2118 md->barrier_error = 0;
2119
531fe963 2120 dm_flush(md);
af7e466a 2121
5aa2781d
MP
2122 if (!bio_empty_barrier(bio)) {
2123 __split_and_process_bio(md, bio);
2124 dm_flush(md);
af7e466a
MP
2125 }
2126
af7e466a 2127 if (md->barrier_error != DM_ENDIO_REQUEUE)
531fe963 2128 bio_endio(bio, md->barrier_error);
2761e95f
MP
2129 else {
2130 spin_lock_irq(&md->deferred_lock);
2131 bio_list_add_head(&md->deferred, bio);
2132 spin_unlock_irq(&md->deferred_lock);
2133 }
af7e466a
MP
2134}
2135
1da177e4
LT
2136/*
2137 * Process the deferred bios
2138 */
ef208587 2139static void dm_wq_work(struct work_struct *work)
1da177e4 2140{
ef208587
MP
2141 struct mapped_device *md = container_of(work, struct mapped_device,
2142 work);
6d6f10df 2143 struct bio *c;
1da177e4 2144
ef208587
MP
2145 down_write(&md->io_lock);
2146
3b00b203 2147 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
df12ee99
AK
2148 spin_lock_irq(&md->deferred_lock);
2149 c = bio_list_pop(&md->deferred);
2150 spin_unlock_irq(&md->deferred_lock);
2151
2152 if (!c) {
1eb787ec 2153 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
df12ee99
AK
2154 break;
2155 }
022c2611 2156
3b00b203
MP
2157 up_write(&md->io_lock);
2158
e6ee8c0b
KU
2159 if (dm_request_based(md))
2160 generic_make_request(c);
2161 else {
2162 if (bio_barrier(c))
2163 process_barrier(md, c);
2164 else
2165 __split_and_process_bio(md, c);
2166 }
3b00b203
MP
2167
2168 down_write(&md->io_lock);
022c2611 2169 }
73d410c0 2170
ef208587 2171 up_write(&md->io_lock);
1da177e4
LT
2172}
2173
9a1fb464 2174static void dm_queue_flush(struct mapped_device *md)
304f3f6a 2175{
3b00b203
MP
2176 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2177 smp_mb__after_clear_bit();
53d5914f 2178 queue_work(md->wq, &md->work);
304f3f6a
MB
2179}
2180
1da177e4
LT
2181/*
2182 * Swap in a new table (destroying old one).
2183 */
2184int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2185{
754c5fc7 2186 struct queue_limits limits;
93c534ae 2187 int r = -EINVAL;
1da177e4 2188
e61290a4 2189 mutex_lock(&md->suspend_lock);
1da177e4
LT
2190
2191 /* device must be suspended */
cf222b37 2192 if (!dm_suspended(md))
93c534ae 2193 goto out;
1da177e4 2194
754c5fc7
MS
2195 r = dm_calculate_queue_limits(table, &limits);
2196 if (r)
2197 goto out;
2198
e6ee8c0b
KU
2199 /* cannot change the device type, once a table is bound */
2200 if (md->map &&
2201 (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2202 DMWARN("can't change the device type after a table is bound");
2203 goto out;
2204 }
2205
5d67aa23
KU
2206 /*
2207 * It is enought that blk_queue_ordered() is called only once when
2208 * the first bio-based table is bound.
2209 *
2210 * This setting should be moved to alloc_dev() when request-based dm
2211 * supports barrier.
2212 */
2213 if (!md->map && dm_table_bio_based(table))
2214 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
2215
1da177e4 2216 __unbind(md);
754c5fc7 2217 r = __bind(md, table, &limits);
1da177e4 2218
93c534ae 2219out:
e61290a4 2220 mutex_unlock(&md->suspend_lock);
93c534ae 2221 return r;
1da177e4
LT
2222}
2223
cec47e3d
KU
2224static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2225{
2226 md->suspend_rq.special = (void *)0x1;
2227}
2228
2229static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2230{
2231 struct request_queue *q = md->queue;
2232 unsigned long flags;
2233
2234 spin_lock_irqsave(q->queue_lock, flags);
2235 if (!noflush)
2236 dm_rq_invalidate_suspend_marker(md);
2237 __start_queue(q);
2238 spin_unlock_irqrestore(q->queue_lock, flags);
2239}
2240
2241static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2242{
2243 struct request *rq = &md->suspend_rq;
2244 struct request_queue *q = md->queue;
2245
2246 if (noflush)
2247 stop_queue(q);
2248 else {
2249 blk_rq_init(q, rq);
2250 blk_insert_request(q, rq, 0, NULL);
2251 }
2252}
2253
2254static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2255{
2256 int r = 1;
2257 struct request *rq = &md->suspend_rq;
2258 struct request_queue *q = md->queue;
2259 unsigned long flags;
2260
2261 if (noflush)
2262 return r;
2263
2264 /* The marker must be protected by queue lock if it is in use */
2265 spin_lock_irqsave(q->queue_lock, flags);
2266 if (unlikely(rq->ref_count)) {
2267 /*
2268 * This can happen, when the previous flush suspend was
2269 * interrupted, the marker is still in the queue and
2270 * this flush suspend has been invoked, because we don't
2271 * remove the marker at the time of suspend interruption.
2272 * We have only one marker per mapped_device, so we can't
2273 * start another flush suspend while it is in use.
2274 */
2275 BUG_ON(!rq->special); /* The marker should be invalidated */
2276 DMWARN("Invalidating the previous flush suspend is still in"
2277 " progress. Please retry later.");
2278 r = 0;
2279 }
2280 spin_unlock_irqrestore(q->queue_lock, flags);
2281
2282 return r;
2283}
2284
1da177e4
LT
2285/*
2286 * Functions to lock and unlock any filesystem running on the
2287 * device.
2288 */
2ca3310e 2289static int lock_fs(struct mapped_device *md)
1da177e4 2290{
e39e2e95 2291 int r;
1da177e4
LT
2292
2293 WARN_ON(md->frozen_sb);
dfbe03f6 2294
db8fef4f 2295 md->frozen_sb = freeze_bdev(md->bdev);
dfbe03f6 2296 if (IS_ERR(md->frozen_sb)) {
cf222b37 2297 r = PTR_ERR(md->frozen_sb);
e39e2e95
AK
2298 md->frozen_sb = NULL;
2299 return r;
dfbe03f6
AK
2300 }
2301
aa8d7c2f
AK
2302 set_bit(DMF_FROZEN, &md->flags);
2303
1da177e4
LT
2304 return 0;
2305}
2306
2ca3310e 2307static void unlock_fs(struct mapped_device *md)
1da177e4 2308{
aa8d7c2f
AK
2309 if (!test_bit(DMF_FROZEN, &md->flags))
2310 return;
2311
db8fef4f 2312 thaw_bdev(md->bdev, md->frozen_sb);
1da177e4 2313 md->frozen_sb = NULL;
aa8d7c2f 2314 clear_bit(DMF_FROZEN, &md->flags);
1da177e4
LT
2315}
2316
2317/*
2318 * We need to be able to change a mapping table under a mounted
2319 * filesystem. For example we might want to move some data in
2320 * the background. Before the table can be swapped with
2321 * dm_bind_table, dm_suspend must be called to flush any in
2322 * flight bios and ensure that any further io gets deferred.
2323 */
cec47e3d
KU
2324/*
2325 * Suspend mechanism in request-based dm.
2326 *
2327 * After the suspend starts, further incoming requests are kept in
2328 * the request_queue and deferred.
2329 * Remaining requests in the request_queue at the start of suspend are flushed
2330 * if it is flush suspend.
2331 * The suspend completes when the following conditions have been satisfied,
2332 * so wait for it:
2333 * 1. q->in_flight is 0 (which means no in_flight request)
2334 * 2. queue has been stopped (which means no request dispatching)
2335 *
2336 *
2337 * Noflush suspend
2338 * ---------------
2339 * Noflush suspend doesn't need to dispatch remaining requests.
2340 * So stop the queue immediately. Then, wait for all in_flight requests
2341 * to be completed or requeued.
2342 *
2343 * To abort noflush suspend, start the queue.
2344 *
2345 *
2346 * Flush suspend
2347 * -------------
2348 * Flush suspend needs to dispatch remaining requests. So stop the queue
2349 * after the remaining requests are completed. (Requeued request must be also
2350 * re-dispatched and completed. Until then, we can't stop the queue.)
2351 *
2352 * During flushing the remaining requests, further incoming requests are also
2353 * inserted to the same queue. To distinguish which requests are to be
2354 * flushed, we insert a marker request to the queue at the time of starting
2355 * flush suspend, like a barrier.
2356 * The dispatching is blocked when the marker is found on the top of the queue.
2357 * And the queue is stopped when all in_flight requests are completed, since
2358 * that means the remaining requests are completely flushed.
2359 * Then, the marker is removed from the queue.
2360 *
2361 * To abort flush suspend, we also need to take care of the marker, not only
2362 * starting the queue.
2363 * We don't remove the marker forcibly from the queue since it's against
2364 * the block-layer manner. Instead, we put a invalidated mark on the marker.
2365 * When the invalidated marker is found on the top of the queue, it is
2366 * immediately removed from the queue, so it doesn't block dispatching.
2367 * Because we have only one marker per mapped_device, we can't start another
2368 * flush suspend until the invalidated marker is removed from the queue.
2369 * So fail and return with -EBUSY in such a case.
2370 */
a3d77d35 2371int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1da177e4 2372{
2ca3310e 2373 struct dm_table *map = NULL;
46125c1c 2374 int r = 0;
a3d77d35 2375 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2e93ccc1 2376 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1da177e4 2377
e61290a4 2378 mutex_lock(&md->suspend_lock);
2ca3310e 2379
73d410c0
MB
2380 if (dm_suspended(md)) {
2381 r = -EINVAL;
d287483d 2382 goto out_unlock;
73d410c0 2383 }
1da177e4 2384
cec47e3d
KU
2385 if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2386 r = -EBUSY;
2387 goto out_unlock;
2388 }
2389
1da177e4 2390 map = dm_get_table(md);
1da177e4 2391
2e93ccc1
KU
2392 /*
2393 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2394 * This flag is cleared before dm_suspend returns.
2395 */
2396 if (noflush)
2397 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2398
cf222b37
AK
2399 /* This does not get reverted if there's an error later. */
2400 dm_table_presuspend_targets(map);
2401
32a926da
MP
2402 /*
2403 * Flush I/O to the device. noflush supersedes do_lockfs,
2404 * because lock_fs() needs to flush I/Os.
2405 */
2406 if (!noflush && do_lockfs) {
2407 r = lock_fs(md);
2408 if (r)
f431d966 2409 goto out;
aa8d7c2f 2410 }
1da177e4
LT
2411
2412 /*
3b00b203
MP
2413 * Here we must make sure that no processes are submitting requests
2414 * to target drivers i.e. no one may be executing
2415 * __split_and_process_bio. This is called from dm_request and
2416 * dm_wq_work.
2417 *
2418 * To get all processes out of __split_and_process_bio in dm_request,
2419 * we take the write lock. To prevent any process from reentering
2420 * __split_and_process_bio from dm_request, we set
2421 * DMF_QUEUE_IO_TO_THREAD.
2422 *
2423 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2424 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2425 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2426 * further calls to __split_and_process_bio from dm_wq_work.
1da177e4 2427 */
2ca3310e 2428 down_write(&md->io_lock);
1eb787ec
AK
2429 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2430 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2ca3310e 2431 up_write(&md->io_lock);
1da177e4 2432
3b00b203
MP
2433 flush_workqueue(md->wq);
2434
cec47e3d
KU
2435 if (dm_request_based(md))
2436 dm_rq_start_suspend(md, noflush);
2437
1da177e4 2438 /*
3b00b203
MP
2439 * At this point no more requests are entering target request routines.
2440 * We call dm_wait_for_completion to wait for all existing requests
2441 * to finish.
1da177e4 2442 */
401600df 2443 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1da177e4 2444
2ca3310e 2445 down_write(&md->io_lock);
6d6f10df 2446 if (noflush)
022c2611 2447 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
94d6351e 2448 up_write(&md->io_lock);
2e93ccc1 2449
1da177e4 2450 /* were we interrupted ? */
46125c1c 2451 if (r < 0) {
9a1fb464 2452 dm_queue_flush(md);
73d410c0 2453
cec47e3d
KU
2454 if (dm_request_based(md))
2455 dm_rq_abort_suspend(md, noflush);
2456
2ca3310e 2457 unlock_fs(md);
2e93ccc1 2458 goto out; /* pushback list is already flushed, so skip flush */
2ca3310e 2459 }
1da177e4 2460
3b00b203
MP
2461 /*
2462 * If dm_wait_for_completion returned 0, the device is completely
2463 * quiescent now. There is no request-processing activity. All new
2464 * requests are being added to md->deferred list.
2465 */
2466
cf222b37 2467 dm_table_postsuspend_targets(map);
1da177e4 2468
2ca3310e 2469 set_bit(DMF_SUSPENDED, &md->flags);
b84b0287 2470
2ca3310e
AK
2471out:
2472 dm_table_put(map);
d287483d
AK
2473
2474out_unlock:
e61290a4 2475 mutex_unlock(&md->suspend_lock);
cf222b37 2476 return r;
1da177e4
LT
2477}
2478
2479int dm_resume(struct mapped_device *md)
2480{
cf222b37 2481 int r = -EINVAL;
cf222b37 2482 struct dm_table *map = NULL;
1da177e4 2483
e61290a4 2484 mutex_lock(&md->suspend_lock);
2ca3310e 2485 if (!dm_suspended(md))
cf222b37 2486 goto out;
cf222b37
AK
2487
2488 map = dm_get_table(md);
2ca3310e 2489 if (!map || !dm_table_get_size(map))
cf222b37 2490 goto out;
1da177e4 2491
8757b776
MB
2492 r = dm_table_resume_targets(map);
2493 if (r)
2494 goto out;
2ca3310e 2495
9a1fb464 2496 dm_queue_flush(md);
2ca3310e 2497
cec47e3d
KU
2498 /*
2499 * Flushing deferred I/Os must be done after targets are resumed
2500 * so that mapping of targets can work correctly.
2501 * Request-based dm is queueing the deferred I/Os in its request_queue.
2502 */
2503 if (dm_request_based(md))
2504 start_queue(md->queue);
2505
2ca3310e
AK
2506 unlock_fs(md);
2507
2508 clear_bit(DMF_SUSPENDED, &md->flags);
2509
1da177e4 2510 dm_table_unplug_all(map);
cf222b37
AK
2511 r = 0;
2512out:
2513 dm_table_put(map);
e61290a4 2514 mutex_unlock(&md->suspend_lock);
2ca3310e 2515
cf222b37 2516 return r;
1da177e4
LT
2517}
2518
2519/*-----------------------------------------------------------------
2520 * Event notification.
2521 *---------------------------------------------------------------*/
60935eb2
MB
2522void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2523 unsigned cookie)
69267a30 2524{
60935eb2
MB
2525 char udev_cookie[DM_COOKIE_LENGTH];
2526 char *envp[] = { udev_cookie, NULL };
2527
2528 if (!cookie)
2529 kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2530 else {
2531 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2532 DM_COOKIE_ENV_VAR_NAME, cookie);
2533 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2534 }
69267a30
AK
2535}
2536
7a8c3d3b
MA
2537uint32_t dm_next_uevent_seq(struct mapped_device *md)
2538{
2539 return atomic_add_return(1, &md->uevent_seq);
2540}
2541
1da177e4
LT
2542uint32_t dm_get_event_nr(struct mapped_device *md)
2543{
2544 return atomic_read(&md->event_nr);
2545}
2546
2547int dm_wait_event(struct mapped_device *md, int event_nr)
2548{
2549 return wait_event_interruptible(md->eventq,
2550 (event_nr != atomic_read(&md->event_nr)));
2551}
2552
7a8c3d3b
MA
2553void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2554{
2555 unsigned long flags;
2556
2557 spin_lock_irqsave(&md->uevent_lock, flags);
2558 list_add(elist, &md->uevent_list);
2559 spin_unlock_irqrestore(&md->uevent_lock, flags);
2560}
2561
1da177e4
LT
2562/*
2563 * The gendisk is only valid as long as you have a reference
2564 * count on 'md'.
2565 */
2566struct gendisk *dm_disk(struct mapped_device *md)
2567{
2568 return md->disk;
2569}
2570
784aae73
MB
2571struct kobject *dm_kobject(struct mapped_device *md)
2572{
2573 return &md->kobj;
2574}
2575
2576/*
2577 * struct mapped_device should not be exported outside of dm.c
2578 * so use this check to verify that kobj is part of md structure
2579 */
2580struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2581{
2582 struct mapped_device *md;
2583
2584 md = container_of(kobj, struct mapped_device, kobj);
2585 if (&md->kobj != kobj)
2586 return NULL;
2587
4d89b7b4
MB
2588 if (test_bit(DMF_FREEING, &md->flags) ||
2589 test_bit(DMF_DELETING, &md->flags))
2590 return NULL;
2591
784aae73
MB
2592 dm_get(md);
2593 return md;
2594}
2595
1da177e4
LT
2596int dm_suspended(struct mapped_device *md)
2597{
2598 return test_bit(DMF_SUSPENDED, &md->flags);
2599}
2600
2e93ccc1
KU
2601int dm_noflush_suspending(struct dm_target *ti)
2602{
2603 struct mapped_device *md = dm_table_get_md(ti->table);
2604 int r = __noflush_suspending(md);
2605
2606 dm_put(md);
2607
2608 return r;
2609}
2610EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2611
e6ee8c0b
KU
2612struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2613{
2614 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2615
2616 if (!pools)
2617 return NULL;
2618
2619 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2620 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2621 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2622 if (!pools->io_pool)
2623 goto free_pools_and_out;
2624
2625 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2626 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2627 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2628 if (!pools->tio_pool)
2629 goto free_io_pool_and_out;
2630
2631 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2632 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2633 if (!pools->bs)
2634 goto free_tio_pool_and_out;
2635
2636 return pools;
2637
2638free_tio_pool_and_out:
2639 mempool_destroy(pools->tio_pool);
2640
2641free_io_pool_and_out:
2642 mempool_destroy(pools->io_pool);
2643
2644free_pools_and_out:
2645 kfree(pools);
2646
2647 return NULL;
2648}
2649
2650void dm_free_md_mempools(struct dm_md_mempools *pools)
2651{
2652 if (!pools)
2653 return;
2654
2655 if (pools->io_pool)
2656 mempool_destroy(pools->io_pool);
2657
2658 if (pools->tio_pool)
2659 mempool_destroy(pools->tio_pool);
2660
2661 if (pools->bs)
2662 bioset_free(pools->bs);
2663
2664 kfree(pools);
2665}
2666
1da177e4
LT
2667static struct block_device_operations dm_blk_dops = {
2668 .open = dm_blk_open,
2669 .release = dm_blk_close,
aa129a22 2670 .ioctl = dm_blk_ioctl,
3ac51e74 2671 .getgeo = dm_blk_getgeo,
1da177e4
LT
2672 .owner = THIS_MODULE
2673};
2674
2675EXPORT_SYMBOL(dm_get_mapinfo);
2676
2677/*
2678 * module hooks
2679 */
2680module_init(dm_init);
2681module_exit(dm_exit);
2682
2683module_param(major, uint, 0);
2684MODULE_PARM_DESC(major, "The major number of the device mapper");
2685MODULE_DESCRIPTION(DM_NAME " driver");
2686MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2687MODULE_LICENSE("GPL");