]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/md.c
[PATCH] md: add kobject/sysfs support to raid5
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
CommitLineData
1da177e4
LT
1/*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
32a7627c
N
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
1da177e4
LT
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33*/
34
35#include <linux/module.h>
36#include <linux/config.h>
a6fb0934 37#include <linux/kthread.h>
1da177e4
LT
38#include <linux/linkage.h>
39#include <linux/raid/md.h>
32a7627c 40#include <linux/raid/bitmap.h>
1da177e4
LT
41#include <linux/sysctl.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/buffer_head.h> /* for invalidate_bdev */
44#include <linux/suspend.h>
45
46#include <linux/init.h>
47
32a7627c
N
48#include <linux/file.h>
49
1da177e4
LT
50#ifdef CONFIG_KMOD
51#include <linux/kmod.h>
52#endif
53
54#include <asm/unaligned.h>
55
56#define MAJOR_NR MD_MAJOR
57#define MD_DRIVER
58
59/* 63 partitions with the alternate major number (mdp) */
60#define MdpMinorShift 6
61
62#define DEBUG 0
63#define dprintk(x...) ((void)(DEBUG && printk(x)))
64
65
66#ifndef MODULE
67static void autostart_arrays (int part);
68#endif
69
70static mdk_personality_t *pers[MAX_PERSONALITY];
71static DEFINE_SPINLOCK(pers_lock);
72
73/*
74 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75 * is 1000 KB/sec, so the extra system load does not show up that much.
76 * Increase it if you want to have more _guaranteed_ speed. Note that
338cec32 77 * the RAID driver will use the maximum available bandwidth if the IO
1da177e4
LT
78 * subsystem is idle. There is also an 'absolute maximum' reconstruction
79 * speed limit - in case reconstruction slows down your system despite
80 * idle IO detection.
81 *
82 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83 */
84
85static int sysctl_speed_limit_min = 1000;
86static int sysctl_speed_limit_max = 200000;
87
88static struct ctl_table_header *raid_table_header;
89
90static ctl_table raid_table[] = {
91 {
92 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
93 .procname = "speed_limit_min",
94 .data = &sysctl_speed_limit_min,
95 .maxlen = sizeof(int),
96 .mode = 0644,
97 .proc_handler = &proc_dointvec,
98 },
99 {
100 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
101 .procname = "speed_limit_max",
102 .data = &sysctl_speed_limit_max,
103 .maxlen = sizeof(int),
104 .mode = 0644,
105 .proc_handler = &proc_dointvec,
106 },
107 { .ctl_name = 0 }
108};
109
110static ctl_table raid_dir_table[] = {
111 {
112 .ctl_name = DEV_RAID,
113 .procname = "raid",
114 .maxlen = 0,
115 .mode = 0555,
116 .child = raid_table,
117 },
118 { .ctl_name = 0 }
119};
120
121static ctl_table raid_root_table[] = {
122 {
123 .ctl_name = CTL_DEV,
124 .procname = "dev",
125 .maxlen = 0,
126 .mode = 0555,
127 .child = raid_dir_table,
128 },
129 { .ctl_name = 0 }
130};
131
132static struct block_device_operations md_fops;
133
134/*
135 * Enables to iterate over all existing md arrays
136 * all_mddevs_lock protects this list.
137 */
138static LIST_HEAD(all_mddevs);
139static DEFINE_SPINLOCK(all_mddevs_lock);
140
141
142/*
143 * iterates through all used mddevs in the system.
144 * We take care to grab the all_mddevs_lock whenever navigating
145 * the list, and to always hold a refcount when unlocked.
146 * Any code which breaks out of this loop while own
147 * a reference to the current mddev and must mddev_put it.
148 */
149#define ITERATE_MDDEV(mddev,tmp) \
150 \
151 for (({ spin_lock(&all_mddevs_lock); \
152 tmp = all_mddevs.next; \
153 mddev = NULL;}); \
154 ({ if (tmp != &all_mddevs) \
155 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
156 spin_unlock(&all_mddevs_lock); \
157 if (mddev) mddev_put(mddev); \
158 mddev = list_entry(tmp, mddev_t, all_mddevs); \
159 tmp != &all_mddevs;}); \
160 ({ spin_lock(&all_mddevs_lock); \
161 tmp = tmp->next;}) \
162 )
163
164
165static int md_fail_request (request_queue_t *q, struct bio *bio)
166{
167 bio_io_error(bio, bio->bi_size);
168 return 0;
169}
170
171static inline mddev_t *mddev_get(mddev_t *mddev)
172{
173 atomic_inc(&mddev->active);
174 return mddev;
175}
176
177static void mddev_put(mddev_t *mddev)
178{
179 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
180 return;
181 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
182 list_del(&mddev->all_mddevs);
183 blk_put_queue(mddev->queue);
eae1701f 184 kobject_unregister(&mddev->kobj);
1da177e4
LT
185 }
186 spin_unlock(&all_mddevs_lock);
187}
188
189static mddev_t * mddev_find(dev_t unit)
190{
191 mddev_t *mddev, *new = NULL;
192
193 retry:
194 spin_lock(&all_mddevs_lock);
195 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
196 if (mddev->unit == unit) {
197 mddev_get(mddev);
198 spin_unlock(&all_mddevs_lock);
990a8baf 199 kfree(new);
1da177e4
LT
200 return mddev;
201 }
202
203 if (new) {
204 list_add(&new->all_mddevs, &all_mddevs);
205 spin_unlock(&all_mddevs_lock);
206 return new;
207 }
208 spin_unlock(&all_mddevs_lock);
209
210 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 if (!new)
212 return NULL;
213
214 memset(new, 0, sizeof(*new));
215
216 new->unit = unit;
217 if (MAJOR(unit) == MD_MAJOR)
218 new->md_minor = MINOR(unit);
219 else
220 new->md_minor = MINOR(unit) >> MdpMinorShift;
221
222 init_MUTEX(&new->reconfig_sem);
223 INIT_LIST_HEAD(&new->disks);
224 INIT_LIST_HEAD(&new->all_mddevs);
225 init_timer(&new->safemode_timer);
226 atomic_set(&new->active, 1);
06d91a5f 227 spin_lock_init(&new->write_lock);
3d310eb7 228 init_waitqueue_head(&new->sb_wait);
1da177e4
LT
229
230 new->queue = blk_alloc_queue(GFP_KERNEL);
231 if (!new->queue) {
232 kfree(new);
233 return NULL;
234 }
235
236 blk_queue_make_request(new->queue, md_fail_request);
237
238 goto retry;
239}
240
241static inline int mddev_lock(mddev_t * mddev)
242{
243 return down_interruptible(&mddev->reconfig_sem);
244}
245
246static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247{
248 down(&mddev->reconfig_sem);
249}
250
251static inline int mddev_trylock(mddev_t * mddev)
252{
253 return down_trylock(&mddev->reconfig_sem);
254}
255
256static inline void mddev_unlock(mddev_t * mddev)
257{
258 up(&mddev->reconfig_sem);
259
005eca5e 260 md_wakeup_thread(mddev->thread);
1da177e4
LT
261}
262
263mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264{
265 mdk_rdev_t * rdev;
266 struct list_head *tmp;
267
268 ITERATE_RDEV(mddev,rdev,tmp) {
269 if (rdev->desc_nr == nr)
270 return rdev;
271 }
272 return NULL;
273}
274
275static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276{
277 struct list_head *tmp;
278 mdk_rdev_t *rdev;
279
280 ITERATE_RDEV(mddev,rdev,tmp) {
281 if (rdev->bdev->bd_dev == dev)
282 return rdev;
283 }
284 return NULL;
285}
286
77933d72 287static inline sector_t calc_dev_sboffset(struct block_device *bdev)
1da177e4
LT
288{
289 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 return MD_NEW_SIZE_BLOCKS(size);
291}
292
293static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294{
295 sector_t size;
296
297 size = rdev->sb_offset;
298
299 if (chunk_size)
300 size &= ~((sector_t)chunk_size/1024 - 1);
301 return size;
302}
303
304static int alloc_disk_sb(mdk_rdev_t * rdev)
305{
306 if (rdev->sb_page)
307 MD_BUG();
308
309 rdev->sb_page = alloc_page(GFP_KERNEL);
310 if (!rdev->sb_page) {
311 printk(KERN_ALERT "md: out of memory.\n");
312 return -EINVAL;
313 }
314
315 return 0;
316}
317
318static void free_disk_sb(mdk_rdev_t * rdev)
319{
320 if (rdev->sb_page) {
321 page_cache_release(rdev->sb_page);
322 rdev->sb_loaded = 0;
323 rdev->sb_page = NULL;
324 rdev->sb_offset = 0;
325 rdev->size = 0;
326 }
327}
328
329
7bfa19f2
N
330static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331{
332 mdk_rdev_t *rdev = bio->bi_private;
333 if (bio->bi_size)
334 return 1;
335
336 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 md_error(rdev->mddev, rdev);
338
339 if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 wake_up(&rdev->mddev->sb_wait);
f8b58edf 341 bio_put(bio);
7bfa19f2
N
342 return 0;
343}
344
345void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346 sector_t sector, int size, struct page *page)
347{
348 /* write first size bytes of page to sector of rdev
349 * Increment mddev->pending_writes before returning
350 * and decrement it on completion, waking up sb_wait
351 * if zero is reached.
352 * If an error occurred, call md_error
353 */
354 struct bio *bio = bio_alloc(GFP_NOIO, 1);
355
356 bio->bi_bdev = rdev->bdev;
357 bio->bi_sector = sector;
358 bio_add_page(bio, page, size, 0);
359 bio->bi_private = rdev;
360 bio->bi_end_io = super_written;
361 atomic_inc(&mddev->pending_writes);
362 submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
363}
364
1da177e4
LT
365static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
366{
367 if (bio->bi_size)
368 return 1;
369
370 complete((struct completion*)bio->bi_private);
371 return 0;
372}
373
a654b9d8 374int sync_page_io(struct block_device *bdev, sector_t sector, int size,
1da177e4
LT
375 struct page *page, int rw)
376{
baaa2c51 377 struct bio *bio = bio_alloc(GFP_NOIO, 1);
1da177e4
LT
378 struct completion event;
379 int ret;
380
381 rw |= (1 << BIO_RW_SYNC);
382
383 bio->bi_bdev = bdev;
384 bio->bi_sector = sector;
385 bio_add_page(bio, page, size, 0);
386 init_completion(&event);
387 bio->bi_private = &event;
388 bio->bi_end_io = bi_complete;
389 submit_bio(rw, bio);
390 wait_for_completion(&event);
391
392 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
393 bio_put(bio);
394 return ret;
395}
396
0002b271 397static int read_disk_sb(mdk_rdev_t * rdev, int size)
1da177e4
LT
398{
399 char b[BDEVNAME_SIZE];
400 if (!rdev->sb_page) {
401 MD_BUG();
402 return -EINVAL;
403 }
404 if (rdev->sb_loaded)
405 return 0;
406
407
0002b271 408 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
1da177e4
LT
409 goto fail;
410 rdev->sb_loaded = 1;
411 return 0;
412
413fail:
414 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415 bdevname(rdev->bdev,b));
416 return -EINVAL;
417}
418
419static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
420{
421 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
422 (sb1->set_uuid1 == sb2->set_uuid1) &&
423 (sb1->set_uuid2 == sb2->set_uuid2) &&
424 (sb1->set_uuid3 == sb2->set_uuid3))
425
426 return 1;
427
428 return 0;
429}
430
431
432static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
433{
434 int ret;
435 mdp_super_t *tmp1, *tmp2;
436
437 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
439
440 if (!tmp1 || !tmp2) {
441 ret = 0;
442 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
443 goto abort;
444 }
445
446 *tmp1 = *sb1;
447 *tmp2 = *sb2;
448
449 /*
450 * nr_disks is not constant
451 */
452 tmp1->nr_disks = 0;
453 tmp2->nr_disks = 0;
454
455 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
456 ret = 0;
457 else
458 ret = 1;
459
460abort:
990a8baf
JJ
461 kfree(tmp1);
462 kfree(tmp2);
1da177e4
LT
463 return ret;
464}
465
466static unsigned int calc_sb_csum(mdp_super_t * sb)
467{
468 unsigned int disk_csum, csum;
469
470 disk_csum = sb->sb_csum;
471 sb->sb_csum = 0;
472 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473 sb->sb_csum = disk_csum;
474 return csum;
475}
476
477
478/*
479 * Handle superblock details.
480 * We want to be able to handle multiple superblock formats
481 * so we have a common interface to them all, and an array of
482 * different handlers.
483 * We rely on user-space to write the initial superblock, and support
484 * reading and updating of superblocks.
485 * Interface methods are:
486 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487 * loads and validates a superblock on dev.
488 * if refdev != NULL, compare superblocks on both devices
489 * Return:
490 * 0 - dev has a superblock that is compatible with refdev
491 * 1 - dev has a superblock that is compatible and newer than refdev
492 * so dev should be used as the refdev in future
493 * -EINVAL superblock incompatible or invalid
494 * -othererror e.g. -EIO
495 *
496 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497 * Verify that dev is acceptable into mddev.
498 * The first time, mddev->raid_disks will be 0, and data from
499 * dev should be merged in. Subsequent calls check that dev
500 * is new enough. Return 0 or -EINVAL
501 *
502 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503 * Update the superblock for rdev with data in mddev
504 * This does not write to disc.
505 *
506 */
507
508struct super_type {
509 char *name;
510 struct module *owner;
511 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
514};
515
516/*
517 * load_super for 0.90.0
518 */
519static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
520{
521 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
522 mdp_super_t *sb;
523 int ret;
524 sector_t sb_offset;
525
526 /*
527 * Calculate the position of the superblock,
528 * it's at the end of the disk.
529 *
530 * It also happens to be a multiple of 4Kb.
531 */
532 sb_offset = calc_dev_sboffset(rdev->bdev);
533 rdev->sb_offset = sb_offset;
534
0002b271 535 ret = read_disk_sb(rdev, MD_SB_BYTES);
1da177e4
LT
536 if (ret) return ret;
537
538 ret = -EINVAL;
539
540 bdevname(rdev->bdev, b);
541 sb = (mdp_super_t*)page_address(rdev->sb_page);
542
543 if (sb->md_magic != MD_SB_MAGIC) {
544 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
545 b);
546 goto abort;
547 }
548
549 if (sb->major_version != 0 ||
550 sb->minor_version != 90) {
551 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552 sb->major_version, sb->minor_version,
553 b);
554 goto abort;
555 }
556
557 if (sb->raid_disks <= 0)
558 goto abort;
559
560 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
562 b);
563 goto abort;
564 }
565
566 rdev->preferred_minor = sb->md_minor;
567 rdev->data_offset = 0;
0002b271 568 rdev->sb_size = MD_SB_BYTES;
1da177e4
LT
569
570 if (sb->level == LEVEL_MULTIPATH)
571 rdev->desc_nr = -1;
572 else
573 rdev->desc_nr = sb->this_disk.number;
574
575 if (refdev == 0)
576 ret = 1;
577 else {
578 __u64 ev1, ev2;
579 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
580 if (!uuid_equal(refsb, sb)) {
581 printk(KERN_WARNING "md: %s has different UUID to %s\n",
582 b, bdevname(refdev->bdev,b2));
583 goto abort;
584 }
585 if (!sb_equal(refsb, sb)) {
586 printk(KERN_WARNING "md: %s has same UUID"
587 " but different superblock to %s\n",
588 b, bdevname(refdev->bdev, b2));
589 goto abort;
590 }
591 ev1 = md_event(sb);
592 ev2 = md_event(refsb);
593 if (ev1 > ev2)
594 ret = 1;
595 else
596 ret = 0;
597 }
598 rdev->size = calc_dev_size(rdev, sb->chunk_size);
599
600 abort:
601 return ret;
602}
603
604/*
605 * validate_super for 0.90.0
606 */
607static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
608{
609 mdp_disk_t *desc;
610 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
611
41158c7e
N
612 rdev->raid_disk = -1;
613 rdev->in_sync = 0;
1da177e4
LT
614 if (mddev->raid_disks == 0) {
615 mddev->major_version = 0;
616 mddev->minor_version = sb->minor_version;
617 mddev->patch_version = sb->patch_version;
618 mddev->persistent = ! sb->not_persistent;
619 mddev->chunk_size = sb->chunk_size;
620 mddev->ctime = sb->ctime;
621 mddev->utime = sb->utime;
622 mddev->level = sb->level;
623 mddev->layout = sb->layout;
624 mddev->raid_disks = sb->raid_disks;
625 mddev->size = sb->size;
626 mddev->events = md_event(sb);
9223214e 627 mddev->bitmap_offset = 0;
36fa3063 628 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
1da177e4
LT
629
630 if (sb->state & (1<<MD_SB_CLEAN))
631 mddev->recovery_cp = MaxSector;
632 else {
633 if (sb->events_hi == sb->cp_events_hi &&
634 sb->events_lo == sb->cp_events_lo) {
635 mddev->recovery_cp = sb->recovery_cp;
636 } else
637 mddev->recovery_cp = 0;
638 }
639
640 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
641 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
642 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
643 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
644
645 mddev->max_disks = MD_SB_DISKS;
a654b9d8
N
646
647 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
648 mddev->bitmap_file == NULL) {
934ce7c8 649 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
a654b9d8
N
650 /* FIXME use a better test */
651 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
652 return -EINVAL;
653 }
36fa3063 654 mddev->bitmap_offset = mddev->default_bitmap_offset;
a654b9d8
N
655 }
656
41158c7e
N
657 } else if (mddev->pers == NULL) {
658 /* Insist on good event counter while assembling */
659 __u64 ev1 = md_event(sb);
1da177e4
LT
660 ++ev1;
661 if (ev1 < mddev->events)
662 return -EINVAL;
41158c7e
N
663 } else if (mddev->bitmap) {
664 /* if adding to array with a bitmap, then we can accept an
665 * older device ... but not too old.
666 */
667 __u64 ev1 = md_event(sb);
668 if (ev1 < mddev->bitmap->events_cleared)
669 return 0;
670 } else /* just a hot-add of a new device, leave raid_disk at -1 */
671 return 0;
672
1da177e4 673 if (mddev->level != LEVEL_MULTIPATH) {
41158c7e 674 rdev->faulty = 0;
8ddf9efe 675 rdev->flags = 0;
1da177e4
LT
676 desc = sb->disks + rdev->desc_nr;
677
678 if (desc->state & (1<<MD_DISK_FAULTY))
679 rdev->faulty = 1;
680 else if (desc->state & (1<<MD_DISK_SYNC) &&
681 desc->raid_disk < mddev->raid_disks) {
682 rdev->in_sync = 1;
683 rdev->raid_disk = desc->raid_disk;
684 }
8ddf9efe
N
685 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
686 set_bit(WriteMostly, &rdev->flags);
41158c7e
N
687 } else /* MULTIPATH are always insync */
688 rdev->in_sync = 1;
1da177e4
LT
689 return 0;
690}
691
692/*
693 * sync_super for 0.90.0
694 */
695static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
696{
697 mdp_super_t *sb;
698 struct list_head *tmp;
699 mdk_rdev_t *rdev2;
700 int next_spare = mddev->raid_disks;
701
702 /* make rdev->sb match mddev data..
703 *
704 * 1/ zero out disks
705 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
706 * 3/ any empty disks < next_spare become removed
707 *
708 * disks[0] gets initialised to REMOVED because
709 * we cannot be sure from other fields if it has
710 * been initialised or not.
711 */
712 int i;
713 int active=0, working=0,failed=0,spare=0,nr_disks=0;
86e6ffdd 714 unsigned int fixdesc=0;
1da177e4 715
61181565
N
716 rdev->sb_size = MD_SB_BYTES;
717
1da177e4
LT
718 sb = (mdp_super_t*)page_address(rdev->sb_page);
719
720 memset(sb, 0, sizeof(*sb));
721
722 sb->md_magic = MD_SB_MAGIC;
723 sb->major_version = mddev->major_version;
724 sb->minor_version = mddev->minor_version;
725 sb->patch_version = mddev->patch_version;
726 sb->gvalid_words = 0; /* ignored */
727 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
728 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
729 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
730 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
731
732 sb->ctime = mddev->ctime;
733 sb->level = mddev->level;
734 sb->size = mddev->size;
735 sb->raid_disks = mddev->raid_disks;
736 sb->md_minor = mddev->md_minor;
737 sb->not_persistent = !mddev->persistent;
738 sb->utime = mddev->utime;
739 sb->state = 0;
740 sb->events_hi = (mddev->events>>32);
741 sb->events_lo = (u32)mddev->events;
742
743 if (mddev->in_sync)
744 {
745 sb->recovery_cp = mddev->recovery_cp;
746 sb->cp_events_hi = (mddev->events>>32);
747 sb->cp_events_lo = (u32)mddev->events;
748 if (mddev->recovery_cp == MaxSector)
749 sb->state = (1<< MD_SB_CLEAN);
750 } else
751 sb->recovery_cp = 0;
752
753 sb->layout = mddev->layout;
754 sb->chunk_size = mddev->chunk_size;
755
a654b9d8
N
756 if (mddev->bitmap && mddev->bitmap_file == NULL)
757 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
758
1da177e4
LT
759 sb->disks[0].state = (1<<MD_DISK_REMOVED);
760 ITERATE_RDEV(mddev,rdev2,tmp) {
761 mdp_disk_t *d;
86e6ffdd 762 int desc_nr;
1da177e4 763 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
86e6ffdd 764 desc_nr = rdev2->raid_disk;
1da177e4 765 else
86e6ffdd
N
766 desc_nr = next_spare++;
767 if (desc_nr != rdev2->desc_nr) {
768 fixdesc |= (1 << desc_nr);
769 rdev2->desc_nr = desc_nr;
770 if (rdev2->raid_disk >= 0) {
771 char nm[20];
772 sprintf(nm, "rd%d", rdev2->raid_disk);
773 sysfs_remove_link(&mddev->kobj, nm);
774 }
775 sysfs_remove_link(&rdev2->kobj, "block");
776 kobject_del(&rdev2->kobj);
777 }
1da177e4
LT
778 d = &sb->disks[rdev2->desc_nr];
779 nr_disks++;
780 d->number = rdev2->desc_nr;
781 d->major = MAJOR(rdev2->bdev->bd_dev);
782 d->minor = MINOR(rdev2->bdev->bd_dev);
86e6ffdd 783 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
1da177e4
LT
784 d->raid_disk = rdev2->raid_disk;
785 else
786 d->raid_disk = rdev2->desc_nr; /* compatibility */
787 if (rdev2->faulty) {
788 d->state = (1<<MD_DISK_FAULTY);
789 failed++;
790 } else if (rdev2->in_sync) {
791 d->state = (1<<MD_DISK_ACTIVE);
792 d->state |= (1<<MD_DISK_SYNC);
793 active++;
794 working++;
795 } else {
796 d->state = 0;
797 spare++;
798 working++;
799 }
8ddf9efe
N
800 if (test_bit(WriteMostly, &rdev2->flags))
801 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1da177e4 802 }
86e6ffdd
N
803 if (fixdesc)
804 ITERATE_RDEV(mddev,rdev2,tmp)
805 if (fixdesc & (1<<rdev2->desc_nr)) {
806 snprintf(rdev2->kobj.name, KOBJ_NAME_LEN, "dev%d",
807 rdev2->desc_nr);
808 kobject_add(&rdev2->kobj);
809 sysfs_create_link(&rdev2->kobj,
810 &rdev2->bdev->bd_disk->kobj,
811 "block");
812 if (rdev2->raid_disk >= 0) {
813 char nm[20];
814 sprintf(nm, "rd%d", rdev2->raid_disk);
815 sysfs_create_link(&mddev->kobj,
816 &rdev2->kobj, nm);
817 }
818 }
1da177e4
LT
819 /* now set the "removed" and "faulty" bits on any missing devices */
820 for (i=0 ; i < mddev->raid_disks ; i++) {
821 mdp_disk_t *d = &sb->disks[i];
822 if (d->state == 0 && d->number == 0) {
823 d->number = i;
824 d->raid_disk = i;
825 d->state = (1<<MD_DISK_REMOVED);
826 d->state |= (1<<MD_DISK_FAULTY);
827 failed++;
828 }
829 }
830 sb->nr_disks = nr_disks;
831 sb->active_disks = active;
832 sb->working_disks = working;
833 sb->failed_disks = failed;
834 sb->spare_disks = spare;
835
836 sb->this_disk = sb->disks[rdev->desc_nr];
837 sb->sb_csum = calc_sb_csum(sb);
838}
839
840/*
841 * version 1 superblock
842 */
843
844static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
845{
846 unsigned int disk_csum, csum;
847 unsigned long long newcsum;
848 int size = 256 + le32_to_cpu(sb->max_dev)*2;
849 unsigned int *isuper = (unsigned int*)sb;
850 int i;
851
852 disk_csum = sb->sb_csum;
853 sb->sb_csum = 0;
854 newcsum = 0;
855 for (i=0; size>=4; size -= 4 )
856 newcsum += le32_to_cpu(*isuper++);
857
858 if (size == 2)
859 newcsum += le16_to_cpu(*(unsigned short*) isuper);
860
861 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
862 sb->sb_csum = disk_csum;
863 return cpu_to_le32(csum);
864}
865
866static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
867{
868 struct mdp_superblock_1 *sb;
869 int ret;
870 sector_t sb_offset;
871 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
0002b271 872 int bmask;
1da177e4
LT
873
874 /*
875 * Calculate the position of the superblock.
876 * It is always aligned to a 4K boundary and
877 * depeding on minor_version, it can be:
878 * 0: At least 8K, but less than 12K, from end of device
879 * 1: At start of device
880 * 2: 4K from start of device.
881 */
882 switch(minor_version) {
883 case 0:
884 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
885 sb_offset -= 8*2;
39730960 886 sb_offset &= ~(sector_t)(4*2-1);
1da177e4
LT
887 /* convert from sectors to K */
888 sb_offset /= 2;
889 break;
890 case 1:
891 sb_offset = 0;
892 break;
893 case 2:
894 sb_offset = 4;
895 break;
896 default:
897 return -EINVAL;
898 }
899 rdev->sb_offset = sb_offset;
900
0002b271
N
901 /* superblock is rarely larger than 1K, but it can be larger,
902 * and it is safe to read 4k, so we do that
903 */
904 ret = read_disk_sb(rdev, 4096);
1da177e4
LT
905 if (ret) return ret;
906
907
908 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
909
910 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
911 sb->major_version != cpu_to_le32(1) ||
912 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
913 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
71c0805c 914 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1da177e4
LT
915 return -EINVAL;
916
917 if (calc_sb_1_csum(sb) != sb->sb_csum) {
918 printk("md: invalid superblock checksum on %s\n",
919 bdevname(rdev->bdev,b));
920 return -EINVAL;
921 }
922 if (le64_to_cpu(sb->data_size) < 10) {
923 printk("md: data_size too small on %s\n",
924 bdevname(rdev->bdev,b));
925 return -EINVAL;
926 }
927 rdev->preferred_minor = 0xffff;
928 rdev->data_offset = le64_to_cpu(sb->data_offset);
929
0002b271 930 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
720a3dc3 931 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
0002b271
N
932 if (rdev->sb_size & bmask)
933 rdev-> sb_size = (rdev->sb_size | bmask)+1;
934
1da177e4
LT
935 if (refdev == 0)
936 return 1;
937 else {
938 __u64 ev1, ev2;
939 struct mdp_superblock_1 *refsb =
940 (struct mdp_superblock_1*)page_address(refdev->sb_page);
941
942 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
943 sb->level != refsb->level ||
944 sb->layout != refsb->layout ||
945 sb->chunksize != refsb->chunksize) {
946 printk(KERN_WARNING "md: %s has strangely different"
947 " superblock to %s\n",
948 bdevname(rdev->bdev,b),
949 bdevname(refdev->bdev,b2));
950 return -EINVAL;
951 }
952 ev1 = le64_to_cpu(sb->events);
953 ev2 = le64_to_cpu(refsb->events);
954
955 if (ev1 > ev2)
956 return 1;
957 }
958 if (minor_version)
959 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
960 else
961 rdev->size = rdev->sb_offset;
962 if (rdev->size < le64_to_cpu(sb->data_size)/2)
963 return -EINVAL;
964 rdev->size = le64_to_cpu(sb->data_size)/2;
965 if (le32_to_cpu(sb->chunksize))
966 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
967 return 0;
968}
969
970static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
971{
972 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
973
41158c7e
N
974 rdev->raid_disk = -1;
975 rdev->in_sync = 0;
1da177e4
LT
976 if (mddev->raid_disks == 0) {
977 mddev->major_version = 1;
978 mddev->patch_version = 0;
979 mddev->persistent = 1;
980 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
981 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
982 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
983 mddev->level = le32_to_cpu(sb->level);
984 mddev->layout = le32_to_cpu(sb->layout);
985 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
986 mddev->size = le64_to_cpu(sb->size)/2;
987 mddev->events = le64_to_cpu(sb->events);
9223214e 988 mddev->bitmap_offset = 0;
36fa3063 989 mddev->default_bitmap_offset = 0;
53e87fbb 990 mddev->default_bitmap_offset = 1024;
1da177e4
LT
991
992 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
993 memcpy(mddev->uuid, sb->set_uuid, 16);
994
995 mddev->max_disks = (4096-256)/2;
a654b9d8 996
71c0805c 997 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
a654b9d8
N
998 mddev->bitmap_file == NULL ) {
999 if (mddev->level != 1) {
1000 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1001 return -EINVAL;
1002 }
1003 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1004 }
41158c7e
N
1005 } else if (mddev->pers == NULL) {
1006 /* Insist of good event counter while assembling */
1007 __u64 ev1 = le64_to_cpu(sb->events);
1da177e4
LT
1008 ++ev1;
1009 if (ev1 < mddev->events)
1010 return -EINVAL;
41158c7e
N
1011 } else if (mddev->bitmap) {
1012 /* If adding to array with a bitmap, then we can accept an
1013 * older device, but not too old.
1014 */
1015 __u64 ev1 = le64_to_cpu(sb->events);
1016 if (ev1 < mddev->bitmap->events_cleared)
1017 return 0;
1018 } else /* just a hot-add of a new device, leave raid_disk at -1 */
1019 return 0;
1da177e4
LT
1020
1021 if (mddev->level != LEVEL_MULTIPATH) {
1022 int role;
1023 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1024 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1025 switch(role) {
1026 case 0xffff: /* spare */
1da177e4 1027 rdev->faulty = 0;
1da177e4
LT
1028 break;
1029 case 0xfffe: /* faulty */
1da177e4 1030 rdev->faulty = 1;
1da177e4
LT
1031 break;
1032 default:
1033 rdev->in_sync = 1;
1034 rdev->faulty = 0;
1035 rdev->raid_disk = role;
1036 break;
1037 }
8ddf9efe
N
1038 rdev->flags = 0;
1039 if (sb->devflags & WriteMostly1)
1040 set_bit(WriteMostly, &rdev->flags);
41158c7e
N
1041 } else /* MULTIPATH are always insync */
1042 rdev->in_sync = 1;
1043
1da177e4
LT
1044 return 0;
1045}
1046
1047static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1048{
1049 struct mdp_superblock_1 *sb;
1050 struct list_head *tmp;
1051 mdk_rdev_t *rdev2;
1052 int max_dev, i;
1053 /* make rdev->sb match mddev and rdev data. */
1054
1055 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1056
1057 sb->feature_map = 0;
1058 sb->pad0 = 0;
1059 memset(sb->pad1, 0, sizeof(sb->pad1));
1060 memset(sb->pad2, 0, sizeof(sb->pad2));
1061 memset(sb->pad3, 0, sizeof(sb->pad3));
1062
1063 sb->utime = cpu_to_le64((__u64)mddev->utime);
1064 sb->events = cpu_to_le64(mddev->events);
1065 if (mddev->in_sync)
1066 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1067 else
1068 sb->resync_offset = cpu_to_le64(0);
1069
a654b9d8
N
1070 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1071 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
71c0805c 1072 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
a654b9d8
N
1073 }
1074
1da177e4
LT
1075 max_dev = 0;
1076 ITERATE_RDEV(mddev,rdev2,tmp)
1077 if (rdev2->desc_nr+1 > max_dev)
1078 max_dev = rdev2->desc_nr+1;
1079
1080 sb->max_dev = cpu_to_le32(max_dev);
1081 for (i=0; i<max_dev;i++)
1082 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1083
1084 ITERATE_RDEV(mddev,rdev2,tmp) {
1085 i = rdev2->desc_nr;
1086 if (rdev2->faulty)
1087 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1088 else if (rdev2->in_sync)
1089 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1090 else
1091 sb->dev_roles[i] = cpu_to_le16(0xffff);
1092 }
1093
1094 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1095 sb->sb_csum = calc_sb_1_csum(sb);
1096}
1097
1098
75c96f85 1099static struct super_type super_types[] = {
1da177e4
LT
1100 [0] = {
1101 .name = "0.90.0",
1102 .owner = THIS_MODULE,
1103 .load_super = super_90_load,
1104 .validate_super = super_90_validate,
1105 .sync_super = super_90_sync,
1106 },
1107 [1] = {
1108 .name = "md-1",
1109 .owner = THIS_MODULE,
1110 .load_super = super_1_load,
1111 .validate_super = super_1_validate,
1112 .sync_super = super_1_sync,
1113 },
1114};
1115
1116static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1117{
1118 struct list_head *tmp;
1119 mdk_rdev_t *rdev;
1120
1121 ITERATE_RDEV(mddev,rdev,tmp)
1122 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1123 return rdev;
1124
1125 return NULL;
1126}
1127
1128static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1129{
1130 struct list_head *tmp;
1131 mdk_rdev_t *rdev;
1132
1133 ITERATE_RDEV(mddev1,rdev,tmp)
1134 if (match_dev_unit(mddev2, rdev))
1135 return 1;
1136
1137 return 0;
1138}
1139
1140static LIST_HEAD(pending_raid_disks);
1141
1142static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1143{
1144 mdk_rdev_t *same_pdev;
1145 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1146
1147 if (rdev->mddev) {
1148 MD_BUG();
1149 return -EINVAL;
1150 }
1151 same_pdev = match_dev_unit(mddev, rdev);
1152 if (same_pdev)
1153 printk(KERN_WARNING
1154 "%s: WARNING: %s appears to be on the same physical"
1155 " disk as %s. True\n protection against single-disk"
1156 " failure might be compromised.\n",
1157 mdname(mddev), bdevname(rdev->bdev,b),
1158 bdevname(same_pdev->bdev,b2));
1159
1160 /* Verify rdev->desc_nr is unique.
1161 * If it is -1, assign a free number, else
1162 * check number is not in use
1163 */
1164 if (rdev->desc_nr < 0) {
1165 int choice = 0;
1166 if (mddev->pers) choice = mddev->raid_disks;
1167 while (find_rdev_nr(mddev, choice))
1168 choice++;
1169 rdev->desc_nr = choice;
1170 } else {
1171 if (find_rdev_nr(mddev, rdev->desc_nr))
1172 return -EBUSY;
1173 }
1174
1175 list_add(&rdev->same_set, &mddev->disks);
1176 rdev->mddev = mddev;
1177 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
86e6ffdd
N
1178
1179 rdev->kobj.k_name = NULL;
1180 snprintf(rdev->kobj.name, KOBJ_NAME_LEN, "dev%d", rdev->desc_nr);
1181 rdev->kobj.parent = kobject_get(&mddev->kobj);
1182 kobject_add(&rdev->kobj);
1183
1184 sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
1da177e4
LT
1185 return 0;
1186}
1187
1188static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1189{
1190 char b[BDEVNAME_SIZE];
1191 if (!rdev->mddev) {
1192 MD_BUG();
1193 return;
1194 }
1195 list_del_init(&rdev->same_set);
1196 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1197 rdev->mddev = NULL;
86e6ffdd
N
1198 sysfs_remove_link(&rdev->kobj, "block");
1199 kobject_del(&rdev->kobj);
1da177e4
LT
1200}
1201
1202/*
1203 * prevent the device from being mounted, repartitioned or
1204 * otherwise reused by a RAID array (or any other kernel
1205 * subsystem), by bd_claiming the device.
1206 */
1207static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1208{
1209 int err = 0;
1210 struct block_device *bdev;
1211 char b[BDEVNAME_SIZE];
1212
1213 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1214 if (IS_ERR(bdev)) {
1215 printk(KERN_ERR "md: could not open %s.\n",
1216 __bdevname(dev, b));
1217 return PTR_ERR(bdev);
1218 }
1219 err = bd_claim(bdev, rdev);
1220 if (err) {
1221 printk(KERN_ERR "md: could not bd_claim %s.\n",
1222 bdevname(bdev, b));
1223 blkdev_put(bdev);
1224 return err;
1225 }
1226 rdev->bdev = bdev;
1227 return err;
1228}
1229
1230static void unlock_rdev(mdk_rdev_t *rdev)
1231{
1232 struct block_device *bdev = rdev->bdev;
1233 rdev->bdev = NULL;
1234 if (!bdev)
1235 MD_BUG();
1236 bd_release(bdev);
1237 blkdev_put(bdev);
1238}
1239
1240void md_autodetect_dev(dev_t dev);
1241
1242static void export_rdev(mdk_rdev_t * rdev)
1243{
1244 char b[BDEVNAME_SIZE];
1245 printk(KERN_INFO "md: export_rdev(%s)\n",
1246 bdevname(rdev->bdev,b));
1247 if (rdev->mddev)
1248 MD_BUG();
1249 free_disk_sb(rdev);
1250 list_del_init(&rdev->same_set);
1251#ifndef MODULE
1252 md_autodetect_dev(rdev->bdev->bd_dev);
1253#endif
1254 unlock_rdev(rdev);
86e6ffdd 1255 kobject_put(&rdev->kobj);
1da177e4
LT
1256}
1257
1258static void kick_rdev_from_array(mdk_rdev_t * rdev)
1259{
1260 unbind_rdev_from_array(rdev);
1261 export_rdev(rdev);
1262}
1263
1264static void export_array(mddev_t *mddev)
1265{
1266 struct list_head *tmp;
1267 mdk_rdev_t *rdev;
1268
1269 ITERATE_RDEV(mddev,rdev,tmp) {
1270 if (!rdev->mddev) {
1271 MD_BUG();
1272 continue;
1273 }
1274 kick_rdev_from_array(rdev);
1275 }
1276 if (!list_empty(&mddev->disks))
1277 MD_BUG();
1278 mddev->raid_disks = 0;
1279 mddev->major_version = 0;
1280}
1281
1282static void print_desc(mdp_disk_t *desc)
1283{
1284 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1285 desc->major,desc->minor,desc->raid_disk,desc->state);
1286}
1287
1288static void print_sb(mdp_super_t *sb)
1289{
1290 int i;
1291
1292 printk(KERN_INFO
1293 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1294 sb->major_version, sb->minor_version, sb->patch_version,
1295 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1296 sb->ctime);
1297 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1298 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1299 sb->md_minor, sb->layout, sb->chunk_size);
1300 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1301 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1302 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1303 sb->failed_disks, sb->spare_disks,
1304 sb->sb_csum, (unsigned long)sb->events_lo);
1305
1306 printk(KERN_INFO);
1307 for (i = 0; i < MD_SB_DISKS; i++) {
1308 mdp_disk_t *desc;
1309
1310 desc = sb->disks + i;
1311 if (desc->number || desc->major || desc->minor ||
1312 desc->raid_disk || (desc->state && (desc->state != 4))) {
1313 printk(" D %2d: ", i);
1314 print_desc(desc);
1315 }
1316 }
1317 printk(KERN_INFO "md: THIS: ");
1318 print_desc(&sb->this_disk);
1319
1320}
1321
1322static void print_rdev(mdk_rdev_t *rdev)
1323{
1324 char b[BDEVNAME_SIZE];
1325 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1326 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1327 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1328 if (rdev->sb_loaded) {
1329 printk(KERN_INFO "md: rdev superblock:\n");
1330 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1331 } else
1332 printk(KERN_INFO "md: no rdev superblock!\n");
1333}
1334
1335void md_print_devices(void)
1336{
1337 struct list_head *tmp, *tmp2;
1338 mdk_rdev_t *rdev;
1339 mddev_t *mddev;
1340 char b[BDEVNAME_SIZE];
1341
1342 printk("\n");
1343 printk("md: **********************************\n");
1344 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1345 printk("md: **********************************\n");
1346 ITERATE_MDDEV(mddev,tmp) {
1da177e4 1347
32a7627c
N
1348 if (mddev->bitmap)
1349 bitmap_print_sb(mddev->bitmap);
1350 else
1351 printk("%s: ", mdname(mddev));
1da177e4
LT
1352 ITERATE_RDEV(mddev,rdev,tmp2)
1353 printk("<%s>", bdevname(rdev->bdev,b));
1354 printk("\n");
1355
1356 ITERATE_RDEV(mddev,rdev,tmp2)
1357 print_rdev(rdev);
1358 }
1359 printk("md: **********************************\n");
1360 printk("\n");
1361}
1362
1363
1da177e4
LT
1364static void sync_sbs(mddev_t * mddev)
1365{
1366 mdk_rdev_t *rdev;
1367 struct list_head *tmp;
1368
1369 ITERATE_RDEV(mddev,rdev,tmp) {
1370 super_types[mddev->major_version].
1371 sync_super(mddev, rdev);
1372 rdev->sb_loaded = 1;
1373 }
1374}
1375
1376static void md_update_sb(mddev_t * mddev)
1377{
7bfa19f2 1378 int err;
1da177e4
LT
1379 struct list_head *tmp;
1380 mdk_rdev_t *rdev;
06d91a5f 1381 int sync_req;
1da177e4 1382
1da177e4 1383repeat:
06d91a5f
N
1384 spin_lock(&mddev->write_lock);
1385 sync_req = mddev->in_sync;
1da177e4
LT
1386 mddev->utime = get_seconds();
1387 mddev->events ++;
1388
1389 if (!mddev->events) {
1390 /*
1391 * oops, this 64-bit counter should never wrap.
1392 * Either we are in around ~1 trillion A.C., assuming
1393 * 1 reboot per second, or we have a bug:
1394 */
1395 MD_BUG();
1396 mddev->events --;
1397 }
7bfa19f2 1398 mddev->sb_dirty = 2;
1da177e4
LT
1399 sync_sbs(mddev);
1400
1401 /*
1402 * do not write anything to disk if using
1403 * nonpersistent superblocks
1404 */
06d91a5f
N
1405 if (!mddev->persistent) {
1406 mddev->sb_dirty = 0;
1407 spin_unlock(&mddev->write_lock);
3d310eb7 1408 wake_up(&mddev->sb_wait);
1da177e4 1409 return;
06d91a5f
N
1410 }
1411 spin_unlock(&mddev->write_lock);
1da177e4
LT
1412
1413 dprintk(KERN_INFO
1414 "md: updating %s RAID superblock on device (in sync %d)\n",
1415 mdname(mddev),mddev->in_sync);
1416
32a7627c 1417 err = bitmap_update_sb(mddev->bitmap);
1da177e4
LT
1418 ITERATE_RDEV(mddev,rdev,tmp) {
1419 char b[BDEVNAME_SIZE];
1420 dprintk(KERN_INFO "md: ");
1421 if (rdev->faulty)
1422 dprintk("(skipping faulty ");
1423
1424 dprintk("%s ", bdevname(rdev->bdev,b));
1425 if (!rdev->faulty) {
7bfa19f2 1426 md_super_write(mddev,rdev,
0002b271 1427 rdev->sb_offset<<1, rdev->sb_size,
7bfa19f2
N
1428 rdev->sb_page);
1429 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1430 bdevname(rdev->bdev,b),
1431 (unsigned long long)rdev->sb_offset);
1432
1da177e4
LT
1433 } else
1434 dprintk(")\n");
7bfa19f2 1435 if (mddev->level == LEVEL_MULTIPATH)
1da177e4
LT
1436 /* only need to write one superblock... */
1437 break;
1438 }
7bfa19f2
N
1439 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1440 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1441
06d91a5f 1442 spin_lock(&mddev->write_lock);
7bfa19f2 1443 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
06d91a5f
N
1444 /* have to write it out again */
1445 spin_unlock(&mddev->write_lock);
1446 goto repeat;
1447 }
1448 mddev->sb_dirty = 0;
1449 spin_unlock(&mddev->write_lock);
3d310eb7 1450 wake_up(&mddev->sb_wait);
06d91a5f 1451
1da177e4
LT
1452}
1453
86e6ffdd
N
1454struct rdev_sysfs_entry {
1455 struct attribute attr;
1456 ssize_t (*show)(mdk_rdev_t *, char *);
1457 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1458};
1459
1460static ssize_t
1461rdev_show_state(mdk_rdev_t *rdev, char *page)
1462{
1463 char *sep = "";
1464 int len=0;
1465
1466 if (rdev->faulty) {
1467 len+= sprintf(page+len, "%sfaulty",sep);
1468 sep = ",";
1469 }
1470 if (rdev->in_sync) {
1471 len += sprintf(page+len, "%sin_sync",sep);
1472 sep = ",";
1473 }
1474 if (!rdev->faulty && !rdev->in_sync) {
1475 len += sprintf(page+len, "%sspare", sep);
1476 sep = ",";
1477 }
1478 return len+sprintf(page+len, "\n");
1479}
1480
1481static struct rdev_sysfs_entry rdev_state = {
1482 .attr = {.name = "state", .mode = S_IRUGO },
1483 .show = rdev_show_state,
1484};
1485
1486static ssize_t
1487rdev_show_super(mdk_rdev_t *rdev, char *page)
1488{
1489 if (rdev->sb_loaded && rdev->sb_size) {
1490 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1491 return rdev->sb_size;
1492 } else
1493 return 0;
1494}
1495static struct rdev_sysfs_entry rdev_super = {
1496 .attr = {.name = "super", .mode = S_IRUGO },
1497 .show = rdev_show_super,
1498};
1499static struct attribute *rdev_default_attrs[] = {
1500 &rdev_state.attr,
1501 &rdev_super.attr,
1502 NULL,
1503};
1504static ssize_t
1505rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1506{
1507 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1508 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1509
1510 if (!entry->show)
1511 return -EIO;
1512 return entry->show(rdev, page);
1513}
1514
1515static ssize_t
1516rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1517 const char *page, size_t length)
1518{
1519 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1520 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1521
1522 if (!entry->store)
1523 return -EIO;
1524 return entry->store(rdev, page, length);
1525}
1526
1527static void rdev_free(struct kobject *ko)
1528{
1529 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1530 kfree(rdev);
1531}
1532static struct sysfs_ops rdev_sysfs_ops = {
1533 .show = rdev_attr_show,
1534 .store = rdev_attr_store,
1535};
1536static struct kobj_type rdev_ktype = {
1537 .release = rdev_free,
1538 .sysfs_ops = &rdev_sysfs_ops,
1539 .default_attrs = rdev_default_attrs,
1540};
1541
1da177e4
LT
1542/*
1543 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1544 *
1545 * mark the device faulty if:
1546 *
1547 * - the device is nonexistent (zero size)
1548 * - the device has no valid superblock
1549 *
1550 * a faulty rdev _never_ has rdev->sb set.
1551 */
1552static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1553{
1554 char b[BDEVNAME_SIZE];
1555 int err;
1556 mdk_rdev_t *rdev;
1557 sector_t size;
1558
1559 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1560 if (!rdev) {
1561 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1562 return ERR_PTR(-ENOMEM);
1563 }
1564 memset(rdev, 0, sizeof(*rdev));
1565
1566 if ((err = alloc_disk_sb(rdev)))
1567 goto abort_free;
1568
1569 err = lock_rdev(rdev, newdev);
1570 if (err)
1571 goto abort_free;
1572
86e6ffdd
N
1573 rdev->kobj.parent = NULL;
1574 rdev->kobj.ktype = &rdev_ktype;
1575 kobject_init(&rdev->kobj);
1576
1da177e4
LT
1577 rdev->desc_nr = -1;
1578 rdev->faulty = 0;
1579 rdev->in_sync = 0;
1580 rdev->data_offset = 0;
1581 atomic_set(&rdev->nr_pending, 0);
1582
1583 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1584 if (!size) {
1585 printk(KERN_WARNING
1586 "md: %s has zero or unknown size, marking faulty!\n",
1587 bdevname(rdev->bdev,b));
1588 err = -EINVAL;
1589 goto abort_free;
1590 }
1591
1592 if (super_format >= 0) {
1593 err = super_types[super_format].
1594 load_super(rdev, NULL, super_minor);
1595 if (err == -EINVAL) {
1596 printk(KERN_WARNING
1597 "md: %s has invalid sb, not importing!\n",
1598 bdevname(rdev->bdev,b));
1599 goto abort_free;
1600 }
1601 if (err < 0) {
1602 printk(KERN_WARNING
1603 "md: could not read %s's sb, not importing!\n",
1604 bdevname(rdev->bdev,b));
1605 goto abort_free;
1606 }
1607 }
1608 INIT_LIST_HEAD(&rdev->same_set);
1609
1610 return rdev;
1611
1612abort_free:
1613 if (rdev->sb_page) {
1614 if (rdev->bdev)
1615 unlock_rdev(rdev);
1616 free_disk_sb(rdev);
1617 }
1618 kfree(rdev);
1619 return ERR_PTR(err);
1620}
1621
1622/*
1623 * Check a full RAID array for plausibility
1624 */
1625
1626
a757e64c 1627static void analyze_sbs(mddev_t * mddev)
1da177e4
LT
1628{
1629 int i;
1630 struct list_head *tmp;
1631 mdk_rdev_t *rdev, *freshest;
1632 char b[BDEVNAME_SIZE];
1633
1634 freshest = NULL;
1635 ITERATE_RDEV(mddev,rdev,tmp)
1636 switch (super_types[mddev->major_version].
1637 load_super(rdev, freshest, mddev->minor_version)) {
1638 case 1:
1639 freshest = rdev;
1640 break;
1641 case 0:
1642 break;
1643 default:
1644 printk( KERN_ERR \
1645 "md: fatal superblock inconsistency in %s"
1646 " -- removing from array\n",
1647 bdevname(rdev->bdev,b));
1648 kick_rdev_from_array(rdev);
1649 }
1650
1651
1652 super_types[mddev->major_version].
1653 validate_super(mddev, freshest);
1654
1655 i = 0;
1656 ITERATE_RDEV(mddev,rdev,tmp) {
1657 if (rdev != freshest)
1658 if (super_types[mddev->major_version].
1659 validate_super(mddev, rdev)) {
1660 printk(KERN_WARNING "md: kicking non-fresh %s"
1661 " from array!\n",
1662 bdevname(rdev->bdev,b));
1663 kick_rdev_from_array(rdev);
1664 continue;
1665 }
1666 if (mddev->level == LEVEL_MULTIPATH) {
1667 rdev->desc_nr = i++;
1668 rdev->raid_disk = rdev->desc_nr;
1669 rdev->in_sync = 1;
1670 }
1671 }
1672
1673
1674
1675 if (mddev->recovery_cp != MaxSector &&
1676 mddev->level >= 1)
1677 printk(KERN_ERR "md: %s: raid array is not clean"
1678 " -- starting background reconstruction\n",
1679 mdname(mddev));
1680
1da177e4
LT
1681}
1682
eae1701f
N
1683struct md_sysfs_entry {
1684 struct attribute attr;
1685 ssize_t (*show)(mddev_t *, char *);
1686 ssize_t (*store)(mddev_t *, const char *, size_t);
1687};
1688
1689static ssize_t
1690md_show_level(mddev_t *mddev, char *page)
1691{
1692 mdk_personality_t *p = mddev->pers;
1693 if (p == NULL)
1694 return 0;
1695 if (mddev->level >= 0)
1696 return sprintf(page, "RAID-%d\n", mddev->level);
1697 else
1698 return sprintf(page, "%s\n", p->name);
1699}
1700
1701static struct md_sysfs_entry md_level = {
1702 .attr = {.name = "level", .mode = S_IRUGO },
1703 .show = md_show_level,
1704};
1705
1706static ssize_t
1707md_show_rdisks(mddev_t *mddev, char *page)
1708{
1709 return sprintf(page, "%d\n", mddev->raid_disks);
1710}
1711
1712static struct md_sysfs_entry md_raid_disks = {
1713 .attr = {.name = "raid_disks", .mode = S_IRUGO },
1714 .show = md_show_rdisks,
1715};
1716
1717static struct attribute *md_default_attrs[] = {
1718 &md_level.attr,
1719 &md_raid_disks.attr,
1720 NULL,
1721};
1722
1723static ssize_t
1724md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1725{
1726 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1727 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1728
1729 if (!entry->show)
1730 return -EIO;
1731 return entry->show(mddev, page);
1732}
1733
1734static ssize_t
1735md_attr_store(struct kobject *kobj, struct attribute *attr,
1736 const char *page, size_t length)
1737{
1738 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1739 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1740
1741 if (!entry->store)
1742 return -EIO;
1743 return entry->store(mddev, page, length);
1744}
1745
1746static void md_free(struct kobject *ko)
1747{
1748 mddev_t *mddev = container_of(ko, mddev_t, kobj);
1749 kfree(mddev);
1750}
1751
1752static struct sysfs_ops md_sysfs_ops = {
1753 .show = md_attr_show,
1754 .store = md_attr_store,
1755};
1756static struct kobj_type md_ktype = {
1757 .release = md_free,
1758 .sysfs_ops = &md_sysfs_ops,
1759 .default_attrs = md_default_attrs,
1760};
1761
1da177e4
LT
1762int mdp_major = 0;
1763
1764static struct kobject *md_probe(dev_t dev, int *part, void *data)
1765{
1766 static DECLARE_MUTEX(disks_sem);
1767 mddev_t *mddev = mddev_find(dev);
1768 struct gendisk *disk;
1769 int partitioned = (MAJOR(dev) != MD_MAJOR);
1770 int shift = partitioned ? MdpMinorShift : 0;
1771 int unit = MINOR(dev) >> shift;
1772
1773 if (!mddev)
1774 return NULL;
1775
1776 down(&disks_sem);
1777 if (mddev->gendisk) {
1778 up(&disks_sem);
1779 mddev_put(mddev);
1780 return NULL;
1781 }
1782 disk = alloc_disk(1 << shift);
1783 if (!disk) {
1784 up(&disks_sem);
1785 mddev_put(mddev);
1786 return NULL;
1787 }
1788 disk->major = MAJOR(dev);
1789 disk->first_minor = unit << shift;
1790 if (partitioned) {
1791 sprintf(disk->disk_name, "md_d%d", unit);
1792 sprintf(disk->devfs_name, "md/d%d", unit);
1793 } else {
1794 sprintf(disk->disk_name, "md%d", unit);
1795 sprintf(disk->devfs_name, "md/%d", unit);
1796 }
1797 disk->fops = &md_fops;
1798 disk->private_data = mddev;
1799 disk->queue = mddev->queue;
1800 add_disk(disk);
1801 mddev->gendisk = disk;
1802 up(&disks_sem);
eae1701f
N
1803 mddev->kobj.parent = kobject_get(&disk->kobj);
1804 mddev->kobj.k_name = NULL;
1805 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1806 mddev->kobj.ktype = &md_ktype;
1807 kobject_register(&mddev->kobj);
1da177e4
LT
1808 return NULL;
1809}
1810
1811void md_wakeup_thread(mdk_thread_t *thread);
1812
1813static void md_safemode_timeout(unsigned long data)
1814{
1815 mddev_t *mddev = (mddev_t *) data;
1816
1817 mddev->safemode = 1;
1818 md_wakeup_thread(mddev->thread);
1819}
1820
1821
1822static int do_md_run(mddev_t * mddev)
1823{
1824 int pnum, err;
1825 int chunk_size;
1826 struct list_head *tmp;
1827 mdk_rdev_t *rdev;
1828 struct gendisk *disk;
1829 char b[BDEVNAME_SIZE];
1830
a757e64c
N
1831 if (list_empty(&mddev->disks))
1832 /* cannot run an array with no devices.. */
1da177e4 1833 return -EINVAL;
1da177e4
LT
1834
1835 if (mddev->pers)
1836 return -EBUSY;
1837
1838 /*
1839 * Analyze all RAID superblock(s)
1840 */
a757e64c
N
1841 if (!mddev->raid_disks)
1842 analyze_sbs(mddev);
1da177e4
LT
1843
1844 chunk_size = mddev->chunk_size;
1845 pnum = level_to_pers(mddev->level);
1846
1847 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1848 if (!chunk_size) {
1849 /*
1850 * 'default chunksize' in the old md code used to
1851 * be PAGE_SIZE, baaad.
1852 * we abort here to be on the safe side. We don't
1853 * want to continue the bad practice.
1854 */
1855 printk(KERN_ERR
1856 "no chunksize specified, see 'man raidtab'\n");
1857 return -EINVAL;
1858 }
1859 if (chunk_size > MAX_CHUNK_SIZE) {
1860 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1861 chunk_size, MAX_CHUNK_SIZE);
1862 return -EINVAL;
1863 }
1864 /*
1865 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1866 */
1867 if ( (1 << ffz(~chunk_size)) != chunk_size) {
a757e64c 1868 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1da177e4
LT
1869 return -EINVAL;
1870 }
1871 if (chunk_size < PAGE_SIZE) {
1872 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1873 chunk_size, PAGE_SIZE);
1874 return -EINVAL;
1875 }
1876
1877 /* devices must have minimum size of one chunk */
1878 ITERATE_RDEV(mddev,rdev,tmp) {
1879 if (rdev->faulty)
1880 continue;
1881 if (rdev->size < chunk_size / 1024) {
1882 printk(KERN_WARNING
1883 "md: Dev %s smaller than chunk_size:"
1884 " %lluk < %dk\n",
1885 bdevname(rdev->bdev,b),
1886 (unsigned long long)rdev->size,
1887 chunk_size / 1024);
1888 return -EINVAL;
1889 }
1890 }
1891 }
1892
1da177e4
LT
1893#ifdef CONFIG_KMOD
1894 if (!pers[pnum])
1895 {
1896 request_module("md-personality-%d", pnum);
1897 }
1898#endif
1899
1900 /*
1901 * Drop all container device buffers, from now on
1902 * the only valid external interface is through the md
1903 * device.
1904 * Also find largest hardsector size
1905 */
1906 ITERATE_RDEV(mddev,rdev,tmp) {
1907 if (rdev->faulty)
1908 continue;
1909 sync_blockdev(rdev->bdev);
1910 invalidate_bdev(rdev->bdev, 0);
1911 }
1912
1913 md_probe(mddev->unit, NULL, NULL);
1914 disk = mddev->gendisk;
1915 if (!disk)
1916 return -ENOMEM;
1917
1918 spin_lock(&pers_lock);
1919 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1920 spin_unlock(&pers_lock);
1921 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1922 pnum);
1923 return -EINVAL;
1924 }
1925
1926 mddev->pers = pers[pnum];
1927 spin_unlock(&pers_lock);
1928
657390d2 1929 mddev->recovery = 0;
1da177e4
LT
1930 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1931
32a7627c
N
1932 /* before we start the array running, initialise the bitmap */
1933 err = bitmap_create(mddev);
1934 if (err)
1935 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1936 mdname(mddev), err);
1937 else
1938 err = mddev->pers->run(mddev);
1da177e4
LT
1939 if (err) {
1940 printk(KERN_ERR "md: pers->run() failed ...\n");
1941 module_put(mddev->pers->owner);
1942 mddev->pers = NULL;
32a7627c
N
1943 bitmap_destroy(mddev);
1944 return err;
1da177e4
LT
1945 }
1946 atomic_set(&mddev->writes_pending,0);
1947 mddev->safemode = 0;
1948 mddev->safemode_timer.function = md_safemode_timeout;
1949 mddev->safemode_timer.data = (unsigned long) mddev;
1950 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1951 mddev->in_sync = 1;
86e6ffdd
N
1952
1953 ITERATE_RDEV(mddev,rdev,tmp)
1954 if (rdev->raid_disk >= 0) {
1955 char nm[20];
1956 sprintf(nm, "rd%d", rdev->raid_disk);
1957 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
1958 }
1da177e4
LT
1959
1960 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
005eca5e 1961 md_wakeup_thread(mddev->thread);
1da177e4
LT
1962
1963 if (mddev->sb_dirty)
1964 md_update_sb(mddev);
1965
1966 set_capacity(disk, mddev->array_size<<1);
1967
1968 /* If we call blk_queue_make_request here, it will
1969 * re-initialise max_sectors etc which may have been
1970 * refined inside -> run. So just set the bits we need to set.
1971 * Most initialisation happended when we called
1972 * blk_queue_make_request(..., md_fail_request)
1973 * earlier.
1974 */
1975 mddev->queue->queuedata = mddev;
1976 mddev->queue->make_request_fn = mddev->pers->make_request;
1977
1978 mddev->changed = 1;
1979 return 0;
1980}
1981
1982static int restart_array(mddev_t *mddev)
1983{
1984 struct gendisk *disk = mddev->gendisk;
1985 int err;
1986
1987 /*
1988 * Complain if it has no devices
1989 */
1990 err = -ENXIO;
1991 if (list_empty(&mddev->disks))
1992 goto out;
1993
1994 if (mddev->pers) {
1995 err = -EBUSY;
1996 if (!mddev->ro)
1997 goto out;
1998
1999 mddev->safemode = 0;
2000 mddev->ro = 0;
2001 set_disk_ro(disk, 0);
2002
2003 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2004 mdname(mddev));
2005 /*
2006 * Kick recovery or resync if necessary
2007 */
2008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2009 md_wakeup_thread(mddev->thread);
2010 err = 0;
2011 } else {
2012 printk(KERN_ERR "md: %s has no personality assigned.\n",
2013 mdname(mddev));
2014 err = -EINVAL;
2015 }
2016
2017out:
2018 return err;
2019}
2020
2021static int do_md_stop(mddev_t * mddev, int ro)
2022{
2023 int err = 0;
2024 struct gendisk *disk = mddev->gendisk;
2025
2026 if (mddev->pers) {
2027 if (atomic_read(&mddev->active)>2) {
2028 printk("md: %s still in use.\n",mdname(mddev));
2029 return -EBUSY;
2030 }
2031
2032 if (mddev->sync_thread) {
2033 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2034 md_unregister_thread(mddev->sync_thread);
2035 mddev->sync_thread = NULL;
2036 }
2037
2038 del_timer_sync(&mddev->safemode_timer);
2039
2040 invalidate_partition(disk, 0);
2041
2042 if (ro) {
2043 err = -ENXIO;
2044 if (mddev->ro)
2045 goto out;
2046 mddev->ro = 1;
2047 } else {
6b8b3e8a
N
2048 bitmap_flush(mddev);
2049 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1da177e4
LT
2050 if (mddev->ro)
2051 set_disk_ro(disk, 0);
2052 blk_queue_make_request(mddev->queue, md_fail_request);
2053 mddev->pers->stop(mddev);
2054 module_put(mddev->pers->owner);
2055 mddev->pers = NULL;
2056 if (mddev->ro)
2057 mddev->ro = 0;
2058 }
2059 if (!mddev->in_sync) {
2060 /* mark array as shutdown cleanly */
2061 mddev->in_sync = 1;
2062 md_update_sb(mddev);
2063 }
2064 if (ro)
2065 set_disk_ro(disk, 1);
2066 }
32a7627c
N
2067
2068 bitmap_destroy(mddev);
2069 if (mddev->bitmap_file) {
2070 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2071 fput(mddev->bitmap_file);
2072 mddev->bitmap_file = NULL;
2073 }
9223214e 2074 mddev->bitmap_offset = 0;
32a7627c 2075
1da177e4
LT
2076 /*
2077 * Free resources if final stop
2078 */
2079 if (!ro) {
86e6ffdd
N
2080 mdk_rdev_t *rdev;
2081 struct list_head *tmp;
1da177e4
LT
2082 struct gendisk *disk;
2083 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2084
86e6ffdd
N
2085 ITERATE_RDEV(mddev,rdev,tmp)
2086 if (rdev->raid_disk >= 0) {
2087 char nm[20];
2088 sprintf(nm, "rd%d", rdev->raid_disk);
2089 sysfs_remove_link(&mddev->kobj, nm);
2090 }
2091
1da177e4
LT
2092 export_array(mddev);
2093
2094 mddev->array_size = 0;
2095 disk = mddev->gendisk;
2096 if (disk)
2097 set_capacity(disk, 0);
2098 mddev->changed = 1;
2099 } else
2100 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2101 mdname(mddev));
2102 err = 0;
2103out:
2104 return err;
2105}
2106
2107static void autorun_array(mddev_t *mddev)
2108{
2109 mdk_rdev_t *rdev;
2110 struct list_head *tmp;
2111 int err;
2112
a757e64c 2113 if (list_empty(&mddev->disks))
1da177e4 2114 return;
1da177e4
LT
2115
2116 printk(KERN_INFO "md: running: ");
2117
2118 ITERATE_RDEV(mddev,rdev,tmp) {
2119 char b[BDEVNAME_SIZE];
2120 printk("<%s>", bdevname(rdev->bdev,b));
2121 }
2122 printk("\n");
2123
2124 err = do_md_run (mddev);
2125 if (err) {
2126 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2127 do_md_stop (mddev, 0);
2128 }
2129}
2130
2131/*
2132 * lets try to run arrays based on all disks that have arrived
2133 * until now. (those are in pending_raid_disks)
2134 *
2135 * the method: pick the first pending disk, collect all disks with
2136 * the same UUID, remove all from the pending list and put them into
2137 * the 'same_array' list. Then order this list based on superblock
2138 * update time (freshest comes first), kick out 'old' disks and
2139 * compare superblocks. If everything's fine then run it.
2140 *
2141 * If "unit" is allocated, then bump its reference count
2142 */
2143static void autorun_devices(int part)
2144{
2145 struct list_head candidates;
2146 struct list_head *tmp;
2147 mdk_rdev_t *rdev0, *rdev;
2148 mddev_t *mddev;
2149 char b[BDEVNAME_SIZE];
2150
2151 printk(KERN_INFO "md: autorun ...\n");
2152 while (!list_empty(&pending_raid_disks)) {
2153 dev_t dev;
2154 rdev0 = list_entry(pending_raid_disks.next,
2155 mdk_rdev_t, same_set);
2156
2157 printk(KERN_INFO "md: considering %s ...\n",
2158 bdevname(rdev0->bdev,b));
2159 INIT_LIST_HEAD(&candidates);
2160 ITERATE_RDEV_PENDING(rdev,tmp)
2161 if (super_90_load(rdev, rdev0, 0) >= 0) {
2162 printk(KERN_INFO "md: adding %s ...\n",
2163 bdevname(rdev->bdev,b));
2164 list_move(&rdev->same_set, &candidates);
2165 }
2166 /*
2167 * now we have a set of devices, with all of them having
2168 * mostly sane superblocks. It's time to allocate the
2169 * mddev.
2170 */
2171 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2172 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2173 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2174 break;
2175 }
2176 if (part)
2177 dev = MKDEV(mdp_major,
2178 rdev0->preferred_minor << MdpMinorShift);
2179 else
2180 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2181
2182 md_probe(dev, NULL, NULL);
2183 mddev = mddev_find(dev);
2184 if (!mddev) {
2185 printk(KERN_ERR
2186 "md: cannot allocate memory for md drive.\n");
2187 break;
2188 }
2189 if (mddev_lock(mddev))
2190 printk(KERN_WARNING "md: %s locked, cannot run\n",
2191 mdname(mddev));
2192 else if (mddev->raid_disks || mddev->major_version
2193 || !list_empty(&mddev->disks)) {
2194 printk(KERN_WARNING
2195 "md: %s already running, cannot run %s\n",
2196 mdname(mddev), bdevname(rdev0->bdev,b));
2197 mddev_unlock(mddev);
2198 } else {
2199 printk(KERN_INFO "md: created %s\n", mdname(mddev));
2200 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2201 list_del_init(&rdev->same_set);
2202 if (bind_rdev_to_array(rdev, mddev))
2203 export_rdev(rdev);
2204 }
2205 autorun_array(mddev);
2206 mddev_unlock(mddev);
2207 }
2208 /* on success, candidates will be empty, on error
2209 * it won't...
2210 */
2211 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2212 export_rdev(rdev);
2213 mddev_put(mddev);
2214 }
2215 printk(KERN_INFO "md: ... autorun DONE.\n");
2216}
2217
2218/*
2219 * import RAID devices based on one partition
2220 * if possible, the array gets run as well.
2221 */
2222
2223static int autostart_array(dev_t startdev)
2224{
2225 char b[BDEVNAME_SIZE];
2226 int err = -EINVAL, i;
2227 mdp_super_t *sb = NULL;
2228 mdk_rdev_t *start_rdev = NULL, *rdev;
2229
2230 start_rdev = md_import_device(startdev, 0, 0);
2231 if (IS_ERR(start_rdev))
2232 return err;
2233
2234
2235 /* NOTE: this can only work for 0.90.0 superblocks */
2236 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2237 if (sb->major_version != 0 ||
2238 sb->minor_version != 90 ) {
2239 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2240 export_rdev(start_rdev);
2241 return err;
2242 }
2243
2244 if (start_rdev->faulty) {
2245 printk(KERN_WARNING
2246 "md: can not autostart based on faulty %s!\n",
2247 bdevname(start_rdev->bdev,b));
2248 export_rdev(start_rdev);
2249 return err;
2250 }
2251 list_add(&start_rdev->same_set, &pending_raid_disks);
2252
2253 for (i = 0; i < MD_SB_DISKS; i++) {
2254 mdp_disk_t *desc = sb->disks + i;
2255 dev_t dev = MKDEV(desc->major, desc->minor);
2256
2257 if (!dev)
2258 continue;
2259 if (dev == startdev)
2260 continue;
2261 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2262 continue;
2263 rdev = md_import_device(dev, 0, 0);
2264 if (IS_ERR(rdev))
2265 continue;
2266
2267 list_add(&rdev->same_set, &pending_raid_disks);
2268 }
2269
2270 /*
2271 * possibly return codes
2272 */
2273 autorun_devices(0);
2274 return 0;
2275
2276}
2277
2278
2279static int get_version(void __user * arg)
2280{
2281 mdu_version_t ver;
2282
2283 ver.major = MD_MAJOR_VERSION;
2284 ver.minor = MD_MINOR_VERSION;
2285 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2286
2287 if (copy_to_user(arg, &ver, sizeof(ver)))
2288 return -EFAULT;
2289
2290 return 0;
2291}
2292
2293static int get_array_info(mddev_t * mddev, void __user * arg)
2294{
2295 mdu_array_info_t info;
2296 int nr,working,active,failed,spare;
2297 mdk_rdev_t *rdev;
2298 struct list_head *tmp;
2299
2300 nr=working=active=failed=spare=0;
2301 ITERATE_RDEV(mddev,rdev,tmp) {
2302 nr++;
2303 if (rdev->faulty)
2304 failed++;
2305 else {
2306 working++;
2307 if (rdev->in_sync)
2308 active++;
2309 else
2310 spare++;
2311 }
2312 }
2313
2314 info.major_version = mddev->major_version;
2315 info.minor_version = mddev->minor_version;
2316 info.patch_version = MD_PATCHLEVEL_VERSION;
2317 info.ctime = mddev->ctime;
2318 info.level = mddev->level;
2319 info.size = mddev->size;
2320 info.nr_disks = nr;
2321 info.raid_disks = mddev->raid_disks;
2322 info.md_minor = mddev->md_minor;
2323 info.not_persistent= !mddev->persistent;
2324
2325 info.utime = mddev->utime;
2326 info.state = 0;
2327 if (mddev->in_sync)
2328 info.state = (1<<MD_SB_CLEAN);
36fa3063
N
2329 if (mddev->bitmap && mddev->bitmap_offset)
2330 info.state = (1<<MD_SB_BITMAP_PRESENT);
1da177e4
LT
2331 info.active_disks = active;
2332 info.working_disks = working;
2333 info.failed_disks = failed;
2334 info.spare_disks = spare;
2335
2336 info.layout = mddev->layout;
2337 info.chunk_size = mddev->chunk_size;
2338
2339 if (copy_to_user(arg, &info, sizeof(info)))
2340 return -EFAULT;
2341
2342 return 0;
2343}
2344
87162a28 2345static int get_bitmap_file(mddev_t * mddev, void __user * arg)
32a7627c
N
2346{
2347 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2348 char *ptr, *buf = NULL;
2349 int err = -ENOMEM;
2350
2351 file = kmalloc(sizeof(*file), GFP_KERNEL);
2352 if (!file)
2353 goto out;
2354
2355 /* bitmap disabled, zero the first byte and copy out */
2356 if (!mddev->bitmap || !mddev->bitmap->file) {
2357 file->pathname[0] = '\0';
2358 goto copy_out;
2359 }
2360
2361 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2362 if (!buf)
2363 goto out;
2364
2365 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2366 if (!ptr)
2367 goto out;
2368
2369 strcpy(file->pathname, ptr);
2370
2371copy_out:
2372 err = 0;
2373 if (copy_to_user(arg, file, sizeof(*file)))
2374 err = -EFAULT;
2375out:
2376 kfree(buf);
2377 kfree(file);
2378 return err;
2379}
2380
1da177e4
LT
2381static int get_disk_info(mddev_t * mddev, void __user * arg)
2382{
2383 mdu_disk_info_t info;
2384 unsigned int nr;
2385 mdk_rdev_t *rdev;
2386
2387 if (copy_from_user(&info, arg, sizeof(info)))
2388 return -EFAULT;
2389
2390 nr = info.number;
2391
2392 rdev = find_rdev_nr(mddev, nr);
2393 if (rdev) {
2394 info.major = MAJOR(rdev->bdev->bd_dev);
2395 info.minor = MINOR(rdev->bdev->bd_dev);
2396 info.raid_disk = rdev->raid_disk;
2397 info.state = 0;
2398 if (rdev->faulty)
2399 info.state |= (1<<MD_DISK_FAULTY);
2400 else if (rdev->in_sync) {
2401 info.state |= (1<<MD_DISK_ACTIVE);
2402 info.state |= (1<<MD_DISK_SYNC);
2403 }
8ddf9efe
N
2404 if (test_bit(WriteMostly, &rdev->flags))
2405 info.state |= (1<<MD_DISK_WRITEMOSTLY);
1da177e4
LT
2406 } else {
2407 info.major = info.minor = 0;
2408 info.raid_disk = -1;
2409 info.state = (1<<MD_DISK_REMOVED);
2410 }
2411
2412 if (copy_to_user(arg, &info, sizeof(info)))
2413 return -EFAULT;
2414
2415 return 0;
2416}
2417
2418static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2419{
2420 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2421 mdk_rdev_t *rdev;
2422 dev_t dev = MKDEV(info->major,info->minor);
2423
2424 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2425 return -EOVERFLOW;
2426
2427 if (!mddev->raid_disks) {
2428 int err;
2429 /* expecting a device which has a superblock */
2430 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2431 if (IS_ERR(rdev)) {
2432 printk(KERN_WARNING
2433 "md: md_import_device returned %ld\n",
2434 PTR_ERR(rdev));
2435 return PTR_ERR(rdev);
2436 }
2437 if (!list_empty(&mddev->disks)) {
2438 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2439 mdk_rdev_t, same_set);
2440 int err = super_types[mddev->major_version]
2441 .load_super(rdev, rdev0, mddev->minor_version);
2442 if (err < 0) {
2443 printk(KERN_WARNING
2444 "md: %s has different UUID to %s\n",
2445 bdevname(rdev->bdev,b),
2446 bdevname(rdev0->bdev,b2));
2447 export_rdev(rdev);
2448 return -EINVAL;
2449 }
2450 }
2451 err = bind_rdev_to_array(rdev, mddev);
2452 if (err)
2453 export_rdev(rdev);
2454 return err;
2455 }
2456
2457 /*
2458 * add_new_disk can be used once the array is assembled
2459 * to add "hot spares". They must already have a superblock
2460 * written
2461 */
2462 if (mddev->pers) {
2463 int err;
2464 if (!mddev->pers->hot_add_disk) {
2465 printk(KERN_WARNING
2466 "%s: personality does not support diskops!\n",
2467 mdname(mddev));
2468 return -EINVAL;
2469 }
7b1e35f6
N
2470 if (mddev->persistent)
2471 rdev = md_import_device(dev, mddev->major_version,
2472 mddev->minor_version);
2473 else
2474 rdev = md_import_device(dev, -1, -1);
1da177e4
LT
2475 if (IS_ERR(rdev)) {
2476 printk(KERN_WARNING
2477 "md: md_import_device returned %ld\n",
2478 PTR_ERR(rdev));
2479 return PTR_ERR(rdev);
2480 }
41158c7e
N
2481 /* set save_raid_disk if appropriate */
2482 if (!mddev->persistent) {
2483 if (info->state & (1<<MD_DISK_SYNC) &&
2484 info->raid_disk < mddev->raid_disks)
2485 rdev->raid_disk = info->raid_disk;
2486 else
2487 rdev->raid_disk = -1;
2488 } else
2489 super_types[mddev->major_version].
2490 validate_super(mddev, rdev);
2491 rdev->saved_raid_disk = rdev->raid_disk;
2492
1da177e4 2493 rdev->in_sync = 0; /* just to be sure */
8ddf9efe
N
2494 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2495 set_bit(WriteMostly, &rdev->flags);
2496
1da177e4
LT
2497 rdev->raid_disk = -1;
2498 err = bind_rdev_to_array(rdev, mddev);
2499 if (err)
2500 export_rdev(rdev);
c361777f
N
2501
2502 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
005eca5e 2503 md_wakeup_thread(mddev->thread);
1da177e4
LT
2504 return err;
2505 }
2506
2507 /* otherwise, add_new_disk is only allowed
2508 * for major_version==0 superblocks
2509 */
2510 if (mddev->major_version != 0) {
2511 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2512 mdname(mddev));
2513 return -EINVAL;
2514 }
2515
2516 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2517 int err;
2518 rdev = md_import_device (dev, -1, 0);
2519 if (IS_ERR(rdev)) {
2520 printk(KERN_WARNING
2521 "md: error, md_import_device() returned %ld\n",
2522 PTR_ERR(rdev));
2523 return PTR_ERR(rdev);
2524 }
2525 rdev->desc_nr = info->number;
2526 if (info->raid_disk < mddev->raid_disks)
2527 rdev->raid_disk = info->raid_disk;
2528 else
2529 rdev->raid_disk = -1;
2530
2531 rdev->faulty = 0;
2532 if (rdev->raid_disk < mddev->raid_disks)
2533 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2534 else
2535 rdev->in_sync = 0;
2536
8ddf9efe
N
2537 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2538 set_bit(WriteMostly, &rdev->flags);
2539
1da177e4
LT
2540 err = bind_rdev_to_array(rdev, mddev);
2541 if (err) {
2542 export_rdev(rdev);
2543 return err;
2544 }
2545
2546 if (!mddev->persistent) {
2547 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2548 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2549 } else
2550 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2551 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2552
2553 if (!mddev->size || (mddev->size > rdev->size))
2554 mddev->size = rdev->size;
2555 }
2556
2557 return 0;
2558}
2559
2560static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2561{
2562 char b[BDEVNAME_SIZE];
2563 mdk_rdev_t *rdev;
2564
2565 if (!mddev->pers)
2566 return -ENODEV;
2567
2568 rdev = find_rdev(mddev, dev);
2569 if (!rdev)
2570 return -ENXIO;
2571
2572 if (rdev->raid_disk >= 0)
2573 goto busy;
2574
2575 kick_rdev_from_array(rdev);
2576 md_update_sb(mddev);
2577
2578 return 0;
2579busy:
2580 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2581 bdevname(rdev->bdev,b), mdname(mddev));
2582 return -EBUSY;
2583}
2584
2585static int hot_add_disk(mddev_t * mddev, dev_t dev)
2586{
2587 char b[BDEVNAME_SIZE];
2588 int err;
2589 unsigned int size;
2590 mdk_rdev_t *rdev;
2591
2592 if (!mddev->pers)
2593 return -ENODEV;
2594
2595 if (mddev->major_version != 0) {
2596 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2597 " version-0 superblocks.\n",
2598 mdname(mddev));
2599 return -EINVAL;
2600 }
2601 if (!mddev->pers->hot_add_disk) {
2602 printk(KERN_WARNING
2603 "%s: personality does not support diskops!\n",
2604 mdname(mddev));
2605 return -EINVAL;
2606 }
2607
2608 rdev = md_import_device (dev, -1, 0);
2609 if (IS_ERR(rdev)) {
2610 printk(KERN_WARNING
2611 "md: error, md_import_device() returned %ld\n",
2612 PTR_ERR(rdev));
2613 return -EINVAL;
2614 }
2615
2616 if (mddev->persistent)
2617 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2618 else
2619 rdev->sb_offset =
2620 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2621
2622 size = calc_dev_size(rdev, mddev->chunk_size);
2623 rdev->size = size;
2624
2625 if (size < mddev->size) {
2626 printk(KERN_WARNING
2627 "%s: disk size %llu blocks < array size %llu\n",
2628 mdname(mddev), (unsigned long long)size,
2629 (unsigned long long)mddev->size);
2630 err = -ENOSPC;
2631 goto abort_export;
2632 }
2633
2634 if (rdev->faulty) {
2635 printk(KERN_WARNING
2636 "md: can not hot-add faulty %s disk to %s!\n",
2637 bdevname(rdev->bdev,b), mdname(mddev));
2638 err = -EINVAL;
2639 goto abort_export;
2640 }
2641 rdev->in_sync = 0;
2642 rdev->desc_nr = -1;
2643 bind_rdev_to_array(rdev, mddev);
2644
2645 /*
2646 * The rest should better be atomic, we can have disk failures
2647 * noticed in interrupt contexts ...
2648 */
2649
2650 if (rdev->desc_nr == mddev->max_disks) {
2651 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2652 mdname(mddev));
2653 err = -EBUSY;
2654 goto abort_unbind_export;
2655 }
2656
2657 rdev->raid_disk = -1;
2658
2659 md_update_sb(mddev);
2660
2661 /*
2662 * Kick recovery, maybe this spare has to be added to the
2663 * array immediately.
2664 */
2665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2666 md_wakeup_thread(mddev->thread);
2667
2668 return 0;
2669
2670abort_unbind_export:
2671 unbind_rdev_from_array(rdev);
2672
2673abort_export:
2674 export_rdev(rdev);
2675 return err;
2676}
2677
32a7627c
N
2678/* similar to deny_write_access, but accounts for our holding a reference
2679 * to the file ourselves */
2680static int deny_bitmap_write_access(struct file * file)
2681{
2682 struct inode *inode = file->f_mapping->host;
2683
2684 spin_lock(&inode->i_lock);
2685 if (atomic_read(&inode->i_writecount) > 1) {
2686 spin_unlock(&inode->i_lock);
2687 return -ETXTBSY;
2688 }
2689 atomic_set(&inode->i_writecount, -1);
2690 spin_unlock(&inode->i_lock);
2691
2692 return 0;
2693}
2694
2695static int set_bitmap_file(mddev_t *mddev, int fd)
2696{
2697 int err;
2698
36fa3063
N
2699 if (mddev->pers) {
2700 if (!mddev->pers->quiesce)
2701 return -EBUSY;
2702 if (mddev->recovery || mddev->sync_thread)
2703 return -EBUSY;
2704 /* we should be able to change the bitmap.. */
2705 }
32a7627c 2706
32a7627c 2707
36fa3063
N
2708 if (fd >= 0) {
2709 if (mddev->bitmap)
2710 return -EEXIST; /* cannot add when bitmap is present */
2711 mddev->bitmap_file = fget(fd);
32a7627c 2712
36fa3063
N
2713 if (mddev->bitmap_file == NULL) {
2714 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2715 mdname(mddev));
2716 return -EBADF;
2717 }
2718
2719 err = deny_bitmap_write_access(mddev->bitmap_file);
2720 if (err) {
2721 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2722 mdname(mddev));
2723 fput(mddev->bitmap_file);
2724 mddev->bitmap_file = NULL;
2725 return err;
2726 }
a654b9d8 2727 mddev->bitmap_offset = 0; /* file overrides offset */
36fa3063
N
2728 } else if (mddev->bitmap == NULL)
2729 return -ENOENT; /* cannot remove what isn't there */
2730 err = 0;
2731 if (mddev->pers) {
2732 mddev->pers->quiesce(mddev, 1);
2733 if (fd >= 0)
2734 err = bitmap_create(mddev);
2735 if (fd < 0 || err)
2736 bitmap_destroy(mddev);
2737 mddev->pers->quiesce(mddev, 0);
2738 } else if (fd < 0) {
2739 if (mddev->bitmap_file)
2740 fput(mddev->bitmap_file);
2741 mddev->bitmap_file = NULL;
2742 }
2743
32a7627c
N
2744 return err;
2745}
2746
1da177e4
LT
2747/*
2748 * set_array_info is used two different ways
2749 * The original usage is when creating a new array.
2750 * In this usage, raid_disks is > 0 and it together with
2751 * level, size, not_persistent,layout,chunksize determine the
2752 * shape of the array.
2753 * This will always create an array with a type-0.90.0 superblock.
2754 * The newer usage is when assembling an array.
2755 * In this case raid_disks will be 0, and the major_version field is
2756 * use to determine which style super-blocks are to be found on the devices.
2757 * The minor and patch _version numbers are also kept incase the
2758 * super_block handler wishes to interpret them.
2759 */
2760static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2761{
2762
2763 if (info->raid_disks == 0) {
2764 /* just setting version number for superblock loading */
2765 if (info->major_version < 0 ||
2766 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2767 super_types[info->major_version].name == NULL) {
2768 /* maybe try to auto-load a module? */
2769 printk(KERN_INFO
2770 "md: superblock version %d not known\n",
2771 info->major_version);
2772 return -EINVAL;
2773 }
2774 mddev->major_version = info->major_version;
2775 mddev->minor_version = info->minor_version;
2776 mddev->patch_version = info->patch_version;
2777 return 0;
2778 }
2779 mddev->major_version = MD_MAJOR_VERSION;
2780 mddev->minor_version = MD_MINOR_VERSION;
2781 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2782 mddev->ctime = get_seconds();
2783
2784 mddev->level = info->level;
2785 mddev->size = info->size;
2786 mddev->raid_disks = info->raid_disks;
2787 /* don't set md_minor, it is determined by which /dev/md* was
2788 * openned
2789 */
2790 if (info->state & (1<<MD_SB_CLEAN))
2791 mddev->recovery_cp = MaxSector;
2792 else
2793 mddev->recovery_cp = 0;
2794 mddev->persistent = ! info->not_persistent;
2795
2796 mddev->layout = info->layout;
2797 mddev->chunk_size = info->chunk_size;
2798
2799 mddev->max_disks = MD_SB_DISKS;
2800
2801 mddev->sb_dirty = 1;
2802
2803 /*
2804 * Generate a 128 bit UUID
2805 */
2806 get_random_bytes(mddev->uuid, 16);
2807
2808 return 0;
2809}
2810
2811/*
2812 * update_array_info is used to change the configuration of an
2813 * on-line array.
2814 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2815 * fields in the info are checked against the array.
2816 * Any differences that cannot be handled will cause an error.
2817 * Normally, only one change can be managed at a time.
2818 */
2819static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2820{
2821 int rv = 0;
2822 int cnt = 0;
36fa3063
N
2823 int state = 0;
2824
2825 /* calculate expected state,ignoring low bits */
2826 if (mddev->bitmap && mddev->bitmap_offset)
2827 state |= (1 << MD_SB_BITMAP_PRESENT);
1da177e4
LT
2828
2829 if (mddev->major_version != info->major_version ||
2830 mddev->minor_version != info->minor_version ||
2831/* mddev->patch_version != info->patch_version || */
2832 mddev->ctime != info->ctime ||
2833 mddev->level != info->level ||
2834/* mddev->layout != info->layout || */
2835 !mddev->persistent != info->not_persistent||
36fa3063
N
2836 mddev->chunk_size != info->chunk_size ||
2837 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2838 ((state^info->state) & 0xfffffe00)
2839 )
1da177e4
LT
2840 return -EINVAL;
2841 /* Check there is only one change */
2842 if (mddev->size != info->size) cnt++;
2843 if (mddev->raid_disks != info->raid_disks) cnt++;
2844 if (mddev->layout != info->layout) cnt++;
36fa3063 2845 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
1da177e4
LT
2846 if (cnt == 0) return 0;
2847 if (cnt > 1) return -EINVAL;
2848
2849 if (mddev->layout != info->layout) {
2850 /* Change layout
2851 * we don't need to do anything at the md level, the
2852 * personality will take care of it all.
2853 */
2854 if (mddev->pers->reconfig == NULL)
2855 return -EINVAL;
2856 else
2857 return mddev->pers->reconfig(mddev, info->layout, -1);
2858 }
2859 if (mddev->size != info->size) {
2860 mdk_rdev_t * rdev;
2861 struct list_head *tmp;
2862 if (mddev->pers->resize == NULL)
2863 return -EINVAL;
2864 /* The "size" is the amount of each device that is used.
2865 * This can only make sense for arrays with redundancy.
2866 * linear and raid0 always use whatever space is available
2867 * We can only consider changing the size if no resync
2868 * or reconstruction is happening, and if the new size
2869 * is acceptable. It must fit before the sb_offset or,
2870 * if that is <data_offset, it must fit before the
2871 * size of each device.
2872 * If size is zero, we find the largest size that fits.
2873 */
2874 if (mddev->sync_thread)
2875 return -EBUSY;
2876 ITERATE_RDEV(mddev,rdev,tmp) {
2877 sector_t avail;
2878 int fit = (info->size == 0);
2879 if (rdev->sb_offset > rdev->data_offset)
2880 avail = (rdev->sb_offset*2) - rdev->data_offset;
2881 else
2882 avail = get_capacity(rdev->bdev->bd_disk)
2883 - rdev->data_offset;
2884 if (fit && (info->size == 0 || info->size > avail/2))
2885 info->size = avail/2;
2886 if (avail < ((sector_t)info->size << 1))
2887 return -ENOSPC;
2888 }
2889 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2890 if (!rv) {
2891 struct block_device *bdev;
2892
2893 bdev = bdget_disk(mddev->gendisk, 0);
2894 if (bdev) {
2895 down(&bdev->bd_inode->i_sem);
2896 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2897 up(&bdev->bd_inode->i_sem);
2898 bdput(bdev);
2899 }
2900 }
2901 }
2902 if (mddev->raid_disks != info->raid_disks) {
2903 /* change the number of raid disks */
2904 if (mddev->pers->reshape == NULL)
2905 return -EINVAL;
2906 if (info->raid_disks <= 0 ||
2907 info->raid_disks >= mddev->max_disks)
2908 return -EINVAL;
2909 if (mddev->sync_thread)
2910 return -EBUSY;
2911 rv = mddev->pers->reshape(mddev, info->raid_disks);
2912 if (!rv) {
2913 struct block_device *bdev;
2914
2915 bdev = bdget_disk(mddev->gendisk, 0);
2916 if (bdev) {
2917 down(&bdev->bd_inode->i_sem);
2918 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2919 up(&bdev->bd_inode->i_sem);
2920 bdput(bdev);
2921 }
2922 }
2923 }
36fa3063
N
2924 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
2925 if (mddev->pers->quiesce == NULL)
2926 return -EINVAL;
2927 if (mddev->recovery || mddev->sync_thread)
2928 return -EBUSY;
2929 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
2930 /* add the bitmap */
2931 if (mddev->bitmap)
2932 return -EEXIST;
2933 if (mddev->default_bitmap_offset == 0)
2934 return -EINVAL;
2935 mddev->bitmap_offset = mddev->default_bitmap_offset;
2936 mddev->pers->quiesce(mddev, 1);
2937 rv = bitmap_create(mddev);
2938 if (rv)
2939 bitmap_destroy(mddev);
2940 mddev->pers->quiesce(mddev, 0);
2941 } else {
2942 /* remove the bitmap */
2943 if (!mddev->bitmap)
2944 return -ENOENT;
2945 if (mddev->bitmap->file)
2946 return -EINVAL;
2947 mddev->pers->quiesce(mddev, 1);
2948 bitmap_destroy(mddev);
2949 mddev->pers->quiesce(mddev, 0);
2950 mddev->bitmap_offset = 0;
2951 }
2952 }
1da177e4
LT
2953 md_update_sb(mddev);
2954 return rv;
2955}
2956
2957static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2958{
2959 mdk_rdev_t *rdev;
2960
2961 if (mddev->pers == NULL)
2962 return -ENODEV;
2963
2964 rdev = find_rdev(mddev, dev);
2965 if (!rdev)
2966 return -ENODEV;
2967
2968 md_error(mddev, rdev);
2969 return 0;
2970}
2971
2972static int md_ioctl(struct inode *inode, struct file *file,
2973 unsigned int cmd, unsigned long arg)
2974{
2975 int err = 0;
2976 void __user *argp = (void __user *)arg;
2977 struct hd_geometry __user *loc = argp;
2978 mddev_t *mddev = NULL;
2979
2980 if (!capable(CAP_SYS_ADMIN))
2981 return -EACCES;
2982
2983 /*
2984 * Commands dealing with the RAID driver but not any
2985 * particular array:
2986 */
2987 switch (cmd)
2988 {
2989 case RAID_VERSION:
2990 err = get_version(argp);
2991 goto done;
2992
2993 case PRINT_RAID_DEBUG:
2994 err = 0;
2995 md_print_devices();
2996 goto done;
2997
2998#ifndef MODULE
2999 case RAID_AUTORUN:
3000 err = 0;
3001 autostart_arrays(arg);
3002 goto done;
3003#endif
3004 default:;
3005 }
3006
3007 /*
3008 * Commands creating/starting a new array:
3009 */
3010
3011 mddev = inode->i_bdev->bd_disk->private_data;
3012
3013 if (!mddev) {
3014 BUG();
3015 goto abort;
3016 }
3017
3018
3019 if (cmd == START_ARRAY) {
3020 /* START_ARRAY doesn't need to lock the array as autostart_array
3021 * does the locking, and it could even be a different array
3022 */
3023 static int cnt = 3;
3024 if (cnt > 0 ) {
3025 printk(KERN_WARNING
3026 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3027 "This will not be supported beyond 2.6\n",
3028 current->comm, current->pid);
3029 cnt--;
3030 }
3031 err = autostart_array(new_decode_dev(arg));
3032 if (err) {
3033 printk(KERN_WARNING "md: autostart failed!\n");
3034 goto abort;
3035 }
3036 goto done;
3037 }
3038
3039 err = mddev_lock(mddev);
3040 if (err) {
3041 printk(KERN_INFO
3042 "md: ioctl lock interrupted, reason %d, cmd %d\n",
3043 err, cmd);
3044 goto abort;
3045 }
3046
3047 switch (cmd)
3048 {
3049 case SET_ARRAY_INFO:
3050 {
3051 mdu_array_info_t info;
3052 if (!arg)
3053 memset(&info, 0, sizeof(info));
3054 else if (copy_from_user(&info, argp, sizeof(info))) {
3055 err = -EFAULT;
3056 goto abort_unlock;
3057 }
3058 if (mddev->pers) {
3059 err = update_array_info(mddev, &info);
3060 if (err) {
3061 printk(KERN_WARNING "md: couldn't update"
3062 " array info. %d\n", err);
3063 goto abort_unlock;
3064 }
3065 goto done_unlock;
3066 }
3067 if (!list_empty(&mddev->disks)) {
3068 printk(KERN_WARNING
3069 "md: array %s already has disks!\n",
3070 mdname(mddev));
3071 err = -EBUSY;
3072 goto abort_unlock;
3073 }
3074 if (mddev->raid_disks) {
3075 printk(KERN_WARNING
3076 "md: array %s already initialised!\n",
3077 mdname(mddev));
3078 err = -EBUSY;
3079 goto abort_unlock;
3080 }
3081 err = set_array_info(mddev, &info);
3082 if (err) {
3083 printk(KERN_WARNING "md: couldn't set"
3084 " array info. %d\n", err);
3085 goto abort_unlock;
3086 }
3087 }
3088 goto done_unlock;
3089
3090 default:;
3091 }
3092
3093 /*
3094 * Commands querying/configuring an existing array:
3095 */
32a7627c
N
3096 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3097 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3098 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3099 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
1da177e4
LT
3100 err = -ENODEV;
3101 goto abort_unlock;
3102 }
3103
3104 /*
3105 * Commands even a read-only array can execute:
3106 */
3107 switch (cmd)
3108 {
3109 case GET_ARRAY_INFO:
3110 err = get_array_info(mddev, argp);
3111 goto done_unlock;
3112
32a7627c 3113 case GET_BITMAP_FILE:
87162a28 3114 err = get_bitmap_file(mddev, argp);
32a7627c
N
3115 goto done_unlock;
3116
1da177e4
LT
3117 case GET_DISK_INFO:
3118 err = get_disk_info(mddev, argp);
3119 goto done_unlock;
3120
3121 case RESTART_ARRAY_RW:
3122 err = restart_array(mddev);
3123 goto done_unlock;
3124
3125 case STOP_ARRAY:
3126 err = do_md_stop (mddev, 0);
3127 goto done_unlock;
3128
3129 case STOP_ARRAY_RO:
3130 err = do_md_stop (mddev, 1);
3131 goto done_unlock;
3132
3133 /*
3134 * We have a problem here : there is no easy way to give a CHS
3135 * virtual geometry. We currently pretend that we have a 2 heads
3136 * 4 sectors (with a BIG number of cylinders...). This drives
3137 * dosfs just mad... ;-)
3138 */
3139 case HDIO_GETGEO:
3140 if (!loc) {
3141 err = -EINVAL;
3142 goto abort_unlock;
3143 }
3144 err = put_user (2, (char __user *) &loc->heads);
3145 if (err)
3146 goto abort_unlock;
3147 err = put_user (4, (char __user *) &loc->sectors);
3148 if (err)
3149 goto abort_unlock;
3150 err = put_user(get_capacity(mddev->gendisk)/8,
3151 (short __user *) &loc->cylinders);
3152 if (err)
3153 goto abort_unlock;
3154 err = put_user (get_start_sect(inode->i_bdev),
3155 (long __user *) &loc->start);
3156 goto done_unlock;
3157 }
3158
3159 /*
3160 * The remaining ioctls are changing the state of the
3161 * superblock, so we do not allow read-only arrays
3162 * here:
3163 */
3164 if (mddev->ro) {
3165 err = -EROFS;
3166 goto abort_unlock;
3167 }
3168
3169 switch (cmd)
3170 {
3171 case ADD_NEW_DISK:
3172 {
3173 mdu_disk_info_t info;
3174 if (copy_from_user(&info, argp, sizeof(info)))
3175 err = -EFAULT;
3176 else
3177 err = add_new_disk(mddev, &info);
3178 goto done_unlock;
3179 }
3180
3181 case HOT_REMOVE_DISK:
3182 err = hot_remove_disk(mddev, new_decode_dev(arg));
3183 goto done_unlock;
3184
3185 case HOT_ADD_DISK:
3186 err = hot_add_disk(mddev, new_decode_dev(arg));
3187 goto done_unlock;
3188
3189 case SET_DISK_FAULTY:
3190 err = set_disk_faulty(mddev, new_decode_dev(arg));
3191 goto done_unlock;
3192
3193 case RUN_ARRAY:
3194 err = do_md_run (mddev);
3195 goto done_unlock;
3196
32a7627c
N
3197 case SET_BITMAP_FILE:
3198 err = set_bitmap_file(mddev, (int)arg);
3199 goto done_unlock;
3200
1da177e4
LT
3201 default:
3202 if (_IOC_TYPE(cmd) == MD_MAJOR)
3203 printk(KERN_WARNING "md: %s(pid %d) used"
3204 " obsolete MD ioctl, upgrade your"
3205 " software to use new ictls.\n",
3206 current->comm, current->pid);
3207 err = -EINVAL;
3208 goto abort_unlock;
3209 }
3210
3211done_unlock:
3212abort_unlock:
3213 mddev_unlock(mddev);
3214
3215 return err;
3216done:
3217 if (err)
3218 MD_BUG();
3219abort:
3220 return err;
3221}
3222
3223static int md_open(struct inode *inode, struct file *file)
3224{
3225 /*
3226 * Succeed if we can lock the mddev, which confirms that
3227 * it isn't being stopped right now.
3228 */
3229 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3230 int err;
3231
3232 if ((err = mddev_lock(mddev)))
3233 goto out;
3234
3235 err = 0;
3236 mddev_get(mddev);
3237 mddev_unlock(mddev);
3238
3239 check_disk_change(inode->i_bdev);
3240 out:
3241 return err;
3242}
3243
3244static int md_release(struct inode *inode, struct file * file)
3245{
3246 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3247
3248 if (!mddev)
3249 BUG();
3250 mddev_put(mddev);
3251
3252 return 0;
3253}
3254
3255static int md_media_changed(struct gendisk *disk)
3256{
3257 mddev_t *mddev = disk->private_data;
3258
3259 return mddev->changed;
3260}
3261
3262static int md_revalidate(struct gendisk *disk)
3263{
3264 mddev_t *mddev = disk->private_data;
3265
3266 mddev->changed = 0;
3267 return 0;
3268}
3269static struct block_device_operations md_fops =
3270{
3271 .owner = THIS_MODULE,
3272 .open = md_open,
3273 .release = md_release,
3274 .ioctl = md_ioctl,
3275 .media_changed = md_media_changed,
3276 .revalidate_disk= md_revalidate,
3277};
3278
75c96f85 3279static int md_thread(void * arg)
1da177e4
LT
3280{
3281 mdk_thread_t *thread = arg;
3282
1da177e4
LT
3283 /*
3284 * md_thread is a 'system-thread', it's priority should be very
3285 * high. We avoid resource deadlocks individually in each
3286 * raid personality. (RAID5 does preallocation) We also use RR and
3287 * the very same RT priority as kswapd, thus we will never get
3288 * into a priority inversion deadlock.
3289 *
3290 * we definitely have to have equal or higher priority than
3291 * bdflush, otherwise bdflush will deadlock if there are too
3292 * many dirty RAID5 blocks.
3293 */
1da177e4 3294
6985c43f 3295 allow_signal(SIGKILL);
1da177e4 3296 complete(thread->event);
a6fb0934 3297 while (!kthread_should_stop()) {
1da177e4
LT
3298 void (*run)(mddev_t *);
3299
32a7627c 3300 wait_event_interruptible_timeout(thread->wqueue,
a6fb0934
N
3301 test_bit(THREAD_WAKEUP, &thread->flags)
3302 || kthread_should_stop(),
32a7627c 3303 thread->timeout);
3e1d1d28 3304 try_to_freeze();
1da177e4
LT
3305
3306 clear_bit(THREAD_WAKEUP, &thread->flags);
3307
3308 run = thread->run;
3309 if (run)
3310 run(thread->mddev);
1da177e4 3311 }
a6fb0934 3312
1da177e4
LT
3313 return 0;
3314}
3315
3316void md_wakeup_thread(mdk_thread_t *thread)
3317{
3318 if (thread) {
3319 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3320 set_bit(THREAD_WAKEUP, &thread->flags);
3321 wake_up(&thread->wqueue);
3322 }
3323}
3324
3325mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3326 const char *name)
3327{
3328 mdk_thread_t *thread;
1da177e4
LT
3329 struct completion event;
3330
a6fb0934 3331 thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
1da177e4
LT
3332 if (!thread)
3333 return NULL;
3334
3335 memset(thread, 0, sizeof(mdk_thread_t));
3336 init_waitqueue_head(&thread->wqueue);
3337
3338 init_completion(&event);
3339 thread->event = &event;
3340 thread->run = run;
3341 thread->mddev = mddev;
3342 thread->name = name;
32a7627c 3343 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6985c43f 3344 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
a6fb0934 3345 if (IS_ERR(thread->tsk)) {
1da177e4
LT
3346 kfree(thread);
3347 return NULL;
3348 }
3349 wait_for_completion(&event);
3350 return thread;
3351}
3352
1da177e4
LT
3353void md_unregister_thread(mdk_thread_t *thread)
3354{
d28446fe 3355 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
a6fb0934
N
3356
3357 kthread_stop(thread->tsk);
1da177e4
LT
3358 kfree(thread);
3359}
3360
3361void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3362{
3363 if (!mddev) {
3364 MD_BUG();
3365 return;
3366 }
3367
3368 if (!rdev || rdev->faulty)
3369 return;
32a7627c 3370/*
1da177e4
LT
3371 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3372 mdname(mddev),
3373 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3374 __builtin_return_address(0),__builtin_return_address(1),
3375 __builtin_return_address(2),__builtin_return_address(3));
32a7627c 3376*/
1da177e4
LT
3377 if (!mddev->pers->error_handler)
3378 return;
3379 mddev->pers->error_handler(mddev,rdev);
3380 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3381 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3382 md_wakeup_thread(mddev->thread);
3383}
3384
3385/* seq_file implementation /proc/mdstat */
3386
3387static void status_unused(struct seq_file *seq)
3388{
3389 int i = 0;
3390 mdk_rdev_t *rdev;
3391 struct list_head *tmp;
3392
3393 seq_printf(seq, "unused devices: ");
3394
3395 ITERATE_RDEV_PENDING(rdev,tmp) {
3396 char b[BDEVNAME_SIZE];
3397 i++;
3398 seq_printf(seq, "%s ",
3399 bdevname(rdev->bdev,b));
3400 }
3401 if (!i)
3402 seq_printf(seq, "<none>");
3403
3404 seq_printf(seq, "\n");
3405}
3406
3407
3408static void status_resync(struct seq_file *seq, mddev_t * mddev)
3409{
3410 unsigned long max_blocks, resync, res, dt, db, rt;
3411
3412 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3413
3414 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3415 max_blocks = mddev->resync_max_sectors >> 1;
3416 else
3417 max_blocks = mddev->size;
3418
3419 /*
3420 * Should not happen.
3421 */
3422 if (!max_blocks) {
3423 MD_BUG();
3424 return;
3425 }
3426 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3427 {
3428 int i, x = res/50, y = 20-x;
3429 seq_printf(seq, "[");
3430 for (i = 0; i < x; i++)
3431 seq_printf(seq, "=");
3432 seq_printf(seq, ">");
3433 for (i = 0; i < y; i++)
3434 seq_printf(seq, ".");
3435 seq_printf(seq, "] ");
3436 }
3437 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3438 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3439 "resync" : "recovery"),
3440 res/10, res % 10, resync, max_blocks);
3441
3442 /*
3443 * We do not want to overflow, so the order of operands and
3444 * the * 100 / 100 trick are important. We do a +1 to be
3445 * safe against division by zero. We only estimate anyway.
3446 *
3447 * dt: time from mark until now
3448 * db: blocks written from mark until now
3449 * rt: remaining time
3450 */
3451 dt = ((jiffies - mddev->resync_mark) / HZ);
3452 if (!dt) dt++;
3453 db = resync - (mddev->resync_mark_cnt/2);
3454 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3455
3456 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3457
3458 seq_printf(seq, " speed=%ldK/sec", db/dt);
3459}
3460
3461static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3462{
3463 struct list_head *tmp;
3464 loff_t l = *pos;
3465 mddev_t *mddev;
3466
3467 if (l >= 0x10000)
3468 return NULL;
3469 if (!l--)
3470 /* header */
3471 return (void*)1;
3472
3473 spin_lock(&all_mddevs_lock);
3474 list_for_each(tmp,&all_mddevs)
3475 if (!l--) {
3476 mddev = list_entry(tmp, mddev_t, all_mddevs);
3477 mddev_get(mddev);
3478 spin_unlock(&all_mddevs_lock);
3479 return mddev;
3480 }
3481 spin_unlock(&all_mddevs_lock);
3482 if (!l--)
3483 return (void*)2;/* tail */
3484 return NULL;
3485}
3486
3487static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3488{
3489 struct list_head *tmp;
3490 mddev_t *next_mddev, *mddev = v;
3491
3492 ++*pos;
3493 if (v == (void*)2)
3494 return NULL;
3495
3496 spin_lock(&all_mddevs_lock);
3497 if (v == (void*)1)
3498 tmp = all_mddevs.next;
3499 else
3500 tmp = mddev->all_mddevs.next;
3501 if (tmp != &all_mddevs)
3502 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3503 else {
3504 next_mddev = (void*)2;
3505 *pos = 0x10000;
3506 }
3507 spin_unlock(&all_mddevs_lock);
3508
3509 if (v != (void*)1)
3510 mddev_put(mddev);
3511 return next_mddev;
3512
3513}
3514
3515static void md_seq_stop(struct seq_file *seq, void *v)
3516{
3517 mddev_t *mddev = v;
3518
3519 if (mddev && v != (void*)1 && v != (void*)2)
3520 mddev_put(mddev);
3521}
3522
3523static int md_seq_show(struct seq_file *seq, void *v)
3524{
3525 mddev_t *mddev = v;
3526 sector_t size;
3527 struct list_head *tmp2;
3528 mdk_rdev_t *rdev;
3529 int i;
32a7627c 3530 struct bitmap *bitmap;
1da177e4
LT
3531
3532 if (v == (void*)1) {
3533 seq_printf(seq, "Personalities : ");
3534 spin_lock(&pers_lock);
3535 for (i = 0; i < MAX_PERSONALITY; i++)
3536 if (pers[i])
3537 seq_printf(seq, "[%s] ", pers[i]->name);
3538
3539 spin_unlock(&pers_lock);
3540 seq_printf(seq, "\n");
3541 return 0;
3542 }
3543 if (v == (void*)2) {
3544 status_unused(seq);
3545 return 0;
3546 }
3547
3548 if (mddev_lock(mddev)!=0)
3549 return -EINTR;
3550 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3551 seq_printf(seq, "%s : %sactive", mdname(mddev),
3552 mddev->pers ? "" : "in");
3553 if (mddev->pers) {
3554 if (mddev->ro)
3555 seq_printf(seq, " (read-only)");
3556 seq_printf(seq, " %s", mddev->pers->name);
3557 }
3558
3559 size = 0;
3560 ITERATE_RDEV(mddev,rdev,tmp2) {
3561 char b[BDEVNAME_SIZE];
3562 seq_printf(seq, " %s[%d]",
3563 bdevname(rdev->bdev,b), rdev->desc_nr);
8ddf9efe
N
3564 if (test_bit(WriteMostly, &rdev->flags))
3565 seq_printf(seq, "(W)");
1da177e4
LT
3566 if (rdev->faulty) {
3567 seq_printf(seq, "(F)");
3568 continue;
b325a32e
N
3569 } else if (rdev->raid_disk < 0)
3570 seq_printf(seq, "(S)"); /* spare */
1da177e4
LT
3571 size += rdev->size;
3572 }
3573
3574 if (!list_empty(&mddev->disks)) {
3575 if (mddev->pers)
3576 seq_printf(seq, "\n %llu blocks",
3577 (unsigned long long)mddev->array_size);
3578 else
3579 seq_printf(seq, "\n %llu blocks",
3580 (unsigned long long)size);
3581 }
1cd6bf19
N
3582 if (mddev->persistent) {
3583 if (mddev->major_version != 0 ||
3584 mddev->minor_version != 90) {
3585 seq_printf(seq," super %d.%d",
3586 mddev->major_version,
3587 mddev->minor_version);
3588 }
3589 } else
3590 seq_printf(seq, " super non-persistent");
1da177e4
LT
3591
3592 if (mddev->pers) {
3593 mddev->pers->status (seq, mddev);
3594 seq_printf(seq, "\n ");
32a7627c 3595 if (mddev->curr_resync > 2) {
1da177e4 3596 status_resync (seq, mddev);
32a7627c
N
3597 seq_printf(seq, "\n ");
3598 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3599 seq_printf(seq, " resync=DELAYED\n ");
3600 } else
3601 seq_printf(seq, "\n ");
3602
3603 if ((bitmap = mddev->bitmap)) {
32a7627c
N
3604 unsigned long chunk_kb;
3605 unsigned long flags;
32a7627c
N
3606 spin_lock_irqsave(&bitmap->lock, flags);
3607 chunk_kb = bitmap->chunksize >> 10;
3608 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3609 "%lu%s chunk",
3610 bitmap->pages - bitmap->missing_pages,
3611 bitmap->pages,
3612 (bitmap->pages - bitmap->missing_pages)
3613 << (PAGE_SHIFT - 10),
3614 chunk_kb ? chunk_kb : bitmap->chunksize,
3615 chunk_kb ? "KB" : "B");
78d742d8
N
3616 if (bitmap->file) {
3617 seq_printf(seq, ", file: ");
3618 seq_path(seq, bitmap->file->f_vfsmnt,
3619 bitmap->file->f_dentry," \t\n");
32a7627c 3620 }
78d742d8 3621
32a7627c
N
3622 seq_printf(seq, "\n");
3623 spin_unlock_irqrestore(&bitmap->lock, flags);
1da177e4
LT
3624 }
3625
3626 seq_printf(seq, "\n");
3627 }
3628 mddev_unlock(mddev);
3629
3630 return 0;
3631}
3632
3633static struct seq_operations md_seq_ops = {
3634 .start = md_seq_start,
3635 .next = md_seq_next,
3636 .stop = md_seq_stop,
3637 .show = md_seq_show,
3638};
3639
3640static int md_seq_open(struct inode *inode, struct file *file)
3641{
3642 int error;
3643
3644 error = seq_open(file, &md_seq_ops);
3645 return error;
3646}
3647
3648static struct file_operations md_seq_fops = {
3649 .open = md_seq_open,
3650 .read = seq_read,
3651 .llseek = seq_lseek,
3652 .release = seq_release,
3653};
3654
3655int register_md_personality(int pnum, mdk_personality_t *p)
3656{
3657 if (pnum >= MAX_PERSONALITY) {
3658 printk(KERN_ERR
3659 "md: tried to install personality %s as nr %d, but max is %lu\n",
3660 p->name, pnum, MAX_PERSONALITY-1);
3661 return -EINVAL;
3662 }
3663
3664 spin_lock(&pers_lock);
3665 if (pers[pnum]) {
3666 spin_unlock(&pers_lock);
1da177e4
LT
3667 return -EBUSY;
3668 }
3669
3670 pers[pnum] = p;
3671 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3672 spin_unlock(&pers_lock);
3673 return 0;
3674}
3675
3676int unregister_md_personality(int pnum)
3677{
a757e64c 3678 if (pnum >= MAX_PERSONALITY)
1da177e4 3679 return -EINVAL;
1da177e4
LT
3680
3681 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3682 spin_lock(&pers_lock);
3683 pers[pnum] = NULL;
3684 spin_unlock(&pers_lock);
3685 return 0;
3686}
3687
3688static int is_mddev_idle(mddev_t *mddev)
3689{
3690 mdk_rdev_t * rdev;
3691 struct list_head *tmp;
3692 int idle;
3693 unsigned long curr_events;
3694
3695 idle = 1;
3696 ITERATE_RDEV(mddev,rdev,tmp) {
3697 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
a362357b
JA
3698 curr_events = disk_stat_read(disk, sectors[0]) +
3699 disk_stat_read(disk, sectors[1]) -
1da177e4
LT
3700 atomic_read(&disk->sync_io);
3701 /* Allow some slack between valud of curr_events and last_events,
3702 * as there are some uninteresting races.
3703 * Note: the following is an unsigned comparison.
3704 */
3705 if ((curr_events - rdev->last_events + 32) > 64) {
3706 rdev->last_events = curr_events;
3707 idle = 0;
3708 }
3709 }
3710 return idle;
3711}
3712
3713void md_done_sync(mddev_t *mddev, int blocks, int ok)
3714{
3715 /* another "blocks" (512byte) blocks have been synced */
3716 atomic_sub(blocks, &mddev->recovery_active);
3717 wake_up(&mddev->recovery_wait);
3718 if (!ok) {
3719 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3720 md_wakeup_thread(mddev->thread);
3721 // stop recovery, signal do_sync ....
3722 }
3723}
3724
3725
06d91a5f
N
3726/* md_write_start(mddev, bi)
3727 * If we need to update some array metadata (e.g. 'active' flag
3d310eb7
N
3728 * in superblock) before writing, schedule a superblock update
3729 * and wait for it to complete.
06d91a5f 3730 */
3d310eb7 3731void md_write_start(mddev_t *mddev, struct bio *bi)
1da177e4 3732{
06d91a5f 3733 if (bio_data_dir(bi) != WRITE)
3d310eb7 3734 return;
06d91a5f
N
3735
3736 atomic_inc(&mddev->writes_pending);
06d91a5f 3737 if (mddev->in_sync) {
3d310eb7
N
3738 spin_lock(&mddev->write_lock);
3739 if (mddev->in_sync) {
3740 mddev->in_sync = 0;
3741 mddev->sb_dirty = 1;
3742 md_wakeup_thread(mddev->thread);
3743 }
3744 spin_unlock(&mddev->write_lock);
06d91a5f 3745 }
3d310eb7 3746 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
1da177e4
LT
3747}
3748
3749void md_write_end(mddev_t *mddev)
3750{
3751 if (atomic_dec_and_test(&mddev->writes_pending)) {
3752 if (mddev->safemode == 2)
3753 md_wakeup_thread(mddev->thread);
3754 else
3755 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3756 }
3757}
3758
75c96f85 3759static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
1da177e4
LT
3760
3761#define SYNC_MARKS 10
3762#define SYNC_MARK_STEP (3*HZ)
3763static void md_do_sync(mddev_t *mddev)
3764{
3765 mddev_t *mddev2;
3766 unsigned int currspeed = 0,
3767 window;
57afd89f 3768 sector_t max_sectors,j, io_sectors;
1da177e4
LT
3769 unsigned long mark[SYNC_MARKS];
3770 sector_t mark_cnt[SYNC_MARKS];
3771 int last_mark,m;
3772 struct list_head *tmp;
3773 sector_t last_check;
57afd89f 3774 int skipped = 0;
1da177e4
LT
3775
3776 /* just incase thread restarts... */
3777 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3778 return;
3779
3780 /* we overload curr_resync somewhat here.
3781 * 0 == not engaged in resync at all
3782 * 2 == checking that there is no conflict with another sync
3783 * 1 == like 2, but have yielded to allow conflicting resync to
3784 * commense
3785 * other == active in resync - this many blocks
3786 *
3787 * Before starting a resync we must have set curr_resync to
3788 * 2, and then checked that every "conflicting" array has curr_resync
3789 * less than ours. When we find one that is the same or higher
3790 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3791 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3792 * This will mean we have to start checking from the beginning again.
3793 *
3794 */
3795
3796 do {
3797 mddev->curr_resync = 2;
3798
3799 try_again:
8712e553
N
3800 if (signal_pending(current) ||
3801 kthread_should_stop()) {
1da177e4 3802 flush_signals(current);
6985c43f 3803 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4
LT
3804 goto skip;
3805 }
3806 ITERATE_MDDEV(mddev2,tmp) {
1da177e4
LT
3807 if (mddev2 == mddev)
3808 continue;
3809 if (mddev2->curr_resync &&
3810 match_mddev_units(mddev,mddev2)) {
3811 DEFINE_WAIT(wq);
3812 if (mddev < mddev2 && mddev->curr_resync == 2) {
3813 /* arbitrarily yield */
3814 mddev->curr_resync = 1;
3815 wake_up(&resync_wait);
3816 }
3817 if (mddev > mddev2 && mddev->curr_resync == 1)
3818 /* no need to wait here, we can wait the next
3819 * time 'round when curr_resync == 2
3820 */
3821 continue;
3822 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8712e553
N
3823 if (!signal_pending(current) &&
3824 !kthread_should_stop() &&
3825 mddev2->curr_resync >= mddev->curr_resync) {
1da177e4
LT
3826 printk(KERN_INFO "md: delaying resync of %s"
3827 " until %s has finished resync (they"
3828 " share one or more physical units)\n",
3829 mdname(mddev), mdname(mddev2));
3830 mddev_put(mddev2);
3831 schedule();
3832 finish_wait(&resync_wait, &wq);
3833 goto try_again;
3834 }
3835 finish_wait(&resync_wait, &wq);
3836 }
3837 }
3838 } while (mddev->curr_resync < 2);
3839
3840 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3841 /* resync follows the size requested by the personality,
57afd89f 3842 * which defaults to physical size, but can be virtual size
1da177e4
LT
3843 */
3844 max_sectors = mddev->resync_max_sectors;
3845 else
3846 /* recovery follows the physical size of devices */
3847 max_sectors = mddev->size << 1;
3848
3849 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3850 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3851 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
338cec32 3852 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
1da177e4
LT
3853 "(but not more than %d KB/sec) for reconstruction.\n",
3854 sysctl_speed_limit_max);
3855
3856 is_mddev_idle(mddev); /* this also initializes IO event counters */
32a7627c
N
3857 /* we don't use the checkpoint if there's a bitmap */
3858 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
1da177e4
LT
3859 j = mddev->recovery_cp;
3860 else
3861 j = 0;
57afd89f 3862 io_sectors = 0;
1da177e4
LT
3863 for (m = 0; m < SYNC_MARKS; m++) {
3864 mark[m] = jiffies;
57afd89f 3865 mark_cnt[m] = io_sectors;
1da177e4
LT
3866 }
3867 last_mark = 0;
3868 mddev->resync_mark = mark[last_mark];
3869 mddev->resync_mark_cnt = mark_cnt[last_mark];
3870
3871 /*
3872 * Tune reconstruction:
3873 */
3874 window = 32*(PAGE_SIZE/512);
3875 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3876 window/2,(unsigned long long) max_sectors/2);
3877
3878 atomic_set(&mddev->recovery_active, 0);
3879 init_waitqueue_head(&mddev->recovery_wait);
3880 last_check = 0;
3881
3882 if (j>2) {
3883 printk(KERN_INFO
3884 "md: resuming recovery of %s from checkpoint.\n",
3885 mdname(mddev));
3886 mddev->curr_resync = j;
3887 }
3888
3889 while (j < max_sectors) {
57afd89f 3890 sector_t sectors;
1da177e4 3891
57afd89f
N
3892 skipped = 0;
3893 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3894 currspeed < sysctl_speed_limit_min);
3895 if (sectors == 0) {
1da177e4
LT
3896 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3897 goto out;
3898 }
57afd89f
N
3899
3900 if (!skipped) { /* actual IO requested */
3901 io_sectors += sectors;
3902 atomic_add(sectors, &mddev->recovery_active);
3903 }
3904
1da177e4
LT
3905 j += sectors;
3906 if (j>1) mddev->curr_resync = j;
3907
57afd89f
N
3908
3909 if (last_check + window > io_sectors || j == max_sectors)
1da177e4
LT
3910 continue;
3911
57afd89f 3912 last_check = io_sectors;
1da177e4
LT
3913
3914 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3915 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3916 break;
3917
3918 repeat:
3919 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3920 /* step marks */
3921 int next = (last_mark+1) % SYNC_MARKS;
3922
3923 mddev->resync_mark = mark[next];
3924 mddev->resync_mark_cnt = mark_cnt[next];
3925 mark[next] = jiffies;
57afd89f 3926 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
1da177e4
LT
3927 last_mark = next;
3928 }
3929
3930
8712e553 3931 if (signal_pending(current) || kthread_should_stop()) {
1da177e4
LT
3932 /*
3933 * got a signal, exit.
3934 */
3935 printk(KERN_INFO
3936 "md: md_do_sync() got signal ... exiting\n");
3937 flush_signals(current);
3938 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3939 goto out;
3940 }
3941
3942 /*
3943 * this loop exits only if either when we are slower than
3944 * the 'hard' speed limit, or the system was IO-idle for
3945 * a jiffy.
3946 * the system might be non-idle CPU-wise, but we only care
3947 * about not overloading the IO subsystem. (things like an
3948 * e2fsck being done on the RAID array should execute fast)
3949 */
3950 mddev->queue->unplug_fn(mddev->queue);
3951 cond_resched();
3952
57afd89f
N
3953 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3954 /((jiffies-mddev->resync_mark)/HZ +1) +1;
1da177e4
LT
3955
3956 if (currspeed > sysctl_speed_limit_min) {
3957 if ((currspeed > sysctl_speed_limit_max) ||
3958 !is_mddev_idle(mddev)) {
3959 msleep_interruptible(250);
3960 goto repeat;
3961 }
3962 }
3963 }
3964 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3965 /*
3966 * this also signals 'finished resyncing' to md_stop
3967 */
3968 out:
3969 mddev->queue->unplug_fn(mddev->queue);
3970
3971 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3972
3973 /* tell personality that we are finished */
57afd89f 3974 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
1da177e4
LT
3975
3976 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3977 mddev->curr_resync > 2 &&
3978 mddev->curr_resync >= mddev->recovery_cp) {
3979 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3980 printk(KERN_INFO
3981 "md: checkpointing recovery of %s.\n",
3982 mdname(mddev));
3983 mddev->recovery_cp = mddev->curr_resync;
3984 } else
3985 mddev->recovery_cp = MaxSector;
3986 }
3987
1da177e4
LT
3988 skip:
3989 mddev->curr_resync = 0;
3990 wake_up(&resync_wait);
3991 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3992 md_wakeup_thread(mddev->thread);
3993}
3994
3995
3996/*
3997 * This routine is regularly called by all per-raid-array threads to
3998 * deal with generic issues like resync and super-block update.
3999 * Raid personalities that don't have a thread (linear/raid0) do not
4000 * need this as they never do any recovery or update the superblock.
4001 *
4002 * It does not do any resync itself, but rather "forks" off other threads
4003 * to do that as needed.
4004 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4005 * "->recovery" and create a thread at ->sync_thread.
4006 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4007 * and wakeups up this thread which will reap the thread and finish up.
4008 * This thread also removes any faulty devices (with nr_pending == 0).
4009 *
4010 * The overall approach is:
4011 * 1/ if the superblock needs updating, update it.
4012 * 2/ If a recovery thread is running, don't do anything else.
4013 * 3/ If recovery has finished, clean up, possibly marking spares active.
4014 * 4/ If there are any faulty devices, remove them.
4015 * 5/ If array is degraded, try to add spares devices
4016 * 6/ If array has spares or is not in-sync, start a resync thread.
4017 */
4018void md_check_recovery(mddev_t *mddev)
4019{
4020 mdk_rdev_t *rdev;
4021 struct list_head *rtmp;
4022
4023
5f40402d
N
4024 if (mddev->bitmap)
4025 bitmap_daemon_work(mddev->bitmap);
1da177e4
LT
4026
4027 if (mddev->ro)
4028 return;
fca4d848
N
4029
4030 if (signal_pending(current)) {
4031 if (mddev->pers->sync_request) {
4032 printk(KERN_INFO "md: %s in immediate safe mode\n",
4033 mdname(mddev));
4034 mddev->safemode = 2;
4035 }
4036 flush_signals(current);
4037 }
4038
1da177e4
LT
4039 if ( ! (
4040 mddev->sb_dirty ||
4041 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
fca4d848
N
4042 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4043 (mddev->safemode == 1) ||
4044 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4045 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
1da177e4
LT
4046 ))
4047 return;
fca4d848 4048
1da177e4
LT
4049 if (mddev_trylock(mddev)==0) {
4050 int spares =0;
fca4d848 4051
06d91a5f 4052 spin_lock(&mddev->write_lock);
fca4d848
N
4053 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4054 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4055 mddev->in_sync = 1;
4056 mddev->sb_dirty = 1;
4057 }
4058 if (mddev->safemode == 1)
4059 mddev->safemode = 0;
06d91a5f 4060 spin_unlock(&mddev->write_lock);
fca4d848 4061
1da177e4
LT
4062 if (mddev->sb_dirty)
4063 md_update_sb(mddev);
06d91a5f 4064
06d91a5f 4065
1da177e4
LT
4066 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4067 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4068 /* resync/recovery still happening */
4069 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4070 goto unlock;
4071 }
4072 if (mddev->sync_thread) {
4073 /* resync has finished, collect result */
4074 md_unregister_thread(mddev->sync_thread);
4075 mddev->sync_thread = NULL;
4076 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4077 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4078 /* success...*/
4079 /* activate any spares */
4080 mddev->pers->spare_active(mddev);
4081 }
4082 md_update_sb(mddev);
41158c7e
N
4083
4084 /* if array is no-longer degraded, then any saved_raid_disk
4085 * information must be scrapped
4086 */
4087 if (!mddev->degraded)
4088 ITERATE_RDEV(mddev,rdev,rtmp)
4089 rdev->saved_raid_disk = -1;
4090
1da177e4
LT
4091 mddev->recovery = 0;
4092 /* flag recovery needed just to double check */
4093 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4094 goto unlock;
4095 }
4096 if (mddev->recovery)
4097 /* probably just the RECOVERY_NEEDED flag */
4098 mddev->recovery = 0;
4099
4100 /* no recovery is running.
4101 * remove any failed drives, then
4102 * add spares if possible.
4103 * Spare are also removed and re-added, to allow
4104 * the personality to fail the re-add.
4105 */
4106 ITERATE_RDEV(mddev,rdev,rtmp)
4107 if (rdev->raid_disk >= 0 &&
4108 (rdev->faulty || ! rdev->in_sync) &&
4109 atomic_read(&rdev->nr_pending)==0) {
86e6ffdd
N
4110 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4111 char nm[20];
4112 sprintf(nm,"rd%d", rdev->raid_disk);
4113 sysfs_remove_link(&mddev->kobj, nm);
1da177e4 4114 rdev->raid_disk = -1;
86e6ffdd 4115 }
1da177e4
LT
4116 }
4117
4118 if (mddev->degraded) {
4119 ITERATE_RDEV(mddev,rdev,rtmp)
4120 if (rdev->raid_disk < 0
4121 && !rdev->faulty) {
86e6ffdd
N
4122 if (mddev->pers->hot_add_disk(mddev,rdev)) {
4123 char nm[20];
4124 sprintf(nm, "rd%d", rdev->raid_disk);
4125 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
1da177e4 4126 spares++;
86e6ffdd 4127 } else
1da177e4
LT
4128 break;
4129 }
4130 }
4131
4132 if (!spares && (mddev->recovery_cp == MaxSector )) {
4133 /* nothing we can do ... */
4134 goto unlock;
4135 }
4136 if (mddev->pers->sync_request) {
4137 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4138 if (!spares)
4139 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
a654b9d8
N
4140 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4141 /* We are adding a device or devices to an array
4142 * which has the bitmap stored on all devices.
4143 * So make sure all bitmap pages get written
4144 */
4145 bitmap_write_all(mddev->bitmap);
4146 }
1da177e4
LT
4147 mddev->sync_thread = md_register_thread(md_do_sync,
4148 mddev,
4149 "%s_resync");
4150 if (!mddev->sync_thread) {
4151 printk(KERN_ERR "%s: could not start resync"
4152 " thread...\n",
4153 mdname(mddev));
4154 /* leave the spares where they are, it shouldn't hurt */
4155 mddev->recovery = 0;
4156 } else {
4157 md_wakeup_thread(mddev->sync_thread);
4158 }
4159 }
4160 unlock:
4161 mddev_unlock(mddev);
4162 }
4163}
4164
75c96f85
AB
4165static int md_notify_reboot(struct notifier_block *this,
4166 unsigned long code, void *x)
1da177e4
LT
4167{
4168 struct list_head *tmp;
4169 mddev_t *mddev;
4170
4171 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4172
4173 printk(KERN_INFO "md: stopping all md devices.\n");
4174
4175 ITERATE_MDDEV(mddev,tmp)
4176 if (mddev_trylock(mddev)==0)
4177 do_md_stop (mddev, 1);
4178 /*
4179 * certain more exotic SCSI devices are known to be
4180 * volatile wrt too early system reboots. While the
4181 * right place to handle this issue is the given
4182 * driver, we do want to have a safe RAID driver ...
4183 */
4184 mdelay(1000*1);
4185 }
4186 return NOTIFY_DONE;
4187}
4188
75c96f85 4189static struct notifier_block md_notifier = {
1da177e4
LT
4190 .notifier_call = md_notify_reboot,
4191 .next = NULL,
4192 .priority = INT_MAX, /* before any real devices */
4193};
4194
4195static void md_geninit(void)
4196{
4197 struct proc_dir_entry *p;
4198
4199 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4200
4201 p = create_proc_entry("mdstat", S_IRUGO, NULL);
4202 if (p)
4203 p->proc_fops = &md_seq_fops;
4204}
4205
75c96f85 4206static int __init md_init(void)
1da177e4
LT
4207{
4208 int minor;
4209
4210 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4211 " MD_SB_DISKS=%d\n",
4212 MD_MAJOR_VERSION, MD_MINOR_VERSION,
4213 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
32a7627c
N
4214 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
4215 BITMAP_MINOR);
1da177e4
LT
4216
4217 if (register_blkdev(MAJOR_NR, "md"))
4218 return -1;
4219 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4220 unregister_blkdev(MAJOR_NR, "md");
4221 return -1;
4222 }
4223 devfs_mk_dir("md");
4224 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4225 md_probe, NULL, NULL);
4226 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4227 md_probe, NULL, NULL);
4228
4229 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4230 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4231 S_IFBLK|S_IRUSR|S_IWUSR,
4232 "md/%d", minor);
4233
4234 for (minor=0; minor < MAX_MD_DEVS; ++minor)
4235 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4236 S_IFBLK|S_IRUSR|S_IWUSR,
4237 "md/mdp%d", minor);
4238
4239
4240 register_reboot_notifier(&md_notifier);
4241 raid_table_header = register_sysctl_table(raid_root_table, 1);
4242
4243 md_geninit();
4244 return (0);
4245}
4246
4247
4248#ifndef MODULE
4249
4250/*
4251 * Searches all registered partitions for autorun RAID arrays
4252 * at boot time.
4253 */
4254static dev_t detected_devices[128];
4255static int dev_cnt;
4256
4257void md_autodetect_dev(dev_t dev)
4258{
4259 if (dev_cnt >= 0 && dev_cnt < 127)
4260 detected_devices[dev_cnt++] = dev;
4261}
4262
4263
4264static void autostart_arrays(int part)
4265{
4266 mdk_rdev_t *rdev;
4267 int i;
4268
4269 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4270
4271 for (i = 0; i < dev_cnt; i++) {
4272 dev_t dev = detected_devices[i];
4273
4274 rdev = md_import_device(dev,0, 0);
4275 if (IS_ERR(rdev))
4276 continue;
4277
4278 if (rdev->faulty) {
4279 MD_BUG();
4280 continue;
4281 }
4282 list_add(&rdev->same_set, &pending_raid_disks);
4283 }
4284 dev_cnt = 0;
4285
4286 autorun_devices(part);
4287}
4288
4289#endif
4290
4291static __exit void md_exit(void)
4292{
4293 mddev_t *mddev;
4294 struct list_head *tmp;
4295 int i;
4296 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4297 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4298 for (i=0; i < MAX_MD_DEVS; i++)
4299 devfs_remove("md/%d", i);
4300 for (i=0; i < MAX_MD_DEVS; i++)
4301 devfs_remove("md/d%d", i);
4302
4303 devfs_remove("md");
4304
4305 unregister_blkdev(MAJOR_NR,"md");
4306 unregister_blkdev(mdp_major, "mdp");
4307 unregister_reboot_notifier(&md_notifier);
4308 unregister_sysctl_table(raid_table_header);
4309 remove_proc_entry("mdstat", NULL);
4310 ITERATE_MDDEV(mddev,tmp) {
4311 struct gendisk *disk = mddev->gendisk;
4312 if (!disk)
4313 continue;
4314 export_array(mddev);
4315 del_gendisk(disk);
4316 put_disk(disk);
4317 mddev->gendisk = NULL;
4318 mddev_put(mddev);
4319 }
4320}
4321
4322module_init(md_init)
4323module_exit(md_exit)
4324
4325EXPORT_SYMBOL(register_md_personality);
4326EXPORT_SYMBOL(unregister_md_personality);
4327EXPORT_SYMBOL(md_error);
4328EXPORT_SYMBOL(md_done_sync);
4329EXPORT_SYMBOL(md_write_start);
4330EXPORT_SYMBOL(md_write_end);
1da177e4
LT
4331EXPORT_SYMBOL(md_register_thread);
4332EXPORT_SYMBOL(md_unregister_thread);
4333EXPORT_SYMBOL(md_wakeup_thread);
4334EXPORT_SYMBOL(md_print_devices);
4335EXPORT_SYMBOL(md_check_recovery);
4336MODULE_LICENSE("GPL");
aa1595e9 4337MODULE_ALIAS("md");
72008652 4338MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);