]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/persistent-data/dm-btree.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / md / persistent-data / dm-btree.c
CommitLineData
3241b1d3
JT
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree-internal.h"
8#include "dm-space-map.h"
9#include "dm-transaction-manager.h"
10
1944ce60 11#include <linux/export.h>
3241b1d3
JT
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19static void memcpy_disk(void *dest, const void *src, size_t len)
20 __dm_written_to_disk(src)
21{
22 memcpy(dest, src, len);
23 __dm_unbless_for_disk(src);
24}
25
26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 unsigned index, void *elt)
28 __dm_written_to_disk(elt)
29{
30 if (index < nr_elts)
31 memmove(base + (elt_size * (index + 1)),
32 base + (elt_size * index),
33 (nr_elts - index) * elt_size);
34
35 memcpy_disk(base + (elt_size * index), elt, elt_size);
36}
37
38/*----------------------------------------------------------------*/
39
40/* makes the assumption that no two keys are the same. */
550929fa 41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
3241b1d3
JT
42{
43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45 while (hi - lo > 1) {
46 int mid = lo + ((hi - lo) / 2);
47 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49 if (mid_key == key)
50 return mid;
51
52 if (mid_key < key)
53 lo = mid;
54 else
55 hi = mid;
56 }
57
58 return want_hi ? hi : lo;
59}
60
550929fa 61int lower_bound(struct btree_node *n, uint64_t key)
3241b1d3
JT
62{
63 return bsearch(n, key, 0);
64}
65
993ceab9
JT
66static int upper_bound(struct btree_node *n, uint64_t key)
67{
68 return bsearch(n, key, 1);
69}
70
550929fa 71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
3241b1d3
JT
72 struct dm_btree_value_type *vt)
73{
74 unsigned i;
75 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78 for (i = 0; i < nr_entries; i++)
79 dm_tm_inc(tm, value64(n, i));
80 else if (vt->inc)
81 for (i = 0; i < nr_entries; i++)
a3aefb39 82 vt->inc(vt->context, value_ptr(n, i));
3241b1d3
JT
83}
84
550929fa 85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
3241b1d3
JT
86 uint64_t key, void *value)
87 __dm_written_to_disk(value)
88{
89 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90 __le64 key_le = cpu_to_le64(key);
91
92 if (index > nr_entries ||
93 index >= le32_to_cpu(node->header.max_entries)) {
94 DMERR("too many entries in btree node for insert");
95 __dm_unbless_for_disk(value);
96 return -ENOMEM;
97 }
98
99 __dm_bless_for_disk(&key_le);
100
101 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102 array_insert(value_base(node), value_size, nr_entries, index, value);
103 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105 return 0;
106}
107
108/*----------------------------------------------------------------*/
109
110/*
111 * We want 3n entries (for some n). This works more nicely for repeated
112 * insert remove loops than (2n + 1).
113 */
114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115{
116 uint32_t total, n;
117 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119 block_size -= sizeof(struct node_header);
120 total = block_size / elt_size;
121 n = total / 3; /* rounds down */
122
123 return 3 * n;
124}
125
126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127{
128 int r;
129 struct dm_block *b;
550929fa 130 struct btree_node *n;
3241b1d3
JT
131 size_t block_size;
132 uint32_t max_entries;
133
134 r = new_block(info, &b);
135 if (r < 0)
136 return r;
137
138 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139 max_entries = calc_max_entries(info->value_type.size, block_size);
140
141 n = dm_block_data(b);
142 memset(n, 0, block_size);
143 n->header.flags = cpu_to_le32(LEAF_NODE);
144 n->header.nr_entries = cpu_to_le32(0);
145 n->header.max_entries = cpu_to_le32(max_entries);
146 n->header.value_size = cpu_to_le32(info->value_type.size);
147
148 *root = dm_block_location(b);
4c7da06f
MP
149 unlock_block(info, b);
150
151 return 0;
3241b1d3
JT
152}
153EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155/*----------------------------------------------------------------*/
156
157/*
158 * Deletion uses a recursive algorithm, since we have limited stack space
159 * we explicitly manage our own stack on the heap.
160 */
161#define MAX_SPINE_DEPTH 64
162struct frame {
163 struct dm_block *b;
550929fa 164 struct btree_node *n;
3241b1d3
JT
165 unsigned level;
166 unsigned nr_children;
167 unsigned current_child;
168};
169
170struct del_stack {
04f17c80 171 struct dm_btree_info *info;
3241b1d3
JT
172 struct dm_transaction_manager *tm;
173 int top;
174 struct frame spine[MAX_SPINE_DEPTH];
175};
176
177static int top_frame(struct del_stack *s, struct frame **f)
178{
179 if (s->top < 0) {
180 DMERR("btree deletion stack empty");
181 return -EINVAL;
182 }
183
184 *f = s->spine + s->top;
185
186 return 0;
187}
188
189static int unprocessed_frames(struct del_stack *s)
190{
191 return s->top >= 0;
192}
193
04f17c80
JT
194static void prefetch_children(struct del_stack *s, struct frame *f)
195{
196 unsigned i;
197 struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199 for (i = 0; i < f->nr_children; i++)
200 dm_bm_prefetch(bm, value64(f->n, i));
201}
202
203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204{
205 return f->level < (info->levels - 1);
206}
207
3241b1d3
JT
208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209{
210 int r;
211 uint32_t ref_count;
212
213 if (s->top >= MAX_SPINE_DEPTH - 1) {
214 DMERR("btree deletion stack out of memory");
215 return -ENOMEM;
216 }
217
218 r = dm_tm_ref(s->tm, b, &ref_count);
219 if (r)
220 return r;
221
222 if (ref_count > 1)
223 /*
224 * This is a shared node, so we can just decrement it's
225 * reference counter and leave the children.
226 */
227 dm_tm_dec(s->tm, b);
228
229 else {
04f17c80 230 uint32_t flags;
3241b1d3
JT
231 struct frame *f = s->spine + ++s->top;
232
233 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234 if (r) {
235 s->top--;
236 return r;
237 }
238
239 f->n = dm_block_data(f->b);
240 f->level = level;
241 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242 f->current_child = 0;
04f17c80
JT
243
244 flags = le32_to_cpu(f->n->header.flags);
245 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246 prefetch_children(s, f);
3241b1d3
JT
247 }
248
249 return 0;
250}
251
252static void pop_frame(struct del_stack *s)
253{
254 struct frame *f = s->spine + s->top--;
255
256 dm_tm_dec(s->tm, dm_block_location(f->b));
257 dm_tm_unlock(s->tm, f->b);
258}
259
ed8b45a3
JT
260static void unlock_all_frames(struct del_stack *s)
261{
262 struct frame *f;
263
264 while (unprocessed_frames(s)) {
265 f = s->spine + s->top--;
266 dm_tm_unlock(s->tm, f->b);
267 }
268}
269
3241b1d3
JT
270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271{
272 int r;
273 struct del_stack *s;
274
9f9ef065
JT
275 /*
276 * dm_btree_del() is called via an ioctl, as such should be
277 * considered an FS op. We can't recurse back into the FS, so we
278 * allocate GFP_NOFS.
279 */
280 s = kmalloc(sizeof(*s), GFP_NOFS);
3241b1d3
JT
281 if (!s)
282 return -ENOMEM;
04f17c80 283 s->info = info;
3241b1d3
JT
284 s->tm = info->tm;
285 s->top = -1;
286
e3cbf945 287 r = push_frame(s, root, 0);
3241b1d3
JT
288 if (r)
289 goto out;
290
291 while (unprocessed_frames(s)) {
292 uint32_t flags;
293 struct frame *f;
294 dm_block_t b;
295
296 r = top_frame(s, &f);
297 if (r)
298 goto out;
299
300 if (f->current_child >= f->nr_children) {
301 pop_frame(s);
302 continue;
303 }
304
305 flags = le32_to_cpu(f->n->header.flags);
306 if (flags & INTERNAL_NODE) {
307 b = value64(f->n, f->current_child);
308 f->current_child++;
309 r = push_frame(s, b, f->level);
310 if (r)
311 goto out;
312
e3cbf945 313 } else if (is_internal_level(info, f)) {
3241b1d3
JT
314 b = value64(f->n, f->current_child);
315 f->current_child++;
316 r = push_frame(s, b, f->level + 1);
317 if (r)
318 goto out;
319
320 } else {
321 if (info->value_type.dec) {
322 unsigned i;
323
324 for (i = 0; i < f->nr_children; i++)
325 info->value_type.dec(info->value_type.context,
a3aefb39 326 value_ptr(f->n, i));
3241b1d3 327 }
cd5acf0b 328 pop_frame(s);
3241b1d3
JT
329 }
330 }
3241b1d3 331out:
ed8b45a3
JT
332 if (r) {
333 /* cleanup all frames of del_stack */
334 unlock_all_frames(s);
335 }
3241b1d3 336 kfree(s);
ed8b45a3 337
3241b1d3
JT
338 return r;
339}
340EXPORT_SYMBOL_GPL(dm_btree_del);
341
342/*----------------------------------------------------------------*/
343
344static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
550929fa 345 int (*search_fn)(struct btree_node *, uint64_t),
3241b1d3
JT
346 uint64_t *result_key, void *v, size_t value_size)
347{
348 int i, r;
349 uint32_t flags, nr_entries;
350
351 do {
352 r = ro_step(s, block);
353 if (r < 0)
354 return r;
355
356 i = search_fn(ro_node(s), key);
357
358 flags = le32_to_cpu(ro_node(s)->header.flags);
359 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
360 if (i < 0 || i >= nr_entries)
361 return -ENODATA;
362
363 if (flags & INTERNAL_NODE)
364 block = value64(ro_node(s), i);
365
366 } while (!(flags & LEAF_NODE));
367
368 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
a3aefb39 369 memcpy(v, value_ptr(ro_node(s), i), value_size);
3241b1d3
JT
370
371 return 0;
372}
373
374int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
375 uint64_t *keys, void *value_le)
376{
377 unsigned level, last_level = info->levels - 1;
378 int r = -ENODATA;
379 uint64_t rkey;
380 __le64 internal_value_le;
381 struct ro_spine spine;
382
383 init_ro_spine(&spine, info);
384 for (level = 0; level < info->levels; level++) {
385 size_t size;
386 void *value_p;
387
388 if (level == last_level) {
389 value_p = value_le;
390 size = info->value_type.size;
391
392 } else {
393 value_p = &internal_value_le;
394 size = sizeof(uint64_t);
395 }
396
397 r = btree_lookup_raw(&spine, root, keys[level],
398 lower_bound, &rkey,
399 value_p, size);
400
401 if (!r) {
402 if (rkey != keys[level]) {
403 exit_ro_spine(&spine);
404 return -ENODATA;
405 }
406 } else {
407 exit_ro_spine(&spine);
408 return r;
409 }
410
411 root = le64_to_cpu(internal_value_le);
412 }
413 exit_ro_spine(&spine);
414
415 return r;
416}
417EXPORT_SYMBOL_GPL(dm_btree_lookup);
418
993ceab9
JT
419static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
420 uint64_t key, uint64_t *rkey, void *value_le)
421{
422 int r, i;
423 uint32_t flags, nr_entries;
424 struct dm_block *node;
425 struct btree_node *n;
426
427 r = bn_read_lock(info, root, &node);
428 if (r)
429 return r;
430
431 n = dm_block_data(node);
432 flags = le32_to_cpu(n->header.flags);
433 nr_entries = le32_to_cpu(n->header.nr_entries);
434
435 if (flags & INTERNAL_NODE) {
436 i = lower_bound(n, key);
e7e0f730
JT
437 if (i < 0) {
438 /*
439 * avoid early -ENODATA return when all entries are
440 * higher than the search @key.
441 */
442 i = 0;
443 }
444 if (i >= nr_entries) {
993ceab9
JT
445 r = -ENODATA;
446 goto out;
447 }
448
449 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450 if (r == -ENODATA && i < (nr_entries - 1)) {
451 i++;
452 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453 }
454
455 } else {
456 i = upper_bound(n, key);
457 if (i < 0 || i >= nr_entries) {
458 r = -ENODATA;
459 goto out;
460 }
461
462 *rkey = le64_to_cpu(n->keys[i]);
463 memcpy(value_le, value_ptr(n, i), info->value_type.size);
464 }
465out:
466 dm_tm_unlock(info->tm, node);
467 return r;
468}
469
470int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
471 uint64_t *keys, uint64_t *rkey, void *value_le)
472{
473 unsigned level;
474 int r = -ENODATA;
475 __le64 internal_value_le;
476 struct ro_spine spine;
477
478 init_ro_spine(&spine, info);
479 for (level = 0; level < info->levels - 1u; level++) {
480 r = btree_lookup_raw(&spine, root, keys[level],
481 lower_bound, rkey,
482 &internal_value_le, sizeof(uint64_t));
483 if (r)
484 goto out;
485
486 if (*rkey != keys[level]) {
487 r = -ENODATA;
488 goto out;
489 }
490
491 root = le64_to_cpu(internal_value_le);
492 }
493
494 r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
495out:
496 exit_ro_spine(&spine);
497 return r;
498}
499
500EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
501
3241b1d3
JT
502/*
503 * Splits a node by creating a sibling node and shifting half the nodes
504 * contents across. Assumes there is a parent node, and it has room for
505 * another child.
506 *
507 * Before:
508 * +--------+
509 * | Parent |
510 * +--------+
511 * |
512 * v
513 * +----------+
514 * | A ++++++ |
515 * +----------+
516 *
517 *
518 * After:
519 * +--------+
520 * | Parent |
521 * +--------+
522 * | |
523 * v +------+
524 * +---------+ |
525 * | A* +++ | v
526 * +---------+ +-------+
527 * | B +++ |
528 * +-------+
529 *
530 * Where A* is a shadow of A.
531 */
0a8d4c3e
VG
532static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
533 uint64_t key)
3241b1d3
JT
534{
535 int r;
536 size_t size;
537 unsigned nr_left, nr_right;
538 struct dm_block *left, *right, *parent;
550929fa 539 struct btree_node *ln, *rn, *pn;
3241b1d3
JT
540 __le64 location;
541
542 left = shadow_current(s);
543
544 r = new_block(s->info, &right);
545 if (r < 0)
546 return r;
547
548 ln = dm_block_data(left);
549 rn = dm_block_data(right);
550
551 nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
552 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
553
554 ln->header.nr_entries = cpu_to_le32(nr_left);
555
556 rn->header.flags = ln->header.flags;
557 rn->header.nr_entries = cpu_to_le32(nr_right);
558 rn->header.max_entries = ln->header.max_entries;
559 rn->header.value_size = ln->header.value_size;
560 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
561
562 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
563 sizeof(uint64_t) : s->info->value_type.size;
a3aefb39 564 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
3241b1d3
JT
565 size * nr_right);
566
567 /*
568 * Patch up the parent
569 */
570 parent = shadow_parent(s);
571
572 pn = dm_block_data(parent);
573 location = cpu_to_le64(dm_block_location(left));
574 __dm_bless_for_disk(&location);
a3aefb39 575 memcpy_disk(value_ptr(pn, parent_index),
3241b1d3
JT
576 &location, sizeof(__le64));
577
578 location = cpu_to_le64(dm_block_location(right));
579 __dm_bless_for_disk(&location);
580
581 r = insert_at(sizeof(__le64), pn, parent_index + 1,
582 le64_to_cpu(rn->keys[0]), &location);
30ce6e1c
MS
583 if (r) {
584 unlock_block(s->info, right);
3241b1d3 585 return r;
30ce6e1c 586 }
3241b1d3
JT
587
588 if (key < le64_to_cpu(rn->keys[0])) {
589 unlock_block(s->info, right);
590 s->nodes[1] = left;
591 } else {
592 unlock_block(s->info, left);
593 s->nodes[1] = right;
594 }
595
596 return 0;
597}
598
599/*
600 * Splits a node by creating two new children beneath the given node.
601 *
602 * Before:
603 * +----------+
604 * | A ++++++ |
605 * +----------+
606 *
607 *
608 * After:
609 * +------------+
610 * | A (shadow) |
611 * +------------+
612 * | |
613 * +------+ +----+
614 * | |
615 * v v
616 * +-------+ +-------+
617 * | B +++ | | C +++ |
618 * +-------+ +-------+
619 */
620static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
621{
622 int r;
623 size_t size;
624 unsigned nr_left, nr_right;
625 struct dm_block *left, *right, *new_parent;
550929fa 626 struct btree_node *pn, *ln, *rn;
3241b1d3
JT
627 __le64 val;
628
629 new_parent = shadow_current(s);
630
631 r = new_block(s->info, &left);
632 if (r < 0)
633 return r;
634
635 r = new_block(s->info, &right);
636 if (r < 0) {
4dcb8b57 637 unlock_block(s->info, left);
3241b1d3
JT
638 return r;
639 }
640
641 pn = dm_block_data(new_parent);
642 ln = dm_block_data(left);
643 rn = dm_block_data(right);
644
645 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
646 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
647
648 ln->header.flags = pn->header.flags;
649 ln->header.nr_entries = cpu_to_le32(nr_left);
650 ln->header.max_entries = pn->header.max_entries;
651 ln->header.value_size = pn->header.value_size;
652
653 rn->header.flags = pn->header.flags;
654 rn->header.nr_entries = cpu_to_le32(nr_right);
655 rn->header.max_entries = pn->header.max_entries;
656 rn->header.value_size = pn->header.value_size;
657
658 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
659 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
660
661 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
662 sizeof(__le64) : s->info->value_type.size;
a3aefb39
JT
663 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
664 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
3241b1d3
JT
665 nr_right * size);
666
667 /* new_parent should just point to l and r now */
668 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
669 pn->header.nr_entries = cpu_to_le32(2);
670 pn->header.max_entries = cpu_to_le32(
671 calc_max_entries(sizeof(__le64),
672 dm_bm_block_size(
673 dm_tm_get_bm(s->info->tm))));
674 pn->header.value_size = cpu_to_le32(sizeof(__le64));
675
676 val = cpu_to_le64(dm_block_location(left));
677 __dm_bless_for_disk(&val);
678 pn->keys[0] = ln->keys[0];
a3aefb39 679 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
3241b1d3
JT
680
681 val = cpu_to_le64(dm_block_location(right));
682 __dm_bless_for_disk(&val);
683 pn->keys[1] = rn->keys[0];
a3aefb39 684 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
3241b1d3
JT
685
686 /*
687 * rejig the spine. This is ugly, since it knows too
688 * much about the spine
689 */
690 if (s->nodes[0] != new_parent) {
691 unlock_block(s->info, s->nodes[0]);
692 s->nodes[0] = new_parent;
693 }
694 if (key < le64_to_cpu(rn->keys[0])) {
695 unlock_block(s->info, right);
696 s->nodes[1] = left;
697 } else {
698 unlock_block(s->info, left);
699 s->nodes[1] = right;
700 }
701 s->count = 2;
702
703 return 0;
704}
705
706static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
707 struct dm_btree_value_type *vt,
708 uint64_t key, unsigned *index)
709{
710 int r, i = *index, top = 1;
550929fa 711 struct btree_node *node;
3241b1d3
JT
712
713 for (;;) {
714 r = shadow_step(s, root, vt);
715 if (r < 0)
716 return r;
717
718 node = dm_block_data(shadow_current(s));
719
720 /*
721 * We have to patch up the parent node, ugly, but I don't
722 * see a way to do this automatically as part of the spine
723 * op.
724 */
725 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
726 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
727
728 __dm_bless_for_disk(&location);
a3aefb39 729 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
3241b1d3
JT
730 &location, sizeof(__le64));
731 }
732
733 node = dm_block_data(shadow_current(s));
734
735 if (node->header.nr_entries == node->header.max_entries) {
736 if (top)
737 r = btree_split_beneath(s, key);
738 else
0a8d4c3e 739 r = btree_split_sibling(s, i, key);
3241b1d3
JT
740
741 if (r < 0)
742 return r;
743 }
744
745 node = dm_block_data(shadow_current(s));
746
747 i = lower_bound(node, key);
748
749 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
750 break;
751
752 if (i < 0) {
753 /* change the bounds on the lowest key */
754 node->keys[0] = cpu_to_le64(key);
755 i = 0;
756 }
757
758 root = value64(node, i);
759 top = 0;
760 }
761
762 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
763 i++;
764
765 *index = i;
766 return 0;
767}
768
ba503835
MS
769static bool need_insert(struct btree_node *node, uint64_t *keys,
770 unsigned level, unsigned index)
771{
772 return ((index >= le32_to_cpu(node->header.nr_entries)) ||
773 (le64_to_cpu(node->keys[index]) != keys[level]));
774}
775
3241b1d3
JT
776static int insert(struct dm_btree_info *info, dm_block_t root,
777 uint64_t *keys, void *value, dm_block_t *new_root,
778 int *inserted)
779 __dm_written_to_disk(value)
780{
ba503835 781 int r;
3241b1d3
JT
782 unsigned level, index = -1, last_level = info->levels - 1;
783 dm_block_t block = root;
784 struct shadow_spine spine;
550929fa 785 struct btree_node *n;
3241b1d3
JT
786 struct dm_btree_value_type le64_type;
787
b0dc3c8b 788 init_le64_type(info->tm, &le64_type);
3241b1d3
JT
789 init_shadow_spine(&spine, info);
790
791 for (level = 0; level < (info->levels - 1); level++) {
792 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
793 if (r < 0)
794 goto bad;
795
796 n = dm_block_data(shadow_current(&spine));
3241b1d3 797
ba503835 798 if (need_insert(n, keys, level, index)) {
3241b1d3
JT
799 dm_block_t new_tree;
800 __le64 new_le;
801
802 r = dm_btree_empty(info, &new_tree);
803 if (r < 0)
804 goto bad;
805
806 new_le = cpu_to_le64(new_tree);
807 __dm_bless_for_disk(&new_le);
808
809 r = insert_at(sizeof(uint64_t), n, index,
810 keys[level], &new_le);
811 if (r)
812 goto bad;
813 }
814
815 if (level < last_level)
816 block = value64(n, index);
817 }
818
819 r = btree_insert_raw(&spine, block, &info->value_type,
820 keys[level], &index);
821 if (r < 0)
822 goto bad;
823
824 n = dm_block_data(shadow_current(&spine));
3241b1d3 825
ba503835 826 if (need_insert(n, keys, level, index)) {
3241b1d3
JT
827 if (inserted)
828 *inserted = 1;
829
830 r = insert_at(info->value_type.size, n, index,
831 keys[level], value);
832 if (r)
833 goto bad_unblessed;
834 } else {
835 if (inserted)
836 *inserted = 0;
837
838 if (info->value_type.dec &&
839 (!info->value_type.equal ||
840 !info->value_type.equal(
841 info->value_type.context,
a3aefb39 842 value_ptr(n, index),
3241b1d3
JT
843 value))) {
844 info->value_type.dec(info->value_type.context,
a3aefb39 845 value_ptr(n, index));
3241b1d3 846 }
a3aefb39 847 memcpy_disk(value_ptr(n, index),
3241b1d3
JT
848 value, info->value_type.size);
849 }
850
851 *new_root = shadow_root(&spine);
852 exit_shadow_spine(&spine);
853
854 return 0;
855
856bad:
857 __dm_unbless_for_disk(value);
858bad_unblessed:
859 exit_shadow_spine(&spine);
860 return r;
861}
862
863int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
864 uint64_t *keys, void *value, dm_block_t *new_root)
865 __dm_written_to_disk(value)
866{
867 return insert(info, root, keys, value, new_root, NULL);
868}
869EXPORT_SYMBOL_GPL(dm_btree_insert);
870
871int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
872 uint64_t *keys, void *value, dm_block_t *new_root,
873 int *inserted)
874 __dm_written_to_disk(value)
875{
876 return insert(info, root, keys, value, new_root, inserted);
877}
878EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
879
880/*----------------------------------------------------------------*/
881
f164e690
JT
882static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
883 uint64_t *result_key, dm_block_t *next_block)
3241b1d3
JT
884{
885 int i, r;
886 uint32_t flags;
887
888 do {
889 r = ro_step(s, block);
890 if (r < 0)
891 return r;
892
893 flags = le32_to_cpu(ro_node(s)->header.flags);
894 i = le32_to_cpu(ro_node(s)->header.nr_entries);
895 if (!i)
896 return -ENODATA;
897 else
898 i--;
899
f164e690
JT
900 if (find_highest)
901 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
902 else
903 *result_key = le64_to_cpu(ro_node(s)->keys[0]);
904
3241b1d3
JT
905 if (next_block || flags & INTERNAL_NODE)
906 block = value64(ro_node(s), i);
907
908 } while (flags & INTERNAL_NODE);
909
910 if (next_block)
911 *next_block = block;
912 return 0;
913}
914
f164e690
JT
915static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
916 bool find_highest, uint64_t *result_keys)
3241b1d3
JT
917{
918 int r = 0, count = 0, level;
919 struct ro_spine spine;
920
921 init_ro_spine(&spine, info);
922 for (level = 0; level < info->levels; level++) {
f164e690
JT
923 r = find_key(&spine, root, find_highest, result_keys + level,
924 level == info->levels - 1 ? NULL : &root);
3241b1d3
JT
925 if (r == -ENODATA) {
926 r = 0;
927 break;
928
929 } else if (r)
930 break;
931
932 count++;
933 }
934 exit_ro_spine(&spine);
935
936 return r ? r : count;
937}
f164e690
JT
938
939int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
940 uint64_t *result_keys)
941{
942 return dm_btree_find_key(info, root, true, result_keys);
943}
3241b1d3 944EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
4e7f1f90 945
f164e690
JT
946int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
947 uint64_t *result_keys)
948{
949 return dm_btree_find_key(info, root, false, result_keys);
950}
951EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
952
953/*----------------------------------------------------------------*/
954
4e7f1f90
JT
955/*
956 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
957 * space. Also this only works for single level trees.
958 */
9b460d36 959static int walk_node(struct dm_btree_info *info, dm_block_t block,
4e7f1f90
JT
960 int (*fn)(void *context, uint64_t *keys, void *leaf),
961 void *context)
962{
963 int r;
964 unsigned i, nr;
9b460d36 965 struct dm_block *node;
4e7f1f90
JT
966 struct btree_node *n;
967 uint64_t keys;
968
9b460d36
JT
969 r = bn_read_lock(info, block, &node);
970 if (r)
971 return r;
972
973 n = dm_block_data(node);
4e7f1f90
JT
974
975 nr = le32_to_cpu(n->header.nr_entries);
976 for (i = 0; i < nr; i++) {
977 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
9b460d36 978 r = walk_node(info, value64(n, i), fn, context);
4e7f1f90
JT
979 if (r)
980 goto out;
981 } else {
982 keys = le64_to_cpu(*key_ptr(n, i));
983 r = fn(context, &keys, value_ptr(n, i));
984 if (r)
985 goto out;
986 }
987 }
988
989out:
9b460d36 990 dm_tm_unlock(info->tm, node);
4e7f1f90
JT
991 return r;
992}
993
994int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
995 int (*fn)(void *context, uint64_t *keys, void *leaf),
996 void *context)
997{
4e7f1f90 998 BUG_ON(info->levels > 1);
9b460d36 999 return walk_node(info, root, fn, context);
4e7f1f90
JT
1000}
1001EXPORT_SYMBOL_GPL(dm_btree_walk);
7d111c81
JT
1002
1003/*----------------------------------------------------------------*/
1004
1005static void prefetch_values(struct dm_btree_cursor *c)
1006{
1007 unsigned i, nr;
1008 __le64 value_le;
1009 struct cursor_node *n = c->nodes + c->depth - 1;
1010 struct btree_node *bn = dm_block_data(n->b);
1011 struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1012
1013 BUG_ON(c->info->value_type.size != sizeof(value_le));
1014
1015 nr = le32_to_cpu(bn->header.nr_entries);
1016 for (i = 0; i < nr; i++) {
1017 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1018 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1019 }
1020}
1021
1022static bool leaf_node(struct dm_btree_cursor *c)
1023{
1024 struct cursor_node *n = c->nodes + c->depth - 1;
1025 struct btree_node *bn = dm_block_data(n->b);
1026
1027 return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1028}
1029
1030static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1031{
1032 int r;
1033 struct cursor_node *n = c->nodes + c->depth;
1034
1035 if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1036 DMERR("couldn't push cursor node, stack depth too high");
1037 return -EINVAL;
1038 }
1039
1040 r = bn_read_lock(c->info, b, &n->b);
1041 if (r)
1042 return r;
1043
1044 n->index = 0;
1045 c->depth++;
1046
1047 if (c->prefetch_leaves || !leaf_node(c))
1048 prefetch_values(c);
1049
1050 return 0;
1051}
1052
1053static void pop_node(struct dm_btree_cursor *c)
1054{
1055 c->depth--;
1056 unlock_block(c->info, c->nodes[c->depth].b);
1057}
1058
1059static int inc_or_backtrack(struct dm_btree_cursor *c)
1060{
1061 struct cursor_node *n;
1062 struct btree_node *bn;
1063
1064 for (;;) {
1065 if (!c->depth)
1066 return -ENODATA;
1067
1068 n = c->nodes + c->depth - 1;
1069 bn = dm_block_data(n->b);
1070
1071 n->index++;
1072 if (n->index < le32_to_cpu(bn->header.nr_entries))
1073 break;
1074
1075 pop_node(c);
1076 }
1077
1078 return 0;
1079}
1080
1081static int find_leaf(struct dm_btree_cursor *c)
1082{
1083 int r = 0;
1084 struct cursor_node *n;
1085 struct btree_node *bn;
1086 __le64 value_le;
1087
1088 for (;;) {
1089 n = c->nodes + c->depth - 1;
1090 bn = dm_block_data(n->b);
1091
1092 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1093 break;
1094
1095 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1096 r = push_node(c, le64_to_cpu(value_le));
1097 if (r) {
1098 DMERR("push_node failed");
1099 break;
1100 }
1101 }
1102
1103 if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1104 return -ENODATA;
1105
1106 return r;
1107}
1108
1109int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1110 bool prefetch_leaves, struct dm_btree_cursor *c)
1111{
1112 int r;
1113
1114 c->info = info;
1115 c->root = root;
1116 c->depth = 0;
1117 c->prefetch_leaves = prefetch_leaves;
1118
1119 r = push_node(c, root);
1120 if (r)
1121 return r;
1122
1123 return find_leaf(c);
1124}
1125EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1126
1127void dm_btree_cursor_end(struct dm_btree_cursor *c)
1128{
1129 while (c->depth)
1130 pop_node(c);
1131}
1132EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1133
1134int dm_btree_cursor_next(struct dm_btree_cursor *c)
1135{
1136 int r = inc_or_backtrack(c);
1137 if (!r) {
1138 r = find_leaf(c);
1139 if (r)
1140 DMERR("find_leaf failed");
1141 }
1142
1143 return r;
1144}
1145EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1146
9b696229
JT
1147int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1148{
1149 int r = 0;
1150
1151 while (count-- && !r)
1152 r = dm_btree_cursor_next(c);
1153
1154 return r;
1155}
1156EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1157
7d111c81
JT
1158int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1159{
1160 if (c->depth) {
1161 struct cursor_node *n = c->nodes + c->depth - 1;
1162 struct btree_node *bn = dm_block_data(n->b);
1163
1164 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1165 return -EINVAL;
1166
1167 *key = le64_to_cpu(*key_ptr(bn, n->index));
1168 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1169 return 0;
1170
1171 } else
1172 return -ENODATA;
1173}
1174EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);