]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/md/raid1.c
selftests: check hot-pluggagble memory for memory-hotplug test
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
109e3765 40#include <trace/events/block.h>
43b2e5d8 41#include "md.h"
ef740c37
CH
42#include "raid1.h"
43#include "bitmap.h"
191ea9b2 44
394ed8e4
SL
45#define UNSUPPORTED_MDDEV_FLAGS \
46 ((1L << MD_HAS_JOURNAL) | \
47 (1L << MD_JOURNAL_CLEAN))
48
1da177e4
LT
49/*
50 * Number of guaranteed r1bios in case of extreme VM load:
51 */
52#define NR_RAID1_BIOS 256
53
473e87ce
JB
54/* when we get a read error on a read-only array, we redirect to another
55 * device without failing the first device, or trying to over-write to
56 * correct the read error. To keep track of bad blocks on a per-bio
57 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58 */
59#define IO_BLOCKED ((struct bio *)1)
60/* When we successfully write to a known bad-block, we need to remove the
61 * bad-block marking which must be done from process context. So we record
62 * the success by setting devs[n].bio to IO_MADE_GOOD
63 */
64#define IO_MADE_GOOD ((struct bio *)2)
65
66#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67
34db0cd6
N
68/* When there are this many requests queue to be written by
69 * the raid1 thread, we become 'congested' to provide back-pressure
70 * for writeback.
71 */
72static int max_queued_requests = 1024;
1da177e4 73
79ef3a8a 74static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
75 sector_t bi_sector);
e8096360 76static void lower_barrier(struct r1conf *conf);
1da177e4 77
578b54ad
N
78#define raid1_log(md, fmt, args...) \
79 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
80
dd0fc66f 81static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
82{
83 struct pool_info *pi = data;
9f2c9d12 84 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
85
86 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 87 return kzalloc(size, gfp_flags);
1da177e4
LT
88}
89
90static void r1bio_pool_free(void *r1_bio, void *data)
91{
92 kfree(r1_bio);
93}
94
95#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 96#define RESYNC_DEPTH 32
1da177e4
LT
97#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
98#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 99#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
100#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
101#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
102#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
8e005f7c 103#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 104
dd0fc66f 105static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
106{
107 struct pool_info *pi = data;
9f2c9d12 108 struct r1bio *r1_bio;
1da177e4 109 struct bio *bio;
da1aab3d 110 int need_pages;
1da177e4
LT
111 int i, j;
112
113 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 114 if (!r1_bio)
1da177e4 115 return NULL;
1da177e4
LT
116
117 /*
118 * Allocate bios : 1 for reading, n-1 for writing
119 */
120 for (j = pi->raid_disks ; j-- ; ) {
6746557f 121 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
122 if (!bio)
123 goto out_free_bio;
124 r1_bio->bios[j] = bio;
125 }
126 /*
127 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
128 * the first bio.
129 * If this is a user-requested check/repair, allocate
130 * RESYNC_PAGES for each bio.
1da177e4 131 */
d11c171e 132 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 133 need_pages = pi->raid_disks;
d11c171e 134 else
da1aab3d
N
135 need_pages = 1;
136 for (j = 0; j < need_pages; j++) {
d11c171e 137 bio = r1_bio->bios[j];
a0787606 138 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 139
a0787606 140 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 141 goto out_free_pages;
d11c171e
N
142 }
143 /* If not user-requests, copy the page pointers to all bios */
144 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
145 for (i=0; i<RESYNC_PAGES ; i++)
146 for (j=1; j<pi->raid_disks; j++)
147 r1_bio->bios[j]->bi_io_vec[i].bv_page =
148 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
149 }
150
151 r1_bio->master_bio = NULL;
152
153 return r1_bio;
154
da1aab3d 155out_free_pages:
491221f8
GJ
156 while (--j >= 0)
157 bio_free_pages(r1_bio->bios[j]);
da1aab3d 158
1da177e4 159out_free_bio:
8f19ccb2 160 while (++j < pi->raid_disks)
1da177e4
LT
161 bio_put(r1_bio->bios[j]);
162 r1bio_pool_free(r1_bio, data);
163 return NULL;
164}
165
166static void r1buf_pool_free(void *__r1_bio, void *data)
167{
168 struct pool_info *pi = data;
d11c171e 169 int i,j;
9f2c9d12 170 struct r1bio *r1bio = __r1_bio;
1da177e4 171
d11c171e
N
172 for (i = 0; i < RESYNC_PAGES; i++)
173 for (j = pi->raid_disks; j-- ;) {
174 if (j == 0 ||
175 r1bio->bios[j]->bi_io_vec[i].bv_page !=
176 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 177 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 178 }
1da177e4
LT
179 for (i=0 ; i < pi->raid_disks; i++)
180 bio_put(r1bio->bios[i]);
181
182 r1bio_pool_free(r1bio, data);
183}
184
e8096360 185static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
186{
187 int i;
188
8f19ccb2 189 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 190 struct bio **bio = r1_bio->bios + i;
4367af55 191 if (!BIO_SPECIAL(*bio))
1da177e4
LT
192 bio_put(*bio);
193 *bio = NULL;
194 }
195}
196
9f2c9d12 197static void free_r1bio(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 200
1da177e4
LT
201 put_all_bios(conf, r1_bio);
202 mempool_free(r1_bio, conf->r1bio_pool);
203}
204
9f2c9d12 205static void put_buf(struct r1bio *r1_bio)
1da177e4 206{
e8096360 207 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
208 int i;
209
8f19ccb2 210 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
211 struct bio *bio = r1_bio->bios[i];
212 if (bio->bi_end_io)
213 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
214 }
1da177e4
LT
215
216 mempool_free(r1_bio, conf->r1buf_pool);
217
17999be4 218 lower_barrier(conf);
1da177e4
LT
219}
220
9f2c9d12 221static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
222{
223 unsigned long flags;
fd01b88c 224 struct mddev *mddev = r1_bio->mddev;
e8096360 225 struct r1conf *conf = mddev->private;
1da177e4
LT
226
227 spin_lock_irqsave(&conf->device_lock, flags);
228 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 229 conf->nr_queued ++;
1da177e4
LT
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231
17999be4 232 wake_up(&conf->wait_barrier);
1da177e4
LT
233 md_wakeup_thread(mddev->thread);
234}
235
236/*
237 * raid_end_bio_io() is called when we have finished servicing a mirrored
238 * operation and are ready to return a success/failure code to the buffer
239 * cache layer.
240 */
9f2c9d12 241static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
242{
243 struct bio *bio = r1_bio->master_bio;
244 int done;
e8096360 245 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 246 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 247 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
248
249 if (bio->bi_phys_segments) {
250 unsigned long flags;
251 spin_lock_irqsave(&conf->device_lock, flags);
252 bio->bi_phys_segments--;
253 done = (bio->bi_phys_segments == 0);
254 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 255 /*
256 * make_request() might be waiting for
257 * bi_phys_segments to decrease
258 */
259 wake_up(&conf->wait_barrier);
d2eb35ac
N
260 } else
261 done = 1;
262
263 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
264 bio->bi_error = -EIO;
265
d2eb35ac 266 if (done) {
4246a0b6 267 bio_endio(bio);
d2eb35ac
N
268 /*
269 * Wake up any possible resync thread that waits for the device
270 * to go idle.
271 */
79ef3a8a 272 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
273 }
274}
275
9f2c9d12 276static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
277{
278 struct bio *bio = r1_bio->master_bio;
279
4b6d287f
N
280 /* if nobody has done the final endio yet, do it now */
281 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
282 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
284 (unsigned long long) bio->bi_iter.bi_sector,
285 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 286
d2eb35ac 287 call_bio_endio(r1_bio);
4b6d287f 288 }
1da177e4
LT
289 free_r1bio(r1_bio);
290}
291
292/*
293 * Update disk head position estimator based on IRQ completion info.
294 */
9f2c9d12 295static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 296{
e8096360 297 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
298
299 conf->mirrors[disk].head_position =
300 r1_bio->sector + (r1_bio->sectors);
301}
302
ba3ae3be
NK
303/*
304 * Find the disk number which triggered given bio
305 */
9f2c9d12 306static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
307{
308 int mirror;
30194636
N
309 struct r1conf *conf = r1_bio->mddev->private;
310 int raid_disks = conf->raid_disks;
ba3ae3be 311
8f19ccb2 312 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
313 if (r1_bio->bios[mirror] == bio)
314 break;
315
8f19ccb2 316 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
317 update_head_pos(mirror, r1_bio);
318
319 return mirror;
320}
321
4246a0b6 322static void raid1_end_read_request(struct bio *bio)
1da177e4 323{
4246a0b6 324 int uptodate = !bio->bi_error;
9f2c9d12 325 struct r1bio *r1_bio = bio->bi_private;
e8096360 326 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 327 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 328
1da177e4
LT
329 /*
330 * this branch is our 'one mirror IO has finished' event handler:
331 */
e5872d58 332 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 333
dd00a99e
N
334 if (uptodate)
335 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
336 else if (test_bit(FailFast, &rdev->flags) &&
337 test_bit(R1BIO_FailFast, &r1_bio->state))
338 /* This was a fail-fast read so we definitely
339 * want to retry */
340 ;
dd00a99e
N
341 else {
342 /* If all other devices have failed, we want to return
343 * the error upwards rather than fail the last device.
344 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 345 */
dd00a99e
N
346 unsigned long flags;
347 spin_lock_irqsave(&conf->device_lock, flags);
348 if (r1_bio->mddev->degraded == conf->raid_disks ||
349 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 350 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
351 uptodate = 1;
352 spin_unlock_irqrestore(&conf->device_lock, flags);
353 }
1da177e4 354
7ad4d4a6 355 if (uptodate) {
1da177e4 356 raid_end_bio_io(r1_bio);
e5872d58 357 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 358 } else {
1da177e4
LT
359 /*
360 * oops, read error:
361 */
362 char b[BDEVNAME_SIZE];
1d41c216
N
363 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364 mdname(conf->mddev),
365 bdevname(rdev->bdev, b),
366 (unsigned long long)r1_bio->sector);
d2eb35ac 367 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 368 reschedule_retry(r1_bio);
7ad4d4a6 369 /* don't drop the reference on read_disk yet */
1da177e4 370 }
1da177e4
LT
371}
372
9f2c9d12 373static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
374{
375 /* it really is the end of this request */
376 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377 /* free extra copy of the data pages */
378 int i = r1_bio->behind_page_count;
379 while (i--)
380 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381 kfree(r1_bio->behind_bvecs);
382 r1_bio->behind_bvecs = NULL;
383 }
384 /* clear the bitmap if all writes complete successfully */
385 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386 r1_bio->sectors,
387 !test_bit(R1BIO_Degraded, &r1_bio->state),
388 test_bit(R1BIO_BehindIO, &r1_bio->state));
389 md_write_end(r1_bio->mddev);
390}
391
9f2c9d12 392static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 393{
cd5ff9a1
N
394 if (!atomic_dec_and_test(&r1_bio->remaining))
395 return;
396
397 if (test_bit(R1BIO_WriteError, &r1_bio->state))
398 reschedule_retry(r1_bio);
399 else {
400 close_write(r1_bio);
4367af55
N
401 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402 reschedule_retry(r1_bio);
403 else
404 raid_end_bio_io(r1_bio);
4e78064f
N
405 }
406}
407
4246a0b6 408static void raid1_end_write_request(struct bio *bio)
1da177e4 409{
9f2c9d12 410 struct r1bio *r1_bio = bio->bi_private;
e5872d58 411 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 412 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 413 struct bio *to_put = NULL;
e5872d58
N
414 int mirror = find_bio_disk(r1_bio, bio);
415 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
416 bool discard_error;
417
418 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 419
e9c7469b
TH
420 /*
421 * 'one mirror IO has finished' event handler:
422 */
e3f948cd 423 if (bio->bi_error && !discard_error) {
e5872d58
N
424 set_bit(WriteErrorSeen, &rdev->flags);
425 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
426 set_bit(MD_RECOVERY_NEEDED, &
427 conf->mddev->recovery);
428
212e7eb7
N
429 if (test_bit(FailFast, &rdev->flags) &&
430 (bio->bi_opf & MD_FAILFAST) &&
431 /* We never try FailFast to WriteMostly devices */
432 !test_bit(WriteMostly, &rdev->flags)) {
433 md_error(r1_bio->mddev, rdev);
434 if (!test_bit(Faulty, &rdev->flags))
435 /* This is the only remaining device,
436 * We need to retry the write without
437 * FailFast
438 */
439 set_bit(R1BIO_WriteError, &r1_bio->state);
440 else {
441 /* Finished with this branch */
442 r1_bio->bios[mirror] = NULL;
443 to_put = bio;
444 }
445 } else
446 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 447 } else {
1da177e4 448 /*
e9c7469b
TH
449 * Set R1BIO_Uptodate in our master bio, so that we
450 * will return a good error code for to the higher
451 * levels even if IO on some other mirrored buffer
452 * fails.
453 *
454 * The 'master' represents the composite IO operation
455 * to user-side. So if something waits for IO, then it
456 * will wait for the 'master' bio.
1da177e4 457 */
4367af55
N
458 sector_t first_bad;
459 int bad_sectors;
460
cd5ff9a1
N
461 r1_bio->bios[mirror] = NULL;
462 to_put = bio;
3056e3ae
AL
463 /*
464 * Do not set R1BIO_Uptodate if the current device is
465 * rebuilding or Faulty. This is because we cannot use
466 * such device for properly reading the data back (we could
467 * potentially use it, if the current write would have felt
468 * before rdev->recovery_offset, but for simplicity we don't
469 * check this here.
470 */
e5872d58
N
471 if (test_bit(In_sync, &rdev->flags) &&
472 !test_bit(Faulty, &rdev->flags))
3056e3ae 473 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 474
4367af55 475 /* Maybe we can clear some bad blocks. */
e5872d58 476 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 477 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
478 r1_bio->bios[mirror] = IO_MADE_GOOD;
479 set_bit(R1BIO_MadeGood, &r1_bio->state);
480 }
481 }
482
e9c7469b 483 if (behind) {
e5872d58 484 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
485 atomic_dec(&r1_bio->behind_remaining);
486
487 /*
488 * In behind mode, we ACK the master bio once the I/O
489 * has safely reached all non-writemostly
490 * disks. Setting the Returned bit ensures that this
491 * gets done only once -- we don't ever want to return
492 * -EIO here, instead we'll wait
493 */
494 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496 /* Maybe we can return now */
497 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
499 pr_debug("raid1: behind end write sectors"
500 " %llu-%llu\n",
4f024f37
KO
501 (unsigned long long) mbio->bi_iter.bi_sector,
502 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 503 call_bio_endio(r1_bio);
4b6d287f
N
504 }
505 }
506 }
4367af55 507 if (r1_bio->bios[mirror] == NULL)
e5872d58 508 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 509
1da177e4 510 /*
1da177e4
LT
511 * Let's see if all mirrored write operations have finished
512 * already.
513 */
af6d7b76 514 r1_bio_write_done(r1_bio);
c70810b3 515
04b857f7
N
516 if (to_put)
517 bio_put(to_put);
1da177e4
LT
518}
519
1da177e4
LT
520/*
521 * This routine returns the disk from which the requested read should
522 * be done. There is a per-array 'next expected sequential IO' sector
523 * number - if this matches on the next IO then we use the last disk.
524 * There is also a per-disk 'last know head position' sector that is
525 * maintained from IRQ contexts, both the normal and the resync IO
526 * completion handlers update this position correctly. If there is no
527 * perfect sequential match then we pick the disk whose head is closest.
528 *
529 * If there are 2 mirrors in the same 2 devices, performance degrades
530 * because position is mirror, not device based.
531 *
532 * The rdev for the device selected will have nr_pending incremented.
533 */
e8096360 534static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 535{
af3a2cd6 536 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
537 int sectors;
538 int best_good_sectors;
9dedf603
SL
539 int best_disk, best_dist_disk, best_pending_disk;
540 int has_nonrot_disk;
be4d3280 541 int disk;
76073054 542 sector_t best_dist;
9dedf603 543 unsigned int min_pending;
3cb03002 544 struct md_rdev *rdev;
f3ac8bf7 545 int choose_first;
12cee5a8 546 int choose_next_idle;
1da177e4
LT
547
548 rcu_read_lock();
549 /*
8ddf9efe 550 * Check if we can balance. We can balance on the whole
1da177e4
LT
551 * device if no resync is going on, or below the resync window.
552 * We take the first readable disk when above the resync window.
553 */
554 retry:
d2eb35ac 555 sectors = r1_bio->sectors;
76073054 556 best_disk = -1;
9dedf603 557 best_dist_disk = -1;
76073054 558 best_dist = MaxSector;
9dedf603
SL
559 best_pending_disk = -1;
560 min_pending = UINT_MAX;
d2eb35ac 561 best_good_sectors = 0;
9dedf603 562 has_nonrot_disk = 0;
12cee5a8 563 choose_next_idle = 0;
2e52d449 564 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 565
7d49ffcf
GR
566 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
567 (mddev_is_clustered(conf->mddev) &&
90382ed9 568 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
569 this_sector + sectors)))
570 choose_first = 1;
571 else
572 choose_first = 0;
1da177e4 573
be4d3280 574 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 575 sector_t dist;
d2eb35ac
N
576 sector_t first_bad;
577 int bad_sectors;
9dedf603 578 unsigned int pending;
12cee5a8 579 bool nonrot;
d2eb35ac 580
f3ac8bf7
N
581 rdev = rcu_dereference(conf->mirrors[disk].rdev);
582 if (r1_bio->bios[disk] == IO_BLOCKED
583 || rdev == NULL
76073054 584 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 585 continue;
76073054
N
586 if (!test_bit(In_sync, &rdev->flags) &&
587 rdev->recovery_offset < this_sector + sectors)
1da177e4 588 continue;
76073054
N
589 if (test_bit(WriteMostly, &rdev->flags)) {
590 /* Don't balance among write-mostly, just
591 * use the first as a last resort */
d1901ef0 592 if (best_dist_disk < 0) {
307729c8
N
593 if (is_badblock(rdev, this_sector, sectors,
594 &first_bad, &bad_sectors)) {
816b0acf 595 if (first_bad <= this_sector)
307729c8
N
596 /* Cannot use this */
597 continue;
598 best_good_sectors = first_bad - this_sector;
599 } else
600 best_good_sectors = sectors;
d1901ef0
TH
601 best_dist_disk = disk;
602 best_pending_disk = disk;
307729c8 603 }
76073054
N
604 continue;
605 }
606 /* This is a reasonable device to use. It might
607 * even be best.
608 */
d2eb35ac
N
609 if (is_badblock(rdev, this_sector, sectors,
610 &first_bad, &bad_sectors)) {
611 if (best_dist < MaxSector)
612 /* already have a better device */
613 continue;
614 if (first_bad <= this_sector) {
615 /* cannot read here. If this is the 'primary'
616 * device, then we must not read beyond
617 * bad_sectors from another device..
618 */
619 bad_sectors -= (this_sector - first_bad);
620 if (choose_first && sectors > bad_sectors)
621 sectors = bad_sectors;
622 if (best_good_sectors > sectors)
623 best_good_sectors = sectors;
624
625 } else {
626 sector_t good_sectors = first_bad - this_sector;
627 if (good_sectors > best_good_sectors) {
628 best_good_sectors = good_sectors;
629 best_disk = disk;
630 }
631 if (choose_first)
632 break;
633 }
634 continue;
635 } else
636 best_good_sectors = sectors;
637
2e52d449
N
638 if (best_disk >= 0)
639 /* At least two disks to choose from so failfast is OK */
640 set_bit(R1BIO_FailFast, &r1_bio->state);
641
12cee5a8
SL
642 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
643 has_nonrot_disk |= nonrot;
9dedf603 644 pending = atomic_read(&rdev->nr_pending);
76073054 645 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 646 if (choose_first) {
76073054 647 best_disk = disk;
1da177e4
LT
648 break;
649 }
12cee5a8
SL
650 /* Don't change to another disk for sequential reads */
651 if (conf->mirrors[disk].next_seq_sect == this_sector
652 || dist == 0) {
653 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
654 struct raid1_info *mirror = &conf->mirrors[disk];
655
656 best_disk = disk;
657 /*
658 * If buffered sequential IO size exceeds optimal
659 * iosize, check if there is idle disk. If yes, choose
660 * the idle disk. read_balance could already choose an
661 * idle disk before noticing it's a sequential IO in
662 * this disk. This doesn't matter because this disk
663 * will idle, next time it will be utilized after the
664 * first disk has IO size exceeds optimal iosize. In
665 * this way, iosize of the first disk will be optimal
666 * iosize at least. iosize of the second disk might be
667 * small, but not a big deal since when the second disk
668 * starts IO, the first disk is likely still busy.
669 */
670 if (nonrot && opt_iosize > 0 &&
671 mirror->seq_start != MaxSector &&
672 mirror->next_seq_sect > opt_iosize &&
673 mirror->next_seq_sect - opt_iosize >=
674 mirror->seq_start) {
675 choose_next_idle = 1;
676 continue;
677 }
678 break;
679 }
12cee5a8
SL
680
681 if (choose_next_idle)
682 continue;
9dedf603
SL
683
684 if (min_pending > pending) {
685 min_pending = pending;
686 best_pending_disk = disk;
687 }
688
76073054
N
689 if (dist < best_dist) {
690 best_dist = dist;
9dedf603 691 best_dist_disk = disk;
1da177e4 692 }
f3ac8bf7 693 }
1da177e4 694
9dedf603
SL
695 /*
696 * If all disks are rotational, choose the closest disk. If any disk is
697 * non-rotational, choose the disk with less pending request even the
698 * disk is rotational, which might/might not be optimal for raids with
699 * mixed ratation/non-rotational disks depending on workload.
700 */
701 if (best_disk == -1) {
2e52d449 702 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
703 best_disk = best_pending_disk;
704 else
705 best_disk = best_dist_disk;
706 }
707
76073054
N
708 if (best_disk >= 0) {
709 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
710 if (!rdev)
711 goto retry;
712 atomic_inc(&rdev->nr_pending);
d2eb35ac 713 sectors = best_good_sectors;
12cee5a8
SL
714
715 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
716 conf->mirrors[best_disk].seq_start = this_sector;
717
be4d3280 718 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
719 }
720 rcu_read_unlock();
d2eb35ac 721 *max_sectors = sectors;
1da177e4 722
76073054 723 return best_disk;
1da177e4
LT
724}
725
5c675f83 726static int raid1_congested(struct mddev *mddev, int bits)
0d129228 727{
e8096360 728 struct r1conf *conf = mddev->private;
0d129228
N
729 int i, ret = 0;
730
4452226e 731 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
732 conf->pending_count >= max_queued_requests)
733 return 1;
734
0d129228 735 rcu_read_lock();
f53e29fc 736 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 737 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 738 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 739 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 740
1ed7242e
JB
741 BUG_ON(!q);
742
0d129228
N
743 /* Note the '|| 1' - when read_balance prefers
744 * non-congested targets, it can be removed
745 */
4452226e 746 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
747 ret |= bdi_congested(&q->backing_dev_info, bits);
748 else
749 ret &= bdi_congested(&q->backing_dev_info, bits);
750 }
751 }
752 rcu_read_unlock();
753 return ret;
754}
0d129228 755
e8096360 756static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
757{
758 /* Any writes that have been queued but are awaiting
759 * bitmap updates get flushed here.
a35e63ef 760 */
a35e63ef
N
761 spin_lock_irq(&conf->device_lock);
762
763 if (conf->pending_bio_list.head) {
764 struct bio *bio;
765 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 766 conf->pending_count = 0;
a35e63ef
N
767 spin_unlock_irq(&conf->device_lock);
768 /* flush any pending bitmap writes to
769 * disk before proceeding w/ I/O */
770 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 771 wake_up(&conf->wait_barrier);
a35e63ef
N
772
773 while (bio) { /* submit pending writes */
774 struct bio *next = bio->bi_next;
5e2c7a36 775 struct md_rdev *rdev = (void*)bio->bi_bdev;
a35e63ef 776 bio->bi_next = NULL;
5e2c7a36
N
777 bio->bi_bdev = rdev->bdev;
778 if (test_bit(Faulty, &rdev->flags)) {
779 bio->bi_error = -EIO;
780 bio_endio(bio);
781 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
782 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
2ff8cc2c 783 /* Just ignore it */
4246a0b6 784 bio_endio(bio);
2ff8cc2c
SL
785 else
786 generic_make_request(bio);
a35e63ef
N
787 bio = next;
788 }
a35e63ef
N
789 } else
790 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
791}
792
17999be4
N
793/* Barriers....
794 * Sometimes we need to suspend IO while we do something else,
795 * either some resync/recovery, or reconfigure the array.
796 * To do this we raise a 'barrier'.
797 * The 'barrier' is a counter that can be raised multiple times
798 * to count how many activities are happening which preclude
799 * normal IO.
800 * We can only raise the barrier if there is no pending IO.
801 * i.e. if nr_pending == 0.
802 * We choose only to raise the barrier if no-one is waiting for the
803 * barrier to go down. This means that as soon as an IO request
804 * is ready, no other operations which require a barrier will start
805 * until the IO request has had a chance.
806 *
807 * So: regular IO calls 'wait_barrier'. When that returns there
808 * is no backgroup IO happening, It must arrange to call
809 * allow_barrier when it has finished its IO.
810 * backgroup IO calls must call raise_barrier. Once that returns
811 * there is no normal IO happeing. It must arrange to call
812 * lower_barrier when the particular background IO completes.
1da177e4 813 */
c2fd4c94 814static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
815{
816 spin_lock_irq(&conf->resync_lock);
17999be4
N
817
818 /* Wait until no block IO is waiting */
819 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 820 conf->resync_lock);
17999be4
N
821
822 /* block any new IO from starting */
823 conf->barrier++;
c2fd4c94 824 conf->next_resync = sector_nr;
17999be4 825
79ef3a8a 826 /* For these conditions we must wait:
827 * A: while the array is in frozen state
828 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
829 * the max count which allowed.
830 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
831 * next resync will reach to the window which normal bios are
832 * handling.
2f73d3c5 833 * D: while there are any active requests in the current window.
79ef3a8a 834 */
17999be4 835 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 836 !conf->array_frozen &&
79ef3a8a 837 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 838 conf->current_window_requests == 0 &&
79ef3a8a 839 (conf->start_next_window >=
840 conf->next_resync + RESYNC_SECTORS),
eed8c02e 841 conf->resync_lock);
17999be4 842
34e97f17 843 conf->nr_pending++;
17999be4
N
844 spin_unlock_irq(&conf->resync_lock);
845}
846
e8096360 847static void lower_barrier(struct r1conf *conf)
17999be4
N
848{
849 unsigned long flags;
709ae487 850 BUG_ON(conf->barrier <= 0);
17999be4
N
851 spin_lock_irqsave(&conf->resync_lock, flags);
852 conf->barrier--;
34e97f17 853 conf->nr_pending--;
17999be4
N
854 spin_unlock_irqrestore(&conf->resync_lock, flags);
855 wake_up(&conf->wait_barrier);
856}
857
79ef3a8a 858static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 859{
79ef3a8a 860 bool wait = false;
861
862 if (conf->array_frozen || !bio)
863 wait = true;
864 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
865 if ((conf->mddev->curr_resync_completed
866 >= bio_end_sector(bio)) ||
f2c771a6 867 (conf->start_next_window + NEXT_NORMALIO_DISTANCE
23554960 868 <= bio->bi_iter.bi_sector))
79ef3a8a 869 wait = false;
870 else
871 wait = true;
872 }
873
874 return wait;
875}
876
877static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
878{
879 sector_t sector = 0;
880
17999be4 881 spin_lock_irq(&conf->resync_lock);
79ef3a8a 882 if (need_to_wait_for_sync(conf, bio)) {
17999be4 883 conf->nr_waiting++;
d6b42dcb
N
884 /* Wait for the barrier to drop.
885 * However if there are already pending
886 * requests (preventing the barrier from
887 * rising completely), and the
5965b642 888 * per-process bio queue isn't empty,
d6b42dcb 889 * then don't wait, as we need to empty
5965b642
N
890 * that queue to allow conf->start_next_window
891 * to increase.
d6b42dcb 892 */
578b54ad 893 raid1_log(conf->mddev, "wait barrier");
d6b42dcb 894 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 895 !conf->array_frozen &&
896 (!conf->barrier ||
5965b642
N
897 ((conf->start_next_window <
898 conf->next_resync + RESYNC_SECTORS) &&
899 current->bio_list &&
900 !bio_list_empty(current->bio_list))),
eed8c02e 901 conf->resync_lock);
17999be4 902 conf->nr_waiting--;
1da177e4 903 }
79ef3a8a 904
905 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 906 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 907 if (conf->start_next_window == MaxSector)
908 conf->start_next_window =
909 conf->next_resync +
910 NEXT_NORMALIO_DISTANCE;
911
912 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 913 <= bio->bi_iter.bi_sector)
79ef3a8a 914 conf->next_window_requests++;
915 else
916 conf->current_window_requests++;
79ef3a8a 917 sector = conf->start_next_window;
41a336e0 918 }
79ef3a8a 919 }
920
17999be4 921 conf->nr_pending++;
1da177e4 922 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 923 return sector;
1da177e4
LT
924}
925
79ef3a8a 926static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
927 sector_t bi_sector)
17999be4
N
928{
929 unsigned long flags;
79ef3a8a 930
17999be4
N
931 spin_lock_irqsave(&conf->resync_lock, flags);
932 conf->nr_pending--;
79ef3a8a 933 if (start_next_window) {
934 if (start_next_window == conf->start_next_window) {
935 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
936 <= bi_sector)
937 conf->next_window_requests--;
938 else
939 conf->current_window_requests--;
940 } else
941 conf->current_window_requests--;
942
943 if (!conf->current_window_requests) {
944 if (conf->next_window_requests) {
945 conf->current_window_requests =
946 conf->next_window_requests;
947 conf->next_window_requests = 0;
948 conf->start_next_window +=
949 NEXT_NORMALIO_DISTANCE;
950 } else
951 conf->start_next_window = MaxSector;
952 }
953 }
17999be4
N
954 spin_unlock_irqrestore(&conf->resync_lock, flags);
955 wake_up(&conf->wait_barrier);
956}
957
e2d59925 958static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
959{
960 /* stop syncio and normal IO and wait for everything to
961 * go quite.
b364e3d0 962 * We wait until nr_pending match nr_queued+extra
1c830532
N
963 * This is called in the context of one normal IO request
964 * that has failed. Thus any sync request that might be pending
965 * will be blocked by nr_pending, and we need to wait for
966 * pending IO requests to complete or be queued for re-try.
e2d59925 967 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
968 * must match the number of pending IOs (nr_pending) before
969 * we continue.
ddaf22ab
N
970 */
971 spin_lock_irq(&conf->resync_lock);
b364e3d0 972 conf->array_frozen = 1;
578b54ad 973 raid1_log(conf->mddev, "wait freeze");
eed8c02e 974 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 975 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
976 conf->resync_lock,
977 flush_pending_writes(conf));
ddaf22ab
N
978 spin_unlock_irq(&conf->resync_lock);
979}
e8096360 980static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
981{
982 /* reverse the effect of the freeze */
983 spin_lock_irq(&conf->resync_lock);
b364e3d0 984 conf->array_frozen = 0;
ddaf22ab
N
985 wake_up(&conf->wait_barrier);
986 spin_unlock_irq(&conf->resync_lock);
987}
988
f72ffdd6 989/* duplicate the data pages for behind I/O
4e78064f 990 */
9f2c9d12 991static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
992{
993 int i;
994 struct bio_vec *bvec;
2ca68f5e 995 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 996 GFP_NOIO);
2ca68f5e 997 if (unlikely(!bvecs))
af6d7b76 998 return;
4b6d287f 999
cb34e057 1000 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1001 bvecs[i] = *bvec;
1002 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1003 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1004 goto do_sync_io;
2ca68f5e
N
1005 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1006 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1007 kunmap(bvecs[i].bv_page);
4b6d287f
N
1008 kunmap(bvec->bv_page);
1009 }
2ca68f5e 1010 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1011 r1_bio->behind_page_count = bio->bi_vcnt;
1012 set_bit(R1BIO_BehindIO, &r1_bio->state);
1013 return;
4b6d287f
N
1014
1015do_sync_io:
af6d7b76 1016 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1017 if (bvecs[i].bv_page)
1018 put_page(bvecs[i].bv_page);
1019 kfree(bvecs);
4f024f37
KO
1020 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1021 bio->bi_iter.bi_size);
4b6d287f
N
1022}
1023
f54a9d0e
N
1024struct raid1_plug_cb {
1025 struct blk_plug_cb cb;
1026 struct bio_list pending;
1027 int pending_cnt;
1028};
1029
1030static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1031{
1032 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1033 cb);
1034 struct mddev *mddev = plug->cb.data;
1035 struct r1conf *conf = mddev->private;
1036 struct bio *bio;
1037
874807a8 1038 if (from_schedule || current->bio_list) {
f54a9d0e
N
1039 spin_lock_irq(&conf->device_lock);
1040 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1041 conf->pending_count += plug->pending_cnt;
1042 spin_unlock_irq(&conf->device_lock);
ee0b0244 1043 wake_up(&conf->wait_barrier);
f54a9d0e
N
1044 md_wakeup_thread(mddev->thread);
1045 kfree(plug);
1046 return;
1047 }
1048
1049 /* we aren't scheduling, so we can do the write-out directly. */
1050 bio = bio_list_get(&plug->pending);
1051 bitmap_unplug(mddev->bitmap);
1052 wake_up(&conf->wait_barrier);
1053
1054 while (bio) { /* submit pending writes */
1055 struct bio *next = bio->bi_next;
5e2c7a36 1056 struct md_rdev *rdev = (void*)bio->bi_bdev;
f54a9d0e 1057 bio->bi_next = NULL;
5e2c7a36
N
1058 bio->bi_bdev = rdev->bdev;
1059 if (test_bit(Faulty, &rdev->flags)) {
1060 bio->bi_error = -EIO;
1061 bio_endio(bio);
1062 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1063 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
32f9f570 1064 /* Just ignore it */
4246a0b6 1065 bio_endio(bio);
32f9f570
SL
1066 else
1067 generic_make_request(bio);
f54a9d0e
N
1068 bio = next;
1069 }
1070 kfree(plug);
1071}
1072
3b046a97
RL
1073static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1074 struct r1bio *r1_bio)
1da177e4 1075{
e8096360 1076 struct r1conf *conf = mddev->private;
0eaf822c 1077 struct raid1_info *mirror;
1da177e4 1078 struct bio *read_bio;
3b046a97
RL
1079 struct bitmap *bitmap = mddev->bitmap;
1080 const int op = bio_op(bio);
1081 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1082 int sectors_handled;
1083 int max_sectors;
1084 int rdisk;
1085
1086 wait_barrier(conf, bio);
1087
1088read_again:
1089 rdisk = read_balance(conf, r1_bio, &max_sectors);
1090
1091 if (rdisk < 0) {
1092 /* couldn't find anywhere to read from */
1093 raid_end_bio_io(r1_bio);
1094 return;
1095 }
1096 mirror = conf->mirrors + rdisk;
1097
1098 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099 bitmap) {
1100 /*
1101 * Reading from a write-mostly device must take care not to
1102 * over-take any writes that are 'behind'
1103 */
1104 raid1_log(mddev, "wait behind writes");
1105 wait_event(bitmap->behind_wait,
1106 atomic_read(&bitmap->behind_writes) == 0);
1107 }
1108 r1_bio->read_disk = rdisk;
1109 r1_bio->start_next_window = 0;
1110
1111 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1112 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1113 max_sectors);
1114
1115 r1_bio->bios[rdisk] = read_bio;
1116
1117 read_bio->bi_iter.bi_sector = r1_bio->sector +
1118 mirror->rdev->data_offset;
1119 read_bio->bi_bdev = mirror->rdev->bdev;
1120 read_bio->bi_end_io = raid1_end_read_request;
1121 bio_set_op_attrs(read_bio, op, do_sync);
1122 if (test_bit(FailFast, &mirror->rdev->flags) &&
1123 test_bit(R1BIO_FailFast, &r1_bio->state))
1124 read_bio->bi_opf |= MD_FAILFAST;
1125 read_bio->bi_private = r1_bio;
1126
1127 if (mddev->gendisk)
1128 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1129 read_bio, disk_devt(mddev->gendisk),
1130 r1_bio->sector);
1131
1132 if (max_sectors < r1_bio->sectors) {
1133 /*
1134 * could not read all from this device, so we will need another
1135 * r1_bio.
1136 */
1137 sectors_handled = (r1_bio->sector + max_sectors
1138 - bio->bi_iter.bi_sector);
1139 r1_bio->sectors = max_sectors;
1140 spin_lock_irq(&conf->device_lock);
1141 if (bio->bi_phys_segments == 0)
1142 bio->bi_phys_segments = 2;
1143 else
1144 bio->bi_phys_segments++;
1145 spin_unlock_irq(&conf->device_lock);
1146
1147 /*
1148 * Cannot call generic_make_request directly as that will be
1149 * queued in __make_request and subsequent mempool_alloc might
1150 * block waiting for it. So hand bio over to raid1d.
1151 */
1152 reschedule_retry(r1_bio);
1153
1154 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155
1156 r1_bio->master_bio = bio;
1157 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1158 r1_bio->state = 0;
1159 r1_bio->mddev = mddev;
1160 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1161 goto read_again;
1162 } else
1163 generic_make_request(read_bio);
1164}
1165
1166static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1167 struct r1bio *r1_bio)
1168{
1169 struct r1conf *conf = mddev->private;
1f68f0c4 1170 int i, disks;
3b046a97 1171 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1172 unsigned long flags;
796a5cf0 1173 const int op = bio_op(bio);
1eff9d32
JA
1174 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1175 const unsigned long do_flush_fua = (bio->bi_opf &
28a8f0d3 1176 (REQ_PREFLUSH | REQ_FUA));
3cb03002 1177 struct md_rdev *blocked_rdev;
f54a9d0e
N
1178 struct blk_plug_cb *cb;
1179 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1180 int first_clone;
1181 int sectors_handled;
1182 int max_sectors;
79ef3a8a 1183 sector_t start_next_window;
191ea9b2 1184
1da177e4
LT
1185 /*
1186 * Register the new request and wait if the reconstruction
1187 * thread has put up a bar for new requests.
1188 * Continue immediately if no resync is active currently.
1189 */
62de608d 1190
3d310eb7
N
1191 md_write_start(mddev, bio); /* wait on superblock update early */
1192
3b046a97 1193 if ((bio_end_sector(bio) > mddev->suspend_lo &&
589a1c49
GR
1194 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1195 (mddev_is_clustered(mddev) &&
90382ed9 1196 md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1197 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1198
1199 /*
1200 * As the suspend_* range is controlled by userspace, we want
1201 * an interruptible wait.
6eef4b21
N
1202 */
1203 DEFINE_WAIT(w);
1204 for (;;) {
1205 flush_signals(current);
1206 prepare_to_wait(&conf->wait_barrier,
1207 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1208 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1209 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1210 (mddev_is_clustered(mddev) &&
90382ed9 1211 !md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1212 bio->bi_iter.bi_sector,
1213 bio_end_sector(bio))))
6eef4b21
N
1214 break;
1215 schedule();
1216 }
1217 finish_wait(&conf->wait_barrier, &w);
1218 }
79ef3a8a 1219 start_next_window = wait_barrier(conf, bio);
1da177e4 1220
34db0cd6
N
1221 if (conf->pending_count >= max_queued_requests) {
1222 md_wakeup_thread(mddev->thread);
578b54ad 1223 raid1_log(mddev, "wait queued");
34db0cd6
N
1224 wait_event(conf->wait_barrier,
1225 conf->pending_count < max_queued_requests);
1226 }
1f68f0c4 1227 /* first select target devices under rcu_lock and
1da177e4
LT
1228 * inc refcount on their rdev. Record them by setting
1229 * bios[x] to bio
1f68f0c4
N
1230 * If there are known/acknowledged bad blocks on any device on
1231 * which we have seen a write error, we want to avoid writing those
1232 * blocks.
1233 * This potentially requires several writes to write around
1234 * the bad blocks. Each set of writes gets it's own r1bio
1235 * with a set of bios attached.
1da177e4 1236 */
c3b328ac 1237
8f19ccb2 1238 disks = conf->raid_disks * 2;
6bfe0b49 1239 retry_write:
79ef3a8a 1240 r1_bio->start_next_window = start_next_window;
6bfe0b49 1241 blocked_rdev = NULL;
1da177e4 1242 rcu_read_lock();
1f68f0c4 1243 max_sectors = r1_bio->sectors;
1da177e4 1244 for (i = 0; i < disks; i++) {
3cb03002 1245 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1246 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1247 atomic_inc(&rdev->nr_pending);
1248 blocked_rdev = rdev;
1249 break;
1250 }
1f68f0c4 1251 r1_bio->bios[i] = NULL;
8ae12666 1252 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1253 if (i < conf->raid_disks)
1254 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1255 continue;
1256 }
1257
1258 atomic_inc(&rdev->nr_pending);
1259 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1260 sector_t first_bad;
1261 int bad_sectors;
1262 int is_bad;
1263
3b046a97 1264 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1265 &first_bad, &bad_sectors);
1266 if (is_bad < 0) {
1267 /* mustn't write here until the bad block is
1268 * acknowledged*/
1269 set_bit(BlockedBadBlocks, &rdev->flags);
1270 blocked_rdev = rdev;
1271 break;
1272 }
1273 if (is_bad && first_bad <= r1_bio->sector) {
1274 /* Cannot write here at all */
1275 bad_sectors -= (r1_bio->sector - first_bad);
1276 if (bad_sectors < max_sectors)
1277 /* mustn't write more than bad_sectors
1278 * to other devices yet
1279 */
1280 max_sectors = bad_sectors;
03c902e1 1281 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1282 /* We don't set R1BIO_Degraded as that
1283 * only applies if the disk is
1284 * missing, so it might be re-added,
1285 * and we want to know to recover this
1286 * chunk.
1287 * In this case the device is here,
1288 * and the fact that this chunk is not
1289 * in-sync is recorded in the bad
1290 * block log
1291 */
1292 continue;
964147d5 1293 }
1f68f0c4
N
1294 if (is_bad) {
1295 int good_sectors = first_bad - r1_bio->sector;
1296 if (good_sectors < max_sectors)
1297 max_sectors = good_sectors;
1298 }
1299 }
1300 r1_bio->bios[i] = bio;
1da177e4
LT
1301 }
1302 rcu_read_unlock();
1303
6bfe0b49
DW
1304 if (unlikely(blocked_rdev)) {
1305 /* Wait for this device to become unblocked */
1306 int j;
79ef3a8a 1307 sector_t old = start_next_window;
6bfe0b49
DW
1308
1309 for (j = 0; j < i; j++)
1310 if (r1_bio->bios[j])
1311 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1312 r1_bio->state = 0;
4f024f37 1313 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
578b54ad 1314 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1315 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1316 start_next_window = wait_barrier(conf, bio);
1317 /*
1318 * We must make sure the multi r1bios of bio have
1319 * the same value of bi_phys_segments
1320 */
1321 if (bio->bi_phys_segments && old &&
1322 old != start_next_window)
1323 /* Wait for the former r1bio(s) to complete */
1324 wait_event(conf->wait_barrier,
1325 bio->bi_phys_segments == 1);
6bfe0b49
DW
1326 goto retry_write;
1327 }
1328
1f68f0c4
N
1329 if (max_sectors < r1_bio->sectors) {
1330 /* We are splitting this write into multiple parts, so
1331 * we need to prepare for allocating another r1_bio.
1332 */
1333 r1_bio->sectors = max_sectors;
1334 spin_lock_irq(&conf->device_lock);
1335 if (bio->bi_phys_segments == 0)
1336 bio->bi_phys_segments = 2;
1337 else
1338 bio->bi_phys_segments++;
1339 spin_unlock_irq(&conf->device_lock);
191ea9b2 1340 }
4f024f37 1341 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1342
4e78064f 1343 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1344 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1345
1f68f0c4 1346 first_clone = 1;
1da177e4
LT
1347 for (i = 0; i < disks; i++) {
1348 struct bio *mbio;
1349 if (!r1_bio->bios[i])
1350 continue;
1351
a167f663 1352 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
3b046a97
RL
1353 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector,
1354 max_sectors);
1f68f0c4
N
1355
1356 if (first_clone) {
1357 /* do behind I/O ?
1358 * Not if there are too many, or cannot
1359 * allocate memory, or a reader on WriteMostly
1360 * is waiting for behind writes to flush */
1361 if (bitmap &&
1362 (atomic_read(&bitmap->behind_writes)
1363 < mddev->bitmap_info.max_write_behind) &&
1364 !waitqueue_active(&bitmap->behind_wait))
1365 alloc_behind_pages(mbio, r1_bio);
1366
1367 bitmap_startwrite(bitmap, r1_bio->sector,
1368 r1_bio->sectors,
1369 test_bit(R1BIO_BehindIO,
1370 &r1_bio->state));
1371 first_clone = 0;
1372 }
2ca68f5e 1373 if (r1_bio->behind_bvecs) {
4b6d287f
N
1374 struct bio_vec *bvec;
1375 int j;
1376
cb34e057
KO
1377 /*
1378 * We trimmed the bio, so _all is legit
4b6d287f 1379 */
d74c6d51 1380 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1381 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1382 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1383 atomic_inc(&r1_bio->behind_remaining);
1384 }
1385
1f68f0c4
N
1386 r1_bio->bios[i] = mbio;
1387
4f024f37 1388 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1389 conf->mirrors[i].rdev->data_offset);
109e3765 1390 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1f68f0c4 1391 mbio->bi_end_io = raid1_end_write_request;
288dab8a 1392 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
212e7eb7
N
1393 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1394 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1395 conf->raid_disks - mddev->degraded > 1)
1396 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1397 mbio->bi_private = r1_bio;
1398
1da177e4 1399 atomic_inc(&r1_bio->remaining);
f54a9d0e 1400
109e3765
N
1401 if (mddev->gendisk)
1402 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1403 mbio, disk_devt(mddev->gendisk),
1404 r1_bio->sector);
1405 /* flush_pending_writes() needs access to the rdev so...*/
1406 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1407
f54a9d0e
N
1408 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409 if (cb)
1410 plug = container_of(cb, struct raid1_plug_cb, cb);
1411 else
1412 plug = NULL;
4e78064f 1413 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1414 if (plug) {
1415 bio_list_add(&plug->pending, mbio);
1416 plug->pending_cnt++;
1417 } else {
1418 bio_list_add(&conf->pending_bio_list, mbio);
1419 conf->pending_count++;
1420 }
4e78064f 1421 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1422 if (!plug)
b357f04a 1423 md_wakeup_thread(mddev->thread);
1da177e4 1424 }
079fa166
N
1425 /* Mustn't call r1_bio_write_done before this next test,
1426 * as it could result in the bio being freed.
1427 */
aa8b57aa 1428 if (sectors_handled < bio_sectors(bio)) {
079fa166 1429 r1_bio_write_done(r1_bio);
1f68f0c4
N
1430 /* We need another r1_bio. It has already been counted
1431 * in bio->bi_phys_segments
1432 */
1433 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 r1_bio->master_bio = bio;
aa8b57aa 1435 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1436 r1_bio->state = 0;
1437 r1_bio->mddev = mddev;
4f024f37 1438 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1439 goto retry_write;
1440 }
1441
079fa166
N
1442 r1_bio_write_done(r1_bio);
1443
1444 /* In case raid1d snuck in to freeze_array */
1445 wake_up(&conf->wait_barrier);
1da177e4
LT
1446}
1447
3b046a97
RL
1448static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1449{
1450 struct r1conf *conf = mddev->private;
1451 struct r1bio *r1_bio;
1452
1453 /*
1454 * make_request() can abort the operation when read-ahead is being
1455 * used and no empty request is available.
1456 *
1457 */
1458 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1459
1460 r1_bio->master_bio = bio;
1461 r1_bio->sectors = bio_sectors(bio);
1462 r1_bio->state = 0;
1463 r1_bio->mddev = mddev;
1464 r1_bio->sector = bio->bi_iter.bi_sector;
1465
1466 /*
1467 * We might need to issue multiple reads to different devices if there
1468 * are bad blocks around, so we keep track of the number of reads in
1469 * bio->bi_phys_segments. If this is 0, there is only one r1_bio and
1470 * no locking will be needed when requests complete. If it is
1471 * non-zero, then it is the number of not-completed requests.
1472 */
1473 bio->bi_phys_segments = 0;
1474 bio_clear_flag(bio, BIO_SEG_VALID);
1475
1476 if (bio_data_dir(bio) == READ)
1477 raid1_read_request(mddev, bio, r1_bio);
1478 else
1479 raid1_write_request(mddev, bio, r1_bio);
1480}
1481
849674e4 1482static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1483{
e8096360 1484 struct r1conf *conf = mddev->private;
1da177e4
LT
1485 int i;
1486
1487 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1488 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1489 rcu_read_lock();
1490 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1491 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1492 seq_printf(seq, "%s",
ddac7c7e
N
1493 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1494 }
1495 rcu_read_unlock();
1da177e4
LT
1496 seq_printf(seq, "]");
1497}
1498
849674e4 1499static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1500{
1501 char b[BDEVNAME_SIZE];
e8096360 1502 struct r1conf *conf = mddev->private;
423f04d6 1503 unsigned long flags;
1da177e4
LT
1504
1505 /*
1506 * If it is not operational, then we have already marked it as dead
1507 * else if it is the last working disks, ignore the error, let the
1508 * next level up know.
1509 * else mark the drive as failed
1510 */
2e52d449 1511 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1512 if (test_bit(In_sync, &rdev->flags)
4044ba58 1513 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1514 /*
1515 * Don't fail the drive, act as though we were just a
4044ba58
N
1516 * normal single drive.
1517 * However don't try a recovery from this drive as
1518 * it is very likely to fail.
1da177e4 1519 */
5389042f 1520 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1521 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1522 return;
4044ba58 1523 }
de393cde 1524 set_bit(Blocked, &rdev->flags);
c04be0aa 1525 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1526 mddev->degraded++;
dd00a99e 1527 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1528 } else
1529 set_bit(Faulty, &rdev->flags);
423f04d6 1530 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1531 /*
1532 * if recovery is running, make sure it aborts.
1533 */
1534 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1535 set_mask_bits(&mddev->sb_flags, 0,
1536 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1537 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1538 "md/raid1:%s: Operation continuing on %d devices.\n",
1539 mdname(mddev), bdevname(rdev->bdev, b),
1540 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1541}
1542
e8096360 1543static void print_conf(struct r1conf *conf)
1da177e4
LT
1544{
1545 int i;
1da177e4 1546
1d41c216 1547 pr_debug("RAID1 conf printout:\n");
1da177e4 1548 if (!conf) {
1d41c216 1549 pr_debug("(!conf)\n");
1da177e4
LT
1550 return;
1551 }
1d41c216
N
1552 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1553 conf->raid_disks);
1da177e4 1554
ddac7c7e 1555 rcu_read_lock();
1da177e4
LT
1556 for (i = 0; i < conf->raid_disks; i++) {
1557 char b[BDEVNAME_SIZE];
3cb03002 1558 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1559 if (rdev)
1d41c216
N
1560 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1561 i, !test_bit(In_sync, &rdev->flags),
1562 !test_bit(Faulty, &rdev->flags),
1563 bdevname(rdev->bdev,b));
1da177e4 1564 }
ddac7c7e 1565 rcu_read_unlock();
1da177e4
LT
1566}
1567
e8096360 1568static void close_sync(struct r1conf *conf)
1da177e4 1569{
79ef3a8a 1570 wait_barrier(conf, NULL);
1571 allow_barrier(conf, 0, 0);
1da177e4
LT
1572
1573 mempool_destroy(conf->r1buf_pool);
1574 conf->r1buf_pool = NULL;
79ef3a8a 1575
669cc7ba 1576 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1577 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1578 conf->start_next_window = MaxSector;
669cc7ba
N
1579 conf->current_window_requests +=
1580 conf->next_window_requests;
1581 conf->next_window_requests = 0;
1582 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1583}
1584
fd01b88c 1585static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1586{
1587 int i;
e8096360 1588 struct r1conf *conf = mddev->private;
6b965620
N
1589 int count = 0;
1590 unsigned long flags;
1da177e4
LT
1591
1592 /*
f72ffdd6 1593 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1594 * and mark them readable.
1595 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1596 * device_lock used to avoid races with raid1_end_read_request
1597 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1598 */
423f04d6 1599 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1600 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1601 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1602 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1603 if (repl
1aee41f6 1604 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1605 && repl->recovery_offset == MaxSector
1606 && !test_bit(Faulty, &repl->flags)
1607 && !test_and_set_bit(In_sync, &repl->flags)) {
1608 /* replacement has just become active */
1609 if (!rdev ||
1610 !test_and_clear_bit(In_sync, &rdev->flags))
1611 count++;
1612 if (rdev) {
1613 /* Replaced device not technically
1614 * faulty, but we need to be sure
1615 * it gets removed and never re-added
1616 */
1617 set_bit(Faulty, &rdev->flags);
1618 sysfs_notify_dirent_safe(
1619 rdev->sysfs_state);
1620 }
1621 }
ddac7c7e 1622 if (rdev
61e4947c 1623 && rdev->recovery_offset == MaxSector
ddac7c7e 1624 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1625 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1626 count++;
654e8b5a 1627 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1628 }
1629 }
6b965620
N
1630 mddev->degraded -= count;
1631 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1632
1633 print_conf(conf);
6b965620 1634 return count;
1da177e4
LT
1635}
1636
fd01b88c 1637static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1638{
e8096360 1639 struct r1conf *conf = mddev->private;
199050ea 1640 int err = -EEXIST;
41158c7e 1641 int mirror = 0;
0eaf822c 1642 struct raid1_info *p;
6c2fce2e 1643 int first = 0;
30194636 1644 int last = conf->raid_disks - 1;
1da177e4 1645
5389042f
N
1646 if (mddev->recovery_disabled == conf->recovery_disabled)
1647 return -EBUSY;
1648
1501efad
DW
1649 if (md_integrity_add_rdev(rdev, mddev))
1650 return -ENXIO;
1651
6c2fce2e
NB
1652 if (rdev->raid_disk >= 0)
1653 first = last = rdev->raid_disk;
1654
70bcecdb
GR
1655 /*
1656 * find the disk ... but prefer rdev->saved_raid_disk
1657 * if possible.
1658 */
1659 if (rdev->saved_raid_disk >= 0 &&
1660 rdev->saved_raid_disk >= first &&
1661 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1662 first = last = rdev->saved_raid_disk;
1663
7ef449d1
N
1664 for (mirror = first; mirror <= last; mirror++) {
1665 p = conf->mirrors+mirror;
1666 if (!p->rdev) {
1da177e4 1667
9092c02d
JB
1668 if (mddev->gendisk)
1669 disk_stack_limits(mddev->gendisk, rdev->bdev,
1670 rdev->data_offset << 9);
1da177e4
LT
1671
1672 p->head_position = 0;
1673 rdev->raid_disk = mirror;
199050ea 1674 err = 0;
6aea114a
N
1675 /* As all devices are equivalent, we don't need a full recovery
1676 * if this was recently any drive of the array
1677 */
1678 if (rdev->saved_raid_disk < 0)
41158c7e 1679 conf->fullsync = 1;
d6065f7b 1680 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1681 break;
1682 }
7ef449d1
N
1683 if (test_bit(WantReplacement, &p->rdev->flags) &&
1684 p[conf->raid_disks].rdev == NULL) {
1685 /* Add this device as a replacement */
1686 clear_bit(In_sync, &rdev->flags);
1687 set_bit(Replacement, &rdev->flags);
1688 rdev->raid_disk = mirror;
1689 err = 0;
1690 conf->fullsync = 1;
1691 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1692 break;
1693 }
1694 }
9092c02d 1695 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1696 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1697 print_conf(conf);
199050ea 1698 return err;
1da177e4
LT
1699}
1700
b8321b68 1701static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1702{
e8096360 1703 struct r1conf *conf = mddev->private;
1da177e4 1704 int err = 0;
b8321b68 1705 int number = rdev->raid_disk;
0eaf822c 1706 struct raid1_info *p = conf->mirrors + number;
1da177e4 1707
b014f14c
N
1708 if (rdev != p->rdev)
1709 p = conf->mirrors + conf->raid_disks + number;
1710
1da177e4 1711 print_conf(conf);
b8321b68 1712 if (rdev == p->rdev) {
b2d444d7 1713 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1714 atomic_read(&rdev->nr_pending)) {
1715 err = -EBUSY;
1716 goto abort;
1717 }
046abeed 1718 /* Only remove non-faulty devices if recovery
dfc70645
N
1719 * is not possible.
1720 */
1721 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1722 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1723 mddev->degraded < conf->raid_disks) {
1724 err = -EBUSY;
1725 goto abort;
1726 }
1da177e4 1727 p->rdev = NULL;
d787be40
N
1728 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1729 synchronize_rcu();
1730 if (atomic_read(&rdev->nr_pending)) {
1731 /* lost the race, try later */
1732 err = -EBUSY;
1733 p->rdev = rdev;
1734 goto abort;
1735 }
1736 }
1737 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1738 /* We just removed a device that is being replaced.
1739 * Move down the replacement. We drain all IO before
1740 * doing this to avoid confusion.
1741 */
1742 struct md_rdev *repl =
1743 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1744 freeze_array(conf, 0);
8c7a2c2b
N
1745 clear_bit(Replacement, &repl->flags);
1746 p->rdev = repl;
1747 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1748 unfreeze_array(conf);
8c7a2c2b
N
1749 clear_bit(WantReplacement, &rdev->flags);
1750 } else
b014f14c 1751 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1752 err = md_integrity_register(mddev);
1da177e4
LT
1753 }
1754abort:
1755
1756 print_conf(conf);
1757 return err;
1758}
1759
4246a0b6 1760static void end_sync_read(struct bio *bio)
1da177e4 1761{
9f2c9d12 1762 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1763
0fc280f6 1764 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1765
1da177e4
LT
1766 /*
1767 * we have read a block, now it needs to be re-written,
1768 * or re-read if the read failed.
1769 * We don't do much here, just schedule handling by raid1d
1770 */
4246a0b6 1771 if (!bio->bi_error)
1da177e4 1772 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1773
1774 if (atomic_dec_and_test(&r1_bio->remaining))
1775 reschedule_retry(r1_bio);
1da177e4
LT
1776}
1777
4246a0b6 1778static void end_sync_write(struct bio *bio)
1da177e4 1779{
4246a0b6 1780 int uptodate = !bio->bi_error;
9f2c9d12 1781 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1782 struct mddev *mddev = r1_bio->mddev;
e8096360 1783 struct r1conf *conf = mddev->private;
4367af55
N
1784 sector_t first_bad;
1785 int bad_sectors;
854abd75 1786 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1787
6b1117d5 1788 if (!uptodate) {
57dab0bd 1789 sector_t sync_blocks = 0;
6b1117d5
N
1790 sector_t s = r1_bio->sector;
1791 long sectors_to_go = r1_bio->sectors;
1792 /* make sure these bits doesn't get cleared. */
1793 do {
5e3db645 1794 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1795 &sync_blocks, 1);
1796 s += sync_blocks;
1797 sectors_to_go -= sync_blocks;
1798 } while (sectors_to_go > 0);
854abd75
N
1799 set_bit(WriteErrorSeen, &rdev->flags);
1800 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1801 set_bit(MD_RECOVERY_NEEDED, &
1802 mddev->recovery);
d8f05d29 1803 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1804 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1805 &first_bad, &bad_sectors) &&
1806 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1807 r1_bio->sector,
1808 r1_bio->sectors,
1809 &first_bad, &bad_sectors)
1810 )
4367af55 1811 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1812
1da177e4 1813 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1814 int s = r1_bio->sectors;
d8f05d29
N
1815 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1816 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1817 reschedule_retry(r1_bio);
1818 else {
1819 put_buf(r1_bio);
1820 md_done_sync(mddev, s, uptodate);
1821 }
1da177e4 1822 }
1da177e4
LT
1823}
1824
3cb03002 1825static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1826 int sectors, struct page *page, int rw)
1827{
796a5cf0 1828 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1829 /* success */
1830 return 1;
19d67169 1831 if (rw == WRITE) {
d8f05d29 1832 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1833 if (!test_and_set_bit(WantReplacement,
1834 &rdev->flags))
1835 set_bit(MD_RECOVERY_NEEDED, &
1836 rdev->mddev->recovery);
1837 }
d8f05d29
N
1838 /* need to record an error - either for the block or the device */
1839 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1840 md_error(rdev->mddev, rdev);
1841 return 0;
1842}
1843
9f2c9d12 1844static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1845{
a68e5870
N
1846 /* Try some synchronous reads of other devices to get
1847 * good data, much like with normal read errors. Only
1848 * read into the pages we already have so we don't
1849 * need to re-issue the read request.
1850 * We don't need to freeze the array, because being in an
1851 * active sync request, there is no normal IO, and
1852 * no overlapping syncs.
06f60385
N
1853 * We don't need to check is_badblock() again as we
1854 * made sure that anything with a bad block in range
1855 * will have bi_end_io clear.
a68e5870 1856 */
fd01b88c 1857 struct mddev *mddev = r1_bio->mddev;
e8096360 1858 struct r1conf *conf = mddev->private;
a68e5870
N
1859 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1860 sector_t sect = r1_bio->sector;
1861 int sectors = r1_bio->sectors;
1862 int idx = 0;
2e52d449
N
1863 struct md_rdev *rdev;
1864
1865 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1866 if (test_bit(FailFast, &rdev->flags)) {
1867 /* Don't try recovering from here - just fail it
1868 * ... unless it is the last working device of course */
1869 md_error(mddev, rdev);
1870 if (test_bit(Faulty, &rdev->flags))
1871 /* Don't try to read from here, but make sure
1872 * put_buf does it's thing
1873 */
1874 bio->bi_end_io = end_sync_write;
1875 }
a68e5870
N
1876
1877 while(sectors) {
1878 int s = sectors;
1879 int d = r1_bio->read_disk;
1880 int success = 0;
78d7f5f7 1881 int start;
a68e5870
N
1882
1883 if (s > (PAGE_SIZE>>9))
1884 s = PAGE_SIZE >> 9;
1885 do {
1886 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1887 /* No rcu protection needed here devices
1888 * can only be removed when no resync is
1889 * active, and resync is currently active
1890 */
1891 rdev = conf->mirrors[d].rdev;
9d3d8011 1892 if (sync_page_io(rdev, sect, s<<9,
a68e5870 1893 bio->bi_io_vec[idx].bv_page,
796a5cf0 1894 REQ_OP_READ, 0, false)) {
a68e5870
N
1895 success = 1;
1896 break;
1897 }
1898 }
1899 d++;
8f19ccb2 1900 if (d == conf->raid_disks * 2)
a68e5870
N
1901 d = 0;
1902 } while (!success && d != r1_bio->read_disk);
1903
78d7f5f7 1904 if (!success) {
a68e5870 1905 char b[BDEVNAME_SIZE];
3a9f28a5
N
1906 int abort = 0;
1907 /* Cannot read from anywhere, this block is lost.
1908 * Record a bad block on each device. If that doesn't
1909 * work just disable and interrupt the recovery.
1910 * Don't fail devices as that won't really help.
1911 */
1d41c216
N
1912 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1913 mdname(mddev),
1914 bdevname(bio->bi_bdev, b),
1915 (unsigned long long)r1_bio->sector);
8f19ccb2 1916 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1917 rdev = conf->mirrors[d].rdev;
1918 if (!rdev || test_bit(Faulty, &rdev->flags))
1919 continue;
1920 if (!rdev_set_badblocks(rdev, sect, s, 0))
1921 abort = 1;
1922 }
1923 if (abort) {
d890fa2b
N
1924 conf->recovery_disabled =
1925 mddev->recovery_disabled;
3a9f28a5
N
1926 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1927 md_done_sync(mddev, r1_bio->sectors, 0);
1928 put_buf(r1_bio);
1929 return 0;
1930 }
1931 /* Try next page */
1932 sectors -= s;
1933 sect += s;
1934 idx++;
1935 continue;
d11c171e 1936 }
78d7f5f7
N
1937
1938 start = d;
1939 /* write it back and re-read */
1940 while (d != r1_bio->read_disk) {
1941 if (d == 0)
8f19ccb2 1942 d = conf->raid_disks * 2;
78d7f5f7
N
1943 d--;
1944 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1945 continue;
1946 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1947 if (r1_sync_page_io(rdev, sect, s,
1948 bio->bi_io_vec[idx].bv_page,
1949 WRITE) == 0) {
78d7f5f7
N
1950 r1_bio->bios[d]->bi_end_io = NULL;
1951 rdev_dec_pending(rdev, mddev);
9d3d8011 1952 }
78d7f5f7
N
1953 }
1954 d = start;
1955 while (d != r1_bio->read_disk) {
1956 if (d == 0)
8f19ccb2 1957 d = conf->raid_disks * 2;
78d7f5f7
N
1958 d--;
1959 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1960 continue;
1961 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1962 if (r1_sync_page_io(rdev, sect, s,
1963 bio->bi_io_vec[idx].bv_page,
1964 READ) != 0)
9d3d8011 1965 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1966 }
a68e5870
N
1967 sectors -= s;
1968 sect += s;
1969 idx ++;
1970 }
78d7f5f7 1971 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1972 bio->bi_error = 0;
a68e5870
N
1973 return 1;
1974}
1975
c95e6385 1976static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1977{
1978 /* We have read all readable devices. If we haven't
1979 * got the block, then there is no hope left.
1980 * If we have, then we want to do a comparison
1981 * and skip the write if everything is the same.
1982 * If any blocks failed to read, then we need to
1983 * attempt an over-write
1984 */
fd01b88c 1985 struct mddev *mddev = r1_bio->mddev;
e8096360 1986 struct r1conf *conf = mddev->private;
a68e5870
N
1987 int primary;
1988 int i;
f4380a91 1989 int vcnt;
a68e5870 1990
30bc9b53
N
1991 /* Fix variable parts of all bios */
1992 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1993 for (i = 0; i < conf->raid_disks * 2; i++) {
1994 int j;
1995 int size;
4246a0b6 1996 int error;
30bc9b53
N
1997 struct bio *b = r1_bio->bios[i];
1998 if (b->bi_end_io != end_sync_read)
1999 continue;
4246a0b6
CH
2000 /* fixup the bio for reuse, but preserve errno */
2001 error = b->bi_error;
30bc9b53 2002 bio_reset(b);
4246a0b6 2003 b->bi_error = error;
30bc9b53 2004 b->bi_vcnt = vcnt;
4f024f37
KO
2005 b->bi_iter.bi_size = r1_bio->sectors << 9;
2006 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
2007 conf->mirrors[i].rdev->data_offset;
2008 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2009 b->bi_end_io = end_sync_read;
2010 b->bi_private = r1_bio;
2011
4f024f37 2012 size = b->bi_iter.bi_size;
30bc9b53
N
2013 for (j = 0; j < vcnt ; j++) {
2014 struct bio_vec *bi;
2015 bi = &b->bi_io_vec[j];
2016 bi->bv_offset = 0;
2017 if (size > PAGE_SIZE)
2018 bi->bv_len = PAGE_SIZE;
2019 else
2020 bi->bv_len = size;
2021 size -= PAGE_SIZE;
2022 }
2023 }
8f19ccb2 2024 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2025 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 2026 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
2027 r1_bio->bios[primary]->bi_end_io = NULL;
2028 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2029 break;
2030 }
2031 r1_bio->read_disk = primary;
8f19ccb2 2032 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2033 int j;
78d7f5f7
N
2034 struct bio *pbio = r1_bio->bios[primary];
2035 struct bio *sbio = r1_bio->bios[i];
4246a0b6 2036 int error = sbio->bi_error;
a68e5870 2037
2aabaa65 2038 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2039 continue;
4246a0b6
CH
2040 /* Now we can 'fixup' the error value */
2041 sbio->bi_error = 0;
78d7f5f7 2042
4246a0b6 2043 if (!error) {
78d7f5f7
N
2044 for (j = vcnt; j-- ; ) {
2045 struct page *p, *s;
2046 p = pbio->bi_io_vec[j].bv_page;
2047 s = sbio->bi_io_vec[j].bv_page;
2048 if (memcmp(page_address(p),
2049 page_address(s),
5020ad7d 2050 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2051 break;
69382e85 2052 }
78d7f5f7
N
2053 } else
2054 j = 0;
2055 if (j >= 0)
7f7583d4 2056 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2057 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 2058 && !error)) {
78d7f5f7
N
2059 /* No need to write to this device. */
2060 sbio->bi_end_io = NULL;
2061 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2062 continue;
2063 }
d3b45c2a
KO
2064
2065 bio_copy_data(sbio, pbio);
78d7f5f7 2066 }
a68e5870
N
2067}
2068
9f2c9d12 2069static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2070{
e8096360 2071 struct r1conf *conf = mddev->private;
a68e5870 2072 int i;
8f19ccb2 2073 int disks = conf->raid_disks * 2;
a68e5870
N
2074 struct bio *bio, *wbio;
2075
2076 bio = r1_bio->bios[r1_bio->read_disk];
2077
a68e5870
N
2078 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2079 /* ouch - failed to read all of that. */
2080 if (!fix_sync_read_error(r1_bio))
2081 return;
7ca78d57
N
2082
2083 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2084 process_checks(r1_bio);
2085
d11c171e
N
2086 /*
2087 * schedule writes
2088 */
1da177e4
LT
2089 atomic_set(&r1_bio->remaining, 1);
2090 for (i = 0; i < disks ; i++) {
2091 wbio = r1_bio->bios[i];
3e198f78
N
2092 if (wbio->bi_end_io == NULL ||
2093 (wbio->bi_end_io == end_sync_read &&
2094 (i == r1_bio->read_disk ||
2095 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2096 continue;
6e05fc2a
N
2097 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2098 continue;
1da177e4 2099
796a5cf0 2100 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2101 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2102 wbio->bi_opf |= MD_FAILFAST;
2103
3e198f78 2104 wbio->bi_end_io = end_sync_write;
1da177e4 2105 atomic_inc(&r1_bio->remaining);
aa8b57aa 2106 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2107
1da177e4
LT
2108 generic_make_request(wbio);
2109 }
2110
2111 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2112 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2113 int s = r1_bio->sectors;
2114 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2115 test_bit(R1BIO_WriteError, &r1_bio->state))
2116 reschedule_retry(r1_bio);
2117 else {
2118 put_buf(r1_bio);
2119 md_done_sync(mddev, s, 1);
2120 }
1da177e4
LT
2121 }
2122}
2123
2124/*
2125 * This is a kernel thread which:
2126 *
2127 * 1. Retries failed read operations on working mirrors.
2128 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2129 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2130 */
2131
e8096360 2132static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2133 sector_t sect, int sectors)
2134{
fd01b88c 2135 struct mddev *mddev = conf->mddev;
867868fb
N
2136 while(sectors) {
2137 int s = sectors;
2138 int d = read_disk;
2139 int success = 0;
2140 int start;
3cb03002 2141 struct md_rdev *rdev;
867868fb
N
2142
2143 if (s > (PAGE_SIZE>>9))
2144 s = PAGE_SIZE >> 9;
2145
2146 do {
d2eb35ac
N
2147 sector_t first_bad;
2148 int bad_sectors;
2149
707a6a42
N
2150 rcu_read_lock();
2151 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2152 if (rdev &&
da8840a7 2153 (test_bit(In_sync, &rdev->flags) ||
2154 (!test_bit(Faulty, &rdev->flags) &&
2155 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2156 is_badblock(rdev, sect, s,
707a6a42
N
2157 &first_bad, &bad_sectors) == 0) {
2158 atomic_inc(&rdev->nr_pending);
2159 rcu_read_unlock();
2160 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2161 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2162 success = 1;
2163 rdev_dec_pending(rdev, mddev);
2164 if (success)
2165 break;
2166 } else
2167 rcu_read_unlock();
2168 d++;
2169 if (d == conf->raid_disks * 2)
2170 d = 0;
867868fb
N
2171 } while (!success && d != read_disk);
2172
2173 if (!success) {
d8f05d29 2174 /* Cannot read from anywhere - mark it bad */
3cb03002 2175 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2176 if (!rdev_set_badblocks(rdev, sect, s, 0))
2177 md_error(mddev, rdev);
867868fb
N
2178 break;
2179 }
2180 /* write it back and re-read */
2181 start = d;
2182 while (d != read_disk) {
2183 if (d==0)
8f19ccb2 2184 d = conf->raid_disks * 2;
867868fb 2185 d--;
707a6a42
N
2186 rcu_read_lock();
2187 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2188 if (rdev &&
707a6a42
N
2189 !test_bit(Faulty, &rdev->flags)) {
2190 atomic_inc(&rdev->nr_pending);
2191 rcu_read_unlock();
d8f05d29
N
2192 r1_sync_page_io(rdev, sect, s,
2193 conf->tmppage, WRITE);
707a6a42
N
2194 rdev_dec_pending(rdev, mddev);
2195 } else
2196 rcu_read_unlock();
867868fb
N
2197 }
2198 d = start;
2199 while (d != read_disk) {
2200 char b[BDEVNAME_SIZE];
2201 if (d==0)
8f19ccb2 2202 d = conf->raid_disks * 2;
867868fb 2203 d--;
707a6a42
N
2204 rcu_read_lock();
2205 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2206 if (rdev &&
b8cb6b4c 2207 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2208 atomic_inc(&rdev->nr_pending);
2209 rcu_read_unlock();
d8f05d29
N
2210 if (r1_sync_page_io(rdev, sect, s,
2211 conf->tmppage, READ)) {
867868fb 2212 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2213 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2214 mdname(mddev), s,
2215 (unsigned long long)(sect +
2216 rdev->data_offset),
2217 bdevname(rdev->bdev, b));
867868fb 2218 }
707a6a42
N
2219 rdev_dec_pending(rdev, mddev);
2220 } else
2221 rcu_read_unlock();
867868fb
N
2222 }
2223 sectors -= s;
2224 sect += s;
2225 }
2226}
2227
9f2c9d12 2228static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2229{
fd01b88c 2230 struct mddev *mddev = r1_bio->mddev;
e8096360 2231 struct r1conf *conf = mddev->private;
3cb03002 2232 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2233
2234 /* bio has the data to be written to device 'i' where
2235 * we just recently had a write error.
2236 * We repeatedly clone the bio and trim down to one block,
2237 * then try the write. Where the write fails we record
2238 * a bad block.
2239 * It is conceivable that the bio doesn't exactly align with
2240 * blocks. We must handle this somehow.
2241 *
2242 * We currently own a reference on the rdev.
2243 */
2244
2245 int block_sectors;
2246 sector_t sector;
2247 int sectors;
2248 int sect_to_write = r1_bio->sectors;
2249 int ok = 1;
2250
2251 if (rdev->badblocks.shift < 0)
2252 return 0;
2253
ab713cdc
ND
2254 block_sectors = roundup(1 << rdev->badblocks.shift,
2255 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2256 sector = r1_bio->sector;
2257 sectors = ((sector + block_sectors)
2258 & ~(sector_t)(block_sectors - 1))
2259 - sector;
2260
cd5ff9a1
N
2261 while (sect_to_write) {
2262 struct bio *wbio;
2263 if (sectors > sect_to_write)
2264 sectors = sect_to_write;
2265 /* Write at 'sector' for 'sectors'*/
2266
b783863f
KO
2267 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2268 unsigned vcnt = r1_bio->behind_page_count;
2269 struct bio_vec *vec = r1_bio->behind_bvecs;
2270
2271 while (!vec->bv_page) {
2272 vec++;
2273 vcnt--;
2274 }
2275
2276 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2277 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2278
2279 wbio->bi_vcnt = vcnt;
2280 } else {
2281 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2282 }
2283
796a5cf0 2284 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2285 wbio->bi_iter.bi_sector = r1_bio->sector;
2286 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2287
6678d83f 2288 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2289 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2290 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2291
2292 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2293 /* failure! */
2294 ok = rdev_set_badblocks(rdev, sector,
2295 sectors, 0)
2296 && ok;
2297
2298 bio_put(wbio);
2299 sect_to_write -= sectors;
2300 sector += sectors;
2301 sectors = block_sectors;
2302 }
2303 return ok;
2304}
2305
e8096360 2306static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2307{
2308 int m;
2309 int s = r1_bio->sectors;
8f19ccb2 2310 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2311 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2312 struct bio *bio = r1_bio->bios[m];
2313 if (bio->bi_end_io == NULL)
2314 continue;
4246a0b6 2315 if (!bio->bi_error &&
62096bce 2316 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2317 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2318 }
4246a0b6 2319 if (bio->bi_error &&
62096bce
N
2320 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2321 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2322 md_error(conf->mddev, rdev);
2323 }
2324 }
2325 put_buf(r1_bio);
2326 md_done_sync(conf->mddev, s, 1);
2327}
2328
e8096360 2329static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2330{
2331 int m;
55ce74d4 2332 bool fail = false;
8f19ccb2 2333 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2334 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2335 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2336 rdev_clear_badblocks(rdev,
2337 r1_bio->sector,
c6563a8c 2338 r1_bio->sectors, 0);
62096bce
N
2339 rdev_dec_pending(rdev, conf->mddev);
2340 } else if (r1_bio->bios[m] != NULL) {
2341 /* This drive got a write error. We need to
2342 * narrow down and record precise write
2343 * errors.
2344 */
55ce74d4 2345 fail = true;
62096bce
N
2346 if (!narrow_write_error(r1_bio, m)) {
2347 md_error(conf->mddev,
2348 conf->mirrors[m].rdev);
2349 /* an I/O failed, we can't clear the bitmap */
2350 set_bit(R1BIO_Degraded, &r1_bio->state);
2351 }
2352 rdev_dec_pending(conf->mirrors[m].rdev,
2353 conf->mddev);
2354 }
55ce74d4
N
2355 if (fail) {
2356 spin_lock_irq(&conf->device_lock);
2357 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
ccfc7bf1 2358 conf->nr_queued++;
55ce74d4
N
2359 spin_unlock_irq(&conf->device_lock);
2360 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2361 } else {
2362 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2363 close_write(r1_bio);
55ce74d4 2364 raid_end_bio_io(r1_bio);
bd8688a1 2365 }
62096bce
N
2366}
2367
e8096360 2368static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2369{
2370 int disk;
2371 int max_sectors;
fd01b88c 2372 struct mddev *mddev = conf->mddev;
62096bce
N
2373 struct bio *bio;
2374 char b[BDEVNAME_SIZE];
3cb03002 2375 struct md_rdev *rdev;
109e3765
N
2376 dev_t bio_dev;
2377 sector_t bio_sector;
62096bce
N
2378
2379 clear_bit(R1BIO_ReadError, &r1_bio->state);
2380 /* we got a read error. Maybe the drive is bad. Maybe just
2381 * the block and we can fix it.
2382 * We freeze all other IO, and try reading the block from
2383 * other devices. When we find one, we re-write
2384 * and check it that fixes the read error.
2385 * This is all done synchronously while the array is
2386 * frozen
2387 */
7449f699
TM
2388
2389 bio = r1_bio->bios[r1_bio->read_disk];
2390 bdevname(bio->bi_bdev, b);
109e3765
N
2391 bio_dev = bio->bi_bdev->bd_dev;
2392 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2393 bio_put(bio);
2394 r1_bio->bios[r1_bio->read_disk] = NULL;
2395
2e52d449
N
2396 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2397 if (mddev->ro == 0
2398 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2399 freeze_array(conf, 1);
62096bce
N
2400 fix_read_error(conf, r1_bio->read_disk,
2401 r1_bio->sector, r1_bio->sectors);
2402 unfreeze_array(conf);
7449f699
TM
2403 } else {
2404 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2405 }
2406
2e52d449 2407 rdev_dec_pending(rdev, conf->mddev);
62096bce 2408
62096bce
N
2409read_more:
2410 disk = read_balance(conf, r1_bio, &max_sectors);
2411 if (disk == -1) {
1d41c216
N
2412 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2413 mdname(mddev), b, (unsigned long long)r1_bio->sector);
62096bce
N
2414 raid_end_bio_io(r1_bio);
2415 } else {
2416 const unsigned long do_sync
1eff9d32 2417 = r1_bio->master_bio->bi_opf & REQ_SYNC;
62096bce
N
2418 r1_bio->read_disk = disk;
2419 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2420 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2421 max_sectors);
62096bce
N
2422 r1_bio->bios[r1_bio->read_disk] = bio;
2423 rdev = conf->mirrors[disk].rdev;
1d41c216
N
2424 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2425 mdname(mddev),
2426 (unsigned long long)r1_bio->sector,
2427 bdevname(rdev->bdev, b));
4f024f37 2428 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2429 bio->bi_bdev = rdev->bdev;
2430 bio->bi_end_io = raid1_end_read_request;
796a5cf0 2431 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2e52d449
N
2432 if (test_bit(FailFast, &rdev->flags) &&
2433 test_bit(R1BIO_FailFast, &r1_bio->state))
2434 bio->bi_opf |= MD_FAILFAST;
62096bce
N
2435 bio->bi_private = r1_bio;
2436 if (max_sectors < r1_bio->sectors) {
2437 /* Drat - have to split this up more */
2438 struct bio *mbio = r1_bio->master_bio;
2439 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2440 - mbio->bi_iter.bi_sector);
62096bce
N
2441 r1_bio->sectors = max_sectors;
2442 spin_lock_irq(&conf->device_lock);
2443 if (mbio->bi_phys_segments == 0)
2444 mbio->bi_phys_segments = 2;
2445 else
2446 mbio->bi_phys_segments++;
2447 spin_unlock_irq(&conf->device_lock);
109e3765
N
2448 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2449 bio, bio_dev, bio_sector);
62096bce
N
2450 generic_make_request(bio);
2451 bio = NULL;
2452
2453 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2454
2455 r1_bio->master_bio = mbio;
aa8b57aa 2456 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2457 r1_bio->state = 0;
2458 set_bit(R1BIO_ReadError, &r1_bio->state);
2459 r1_bio->mddev = mddev;
4f024f37
KO
2460 r1_bio->sector = mbio->bi_iter.bi_sector +
2461 sectors_handled;
62096bce
N
2462
2463 goto read_more;
109e3765
N
2464 } else {
2465 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2466 bio, bio_dev, bio_sector);
62096bce 2467 generic_make_request(bio);
109e3765 2468 }
62096bce
N
2469 }
2470}
2471
4ed8731d 2472static void raid1d(struct md_thread *thread)
1da177e4 2473{
4ed8731d 2474 struct mddev *mddev = thread->mddev;
9f2c9d12 2475 struct r1bio *r1_bio;
1da177e4 2476 unsigned long flags;
e8096360 2477 struct r1conf *conf = mddev->private;
1da177e4 2478 struct list_head *head = &conf->retry_list;
e1dfa0a2 2479 struct blk_plug plug;
1da177e4
LT
2480
2481 md_check_recovery(mddev);
e1dfa0a2 2482
55ce74d4 2483 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2484 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2485 LIST_HEAD(tmp);
2486 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 2487 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
ccfc7bf1
ND
2488 while (!list_empty(&conf->bio_end_io_list)) {
2489 list_move(conf->bio_end_io_list.prev, &tmp);
2490 conf->nr_queued--;
2491 }
55ce74d4
N
2492 }
2493 spin_unlock_irqrestore(&conf->device_lock, flags);
2494 while (!list_empty(&tmp)) {
a452744b
MP
2495 r1_bio = list_first_entry(&tmp, struct r1bio,
2496 retry_list);
55ce74d4 2497 list_del(&r1_bio->retry_list);
bd8688a1
N
2498 if (mddev->degraded)
2499 set_bit(R1BIO_Degraded, &r1_bio->state);
2500 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2501 close_write(r1_bio);
55ce74d4
N
2502 raid_end_bio_io(r1_bio);
2503 }
2504 }
2505
e1dfa0a2 2506 blk_start_plug(&plug);
1da177e4 2507 for (;;) {
191ea9b2 2508
0021b7bc 2509 flush_pending_writes(conf);
191ea9b2 2510
a35e63ef
N
2511 spin_lock_irqsave(&conf->device_lock, flags);
2512 if (list_empty(head)) {
2513 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2514 break;
a35e63ef 2515 }
9f2c9d12 2516 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2517 list_del(head->prev);
ddaf22ab 2518 conf->nr_queued--;
1da177e4
LT
2519 spin_unlock_irqrestore(&conf->device_lock, flags);
2520
2521 mddev = r1_bio->mddev;
070ec55d 2522 conf = mddev->private;
4367af55 2523 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2524 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2525 test_bit(R1BIO_WriteError, &r1_bio->state))
2526 handle_sync_write_finished(conf, r1_bio);
2527 else
4367af55 2528 sync_request_write(mddev, r1_bio);
cd5ff9a1 2529 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2530 test_bit(R1BIO_WriteError, &r1_bio->state))
2531 handle_write_finished(conf, r1_bio);
2532 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2533 handle_read_error(conf, r1_bio);
2534 else
d2eb35ac
N
2535 /* just a partial read to be scheduled from separate
2536 * context
2537 */
2538 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2539
1d9d5241 2540 cond_resched();
2953079c 2541 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2542 md_check_recovery(mddev);
1da177e4 2543 }
e1dfa0a2 2544 blk_finish_plug(&plug);
1da177e4
LT
2545}
2546
e8096360 2547static int init_resync(struct r1conf *conf)
1da177e4
LT
2548{
2549 int buffs;
2550
2551 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2552 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2553 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2554 conf->poolinfo);
2555 if (!conf->r1buf_pool)
2556 return -ENOMEM;
2557 conf->next_resync = 0;
2558 return 0;
2559}
2560
2561/*
2562 * perform a "sync" on one "block"
2563 *
2564 * We need to make sure that no normal I/O request - particularly write
2565 * requests - conflict with active sync requests.
2566 *
2567 * This is achieved by tracking pending requests and a 'barrier' concept
2568 * that can be installed to exclude normal IO requests.
2569 */
2570
849674e4
SL
2571static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2572 int *skipped)
1da177e4 2573{
e8096360 2574 struct r1conf *conf = mddev->private;
9f2c9d12 2575 struct r1bio *r1_bio;
1da177e4
LT
2576 struct bio *bio;
2577 sector_t max_sector, nr_sectors;
3e198f78 2578 int disk = -1;
1da177e4 2579 int i;
3e198f78
N
2580 int wonly = -1;
2581 int write_targets = 0, read_targets = 0;
57dab0bd 2582 sector_t sync_blocks;
e3b9703e 2583 int still_degraded = 0;
06f60385
N
2584 int good_sectors = RESYNC_SECTORS;
2585 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2586
2587 if (!conf->r1buf_pool)
2588 if (init_resync(conf))
57afd89f 2589 return 0;
1da177e4 2590
58c0fed4 2591 max_sector = mddev->dev_sectors;
1da177e4 2592 if (sector_nr >= max_sector) {
191ea9b2
N
2593 /* If we aborted, we need to abort the
2594 * sync on the 'current' bitmap chunk (there will
2595 * only be one in raid1 resync.
2596 * We can find the current addess in mddev->curr_resync
2597 */
6a806c51
N
2598 if (mddev->curr_resync < max_sector) /* aborted */
2599 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2600 &sync_blocks, 1);
6a806c51 2601 else /* completed sync */
191ea9b2 2602 conf->fullsync = 0;
6a806c51
N
2603
2604 bitmap_close_sync(mddev->bitmap);
1da177e4 2605 close_sync(conf);
c40f341f
GR
2606
2607 if (mddev_is_clustered(mddev)) {
2608 conf->cluster_sync_low = 0;
2609 conf->cluster_sync_high = 0;
c40f341f 2610 }
1da177e4
LT
2611 return 0;
2612 }
2613
07d84d10
N
2614 if (mddev->bitmap == NULL &&
2615 mddev->recovery_cp == MaxSector &&
6394cca5 2616 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2617 conf->fullsync == 0) {
2618 *skipped = 1;
2619 return max_sector - sector_nr;
2620 }
6394cca5
N
2621 /* before building a request, check if we can skip these blocks..
2622 * This call the bitmap_start_sync doesn't actually record anything
2623 */
e3b9703e 2624 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2625 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2626 /* We can skip this block, and probably several more */
2627 *skipped = 1;
2628 return sync_blocks;
2629 }
17999be4 2630
7ac50447
TM
2631 /*
2632 * If there is non-resync activity waiting for a turn, then let it
2633 * though before starting on this new sync request.
2634 */
2635 if (conf->nr_waiting)
2636 schedule_timeout_uninterruptible(1);
2637
c40f341f
GR
2638 /* we are incrementing sector_nr below. To be safe, we check against
2639 * sector_nr + two times RESYNC_SECTORS
2640 */
2641
2642 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2643 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2644 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2645
c2fd4c94 2646 raise_barrier(conf, sector_nr);
1da177e4 2647
3e198f78 2648 rcu_read_lock();
1da177e4 2649 /*
3e198f78
N
2650 * If we get a correctably read error during resync or recovery,
2651 * we might want to read from a different device. So we
2652 * flag all drives that could conceivably be read from for READ,
2653 * and any others (which will be non-In_sync devices) for WRITE.
2654 * If a read fails, we try reading from something else for which READ
2655 * is OK.
1da177e4 2656 */
1da177e4 2657
1da177e4
LT
2658 r1_bio->mddev = mddev;
2659 r1_bio->sector = sector_nr;
191ea9b2 2660 r1_bio->state = 0;
1da177e4 2661 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2662
8f19ccb2 2663 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2664 struct md_rdev *rdev;
1da177e4 2665 bio = r1_bio->bios[i];
2aabaa65 2666 bio_reset(bio);
1da177e4 2667
3e198f78
N
2668 rdev = rcu_dereference(conf->mirrors[i].rdev);
2669 if (rdev == NULL ||
06f60385 2670 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2671 if (i < conf->raid_disks)
2672 still_degraded = 1;
3e198f78 2673 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2674 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2675 bio->bi_end_io = end_sync_write;
2676 write_targets ++;
3e198f78
N
2677 } else {
2678 /* may need to read from here */
06f60385
N
2679 sector_t first_bad = MaxSector;
2680 int bad_sectors;
2681
2682 if (is_badblock(rdev, sector_nr, good_sectors,
2683 &first_bad, &bad_sectors)) {
2684 if (first_bad > sector_nr)
2685 good_sectors = first_bad - sector_nr;
2686 else {
2687 bad_sectors -= (sector_nr - first_bad);
2688 if (min_bad == 0 ||
2689 min_bad > bad_sectors)
2690 min_bad = bad_sectors;
2691 }
2692 }
2693 if (sector_nr < first_bad) {
2694 if (test_bit(WriteMostly, &rdev->flags)) {
2695 if (wonly < 0)
2696 wonly = i;
2697 } else {
2698 if (disk < 0)
2699 disk = i;
2700 }
796a5cf0 2701 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2702 bio->bi_end_io = end_sync_read;
2703 read_targets++;
d57368af
AL
2704 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2705 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2706 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2707 /*
2708 * The device is suitable for reading (InSync),
2709 * but has bad block(s) here. Let's try to correct them,
2710 * if we are doing resync or repair. Otherwise, leave
2711 * this device alone for this sync request.
2712 */
796a5cf0 2713 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2714 bio->bi_end_io = end_sync_write;
2715 write_targets++;
3e198f78 2716 }
3e198f78 2717 }
06f60385
N
2718 if (bio->bi_end_io) {
2719 atomic_inc(&rdev->nr_pending);
4f024f37 2720 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2721 bio->bi_bdev = rdev->bdev;
2722 bio->bi_private = r1_bio;
2e52d449
N
2723 if (test_bit(FailFast, &rdev->flags))
2724 bio->bi_opf |= MD_FAILFAST;
06f60385 2725 }
1da177e4 2726 }
3e198f78
N
2727 rcu_read_unlock();
2728 if (disk < 0)
2729 disk = wonly;
2730 r1_bio->read_disk = disk;
191ea9b2 2731
06f60385
N
2732 if (read_targets == 0 && min_bad > 0) {
2733 /* These sectors are bad on all InSync devices, so we
2734 * need to mark them bad on all write targets
2735 */
2736 int ok = 1;
8f19ccb2 2737 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2738 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2739 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2740 ok = rdev_set_badblocks(rdev, sector_nr,
2741 min_bad, 0
2742 ) && ok;
2743 }
2953079c 2744 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2745 *skipped = 1;
2746 put_buf(r1_bio);
2747
2748 if (!ok) {
2749 /* Cannot record the badblocks, so need to
2750 * abort the resync.
2751 * If there are multiple read targets, could just
2752 * fail the really bad ones ???
2753 */
2754 conf->recovery_disabled = mddev->recovery_disabled;
2755 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2756 return 0;
2757 } else
2758 return min_bad;
2759
2760 }
2761 if (min_bad > 0 && min_bad < good_sectors) {
2762 /* only resync enough to reach the next bad->good
2763 * transition */
2764 good_sectors = min_bad;
2765 }
2766
3e198f78
N
2767 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2768 /* extra read targets are also write targets */
2769 write_targets += read_targets-1;
2770
2771 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2772 /* There is nowhere to write, so all non-sync
2773 * drives must be failed - so we are finished
2774 */
b7219ccb
N
2775 sector_t rv;
2776 if (min_bad > 0)
2777 max_sector = sector_nr + min_bad;
2778 rv = max_sector - sector_nr;
57afd89f 2779 *skipped = 1;
1da177e4 2780 put_buf(r1_bio);
1da177e4
LT
2781 return rv;
2782 }
2783
c6207277
N
2784 if (max_sector > mddev->resync_max)
2785 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2786 if (max_sector > sector_nr + good_sectors)
2787 max_sector = sector_nr + good_sectors;
1da177e4 2788 nr_sectors = 0;
289e99e8 2789 sync_blocks = 0;
1da177e4
LT
2790 do {
2791 struct page *page;
2792 int len = PAGE_SIZE;
2793 if (sector_nr + (len>>9) > max_sector)
2794 len = (max_sector - sector_nr) << 9;
2795 if (len == 0)
2796 break;
6a806c51
N
2797 if (sync_blocks == 0) {
2798 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2799 &sync_blocks, still_degraded) &&
2800 !conf->fullsync &&
2801 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2802 break;
7571ae88 2803 if ((len >> 9) > sync_blocks)
6a806c51 2804 len = sync_blocks<<9;
ab7a30c7 2805 }
191ea9b2 2806
8f19ccb2 2807 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2808 bio = r1_bio->bios[i];
2809 if (bio->bi_end_io) {
d11c171e 2810 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2811 if (bio_add_page(bio, page, len, 0) == 0) {
2812 /* stop here */
d11c171e 2813 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2814 while (i > 0) {
2815 i--;
2816 bio = r1_bio->bios[i];
6a806c51
N
2817 if (bio->bi_end_io==NULL)
2818 continue;
1da177e4
LT
2819 /* remove last page from this bio */
2820 bio->bi_vcnt--;
4f024f37 2821 bio->bi_iter.bi_size -= len;
b7c44ed9 2822 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2823 }
2824 goto bio_full;
2825 }
2826 }
2827 }
2828 nr_sectors += len>>9;
2829 sector_nr += len>>9;
191ea9b2 2830 sync_blocks -= (len>>9);
1da177e4
LT
2831 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2832 bio_full:
1da177e4
LT
2833 r1_bio->sectors = nr_sectors;
2834
c40f341f
GR
2835 if (mddev_is_clustered(mddev) &&
2836 conf->cluster_sync_high < sector_nr + nr_sectors) {
2837 conf->cluster_sync_low = mddev->curr_resync_completed;
2838 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2839 /* Send resync message */
2840 md_cluster_ops->resync_info_update(mddev,
2841 conf->cluster_sync_low,
2842 conf->cluster_sync_high);
2843 }
2844
d11c171e
N
2845 /* For a user-requested sync, we read all readable devices and do a
2846 * compare
2847 */
2848 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2849 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2850 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2851 bio = r1_bio->bios[i];
2852 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2853 read_targets--;
ddac7c7e 2854 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2855 if (read_targets == 1)
2856 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2857 generic_make_request(bio);
2858 }
2859 }
2860 } else {
2861 atomic_set(&r1_bio->remaining, 1);
2862 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2863 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2864 if (read_targets == 1)
2865 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2866 generic_make_request(bio);
1da177e4 2867
d11c171e 2868 }
1da177e4
LT
2869 return nr_sectors;
2870}
2871
fd01b88c 2872static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2873{
2874 if (sectors)
2875 return sectors;
2876
2877 return mddev->dev_sectors;
2878}
2879
e8096360 2880static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2881{
e8096360 2882 struct r1conf *conf;
709ae487 2883 int i;
0eaf822c 2884 struct raid1_info *disk;
3cb03002 2885 struct md_rdev *rdev;
709ae487 2886 int err = -ENOMEM;
1da177e4 2887
e8096360 2888 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2889 if (!conf)
709ae487 2890 goto abort;
1da177e4 2891
0eaf822c 2892 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2893 * mddev->raid_disks * 2,
1da177e4
LT
2894 GFP_KERNEL);
2895 if (!conf->mirrors)
709ae487 2896 goto abort;
1da177e4 2897
ddaf22ab
N
2898 conf->tmppage = alloc_page(GFP_KERNEL);
2899 if (!conf->tmppage)
709ae487 2900 goto abort;
ddaf22ab 2901
709ae487 2902 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2903 if (!conf->poolinfo)
709ae487 2904 goto abort;
8f19ccb2 2905 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2906 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2907 r1bio_pool_free,
2908 conf->poolinfo);
2909 if (!conf->r1bio_pool)
709ae487
N
2910 goto abort;
2911
ed9bfdf1 2912 conf->poolinfo->mddev = mddev;
1da177e4 2913
c19d5798 2914 err = -EINVAL;
e7e72bf6 2915 spin_lock_init(&conf->device_lock);
dafb20fa 2916 rdev_for_each(rdev, mddev) {
aba336bd 2917 struct request_queue *q;
709ae487 2918 int disk_idx = rdev->raid_disk;
1da177e4
LT
2919 if (disk_idx >= mddev->raid_disks
2920 || disk_idx < 0)
2921 continue;
c19d5798 2922 if (test_bit(Replacement, &rdev->flags))
02b898f2 2923 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2924 else
2925 disk = conf->mirrors + disk_idx;
1da177e4 2926
c19d5798
N
2927 if (disk->rdev)
2928 goto abort;
1da177e4 2929 disk->rdev = rdev;
aba336bd 2930 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2931
2932 disk->head_position = 0;
12cee5a8 2933 disk->seq_start = MaxSector;
1da177e4
LT
2934 }
2935 conf->raid_disks = mddev->raid_disks;
2936 conf->mddev = mddev;
1da177e4 2937 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2938 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2939
2940 spin_lock_init(&conf->resync_lock);
17999be4 2941 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2942
191ea9b2 2943 bio_list_init(&conf->pending_bio_list);
34db0cd6 2944 conf->pending_count = 0;
d890fa2b 2945 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2946
79ef3a8a 2947 conf->start_next_window = MaxSector;
2948 conf->current_window_requests = conf->next_window_requests = 0;
2949
c19d5798 2950 err = -EIO;
8f19ccb2 2951 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2952
2953 disk = conf->mirrors + i;
2954
c19d5798
N
2955 if (i < conf->raid_disks &&
2956 disk[conf->raid_disks].rdev) {
2957 /* This slot has a replacement. */
2958 if (!disk->rdev) {
2959 /* No original, just make the replacement
2960 * a recovering spare
2961 */
2962 disk->rdev =
2963 disk[conf->raid_disks].rdev;
2964 disk[conf->raid_disks].rdev = NULL;
2965 } else if (!test_bit(In_sync, &disk->rdev->flags))
2966 /* Original is not in_sync - bad */
2967 goto abort;
2968 }
2969
5fd6c1dc
N
2970 if (!disk->rdev ||
2971 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2972 disk->head_position = 0;
4f0a5e01
JB
2973 if (disk->rdev &&
2974 (disk->rdev->saved_raid_disk < 0))
918f0238 2975 conf->fullsync = 1;
be4d3280 2976 }
1da177e4 2977 }
709ae487 2978
709ae487 2979 err = -ENOMEM;
0232605d 2980 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 2981 if (!conf->thread)
709ae487 2982 goto abort;
1da177e4 2983
709ae487
N
2984 return conf;
2985
2986 abort:
2987 if (conf) {
644df1a8 2988 mempool_destroy(conf->r1bio_pool);
709ae487
N
2989 kfree(conf->mirrors);
2990 safe_put_page(conf->tmppage);
2991 kfree(conf->poolinfo);
2992 kfree(conf);
2993 }
2994 return ERR_PTR(err);
2995}
2996
afa0f557 2997static void raid1_free(struct mddev *mddev, void *priv);
849674e4 2998static int raid1_run(struct mddev *mddev)
709ae487 2999{
e8096360 3000 struct r1conf *conf;
709ae487 3001 int i;
3cb03002 3002 struct md_rdev *rdev;
5220ea1e 3003 int ret;
2ff8cc2c 3004 bool discard_supported = false;
709ae487
N
3005
3006 if (mddev->level != 1) {
1d41c216
N
3007 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3008 mdname(mddev), mddev->level);
709ae487
N
3009 return -EIO;
3010 }
3011 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3012 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3013 mdname(mddev));
709ae487
N
3014 return -EIO;
3015 }
1da177e4 3016 /*
709ae487
N
3017 * copy the already verified devices into our private RAID1
3018 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3019 * should be freed in raid1_free()]
1da177e4 3020 */
709ae487
N
3021 if (mddev->private == NULL)
3022 conf = setup_conf(mddev);
3023 else
3024 conf = mddev->private;
1da177e4 3025
709ae487
N
3026 if (IS_ERR(conf))
3027 return PTR_ERR(conf);
1da177e4 3028
c8dc9c65 3029 if (mddev->queue)
5026d7a9
PA
3030 blk_queue_max_write_same_sectors(mddev->queue, 0);
3031
dafb20fa 3032 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3033 if (!mddev->gendisk)
3034 continue;
709ae487
N
3035 disk_stack_limits(mddev->gendisk, rdev->bdev,
3036 rdev->data_offset << 9);
2ff8cc2c
SL
3037 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3038 discard_supported = true;
1da177e4 3039 }
191ea9b2 3040
709ae487
N
3041 mddev->degraded = 0;
3042 for (i=0; i < conf->raid_disks; i++)
3043 if (conf->mirrors[i].rdev == NULL ||
3044 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3045 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3046 mddev->degraded++;
3047
3048 if (conf->raid_disks - mddev->degraded == 1)
3049 mddev->recovery_cp = MaxSector;
3050
8c6ac868 3051 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3052 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3053 mdname(mddev));
3054 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3055 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3056 mddev->raid_disks);
709ae487 3057
1da177e4
LT
3058 /*
3059 * Ok, everything is just fine now
3060 */
709ae487
N
3061 mddev->thread = conf->thread;
3062 conf->thread = NULL;
3063 mddev->private = conf;
46533ff7 3064 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3065
1f403624 3066 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3067
1ed7242e 3068 if (mddev->queue) {
2ff8cc2c
SL
3069 if (discard_supported)
3070 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3071 mddev->queue);
3072 else
3073 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3074 mddev->queue);
1ed7242e 3075 }
5220ea1e 3076
3077 ret = md_integrity_register(mddev);
5aa61f42
N
3078 if (ret) {
3079 md_unregister_thread(&mddev->thread);
afa0f557 3080 raid1_free(mddev, conf);
5aa61f42 3081 }
5220ea1e 3082 return ret;
1da177e4
LT
3083}
3084
afa0f557 3085static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3086{
afa0f557 3087 struct r1conf *conf = priv;
409c57f3 3088
644df1a8 3089 mempool_destroy(conf->r1bio_pool);
990a8baf 3090 kfree(conf->mirrors);
0fea7ed8 3091 safe_put_page(conf->tmppage);
990a8baf 3092 kfree(conf->poolinfo);
1da177e4 3093 kfree(conf);
1da177e4
LT
3094}
3095
fd01b88c 3096static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3097{
3098 /* no resync is happening, and there is enough space
3099 * on all devices, so we can resize.
3100 * We need to make sure resync covers any new space.
3101 * If the array is shrinking we should possibly wait until
3102 * any io in the removed space completes, but it hardly seems
3103 * worth it.
3104 */
a4a6125a
N
3105 sector_t newsize = raid1_size(mddev, sectors, 0);
3106 if (mddev->external_size &&
3107 mddev->array_sectors > newsize)
b522adcd 3108 return -EINVAL;
a4a6125a
N
3109 if (mddev->bitmap) {
3110 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3111 if (ret)
3112 return ret;
3113 }
3114 md_set_array_sectors(mddev, newsize);
f233ea5c 3115 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3116 revalidate_disk(mddev->gendisk);
b522adcd 3117 if (sectors > mddev->dev_sectors &&
b098636c 3118 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3119 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3120 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3121 }
b522adcd 3122 mddev->dev_sectors = sectors;
4b5c7ae8 3123 mddev->resync_max_sectors = sectors;
1da177e4
LT
3124 return 0;
3125}
3126
fd01b88c 3127static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3128{
3129 /* We need to:
3130 * 1/ resize the r1bio_pool
3131 * 2/ resize conf->mirrors
3132 *
3133 * We allocate a new r1bio_pool if we can.
3134 * Then raise a device barrier and wait until all IO stops.
3135 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3136 *
3137 * At the same time, we "pack" the devices so that all the missing
3138 * devices have the higher raid_disk numbers.
1da177e4
LT
3139 */
3140 mempool_t *newpool, *oldpool;
3141 struct pool_info *newpoolinfo;
0eaf822c 3142 struct raid1_info *newmirrors;
e8096360 3143 struct r1conf *conf = mddev->private;
63c70c4f 3144 int cnt, raid_disks;
c04be0aa 3145 unsigned long flags;
b5470dc5 3146 int d, d2, err;
1da177e4 3147
63c70c4f 3148 /* Cannot change chunk_size, layout, or level */
664e7c41 3149 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3150 mddev->layout != mddev->new_layout ||
3151 mddev->level != mddev->new_level) {
664e7c41 3152 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3153 mddev->new_layout = mddev->layout;
3154 mddev->new_level = mddev->level;
3155 return -EINVAL;
3156 }
3157
28c1b9fd
GR
3158 if (!mddev_is_clustered(mddev)) {
3159 err = md_allow_write(mddev);
3160 if (err)
3161 return err;
3162 }
2a2275d6 3163
63c70c4f
N
3164 raid_disks = mddev->raid_disks + mddev->delta_disks;
3165
6ea9c07c
N
3166 if (raid_disks < conf->raid_disks) {
3167 cnt=0;
3168 for (d= 0; d < conf->raid_disks; d++)
3169 if (conf->mirrors[d].rdev)
3170 cnt++;
3171 if (cnt > raid_disks)
1da177e4 3172 return -EBUSY;
6ea9c07c 3173 }
1da177e4
LT
3174
3175 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3176 if (!newpoolinfo)
3177 return -ENOMEM;
3178 newpoolinfo->mddev = mddev;
8f19ccb2 3179 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3180
3181 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3182 r1bio_pool_free, newpoolinfo);
3183 if (!newpool) {
3184 kfree(newpoolinfo);
3185 return -ENOMEM;
3186 }
0eaf822c 3187 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3188 GFP_KERNEL);
1da177e4
LT
3189 if (!newmirrors) {
3190 kfree(newpoolinfo);
3191 mempool_destroy(newpool);
3192 return -ENOMEM;
3193 }
1da177e4 3194
e2d59925 3195 freeze_array(conf, 0);
1da177e4
LT
3196
3197 /* ok, everything is stopped */
3198 oldpool = conf->r1bio_pool;
3199 conf->r1bio_pool = newpool;
6ea9c07c 3200
a88aa786 3201 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3202 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3203 if (rdev && rdev->raid_disk != d2) {
36fad858 3204 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3205 rdev->raid_disk = d2;
36fad858
NK
3206 sysfs_unlink_rdev(mddev, rdev);
3207 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3208 pr_warn("md/raid1:%s: cannot register rd%d\n",
3209 mdname(mddev), rdev->raid_disk);
6ea9c07c 3210 }
a88aa786
N
3211 if (rdev)
3212 newmirrors[d2++].rdev = rdev;
3213 }
1da177e4
LT
3214 kfree(conf->mirrors);
3215 conf->mirrors = newmirrors;
3216 kfree(conf->poolinfo);
3217 conf->poolinfo = newpoolinfo;
3218
c04be0aa 3219 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3220 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3221 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3222 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3223 mddev->delta_disks = 0;
1da177e4 3224
e2d59925 3225 unfreeze_array(conf);
1da177e4 3226
985ca973 3227 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3228 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3229 md_wakeup_thread(mddev->thread);
3230
3231 mempool_destroy(oldpool);
3232 return 0;
3233}
3234
fd01b88c 3235static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3236{
e8096360 3237 struct r1conf *conf = mddev->private;
36fa3063
N
3238
3239 switch(state) {
6eef4b21
N
3240 case 2: /* wake for suspend */
3241 wake_up(&conf->wait_barrier);
3242 break;
9e6603da 3243 case 1:
07169fd4 3244 freeze_array(conf, 0);
36fa3063 3245 break;
9e6603da 3246 case 0:
07169fd4 3247 unfreeze_array(conf);
36fa3063
N
3248 break;
3249 }
36fa3063
N
3250}
3251
fd01b88c 3252static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3253{
3254 /* raid1 can take over:
3255 * raid5 with 2 devices, any layout or chunk size
3256 */
3257 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3258 struct r1conf *conf;
709ae487
N
3259 mddev->new_level = 1;
3260 mddev->new_layout = 0;
3261 mddev->new_chunk_sectors = 0;
3262 conf = setup_conf(mddev);
6995f0b2 3263 if (!IS_ERR(conf)) {
07169fd4 3264 /* Array must appear to be quiesced */
3265 conf->array_frozen = 1;
394ed8e4
SL
3266 mddev_clear_unsupported_flags(mddev,
3267 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3268 }
709ae487
N
3269 return conf;
3270 }
3271 return ERR_PTR(-EINVAL);
3272}
1da177e4 3273
84fc4b56 3274static struct md_personality raid1_personality =
1da177e4
LT
3275{
3276 .name = "raid1",
2604b703 3277 .level = 1,
1da177e4 3278 .owner = THIS_MODULE,
849674e4
SL
3279 .make_request = raid1_make_request,
3280 .run = raid1_run,
afa0f557 3281 .free = raid1_free,
849674e4
SL
3282 .status = raid1_status,
3283 .error_handler = raid1_error,
1da177e4
LT
3284 .hot_add_disk = raid1_add_disk,
3285 .hot_remove_disk= raid1_remove_disk,
3286 .spare_active = raid1_spare_active,
849674e4 3287 .sync_request = raid1_sync_request,
1da177e4 3288 .resize = raid1_resize,
80c3a6ce 3289 .size = raid1_size,
63c70c4f 3290 .check_reshape = raid1_reshape,
36fa3063 3291 .quiesce = raid1_quiesce,
709ae487 3292 .takeover = raid1_takeover,
5c675f83 3293 .congested = raid1_congested,
1da177e4
LT
3294};
3295
3296static int __init raid_init(void)
3297{
2604b703 3298 return register_md_personality(&raid1_personality);
1da177e4
LT
3299}
3300
3301static void raid_exit(void)
3302{
2604b703 3303 unregister_md_personality(&raid1_personality);
1da177e4
LT
3304}
3305
3306module_init(raid_init);
3307module_exit(raid_exit);
3308MODULE_LICENSE("GPL");
0efb9e61 3309MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3310MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3311MODULE_ALIAS("md-raid1");
2604b703 3312MODULE_ALIAS("md-level-1");
34db0cd6
N
3313
3314module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);