]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/md/raid1.c
Merge branch 'sh-latest' of git://github.com/pmundt/linux-sh
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
bff61975 37#include <linux/seq_file.h>
8bda470e 38#include <linux/ratelimit.h>
43b2e5d8 39#include "md.h"
ef740c37
CH
40#include "raid1.h"
41#include "bitmap.h"
191ea9b2 42
1da177e4
LT
43/*
44 * Number of guaranteed r1bios in case of extreme VM load:
45 */
46#define NR_RAID1_BIOS 256
47
34db0cd6
N
48/* When there are this many requests queue to be written by
49 * the raid1 thread, we become 'congested' to provide back-pressure
50 * for writeback.
51 */
52static int max_queued_requests = 1024;
1da177e4 53
e8096360
N
54static void allow_barrier(struct r1conf *conf);
55static void lower_barrier(struct r1conf *conf);
1da177e4 56
dd0fc66f 57static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
58{
59 struct pool_info *pi = data;
9f2c9d12 60 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
61
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 63 return kzalloc(size, gfp_flags);
1da177e4
LT
64}
65
66static void r1bio_pool_free(void *r1_bio, void *data)
67{
68 kfree(r1_bio);
69}
70
71#define RESYNC_BLOCK_SIZE (64*1024)
72//#define RESYNC_BLOCK_SIZE PAGE_SIZE
73#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75#define RESYNC_WINDOW (2048*1024)
76
dd0fc66f 77static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
78{
79 struct pool_info *pi = data;
80 struct page *page;
9f2c9d12 81 struct r1bio *r1_bio;
1da177e4
LT
82 struct bio *bio;
83 int i, j;
84
85 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 86 if (!r1_bio)
1da177e4 87 return NULL;
1da177e4
LT
88
89 /*
90 * Allocate bios : 1 for reading, n-1 for writing
91 */
92 for (j = pi->raid_disks ; j-- ; ) {
6746557f 93 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
94 if (!bio)
95 goto out_free_bio;
96 r1_bio->bios[j] = bio;
97 }
98 /*
99 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
100 * the first bio.
101 * If this is a user-requested check/repair, allocate
102 * RESYNC_PAGES for each bio.
1da177e4 103 */
d11c171e
N
104 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
105 j = pi->raid_disks;
106 else
107 j = 1;
108 while(j--) {
109 bio = r1_bio->bios[j];
110 for (i = 0; i < RESYNC_PAGES; i++) {
111 page = alloc_page(gfp_flags);
112 if (unlikely(!page))
113 goto out_free_pages;
114
115 bio->bi_io_vec[i].bv_page = page;
303a0e11 116 bio->bi_vcnt = i+1;
d11c171e
N
117 }
118 }
119 /* If not user-requests, copy the page pointers to all bios */
120 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
121 for (i=0; i<RESYNC_PAGES ; i++)
122 for (j=1; j<pi->raid_disks; j++)
123 r1_bio->bios[j]->bi_io_vec[i].bv_page =
124 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
125 }
126
127 r1_bio->master_bio = NULL;
128
129 return r1_bio;
130
131out_free_pages:
303a0e11
N
132 for (j=0 ; j < pi->raid_disks; j++)
133 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
134 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 135 j = -1;
1da177e4
LT
136out_free_bio:
137 while ( ++j < pi->raid_disks )
138 bio_put(r1_bio->bios[j]);
139 r1bio_pool_free(r1_bio, data);
140 return NULL;
141}
142
143static void r1buf_pool_free(void *__r1_bio, void *data)
144{
145 struct pool_info *pi = data;
d11c171e 146 int i,j;
9f2c9d12 147 struct r1bio *r1bio = __r1_bio;
1da177e4 148
d11c171e
N
149 for (i = 0; i < RESYNC_PAGES; i++)
150 for (j = pi->raid_disks; j-- ;) {
151 if (j == 0 ||
152 r1bio->bios[j]->bi_io_vec[i].bv_page !=
153 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 154 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 155 }
1da177e4
LT
156 for (i=0 ; i < pi->raid_disks; i++)
157 bio_put(r1bio->bios[i]);
158
159 r1bio_pool_free(r1bio, data);
160}
161
e8096360 162static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
163{
164 int i;
165
166 for (i = 0; i < conf->raid_disks; i++) {
167 struct bio **bio = r1_bio->bios + i;
4367af55 168 if (!BIO_SPECIAL(*bio))
1da177e4
LT
169 bio_put(*bio);
170 *bio = NULL;
171 }
172}
173
9f2c9d12 174static void free_r1bio(struct r1bio *r1_bio)
1da177e4 175{
e8096360 176 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 177
1da177e4
LT
178 put_all_bios(conf, r1_bio);
179 mempool_free(r1_bio, conf->r1bio_pool);
180}
181
9f2c9d12 182static void put_buf(struct r1bio *r1_bio)
1da177e4 183{
e8096360 184 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
185 int i;
186
187 for (i=0; i<conf->raid_disks; i++) {
188 struct bio *bio = r1_bio->bios[i];
189 if (bio->bi_end_io)
190 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
191 }
1da177e4
LT
192
193 mempool_free(r1_bio, conf->r1buf_pool);
194
17999be4 195 lower_barrier(conf);
1da177e4
LT
196}
197
9f2c9d12 198static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
199{
200 unsigned long flags;
fd01b88c 201 struct mddev *mddev = r1_bio->mddev;
e8096360 202 struct r1conf *conf = mddev->private;
1da177e4
LT
203
204 spin_lock_irqsave(&conf->device_lock, flags);
205 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 206 conf->nr_queued ++;
1da177e4
LT
207 spin_unlock_irqrestore(&conf->device_lock, flags);
208
17999be4 209 wake_up(&conf->wait_barrier);
1da177e4
LT
210 md_wakeup_thread(mddev->thread);
211}
212
213/*
214 * raid_end_bio_io() is called when we have finished servicing a mirrored
215 * operation and are ready to return a success/failure code to the buffer
216 * cache layer.
217 */
9f2c9d12 218static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
219{
220 struct bio *bio = r1_bio->master_bio;
221 int done;
e8096360 222 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
223
224 if (bio->bi_phys_segments) {
225 unsigned long flags;
226 spin_lock_irqsave(&conf->device_lock, flags);
227 bio->bi_phys_segments--;
228 done = (bio->bi_phys_segments == 0);
229 spin_unlock_irqrestore(&conf->device_lock, flags);
230 } else
231 done = 1;
232
233 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
234 clear_bit(BIO_UPTODATE, &bio->bi_flags);
235 if (done) {
236 bio_endio(bio, 0);
237 /*
238 * Wake up any possible resync thread that waits for the device
239 * to go idle.
240 */
241 allow_barrier(conf);
242 }
243}
244
9f2c9d12 245static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
246{
247 struct bio *bio = r1_bio->master_bio;
248
4b6d287f
N
249 /* if nobody has done the final endio yet, do it now */
250 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
251 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
252 (bio_data_dir(bio) == WRITE) ? "write" : "read",
253 (unsigned long long) bio->bi_sector,
254 (unsigned long long) bio->bi_sector +
255 (bio->bi_size >> 9) - 1);
4b6d287f 256
d2eb35ac 257 call_bio_endio(r1_bio);
4b6d287f 258 }
1da177e4
LT
259 free_r1bio(r1_bio);
260}
261
262/*
263 * Update disk head position estimator based on IRQ completion info.
264 */
9f2c9d12 265static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 266{
e8096360 267 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
268
269 conf->mirrors[disk].head_position =
270 r1_bio->sector + (r1_bio->sectors);
271}
272
ba3ae3be
NK
273/*
274 * Find the disk number which triggered given bio
275 */
9f2c9d12 276static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
277{
278 int mirror;
279 int raid_disks = r1_bio->mddev->raid_disks;
280
281 for (mirror = 0; mirror < raid_disks; mirror++)
282 if (r1_bio->bios[mirror] == bio)
283 break;
284
285 BUG_ON(mirror == raid_disks);
286 update_head_pos(mirror, r1_bio);
287
288 return mirror;
289}
290
6712ecf8 291static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
292{
293 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 294 struct r1bio *r1_bio = bio->bi_private;
1da177e4 295 int mirror;
e8096360 296 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 297
1da177e4
LT
298 mirror = r1_bio->read_disk;
299 /*
300 * this branch is our 'one mirror IO has finished' event handler:
301 */
ddaf22ab
N
302 update_head_pos(mirror, r1_bio);
303
dd00a99e
N
304 if (uptodate)
305 set_bit(R1BIO_Uptodate, &r1_bio->state);
306 else {
307 /* If all other devices have failed, we want to return
308 * the error upwards rather than fail the last device.
309 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 310 */
dd00a99e
N
311 unsigned long flags;
312 spin_lock_irqsave(&conf->device_lock, flags);
313 if (r1_bio->mddev->degraded == conf->raid_disks ||
314 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
315 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
316 uptodate = 1;
317 spin_unlock_irqrestore(&conf->device_lock, flags);
318 }
1da177e4 319
dd00a99e 320 if (uptodate)
1da177e4 321 raid_end_bio_io(r1_bio);
dd00a99e 322 else {
1da177e4
LT
323 /*
324 * oops, read error:
325 */
326 char b[BDEVNAME_SIZE];
8bda470e
CD
327 printk_ratelimited(
328 KERN_ERR "md/raid1:%s: %s: "
329 "rescheduling sector %llu\n",
330 mdname(conf->mddev),
331 bdevname(conf->mirrors[mirror].rdev->bdev,
332 b),
333 (unsigned long long)r1_bio->sector);
d2eb35ac 334 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
335 reschedule_retry(r1_bio);
336 }
337
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
339}
340
9f2c9d12 341static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
342{
343 /* it really is the end of this request */
344 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
345 /* free extra copy of the data pages */
346 int i = r1_bio->behind_page_count;
347 while (i--)
348 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
349 kfree(r1_bio->behind_bvecs);
350 r1_bio->behind_bvecs = NULL;
351 }
352 /* clear the bitmap if all writes complete successfully */
353 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
354 r1_bio->sectors,
355 !test_bit(R1BIO_Degraded, &r1_bio->state),
356 test_bit(R1BIO_BehindIO, &r1_bio->state));
357 md_write_end(r1_bio->mddev);
358}
359
9f2c9d12 360static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 361{
cd5ff9a1
N
362 if (!atomic_dec_and_test(&r1_bio->remaining))
363 return;
364
365 if (test_bit(R1BIO_WriteError, &r1_bio->state))
366 reschedule_retry(r1_bio);
367 else {
368 close_write(r1_bio);
4367af55
N
369 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
370 reschedule_retry(r1_bio);
371 else
372 raid_end_bio_io(r1_bio);
4e78064f
N
373 }
374}
375
6712ecf8 376static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
377{
378 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 379 struct r1bio *r1_bio = bio->bi_private;
a9701a30 380 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 381 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 382 struct bio *to_put = NULL;
1da177e4 383
ba3ae3be 384 mirror = find_bio_disk(r1_bio, bio);
1da177e4 385
e9c7469b
TH
386 /*
387 * 'one mirror IO has finished' event handler:
388 */
e9c7469b 389 if (!uptodate) {
cd5ff9a1
N
390 set_bit(WriteErrorSeen,
391 &conf->mirrors[mirror].rdev->flags);
392 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 393 } else {
1da177e4 394 /*
e9c7469b
TH
395 * Set R1BIO_Uptodate in our master bio, so that we
396 * will return a good error code for to the higher
397 * levels even if IO on some other mirrored buffer
398 * fails.
399 *
400 * The 'master' represents the composite IO operation
401 * to user-side. So if something waits for IO, then it
402 * will wait for the 'master' bio.
1da177e4 403 */
4367af55
N
404 sector_t first_bad;
405 int bad_sectors;
406
cd5ff9a1
N
407 r1_bio->bios[mirror] = NULL;
408 to_put = bio;
e9c7469b
TH
409 set_bit(R1BIO_Uptodate, &r1_bio->state);
410
4367af55
N
411 /* Maybe we can clear some bad blocks. */
412 if (is_badblock(conf->mirrors[mirror].rdev,
413 r1_bio->sector, r1_bio->sectors,
414 &first_bad, &bad_sectors)) {
415 r1_bio->bios[mirror] = IO_MADE_GOOD;
416 set_bit(R1BIO_MadeGood, &r1_bio->state);
417 }
418 }
419
e9c7469b
TH
420 if (behind) {
421 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
422 atomic_dec(&r1_bio->behind_remaining);
423
424 /*
425 * In behind mode, we ACK the master bio once the I/O
426 * has safely reached all non-writemostly
427 * disks. Setting the Returned bit ensures that this
428 * gets done only once -- we don't ever want to return
429 * -EIO here, instead we'll wait
430 */
431 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
432 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
433 /* Maybe we can return now */
434 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
435 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
436 pr_debug("raid1: behind end write sectors"
437 " %llu-%llu\n",
438 (unsigned long long) mbio->bi_sector,
439 (unsigned long long) mbio->bi_sector +
440 (mbio->bi_size >> 9) - 1);
d2eb35ac 441 call_bio_endio(r1_bio);
4b6d287f
N
442 }
443 }
444 }
4367af55
N
445 if (r1_bio->bios[mirror] == NULL)
446 rdev_dec_pending(conf->mirrors[mirror].rdev,
447 conf->mddev);
e9c7469b 448
1da177e4 449 /*
1da177e4
LT
450 * Let's see if all mirrored write operations have finished
451 * already.
452 */
af6d7b76 453 r1_bio_write_done(r1_bio);
c70810b3 454
04b857f7
N
455 if (to_put)
456 bio_put(to_put);
1da177e4
LT
457}
458
459
460/*
461 * This routine returns the disk from which the requested read should
462 * be done. There is a per-array 'next expected sequential IO' sector
463 * number - if this matches on the next IO then we use the last disk.
464 * There is also a per-disk 'last know head position' sector that is
465 * maintained from IRQ contexts, both the normal and the resync IO
466 * completion handlers update this position correctly. If there is no
467 * perfect sequential match then we pick the disk whose head is closest.
468 *
469 * If there are 2 mirrors in the same 2 devices, performance degrades
470 * because position is mirror, not device based.
471 *
472 * The rdev for the device selected will have nr_pending incremented.
473 */
e8096360 474static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 475{
af3a2cd6 476 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
477 int sectors;
478 int best_good_sectors;
f3ac8bf7 479 int start_disk;
76073054 480 int best_disk;
f3ac8bf7 481 int i;
76073054 482 sector_t best_dist;
3cb03002 483 struct md_rdev *rdev;
f3ac8bf7 484 int choose_first;
1da177e4
LT
485
486 rcu_read_lock();
487 /*
8ddf9efe 488 * Check if we can balance. We can balance on the whole
1da177e4
LT
489 * device if no resync is going on, or below the resync window.
490 * We take the first readable disk when above the resync window.
491 */
492 retry:
d2eb35ac 493 sectors = r1_bio->sectors;
76073054
N
494 best_disk = -1;
495 best_dist = MaxSector;
d2eb35ac
N
496 best_good_sectors = 0;
497
1da177e4
LT
498 if (conf->mddev->recovery_cp < MaxSector &&
499 (this_sector + sectors >= conf->next_resync)) {
f3ac8bf7
N
500 choose_first = 1;
501 start_disk = 0;
502 } else {
503 choose_first = 0;
504 start_disk = conf->last_used;
1da177e4
LT
505 }
506
f3ac8bf7 507 for (i = 0 ; i < conf->raid_disks ; i++) {
76073054 508 sector_t dist;
d2eb35ac
N
509 sector_t first_bad;
510 int bad_sectors;
511
f3ac8bf7
N
512 int disk = start_disk + i;
513 if (disk >= conf->raid_disks)
514 disk -= conf->raid_disks;
515
516 rdev = rcu_dereference(conf->mirrors[disk].rdev);
517 if (r1_bio->bios[disk] == IO_BLOCKED
518 || rdev == NULL
76073054 519 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 520 continue;
76073054
N
521 if (!test_bit(In_sync, &rdev->flags) &&
522 rdev->recovery_offset < this_sector + sectors)
1da177e4 523 continue;
76073054
N
524 if (test_bit(WriteMostly, &rdev->flags)) {
525 /* Don't balance among write-mostly, just
526 * use the first as a last resort */
527 if (best_disk < 0)
528 best_disk = disk;
529 continue;
530 }
531 /* This is a reasonable device to use. It might
532 * even be best.
533 */
d2eb35ac
N
534 if (is_badblock(rdev, this_sector, sectors,
535 &first_bad, &bad_sectors)) {
536 if (best_dist < MaxSector)
537 /* already have a better device */
538 continue;
539 if (first_bad <= this_sector) {
540 /* cannot read here. If this is the 'primary'
541 * device, then we must not read beyond
542 * bad_sectors from another device..
543 */
544 bad_sectors -= (this_sector - first_bad);
545 if (choose_first && sectors > bad_sectors)
546 sectors = bad_sectors;
547 if (best_good_sectors > sectors)
548 best_good_sectors = sectors;
549
550 } else {
551 sector_t good_sectors = first_bad - this_sector;
552 if (good_sectors > best_good_sectors) {
553 best_good_sectors = good_sectors;
554 best_disk = disk;
555 }
556 if (choose_first)
557 break;
558 }
559 continue;
560 } else
561 best_good_sectors = sectors;
562
76073054
N
563 dist = abs(this_sector - conf->mirrors[disk].head_position);
564 if (choose_first
565 /* Don't change to another disk for sequential reads */
566 || conf->next_seq_sect == this_sector
567 || dist == 0
568 /* If device is idle, use it */
569 || atomic_read(&rdev->nr_pending) == 0) {
570 best_disk = disk;
1da177e4
LT
571 break;
572 }
76073054
N
573 if (dist < best_dist) {
574 best_dist = dist;
575 best_disk = disk;
1da177e4 576 }
f3ac8bf7 577 }
1da177e4 578
76073054
N
579 if (best_disk >= 0) {
580 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
581 if (!rdev)
582 goto retry;
583 atomic_inc(&rdev->nr_pending);
76073054 584 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
585 /* cannot risk returning a device that failed
586 * before we inc'ed nr_pending
587 */
03c902e1 588 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
589 goto retry;
590 }
d2eb35ac 591 sectors = best_good_sectors;
8ddf9efe 592 conf->next_seq_sect = this_sector + sectors;
76073054 593 conf->last_used = best_disk;
1da177e4
LT
594 }
595 rcu_read_unlock();
d2eb35ac 596 *max_sectors = sectors;
1da177e4 597
76073054 598 return best_disk;
1da177e4
LT
599}
600
fd01b88c 601int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 602{
e8096360 603 struct r1conf *conf = mddev->private;
0d129228
N
604 int i, ret = 0;
605
34db0cd6
N
606 if ((bits & (1 << BDI_async_congested)) &&
607 conf->pending_count >= max_queued_requests)
608 return 1;
609
0d129228
N
610 rcu_read_lock();
611 for (i = 0; i < mddev->raid_disks; i++) {
3cb03002 612 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 613 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 614 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 615
1ed7242e
JB
616 BUG_ON(!q);
617
0d129228
N
618 /* Note the '|| 1' - when read_balance prefers
619 * non-congested targets, it can be removed
620 */
91a9e99d 621 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
622 ret |= bdi_congested(&q->backing_dev_info, bits);
623 else
624 ret &= bdi_congested(&q->backing_dev_info, bits);
625 }
626 }
627 rcu_read_unlock();
628 return ret;
629}
1ed7242e 630EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 631
1ed7242e
JB
632static int raid1_congested(void *data, int bits)
633{
fd01b88c 634 struct mddev *mddev = data;
1ed7242e
JB
635
636 return mddev_congested(mddev, bits) ||
637 md_raid1_congested(mddev, bits);
638}
0d129228 639
e8096360 640static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
641{
642 /* Any writes that have been queued but are awaiting
643 * bitmap updates get flushed here.
a35e63ef 644 */
a35e63ef
N
645 spin_lock_irq(&conf->device_lock);
646
647 if (conf->pending_bio_list.head) {
648 struct bio *bio;
649 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 650 conf->pending_count = 0;
a35e63ef
N
651 spin_unlock_irq(&conf->device_lock);
652 /* flush any pending bitmap writes to
653 * disk before proceeding w/ I/O */
654 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 655 wake_up(&conf->wait_barrier);
a35e63ef
N
656
657 while (bio) { /* submit pending writes */
658 struct bio *next = bio->bi_next;
659 bio->bi_next = NULL;
660 generic_make_request(bio);
661 bio = next;
662 }
a35e63ef
N
663 } else
664 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
665}
666
17999be4
N
667/* Barriers....
668 * Sometimes we need to suspend IO while we do something else,
669 * either some resync/recovery, or reconfigure the array.
670 * To do this we raise a 'barrier'.
671 * The 'barrier' is a counter that can be raised multiple times
672 * to count how many activities are happening which preclude
673 * normal IO.
674 * We can only raise the barrier if there is no pending IO.
675 * i.e. if nr_pending == 0.
676 * We choose only to raise the barrier if no-one is waiting for the
677 * barrier to go down. This means that as soon as an IO request
678 * is ready, no other operations which require a barrier will start
679 * until the IO request has had a chance.
680 *
681 * So: regular IO calls 'wait_barrier'. When that returns there
682 * is no backgroup IO happening, It must arrange to call
683 * allow_barrier when it has finished its IO.
684 * backgroup IO calls must call raise_barrier. Once that returns
685 * there is no normal IO happeing. It must arrange to call
686 * lower_barrier when the particular background IO completes.
1da177e4
LT
687 */
688#define RESYNC_DEPTH 32
689
e8096360 690static void raise_barrier(struct r1conf *conf)
1da177e4
LT
691{
692 spin_lock_irq(&conf->resync_lock);
17999be4
N
693
694 /* Wait until no block IO is waiting */
695 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 696 conf->resync_lock, );
17999be4
N
697
698 /* block any new IO from starting */
699 conf->barrier++;
700
046abeed 701 /* Now wait for all pending IO to complete */
17999be4
N
702 wait_event_lock_irq(conf->wait_barrier,
703 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 704 conf->resync_lock, );
17999be4
N
705
706 spin_unlock_irq(&conf->resync_lock);
707}
708
e8096360 709static void lower_barrier(struct r1conf *conf)
17999be4
N
710{
711 unsigned long flags;
709ae487 712 BUG_ON(conf->barrier <= 0);
17999be4
N
713 spin_lock_irqsave(&conf->resync_lock, flags);
714 conf->barrier--;
715 spin_unlock_irqrestore(&conf->resync_lock, flags);
716 wake_up(&conf->wait_barrier);
717}
718
e8096360 719static void wait_barrier(struct r1conf *conf)
17999be4
N
720{
721 spin_lock_irq(&conf->resync_lock);
722 if (conf->barrier) {
723 conf->nr_waiting++;
724 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
725 conf->resync_lock,
c3b328ac 726 );
17999be4 727 conf->nr_waiting--;
1da177e4 728 }
17999be4 729 conf->nr_pending++;
1da177e4
LT
730 spin_unlock_irq(&conf->resync_lock);
731}
732
e8096360 733static void allow_barrier(struct r1conf *conf)
17999be4
N
734{
735 unsigned long flags;
736 spin_lock_irqsave(&conf->resync_lock, flags);
737 conf->nr_pending--;
738 spin_unlock_irqrestore(&conf->resync_lock, flags);
739 wake_up(&conf->wait_barrier);
740}
741
e8096360 742static void freeze_array(struct r1conf *conf)
ddaf22ab
N
743{
744 /* stop syncio and normal IO and wait for everything to
745 * go quite.
746 * We increment barrier and nr_waiting, and then
1c830532
N
747 * wait until nr_pending match nr_queued+1
748 * This is called in the context of one normal IO request
749 * that has failed. Thus any sync request that might be pending
750 * will be blocked by nr_pending, and we need to wait for
751 * pending IO requests to complete or be queued for re-try.
752 * Thus the number queued (nr_queued) plus this request (1)
753 * must match the number of pending IOs (nr_pending) before
754 * we continue.
ddaf22ab
N
755 */
756 spin_lock_irq(&conf->resync_lock);
757 conf->barrier++;
758 conf->nr_waiting++;
759 wait_event_lock_irq(conf->wait_barrier,
1c830532 760 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 761 conf->resync_lock,
c3b328ac 762 flush_pending_writes(conf));
ddaf22ab
N
763 spin_unlock_irq(&conf->resync_lock);
764}
e8096360 765static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
766{
767 /* reverse the effect of the freeze */
768 spin_lock_irq(&conf->resync_lock);
769 conf->barrier--;
770 conf->nr_waiting--;
771 wake_up(&conf->wait_barrier);
772 spin_unlock_irq(&conf->resync_lock);
773}
774
17999be4 775
4e78064f 776/* duplicate the data pages for behind I/O
4e78064f 777 */
9f2c9d12 778static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
779{
780 int i;
781 struct bio_vec *bvec;
2ca68f5e 782 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 783 GFP_NOIO);
2ca68f5e 784 if (unlikely(!bvecs))
af6d7b76 785 return;
4b6d287f 786
4b6d287f 787 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
788 bvecs[i] = *bvec;
789 bvecs[i].bv_page = alloc_page(GFP_NOIO);
790 if (unlikely(!bvecs[i].bv_page))
4b6d287f 791 goto do_sync_io;
2ca68f5e
N
792 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
793 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
794 kunmap(bvecs[i].bv_page);
4b6d287f
N
795 kunmap(bvec->bv_page);
796 }
2ca68f5e 797 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
798 r1_bio->behind_page_count = bio->bi_vcnt;
799 set_bit(R1BIO_BehindIO, &r1_bio->state);
800 return;
4b6d287f
N
801
802do_sync_io:
af6d7b76 803 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
804 if (bvecs[i].bv_page)
805 put_page(bvecs[i].bv_page);
806 kfree(bvecs);
36a4e1fe 807 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
808}
809
fd01b88c 810static int make_request(struct mddev *mddev, struct bio * bio)
1da177e4 811{
e8096360 812 struct r1conf *conf = mddev->private;
0f6d02d5 813 struct mirror_info *mirror;
9f2c9d12 814 struct r1bio *r1_bio;
1da177e4 815 struct bio *read_bio;
1f68f0c4 816 int i, disks;
84255d10 817 struct bitmap *bitmap;
191ea9b2 818 unsigned long flags;
a362357b 819 const int rw = bio_data_dir(bio);
2c7d46ec 820 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 821 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
3cb03002 822 struct md_rdev *blocked_rdev;
c3b328ac 823 int plugged;
1f68f0c4
N
824 int first_clone;
825 int sectors_handled;
826 int max_sectors;
191ea9b2 827
1da177e4
LT
828 /*
829 * Register the new request and wait if the reconstruction
830 * thread has put up a bar for new requests.
831 * Continue immediately if no resync is active currently.
832 */
62de608d 833
3d310eb7
N
834 md_write_start(mddev, bio); /* wait on superblock update early */
835
6eef4b21
N
836 if (bio_data_dir(bio) == WRITE &&
837 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
838 bio->bi_sector < mddev->suspend_hi) {
839 /* As the suspend_* range is controlled by
840 * userspace, we want an interruptible
841 * wait.
842 */
843 DEFINE_WAIT(w);
844 for (;;) {
845 flush_signals(current);
846 prepare_to_wait(&conf->wait_barrier,
847 &w, TASK_INTERRUPTIBLE);
848 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
849 bio->bi_sector >= mddev->suspend_hi)
850 break;
851 schedule();
852 }
853 finish_wait(&conf->wait_barrier, &w);
854 }
62de608d 855
17999be4 856 wait_barrier(conf);
1da177e4 857
84255d10
N
858 bitmap = mddev->bitmap;
859
1da177e4
LT
860 /*
861 * make_request() can abort the operation when READA is being
862 * used and no empty request is available.
863 *
864 */
865 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
866
867 r1_bio->master_bio = bio;
868 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 869 r1_bio->state = 0;
1da177e4
LT
870 r1_bio->mddev = mddev;
871 r1_bio->sector = bio->bi_sector;
872
d2eb35ac
N
873 /* We might need to issue multiple reads to different
874 * devices if there are bad blocks around, so we keep
875 * track of the number of reads in bio->bi_phys_segments.
876 * If this is 0, there is only one r1_bio and no locking
877 * will be needed when requests complete. If it is
878 * non-zero, then it is the number of not-completed requests.
879 */
880 bio->bi_phys_segments = 0;
881 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
882
a362357b 883 if (rw == READ) {
1da177e4
LT
884 /*
885 * read balancing logic:
886 */
d2eb35ac
N
887 int rdisk;
888
889read_again:
890 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
891
892 if (rdisk < 0) {
893 /* couldn't find anywhere to read from */
894 raid_end_bio_io(r1_bio);
895 return 0;
896 }
897 mirror = conf->mirrors + rdisk;
898
e555190d
N
899 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
900 bitmap) {
901 /* Reading from a write-mostly device must
902 * take care not to over-take any writes
903 * that are 'behind'
904 */
905 wait_event(bitmap->behind_wait,
906 atomic_read(&bitmap->behind_writes) == 0);
907 }
1da177e4
LT
908 r1_bio->read_disk = rdisk;
909
a167f663 910 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
911 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
912 max_sectors);
1da177e4
LT
913
914 r1_bio->bios[rdisk] = read_bio;
915
916 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
917 read_bio->bi_bdev = mirror->rdev->bdev;
918 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 919 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
920 read_bio->bi_private = r1_bio;
921
d2eb35ac
N
922 if (max_sectors < r1_bio->sectors) {
923 /* could not read all from this device, so we will
924 * need another r1_bio.
925 */
d2eb35ac
N
926
927 sectors_handled = (r1_bio->sector + max_sectors
928 - bio->bi_sector);
929 r1_bio->sectors = max_sectors;
930 spin_lock_irq(&conf->device_lock);
931 if (bio->bi_phys_segments == 0)
932 bio->bi_phys_segments = 2;
933 else
934 bio->bi_phys_segments++;
935 spin_unlock_irq(&conf->device_lock);
936 /* Cannot call generic_make_request directly
937 * as that will be queued in __make_request
938 * and subsequent mempool_alloc might block waiting
939 * for it. So hand bio over to raid1d.
940 */
941 reschedule_retry(r1_bio);
942
943 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
944
945 r1_bio->master_bio = bio;
946 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
947 r1_bio->state = 0;
948 r1_bio->mddev = mddev;
949 r1_bio->sector = bio->bi_sector + sectors_handled;
950 goto read_again;
951 } else
952 generic_make_request(read_bio);
1da177e4
LT
953 return 0;
954 }
955
956 /*
957 * WRITE:
958 */
34db0cd6
N
959 if (conf->pending_count >= max_queued_requests) {
960 md_wakeup_thread(mddev->thread);
961 wait_event(conf->wait_barrier,
962 conf->pending_count < max_queued_requests);
963 }
1f68f0c4 964 /* first select target devices under rcu_lock and
1da177e4
LT
965 * inc refcount on their rdev. Record them by setting
966 * bios[x] to bio
1f68f0c4
N
967 * If there are known/acknowledged bad blocks on any device on
968 * which we have seen a write error, we want to avoid writing those
969 * blocks.
970 * This potentially requires several writes to write around
971 * the bad blocks. Each set of writes gets it's own r1bio
972 * with a set of bios attached.
1da177e4 973 */
c3b328ac
N
974 plugged = mddev_check_plugged(mddev);
975
1da177e4 976 disks = conf->raid_disks;
6bfe0b49
DW
977 retry_write:
978 blocked_rdev = NULL;
1da177e4 979 rcu_read_lock();
1f68f0c4 980 max_sectors = r1_bio->sectors;
1da177e4 981 for (i = 0; i < disks; i++) {
3cb03002 982 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
983 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
984 atomic_inc(&rdev->nr_pending);
985 blocked_rdev = rdev;
986 break;
987 }
1f68f0c4
N
988 r1_bio->bios[i] = NULL;
989 if (!rdev || test_bit(Faulty, &rdev->flags)) {
990 set_bit(R1BIO_Degraded, &r1_bio->state);
991 continue;
992 }
993
994 atomic_inc(&rdev->nr_pending);
995 if (test_bit(WriteErrorSeen, &rdev->flags)) {
996 sector_t first_bad;
997 int bad_sectors;
998 int is_bad;
999
1000 is_bad = is_badblock(rdev, r1_bio->sector,
1001 max_sectors,
1002 &first_bad, &bad_sectors);
1003 if (is_bad < 0) {
1004 /* mustn't write here until the bad block is
1005 * acknowledged*/
1006 set_bit(BlockedBadBlocks, &rdev->flags);
1007 blocked_rdev = rdev;
1008 break;
1009 }
1010 if (is_bad && first_bad <= r1_bio->sector) {
1011 /* Cannot write here at all */
1012 bad_sectors -= (r1_bio->sector - first_bad);
1013 if (bad_sectors < max_sectors)
1014 /* mustn't write more than bad_sectors
1015 * to other devices yet
1016 */
1017 max_sectors = bad_sectors;
03c902e1 1018 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1019 /* We don't set R1BIO_Degraded as that
1020 * only applies if the disk is
1021 * missing, so it might be re-added,
1022 * and we want to know to recover this
1023 * chunk.
1024 * In this case the device is here,
1025 * and the fact that this chunk is not
1026 * in-sync is recorded in the bad
1027 * block log
1028 */
1029 continue;
964147d5 1030 }
1f68f0c4
N
1031 if (is_bad) {
1032 int good_sectors = first_bad - r1_bio->sector;
1033 if (good_sectors < max_sectors)
1034 max_sectors = good_sectors;
1035 }
1036 }
1037 r1_bio->bios[i] = bio;
1da177e4
LT
1038 }
1039 rcu_read_unlock();
1040
6bfe0b49
DW
1041 if (unlikely(blocked_rdev)) {
1042 /* Wait for this device to become unblocked */
1043 int j;
1044
1045 for (j = 0; j < i; j++)
1046 if (r1_bio->bios[j])
1047 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1048 r1_bio->state = 0;
6bfe0b49
DW
1049 allow_barrier(conf);
1050 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1051 wait_barrier(conf);
1052 goto retry_write;
1053 }
1054
1f68f0c4
N
1055 if (max_sectors < r1_bio->sectors) {
1056 /* We are splitting this write into multiple parts, so
1057 * we need to prepare for allocating another r1_bio.
1058 */
1059 r1_bio->sectors = max_sectors;
1060 spin_lock_irq(&conf->device_lock);
1061 if (bio->bi_phys_segments == 0)
1062 bio->bi_phys_segments = 2;
1063 else
1064 bio->bi_phys_segments++;
1065 spin_unlock_irq(&conf->device_lock);
191ea9b2 1066 }
1f68f0c4 1067 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1068
4e78064f 1069 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1070 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1071
1f68f0c4 1072 first_clone = 1;
1da177e4
LT
1073 for (i = 0; i < disks; i++) {
1074 struct bio *mbio;
1075 if (!r1_bio->bios[i])
1076 continue;
1077
a167f663 1078 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1079 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1080
1081 if (first_clone) {
1082 /* do behind I/O ?
1083 * Not if there are too many, or cannot
1084 * allocate memory, or a reader on WriteMostly
1085 * is waiting for behind writes to flush */
1086 if (bitmap &&
1087 (atomic_read(&bitmap->behind_writes)
1088 < mddev->bitmap_info.max_write_behind) &&
1089 !waitqueue_active(&bitmap->behind_wait))
1090 alloc_behind_pages(mbio, r1_bio);
1091
1092 bitmap_startwrite(bitmap, r1_bio->sector,
1093 r1_bio->sectors,
1094 test_bit(R1BIO_BehindIO,
1095 &r1_bio->state));
1096 first_clone = 0;
1097 }
2ca68f5e 1098 if (r1_bio->behind_bvecs) {
4b6d287f
N
1099 struct bio_vec *bvec;
1100 int j;
1101
1102 /* Yes, I really want the '__' version so that
1103 * we clear any unused pointer in the io_vec, rather
1104 * than leave them unchanged. This is important
1105 * because when we come to free the pages, we won't
046abeed 1106 * know the original bi_idx, so we just free
4b6d287f
N
1107 * them all
1108 */
1109 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1110 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1111 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1112 atomic_inc(&r1_bio->behind_remaining);
1113 }
1114
1f68f0c4
N
1115 r1_bio->bios[i] = mbio;
1116
1117 mbio->bi_sector = (r1_bio->sector +
1118 conf->mirrors[i].rdev->data_offset);
1119 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1120 mbio->bi_end_io = raid1_end_write_request;
1121 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1122 mbio->bi_private = r1_bio;
1123
1da177e4 1124 atomic_inc(&r1_bio->remaining);
4e78064f
N
1125 spin_lock_irqsave(&conf->device_lock, flags);
1126 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1127 conf->pending_count++;
4e78064f 1128 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1129 }
079fa166
N
1130 /* Mustn't call r1_bio_write_done before this next test,
1131 * as it could result in the bio being freed.
1132 */
1f68f0c4 1133 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1134 r1_bio_write_done(r1_bio);
1f68f0c4
N
1135 /* We need another r1_bio. It has already been counted
1136 * in bio->bi_phys_segments
1137 */
1138 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1139 r1_bio->master_bio = bio;
1140 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1141 r1_bio->state = 0;
1142 r1_bio->mddev = mddev;
1143 r1_bio->sector = bio->bi_sector + sectors_handled;
1144 goto retry_write;
1145 }
1146
079fa166
N
1147 r1_bio_write_done(r1_bio);
1148
1149 /* In case raid1d snuck in to freeze_array */
1150 wake_up(&conf->wait_barrier);
1151
c3b328ac 1152 if (do_sync || !bitmap || !plugged)
e3881a68 1153 md_wakeup_thread(mddev->thread);
191ea9b2 1154
1da177e4
LT
1155 return 0;
1156}
1157
fd01b88c 1158static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1159{
e8096360 1160 struct r1conf *conf = mddev->private;
1da177e4
LT
1161 int i;
1162
1163 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1164 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1165 rcu_read_lock();
1166 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1167 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1168 seq_printf(seq, "%s",
ddac7c7e
N
1169 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1170 }
1171 rcu_read_unlock();
1da177e4
LT
1172 seq_printf(seq, "]");
1173}
1174
1175
fd01b88c 1176static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1177{
1178 char b[BDEVNAME_SIZE];
e8096360 1179 struct r1conf *conf = mddev->private;
1da177e4
LT
1180
1181 /*
1182 * If it is not operational, then we have already marked it as dead
1183 * else if it is the last working disks, ignore the error, let the
1184 * next level up know.
1185 * else mark the drive as failed
1186 */
b2d444d7 1187 if (test_bit(In_sync, &rdev->flags)
4044ba58 1188 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1189 /*
1190 * Don't fail the drive, act as though we were just a
4044ba58
N
1191 * normal single drive.
1192 * However don't try a recovery from this drive as
1193 * it is very likely to fail.
1da177e4 1194 */
5389042f 1195 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1196 return;
4044ba58 1197 }
de393cde 1198 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1199 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1200 unsigned long flags;
1201 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1202 mddev->degraded++;
dd00a99e 1203 set_bit(Faulty, &rdev->flags);
c04be0aa 1204 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1205 /*
1206 * if recovery is running, make sure it aborts.
1207 */
dfc70645 1208 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1209 } else
1210 set_bit(Faulty, &rdev->flags);
850b2b42 1211 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1212 printk(KERN_ALERT
1213 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1214 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1215 mdname(mddev), bdevname(rdev->bdev, b),
1216 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1217}
1218
e8096360 1219static void print_conf(struct r1conf *conf)
1da177e4
LT
1220{
1221 int i;
1da177e4 1222
9dd1e2fa 1223 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1224 if (!conf) {
9dd1e2fa 1225 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1226 return;
1227 }
9dd1e2fa 1228 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1229 conf->raid_disks);
1230
ddac7c7e 1231 rcu_read_lock();
1da177e4
LT
1232 for (i = 0; i < conf->raid_disks; i++) {
1233 char b[BDEVNAME_SIZE];
3cb03002 1234 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1235 if (rdev)
9dd1e2fa 1236 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1237 i, !test_bit(In_sync, &rdev->flags),
1238 !test_bit(Faulty, &rdev->flags),
1239 bdevname(rdev->bdev,b));
1da177e4 1240 }
ddac7c7e 1241 rcu_read_unlock();
1da177e4
LT
1242}
1243
e8096360 1244static void close_sync(struct r1conf *conf)
1da177e4 1245{
17999be4
N
1246 wait_barrier(conf);
1247 allow_barrier(conf);
1da177e4
LT
1248
1249 mempool_destroy(conf->r1buf_pool);
1250 conf->r1buf_pool = NULL;
1251}
1252
fd01b88c 1253static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1254{
1255 int i;
e8096360 1256 struct r1conf *conf = mddev->private;
6b965620
N
1257 int count = 0;
1258 unsigned long flags;
1da177e4
LT
1259
1260 /*
1261 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1262 * and mark them readable.
1263 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1264 */
1265 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1266 struct md_rdev *rdev = conf->mirrors[i].rdev;
ddac7c7e
N
1267 if (rdev
1268 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1269 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1270 count++;
654e8b5a 1271 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1272 }
1273 }
6b965620
N
1274 spin_lock_irqsave(&conf->device_lock, flags);
1275 mddev->degraded -= count;
1276 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1277
1278 print_conf(conf);
6b965620 1279 return count;
1da177e4
LT
1280}
1281
1282
fd01b88c 1283static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1284{
e8096360 1285 struct r1conf *conf = mddev->private;
199050ea 1286 int err = -EEXIST;
41158c7e 1287 int mirror = 0;
0f6d02d5 1288 struct mirror_info *p;
6c2fce2e
NB
1289 int first = 0;
1290 int last = mddev->raid_disks - 1;
1da177e4 1291
5389042f
N
1292 if (mddev->recovery_disabled == conf->recovery_disabled)
1293 return -EBUSY;
1294
6c2fce2e
NB
1295 if (rdev->raid_disk >= 0)
1296 first = last = rdev->raid_disk;
1297
1298 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1299 if ( !(p=conf->mirrors+mirror)->rdev) {
1300
8f6c2e4b
MP
1301 disk_stack_limits(mddev->gendisk, rdev->bdev,
1302 rdev->data_offset << 9);
627a2d3c
N
1303 /* as we don't honour merge_bvec_fn, we must
1304 * never risk violating it, so limit
1305 * ->max_segments to one lying with a single
1306 * page, as a one page request is never in
1307 * violation.
1da177e4 1308 */
627a2d3c
N
1309 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1310 blk_queue_max_segments(mddev->queue, 1);
1311 blk_queue_segment_boundary(mddev->queue,
1312 PAGE_CACHE_SIZE - 1);
1313 }
1da177e4
LT
1314
1315 p->head_position = 0;
1316 rdev->raid_disk = mirror;
199050ea 1317 err = 0;
6aea114a
N
1318 /* As all devices are equivalent, we don't need a full recovery
1319 * if this was recently any drive of the array
1320 */
1321 if (rdev->saved_raid_disk < 0)
41158c7e 1322 conf->fullsync = 1;
d6065f7b 1323 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1324 break;
1325 }
ac5e7113 1326 md_integrity_add_rdev(rdev, mddev);
1da177e4 1327 print_conf(conf);
199050ea 1328 return err;
1da177e4
LT
1329}
1330
fd01b88c 1331static int raid1_remove_disk(struct mddev *mddev, int number)
1da177e4 1332{
e8096360 1333 struct r1conf *conf = mddev->private;
1da177e4 1334 int err = 0;
3cb03002 1335 struct md_rdev *rdev;
0f6d02d5 1336 struct mirror_info *p = conf->mirrors+ number;
1da177e4
LT
1337
1338 print_conf(conf);
1339 rdev = p->rdev;
1340 if (rdev) {
b2d444d7 1341 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1342 atomic_read(&rdev->nr_pending)) {
1343 err = -EBUSY;
1344 goto abort;
1345 }
046abeed 1346 /* Only remove non-faulty devices if recovery
dfc70645
N
1347 * is not possible.
1348 */
1349 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1350 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1351 mddev->degraded < conf->raid_disks) {
1352 err = -EBUSY;
1353 goto abort;
1354 }
1da177e4 1355 p->rdev = NULL;
fbd568a3 1356 synchronize_rcu();
1da177e4
LT
1357 if (atomic_read(&rdev->nr_pending)) {
1358 /* lost the race, try later */
1359 err = -EBUSY;
1360 p->rdev = rdev;
ac5e7113 1361 goto abort;
1da177e4 1362 }
a91a2785 1363 err = md_integrity_register(mddev);
1da177e4
LT
1364 }
1365abort:
1366
1367 print_conf(conf);
1368 return err;
1369}
1370
1371
6712ecf8 1372static void end_sync_read(struct bio *bio, int error)
1da177e4 1373{
9f2c9d12 1374 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1375
0fc280f6 1376 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1377
1da177e4
LT
1378 /*
1379 * we have read a block, now it needs to be re-written,
1380 * or re-read if the read failed.
1381 * We don't do much here, just schedule handling by raid1d
1382 */
69382e85 1383 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1384 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1385
1386 if (atomic_dec_and_test(&r1_bio->remaining))
1387 reschedule_retry(r1_bio);
1da177e4
LT
1388}
1389
6712ecf8 1390static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1391{
1392 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1393 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1394 struct mddev *mddev = r1_bio->mddev;
e8096360 1395 struct r1conf *conf = mddev->private;
1da177e4 1396 int mirror=0;
4367af55
N
1397 sector_t first_bad;
1398 int bad_sectors;
1da177e4 1399
ba3ae3be
NK
1400 mirror = find_bio_disk(r1_bio, bio);
1401
6b1117d5 1402 if (!uptodate) {
57dab0bd 1403 sector_t sync_blocks = 0;
6b1117d5
N
1404 sector_t s = r1_bio->sector;
1405 long sectors_to_go = r1_bio->sectors;
1406 /* make sure these bits doesn't get cleared. */
1407 do {
5e3db645 1408 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1409 &sync_blocks, 1);
1410 s += sync_blocks;
1411 sectors_to_go -= sync_blocks;
1412 } while (sectors_to_go > 0);
d8f05d29
N
1413 set_bit(WriteErrorSeen,
1414 &conf->mirrors[mirror].rdev->flags);
1415 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1416 } else if (is_badblock(conf->mirrors[mirror].rdev,
1417 r1_bio->sector,
1418 r1_bio->sectors,
3a9f28a5
N
1419 &first_bad, &bad_sectors) &&
1420 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1421 r1_bio->sector,
1422 r1_bio->sectors,
1423 &first_bad, &bad_sectors)
1424 )
4367af55 1425 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1426
1da177e4 1427 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1428 int s = r1_bio->sectors;
d8f05d29
N
1429 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1430 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1431 reschedule_retry(r1_bio);
1432 else {
1433 put_buf(r1_bio);
1434 md_done_sync(mddev, s, uptodate);
1435 }
1da177e4 1436 }
1da177e4
LT
1437}
1438
3cb03002 1439static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1440 int sectors, struct page *page, int rw)
1441{
1442 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1443 /* success */
1444 return 1;
1445 if (rw == WRITE)
1446 set_bit(WriteErrorSeen, &rdev->flags);
1447 /* need to record an error - either for the block or the device */
1448 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1449 md_error(rdev->mddev, rdev);
1450 return 0;
1451}
1452
9f2c9d12 1453static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1454{
a68e5870
N
1455 /* Try some synchronous reads of other devices to get
1456 * good data, much like with normal read errors. Only
1457 * read into the pages we already have so we don't
1458 * need to re-issue the read request.
1459 * We don't need to freeze the array, because being in an
1460 * active sync request, there is no normal IO, and
1461 * no overlapping syncs.
06f60385
N
1462 * We don't need to check is_badblock() again as we
1463 * made sure that anything with a bad block in range
1464 * will have bi_end_io clear.
a68e5870 1465 */
fd01b88c 1466 struct mddev *mddev = r1_bio->mddev;
e8096360 1467 struct r1conf *conf = mddev->private;
a68e5870
N
1468 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1469 sector_t sect = r1_bio->sector;
1470 int sectors = r1_bio->sectors;
1471 int idx = 0;
1472
1473 while(sectors) {
1474 int s = sectors;
1475 int d = r1_bio->read_disk;
1476 int success = 0;
3cb03002 1477 struct md_rdev *rdev;
78d7f5f7 1478 int start;
a68e5870
N
1479
1480 if (s > (PAGE_SIZE>>9))
1481 s = PAGE_SIZE >> 9;
1482 do {
1483 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1484 /* No rcu protection needed here devices
1485 * can only be removed when no resync is
1486 * active, and resync is currently active
1487 */
1488 rdev = conf->mirrors[d].rdev;
9d3d8011 1489 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1490 bio->bi_io_vec[idx].bv_page,
1491 READ, false)) {
1492 success = 1;
1493 break;
1494 }
1495 }
1496 d++;
1497 if (d == conf->raid_disks)
1498 d = 0;
1499 } while (!success && d != r1_bio->read_disk);
1500
78d7f5f7 1501 if (!success) {
a68e5870 1502 char b[BDEVNAME_SIZE];
3a9f28a5
N
1503 int abort = 0;
1504 /* Cannot read from anywhere, this block is lost.
1505 * Record a bad block on each device. If that doesn't
1506 * work just disable and interrupt the recovery.
1507 * Don't fail devices as that won't really help.
1508 */
a68e5870
N
1509 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1510 " for block %llu\n",
1511 mdname(mddev),
1512 bdevname(bio->bi_bdev, b),
1513 (unsigned long long)r1_bio->sector);
3a9f28a5
N
1514 for (d = 0; d < conf->raid_disks; d++) {
1515 rdev = conf->mirrors[d].rdev;
1516 if (!rdev || test_bit(Faulty, &rdev->flags))
1517 continue;
1518 if (!rdev_set_badblocks(rdev, sect, s, 0))
1519 abort = 1;
1520 }
1521 if (abort) {
d890fa2b
N
1522 conf->recovery_disabled =
1523 mddev->recovery_disabled;
3a9f28a5
N
1524 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1525 md_done_sync(mddev, r1_bio->sectors, 0);
1526 put_buf(r1_bio);
1527 return 0;
1528 }
1529 /* Try next page */
1530 sectors -= s;
1531 sect += s;
1532 idx++;
1533 continue;
d11c171e 1534 }
78d7f5f7
N
1535
1536 start = d;
1537 /* write it back and re-read */
1538 while (d != r1_bio->read_disk) {
1539 if (d == 0)
1540 d = conf->raid_disks;
1541 d--;
1542 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1543 continue;
1544 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1545 if (r1_sync_page_io(rdev, sect, s,
1546 bio->bi_io_vec[idx].bv_page,
1547 WRITE) == 0) {
78d7f5f7
N
1548 r1_bio->bios[d]->bi_end_io = NULL;
1549 rdev_dec_pending(rdev, mddev);
9d3d8011 1550 }
78d7f5f7
N
1551 }
1552 d = start;
1553 while (d != r1_bio->read_disk) {
1554 if (d == 0)
1555 d = conf->raid_disks;
1556 d--;
1557 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1558 continue;
1559 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1560 if (r1_sync_page_io(rdev, sect, s,
1561 bio->bi_io_vec[idx].bv_page,
1562 READ) != 0)
9d3d8011 1563 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1564 }
a68e5870
N
1565 sectors -= s;
1566 sect += s;
1567 idx ++;
1568 }
78d7f5f7 1569 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1570 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1571 return 1;
1572}
1573
9f2c9d12 1574static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1575{
1576 /* We have read all readable devices. If we haven't
1577 * got the block, then there is no hope left.
1578 * If we have, then we want to do a comparison
1579 * and skip the write if everything is the same.
1580 * If any blocks failed to read, then we need to
1581 * attempt an over-write
1582 */
fd01b88c 1583 struct mddev *mddev = r1_bio->mddev;
e8096360 1584 struct r1conf *conf = mddev->private;
a68e5870
N
1585 int primary;
1586 int i;
1587
78d7f5f7 1588 for (primary = 0; primary < conf->raid_disks; primary++)
a68e5870
N
1589 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1590 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1591 r1_bio->bios[primary]->bi_end_io = NULL;
1592 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1593 break;
1594 }
1595 r1_bio->read_disk = primary;
78d7f5f7
N
1596 for (i = 0; i < conf->raid_disks; i++) {
1597 int j;
1598 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1599 struct bio *pbio = r1_bio->bios[primary];
1600 struct bio *sbio = r1_bio->bios[i];
1601 int size;
a68e5870 1602
78d7f5f7
N
1603 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1604 continue;
1605
1606 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1607 for (j = vcnt; j-- ; ) {
1608 struct page *p, *s;
1609 p = pbio->bi_io_vec[j].bv_page;
1610 s = sbio->bi_io_vec[j].bv_page;
1611 if (memcmp(page_address(p),
1612 page_address(s),
1613 PAGE_SIZE))
1614 break;
69382e85 1615 }
78d7f5f7
N
1616 } else
1617 j = 0;
1618 if (j >= 0)
1619 mddev->resync_mismatches += r1_bio->sectors;
1620 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1621 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1622 /* No need to write to this device. */
1623 sbio->bi_end_io = NULL;
1624 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1625 continue;
1626 }
1627 /* fixup the bio for reuse */
1628 sbio->bi_vcnt = vcnt;
1629 sbio->bi_size = r1_bio->sectors << 9;
1630 sbio->bi_idx = 0;
1631 sbio->bi_phys_segments = 0;
1632 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1633 sbio->bi_flags |= 1 << BIO_UPTODATE;
1634 sbio->bi_next = NULL;
1635 sbio->bi_sector = r1_bio->sector +
1636 conf->mirrors[i].rdev->data_offset;
1637 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1638 size = sbio->bi_size;
1639 for (j = 0; j < vcnt ; j++) {
1640 struct bio_vec *bi;
1641 bi = &sbio->bi_io_vec[j];
1642 bi->bv_offset = 0;
1643 if (size > PAGE_SIZE)
1644 bi->bv_len = PAGE_SIZE;
1645 else
1646 bi->bv_len = size;
1647 size -= PAGE_SIZE;
1648 memcpy(page_address(bi->bv_page),
1649 page_address(pbio->bi_io_vec[j].bv_page),
1650 PAGE_SIZE);
69382e85 1651 }
78d7f5f7 1652 }
a68e5870
N
1653 return 0;
1654}
1655
9f2c9d12 1656static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1657{
e8096360 1658 struct r1conf *conf = mddev->private;
a68e5870
N
1659 int i;
1660 int disks = conf->raid_disks;
1661 struct bio *bio, *wbio;
1662
1663 bio = r1_bio->bios[r1_bio->read_disk];
1664
a68e5870
N
1665 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1666 /* ouch - failed to read all of that. */
1667 if (!fix_sync_read_error(r1_bio))
1668 return;
7ca78d57
N
1669
1670 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1671 if (process_checks(r1_bio) < 0)
1672 return;
d11c171e
N
1673 /*
1674 * schedule writes
1675 */
1da177e4
LT
1676 atomic_set(&r1_bio->remaining, 1);
1677 for (i = 0; i < disks ; i++) {
1678 wbio = r1_bio->bios[i];
3e198f78
N
1679 if (wbio->bi_end_io == NULL ||
1680 (wbio->bi_end_io == end_sync_read &&
1681 (i == r1_bio->read_disk ||
1682 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1683 continue;
1684
3e198f78
N
1685 wbio->bi_rw = WRITE;
1686 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1687 atomic_inc(&r1_bio->remaining);
1688 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1689
1da177e4
LT
1690 generic_make_request(wbio);
1691 }
1692
1693 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1694 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1695 md_done_sync(mddev, r1_bio->sectors, 1);
1696 put_buf(r1_bio);
1697 }
1698}
1699
1700/*
1701 * This is a kernel thread which:
1702 *
1703 * 1. Retries failed read operations on working mirrors.
1704 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1705 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1706 */
1707
e8096360 1708static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1709 sector_t sect, int sectors)
1710{
fd01b88c 1711 struct mddev *mddev = conf->mddev;
867868fb
N
1712 while(sectors) {
1713 int s = sectors;
1714 int d = read_disk;
1715 int success = 0;
1716 int start;
3cb03002 1717 struct md_rdev *rdev;
867868fb
N
1718
1719 if (s > (PAGE_SIZE>>9))
1720 s = PAGE_SIZE >> 9;
1721
1722 do {
1723 /* Note: no rcu protection needed here
1724 * as this is synchronous in the raid1d thread
1725 * which is the thread that might remove
1726 * a device. If raid1d ever becomes multi-threaded....
1727 */
d2eb35ac
N
1728 sector_t first_bad;
1729 int bad_sectors;
1730
867868fb
N
1731 rdev = conf->mirrors[d].rdev;
1732 if (rdev &&
1733 test_bit(In_sync, &rdev->flags) &&
d2eb35ac
N
1734 is_badblock(rdev, sect, s,
1735 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1736 sync_page_io(rdev, sect, s<<9,
1737 conf->tmppage, READ, false))
867868fb
N
1738 success = 1;
1739 else {
1740 d++;
1741 if (d == conf->raid_disks)
1742 d = 0;
1743 }
1744 } while (!success && d != read_disk);
1745
1746 if (!success) {
d8f05d29 1747 /* Cannot read from anywhere - mark it bad */
3cb03002 1748 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
1749 if (!rdev_set_badblocks(rdev, sect, s, 0))
1750 md_error(mddev, rdev);
867868fb
N
1751 break;
1752 }
1753 /* write it back and re-read */
1754 start = d;
1755 while (d != read_disk) {
1756 if (d==0)
1757 d = conf->raid_disks;
1758 d--;
1759 rdev = conf->mirrors[d].rdev;
1760 if (rdev &&
d8f05d29
N
1761 test_bit(In_sync, &rdev->flags))
1762 r1_sync_page_io(rdev, sect, s,
1763 conf->tmppage, WRITE);
867868fb
N
1764 }
1765 d = start;
1766 while (d != read_disk) {
1767 char b[BDEVNAME_SIZE];
1768 if (d==0)
1769 d = conf->raid_disks;
1770 d--;
1771 rdev = conf->mirrors[d].rdev;
1772 if (rdev &&
1773 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
1774 if (r1_sync_page_io(rdev, sect, s,
1775 conf->tmppage, READ)) {
867868fb
N
1776 atomic_add(s, &rdev->corrected_errors);
1777 printk(KERN_INFO
9dd1e2fa 1778 "md/raid1:%s: read error corrected "
867868fb
N
1779 "(%d sectors at %llu on %s)\n",
1780 mdname(mddev), s,
969b755a
RD
1781 (unsigned long long)(sect +
1782 rdev->data_offset),
867868fb
N
1783 bdevname(rdev->bdev, b));
1784 }
1785 }
1786 }
1787 sectors -= s;
1788 sect += s;
1789 }
1790}
1791
cd5ff9a1
N
1792static void bi_complete(struct bio *bio, int error)
1793{
1794 complete((struct completion *)bio->bi_private);
1795}
1796
1797static int submit_bio_wait(int rw, struct bio *bio)
1798{
1799 struct completion event;
1800 rw |= REQ_SYNC;
1801
1802 init_completion(&event);
1803 bio->bi_private = &event;
1804 bio->bi_end_io = bi_complete;
1805 submit_bio(rw, bio);
1806 wait_for_completion(&event);
1807
1808 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1809}
1810
9f2c9d12 1811static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 1812{
fd01b88c 1813 struct mddev *mddev = r1_bio->mddev;
e8096360 1814 struct r1conf *conf = mddev->private;
3cb03002 1815 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
1816 int vcnt, idx;
1817 struct bio_vec *vec;
1818
1819 /* bio has the data to be written to device 'i' where
1820 * we just recently had a write error.
1821 * We repeatedly clone the bio and trim down to one block,
1822 * then try the write. Where the write fails we record
1823 * a bad block.
1824 * It is conceivable that the bio doesn't exactly align with
1825 * blocks. We must handle this somehow.
1826 *
1827 * We currently own a reference on the rdev.
1828 */
1829
1830 int block_sectors;
1831 sector_t sector;
1832 int sectors;
1833 int sect_to_write = r1_bio->sectors;
1834 int ok = 1;
1835
1836 if (rdev->badblocks.shift < 0)
1837 return 0;
1838
1839 block_sectors = 1 << rdev->badblocks.shift;
1840 sector = r1_bio->sector;
1841 sectors = ((sector + block_sectors)
1842 & ~(sector_t)(block_sectors - 1))
1843 - sector;
1844
1845 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1846 vcnt = r1_bio->behind_page_count;
1847 vec = r1_bio->behind_bvecs;
1848 idx = 0;
1849 while (vec[idx].bv_page == NULL)
1850 idx++;
1851 } else {
1852 vcnt = r1_bio->master_bio->bi_vcnt;
1853 vec = r1_bio->master_bio->bi_io_vec;
1854 idx = r1_bio->master_bio->bi_idx;
1855 }
1856 while (sect_to_write) {
1857 struct bio *wbio;
1858 if (sectors > sect_to_write)
1859 sectors = sect_to_write;
1860 /* Write at 'sector' for 'sectors'*/
1861
1862 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1863 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1864 wbio->bi_sector = r1_bio->sector;
1865 wbio->bi_rw = WRITE;
1866 wbio->bi_vcnt = vcnt;
1867 wbio->bi_size = r1_bio->sectors << 9;
1868 wbio->bi_idx = idx;
1869
1870 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1871 wbio->bi_sector += rdev->data_offset;
1872 wbio->bi_bdev = rdev->bdev;
1873 if (submit_bio_wait(WRITE, wbio) == 0)
1874 /* failure! */
1875 ok = rdev_set_badblocks(rdev, sector,
1876 sectors, 0)
1877 && ok;
1878
1879 bio_put(wbio);
1880 sect_to_write -= sectors;
1881 sector += sectors;
1882 sectors = block_sectors;
1883 }
1884 return ok;
1885}
1886
e8096360 1887static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1888{
1889 int m;
1890 int s = r1_bio->sectors;
1891 for (m = 0; m < conf->raid_disks ; m++) {
3cb03002 1892 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1893 struct bio *bio = r1_bio->bios[m];
1894 if (bio->bi_end_io == NULL)
1895 continue;
1896 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1897 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1898 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1899 }
1900 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1901 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1902 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1903 md_error(conf->mddev, rdev);
1904 }
1905 }
1906 put_buf(r1_bio);
1907 md_done_sync(conf->mddev, s, 1);
1908}
1909
e8096360 1910static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1911{
1912 int m;
1913 for (m = 0; m < conf->raid_disks ; m++)
1914 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 1915 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1916 rdev_clear_badblocks(rdev,
1917 r1_bio->sector,
1918 r1_bio->sectors);
1919 rdev_dec_pending(rdev, conf->mddev);
1920 } else if (r1_bio->bios[m] != NULL) {
1921 /* This drive got a write error. We need to
1922 * narrow down and record precise write
1923 * errors.
1924 */
1925 if (!narrow_write_error(r1_bio, m)) {
1926 md_error(conf->mddev,
1927 conf->mirrors[m].rdev);
1928 /* an I/O failed, we can't clear the bitmap */
1929 set_bit(R1BIO_Degraded, &r1_bio->state);
1930 }
1931 rdev_dec_pending(conf->mirrors[m].rdev,
1932 conf->mddev);
1933 }
1934 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1935 close_write(r1_bio);
1936 raid_end_bio_io(r1_bio);
1937}
1938
e8096360 1939static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1940{
1941 int disk;
1942 int max_sectors;
fd01b88c 1943 struct mddev *mddev = conf->mddev;
62096bce
N
1944 struct bio *bio;
1945 char b[BDEVNAME_SIZE];
3cb03002 1946 struct md_rdev *rdev;
62096bce
N
1947
1948 clear_bit(R1BIO_ReadError, &r1_bio->state);
1949 /* we got a read error. Maybe the drive is bad. Maybe just
1950 * the block and we can fix it.
1951 * We freeze all other IO, and try reading the block from
1952 * other devices. When we find one, we re-write
1953 * and check it that fixes the read error.
1954 * This is all done synchronously while the array is
1955 * frozen
1956 */
1957 if (mddev->ro == 0) {
1958 freeze_array(conf);
1959 fix_read_error(conf, r1_bio->read_disk,
1960 r1_bio->sector, r1_bio->sectors);
1961 unfreeze_array(conf);
1962 } else
1963 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1964
1965 bio = r1_bio->bios[r1_bio->read_disk];
1966 bdevname(bio->bi_bdev, b);
1967read_more:
1968 disk = read_balance(conf, r1_bio, &max_sectors);
1969 if (disk == -1) {
1970 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1971 " read error for block %llu\n",
1972 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1973 raid_end_bio_io(r1_bio);
1974 } else {
1975 const unsigned long do_sync
1976 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1977 if (bio) {
1978 r1_bio->bios[r1_bio->read_disk] =
1979 mddev->ro ? IO_BLOCKED : NULL;
1980 bio_put(bio);
1981 }
1982 r1_bio->read_disk = disk;
1983 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1984 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1985 r1_bio->bios[r1_bio->read_disk] = bio;
1986 rdev = conf->mirrors[disk].rdev;
1987 printk_ratelimited(KERN_ERR
1988 "md/raid1:%s: redirecting sector %llu"
1989 " to other mirror: %s\n",
1990 mdname(mddev),
1991 (unsigned long long)r1_bio->sector,
1992 bdevname(rdev->bdev, b));
1993 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1994 bio->bi_bdev = rdev->bdev;
1995 bio->bi_end_io = raid1_end_read_request;
1996 bio->bi_rw = READ | do_sync;
1997 bio->bi_private = r1_bio;
1998 if (max_sectors < r1_bio->sectors) {
1999 /* Drat - have to split this up more */
2000 struct bio *mbio = r1_bio->master_bio;
2001 int sectors_handled = (r1_bio->sector + max_sectors
2002 - mbio->bi_sector);
2003 r1_bio->sectors = max_sectors;
2004 spin_lock_irq(&conf->device_lock);
2005 if (mbio->bi_phys_segments == 0)
2006 mbio->bi_phys_segments = 2;
2007 else
2008 mbio->bi_phys_segments++;
2009 spin_unlock_irq(&conf->device_lock);
2010 generic_make_request(bio);
2011 bio = NULL;
2012
2013 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2014
2015 r1_bio->master_bio = mbio;
2016 r1_bio->sectors = (mbio->bi_size >> 9)
2017 - sectors_handled;
2018 r1_bio->state = 0;
2019 set_bit(R1BIO_ReadError, &r1_bio->state);
2020 r1_bio->mddev = mddev;
2021 r1_bio->sector = mbio->bi_sector + sectors_handled;
2022
2023 goto read_more;
2024 } else
2025 generic_make_request(bio);
2026 }
2027}
2028
fd01b88c 2029static void raid1d(struct mddev *mddev)
1da177e4 2030{
9f2c9d12 2031 struct r1bio *r1_bio;
1da177e4 2032 unsigned long flags;
e8096360 2033 struct r1conf *conf = mddev->private;
1da177e4 2034 struct list_head *head = &conf->retry_list;
e1dfa0a2 2035 struct blk_plug plug;
1da177e4
LT
2036
2037 md_check_recovery(mddev);
e1dfa0a2
N
2038
2039 blk_start_plug(&plug);
1da177e4 2040 for (;;) {
191ea9b2 2041
c3b328ac
N
2042 if (atomic_read(&mddev->plug_cnt) == 0)
2043 flush_pending_writes(conf);
191ea9b2 2044
a35e63ef
N
2045 spin_lock_irqsave(&conf->device_lock, flags);
2046 if (list_empty(head)) {
2047 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2048 break;
a35e63ef 2049 }
9f2c9d12 2050 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2051 list_del(head->prev);
ddaf22ab 2052 conf->nr_queued--;
1da177e4
LT
2053 spin_unlock_irqrestore(&conf->device_lock, flags);
2054
2055 mddev = r1_bio->mddev;
070ec55d 2056 conf = mddev->private;
4367af55 2057 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2058 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2059 test_bit(R1BIO_WriteError, &r1_bio->state))
2060 handle_sync_write_finished(conf, r1_bio);
2061 else
4367af55 2062 sync_request_write(mddev, r1_bio);
cd5ff9a1 2063 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2064 test_bit(R1BIO_WriteError, &r1_bio->state))
2065 handle_write_finished(conf, r1_bio);
2066 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2067 handle_read_error(conf, r1_bio);
2068 else
d2eb35ac
N
2069 /* just a partial read to be scheduled from separate
2070 * context
2071 */
2072 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2073
1d9d5241 2074 cond_resched();
de393cde
N
2075 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2076 md_check_recovery(mddev);
1da177e4 2077 }
e1dfa0a2 2078 blk_finish_plug(&plug);
1da177e4
LT
2079}
2080
2081
e8096360 2082static int init_resync(struct r1conf *conf)
1da177e4
LT
2083{
2084 int buffs;
2085
2086 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2087 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2088 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2089 conf->poolinfo);
2090 if (!conf->r1buf_pool)
2091 return -ENOMEM;
2092 conf->next_resync = 0;
2093 return 0;
2094}
2095
2096/*
2097 * perform a "sync" on one "block"
2098 *
2099 * We need to make sure that no normal I/O request - particularly write
2100 * requests - conflict with active sync requests.
2101 *
2102 * This is achieved by tracking pending requests and a 'barrier' concept
2103 * that can be installed to exclude normal IO requests.
2104 */
2105
fd01b88c 2106static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2107{
e8096360 2108 struct r1conf *conf = mddev->private;
9f2c9d12 2109 struct r1bio *r1_bio;
1da177e4
LT
2110 struct bio *bio;
2111 sector_t max_sector, nr_sectors;
3e198f78 2112 int disk = -1;
1da177e4 2113 int i;
3e198f78
N
2114 int wonly = -1;
2115 int write_targets = 0, read_targets = 0;
57dab0bd 2116 sector_t sync_blocks;
e3b9703e 2117 int still_degraded = 0;
06f60385
N
2118 int good_sectors = RESYNC_SECTORS;
2119 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2120
2121 if (!conf->r1buf_pool)
2122 if (init_resync(conf))
57afd89f 2123 return 0;
1da177e4 2124
58c0fed4 2125 max_sector = mddev->dev_sectors;
1da177e4 2126 if (sector_nr >= max_sector) {
191ea9b2
N
2127 /* If we aborted, we need to abort the
2128 * sync on the 'current' bitmap chunk (there will
2129 * only be one in raid1 resync.
2130 * We can find the current addess in mddev->curr_resync
2131 */
6a806c51
N
2132 if (mddev->curr_resync < max_sector) /* aborted */
2133 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2134 &sync_blocks, 1);
6a806c51 2135 else /* completed sync */
191ea9b2 2136 conf->fullsync = 0;
6a806c51
N
2137
2138 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2139 close_sync(conf);
2140 return 0;
2141 }
2142
07d84d10
N
2143 if (mddev->bitmap == NULL &&
2144 mddev->recovery_cp == MaxSector &&
6394cca5 2145 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2146 conf->fullsync == 0) {
2147 *skipped = 1;
2148 return max_sector - sector_nr;
2149 }
6394cca5
N
2150 /* before building a request, check if we can skip these blocks..
2151 * This call the bitmap_start_sync doesn't actually record anything
2152 */
e3b9703e 2153 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2154 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2155 /* We can skip this block, and probably several more */
2156 *skipped = 1;
2157 return sync_blocks;
2158 }
1da177e4 2159 /*
17999be4
N
2160 * If there is non-resync activity waiting for a turn,
2161 * and resync is going fast enough,
2162 * then let it though before starting on this new sync request.
1da177e4 2163 */
17999be4 2164 if (!go_faster && conf->nr_waiting)
1da177e4 2165 msleep_interruptible(1000);
17999be4 2166
b47490c9 2167 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2168 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2169 raise_barrier(conf);
2170
2171 conf->next_resync = sector_nr;
1da177e4 2172
3e198f78 2173 rcu_read_lock();
1da177e4 2174 /*
3e198f78
N
2175 * If we get a correctably read error during resync or recovery,
2176 * we might want to read from a different device. So we
2177 * flag all drives that could conceivably be read from for READ,
2178 * and any others (which will be non-In_sync devices) for WRITE.
2179 * If a read fails, we try reading from something else for which READ
2180 * is OK.
1da177e4 2181 */
1da177e4 2182
1da177e4
LT
2183 r1_bio->mddev = mddev;
2184 r1_bio->sector = sector_nr;
191ea9b2 2185 r1_bio->state = 0;
1da177e4 2186 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
2187
2188 for (i=0; i < conf->raid_disks; i++) {
3cb03002 2189 struct md_rdev *rdev;
1da177e4
LT
2190 bio = r1_bio->bios[i];
2191
2192 /* take from bio_init */
2193 bio->bi_next = NULL;
db8d9d35 2194 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2195 bio->bi_flags |= 1 << BIO_UPTODATE;
db8d9d35 2196 bio->bi_comp_cpu = -1;
802ba064 2197 bio->bi_rw = READ;
1da177e4
LT
2198 bio->bi_vcnt = 0;
2199 bio->bi_idx = 0;
2200 bio->bi_phys_segments = 0;
1da177e4
LT
2201 bio->bi_size = 0;
2202 bio->bi_end_io = NULL;
2203 bio->bi_private = NULL;
2204
3e198f78
N
2205 rdev = rcu_dereference(conf->mirrors[i].rdev);
2206 if (rdev == NULL ||
06f60385 2207 test_bit(Faulty, &rdev->flags)) {
e3b9703e 2208 still_degraded = 1;
3e198f78 2209 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2210 bio->bi_rw = WRITE;
2211 bio->bi_end_io = end_sync_write;
2212 write_targets ++;
3e198f78
N
2213 } else {
2214 /* may need to read from here */
06f60385
N
2215 sector_t first_bad = MaxSector;
2216 int bad_sectors;
2217
2218 if (is_badblock(rdev, sector_nr, good_sectors,
2219 &first_bad, &bad_sectors)) {
2220 if (first_bad > sector_nr)
2221 good_sectors = first_bad - sector_nr;
2222 else {
2223 bad_sectors -= (sector_nr - first_bad);
2224 if (min_bad == 0 ||
2225 min_bad > bad_sectors)
2226 min_bad = bad_sectors;
2227 }
2228 }
2229 if (sector_nr < first_bad) {
2230 if (test_bit(WriteMostly, &rdev->flags)) {
2231 if (wonly < 0)
2232 wonly = i;
2233 } else {
2234 if (disk < 0)
2235 disk = i;
2236 }
2237 bio->bi_rw = READ;
2238 bio->bi_end_io = end_sync_read;
2239 read_targets++;
3e198f78 2240 }
3e198f78 2241 }
06f60385
N
2242 if (bio->bi_end_io) {
2243 atomic_inc(&rdev->nr_pending);
2244 bio->bi_sector = sector_nr + rdev->data_offset;
2245 bio->bi_bdev = rdev->bdev;
2246 bio->bi_private = r1_bio;
2247 }
1da177e4 2248 }
3e198f78
N
2249 rcu_read_unlock();
2250 if (disk < 0)
2251 disk = wonly;
2252 r1_bio->read_disk = disk;
191ea9b2 2253
06f60385
N
2254 if (read_targets == 0 && min_bad > 0) {
2255 /* These sectors are bad on all InSync devices, so we
2256 * need to mark them bad on all write targets
2257 */
2258 int ok = 1;
2259 for (i = 0 ; i < conf->raid_disks ; i++)
2260 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
3cb03002 2261 struct md_rdev *rdev =
06f60385
N
2262 rcu_dereference(conf->mirrors[i].rdev);
2263 ok = rdev_set_badblocks(rdev, sector_nr,
2264 min_bad, 0
2265 ) && ok;
2266 }
2267 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2268 *skipped = 1;
2269 put_buf(r1_bio);
2270
2271 if (!ok) {
2272 /* Cannot record the badblocks, so need to
2273 * abort the resync.
2274 * If there are multiple read targets, could just
2275 * fail the really bad ones ???
2276 */
2277 conf->recovery_disabled = mddev->recovery_disabled;
2278 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2279 return 0;
2280 } else
2281 return min_bad;
2282
2283 }
2284 if (min_bad > 0 && min_bad < good_sectors) {
2285 /* only resync enough to reach the next bad->good
2286 * transition */
2287 good_sectors = min_bad;
2288 }
2289
3e198f78
N
2290 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2291 /* extra read targets are also write targets */
2292 write_targets += read_targets-1;
2293
2294 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2295 /* There is nowhere to write, so all non-sync
2296 * drives must be failed - so we are finished
2297 */
57afd89f
N
2298 sector_t rv = max_sector - sector_nr;
2299 *skipped = 1;
1da177e4 2300 put_buf(r1_bio);
1da177e4
LT
2301 return rv;
2302 }
2303
c6207277
N
2304 if (max_sector > mddev->resync_max)
2305 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2306 if (max_sector > sector_nr + good_sectors)
2307 max_sector = sector_nr + good_sectors;
1da177e4 2308 nr_sectors = 0;
289e99e8 2309 sync_blocks = 0;
1da177e4
LT
2310 do {
2311 struct page *page;
2312 int len = PAGE_SIZE;
2313 if (sector_nr + (len>>9) > max_sector)
2314 len = (max_sector - sector_nr) << 9;
2315 if (len == 0)
2316 break;
6a806c51
N
2317 if (sync_blocks == 0) {
2318 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2319 &sync_blocks, still_degraded) &&
2320 !conf->fullsync &&
2321 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2322 break;
9e77c485 2323 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2324 if ((len >> 9) > sync_blocks)
6a806c51 2325 len = sync_blocks<<9;
ab7a30c7 2326 }
191ea9b2 2327
1da177e4
LT
2328 for (i=0 ; i < conf->raid_disks; i++) {
2329 bio = r1_bio->bios[i];
2330 if (bio->bi_end_io) {
d11c171e 2331 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2332 if (bio_add_page(bio, page, len, 0) == 0) {
2333 /* stop here */
d11c171e 2334 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2335 while (i > 0) {
2336 i--;
2337 bio = r1_bio->bios[i];
6a806c51
N
2338 if (bio->bi_end_io==NULL)
2339 continue;
1da177e4
LT
2340 /* remove last page from this bio */
2341 bio->bi_vcnt--;
2342 bio->bi_size -= len;
2343 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2344 }
2345 goto bio_full;
2346 }
2347 }
2348 }
2349 nr_sectors += len>>9;
2350 sector_nr += len>>9;
191ea9b2 2351 sync_blocks -= (len>>9);
1da177e4
LT
2352 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2353 bio_full:
1da177e4
LT
2354 r1_bio->sectors = nr_sectors;
2355
d11c171e
N
2356 /* For a user-requested sync, we read all readable devices and do a
2357 * compare
2358 */
2359 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2360 atomic_set(&r1_bio->remaining, read_targets);
2361 for (i=0; i<conf->raid_disks; i++) {
2362 bio = r1_bio->bios[i];
2363 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 2364 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2365 generic_make_request(bio);
2366 }
2367 }
2368 } else {
2369 atomic_set(&r1_bio->remaining, 1);
2370 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2371 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2372 generic_make_request(bio);
1da177e4 2373
d11c171e 2374 }
1da177e4
LT
2375 return nr_sectors;
2376}
2377
fd01b88c 2378static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2379{
2380 if (sectors)
2381 return sectors;
2382
2383 return mddev->dev_sectors;
2384}
2385
e8096360 2386static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2387{
e8096360 2388 struct r1conf *conf;
709ae487 2389 int i;
0f6d02d5 2390 struct mirror_info *disk;
3cb03002 2391 struct md_rdev *rdev;
709ae487 2392 int err = -ENOMEM;
1da177e4 2393
e8096360 2394 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2395 if (!conf)
709ae487 2396 goto abort;
1da177e4 2397
9ffae0cf 2398 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
2399 GFP_KERNEL);
2400 if (!conf->mirrors)
709ae487 2401 goto abort;
1da177e4 2402
ddaf22ab
N
2403 conf->tmppage = alloc_page(GFP_KERNEL);
2404 if (!conf->tmppage)
709ae487 2405 goto abort;
ddaf22ab 2406
709ae487 2407 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2408 if (!conf->poolinfo)
709ae487 2409 goto abort;
1da177e4
LT
2410 conf->poolinfo->raid_disks = mddev->raid_disks;
2411 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2412 r1bio_pool_free,
2413 conf->poolinfo);
2414 if (!conf->r1bio_pool)
709ae487
N
2415 goto abort;
2416
ed9bfdf1 2417 conf->poolinfo->mddev = mddev;
1da177e4 2418
e7e72bf6 2419 spin_lock_init(&conf->device_lock);
159ec1fc 2420 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 2421 int disk_idx = rdev->raid_disk;
1da177e4
LT
2422 if (disk_idx >= mddev->raid_disks
2423 || disk_idx < 0)
2424 continue;
2425 disk = conf->mirrors + disk_idx;
2426
2427 disk->rdev = rdev;
1da177e4
LT
2428
2429 disk->head_position = 0;
1da177e4
LT
2430 }
2431 conf->raid_disks = mddev->raid_disks;
2432 conf->mddev = mddev;
1da177e4 2433 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2434
2435 spin_lock_init(&conf->resync_lock);
17999be4 2436 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2437
191ea9b2 2438 bio_list_init(&conf->pending_bio_list);
34db0cd6 2439 conf->pending_count = 0;
d890fa2b 2440 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2441
709ae487 2442 conf->last_used = -1;
1da177e4
LT
2443 for (i = 0; i < conf->raid_disks; i++) {
2444
2445 disk = conf->mirrors + i;
2446
5fd6c1dc
N
2447 if (!disk->rdev ||
2448 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2449 disk->head_position = 0;
918f0238
N
2450 if (disk->rdev)
2451 conf->fullsync = 1;
709ae487
N
2452 } else if (conf->last_used < 0)
2453 /*
2454 * The first working device is used as a
2455 * starting point to read balancing.
2456 */
2457 conf->last_used = i;
1da177e4 2458 }
709ae487
N
2459
2460 err = -EIO;
2461 if (conf->last_used < 0) {
9dd1e2fa 2462 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
2463 mdname(mddev));
2464 goto abort;
2465 }
2466 err = -ENOMEM;
2467 conf->thread = md_register_thread(raid1d, mddev, NULL);
2468 if (!conf->thread) {
2469 printk(KERN_ERR
9dd1e2fa 2470 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2471 mdname(mddev));
2472 goto abort;
11ce99e6 2473 }
1da177e4 2474
709ae487
N
2475 return conf;
2476
2477 abort:
2478 if (conf) {
2479 if (conf->r1bio_pool)
2480 mempool_destroy(conf->r1bio_pool);
2481 kfree(conf->mirrors);
2482 safe_put_page(conf->tmppage);
2483 kfree(conf->poolinfo);
2484 kfree(conf);
2485 }
2486 return ERR_PTR(err);
2487}
2488
fd01b88c 2489static int run(struct mddev *mddev)
709ae487 2490{
e8096360 2491 struct r1conf *conf;
709ae487 2492 int i;
3cb03002 2493 struct md_rdev *rdev;
709ae487
N
2494
2495 if (mddev->level != 1) {
9dd1e2fa 2496 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2497 mdname(mddev), mddev->level);
2498 return -EIO;
2499 }
2500 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2501 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2502 mdname(mddev));
2503 return -EIO;
2504 }
1da177e4 2505 /*
709ae487
N
2506 * copy the already verified devices into our private RAID1
2507 * bookkeeping area. [whatever we allocate in run(),
2508 * should be freed in stop()]
1da177e4 2509 */
709ae487
N
2510 if (mddev->private == NULL)
2511 conf = setup_conf(mddev);
2512 else
2513 conf = mddev->private;
1da177e4 2514
709ae487
N
2515 if (IS_ERR(conf))
2516 return PTR_ERR(conf);
1da177e4 2517
709ae487 2518 list_for_each_entry(rdev, &mddev->disks, same_set) {
1ed7242e
JB
2519 if (!mddev->gendisk)
2520 continue;
709ae487
N
2521 disk_stack_limits(mddev->gendisk, rdev->bdev,
2522 rdev->data_offset << 9);
2523 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2524 * violating it, so limit ->max_segments to 1 lying within
2525 * a single page, as a one page request is never in violation.
709ae487 2526 */
627a2d3c
N
2527 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2528 blk_queue_max_segments(mddev->queue, 1);
2529 blk_queue_segment_boundary(mddev->queue,
2530 PAGE_CACHE_SIZE - 1);
2531 }
1da177e4 2532 }
191ea9b2 2533
709ae487
N
2534 mddev->degraded = 0;
2535 for (i=0; i < conf->raid_disks; i++)
2536 if (conf->mirrors[i].rdev == NULL ||
2537 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2538 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2539 mddev->degraded++;
2540
2541 if (conf->raid_disks - mddev->degraded == 1)
2542 mddev->recovery_cp = MaxSector;
2543
8c6ac868 2544 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2545 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2546 " -- starting background reconstruction\n",
2547 mdname(mddev));
1da177e4 2548 printk(KERN_INFO
9dd1e2fa 2549 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2550 mdname(mddev), mddev->raid_disks - mddev->degraded,
2551 mddev->raid_disks);
709ae487 2552
1da177e4
LT
2553 /*
2554 * Ok, everything is just fine now
2555 */
709ae487
N
2556 mddev->thread = conf->thread;
2557 conf->thread = NULL;
2558 mddev->private = conf;
2559
1f403624 2560 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2561
1ed7242e
JB
2562 if (mddev->queue) {
2563 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2564 mddev->queue->backing_dev_info.congested_data = mddev;
2565 }
a91a2785 2566 return md_integrity_register(mddev);
1da177e4
LT
2567}
2568
fd01b88c 2569static int stop(struct mddev *mddev)
1da177e4 2570{
e8096360 2571 struct r1conf *conf = mddev->private;
4b6d287f 2572 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2573
2574 /* wait for behind writes to complete */
e555190d 2575 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2576 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2577 mdname(mddev));
4b6d287f 2578 /* need to kick something here to make sure I/O goes? */
e555190d
N
2579 wait_event(bitmap->behind_wait,
2580 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2581 }
1da177e4 2582
409c57f3
N
2583 raise_barrier(conf);
2584 lower_barrier(conf);
2585
01f96c0a 2586 md_unregister_thread(&mddev->thread);
1da177e4
LT
2587 if (conf->r1bio_pool)
2588 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2589 kfree(conf->mirrors);
2590 kfree(conf->poolinfo);
1da177e4
LT
2591 kfree(conf);
2592 mddev->private = NULL;
2593 return 0;
2594}
2595
fd01b88c 2596static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2597{
2598 /* no resync is happening, and there is enough space
2599 * on all devices, so we can resize.
2600 * We need to make sure resync covers any new space.
2601 * If the array is shrinking we should possibly wait until
2602 * any io in the removed space completes, but it hardly seems
2603 * worth it.
2604 */
1f403624 2605 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2606 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2607 return -EINVAL;
f233ea5c 2608 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2609 revalidate_disk(mddev->gendisk);
b522adcd 2610 if (sectors > mddev->dev_sectors &&
b098636c 2611 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2612 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2613 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2614 }
b522adcd 2615 mddev->dev_sectors = sectors;
4b5c7ae8 2616 mddev->resync_max_sectors = sectors;
1da177e4
LT
2617 return 0;
2618}
2619
fd01b88c 2620static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2621{
2622 /* We need to:
2623 * 1/ resize the r1bio_pool
2624 * 2/ resize conf->mirrors
2625 *
2626 * We allocate a new r1bio_pool if we can.
2627 * Then raise a device barrier and wait until all IO stops.
2628 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2629 *
2630 * At the same time, we "pack" the devices so that all the missing
2631 * devices have the higher raid_disk numbers.
1da177e4
LT
2632 */
2633 mempool_t *newpool, *oldpool;
2634 struct pool_info *newpoolinfo;
0f6d02d5 2635 struct mirror_info *newmirrors;
e8096360 2636 struct r1conf *conf = mddev->private;
63c70c4f 2637 int cnt, raid_disks;
c04be0aa 2638 unsigned long flags;
b5470dc5 2639 int d, d2, err;
1da177e4 2640
63c70c4f 2641 /* Cannot change chunk_size, layout, or level */
664e7c41 2642 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2643 mddev->layout != mddev->new_layout ||
2644 mddev->level != mddev->new_level) {
664e7c41 2645 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2646 mddev->new_layout = mddev->layout;
2647 mddev->new_level = mddev->level;
2648 return -EINVAL;
2649 }
2650
b5470dc5
DW
2651 err = md_allow_write(mddev);
2652 if (err)
2653 return err;
2a2275d6 2654
63c70c4f
N
2655 raid_disks = mddev->raid_disks + mddev->delta_disks;
2656
6ea9c07c
N
2657 if (raid_disks < conf->raid_disks) {
2658 cnt=0;
2659 for (d= 0; d < conf->raid_disks; d++)
2660 if (conf->mirrors[d].rdev)
2661 cnt++;
2662 if (cnt > raid_disks)
1da177e4 2663 return -EBUSY;
6ea9c07c 2664 }
1da177e4
LT
2665
2666 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2667 if (!newpoolinfo)
2668 return -ENOMEM;
2669 newpoolinfo->mddev = mddev;
2670 newpoolinfo->raid_disks = raid_disks;
2671
2672 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2673 r1bio_pool_free, newpoolinfo);
2674 if (!newpool) {
2675 kfree(newpoolinfo);
2676 return -ENOMEM;
2677 }
9ffae0cf 2678 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2679 if (!newmirrors) {
2680 kfree(newpoolinfo);
2681 mempool_destroy(newpool);
2682 return -ENOMEM;
2683 }
1da177e4 2684
17999be4 2685 raise_barrier(conf);
1da177e4
LT
2686
2687 /* ok, everything is stopped */
2688 oldpool = conf->r1bio_pool;
2689 conf->r1bio_pool = newpool;
6ea9c07c 2690
a88aa786 2691 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2692 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2693 if (rdev && rdev->raid_disk != d2) {
36fad858 2694 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2695 rdev->raid_disk = d2;
36fad858
NK
2696 sysfs_unlink_rdev(mddev, rdev);
2697 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2698 printk(KERN_WARNING
36fad858
NK
2699 "md/raid1:%s: cannot register rd%d\n",
2700 mdname(mddev), rdev->raid_disk);
6ea9c07c 2701 }
a88aa786
N
2702 if (rdev)
2703 newmirrors[d2++].rdev = rdev;
2704 }
1da177e4
LT
2705 kfree(conf->mirrors);
2706 conf->mirrors = newmirrors;
2707 kfree(conf->poolinfo);
2708 conf->poolinfo = newpoolinfo;
2709
c04be0aa 2710 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2711 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2712 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2713 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2714 mddev->delta_disks = 0;
1da177e4 2715
6ea9c07c 2716 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2717 lower_barrier(conf);
1da177e4
LT
2718
2719 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2720 md_wakeup_thread(mddev->thread);
2721
2722 mempool_destroy(oldpool);
2723 return 0;
2724}
2725
fd01b88c 2726static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 2727{
e8096360 2728 struct r1conf *conf = mddev->private;
36fa3063
N
2729
2730 switch(state) {
6eef4b21
N
2731 case 2: /* wake for suspend */
2732 wake_up(&conf->wait_barrier);
2733 break;
9e6603da 2734 case 1:
17999be4 2735 raise_barrier(conf);
36fa3063 2736 break;
9e6603da 2737 case 0:
17999be4 2738 lower_barrier(conf);
36fa3063
N
2739 break;
2740 }
36fa3063
N
2741}
2742
fd01b88c 2743static void *raid1_takeover(struct mddev *mddev)
709ae487
N
2744{
2745 /* raid1 can take over:
2746 * raid5 with 2 devices, any layout or chunk size
2747 */
2748 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 2749 struct r1conf *conf;
709ae487
N
2750 mddev->new_level = 1;
2751 mddev->new_layout = 0;
2752 mddev->new_chunk_sectors = 0;
2753 conf = setup_conf(mddev);
2754 if (!IS_ERR(conf))
2755 conf->barrier = 1;
2756 return conf;
2757 }
2758 return ERR_PTR(-EINVAL);
2759}
1da177e4 2760
84fc4b56 2761static struct md_personality raid1_personality =
1da177e4
LT
2762{
2763 .name = "raid1",
2604b703 2764 .level = 1,
1da177e4
LT
2765 .owner = THIS_MODULE,
2766 .make_request = make_request,
2767 .run = run,
2768 .stop = stop,
2769 .status = status,
2770 .error_handler = error,
2771 .hot_add_disk = raid1_add_disk,
2772 .hot_remove_disk= raid1_remove_disk,
2773 .spare_active = raid1_spare_active,
2774 .sync_request = sync_request,
2775 .resize = raid1_resize,
80c3a6ce 2776 .size = raid1_size,
63c70c4f 2777 .check_reshape = raid1_reshape,
36fa3063 2778 .quiesce = raid1_quiesce,
709ae487 2779 .takeover = raid1_takeover,
1da177e4
LT
2780};
2781
2782static int __init raid_init(void)
2783{
2604b703 2784 return register_md_personality(&raid1_personality);
1da177e4
LT
2785}
2786
2787static void raid_exit(void)
2788{
2604b703 2789 unregister_md_personality(&raid1_personality);
1da177e4
LT
2790}
2791
2792module_init(raid_init);
2793module_exit(raid_exit);
2794MODULE_LICENSE("GPL");
0efb9e61 2795MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2796MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2797MODULE_ALIAS("md-raid1");
2604b703 2798MODULE_ALIAS("md-level-1");
34db0cd6
N
2799
2800module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);