]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/raid1.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
3f07c014
IM
40#include <linux/sched/signal.h>
41
109e3765 42#include <trace/events/block.h>
3f07c014 43
43b2e5d8 44#include "md.h"
ef740c37
CH
45#include "raid1.h"
46#include "bitmap.h"
191ea9b2 47
394ed8e4
SL
48#define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
ea0213e0
AP
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
394ed8e4 52
1da177e4
LT
53/*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56#define NR_RAID1_BIOS 256
57
473e87ce
JB
58/* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63#define IO_BLOCKED ((struct bio *)1)
64/* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68#define IO_MADE_GOOD ((struct bio *)2)
69
70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
34db0cd6
N
72/* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76static int max_queued_requests = 1024;
1da177e4 77
fd76863e 78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 80
578b54ad
N
81#define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
fb0eb5df
ML
84#include "raid1-10.c"
85
98d30c58
ML
86/*
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
89 */
90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91{
92 return get_resync_pages(bio)->raid_bio;
93}
94
dd0fc66f 95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
99
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 101 return kzalloc(size, gfp_flags);
1da177e4
LT
102}
103
104static void r1bio_pool_free(void *r1_bio, void *data)
105{
106 kfree(r1_bio);
107}
108
8e005f7c 109#define RESYNC_DEPTH 32
1da177e4 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 115
dd0fc66f 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
117{
118 struct pool_info *pi = data;
9f2c9d12 119 struct r1bio *r1_bio;
1da177e4 120 struct bio *bio;
da1aab3d 121 int need_pages;
98d30c58
ML
122 int j;
123 struct resync_pages *rps;
1da177e4
LT
124
125 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 126 if (!r1_bio)
1da177e4 127 return NULL;
1da177e4 128
98d30c58
ML
129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 gfp_flags);
131 if (!rps)
132 goto out_free_r1bio;
133
1da177e4
LT
134 /*
135 * Allocate bios : 1 for reading, n-1 for writing
136 */
137 for (j = pi->raid_disks ; j-- ; ) {
6746557f 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
139 if (!bio)
140 goto out_free_bio;
141 r1_bio->bios[j] = bio;
142 }
143 /*
144 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
145 * the first bio.
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
1da177e4 148 */
d11c171e 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 150 need_pages = pi->raid_disks;
d11c171e 151 else
da1aab3d 152 need_pages = 1;
98d30c58
ML
153 for (j = 0; j < pi->raid_disks; j++) {
154 struct resync_pages *rp = &rps[j];
155
d11c171e 156 bio = r1_bio->bios[j];
d11c171e 157
98d30c58
ML
158 if (j < need_pages) {
159 if (resync_alloc_pages(rp, gfp_flags))
160 goto out_free_pages;
161 } else {
162 memcpy(rp, &rps[0], sizeof(*rp));
163 resync_get_all_pages(rp);
164 }
165
98d30c58
ML
166 rp->raid_bio = r1_bio;
167 bio->bi_private = rp;
1da177e4
LT
168 }
169
170 r1_bio->master_bio = NULL;
171
172 return r1_bio;
173
da1aab3d 174out_free_pages:
491221f8 175 while (--j >= 0)
98d30c58 176 resync_free_pages(&rps[j]);
da1aab3d 177
1da177e4 178out_free_bio:
8f19ccb2 179 while (++j < pi->raid_disks)
1da177e4 180 bio_put(r1_bio->bios[j]);
98d30c58
ML
181 kfree(rps);
182
183out_free_r1bio:
1da177e4
LT
184 r1bio_pool_free(r1_bio, data);
185 return NULL;
186}
187
188static void r1buf_pool_free(void *__r1_bio, void *data)
189{
190 struct pool_info *pi = data;
98d30c58 191 int i;
9f2c9d12 192 struct r1bio *r1bio = __r1_bio;
98d30c58 193 struct resync_pages *rp = NULL;
1da177e4 194
98d30c58
ML
195 for (i = pi->raid_disks; i--; ) {
196 rp = get_resync_pages(r1bio->bios[i]);
197 resync_free_pages(rp);
1da177e4 198 bio_put(r1bio->bios[i]);
98d30c58
ML
199 }
200
201 /* resync pages array stored in the 1st bio's .bi_private */
202 kfree(rp);
1da177e4
LT
203
204 r1bio_pool_free(r1bio, data);
205}
206
e8096360 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
208{
209 int i;
210
8f19ccb2 211 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 212 struct bio **bio = r1_bio->bios + i;
4367af55 213 if (!BIO_SPECIAL(*bio))
1da177e4
LT
214 bio_put(*bio);
215 *bio = NULL;
216 }
217}
218
9f2c9d12 219static void free_r1bio(struct r1bio *r1_bio)
1da177e4 220{
e8096360 221 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 222
1da177e4
LT
223 put_all_bios(conf, r1_bio);
224 mempool_free(r1_bio, conf->r1bio_pool);
225}
226
9f2c9d12 227static void put_buf(struct r1bio *r1_bio)
1da177e4 228{
e8096360 229 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 230 sector_t sect = r1_bio->sector;
3e198f78
N
231 int i;
232
8f19ccb2 233 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
234 struct bio *bio = r1_bio->bios[i];
235 if (bio->bi_end_io)
236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 }
1da177e4
LT
238
239 mempool_free(r1_bio, conf->r1buf_pool);
240
af5f42a7 241 lower_barrier(conf, sect);
1da177e4
LT
242}
243
9f2c9d12 244static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
245{
246 unsigned long flags;
fd01b88c 247 struct mddev *mddev = r1_bio->mddev;
e8096360 248 struct r1conf *conf = mddev->private;
fd76863e 249 int idx;
1da177e4 250
fd76863e 251 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
252 spin_lock_irqsave(&conf->device_lock, flags);
253 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 254 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
255 spin_unlock_irqrestore(&conf->device_lock, flags);
256
17999be4 257 wake_up(&conf->wait_barrier);
1da177e4
LT
258 md_wakeup_thread(mddev->thread);
259}
260
261/*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
9f2c9d12 266static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
267{
268 struct bio *bio = r1_bio->master_bio;
e8096360 269 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
270
271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 272 bio->bi_status = BLK_STS_IOERR;
4246a0b6 273
37011e3a
N
274 bio_endio(bio);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
280}
281
9f2c9d12 282static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
283{
284 struct bio *bio = r1_bio->master_bio;
285
4b6d287f
N
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
290 (unsigned long long) bio->bi_iter.bi_sector,
291 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 292
d2eb35ac 293 call_bio_endio(r1_bio);
4b6d287f 294 }
1da177e4
LT
295 free_r1bio(r1_bio);
296}
297
298/*
299 * Update disk head position estimator based on IRQ completion info.
300 */
9f2c9d12 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 302{
e8096360 303 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
304
305 conf->mirrors[disk].head_position =
306 r1_bio->sector + (r1_bio->sectors);
307}
308
ba3ae3be
NK
309/*
310 * Find the disk number which triggered given bio
311 */
9f2c9d12 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
313{
314 int mirror;
30194636
N
315 struct r1conf *conf = r1_bio->mddev->private;
316 int raid_disks = conf->raid_disks;
ba3ae3be 317
8f19ccb2 318 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
319 if (r1_bio->bios[mirror] == bio)
320 break;
321
8f19ccb2 322 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
323 update_head_pos(mirror, r1_bio);
324
325 return mirror;
326}
327
4246a0b6 328static void raid1_end_read_request(struct bio *bio)
1da177e4 329{
4e4cbee9 330 int uptodate = !bio->bi_status;
9f2c9d12 331 struct r1bio *r1_bio = bio->bi_private;
e8096360 332 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 334
1da177e4
LT
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
e5872d58 338 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 339
dd00a99e
N
340 if (uptodate)
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
342 else if (test_bit(FailFast, &rdev->flags) &&
343 test_bit(R1BIO_FailFast, &r1_bio->state))
344 /* This was a fail-fast read so we definitely
345 * want to retry */
346 ;
dd00a99e
N
347 else {
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 351 */
dd00a99e
N
352 unsigned long flags;
353 spin_lock_irqsave(&conf->device_lock, flags);
354 if (r1_bio->mddev->degraded == conf->raid_disks ||
355 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 356 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
357 uptodate = 1;
358 spin_unlock_irqrestore(&conf->device_lock, flags);
359 }
1da177e4 360
7ad4d4a6 361 if (uptodate) {
1da177e4 362 raid_end_bio_io(r1_bio);
e5872d58 363 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 364 } else {
1da177e4
LT
365 /*
366 * oops, read error:
367 */
368 char b[BDEVNAME_SIZE];
1d41c216
N
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 mdname(conf->mddev),
371 bdevname(rdev->bdev, b),
372 (unsigned long long)r1_bio->sector);
d2eb35ac 373 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 374 reschedule_retry(r1_bio);
7ad4d4a6 375 /* don't drop the reference on read_disk yet */
1da177e4 376 }
1da177e4
LT
377}
378
9f2c9d12 379static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
380{
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
383 bio_free_pages(r1_bio->behind_master_bio);
384 bio_put(r1_bio->behind_master_bio);
385 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393}
394
9f2c9d12 395static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 396{
cd5ff9a1
N
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
4367af55
N
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
4e78064f
N
408 }
409}
410
4246a0b6 411static void raid1_end_write_request(struct bio *bio)
1da177e4 412{
9f2c9d12 413 struct r1bio *r1_bio = bio->bi_private;
e5872d58 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 415 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 416 struct bio *to_put = NULL;
e5872d58
N
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
419 bool discard_error;
420
4e4cbee9 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 422
e9c7469b
TH
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
4e4cbee9 426 if (bio->bi_status && !discard_error) {
e5872d58
N
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
212e7eb7
N
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 450 } else {
1da177e4 451 /*
e9c7469b
TH
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
1da177e4 460 */
4367af55
N
461 sector_t first_bad;
462 int bad_sectors;
463
cd5ff9a1
N
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
3056e3ae
AL
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
e5872d58
N
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
3056e3ae 476 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 477
4367af55 478 /* Maybe we can clear some bad blocks. */
e5872d58 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 480 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
e9c7469b 486 if (behind) {
e5872d58 487 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
4f024f37
KO
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 506 call_bio_endio(r1_bio);
4b6d287f
N
507 }
508 }
509 }
4367af55 510 if (r1_bio->bios[mirror] == NULL)
e5872d58 511 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 512
1da177e4 513 /*
1da177e4
LT
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
af6d7b76 517 r1_bio_write_done(r1_bio);
c70810b3 518
04b857f7
N
519 if (to_put)
520 bio_put(to_put);
1da177e4
LT
521}
522
fd76863e 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525{
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540}
541
1da177e4
LT
542/*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
e8096360 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 557{
af3a2cd6 558 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
559 int sectors;
560 int best_good_sectors;
9dedf603
SL
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
be4d3280 563 int disk;
76073054 564 sector_t best_dist;
9dedf603 565 unsigned int min_pending;
3cb03002 566 struct md_rdev *rdev;
f3ac8bf7 567 int choose_first;
12cee5a8 568 int choose_next_idle;
1da177e4
LT
569
570 rcu_read_lock();
571 /*
8ddf9efe 572 * Check if we can balance. We can balance on the whole
1da177e4
LT
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
d2eb35ac 577 sectors = r1_bio->sectors;
76073054 578 best_disk = -1;
9dedf603 579 best_dist_disk = -1;
76073054 580 best_dist = MaxSector;
9dedf603
SL
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
d2eb35ac 583 best_good_sectors = 0;
9dedf603 584 has_nonrot_disk = 0;
12cee5a8 585 choose_next_idle = 0;
2e52d449 586 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 587
7d49ffcf
GR
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
90382ed9 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
1da177e4 595
be4d3280 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 597 sector_t dist;
d2eb35ac
N
598 sector_t first_bad;
599 int bad_sectors;
9dedf603 600 unsigned int pending;
12cee5a8 601 bool nonrot;
d2eb35ac 602
f3ac8bf7
N
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
76073054 606 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 607 continue;
76073054
N
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
1da177e4 610 continue;
76073054
N
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
d1901ef0 614 if (best_dist_disk < 0) {
307729c8
N
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
816b0acf 617 if (first_bad <= this_sector)
307729c8
N
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
d1901ef0
TH
623 best_dist_disk = disk;
624 best_pending_disk = disk;
307729c8 625 }
76073054
N
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
d2eb35ac
N
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
d82dd0e3
TM
657 } else {
658 if ((sectors > best_good_sectors) && (best_disk >= 0))
659 best_disk = -1;
d2eb35ac 660 best_good_sectors = sectors;
d82dd0e3 661 }
d2eb35ac 662
2e52d449
N
663 if (best_disk >= 0)
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast, &r1_bio->state);
666
12cee5a8
SL
667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 has_nonrot_disk |= nonrot;
9dedf603 669 pending = atomic_read(&rdev->nr_pending);
76073054 670 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 671 if (choose_first) {
76073054 672 best_disk = disk;
1da177e4
LT
673 break;
674 }
12cee5a8
SL
675 /* Don't change to another disk for sequential reads */
676 if (conf->mirrors[disk].next_seq_sect == this_sector
677 || dist == 0) {
678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 struct raid1_info *mirror = &conf->mirrors[disk];
680
681 best_disk = disk;
682 /*
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
694 */
695 if (nonrot && opt_iosize > 0 &&
696 mirror->seq_start != MaxSector &&
697 mirror->next_seq_sect > opt_iosize &&
698 mirror->next_seq_sect - opt_iosize >=
699 mirror->seq_start) {
700 choose_next_idle = 1;
701 continue;
702 }
703 break;
704 }
12cee5a8
SL
705
706 if (choose_next_idle)
707 continue;
9dedf603
SL
708
709 if (min_pending > pending) {
710 min_pending = pending;
711 best_pending_disk = disk;
712 }
713
76073054
N
714 if (dist < best_dist) {
715 best_dist = dist;
9dedf603 716 best_dist_disk = disk;
1da177e4 717 }
f3ac8bf7 718 }
1da177e4 719
9dedf603
SL
720 /*
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
725 */
726 if (best_disk == -1) {
2e52d449 727 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
728 best_disk = best_pending_disk;
729 else
730 best_disk = best_dist_disk;
731 }
732
76073054
N
733 if (best_disk >= 0) {
734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
735 if (!rdev)
736 goto retry;
737 atomic_inc(&rdev->nr_pending);
d2eb35ac 738 sectors = best_good_sectors;
12cee5a8
SL
739
740 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 conf->mirrors[best_disk].seq_start = this_sector;
742
be4d3280 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
744 }
745 rcu_read_unlock();
d2eb35ac 746 *max_sectors = sectors;
1da177e4 747
76073054 748 return best_disk;
1da177e4
LT
749}
750
5c675f83 751static int raid1_congested(struct mddev *mddev, int bits)
0d129228 752{
e8096360 753 struct r1conf *conf = mddev->private;
0d129228
N
754 int i, ret = 0;
755
4452226e 756 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
757 conf->pending_count >= max_queued_requests)
758 return 1;
759
0d129228 760 rcu_read_lock();
f53e29fc 761 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 763 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 764 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 765
1ed7242e
JB
766 BUG_ON(!q);
767
0d129228
N
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
770 */
4452226e 771 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 772 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 773 else
dc3b17cc 774 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
775 }
776 }
777 rcu_read_unlock();
778 return ret;
779}
0d129228 780
673ca68d
N
781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782{
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf->mddev->bitmap);
785 wake_up(&conf->wait_barrier);
786
787 while (bio) { /* submit pending writes */
788 struct bio *next = bio->bi_next;
789 struct md_rdev *rdev = (void*)bio->bi_bdev;
790 bio->bi_next = NULL;
791 bio->bi_bdev = rdev->bdev;
792 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 793 bio_io_error(bio);
673ca68d
N
794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796 /* Just ignore it */
797 bio_endio(bio);
798 else
799 generic_make_request(bio);
800 bio = next;
801 }
802}
803
e8096360 804static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
805{
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
a35e63ef 808 */
a35e63ef
N
809 spin_lock_irq(&conf->device_lock);
810
811 if (conf->pending_bio_list.head) {
812 struct bio *bio;
813 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 814 conf->pending_count = 0;
a35e63ef 815 spin_unlock_irq(&conf->device_lock);
673ca68d 816 flush_bio_list(conf, bio);
a35e63ef
N
817 } else
818 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
819}
820
17999be4
N
821/* Barriers....
822 * Sometimes we need to suspend IO while we do something else,
823 * either some resync/recovery, or reconfigure the array.
824 * To do this we raise a 'barrier'.
825 * The 'barrier' is a counter that can be raised multiple times
826 * to count how many activities are happening which preclude
827 * normal IO.
828 * We can only raise the barrier if there is no pending IO.
829 * i.e. if nr_pending == 0.
830 * We choose only to raise the barrier if no-one is waiting for the
831 * barrier to go down. This means that as soon as an IO request
832 * is ready, no other operations which require a barrier will start
833 * until the IO request has had a chance.
834 *
835 * So: regular IO calls 'wait_barrier'. When that returns there
836 * is no backgroup IO happening, It must arrange to call
837 * allow_barrier when it has finished its IO.
838 * backgroup IO calls must call raise_barrier. Once that returns
839 * there is no normal IO happeing. It must arrange to call
840 * lower_barrier when the particular background IO completes.
1da177e4 841 */
c2fd4c94 842static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 843{
fd76863e 844 int idx = sector_to_idx(sector_nr);
845
1da177e4 846 spin_lock_irq(&conf->resync_lock);
17999be4
N
847
848 /* Wait until no block IO is waiting */
824e47da 849 wait_event_lock_irq(conf->wait_barrier,
850 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 851 conf->resync_lock);
17999be4
N
852
853 /* block any new IO from starting */
824e47da 854 atomic_inc(&conf->barrier[idx]);
855 /*
856 * In raise_barrier() we firstly increase conf->barrier[idx] then
857 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
858 * increase conf->nr_pending[idx] then check conf->barrier[idx].
859 * A memory barrier here to make sure conf->nr_pending[idx] won't
860 * be fetched before conf->barrier[idx] is increased. Otherwise
861 * there will be a race between raise_barrier() and _wait_barrier().
862 */
863 smp_mb__after_atomic();
17999be4 864
79ef3a8a 865 /* For these conditions we must wait:
866 * A: while the array is in frozen state
fd76863e 867 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
868 * existing in corresponding I/O barrier bucket.
869 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
870 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 871 */
17999be4 872 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 873 !conf->array_frozen &&
824e47da 874 !atomic_read(&conf->nr_pending[idx]) &&
875 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
eed8c02e 876 conf->resync_lock);
17999be4 877
43ac9b84 878 atomic_inc(&conf->nr_sync_pending);
17999be4
N
879 spin_unlock_irq(&conf->resync_lock);
880}
881
fd76863e 882static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 883{
fd76863e 884 int idx = sector_to_idx(sector_nr);
885
824e47da 886 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 887
824e47da 888 atomic_dec(&conf->barrier[idx]);
43ac9b84 889 atomic_dec(&conf->nr_sync_pending);
17999be4
N
890 wake_up(&conf->wait_barrier);
891}
892
fd76863e 893static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 894{
824e47da 895 /*
896 * We need to increase conf->nr_pending[idx] very early here,
897 * then raise_barrier() can be blocked when it waits for
898 * conf->nr_pending[idx] to be 0. Then we can avoid holding
899 * conf->resync_lock when there is no barrier raised in same
900 * barrier unit bucket. Also if the array is frozen, I/O
901 * should be blocked until array is unfrozen.
902 */
903 atomic_inc(&conf->nr_pending[idx]);
904 /*
905 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
906 * check conf->barrier[idx]. In raise_barrier() we firstly increase
907 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
908 * barrier is necessary here to make sure conf->barrier[idx] won't be
909 * fetched before conf->nr_pending[idx] is increased. Otherwise there
910 * will be a race between _wait_barrier() and raise_barrier().
911 */
912 smp_mb__after_atomic();
79ef3a8a 913
824e47da 914 /*
915 * Don't worry about checking two atomic_t variables at same time
916 * here. If during we check conf->barrier[idx], the array is
917 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
918 * 0, it is safe to return and make the I/O continue. Because the
919 * array is frozen, all I/O returned here will eventually complete
920 * or be queued, no race will happen. See code comment in
921 * frozen_array().
922 */
923 if (!READ_ONCE(conf->array_frozen) &&
924 !atomic_read(&conf->barrier[idx]))
925 return;
79ef3a8a 926
824e47da 927 /*
928 * After holding conf->resync_lock, conf->nr_pending[idx]
929 * should be decreased before waiting for barrier to drop.
930 * Otherwise, we may encounter a race condition because
931 * raise_barrer() might be waiting for conf->nr_pending[idx]
932 * to be 0 at same time.
933 */
934 spin_lock_irq(&conf->resync_lock);
935 atomic_inc(&conf->nr_waiting[idx]);
936 atomic_dec(&conf->nr_pending[idx]);
937 /*
938 * In case freeze_array() is waiting for
939 * get_unqueued_pending() == extra
940 */
941 wake_up(&conf->wait_barrier);
942 /* Wait for the barrier in same barrier unit bucket to drop. */
943 wait_event_lock_irq(conf->wait_barrier,
944 !conf->array_frozen &&
945 !atomic_read(&conf->barrier[idx]),
946 conf->resync_lock);
947 atomic_inc(&conf->nr_pending[idx]);
948 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 949 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 950}
951
fd76863e 952static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 953{
fd76863e 954 int idx = sector_to_idx(sector_nr);
79ef3a8a 955
824e47da 956 /*
957 * Very similar to _wait_barrier(). The difference is, for read
958 * I/O we don't need wait for sync I/O, but if the whole array
959 * is frozen, the read I/O still has to wait until the array is
960 * unfrozen. Since there is no ordering requirement with
961 * conf->barrier[idx] here, memory barrier is unnecessary as well.
962 */
963 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 964
824e47da 965 if (!READ_ONCE(conf->array_frozen))
966 return;
967
968 spin_lock_irq(&conf->resync_lock);
969 atomic_inc(&conf->nr_waiting[idx]);
970 atomic_dec(&conf->nr_pending[idx]);
971 /*
972 * In case freeze_array() is waiting for
973 * get_unqueued_pending() == extra
974 */
975 wake_up(&conf->wait_barrier);
976 /* Wait for array to be unfrozen */
977 wait_event_lock_irq(conf->wait_barrier,
978 !conf->array_frozen,
979 conf->resync_lock);
980 atomic_inc(&conf->nr_pending[idx]);
981 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
982 spin_unlock_irq(&conf->resync_lock);
983}
984
fd76863e 985static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 986{
fd76863e 987 int idx = sector_to_idx(sector_nr);
79ef3a8a 988
fd76863e 989 _wait_barrier(conf, idx);
990}
991
992static void wait_all_barriers(struct r1conf *conf)
993{
994 int idx;
995
996 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
997 _wait_barrier(conf, idx);
998}
999
1000static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1001{
824e47da 1002 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1003 wake_up(&conf->wait_barrier);
1004}
1005
fd76863e 1006static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1007{
1008 int idx = sector_to_idx(sector_nr);
1009
1010 _allow_barrier(conf, idx);
1011}
1012
1013static void allow_all_barriers(struct r1conf *conf)
1014{
1015 int idx;
1016
1017 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018 _allow_barrier(conf, idx);
1019}
1020
1021/* conf->resync_lock should be held */
1022static int get_unqueued_pending(struct r1conf *conf)
1023{
1024 int idx, ret;
1025
43ac9b84
XN
1026 ret = atomic_read(&conf->nr_sync_pending);
1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1028 ret += atomic_read(&conf->nr_pending[idx]) -
1029 atomic_read(&conf->nr_queued[idx]);
fd76863e 1030
1031 return ret;
1032}
1033
e2d59925 1034static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1035{
fd76863e 1036 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1037 * go quiet.
fd76863e 1038 * This is called in two situations:
1039 * 1) management command handlers (reshape, remove disk, quiesce).
1040 * 2) one normal I/O request failed.
1041
1042 * After array_frozen is set to 1, new sync IO will be blocked at
1043 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1044 * or wait_read_barrier(). The flying I/Os will either complete or be
1045 * queued. When everything goes quite, there are only queued I/Os left.
1046
1047 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1048 * barrier bucket index which this I/O request hits. When all sync and
1049 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1050 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1051 * in handle_read_error(), we may call freeze_array() before trying to
1052 * fix the read error. In this case, the error read I/O is not queued,
1053 * so get_unqueued_pending() == 1.
1054 *
1055 * Therefore before this function returns, we need to wait until
1056 * get_unqueued_pendings(conf) gets equal to extra. For
1057 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1058 */
1059 spin_lock_irq(&conf->resync_lock);
b364e3d0 1060 conf->array_frozen = 1;
578b54ad 1061 raid1_log(conf->mddev, "wait freeze");
fd76863e 1062 wait_event_lock_irq_cmd(
1063 conf->wait_barrier,
1064 get_unqueued_pending(conf) == extra,
1065 conf->resync_lock,
1066 flush_pending_writes(conf));
ddaf22ab
N
1067 spin_unlock_irq(&conf->resync_lock);
1068}
e8096360 1069static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1070{
1071 /* reverse the effect of the freeze */
1072 spin_lock_irq(&conf->resync_lock);
b364e3d0 1073 conf->array_frozen = 0;
ddaf22ab 1074 spin_unlock_irq(&conf->resync_lock);
824e47da 1075 wake_up(&conf->wait_barrier);
ddaf22ab
N
1076}
1077
16d56e2f 1078static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1079 struct bio *bio)
4b6d287f 1080{
cb83efcf 1081 int size = bio->bi_iter.bi_size;
841c1316
ML
1082 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083 int i = 0;
1084 struct bio *behind_bio = NULL;
1085
1086 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1087 if (!behind_bio)
16d56e2f 1088 return;
4b6d287f 1089
41743c1f 1090 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1091 if (!bio_has_data(bio)) {
1092 behind_bio->bi_iter.bi_size = size;
41743c1f 1093 goto skip_copy;
16d56e2f 1094 }
41743c1f 1095
841c1316
ML
1096 while (i < vcnt && size) {
1097 struct page *page;
1098 int len = min_t(int, PAGE_SIZE, size);
1099
1100 page = alloc_page(GFP_NOIO);
1101 if (unlikely(!page))
1102 goto free_pages;
1103
1104 bio_add_page(behind_bio, page, len, 0);
1105
1106 size -= len;
1107 i++;
4b6d287f 1108 }
841c1316 1109
cb83efcf 1110 bio_copy_data(behind_bio, bio);
41743c1f 1111skip_copy:
841c1316 1112 r1_bio->behind_master_bio = behind_bio;;
af6d7b76 1113 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1114
16d56e2f 1115 return;
841c1316
ML
1116
1117free_pages:
4f024f37
KO
1118 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1119 bio->bi_iter.bi_size);
841c1316 1120 bio_free_pages(behind_bio);
16d56e2f 1121 bio_put(behind_bio);
4b6d287f
N
1122}
1123
f54a9d0e
N
1124struct raid1_plug_cb {
1125 struct blk_plug_cb cb;
1126 struct bio_list pending;
1127 int pending_cnt;
1128};
1129
1130static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1131{
1132 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1133 cb);
1134 struct mddev *mddev = plug->cb.data;
1135 struct r1conf *conf = mddev->private;
1136 struct bio *bio;
1137
874807a8 1138 if (from_schedule || current->bio_list) {
f54a9d0e
N
1139 spin_lock_irq(&conf->device_lock);
1140 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1141 conf->pending_count += plug->pending_cnt;
1142 spin_unlock_irq(&conf->device_lock);
ee0b0244 1143 wake_up(&conf->wait_barrier);
f54a9d0e
N
1144 md_wakeup_thread(mddev->thread);
1145 kfree(plug);
1146 return;
1147 }
1148
1149 /* we aren't scheduling, so we can do the write-out directly. */
1150 bio = bio_list_get(&plug->pending);
673ca68d 1151 flush_bio_list(conf, bio);
f54a9d0e
N
1152 kfree(plug);
1153}
1154
689389a0
N
1155static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1156{
1157 r1_bio->master_bio = bio;
1158 r1_bio->sectors = bio_sectors(bio);
1159 r1_bio->state = 0;
1160 r1_bio->mddev = mddev;
1161 r1_bio->sector = bio->bi_iter.bi_sector;
1162}
1163
fd76863e 1164static inline struct r1bio *
689389a0 1165alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1166{
1167 struct r1conf *conf = mddev->private;
1168 struct r1bio *r1_bio;
1169
1170 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
689389a0
N
1171 /* Ensure no bio records IO_BLOCKED */
1172 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1173 init_r1bio(r1_bio, mddev, bio);
fd76863e 1174 return r1_bio;
1175}
1176
c230e7e5 1177static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1178 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1179{
e8096360 1180 struct r1conf *conf = mddev->private;
0eaf822c 1181 struct raid1_info *mirror;
1da177e4 1182 struct bio *read_bio;
3b046a97
RL
1183 struct bitmap *bitmap = mddev->bitmap;
1184 const int op = bio_op(bio);
1185 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1186 int max_sectors;
1187 int rdisk;
689389a0
N
1188 bool print_msg = !!r1_bio;
1189 char b[BDEVNAME_SIZE];
3b046a97 1190
fd76863e 1191 /*
689389a0
N
1192 * If r1_bio is set, we are blocking the raid1d thread
1193 * so there is a tiny risk of deadlock. So ask for
1194 * emergency memory if needed.
fd76863e 1195 */
689389a0 1196 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1197
689389a0
N
1198 if (print_msg) {
1199 /* Need to get the block device name carefully */
1200 struct md_rdev *rdev;
1201 rcu_read_lock();
1202 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1203 if (rdev)
1204 bdevname(rdev->bdev, b);
1205 else
1206 strcpy(b, "???");
1207 rcu_read_unlock();
1208 }
3b046a97 1209
fd76863e 1210 /*
fd76863e 1211 * Still need barrier for READ in case that whole
1212 * array is frozen.
fd76863e 1213 */
fd76863e 1214 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1215
689389a0
N
1216 if (!r1_bio)
1217 r1_bio = alloc_r1bio(mddev, bio);
1218 else
1219 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1220 r1_bio->sectors = max_read_sectors;
fd76863e 1221
1222 /*
1223 * make_request() can abort the operation when read-ahead is being
1224 * used and no empty request is available.
1225 */
3b046a97
RL
1226 rdisk = read_balance(conf, r1_bio, &max_sectors);
1227
1228 if (rdisk < 0) {
1229 /* couldn't find anywhere to read from */
689389a0
N
1230 if (print_msg) {
1231 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1232 mdname(mddev),
1233 b,
1234 (unsigned long long)r1_bio->sector);
1235 }
3b046a97
RL
1236 raid_end_bio_io(r1_bio);
1237 return;
1238 }
1239 mirror = conf->mirrors + rdisk;
1240
689389a0
N
1241 if (print_msg)
1242 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243 mdname(mddev),
1244 (unsigned long long)r1_bio->sector,
1245 bdevname(mirror->rdev->bdev, b));
1246
3b046a97
RL
1247 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1248 bitmap) {
1249 /*
1250 * Reading from a write-mostly device must take care not to
1251 * over-take any writes that are 'behind'
1252 */
1253 raid1_log(mddev, "wait behind writes");
1254 wait_event(bitmap->behind_wait,
1255 atomic_read(&bitmap->behind_writes) == 0);
1256 }
c230e7e5
N
1257
1258 if (max_sectors < bio_sectors(bio)) {
1259 struct bio *split = bio_split(bio, max_sectors,
689389a0 1260 gfp, conf->bio_split);
c230e7e5
N
1261 bio_chain(split, bio);
1262 generic_make_request(bio);
1263 bio = split;
1264 r1_bio->master_bio = bio;
1265 r1_bio->sectors = max_sectors;
1266 }
1267
3b046a97 1268 r1_bio->read_disk = rdisk;
3b046a97 1269
689389a0 1270 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
3b046a97
RL
1271
1272 r1_bio->bios[rdisk] = read_bio;
1273
1274 read_bio->bi_iter.bi_sector = r1_bio->sector +
1275 mirror->rdev->data_offset;
1276 read_bio->bi_bdev = mirror->rdev->bdev;
1277 read_bio->bi_end_io = raid1_end_read_request;
1278 bio_set_op_attrs(read_bio, op, do_sync);
1279 if (test_bit(FailFast, &mirror->rdev->flags) &&
1280 test_bit(R1BIO_FailFast, &r1_bio->state))
1281 read_bio->bi_opf |= MD_FAILFAST;
1282 read_bio->bi_private = r1_bio;
1283
1284 if (mddev->gendisk)
1285 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1286 read_bio, disk_devt(mddev->gendisk),
1287 r1_bio->sector);
1288
c230e7e5 1289 generic_make_request(read_bio);
3b046a97
RL
1290}
1291
c230e7e5
N
1292static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293 int max_write_sectors)
3b046a97
RL
1294{
1295 struct r1conf *conf = mddev->private;
fd76863e 1296 struct r1bio *r1_bio;
1f68f0c4 1297 int i, disks;
3b046a97 1298 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1299 unsigned long flags;
3cb03002 1300 struct md_rdev *blocked_rdev;
f54a9d0e
N
1301 struct blk_plug_cb *cb;
1302 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1303 int first_clone;
1f68f0c4 1304 int max_sectors;
191ea9b2 1305
1da177e4
LT
1306 /*
1307 * Register the new request and wait if the reconstruction
1308 * thread has put up a bar for new requests.
1309 * Continue immediately if no resync is active currently.
1310 */
62de608d 1311
3d310eb7 1312
3b046a97 1313 if ((bio_end_sector(bio) > mddev->suspend_lo &&
589a1c49
GR
1314 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1315 (mddev_is_clustered(mddev) &&
90382ed9 1316 md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1317 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1318
1319 /*
1320 * As the suspend_* range is controlled by userspace, we want
1321 * an interruptible wait.
6eef4b21
N
1322 */
1323 DEFINE_WAIT(w);
1324 for (;;) {
f9c79bc0 1325 sigset_t full, old;
6eef4b21
N
1326 prepare_to_wait(&conf->wait_barrier,
1327 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1328 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1329 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1330 (mddev_is_clustered(mddev) &&
90382ed9 1331 !md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1332 bio->bi_iter.bi_sector,
1333 bio_end_sector(bio))))
6eef4b21 1334 break;
f9c79bc0
MP
1335 sigfillset(&full);
1336 sigprocmask(SIG_BLOCK, &full, &old);
6eef4b21 1337 schedule();
f9c79bc0 1338 sigprocmask(SIG_SETMASK, &old, NULL);
6eef4b21
N
1339 }
1340 finish_wait(&conf->wait_barrier, &w);
1341 }
fd76863e 1342 wait_barrier(conf, bio->bi_iter.bi_sector);
1343
689389a0 1344 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1345 r1_bio->sectors = max_write_sectors;
1da177e4 1346
34db0cd6
N
1347 if (conf->pending_count >= max_queued_requests) {
1348 md_wakeup_thread(mddev->thread);
578b54ad 1349 raid1_log(mddev, "wait queued");
34db0cd6
N
1350 wait_event(conf->wait_barrier,
1351 conf->pending_count < max_queued_requests);
1352 }
1f68f0c4 1353 /* first select target devices under rcu_lock and
1da177e4
LT
1354 * inc refcount on their rdev. Record them by setting
1355 * bios[x] to bio
1f68f0c4
N
1356 * If there are known/acknowledged bad blocks on any device on
1357 * which we have seen a write error, we want to avoid writing those
1358 * blocks.
1359 * This potentially requires several writes to write around
1360 * the bad blocks. Each set of writes gets it's own r1bio
1361 * with a set of bios attached.
1da177e4 1362 */
c3b328ac 1363
8f19ccb2 1364 disks = conf->raid_disks * 2;
6bfe0b49
DW
1365 retry_write:
1366 blocked_rdev = NULL;
1da177e4 1367 rcu_read_lock();
1f68f0c4 1368 max_sectors = r1_bio->sectors;
1da177e4 1369 for (i = 0; i < disks; i++) {
3cb03002 1370 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1371 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372 atomic_inc(&rdev->nr_pending);
1373 blocked_rdev = rdev;
1374 break;
1375 }
1f68f0c4 1376 r1_bio->bios[i] = NULL;
8ae12666 1377 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1378 if (i < conf->raid_disks)
1379 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1380 continue;
1381 }
1382
1383 atomic_inc(&rdev->nr_pending);
1384 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385 sector_t first_bad;
1386 int bad_sectors;
1387 int is_bad;
1388
3b046a97 1389 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1390 &first_bad, &bad_sectors);
1391 if (is_bad < 0) {
1392 /* mustn't write here until the bad block is
1393 * acknowledged*/
1394 set_bit(BlockedBadBlocks, &rdev->flags);
1395 blocked_rdev = rdev;
1396 break;
1397 }
1398 if (is_bad && first_bad <= r1_bio->sector) {
1399 /* Cannot write here at all */
1400 bad_sectors -= (r1_bio->sector - first_bad);
1401 if (bad_sectors < max_sectors)
1402 /* mustn't write more than bad_sectors
1403 * to other devices yet
1404 */
1405 max_sectors = bad_sectors;
03c902e1 1406 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1407 /* We don't set R1BIO_Degraded as that
1408 * only applies if the disk is
1409 * missing, so it might be re-added,
1410 * and we want to know to recover this
1411 * chunk.
1412 * In this case the device is here,
1413 * and the fact that this chunk is not
1414 * in-sync is recorded in the bad
1415 * block log
1416 */
1417 continue;
964147d5 1418 }
1f68f0c4
N
1419 if (is_bad) {
1420 int good_sectors = first_bad - r1_bio->sector;
1421 if (good_sectors < max_sectors)
1422 max_sectors = good_sectors;
1423 }
1424 }
1425 r1_bio->bios[i] = bio;
1da177e4
LT
1426 }
1427 rcu_read_unlock();
1428
6bfe0b49
DW
1429 if (unlikely(blocked_rdev)) {
1430 /* Wait for this device to become unblocked */
1431 int j;
1432
1433 for (j = 0; j < i; j++)
1434 if (r1_bio->bios[j])
1435 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1436 r1_bio->state = 0;
fd76863e 1437 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1438 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1439 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1440 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1441 goto retry_write;
1442 }
1443
c230e7e5
N
1444 if (max_sectors < bio_sectors(bio)) {
1445 struct bio *split = bio_split(bio, max_sectors,
1446 GFP_NOIO, conf->bio_split);
1447 bio_chain(split, bio);
1448 generic_make_request(bio);
1449 bio = split;
1450 r1_bio->master_bio = bio;
1f68f0c4 1451 r1_bio->sectors = max_sectors;
191ea9b2 1452 }
4b6d287f 1453
4e78064f 1454 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1455 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1456
1f68f0c4 1457 first_clone = 1;
d8c84c4f 1458
1da177e4 1459 for (i = 0; i < disks; i++) {
8e58e327 1460 struct bio *mbio = NULL;
1da177e4
LT
1461 if (!r1_bio->bios[i])
1462 continue;
1463
1f68f0c4
N
1464
1465 if (first_clone) {
1466 /* do behind I/O ?
1467 * Not if there are too many, or cannot
1468 * allocate memory, or a reader on WriteMostly
1469 * is waiting for behind writes to flush */
1470 if (bitmap &&
1471 (atomic_read(&bitmap->behind_writes)
1472 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1473 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1474 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1475 }
1f68f0c4
N
1476
1477 bitmap_startwrite(bitmap, r1_bio->sector,
1478 r1_bio->sectors,
1479 test_bit(R1BIO_BehindIO,
1480 &r1_bio->state));
1481 first_clone = 0;
1482 }
8e58e327 1483
16d56e2f
SL
1484 if (r1_bio->behind_master_bio)
1485 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1486 GFP_NOIO, mddev->bio_set);
1487 else
1488 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
8e58e327 1489
841c1316 1490 if (r1_bio->behind_master_bio) {
4b6d287f
N
1491 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1492 atomic_inc(&r1_bio->behind_remaining);
1493 }
1494
1f68f0c4
N
1495 r1_bio->bios[i] = mbio;
1496
4f024f37 1497 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1498 conf->mirrors[i].rdev->data_offset);
109e3765 1499 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1f68f0c4 1500 mbio->bi_end_io = raid1_end_write_request;
a682e003 1501 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1502 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1503 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1504 conf->raid_disks - mddev->degraded > 1)
1505 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1506 mbio->bi_private = r1_bio;
1507
1da177e4 1508 atomic_inc(&r1_bio->remaining);
f54a9d0e 1509
109e3765
N
1510 if (mddev->gendisk)
1511 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1512 mbio, disk_devt(mddev->gendisk),
1513 r1_bio->sector);
1514 /* flush_pending_writes() needs access to the rdev so...*/
1515 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1516
f54a9d0e
N
1517 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1518 if (cb)
1519 plug = container_of(cb, struct raid1_plug_cb, cb);
1520 else
1521 plug = NULL;
f54a9d0e
N
1522 if (plug) {
1523 bio_list_add(&plug->pending, mbio);
1524 plug->pending_cnt++;
1525 } else {
23b245c0 1526 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1527 bio_list_add(&conf->pending_bio_list, mbio);
1528 conf->pending_count++;
23b245c0 1529 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1530 md_wakeup_thread(mddev->thread);
23b245c0 1531 }
1da177e4 1532 }
1f68f0c4 1533
079fa166
N
1534 r1_bio_write_done(r1_bio);
1535
1536 /* In case raid1d snuck in to freeze_array */
1537 wake_up(&conf->wait_barrier);
1da177e4
LT
1538}
1539
cc27b0c7 1540static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1541{
fd76863e 1542 sector_t sectors;
3b046a97 1543
aff8da09
SL
1544 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1545 md_flush_request(mddev, bio);
cc27b0c7 1546 return true;
aff8da09 1547 }
3b046a97 1548
c230e7e5
N
1549 /*
1550 * There is a limit to the maximum size, but
1551 * the read/write handler might find a lower limit
1552 * due to bad blocks. To avoid multiple splits,
1553 * we pass the maximum number of sectors down
1554 * and let the lower level perform the split.
1555 */
1556 sectors = align_to_barrier_unit_end(
1557 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1558
c230e7e5 1559 if (bio_data_dir(bio) == READ)
689389a0 1560 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1561 else {
1562 if (!md_write_start(mddev,bio))
1563 return false;
c230e7e5 1564 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1565 }
1566 return true;
3b046a97
RL
1567}
1568
849674e4 1569static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1570{
e8096360 1571 struct r1conf *conf = mddev->private;
1da177e4
LT
1572 int i;
1573
1574 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1575 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1576 rcu_read_lock();
1577 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1578 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1579 seq_printf(seq, "%s",
ddac7c7e
N
1580 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581 }
1582 rcu_read_unlock();
1da177e4
LT
1583 seq_printf(seq, "]");
1584}
1585
849674e4 1586static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1587{
1588 char b[BDEVNAME_SIZE];
e8096360 1589 struct r1conf *conf = mddev->private;
423f04d6 1590 unsigned long flags;
1da177e4
LT
1591
1592 /*
1593 * If it is not operational, then we have already marked it as dead
1594 * else if it is the last working disks, ignore the error, let the
1595 * next level up know.
1596 * else mark the drive as failed
1597 */
2e52d449 1598 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1599 if (test_bit(In_sync, &rdev->flags)
4044ba58 1600 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1601 /*
1602 * Don't fail the drive, act as though we were just a
4044ba58
N
1603 * normal single drive.
1604 * However don't try a recovery from this drive as
1605 * it is very likely to fail.
1da177e4 1606 */
5389042f 1607 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1608 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1609 return;
4044ba58 1610 }
de393cde 1611 set_bit(Blocked, &rdev->flags);
c04be0aa 1612 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1613 mddev->degraded++;
dd00a99e 1614 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1615 } else
1616 set_bit(Faulty, &rdev->flags);
423f04d6 1617 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1618 /*
1619 * if recovery is running, make sure it aborts.
1620 */
1621 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1622 set_mask_bits(&mddev->sb_flags, 0,
1623 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1624 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625 "md/raid1:%s: Operation continuing on %d devices.\n",
1626 mdname(mddev), bdevname(rdev->bdev, b),
1627 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1628}
1629
e8096360 1630static void print_conf(struct r1conf *conf)
1da177e4
LT
1631{
1632 int i;
1da177e4 1633
1d41c216 1634 pr_debug("RAID1 conf printout:\n");
1da177e4 1635 if (!conf) {
1d41c216 1636 pr_debug("(!conf)\n");
1da177e4
LT
1637 return;
1638 }
1d41c216
N
1639 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1640 conf->raid_disks);
1da177e4 1641
ddac7c7e 1642 rcu_read_lock();
1da177e4
LT
1643 for (i = 0; i < conf->raid_disks; i++) {
1644 char b[BDEVNAME_SIZE];
3cb03002 1645 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1646 if (rdev)
1d41c216
N
1647 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648 i, !test_bit(In_sync, &rdev->flags),
1649 !test_bit(Faulty, &rdev->flags),
1650 bdevname(rdev->bdev,b));
1da177e4 1651 }
ddac7c7e 1652 rcu_read_unlock();
1da177e4
LT
1653}
1654
e8096360 1655static void close_sync(struct r1conf *conf)
1da177e4 1656{
fd76863e 1657 wait_all_barriers(conf);
1658 allow_all_barriers(conf);
1da177e4
LT
1659
1660 mempool_destroy(conf->r1buf_pool);
1661 conf->r1buf_pool = NULL;
1662}
1663
fd01b88c 1664static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1665{
1666 int i;
e8096360 1667 struct r1conf *conf = mddev->private;
6b965620
N
1668 int count = 0;
1669 unsigned long flags;
1da177e4
LT
1670
1671 /*
f72ffdd6 1672 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1673 * and mark them readable.
1674 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1675 * device_lock used to avoid races with raid1_end_read_request
1676 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1677 */
423f04d6 1678 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1679 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1680 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1681 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682 if (repl
1aee41f6 1683 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1684 && repl->recovery_offset == MaxSector
1685 && !test_bit(Faulty, &repl->flags)
1686 && !test_and_set_bit(In_sync, &repl->flags)) {
1687 /* replacement has just become active */
1688 if (!rdev ||
1689 !test_and_clear_bit(In_sync, &rdev->flags))
1690 count++;
1691 if (rdev) {
1692 /* Replaced device not technically
1693 * faulty, but we need to be sure
1694 * it gets removed and never re-added
1695 */
1696 set_bit(Faulty, &rdev->flags);
1697 sysfs_notify_dirent_safe(
1698 rdev->sysfs_state);
1699 }
1700 }
ddac7c7e 1701 if (rdev
61e4947c 1702 && rdev->recovery_offset == MaxSector
ddac7c7e 1703 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1704 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1705 count++;
654e8b5a 1706 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1707 }
1708 }
6b965620
N
1709 mddev->degraded -= count;
1710 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1711
1712 print_conf(conf);
6b965620 1713 return count;
1da177e4
LT
1714}
1715
fd01b88c 1716static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1717{
e8096360 1718 struct r1conf *conf = mddev->private;
199050ea 1719 int err = -EEXIST;
41158c7e 1720 int mirror = 0;
0eaf822c 1721 struct raid1_info *p;
6c2fce2e 1722 int first = 0;
30194636 1723 int last = conf->raid_disks - 1;
1da177e4 1724
5389042f
N
1725 if (mddev->recovery_disabled == conf->recovery_disabled)
1726 return -EBUSY;
1727
1501efad
DW
1728 if (md_integrity_add_rdev(rdev, mddev))
1729 return -ENXIO;
1730
6c2fce2e
NB
1731 if (rdev->raid_disk >= 0)
1732 first = last = rdev->raid_disk;
1733
70bcecdb
GR
1734 /*
1735 * find the disk ... but prefer rdev->saved_raid_disk
1736 * if possible.
1737 */
1738 if (rdev->saved_raid_disk >= 0 &&
1739 rdev->saved_raid_disk >= first &&
1740 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741 first = last = rdev->saved_raid_disk;
1742
7ef449d1
N
1743 for (mirror = first; mirror <= last; mirror++) {
1744 p = conf->mirrors+mirror;
1745 if (!p->rdev) {
1da177e4 1746
9092c02d
JB
1747 if (mddev->gendisk)
1748 disk_stack_limits(mddev->gendisk, rdev->bdev,
1749 rdev->data_offset << 9);
1da177e4
LT
1750
1751 p->head_position = 0;
1752 rdev->raid_disk = mirror;
199050ea 1753 err = 0;
6aea114a
N
1754 /* As all devices are equivalent, we don't need a full recovery
1755 * if this was recently any drive of the array
1756 */
1757 if (rdev->saved_raid_disk < 0)
41158c7e 1758 conf->fullsync = 1;
d6065f7b 1759 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1760 break;
1761 }
7ef449d1
N
1762 if (test_bit(WantReplacement, &p->rdev->flags) &&
1763 p[conf->raid_disks].rdev == NULL) {
1764 /* Add this device as a replacement */
1765 clear_bit(In_sync, &rdev->flags);
1766 set_bit(Replacement, &rdev->flags);
1767 rdev->raid_disk = mirror;
1768 err = 0;
1769 conf->fullsync = 1;
1770 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771 break;
1772 }
1773 }
9092c02d 1774 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1775 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1776 print_conf(conf);
199050ea 1777 return err;
1da177e4
LT
1778}
1779
b8321b68 1780static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1781{
e8096360 1782 struct r1conf *conf = mddev->private;
1da177e4 1783 int err = 0;
b8321b68 1784 int number = rdev->raid_disk;
0eaf822c 1785 struct raid1_info *p = conf->mirrors + number;
1da177e4 1786
b014f14c
N
1787 if (rdev != p->rdev)
1788 p = conf->mirrors + conf->raid_disks + number;
1789
1da177e4 1790 print_conf(conf);
b8321b68 1791 if (rdev == p->rdev) {
b2d444d7 1792 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1793 atomic_read(&rdev->nr_pending)) {
1794 err = -EBUSY;
1795 goto abort;
1796 }
046abeed 1797 /* Only remove non-faulty devices if recovery
dfc70645
N
1798 * is not possible.
1799 */
1800 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1801 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1802 mddev->degraded < conf->raid_disks) {
1803 err = -EBUSY;
1804 goto abort;
1805 }
1da177e4 1806 p->rdev = NULL;
d787be40
N
1807 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808 synchronize_rcu();
1809 if (atomic_read(&rdev->nr_pending)) {
1810 /* lost the race, try later */
1811 err = -EBUSY;
1812 p->rdev = rdev;
1813 goto abort;
1814 }
1815 }
1816 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1817 /* We just removed a device that is being replaced.
1818 * Move down the replacement. We drain all IO before
1819 * doing this to avoid confusion.
1820 */
1821 struct md_rdev *repl =
1822 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1823 freeze_array(conf, 0);
8c7a2c2b
N
1824 clear_bit(Replacement, &repl->flags);
1825 p->rdev = repl;
1826 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1827 unfreeze_array(conf);
e5bc9c3c
GJ
1828 }
1829
1830 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1831 err = md_integrity_register(mddev);
1da177e4
LT
1832 }
1833abort:
1834
1835 print_conf(conf);
1836 return err;
1837}
1838
4246a0b6 1839static void end_sync_read(struct bio *bio)
1da177e4 1840{
98d30c58 1841 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1842
0fc280f6 1843 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1844
1da177e4
LT
1845 /*
1846 * we have read a block, now it needs to be re-written,
1847 * or re-read if the read failed.
1848 * We don't do much here, just schedule handling by raid1d
1849 */
4e4cbee9 1850 if (!bio->bi_status)
1da177e4 1851 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1852
1853 if (atomic_dec_and_test(&r1_bio->remaining))
1854 reschedule_retry(r1_bio);
1da177e4
LT
1855}
1856
4246a0b6 1857static void end_sync_write(struct bio *bio)
1da177e4 1858{
4e4cbee9 1859 int uptodate = !bio->bi_status;
98d30c58 1860 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1861 struct mddev *mddev = r1_bio->mddev;
e8096360 1862 struct r1conf *conf = mddev->private;
4367af55
N
1863 sector_t first_bad;
1864 int bad_sectors;
854abd75 1865 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1866
6b1117d5 1867 if (!uptodate) {
57dab0bd 1868 sector_t sync_blocks = 0;
6b1117d5
N
1869 sector_t s = r1_bio->sector;
1870 long sectors_to_go = r1_bio->sectors;
1871 /* make sure these bits doesn't get cleared. */
1872 do {
5e3db645 1873 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1874 &sync_blocks, 1);
1875 s += sync_blocks;
1876 sectors_to_go -= sync_blocks;
1877 } while (sectors_to_go > 0);
854abd75
N
1878 set_bit(WriteErrorSeen, &rdev->flags);
1879 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1880 set_bit(MD_RECOVERY_NEEDED, &
1881 mddev->recovery);
d8f05d29 1882 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1883 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1884 &first_bad, &bad_sectors) &&
1885 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1886 r1_bio->sector,
1887 r1_bio->sectors,
1888 &first_bad, &bad_sectors)
1889 )
4367af55 1890 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1891
1da177e4 1892 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1893 int s = r1_bio->sectors;
d8f05d29
N
1894 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1895 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1896 reschedule_retry(r1_bio);
1897 else {
1898 put_buf(r1_bio);
1899 md_done_sync(mddev, s, uptodate);
1900 }
1da177e4 1901 }
1da177e4
LT
1902}
1903
3cb03002 1904static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1905 int sectors, struct page *page, int rw)
1906{
796a5cf0 1907 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1908 /* success */
1909 return 1;
19d67169 1910 if (rw == WRITE) {
d8f05d29 1911 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1912 if (!test_and_set_bit(WantReplacement,
1913 &rdev->flags))
1914 set_bit(MD_RECOVERY_NEEDED, &
1915 rdev->mddev->recovery);
1916 }
d8f05d29
N
1917 /* need to record an error - either for the block or the device */
1918 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1919 md_error(rdev->mddev, rdev);
1920 return 0;
1921}
1922
9f2c9d12 1923static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1924{
a68e5870
N
1925 /* Try some synchronous reads of other devices to get
1926 * good data, much like with normal read errors. Only
1927 * read into the pages we already have so we don't
1928 * need to re-issue the read request.
1929 * We don't need to freeze the array, because being in an
1930 * active sync request, there is no normal IO, and
1931 * no overlapping syncs.
06f60385
N
1932 * We don't need to check is_badblock() again as we
1933 * made sure that anything with a bad block in range
1934 * will have bi_end_io clear.
a68e5870 1935 */
fd01b88c 1936 struct mddev *mddev = r1_bio->mddev;
e8096360 1937 struct r1conf *conf = mddev->private;
a68e5870 1938 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1939 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1940 sector_t sect = r1_bio->sector;
1941 int sectors = r1_bio->sectors;
1942 int idx = 0;
2e52d449
N
1943 struct md_rdev *rdev;
1944
1945 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1946 if (test_bit(FailFast, &rdev->flags)) {
1947 /* Don't try recovering from here - just fail it
1948 * ... unless it is the last working device of course */
1949 md_error(mddev, rdev);
1950 if (test_bit(Faulty, &rdev->flags))
1951 /* Don't try to read from here, but make sure
1952 * put_buf does it's thing
1953 */
1954 bio->bi_end_io = end_sync_write;
1955 }
a68e5870
N
1956
1957 while(sectors) {
1958 int s = sectors;
1959 int d = r1_bio->read_disk;
1960 int success = 0;
78d7f5f7 1961 int start;
a68e5870
N
1962
1963 if (s > (PAGE_SIZE>>9))
1964 s = PAGE_SIZE >> 9;
1965 do {
1966 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1967 /* No rcu protection needed here devices
1968 * can only be removed when no resync is
1969 * active, and resync is currently active
1970 */
1971 rdev = conf->mirrors[d].rdev;
9d3d8011 1972 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 1973 pages[idx],
796a5cf0 1974 REQ_OP_READ, 0, false)) {
a68e5870
N
1975 success = 1;
1976 break;
1977 }
1978 }
1979 d++;
8f19ccb2 1980 if (d == conf->raid_disks * 2)
a68e5870
N
1981 d = 0;
1982 } while (!success && d != r1_bio->read_disk);
1983
78d7f5f7 1984 if (!success) {
a68e5870 1985 char b[BDEVNAME_SIZE];
3a9f28a5
N
1986 int abort = 0;
1987 /* Cannot read from anywhere, this block is lost.
1988 * Record a bad block on each device. If that doesn't
1989 * work just disable and interrupt the recovery.
1990 * Don't fail devices as that won't really help.
1991 */
1d41c216
N
1992 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993 mdname(mddev),
1994 bdevname(bio->bi_bdev, b),
1995 (unsigned long long)r1_bio->sector);
8f19ccb2 1996 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1997 rdev = conf->mirrors[d].rdev;
1998 if (!rdev || test_bit(Faulty, &rdev->flags))
1999 continue;
2000 if (!rdev_set_badblocks(rdev, sect, s, 0))
2001 abort = 1;
2002 }
2003 if (abort) {
d890fa2b
N
2004 conf->recovery_disabled =
2005 mddev->recovery_disabled;
3a9f28a5
N
2006 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2007 md_done_sync(mddev, r1_bio->sectors, 0);
2008 put_buf(r1_bio);
2009 return 0;
2010 }
2011 /* Try next page */
2012 sectors -= s;
2013 sect += s;
2014 idx++;
2015 continue;
d11c171e 2016 }
78d7f5f7
N
2017
2018 start = d;
2019 /* write it back and re-read */
2020 while (d != r1_bio->read_disk) {
2021 if (d == 0)
8f19ccb2 2022 d = conf->raid_disks * 2;
78d7f5f7
N
2023 d--;
2024 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2025 continue;
2026 rdev = conf->mirrors[d].rdev;
d8f05d29 2027 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2028 pages[idx],
d8f05d29 2029 WRITE) == 0) {
78d7f5f7
N
2030 r1_bio->bios[d]->bi_end_io = NULL;
2031 rdev_dec_pending(rdev, mddev);
9d3d8011 2032 }
78d7f5f7
N
2033 }
2034 d = start;
2035 while (d != r1_bio->read_disk) {
2036 if (d == 0)
8f19ccb2 2037 d = conf->raid_disks * 2;
78d7f5f7
N
2038 d--;
2039 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040 continue;
2041 rdev = conf->mirrors[d].rdev;
d8f05d29 2042 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2043 pages[idx],
d8f05d29 2044 READ) != 0)
9d3d8011 2045 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2046 }
a68e5870
N
2047 sectors -= s;
2048 sect += s;
2049 idx ++;
2050 }
78d7f5f7 2051 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2052 bio->bi_status = 0;
a68e5870
N
2053 return 1;
2054}
2055
c95e6385 2056static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2057{
2058 /* We have read all readable devices. If we haven't
2059 * got the block, then there is no hope left.
2060 * If we have, then we want to do a comparison
2061 * and skip the write if everything is the same.
2062 * If any blocks failed to read, then we need to
2063 * attempt an over-write
2064 */
fd01b88c 2065 struct mddev *mddev = r1_bio->mddev;
e8096360 2066 struct r1conf *conf = mddev->private;
a68e5870
N
2067 int primary;
2068 int i;
f4380a91 2069 int vcnt;
a68e5870 2070
30bc9b53
N
2071 /* Fix variable parts of all bios */
2072 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2073 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2074 blk_status_t status;
30bc9b53 2075 struct bio *b = r1_bio->bios[i];
98d30c58 2076 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2077 if (b->bi_end_io != end_sync_read)
2078 continue;
4246a0b6 2079 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2080 status = b->bi_status;
30bc9b53 2081 bio_reset(b);
4e4cbee9 2082 b->bi_status = status;
4f024f37 2083 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
2084 conf->mirrors[i].rdev->data_offset;
2085 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2086 b->bi_end_io = end_sync_read;
98d30c58
ML
2087 rp->raid_bio = r1_bio;
2088 b->bi_private = rp;
30bc9b53 2089
fb0eb5df
ML
2090 /* initialize bvec table again */
2091 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2092 }
8f19ccb2 2093 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2094 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2095 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2096 r1_bio->bios[primary]->bi_end_io = NULL;
2097 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2098 break;
2099 }
2100 r1_bio->read_disk = primary;
8f19ccb2 2101 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2102 int j;
78d7f5f7
N
2103 struct bio *pbio = r1_bio->bios[primary];
2104 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2105 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2106 struct page **ppages = get_resync_pages(pbio)->pages;
2107 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2108 struct bio_vec *bi;
8fc04e6e 2109 int page_len[RESYNC_PAGES] = { 0 };
a68e5870 2110
2aabaa65 2111 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2112 continue;
4246a0b6 2113 /* Now we can 'fixup' the error value */
4e4cbee9 2114 sbio->bi_status = 0;
78d7f5f7 2115
60928a91
ML
2116 bio_for_each_segment_all(bi, sbio, j)
2117 page_len[j] = bi->bv_len;
2118
4e4cbee9 2119 if (!status) {
78d7f5f7 2120 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2121 if (memcmp(page_address(ppages[j]),
2122 page_address(spages[j]),
60928a91 2123 page_len[j]))
78d7f5f7 2124 break;
69382e85 2125 }
78d7f5f7
N
2126 } else
2127 j = 0;
2128 if (j >= 0)
7f7583d4 2129 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2130 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2131 && !status)) {
78d7f5f7
N
2132 /* No need to write to this device. */
2133 sbio->bi_end_io = NULL;
2134 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2135 continue;
2136 }
d3b45c2a
KO
2137
2138 bio_copy_data(sbio, pbio);
78d7f5f7 2139 }
a68e5870
N
2140}
2141
9f2c9d12 2142static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2143{
e8096360 2144 struct r1conf *conf = mddev->private;
a68e5870 2145 int i;
8f19ccb2 2146 int disks = conf->raid_disks * 2;
037d2ff6 2147 struct bio *wbio;
a68e5870 2148
a68e5870
N
2149 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2150 /* ouch - failed to read all of that. */
2151 if (!fix_sync_read_error(r1_bio))
2152 return;
7ca78d57
N
2153
2154 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2155 process_checks(r1_bio);
2156
d11c171e
N
2157 /*
2158 * schedule writes
2159 */
1da177e4
LT
2160 atomic_set(&r1_bio->remaining, 1);
2161 for (i = 0; i < disks ; i++) {
2162 wbio = r1_bio->bios[i];
3e198f78
N
2163 if (wbio->bi_end_io == NULL ||
2164 (wbio->bi_end_io == end_sync_read &&
2165 (i == r1_bio->read_disk ||
2166 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2167 continue;
0c9d5b12
N
2168 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2169 continue;
1da177e4 2170
796a5cf0 2171 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2172 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2173 wbio->bi_opf |= MD_FAILFAST;
2174
3e198f78 2175 wbio->bi_end_io = end_sync_write;
1da177e4 2176 atomic_inc(&r1_bio->remaining);
aa8b57aa 2177 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2178
1da177e4
LT
2179 generic_make_request(wbio);
2180 }
2181
2182 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2183 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2184 int s = r1_bio->sectors;
2185 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2186 test_bit(R1BIO_WriteError, &r1_bio->state))
2187 reschedule_retry(r1_bio);
2188 else {
2189 put_buf(r1_bio);
2190 md_done_sync(mddev, s, 1);
2191 }
1da177e4
LT
2192 }
2193}
2194
2195/*
2196 * This is a kernel thread which:
2197 *
2198 * 1. Retries failed read operations on working mirrors.
2199 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2200 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2201 */
2202
e8096360 2203static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2204 sector_t sect, int sectors)
2205{
fd01b88c 2206 struct mddev *mddev = conf->mddev;
867868fb
N
2207 while(sectors) {
2208 int s = sectors;
2209 int d = read_disk;
2210 int success = 0;
2211 int start;
3cb03002 2212 struct md_rdev *rdev;
867868fb
N
2213
2214 if (s > (PAGE_SIZE>>9))
2215 s = PAGE_SIZE >> 9;
2216
2217 do {
d2eb35ac
N
2218 sector_t first_bad;
2219 int bad_sectors;
2220
707a6a42
N
2221 rcu_read_lock();
2222 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2223 if (rdev &&
da8840a7 2224 (test_bit(In_sync, &rdev->flags) ||
2225 (!test_bit(Faulty, &rdev->flags) &&
2226 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2227 is_badblock(rdev, sect, s,
707a6a42
N
2228 &first_bad, &bad_sectors) == 0) {
2229 atomic_inc(&rdev->nr_pending);
2230 rcu_read_unlock();
2231 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2232 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2233 success = 1;
2234 rdev_dec_pending(rdev, mddev);
2235 if (success)
2236 break;
2237 } else
2238 rcu_read_unlock();
2239 d++;
2240 if (d == conf->raid_disks * 2)
2241 d = 0;
867868fb
N
2242 } while (!success && d != read_disk);
2243
2244 if (!success) {
d8f05d29 2245 /* Cannot read from anywhere - mark it bad */
3cb03002 2246 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2247 if (!rdev_set_badblocks(rdev, sect, s, 0))
2248 md_error(mddev, rdev);
867868fb
N
2249 break;
2250 }
2251 /* write it back and re-read */
2252 start = d;
2253 while (d != read_disk) {
2254 if (d==0)
8f19ccb2 2255 d = conf->raid_disks * 2;
867868fb 2256 d--;
707a6a42
N
2257 rcu_read_lock();
2258 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2259 if (rdev &&
707a6a42
N
2260 !test_bit(Faulty, &rdev->flags)) {
2261 atomic_inc(&rdev->nr_pending);
2262 rcu_read_unlock();
d8f05d29
N
2263 r1_sync_page_io(rdev, sect, s,
2264 conf->tmppage, WRITE);
707a6a42
N
2265 rdev_dec_pending(rdev, mddev);
2266 } else
2267 rcu_read_unlock();
867868fb
N
2268 }
2269 d = start;
2270 while (d != read_disk) {
2271 char b[BDEVNAME_SIZE];
2272 if (d==0)
8f19ccb2 2273 d = conf->raid_disks * 2;
867868fb 2274 d--;
707a6a42
N
2275 rcu_read_lock();
2276 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2277 if (rdev &&
b8cb6b4c 2278 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2279 atomic_inc(&rdev->nr_pending);
2280 rcu_read_unlock();
d8f05d29
N
2281 if (r1_sync_page_io(rdev, sect, s,
2282 conf->tmppage, READ)) {
867868fb 2283 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2284 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2285 mdname(mddev), s,
2286 (unsigned long long)(sect +
2287 rdev->data_offset),
2288 bdevname(rdev->bdev, b));
867868fb 2289 }
707a6a42
N
2290 rdev_dec_pending(rdev, mddev);
2291 } else
2292 rcu_read_unlock();
867868fb
N
2293 }
2294 sectors -= s;
2295 sect += s;
2296 }
2297}
2298
9f2c9d12 2299static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2300{
fd01b88c 2301 struct mddev *mddev = r1_bio->mddev;
e8096360 2302 struct r1conf *conf = mddev->private;
3cb03002 2303 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2304
2305 /* bio has the data to be written to device 'i' where
2306 * we just recently had a write error.
2307 * We repeatedly clone the bio and trim down to one block,
2308 * then try the write. Where the write fails we record
2309 * a bad block.
2310 * It is conceivable that the bio doesn't exactly align with
2311 * blocks. We must handle this somehow.
2312 *
2313 * We currently own a reference on the rdev.
2314 */
2315
2316 int block_sectors;
2317 sector_t sector;
2318 int sectors;
2319 int sect_to_write = r1_bio->sectors;
2320 int ok = 1;
2321
2322 if (rdev->badblocks.shift < 0)
2323 return 0;
2324
ab713cdc
ND
2325 block_sectors = roundup(1 << rdev->badblocks.shift,
2326 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2327 sector = r1_bio->sector;
2328 sectors = ((sector + block_sectors)
2329 & ~(sector_t)(block_sectors - 1))
2330 - sector;
2331
cd5ff9a1
N
2332 while (sect_to_write) {
2333 struct bio *wbio;
2334 if (sectors > sect_to_write)
2335 sectors = sect_to_write;
2336 /* Write at 'sector' for 'sectors'*/
2337
b783863f 2338 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2339 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2340 GFP_NOIO,
2341 mddev->bio_set);
b783863f 2342 } else {
d7a10308
ML
2343 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2344 mddev->bio_set);
b783863f
KO
2345 }
2346
796a5cf0 2347 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2348 wbio->bi_iter.bi_sector = r1_bio->sector;
2349 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2350
6678d83f 2351 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2352 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2353 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2354
2355 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2356 /* failure! */
2357 ok = rdev_set_badblocks(rdev, sector,
2358 sectors, 0)
2359 && ok;
2360
2361 bio_put(wbio);
2362 sect_to_write -= sectors;
2363 sector += sectors;
2364 sectors = block_sectors;
2365 }
2366 return ok;
2367}
2368
e8096360 2369static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2370{
2371 int m;
2372 int s = r1_bio->sectors;
8f19ccb2 2373 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2374 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2375 struct bio *bio = r1_bio->bios[m];
2376 if (bio->bi_end_io == NULL)
2377 continue;
4e4cbee9 2378 if (!bio->bi_status &&
62096bce 2379 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2380 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2381 }
4e4cbee9 2382 if (bio->bi_status &&
62096bce
N
2383 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2384 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2385 md_error(conf->mddev, rdev);
2386 }
2387 }
2388 put_buf(r1_bio);
2389 md_done_sync(conf->mddev, s, 1);
2390}
2391
e8096360 2392static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2393{
fd76863e 2394 int m, idx;
55ce74d4 2395 bool fail = false;
fd76863e 2396
8f19ccb2 2397 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2398 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2399 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2400 rdev_clear_badblocks(rdev,
2401 r1_bio->sector,
c6563a8c 2402 r1_bio->sectors, 0);
62096bce
N
2403 rdev_dec_pending(rdev, conf->mddev);
2404 } else if (r1_bio->bios[m] != NULL) {
2405 /* This drive got a write error. We need to
2406 * narrow down and record precise write
2407 * errors.
2408 */
55ce74d4 2409 fail = true;
62096bce
N
2410 if (!narrow_write_error(r1_bio, m)) {
2411 md_error(conf->mddev,
2412 conf->mirrors[m].rdev);
2413 /* an I/O failed, we can't clear the bitmap */
2414 set_bit(R1BIO_Degraded, &r1_bio->state);
2415 }
2416 rdev_dec_pending(conf->mirrors[m].rdev,
2417 conf->mddev);
2418 }
55ce74d4
N
2419 if (fail) {
2420 spin_lock_irq(&conf->device_lock);
2421 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2422 idx = sector_to_idx(r1_bio->sector);
824e47da 2423 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2424 spin_unlock_irq(&conf->device_lock);
824e47da 2425 /*
2426 * In case freeze_array() is waiting for condition
2427 * get_unqueued_pending() == extra to be true.
2428 */
2429 wake_up(&conf->wait_barrier);
55ce74d4 2430 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2431 } else {
2432 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2433 close_write(r1_bio);
55ce74d4 2434 raid_end_bio_io(r1_bio);
bd8688a1 2435 }
62096bce
N
2436}
2437
e8096360 2438static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2439{
fd01b88c 2440 struct mddev *mddev = conf->mddev;
62096bce 2441 struct bio *bio;
3cb03002 2442 struct md_rdev *rdev;
109e3765
N
2443 dev_t bio_dev;
2444 sector_t bio_sector;
62096bce
N
2445
2446 clear_bit(R1BIO_ReadError, &r1_bio->state);
2447 /* we got a read error. Maybe the drive is bad. Maybe just
2448 * the block and we can fix it.
2449 * We freeze all other IO, and try reading the block from
2450 * other devices. When we find one, we re-write
2451 * and check it that fixes the read error.
2452 * This is all done synchronously while the array is
2453 * frozen
2454 */
7449f699
TM
2455
2456 bio = r1_bio->bios[r1_bio->read_disk];
109e3765
N
2457 bio_dev = bio->bi_bdev->bd_dev;
2458 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2459 bio_put(bio);
2460 r1_bio->bios[r1_bio->read_disk] = NULL;
2461
2e52d449
N
2462 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2463 if (mddev->ro == 0
2464 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2465 freeze_array(conf, 1);
62096bce
N
2466 fix_read_error(conf, r1_bio->read_disk,
2467 r1_bio->sector, r1_bio->sectors);
2468 unfreeze_array(conf);
7449f699
TM
2469 } else {
2470 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2471 }
2472
2e52d449 2473 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2474 allow_barrier(conf, r1_bio->sector);
2475 bio = r1_bio->master_bio;
62096bce 2476
689389a0
N
2477 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2478 r1_bio->state = 0;
2479 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2480}
2481
4ed8731d 2482static void raid1d(struct md_thread *thread)
1da177e4 2483{
4ed8731d 2484 struct mddev *mddev = thread->mddev;
9f2c9d12 2485 struct r1bio *r1_bio;
1da177e4 2486 unsigned long flags;
e8096360 2487 struct r1conf *conf = mddev->private;
1da177e4 2488 struct list_head *head = &conf->retry_list;
e1dfa0a2 2489 struct blk_plug plug;
fd76863e 2490 int idx;
1da177e4
LT
2491
2492 md_check_recovery(mddev);
e1dfa0a2 2493
55ce74d4 2494 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2495 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2496 LIST_HEAD(tmp);
2497 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2498 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2499 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2500 spin_unlock_irqrestore(&conf->device_lock, flags);
2501 while (!list_empty(&tmp)) {
a452744b
MP
2502 r1_bio = list_first_entry(&tmp, struct r1bio,
2503 retry_list);
55ce74d4 2504 list_del(&r1_bio->retry_list);
fd76863e 2505 idx = sector_to_idx(r1_bio->sector);
824e47da 2506 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2507 if (mddev->degraded)
2508 set_bit(R1BIO_Degraded, &r1_bio->state);
2509 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2510 close_write(r1_bio);
55ce74d4
N
2511 raid_end_bio_io(r1_bio);
2512 }
2513 }
2514
e1dfa0a2 2515 blk_start_plug(&plug);
1da177e4 2516 for (;;) {
191ea9b2 2517
0021b7bc 2518 flush_pending_writes(conf);
191ea9b2 2519
a35e63ef
N
2520 spin_lock_irqsave(&conf->device_lock, flags);
2521 if (list_empty(head)) {
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2523 break;
a35e63ef 2524 }
9f2c9d12 2525 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2526 list_del(head->prev);
fd76863e 2527 idx = sector_to_idx(r1_bio->sector);
824e47da 2528 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2529 spin_unlock_irqrestore(&conf->device_lock, flags);
2530
2531 mddev = r1_bio->mddev;
070ec55d 2532 conf = mddev->private;
4367af55 2533 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2534 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2535 test_bit(R1BIO_WriteError, &r1_bio->state))
2536 handle_sync_write_finished(conf, r1_bio);
2537 else
4367af55 2538 sync_request_write(mddev, r1_bio);
cd5ff9a1 2539 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2540 test_bit(R1BIO_WriteError, &r1_bio->state))
2541 handle_write_finished(conf, r1_bio);
2542 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2543 handle_read_error(conf, r1_bio);
2544 else
c230e7e5 2545 WARN_ON_ONCE(1);
62096bce 2546
1d9d5241 2547 cond_resched();
2953079c 2548 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2549 md_check_recovery(mddev);
1da177e4 2550 }
e1dfa0a2 2551 blk_finish_plug(&plug);
1da177e4
LT
2552}
2553
e8096360 2554static int init_resync(struct r1conf *conf)
1da177e4
LT
2555{
2556 int buffs;
2557
2558 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2559 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2560 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2561 conf->poolinfo);
2562 if (!conf->r1buf_pool)
2563 return -ENOMEM;
1da177e4
LT
2564 return 0;
2565}
2566
2f7e03ba
SL
2567static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2568{
2569 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2570 struct resync_pages *rps;
2571 struct bio *bio;
2572 int i;
2573
2574 for (i = conf->poolinfo->raid_disks; i--; ) {
2575 bio = r1bio->bios[i];
2576 rps = bio->bi_private;
2577 bio_reset(bio);
2578 bio->bi_private = rps;
2579 }
2580 r1bio->master_bio = NULL;
2581 return r1bio;
2582}
2583
1da177e4
LT
2584/*
2585 * perform a "sync" on one "block"
2586 *
2587 * We need to make sure that no normal I/O request - particularly write
2588 * requests - conflict with active sync requests.
2589 *
2590 * This is achieved by tracking pending requests and a 'barrier' concept
2591 * that can be installed to exclude normal IO requests.
2592 */
2593
849674e4
SL
2594static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2595 int *skipped)
1da177e4 2596{
e8096360 2597 struct r1conf *conf = mddev->private;
9f2c9d12 2598 struct r1bio *r1_bio;
1da177e4
LT
2599 struct bio *bio;
2600 sector_t max_sector, nr_sectors;
3e198f78 2601 int disk = -1;
1da177e4 2602 int i;
3e198f78
N
2603 int wonly = -1;
2604 int write_targets = 0, read_targets = 0;
57dab0bd 2605 sector_t sync_blocks;
e3b9703e 2606 int still_degraded = 0;
06f60385
N
2607 int good_sectors = RESYNC_SECTORS;
2608 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2609 int idx = sector_to_idx(sector_nr);
022e510f 2610 int page_idx = 0;
1da177e4
LT
2611
2612 if (!conf->r1buf_pool)
2613 if (init_resync(conf))
57afd89f 2614 return 0;
1da177e4 2615
58c0fed4 2616 max_sector = mddev->dev_sectors;
1da177e4 2617 if (sector_nr >= max_sector) {
191ea9b2
N
2618 /* If we aborted, we need to abort the
2619 * sync on the 'current' bitmap chunk (there will
2620 * only be one in raid1 resync.
2621 * We can find the current addess in mddev->curr_resync
2622 */
6a806c51
N
2623 if (mddev->curr_resync < max_sector) /* aborted */
2624 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2625 &sync_blocks, 1);
6a806c51 2626 else /* completed sync */
191ea9b2 2627 conf->fullsync = 0;
6a806c51
N
2628
2629 bitmap_close_sync(mddev->bitmap);
1da177e4 2630 close_sync(conf);
c40f341f
GR
2631
2632 if (mddev_is_clustered(mddev)) {
2633 conf->cluster_sync_low = 0;
2634 conf->cluster_sync_high = 0;
c40f341f 2635 }
1da177e4
LT
2636 return 0;
2637 }
2638
07d84d10
N
2639 if (mddev->bitmap == NULL &&
2640 mddev->recovery_cp == MaxSector &&
6394cca5 2641 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2642 conf->fullsync == 0) {
2643 *skipped = 1;
2644 return max_sector - sector_nr;
2645 }
6394cca5
N
2646 /* before building a request, check if we can skip these blocks..
2647 * This call the bitmap_start_sync doesn't actually record anything
2648 */
e3b9703e 2649 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2650 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2651 /* We can skip this block, and probably several more */
2652 *skipped = 1;
2653 return sync_blocks;
2654 }
17999be4 2655
7ac50447
TM
2656 /*
2657 * If there is non-resync activity waiting for a turn, then let it
2658 * though before starting on this new sync request.
2659 */
824e47da 2660 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2661 schedule_timeout_uninterruptible(1);
2662
c40f341f
GR
2663 /* we are incrementing sector_nr below. To be safe, we check against
2664 * sector_nr + two times RESYNC_SECTORS
2665 */
2666
2667 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2668 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2f7e03ba 2669 r1_bio = raid1_alloc_init_r1buf(conf);
17999be4 2670
c2fd4c94 2671 raise_barrier(conf, sector_nr);
1da177e4 2672
3e198f78 2673 rcu_read_lock();
1da177e4 2674 /*
3e198f78
N
2675 * If we get a correctably read error during resync or recovery,
2676 * we might want to read from a different device. So we
2677 * flag all drives that could conceivably be read from for READ,
2678 * and any others (which will be non-In_sync devices) for WRITE.
2679 * If a read fails, we try reading from something else for which READ
2680 * is OK.
1da177e4 2681 */
1da177e4 2682
1da177e4
LT
2683 r1_bio->mddev = mddev;
2684 r1_bio->sector = sector_nr;
191ea9b2 2685 r1_bio->state = 0;
1da177e4 2686 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2687 /* make sure good_sectors won't go across barrier unit boundary */
2688 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2689
8f19ccb2 2690 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2691 struct md_rdev *rdev;
1da177e4 2692 bio = r1_bio->bios[i];
1da177e4 2693
3e198f78
N
2694 rdev = rcu_dereference(conf->mirrors[i].rdev);
2695 if (rdev == NULL ||
06f60385 2696 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2697 if (i < conf->raid_disks)
2698 still_degraded = 1;
3e198f78 2699 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2700 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2701 bio->bi_end_io = end_sync_write;
2702 write_targets ++;
3e198f78
N
2703 } else {
2704 /* may need to read from here */
06f60385
N
2705 sector_t first_bad = MaxSector;
2706 int bad_sectors;
2707
2708 if (is_badblock(rdev, sector_nr, good_sectors,
2709 &first_bad, &bad_sectors)) {
2710 if (first_bad > sector_nr)
2711 good_sectors = first_bad - sector_nr;
2712 else {
2713 bad_sectors -= (sector_nr - first_bad);
2714 if (min_bad == 0 ||
2715 min_bad > bad_sectors)
2716 min_bad = bad_sectors;
2717 }
2718 }
2719 if (sector_nr < first_bad) {
2720 if (test_bit(WriteMostly, &rdev->flags)) {
2721 if (wonly < 0)
2722 wonly = i;
2723 } else {
2724 if (disk < 0)
2725 disk = i;
2726 }
796a5cf0 2727 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2728 bio->bi_end_io = end_sync_read;
2729 read_targets++;
d57368af
AL
2730 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2731 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2732 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2733 /*
2734 * The device is suitable for reading (InSync),
2735 * but has bad block(s) here. Let's try to correct them,
2736 * if we are doing resync or repair. Otherwise, leave
2737 * this device alone for this sync request.
2738 */
796a5cf0 2739 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2740 bio->bi_end_io = end_sync_write;
2741 write_targets++;
3e198f78 2742 }
3e198f78 2743 }
06f60385
N
2744 if (bio->bi_end_io) {
2745 atomic_inc(&rdev->nr_pending);
4f024f37 2746 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385 2747 bio->bi_bdev = rdev->bdev;
2e52d449
N
2748 if (test_bit(FailFast, &rdev->flags))
2749 bio->bi_opf |= MD_FAILFAST;
06f60385 2750 }
1da177e4 2751 }
3e198f78
N
2752 rcu_read_unlock();
2753 if (disk < 0)
2754 disk = wonly;
2755 r1_bio->read_disk = disk;
191ea9b2 2756
06f60385
N
2757 if (read_targets == 0 && min_bad > 0) {
2758 /* These sectors are bad on all InSync devices, so we
2759 * need to mark them bad on all write targets
2760 */
2761 int ok = 1;
8f19ccb2 2762 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2763 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2764 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2765 ok = rdev_set_badblocks(rdev, sector_nr,
2766 min_bad, 0
2767 ) && ok;
2768 }
2953079c 2769 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2770 *skipped = 1;
2771 put_buf(r1_bio);
2772
2773 if (!ok) {
2774 /* Cannot record the badblocks, so need to
2775 * abort the resync.
2776 * If there are multiple read targets, could just
2777 * fail the really bad ones ???
2778 */
2779 conf->recovery_disabled = mddev->recovery_disabled;
2780 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2781 return 0;
2782 } else
2783 return min_bad;
2784
2785 }
2786 if (min_bad > 0 && min_bad < good_sectors) {
2787 /* only resync enough to reach the next bad->good
2788 * transition */
2789 good_sectors = min_bad;
2790 }
2791
3e198f78
N
2792 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2793 /* extra read targets are also write targets */
2794 write_targets += read_targets-1;
2795
2796 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2797 /* There is nowhere to write, so all non-sync
2798 * drives must be failed - so we are finished
2799 */
b7219ccb
N
2800 sector_t rv;
2801 if (min_bad > 0)
2802 max_sector = sector_nr + min_bad;
2803 rv = max_sector - sector_nr;
57afd89f 2804 *skipped = 1;
1da177e4 2805 put_buf(r1_bio);
1da177e4
LT
2806 return rv;
2807 }
2808
c6207277
N
2809 if (max_sector > mddev->resync_max)
2810 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2811 if (max_sector > sector_nr + good_sectors)
2812 max_sector = sector_nr + good_sectors;
1da177e4 2813 nr_sectors = 0;
289e99e8 2814 sync_blocks = 0;
1da177e4
LT
2815 do {
2816 struct page *page;
2817 int len = PAGE_SIZE;
2818 if (sector_nr + (len>>9) > max_sector)
2819 len = (max_sector - sector_nr) << 9;
2820 if (len == 0)
2821 break;
6a806c51
N
2822 if (sync_blocks == 0) {
2823 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2824 &sync_blocks, still_degraded) &&
2825 !conf->fullsync &&
2826 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2827 break;
7571ae88 2828 if ((len >> 9) > sync_blocks)
6a806c51 2829 len = sync_blocks<<9;
ab7a30c7 2830 }
191ea9b2 2831
8f19ccb2 2832 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2833 struct resync_pages *rp;
2834
1da177e4 2835 bio = r1_bio->bios[i];
98d30c58 2836 rp = get_resync_pages(bio);
1da177e4 2837 if (bio->bi_end_io) {
022e510f 2838 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2839
2840 /*
2841 * won't fail because the vec table is big
2842 * enough to hold all these pages
2843 */
2844 bio_add_page(bio, page, len, 0);
1da177e4
LT
2845 }
2846 }
2847 nr_sectors += len>>9;
2848 sector_nr += len>>9;
191ea9b2 2849 sync_blocks -= (len>>9);
022e510f 2850 } while (++page_idx < RESYNC_PAGES);
98d30c58 2851
1da177e4
LT
2852 r1_bio->sectors = nr_sectors;
2853
c40f341f
GR
2854 if (mddev_is_clustered(mddev) &&
2855 conf->cluster_sync_high < sector_nr + nr_sectors) {
2856 conf->cluster_sync_low = mddev->curr_resync_completed;
2857 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2858 /* Send resync message */
2859 md_cluster_ops->resync_info_update(mddev,
2860 conf->cluster_sync_low,
2861 conf->cluster_sync_high);
2862 }
2863
d11c171e
N
2864 /* For a user-requested sync, we read all readable devices and do a
2865 * compare
2866 */
2867 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2868 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2869 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2870 bio = r1_bio->bios[i];
2871 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2872 read_targets--;
ddac7c7e 2873 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2874 if (read_targets == 1)
2875 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2876 generic_make_request(bio);
2877 }
2878 }
2879 } else {
2880 atomic_set(&r1_bio->remaining, 1);
2881 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2882 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2883 if (read_targets == 1)
2884 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2885 generic_make_request(bio);
1da177e4 2886
d11c171e 2887 }
1da177e4
LT
2888 return nr_sectors;
2889}
2890
fd01b88c 2891static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2892{
2893 if (sectors)
2894 return sectors;
2895
2896 return mddev->dev_sectors;
2897}
2898
e8096360 2899static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2900{
e8096360 2901 struct r1conf *conf;
709ae487 2902 int i;
0eaf822c 2903 struct raid1_info *disk;
3cb03002 2904 struct md_rdev *rdev;
709ae487 2905 int err = -ENOMEM;
1da177e4 2906
e8096360 2907 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2908 if (!conf)
709ae487 2909 goto abort;
1da177e4 2910
fd76863e 2911 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2912 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2913 if (!conf->nr_pending)
2914 goto abort;
2915
2916 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2917 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2918 if (!conf->nr_waiting)
2919 goto abort;
2920
2921 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2922 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2923 if (!conf->nr_queued)
2924 goto abort;
2925
2926 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2927 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2928 if (!conf->barrier)
2929 goto abort;
2930
0eaf822c 2931 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2932 * mddev->raid_disks * 2,
1da177e4
LT
2933 GFP_KERNEL);
2934 if (!conf->mirrors)
709ae487 2935 goto abort;
1da177e4 2936
ddaf22ab
N
2937 conf->tmppage = alloc_page(GFP_KERNEL);
2938 if (!conf->tmppage)
709ae487 2939 goto abort;
ddaf22ab 2940
709ae487 2941 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2942 if (!conf->poolinfo)
709ae487 2943 goto abort;
8f19ccb2 2944 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2945 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2946 r1bio_pool_free,
2947 conf->poolinfo);
2948 if (!conf->r1bio_pool)
709ae487
N
2949 goto abort;
2950
011067b0 2951 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
c230e7e5
N
2952 if (!conf->bio_split)
2953 goto abort;
2954
ed9bfdf1 2955 conf->poolinfo->mddev = mddev;
1da177e4 2956
c19d5798 2957 err = -EINVAL;
e7e72bf6 2958 spin_lock_init(&conf->device_lock);
dafb20fa 2959 rdev_for_each(rdev, mddev) {
709ae487 2960 int disk_idx = rdev->raid_disk;
1da177e4
LT
2961 if (disk_idx >= mddev->raid_disks
2962 || disk_idx < 0)
2963 continue;
c19d5798 2964 if (test_bit(Replacement, &rdev->flags))
02b898f2 2965 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2966 else
2967 disk = conf->mirrors + disk_idx;
1da177e4 2968
c19d5798
N
2969 if (disk->rdev)
2970 goto abort;
1da177e4 2971 disk->rdev = rdev;
1da177e4 2972 disk->head_position = 0;
12cee5a8 2973 disk->seq_start = MaxSector;
1da177e4
LT
2974 }
2975 conf->raid_disks = mddev->raid_disks;
2976 conf->mddev = mddev;
1da177e4 2977 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2978 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2979
2980 spin_lock_init(&conf->resync_lock);
17999be4 2981 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2982
191ea9b2 2983 bio_list_init(&conf->pending_bio_list);
34db0cd6 2984 conf->pending_count = 0;
d890fa2b 2985 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2986
c19d5798 2987 err = -EIO;
8f19ccb2 2988 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2989
2990 disk = conf->mirrors + i;
2991
c19d5798
N
2992 if (i < conf->raid_disks &&
2993 disk[conf->raid_disks].rdev) {
2994 /* This slot has a replacement. */
2995 if (!disk->rdev) {
2996 /* No original, just make the replacement
2997 * a recovering spare
2998 */
2999 disk->rdev =
3000 disk[conf->raid_disks].rdev;
3001 disk[conf->raid_disks].rdev = NULL;
3002 } else if (!test_bit(In_sync, &disk->rdev->flags))
3003 /* Original is not in_sync - bad */
3004 goto abort;
3005 }
3006
5fd6c1dc
N
3007 if (!disk->rdev ||
3008 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3009 disk->head_position = 0;
4f0a5e01
JB
3010 if (disk->rdev &&
3011 (disk->rdev->saved_raid_disk < 0))
918f0238 3012 conf->fullsync = 1;
be4d3280 3013 }
1da177e4 3014 }
709ae487 3015
709ae487 3016 err = -ENOMEM;
0232605d 3017 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3018 if (!conf->thread)
709ae487 3019 goto abort;
1da177e4 3020
709ae487
N
3021 return conf;
3022
3023 abort:
3024 if (conf) {
644df1a8 3025 mempool_destroy(conf->r1bio_pool);
709ae487
N
3026 kfree(conf->mirrors);
3027 safe_put_page(conf->tmppage);
3028 kfree(conf->poolinfo);
fd76863e 3029 kfree(conf->nr_pending);
3030 kfree(conf->nr_waiting);
3031 kfree(conf->nr_queued);
3032 kfree(conf->barrier);
c230e7e5
N
3033 if (conf->bio_split)
3034 bioset_free(conf->bio_split);
709ae487
N
3035 kfree(conf);
3036 }
3037 return ERR_PTR(err);
3038}
3039
afa0f557 3040static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3041static int raid1_run(struct mddev *mddev)
709ae487 3042{
e8096360 3043 struct r1conf *conf;
709ae487 3044 int i;
3cb03002 3045 struct md_rdev *rdev;
5220ea1e 3046 int ret;
2ff8cc2c 3047 bool discard_supported = false;
709ae487
N
3048
3049 if (mddev->level != 1) {
1d41c216
N
3050 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3051 mdname(mddev), mddev->level);
709ae487
N
3052 return -EIO;
3053 }
3054 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3055 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3056 mdname(mddev));
709ae487
N
3057 return -EIO;
3058 }
a415c0f1
N
3059 if (mddev_init_writes_pending(mddev) < 0)
3060 return -ENOMEM;
1da177e4 3061 /*
709ae487
N
3062 * copy the already verified devices into our private RAID1
3063 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3064 * should be freed in raid1_free()]
1da177e4 3065 */
709ae487
N
3066 if (mddev->private == NULL)
3067 conf = setup_conf(mddev);
3068 else
3069 conf = mddev->private;
1da177e4 3070
709ae487
N
3071 if (IS_ERR(conf))
3072 return PTR_ERR(conf);
1da177e4 3073
3deff1a7 3074 if (mddev->queue) {
5026d7a9 3075 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3076 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3077 }
5026d7a9 3078
dafb20fa 3079 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3080 if (!mddev->gendisk)
3081 continue;
709ae487
N
3082 disk_stack_limits(mddev->gendisk, rdev->bdev,
3083 rdev->data_offset << 9);
2ff8cc2c
SL
3084 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3085 discard_supported = true;
1da177e4 3086 }
191ea9b2 3087
709ae487
N
3088 mddev->degraded = 0;
3089 for (i=0; i < conf->raid_disks; i++)
3090 if (conf->mirrors[i].rdev == NULL ||
3091 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3092 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3093 mddev->degraded++;
3094
3095 if (conf->raid_disks - mddev->degraded == 1)
3096 mddev->recovery_cp = MaxSector;
3097
8c6ac868 3098 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3099 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3100 mdname(mddev));
3101 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3102 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3103 mddev->raid_disks);
709ae487 3104
1da177e4
LT
3105 /*
3106 * Ok, everything is just fine now
3107 */
709ae487
N
3108 mddev->thread = conf->thread;
3109 conf->thread = NULL;
3110 mddev->private = conf;
46533ff7 3111 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3112
1f403624 3113 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3114
1ed7242e 3115 if (mddev->queue) {
2ff8cc2c
SL
3116 if (discard_supported)
3117 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3118 mddev->queue);
3119 else
3120 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3121 mddev->queue);
1ed7242e 3122 }
5220ea1e 3123
3124 ret = md_integrity_register(mddev);
5aa61f42
N
3125 if (ret) {
3126 md_unregister_thread(&mddev->thread);
afa0f557 3127 raid1_free(mddev, conf);
5aa61f42 3128 }
5220ea1e 3129 return ret;
1da177e4
LT
3130}
3131
afa0f557 3132static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3133{
afa0f557 3134 struct r1conf *conf = priv;
409c57f3 3135
644df1a8 3136 mempool_destroy(conf->r1bio_pool);
990a8baf 3137 kfree(conf->mirrors);
0fea7ed8 3138 safe_put_page(conf->tmppage);
990a8baf 3139 kfree(conf->poolinfo);
fd76863e 3140 kfree(conf->nr_pending);
3141 kfree(conf->nr_waiting);
3142 kfree(conf->nr_queued);
3143 kfree(conf->barrier);
c230e7e5
N
3144 if (conf->bio_split)
3145 bioset_free(conf->bio_split);
1da177e4 3146 kfree(conf);
1da177e4
LT
3147}
3148
fd01b88c 3149static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3150{
3151 /* no resync is happening, and there is enough space
3152 * on all devices, so we can resize.
3153 * We need to make sure resync covers any new space.
3154 * If the array is shrinking we should possibly wait until
3155 * any io in the removed space completes, but it hardly seems
3156 * worth it.
3157 */
a4a6125a
N
3158 sector_t newsize = raid1_size(mddev, sectors, 0);
3159 if (mddev->external_size &&
3160 mddev->array_sectors > newsize)
b522adcd 3161 return -EINVAL;
a4a6125a
N
3162 if (mddev->bitmap) {
3163 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3164 if (ret)
3165 return ret;
3166 }
3167 md_set_array_sectors(mddev, newsize);
b522adcd 3168 if (sectors > mddev->dev_sectors &&
b098636c 3169 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3170 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3171 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3172 }
b522adcd 3173 mddev->dev_sectors = sectors;
4b5c7ae8 3174 mddev->resync_max_sectors = sectors;
1da177e4
LT
3175 return 0;
3176}
3177
fd01b88c 3178static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3179{
3180 /* We need to:
3181 * 1/ resize the r1bio_pool
3182 * 2/ resize conf->mirrors
3183 *
3184 * We allocate a new r1bio_pool if we can.
3185 * Then raise a device barrier and wait until all IO stops.
3186 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3187 *
3188 * At the same time, we "pack" the devices so that all the missing
3189 * devices have the higher raid_disk numbers.
1da177e4
LT
3190 */
3191 mempool_t *newpool, *oldpool;
3192 struct pool_info *newpoolinfo;
0eaf822c 3193 struct raid1_info *newmirrors;
e8096360 3194 struct r1conf *conf = mddev->private;
63c70c4f 3195 int cnt, raid_disks;
c04be0aa 3196 unsigned long flags;
2214c260 3197 int d, d2;
1da177e4 3198
63c70c4f 3199 /* Cannot change chunk_size, layout, or level */
664e7c41 3200 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3201 mddev->layout != mddev->new_layout ||
3202 mddev->level != mddev->new_level) {
664e7c41 3203 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3204 mddev->new_layout = mddev->layout;
3205 mddev->new_level = mddev->level;
3206 return -EINVAL;
3207 }
3208
2214c260
AP
3209 if (!mddev_is_clustered(mddev))
3210 md_allow_write(mddev);
2a2275d6 3211
63c70c4f
N
3212 raid_disks = mddev->raid_disks + mddev->delta_disks;
3213
6ea9c07c
N
3214 if (raid_disks < conf->raid_disks) {
3215 cnt=0;
3216 for (d= 0; d < conf->raid_disks; d++)
3217 if (conf->mirrors[d].rdev)
3218 cnt++;
3219 if (cnt > raid_disks)
1da177e4 3220 return -EBUSY;
6ea9c07c 3221 }
1da177e4
LT
3222
3223 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3224 if (!newpoolinfo)
3225 return -ENOMEM;
3226 newpoolinfo->mddev = mddev;
8f19ccb2 3227 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3228
3229 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3230 r1bio_pool_free, newpoolinfo);
3231 if (!newpool) {
3232 kfree(newpoolinfo);
3233 return -ENOMEM;
3234 }
0eaf822c 3235 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3236 GFP_KERNEL);
1da177e4
LT
3237 if (!newmirrors) {
3238 kfree(newpoolinfo);
3239 mempool_destroy(newpool);
3240 return -ENOMEM;
3241 }
1da177e4 3242
e2d59925 3243 freeze_array(conf, 0);
1da177e4
LT
3244
3245 /* ok, everything is stopped */
3246 oldpool = conf->r1bio_pool;
3247 conf->r1bio_pool = newpool;
6ea9c07c 3248
a88aa786 3249 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3250 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3251 if (rdev && rdev->raid_disk != d2) {
36fad858 3252 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3253 rdev->raid_disk = d2;
36fad858
NK
3254 sysfs_unlink_rdev(mddev, rdev);
3255 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3256 pr_warn("md/raid1:%s: cannot register rd%d\n",
3257 mdname(mddev), rdev->raid_disk);
6ea9c07c 3258 }
a88aa786
N
3259 if (rdev)
3260 newmirrors[d2++].rdev = rdev;
3261 }
1da177e4
LT
3262 kfree(conf->mirrors);
3263 conf->mirrors = newmirrors;
3264 kfree(conf->poolinfo);
3265 conf->poolinfo = newpoolinfo;
3266
c04be0aa 3267 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3268 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3269 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3270 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3271 mddev->delta_disks = 0;
1da177e4 3272
e2d59925 3273 unfreeze_array(conf);
1da177e4 3274
985ca973 3275 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3276 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3277 md_wakeup_thread(mddev->thread);
3278
3279 mempool_destroy(oldpool);
3280 return 0;
3281}
3282
fd01b88c 3283static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3284{
e8096360 3285 struct r1conf *conf = mddev->private;
36fa3063
N
3286
3287 switch(state) {
6eef4b21
N
3288 case 2: /* wake for suspend */
3289 wake_up(&conf->wait_barrier);
3290 break;
9e6603da 3291 case 1:
07169fd4 3292 freeze_array(conf, 0);
36fa3063 3293 break;
9e6603da 3294 case 0:
07169fd4 3295 unfreeze_array(conf);
36fa3063
N
3296 break;
3297 }
36fa3063
N
3298}
3299
fd01b88c 3300static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3301{
3302 /* raid1 can take over:
3303 * raid5 with 2 devices, any layout or chunk size
3304 */
3305 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3306 struct r1conf *conf;
709ae487
N
3307 mddev->new_level = 1;
3308 mddev->new_layout = 0;
3309 mddev->new_chunk_sectors = 0;
3310 conf = setup_conf(mddev);
6995f0b2 3311 if (!IS_ERR(conf)) {
07169fd4 3312 /* Array must appear to be quiesced */
3313 conf->array_frozen = 1;
394ed8e4
SL
3314 mddev_clear_unsupported_flags(mddev,
3315 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3316 }
709ae487
N
3317 return conf;
3318 }
3319 return ERR_PTR(-EINVAL);
3320}
1da177e4 3321
84fc4b56 3322static struct md_personality raid1_personality =
1da177e4
LT
3323{
3324 .name = "raid1",
2604b703 3325 .level = 1,
1da177e4 3326 .owner = THIS_MODULE,
849674e4
SL
3327 .make_request = raid1_make_request,
3328 .run = raid1_run,
afa0f557 3329 .free = raid1_free,
849674e4
SL
3330 .status = raid1_status,
3331 .error_handler = raid1_error,
1da177e4
LT
3332 .hot_add_disk = raid1_add_disk,
3333 .hot_remove_disk= raid1_remove_disk,
3334 .spare_active = raid1_spare_active,
849674e4 3335 .sync_request = raid1_sync_request,
1da177e4 3336 .resize = raid1_resize,
80c3a6ce 3337 .size = raid1_size,
63c70c4f 3338 .check_reshape = raid1_reshape,
36fa3063 3339 .quiesce = raid1_quiesce,
709ae487 3340 .takeover = raid1_takeover,
5c675f83 3341 .congested = raid1_congested,
1da177e4
LT
3342};
3343
3344static int __init raid_init(void)
3345{
2604b703 3346 return register_md_personality(&raid1_personality);
1da177e4
LT
3347}
3348
3349static void raid_exit(void)
3350{
2604b703 3351 unregister_md_personality(&raid1_personality);
1da177e4
LT
3352}
3353
3354module_init(raid_init);
3355module_exit(raid_exit);
3356MODULE_LICENSE("GPL");
0efb9e61 3357MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3358MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3359MODULE_ALIAS("md-raid1");
2604b703 3360MODULE_ALIAS("md-level-1");
34db0cd6
N
3361
3362module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);