]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid1.c
s390/crypto: fix gcm-aes-s390 selftest failures
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
3f07c014 40
109e3765 41#include <trace/events/block.h>
3f07c014 42
43b2e5d8 43#include "md.h"
ef740c37 44#include "raid1.h"
935fe098 45#include "md-bitmap.h"
191ea9b2 46
394ed8e4
SL
47#define UNSUPPORTED_MDDEV_FLAGS \
48 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 49 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
50 (1L << MD_HAS_PPL) | \
51 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 52
1da177e4
LT
53/*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56#define NR_RAID1_BIOS 256
57
473e87ce
JB
58/* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63#define IO_BLOCKED ((struct bio *)1)
64/* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68#define IO_MADE_GOOD ((struct bio *)2)
69
70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
34db0cd6
N
72/* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76static int max_queued_requests = 1024;
1da177e4 77
fd76863e 78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 80
578b54ad
N
81#define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
fb0eb5df
ML
84#include "raid1-10.c"
85
98d30c58
ML
86/*
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
89 */
90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91{
92 return get_resync_pages(bio)->raid_bio;
93}
94
dd0fc66f 95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
99
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 101 return kzalloc(size, gfp_flags);
1da177e4
LT
102}
103
104static void r1bio_pool_free(void *r1_bio, void *data)
105{
106 kfree(r1_bio);
107}
108
8e005f7c 109#define RESYNC_DEPTH 32
1da177e4 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 115
dd0fc66f 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
117{
118 struct pool_info *pi = data;
9f2c9d12 119 struct r1bio *r1_bio;
1da177e4 120 struct bio *bio;
da1aab3d 121 int need_pages;
98d30c58
ML
122 int j;
123 struct resync_pages *rps;
1da177e4
LT
124
125 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 126 if (!r1_bio)
1da177e4 127 return NULL;
1da177e4 128
98d30c58
ML
129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 gfp_flags);
131 if (!rps)
132 goto out_free_r1bio;
133
1da177e4
LT
134 /*
135 * Allocate bios : 1 for reading, n-1 for writing
136 */
137 for (j = pi->raid_disks ; j-- ; ) {
6746557f 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
139 if (!bio)
140 goto out_free_bio;
141 r1_bio->bios[j] = bio;
142 }
143 /*
144 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
145 * the first bio.
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
1da177e4 148 */
d11c171e 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 150 need_pages = pi->raid_disks;
d11c171e 151 else
da1aab3d 152 need_pages = 1;
98d30c58
ML
153 for (j = 0; j < pi->raid_disks; j++) {
154 struct resync_pages *rp = &rps[j];
155
d11c171e 156 bio = r1_bio->bios[j];
d11c171e 157
98d30c58
ML
158 if (j < need_pages) {
159 if (resync_alloc_pages(rp, gfp_flags))
160 goto out_free_pages;
161 } else {
162 memcpy(rp, &rps[0], sizeof(*rp));
163 resync_get_all_pages(rp);
164 }
165
98d30c58
ML
166 rp->raid_bio = r1_bio;
167 bio->bi_private = rp;
1da177e4
LT
168 }
169
170 r1_bio->master_bio = NULL;
171
172 return r1_bio;
173
da1aab3d 174out_free_pages:
491221f8 175 while (--j >= 0)
98d30c58 176 resync_free_pages(&rps[j]);
da1aab3d 177
1da177e4 178out_free_bio:
8f19ccb2 179 while (++j < pi->raid_disks)
1da177e4 180 bio_put(r1_bio->bios[j]);
98d30c58
ML
181 kfree(rps);
182
183out_free_r1bio:
1da177e4
LT
184 r1bio_pool_free(r1_bio, data);
185 return NULL;
186}
187
188static void r1buf_pool_free(void *__r1_bio, void *data)
189{
190 struct pool_info *pi = data;
98d30c58 191 int i;
9f2c9d12 192 struct r1bio *r1bio = __r1_bio;
98d30c58 193 struct resync_pages *rp = NULL;
1da177e4 194
98d30c58
ML
195 for (i = pi->raid_disks; i--; ) {
196 rp = get_resync_pages(r1bio->bios[i]);
197 resync_free_pages(rp);
1da177e4 198 bio_put(r1bio->bios[i]);
98d30c58
ML
199 }
200
201 /* resync pages array stored in the 1st bio's .bi_private */
202 kfree(rp);
1da177e4
LT
203
204 r1bio_pool_free(r1bio, data);
205}
206
e8096360 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
208{
209 int i;
210
8f19ccb2 211 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 212 struct bio **bio = r1_bio->bios + i;
4367af55 213 if (!BIO_SPECIAL(*bio))
1da177e4
LT
214 bio_put(*bio);
215 *bio = NULL;
216 }
217}
218
9f2c9d12 219static void free_r1bio(struct r1bio *r1_bio)
1da177e4 220{
e8096360 221 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 222
1da177e4
LT
223 put_all_bios(conf, r1_bio);
224 mempool_free(r1_bio, conf->r1bio_pool);
225}
226
9f2c9d12 227static void put_buf(struct r1bio *r1_bio)
1da177e4 228{
e8096360 229 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 230 sector_t sect = r1_bio->sector;
3e198f78
N
231 int i;
232
8f19ccb2 233 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
234 struct bio *bio = r1_bio->bios[i];
235 if (bio->bi_end_io)
236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 }
1da177e4
LT
238
239 mempool_free(r1_bio, conf->r1buf_pool);
240
af5f42a7 241 lower_barrier(conf, sect);
1da177e4
LT
242}
243
9f2c9d12 244static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
245{
246 unsigned long flags;
fd01b88c 247 struct mddev *mddev = r1_bio->mddev;
e8096360 248 struct r1conf *conf = mddev->private;
fd76863e 249 int idx;
1da177e4 250
fd76863e 251 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
252 spin_lock_irqsave(&conf->device_lock, flags);
253 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 254 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
255 spin_unlock_irqrestore(&conf->device_lock, flags);
256
17999be4 257 wake_up(&conf->wait_barrier);
1da177e4
LT
258 md_wakeup_thread(mddev->thread);
259}
260
261/*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
9f2c9d12 266static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
267{
268 struct bio *bio = r1_bio->master_bio;
e8096360 269 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
270
271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 272 bio->bi_status = BLK_STS_IOERR;
4246a0b6 273
37011e3a
N
274 bio_endio(bio);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
280}
281
9f2c9d12 282static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
283{
284 struct bio *bio = r1_bio->master_bio;
285
4b6d287f
N
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
290 (unsigned long long) bio->bi_iter.bi_sector,
291 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 292
d2eb35ac 293 call_bio_endio(r1_bio);
4b6d287f 294 }
1da177e4
LT
295 free_r1bio(r1_bio);
296}
297
298/*
299 * Update disk head position estimator based on IRQ completion info.
300 */
9f2c9d12 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 302{
e8096360 303 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
304
305 conf->mirrors[disk].head_position =
306 r1_bio->sector + (r1_bio->sectors);
307}
308
ba3ae3be
NK
309/*
310 * Find the disk number which triggered given bio
311 */
9f2c9d12 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
313{
314 int mirror;
30194636
N
315 struct r1conf *conf = r1_bio->mddev->private;
316 int raid_disks = conf->raid_disks;
ba3ae3be 317
8f19ccb2 318 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
319 if (r1_bio->bios[mirror] == bio)
320 break;
321
8f19ccb2 322 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
323 update_head_pos(mirror, r1_bio);
324
325 return mirror;
326}
327
4246a0b6 328static void raid1_end_read_request(struct bio *bio)
1da177e4 329{
4e4cbee9 330 int uptodate = !bio->bi_status;
9f2c9d12 331 struct r1bio *r1_bio = bio->bi_private;
e8096360 332 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 334
1da177e4
LT
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
e5872d58 338 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 339
dd00a99e
N
340 if (uptodate)
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
342 else if (test_bit(FailFast, &rdev->flags) &&
343 test_bit(R1BIO_FailFast, &r1_bio->state))
344 /* This was a fail-fast read so we definitely
345 * want to retry */
346 ;
dd00a99e
N
347 else {
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 351 */
dd00a99e
N
352 unsigned long flags;
353 spin_lock_irqsave(&conf->device_lock, flags);
354 if (r1_bio->mddev->degraded == conf->raid_disks ||
355 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 356 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
357 uptodate = 1;
358 spin_unlock_irqrestore(&conf->device_lock, flags);
359 }
1da177e4 360
7ad4d4a6 361 if (uptodate) {
1da177e4 362 raid_end_bio_io(r1_bio);
e5872d58 363 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 364 } else {
1da177e4
LT
365 /*
366 * oops, read error:
367 */
368 char b[BDEVNAME_SIZE];
1d41c216
N
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 mdname(conf->mddev),
371 bdevname(rdev->bdev, b),
372 (unsigned long long)r1_bio->sector);
d2eb35ac 373 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 374 reschedule_retry(r1_bio);
7ad4d4a6 375 /* don't drop the reference on read_disk yet */
1da177e4 376 }
1da177e4
LT
377}
378
9f2c9d12 379static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
380{
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
383 bio_free_pages(r1_bio->behind_master_bio);
384 bio_put(r1_bio->behind_master_bio);
385 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393}
394
9f2c9d12 395static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 396{
cd5ff9a1
N
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
4367af55
N
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
4e78064f
N
408 }
409}
410
4246a0b6 411static void raid1_end_write_request(struct bio *bio)
1da177e4 412{
9f2c9d12 413 struct r1bio *r1_bio = bio->bi_private;
e5872d58 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 415 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 416 struct bio *to_put = NULL;
e5872d58
N
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
419 bool discard_error;
420
4e4cbee9 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 422
e9c7469b
TH
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
4e4cbee9 426 if (bio->bi_status && !discard_error) {
e5872d58
N
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
212e7eb7
N
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 450 } else {
1da177e4 451 /*
e9c7469b
TH
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
1da177e4 460 */
4367af55
N
461 sector_t first_bad;
462 int bad_sectors;
463
cd5ff9a1
N
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
3056e3ae
AL
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
e5872d58
N
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
3056e3ae 476 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 477
4367af55 478 /* Maybe we can clear some bad blocks. */
e5872d58 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 480 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
e9c7469b 486 if (behind) {
e5872d58 487 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
4f024f37
KO
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 506 call_bio_endio(r1_bio);
4b6d287f
N
507 }
508 }
509 }
4367af55 510 if (r1_bio->bios[mirror] == NULL)
e5872d58 511 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 512
1da177e4 513 /*
1da177e4
LT
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
af6d7b76 517 r1_bio_write_done(r1_bio);
c70810b3 518
04b857f7
N
519 if (to_put)
520 bio_put(to_put);
1da177e4
LT
521}
522
fd76863e 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525{
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540}
541
1da177e4
LT
542/*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
e8096360 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 557{
af3a2cd6 558 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
559 int sectors;
560 int best_good_sectors;
9dedf603
SL
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
be4d3280 563 int disk;
76073054 564 sector_t best_dist;
9dedf603 565 unsigned int min_pending;
3cb03002 566 struct md_rdev *rdev;
f3ac8bf7 567 int choose_first;
12cee5a8 568 int choose_next_idle;
1da177e4
LT
569
570 rcu_read_lock();
571 /*
8ddf9efe 572 * Check if we can balance. We can balance on the whole
1da177e4
LT
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
d2eb35ac 577 sectors = r1_bio->sectors;
76073054 578 best_disk = -1;
9dedf603 579 best_dist_disk = -1;
76073054 580 best_dist = MaxSector;
9dedf603
SL
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
d2eb35ac 583 best_good_sectors = 0;
9dedf603 584 has_nonrot_disk = 0;
12cee5a8 585 choose_next_idle = 0;
2e52d449 586 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 587
7d49ffcf
GR
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
90382ed9 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
1da177e4 595
be4d3280 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 597 sector_t dist;
d2eb35ac
N
598 sector_t first_bad;
599 int bad_sectors;
9dedf603 600 unsigned int pending;
12cee5a8 601 bool nonrot;
d2eb35ac 602
f3ac8bf7
N
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
76073054 606 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 607 continue;
76073054
N
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
1da177e4 610 continue;
76073054
N
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
d1901ef0 614 if (best_dist_disk < 0) {
307729c8
N
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
816b0acf 617 if (first_bad <= this_sector)
307729c8
N
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
d1901ef0
TH
623 best_dist_disk = disk;
624 best_pending_disk = disk;
307729c8 625 }
76073054
N
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
d2eb35ac
N
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
d82dd0e3
TM
657 } else {
658 if ((sectors > best_good_sectors) && (best_disk >= 0))
659 best_disk = -1;
d2eb35ac 660 best_good_sectors = sectors;
d82dd0e3 661 }
d2eb35ac 662
2e52d449
N
663 if (best_disk >= 0)
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast, &r1_bio->state);
666
12cee5a8
SL
667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 has_nonrot_disk |= nonrot;
9dedf603 669 pending = atomic_read(&rdev->nr_pending);
76073054 670 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 671 if (choose_first) {
76073054 672 best_disk = disk;
1da177e4
LT
673 break;
674 }
12cee5a8
SL
675 /* Don't change to another disk for sequential reads */
676 if (conf->mirrors[disk].next_seq_sect == this_sector
677 || dist == 0) {
678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 struct raid1_info *mirror = &conf->mirrors[disk];
680
681 best_disk = disk;
682 /*
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
694 */
695 if (nonrot && opt_iosize > 0 &&
696 mirror->seq_start != MaxSector &&
697 mirror->next_seq_sect > opt_iosize &&
698 mirror->next_seq_sect - opt_iosize >=
699 mirror->seq_start) {
700 choose_next_idle = 1;
701 continue;
702 }
703 break;
704 }
12cee5a8
SL
705
706 if (choose_next_idle)
707 continue;
9dedf603
SL
708
709 if (min_pending > pending) {
710 min_pending = pending;
711 best_pending_disk = disk;
712 }
713
76073054
N
714 if (dist < best_dist) {
715 best_dist = dist;
9dedf603 716 best_dist_disk = disk;
1da177e4 717 }
f3ac8bf7 718 }
1da177e4 719
9dedf603
SL
720 /*
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
725 */
726 if (best_disk == -1) {
2e52d449 727 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
728 best_disk = best_pending_disk;
729 else
730 best_disk = best_dist_disk;
731 }
732
76073054
N
733 if (best_disk >= 0) {
734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
735 if (!rdev)
736 goto retry;
737 atomic_inc(&rdev->nr_pending);
d2eb35ac 738 sectors = best_good_sectors;
12cee5a8
SL
739
740 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 conf->mirrors[best_disk].seq_start = this_sector;
742
be4d3280 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
744 }
745 rcu_read_unlock();
d2eb35ac 746 *max_sectors = sectors;
1da177e4 747
76073054 748 return best_disk;
1da177e4
LT
749}
750
5c675f83 751static int raid1_congested(struct mddev *mddev, int bits)
0d129228 752{
e8096360 753 struct r1conf *conf = mddev->private;
0d129228
N
754 int i, ret = 0;
755
4452226e 756 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
757 conf->pending_count >= max_queued_requests)
758 return 1;
759
0d129228 760 rcu_read_lock();
f53e29fc 761 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 763 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 764 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 765
1ed7242e
JB
766 BUG_ON(!q);
767
0d129228
N
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
770 */
4452226e 771 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 772 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 773 else
dc3b17cc 774 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
775 }
776 }
777 rcu_read_unlock();
778 return ret;
779}
0d129228 780
673ca68d
N
781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782{
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf->mddev->bitmap);
785 wake_up(&conf->wait_barrier);
786
787 while (bio) { /* submit pending writes */
788 struct bio *next = bio->bi_next;
74d46992 789 struct md_rdev *rdev = (void *)bio->bi_disk;
673ca68d 790 bio->bi_next = NULL;
74d46992 791 bio_set_dev(bio, rdev->bdev);
673ca68d 792 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 793 bio_io_error(bio);
673ca68d 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 795 !blk_queue_discard(bio->bi_disk->queue)))
673ca68d
N
796 /* Just ignore it */
797 bio_endio(bio);
798 else
799 generic_make_request(bio);
800 bio = next;
801 }
802}
803
e8096360 804static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
805{
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
a35e63ef 808 */
a35e63ef
N
809 spin_lock_irq(&conf->device_lock);
810
811 if (conf->pending_bio_list.head) {
18022a1b 812 struct blk_plug plug;
a35e63ef 813 struct bio *bio;
18022a1b 814
a35e63ef 815 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 816 conf->pending_count = 0;
a35e63ef 817 spin_unlock_irq(&conf->device_lock);
18022a1b 818 blk_start_plug(&plug);
673ca68d 819 flush_bio_list(conf, bio);
18022a1b 820 blk_finish_plug(&plug);
a35e63ef
N
821 } else
822 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
823}
824
17999be4
N
825/* Barriers....
826 * Sometimes we need to suspend IO while we do something else,
827 * either some resync/recovery, or reconfigure the array.
828 * To do this we raise a 'barrier'.
829 * The 'barrier' is a counter that can be raised multiple times
830 * to count how many activities are happening which preclude
831 * normal IO.
832 * We can only raise the barrier if there is no pending IO.
833 * i.e. if nr_pending == 0.
834 * We choose only to raise the barrier if no-one is waiting for the
835 * barrier to go down. This means that as soon as an IO request
836 * is ready, no other operations which require a barrier will start
837 * until the IO request has had a chance.
838 *
839 * So: regular IO calls 'wait_barrier'. When that returns there
840 * is no backgroup IO happening, It must arrange to call
841 * allow_barrier when it has finished its IO.
842 * backgroup IO calls must call raise_barrier. Once that returns
843 * there is no normal IO happeing. It must arrange to call
844 * lower_barrier when the particular background IO completes.
1da177e4 845 */
c2fd4c94 846static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 847{
fd76863e 848 int idx = sector_to_idx(sector_nr);
849
1da177e4 850 spin_lock_irq(&conf->resync_lock);
17999be4
N
851
852 /* Wait until no block IO is waiting */
824e47da 853 wait_event_lock_irq(conf->wait_barrier,
854 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 855 conf->resync_lock);
17999be4
N
856
857 /* block any new IO from starting */
824e47da 858 atomic_inc(&conf->barrier[idx]);
859 /*
860 * In raise_barrier() we firstly increase conf->barrier[idx] then
861 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
862 * increase conf->nr_pending[idx] then check conf->barrier[idx].
863 * A memory barrier here to make sure conf->nr_pending[idx] won't
864 * be fetched before conf->barrier[idx] is increased. Otherwise
865 * there will be a race between raise_barrier() and _wait_barrier().
866 */
867 smp_mb__after_atomic();
17999be4 868
79ef3a8a 869 /* For these conditions we must wait:
870 * A: while the array is in frozen state
fd76863e 871 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
872 * existing in corresponding I/O barrier bucket.
873 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
874 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 875 */
17999be4 876 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 877 !conf->array_frozen &&
824e47da 878 !atomic_read(&conf->nr_pending[idx]) &&
879 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
eed8c02e 880 conf->resync_lock);
17999be4 881
43ac9b84 882 atomic_inc(&conf->nr_sync_pending);
17999be4
N
883 spin_unlock_irq(&conf->resync_lock);
884}
885
fd76863e 886static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 887{
fd76863e 888 int idx = sector_to_idx(sector_nr);
889
824e47da 890 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 891
824e47da 892 atomic_dec(&conf->barrier[idx]);
43ac9b84 893 atomic_dec(&conf->nr_sync_pending);
17999be4
N
894 wake_up(&conf->wait_barrier);
895}
896
fd76863e 897static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 898{
824e47da 899 /*
900 * We need to increase conf->nr_pending[idx] very early here,
901 * then raise_barrier() can be blocked when it waits for
902 * conf->nr_pending[idx] to be 0. Then we can avoid holding
903 * conf->resync_lock when there is no barrier raised in same
904 * barrier unit bucket. Also if the array is frozen, I/O
905 * should be blocked until array is unfrozen.
906 */
907 atomic_inc(&conf->nr_pending[idx]);
908 /*
909 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
910 * check conf->barrier[idx]. In raise_barrier() we firstly increase
911 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
912 * barrier is necessary here to make sure conf->barrier[idx] won't be
913 * fetched before conf->nr_pending[idx] is increased. Otherwise there
914 * will be a race between _wait_barrier() and raise_barrier().
915 */
916 smp_mb__after_atomic();
79ef3a8a 917
824e47da 918 /*
919 * Don't worry about checking two atomic_t variables at same time
920 * here. If during we check conf->barrier[idx], the array is
921 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
922 * 0, it is safe to return and make the I/O continue. Because the
923 * array is frozen, all I/O returned here will eventually complete
924 * or be queued, no race will happen. See code comment in
925 * frozen_array().
926 */
927 if (!READ_ONCE(conf->array_frozen) &&
928 !atomic_read(&conf->barrier[idx]))
929 return;
79ef3a8a 930
824e47da 931 /*
932 * After holding conf->resync_lock, conf->nr_pending[idx]
933 * should be decreased before waiting for barrier to drop.
934 * Otherwise, we may encounter a race condition because
935 * raise_barrer() might be waiting for conf->nr_pending[idx]
936 * to be 0 at same time.
937 */
938 spin_lock_irq(&conf->resync_lock);
939 atomic_inc(&conf->nr_waiting[idx]);
940 atomic_dec(&conf->nr_pending[idx]);
941 /*
942 * In case freeze_array() is waiting for
943 * get_unqueued_pending() == extra
944 */
945 wake_up(&conf->wait_barrier);
946 /* Wait for the barrier in same barrier unit bucket to drop. */
947 wait_event_lock_irq(conf->wait_barrier,
948 !conf->array_frozen &&
949 !atomic_read(&conf->barrier[idx]),
950 conf->resync_lock);
951 atomic_inc(&conf->nr_pending[idx]);
952 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 953 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 954}
955
fd76863e 956static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 957{
fd76863e 958 int idx = sector_to_idx(sector_nr);
79ef3a8a 959
824e47da 960 /*
961 * Very similar to _wait_barrier(). The difference is, for read
962 * I/O we don't need wait for sync I/O, but if the whole array
963 * is frozen, the read I/O still has to wait until the array is
964 * unfrozen. Since there is no ordering requirement with
965 * conf->barrier[idx] here, memory barrier is unnecessary as well.
966 */
967 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 968
824e47da 969 if (!READ_ONCE(conf->array_frozen))
970 return;
971
972 spin_lock_irq(&conf->resync_lock);
973 atomic_inc(&conf->nr_waiting[idx]);
974 atomic_dec(&conf->nr_pending[idx]);
975 /*
976 * In case freeze_array() is waiting for
977 * get_unqueued_pending() == extra
978 */
979 wake_up(&conf->wait_barrier);
980 /* Wait for array to be unfrozen */
981 wait_event_lock_irq(conf->wait_barrier,
982 !conf->array_frozen,
983 conf->resync_lock);
984 atomic_inc(&conf->nr_pending[idx]);
985 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
986 spin_unlock_irq(&conf->resync_lock);
987}
988
fd76863e 989static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 990{
fd76863e 991 int idx = sector_to_idx(sector_nr);
79ef3a8a 992
fd76863e 993 _wait_barrier(conf, idx);
994}
995
fd76863e 996static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 997{
824e47da 998 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
999 wake_up(&conf->wait_barrier);
1000}
1001
fd76863e 1002static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1003{
1004 int idx = sector_to_idx(sector_nr);
1005
1006 _allow_barrier(conf, idx);
1007}
1008
fd76863e 1009/* conf->resync_lock should be held */
1010static int get_unqueued_pending(struct r1conf *conf)
1011{
1012 int idx, ret;
1013
43ac9b84
XN
1014 ret = atomic_read(&conf->nr_sync_pending);
1015 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1016 ret += atomic_read(&conf->nr_pending[idx]) -
1017 atomic_read(&conf->nr_queued[idx]);
fd76863e 1018
1019 return ret;
1020}
1021
e2d59925 1022static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1023{
fd76863e 1024 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1025 * go quiet.
fd76863e 1026 * This is called in two situations:
1027 * 1) management command handlers (reshape, remove disk, quiesce).
1028 * 2) one normal I/O request failed.
1029
1030 * After array_frozen is set to 1, new sync IO will be blocked at
1031 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1032 * or wait_read_barrier(). The flying I/Os will either complete or be
1033 * queued. When everything goes quite, there are only queued I/Os left.
1034
1035 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1036 * barrier bucket index which this I/O request hits. When all sync and
1037 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1038 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1039 * in handle_read_error(), we may call freeze_array() before trying to
1040 * fix the read error. In this case, the error read I/O is not queued,
1041 * so get_unqueued_pending() == 1.
1042 *
1043 * Therefore before this function returns, we need to wait until
1044 * get_unqueued_pendings(conf) gets equal to extra. For
1045 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1046 */
1047 spin_lock_irq(&conf->resync_lock);
b364e3d0 1048 conf->array_frozen = 1;
578b54ad 1049 raid1_log(conf->mddev, "wait freeze");
fd76863e 1050 wait_event_lock_irq_cmd(
1051 conf->wait_barrier,
1052 get_unqueued_pending(conf) == extra,
1053 conf->resync_lock,
1054 flush_pending_writes(conf));
ddaf22ab
N
1055 spin_unlock_irq(&conf->resync_lock);
1056}
e8096360 1057static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1058{
1059 /* reverse the effect of the freeze */
1060 spin_lock_irq(&conf->resync_lock);
b364e3d0 1061 conf->array_frozen = 0;
ddaf22ab 1062 spin_unlock_irq(&conf->resync_lock);
824e47da 1063 wake_up(&conf->wait_barrier);
ddaf22ab
N
1064}
1065
16d56e2f 1066static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1067 struct bio *bio)
4b6d287f 1068{
cb83efcf 1069 int size = bio->bi_iter.bi_size;
841c1316
ML
1070 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1071 int i = 0;
1072 struct bio *behind_bio = NULL;
1073
1074 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1075 if (!behind_bio)
16d56e2f 1076 return;
4b6d287f 1077
41743c1f 1078 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1079 if (!bio_has_data(bio)) {
1080 behind_bio->bi_iter.bi_size = size;
41743c1f 1081 goto skip_copy;
16d56e2f 1082 }
41743c1f 1083
841c1316
ML
1084 while (i < vcnt && size) {
1085 struct page *page;
1086 int len = min_t(int, PAGE_SIZE, size);
1087
1088 page = alloc_page(GFP_NOIO);
1089 if (unlikely(!page))
1090 goto free_pages;
1091
1092 bio_add_page(behind_bio, page, len, 0);
1093
1094 size -= len;
1095 i++;
4b6d287f 1096 }
841c1316 1097
cb83efcf 1098 bio_copy_data(behind_bio, bio);
41743c1f 1099skip_copy:
841c1316 1100 r1_bio->behind_master_bio = behind_bio;;
af6d7b76 1101 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1102
16d56e2f 1103 return;
841c1316
ML
1104
1105free_pages:
4f024f37
KO
1106 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1107 bio->bi_iter.bi_size);
841c1316 1108 bio_free_pages(behind_bio);
16d56e2f 1109 bio_put(behind_bio);
4b6d287f
N
1110}
1111
f54a9d0e
N
1112struct raid1_plug_cb {
1113 struct blk_plug_cb cb;
1114 struct bio_list pending;
1115 int pending_cnt;
1116};
1117
1118static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1119{
1120 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1121 cb);
1122 struct mddev *mddev = plug->cb.data;
1123 struct r1conf *conf = mddev->private;
1124 struct bio *bio;
1125
874807a8 1126 if (from_schedule || current->bio_list) {
f54a9d0e
N
1127 spin_lock_irq(&conf->device_lock);
1128 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1129 conf->pending_count += plug->pending_cnt;
1130 spin_unlock_irq(&conf->device_lock);
ee0b0244 1131 wake_up(&conf->wait_barrier);
f54a9d0e
N
1132 md_wakeup_thread(mddev->thread);
1133 kfree(plug);
1134 return;
1135 }
1136
1137 /* we aren't scheduling, so we can do the write-out directly. */
1138 bio = bio_list_get(&plug->pending);
673ca68d 1139 flush_bio_list(conf, bio);
f54a9d0e
N
1140 kfree(plug);
1141}
1142
689389a0
N
1143static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1144{
1145 r1_bio->master_bio = bio;
1146 r1_bio->sectors = bio_sectors(bio);
1147 r1_bio->state = 0;
1148 r1_bio->mddev = mddev;
1149 r1_bio->sector = bio->bi_iter.bi_sector;
1150}
1151
fd76863e 1152static inline struct r1bio *
689389a0 1153alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1154{
1155 struct r1conf *conf = mddev->private;
1156 struct r1bio *r1_bio;
1157
1158 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
689389a0
N
1159 /* Ensure no bio records IO_BLOCKED */
1160 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1161 init_r1bio(r1_bio, mddev, bio);
fd76863e 1162 return r1_bio;
1163}
1164
c230e7e5 1165static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1166 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1167{
e8096360 1168 struct r1conf *conf = mddev->private;
0eaf822c 1169 struct raid1_info *mirror;
1da177e4 1170 struct bio *read_bio;
3b046a97
RL
1171 struct bitmap *bitmap = mddev->bitmap;
1172 const int op = bio_op(bio);
1173 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1174 int max_sectors;
1175 int rdisk;
689389a0
N
1176 bool print_msg = !!r1_bio;
1177 char b[BDEVNAME_SIZE];
3b046a97 1178
fd76863e 1179 /*
689389a0
N
1180 * If r1_bio is set, we are blocking the raid1d thread
1181 * so there is a tiny risk of deadlock. So ask for
1182 * emergency memory if needed.
fd76863e 1183 */
689389a0 1184 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1185
689389a0
N
1186 if (print_msg) {
1187 /* Need to get the block device name carefully */
1188 struct md_rdev *rdev;
1189 rcu_read_lock();
1190 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1191 if (rdev)
1192 bdevname(rdev->bdev, b);
1193 else
1194 strcpy(b, "???");
1195 rcu_read_unlock();
1196 }
3b046a97 1197
fd76863e 1198 /*
fd76863e 1199 * Still need barrier for READ in case that whole
1200 * array is frozen.
fd76863e 1201 */
fd76863e 1202 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1203
689389a0
N
1204 if (!r1_bio)
1205 r1_bio = alloc_r1bio(mddev, bio);
1206 else
1207 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1208 r1_bio->sectors = max_read_sectors;
fd76863e 1209
1210 /*
1211 * make_request() can abort the operation when read-ahead is being
1212 * used and no empty request is available.
1213 */
3b046a97
RL
1214 rdisk = read_balance(conf, r1_bio, &max_sectors);
1215
1216 if (rdisk < 0) {
1217 /* couldn't find anywhere to read from */
689389a0
N
1218 if (print_msg) {
1219 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1220 mdname(mddev),
1221 b,
1222 (unsigned long long)r1_bio->sector);
1223 }
3b046a97
RL
1224 raid_end_bio_io(r1_bio);
1225 return;
1226 }
1227 mirror = conf->mirrors + rdisk;
1228
689389a0
N
1229 if (print_msg)
1230 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1231 mdname(mddev),
1232 (unsigned long long)r1_bio->sector,
1233 bdevname(mirror->rdev->bdev, b));
1234
3b046a97
RL
1235 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1236 bitmap) {
1237 /*
1238 * Reading from a write-mostly device must take care not to
1239 * over-take any writes that are 'behind'
1240 */
1241 raid1_log(mddev, "wait behind writes");
1242 wait_event(bitmap->behind_wait,
1243 atomic_read(&bitmap->behind_writes) == 0);
1244 }
c230e7e5
N
1245
1246 if (max_sectors < bio_sectors(bio)) {
1247 struct bio *split = bio_split(bio, max_sectors,
689389a0 1248 gfp, conf->bio_split);
c230e7e5
N
1249 bio_chain(split, bio);
1250 generic_make_request(bio);
1251 bio = split;
1252 r1_bio->master_bio = bio;
1253 r1_bio->sectors = max_sectors;
1254 }
1255
3b046a97 1256 r1_bio->read_disk = rdisk;
3b046a97 1257
689389a0 1258 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
3b046a97
RL
1259
1260 r1_bio->bios[rdisk] = read_bio;
1261
1262 read_bio->bi_iter.bi_sector = r1_bio->sector +
1263 mirror->rdev->data_offset;
74d46992 1264 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1265 read_bio->bi_end_io = raid1_end_read_request;
1266 bio_set_op_attrs(read_bio, op, do_sync);
1267 if (test_bit(FailFast, &mirror->rdev->flags) &&
1268 test_bit(R1BIO_FailFast, &r1_bio->state))
1269 read_bio->bi_opf |= MD_FAILFAST;
1270 read_bio->bi_private = r1_bio;
1271
1272 if (mddev->gendisk)
74d46992
CH
1273 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1274 disk_devt(mddev->gendisk), r1_bio->sector);
3b046a97 1275
c230e7e5 1276 generic_make_request(read_bio);
3b046a97
RL
1277}
1278
c230e7e5
N
1279static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1280 int max_write_sectors)
3b046a97
RL
1281{
1282 struct r1conf *conf = mddev->private;
fd76863e 1283 struct r1bio *r1_bio;
1f68f0c4 1284 int i, disks;
3b046a97 1285 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1286 unsigned long flags;
3cb03002 1287 struct md_rdev *blocked_rdev;
f54a9d0e
N
1288 struct blk_plug_cb *cb;
1289 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1290 int first_clone;
1f68f0c4 1291 int max_sectors;
191ea9b2 1292
b3143b9a 1293 if (mddev_is_clustered(mddev) &&
90382ed9 1294 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1295 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1296
6eef4b21
N
1297 DEFINE_WAIT(w);
1298 for (;;) {
6eef4b21 1299 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1300 &w, TASK_IDLE);
f81f7302 1301 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1302 bio->bi_iter.bi_sector,
b3143b9a 1303 bio_end_sector(bio)))
6eef4b21
N
1304 break;
1305 schedule();
1306 }
1307 finish_wait(&conf->wait_barrier, &w);
1308 }
f81f7302
GJ
1309
1310 /*
1311 * Register the new request and wait if the reconstruction
1312 * thread has put up a bar for new requests.
1313 * Continue immediately if no resync is active currently.
1314 */
fd76863e 1315 wait_barrier(conf, bio->bi_iter.bi_sector);
1316
689389a0 1317 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1318 r1_bio->sectors = max_write_sectors;
1da177e4 1319
34db0cd6
N
1320 if (conf->pending_count >= max_queued_requests) {
1321 md_wakeup_thread(mddev->thread);
578b54ad 1322 raid1_log(mddev, "wait queued");
34db0cd6
N
1323 wait_event(conf->wait_barrier,
1324 conf->pending_count < max_queued_requests);
1325 }
1f68f0c4 1326 /* first select target devices under rcu_lock and
1da177e4
LT
1327 * inc refcount on their rdev. Record them by setting
1328 * bios[x] to bio
1f68f0c4
N
1329 * If there are known/acknowledged bad blocks on any device on
1330 * which we have seen a write error, we want to avoid writing those
1331 * blocks.
1332 * This potentially requires several writes to write around
1333 * the bad blocks. Each set of writes gets it's own r1bio
1334 * with a set of bios attached.
1da177e4 1335 */
c3b328ac 1336
8f19ccb2 1337 disks = conf->raid_disks * 2;
6bfe0b49
DW
1338 retry_write:
1339 blocked_rdev = NULL;
1da177e4 1340 rcu_read_lock();
1f68f0c4 1341 max_sectors = r1_bio->sectors;
1da177e4 1342 for (i = 0; i < disks; i++) {
3cb03002 1343 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1344 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1345 atomic_inc(&rdev->nr_pending);
1346 blocked_rdev = rdev;
1347 break;
1348 }
1f68f0c4 1349 r1_bio->bios[i] = NULL;
8ae12666 1350 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1351 if (i < conf->raid_disks)
1352 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1353 continue;
1354 }
1355
1356 atomic_inc(&rdev->nr_pending);
1357 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1358 sector_t first_bad;
1359 int bad_sectors;
1360 int is_bad;
1361
3b046a97 1362 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1363 &first_bad, &bad_sectors);
1364 if (is_bad < 0) {
1365 /* mustn't write here until the bad block is
1366 * acknowledged*/
1367 set_bit(BlockedBadBlocks, &rdev->flags);
1368 blocked_rdev = rdev;
1369 break;
1370 }
1371 if (is_bad && first_bad <= r1_bio->sector) {
1372 /* Cannot write here at all */
1373 bad_sectors -= (r1_bio->sector - first_bad);
1374 if (bad_sectors < max_sectors)
1375 /* mustn't write more than bad_sectors
1376 * to other devices yet
1377 */
1378 max_sectors = bad_sectors;
03c902e1 1379 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1380 /* We don't set R1BIO_Degraded as that
1381 * only applies if the disk is
1382 * missing, so it might be re-added,
1383 * and we want to know to recover this
1384 * chunk.
1385 * In this case the device is here,
1386 * and the fact that this chunk is not
1387 * in-sync is recorded in the bad
1388 * block log
1389 */
1390 continue;
964147d5 1391 }
1f68f0c4
N
1392 if (is_bad) {
1393 int good_sectors = first_bad - r1_bio->sector;
1394 if (good_sectors < max_sectors)
1395 max_sectors = good_sectors;
1396 }
1397 }
1398 r1_bio->bios[i] = bio;
1da177e4
LT
1399 }
1400 rcu_read_unlock();
1401
6bfe0b49
DW
1402 if (unlikely(blocked_rdev)) {
1403 /* Wait for this device to become unblocked */
1404 int j;
1405
1406 for (j = 0; j < i; j++)
1407 if (r1_bio->bios[j])
1408 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1409 r1_bio->state = 0;
fd76863e 1410 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1411 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1412 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1413 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1414 goto retry_write;
1415 }
1416
c230e7e5
N
1417 if (max_sectors < bio_sectors(bio)) {
1418 struct bio *split = bio_split(bio, max_sectors,
1419 GFP_NOIO, conf->bio_split);
1420 bio_chain(split, bio);
1421 generic_make_request(bio);
1422 bio = split;
1423 r1_bio->master_bio = bio;
1f68f0c4 1424 r1_bio->sectors = max_sectors;
191ea9b2 1425 }
4b6d287f 1426
4e78064f 1427 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1428 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1429
1f68f0c4 1430 first_clone = 1;
d8c84c4f 1431
1da177e4 1432 for (i = 0; i < disks; i++) {
8e58e327 1433 struct bio *mbio = NULL;
1da177e4
LT
1434 if (!r1_bio->bios[i])
1435 continue;
1436
1f68f0c4
N
1437
1438 if (first_clone) {
1439 /* do behind I/O ?
1440 * Not if there are too many, or cannot
1441 * allocate memory, or a reader on WriteMostly
1442 * is waiting for behind writes to flush */
1443 if (bitmap &&
1444 (atomic_read(&bitmap->behind_writes)
1445 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1446 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1447 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1448 }
1f68f0c4
N
1449
1450 bitmap_startwrite(bitmap, r1_bio->sector,
1451 r1_bio->sectors,
1452 test_bit(R1BIO_BehindIO,
1453 &r1_bio->state));
1454 first_clone = 0;
1455 }
8e58e327 1456
16d56e2f
SL
1457 if (r1_bio->behind_master_bio)
1458 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1459 GFP_NOIO, mddev->bio_set);
1460 else
1461 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
8e58e327 1462
841c1316 1463 if (r1_bio->behind_master_bio) {
4b6d287f
N
1464 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1465 atomic_inc(&r1_bio->behind_remaining);
1466 }
1467
1f68f0c4
N
1468 r1_bio->bios[i] = mbio;
1469
4f024f37 1470 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1471 conf->mirrors[i].rdev->data_offset);
74d46992 1472 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1473 mbio->bi_end_io = raid1_end_write_request;
a682e003 1474 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1475 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1476 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1477 conf->raid_disks - mddev->degraded > 1)
1478 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1479 mbio->bi_private = r1_bio;
1480
1da177e4 1481 atomic_inc(&r1_bio->remaining);
f54a9d0e 1482
109e3765 1483 if (mddev->gendisk)
74d46992 1484 trace_block_bio_remap(mbio->bi_disk->queue,
109e3765
N
1485 mbio, disk_devt(mddev->gendisk),
1486 r1_bio->sector);
1487 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1488 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
109e3765 1489
f54a9d0e
N
1490 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1491 if (cb)
1492 plug = container_of(cb, struct raid1_plug_cb, cb);
1493 else
1494 plug = NULL;
f54a9d0e
N
1495 if (plug) {
1496 bio_list_add(&plug->pending, mbio);
1497 plug->pending_cnt++;
1498 } else {
23b245c0 1499 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1500 bio_list_add(&conf->pending_bio_list, mbio);
1501 conf->pending_count++;
23b245c0 1502 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1503 md_wakeup_thread(mddev->thread);
23b245c0 1504 }
1da177e4 1505 }
1f68f0c4 1506
079fa166
N
1507 r1_bio_write_done(r1_bio);
1508
1509 /* In case raid1d snuck in to freeze_array */
1510 wake_up(&conf->wait_barrier);
1da177e4
LT
1511}
1512
cc27b0c7 1513static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1514{
fd76863e 1515 sector_t sectors;
3b046a97 1516
aff8da09
SL
1517 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1518 md_flush_request(mddev, bio);
cc27b0c7 1519 return true;
aff8da09 1520 }
3b046a97 1521
c230e7e5
N
1522 /*
1523 * There is a limit to the maximum size, but
1524 * the read/write handler might find a lower limit
1525 * due to bad blocks. To avoid multiple splits,
1526 * we pass the maximum number of sectors down
1527 * and let the lower level perform the split.
1528 */
1529 sectors = align_to_barrier_unit_end(
1530 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1531
c230e7e5 1532 if (bio_data_dir(bio) == READ)
689389a0 1533 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1534 else {
1535 if (!md_write_start(mddev,bio))
1536 return false;
c230e7e5 1537 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1538 }
1539 return true;
3b046a97
RL
1540}
1541
849674e4 1542static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1543{
e8096360 1544 struct r1conf *conf = mddev->private;
1da177e4
LT
1545 int i;
1546
1547 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1548 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1549 rcu_read_lock();
1550 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1551 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1552 seq_printf(seq, "%s",
ddac7c7e
N
1553 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1554 }
1555 rcu_read_unlock();
1da177e4
LT
1556 seq_printf(seq, "]");
1557}
1558
849674e4 1559static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1560{
1561 char b[BDEVNAME_SIZE];
e8096360 1562 struct r1conf *conf = mddev->private;
423f04d6 1563 unsigned long flags;
1da177e4
LT
1564
1565 /*
1566 * If it is not operational, then we have already marked it as dead
1567 * else if it is the last working disks, ignore the error, let the
1568 * next level up know.
1569 * else mark the drive as failed
1570 */
2e52d449 1571 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1572 if (test_bit(In_sync, &rdev->flags)
4044ba58 1573 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1574 /*
1575 * Don't fail the drive, act as though we were just a
4044ba58
N
1576 * normal single drive.
1577 * However don't try a recovery from this drive as
1578 * it is very likely to fail.
1da177e4 1579 */
5389042f 1580 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1581 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1582 return;
4044ba58 1583 }
de393cde 1584 set_bit(Blocked, &rdev->flags);
c04be0aa 1585 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1586 mddev->degraded++;
dd00a99e 1587 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1588 } else
1589 set_bit(Faulty, &rdev->flags);
423f04d6 1590 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1591 /*
1592 * if recovery is running, make sure it aborts.
1593 */
1594 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1595 set_mask_bits(&mddev->sb_flags, 0,
1596 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1597 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1598 "md/raid1:%s: Operation continuing on %d devices.\n",
1599 mdname(mddev), bdevname(rdev->bdev, b),
1600 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1601}
1602
e8096360 1603static void print_conf(struct r1conf *conf)
1da177e4
LT
1604{
1605 int i;
1da177e4 1606
1d41c216 1607 pr_debug("RAID1 conf printout:\n");
1da177e4 1608 if (!conf) {
1d41c216 1609 pr_debug("(!conf)\n");
1da177e4
LT
1610 return;
1611 }
1d41c216
N
1612 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1613 conf->raid_disks);
1da177e4 1614
ddac7c7e 1615 rcu_read_lock();
1da177e4
LT
1616 for (i = 0; i < conf->raid_disks; i++) {
1617 char b[BDEVNAME_SIZE];
3cb03002 1618 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1619 if (rdev)
1d41c216
N
1620 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1621 i, !test_bit(In_sync, &rdev->flags),
1622 !test_bit(Faulty, &rdev->flags),
1623 bdevname(rdev->bdev,b));
1da177e4 1624 }
ddac7c7e 1625 rcu_read_unlock();
1da177e4
LT
1626}
1627
e8096360 1628static void close_sync(struct r1conf *conf)
1da177e4 1629{
f6eca2d4
ND
1630 int idx;
1631
1632 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1633 _wait_barrier(conf, idx);
1634 _allow_barrier(conf, idx);
1635 }
1da177e4
LT
1636
1637 mempool_destroy(conf->r1buf_pool);
1638 conf->r1buf_pool = NULL;
1639}
1640
fd01b88c 1641static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1642{
1643 int i;
e8096360 1644 struct r1conf *conf = mddev->private;
6b965620
N
1645 int count = 0;
1646 unsigned long flags;
1da177e4
LT
1647
1648 /*
f72ffdd6 1649 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1650 * and mark them readable.
1651 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1652 * device_lock used to avoid races with raid1_end_read_request
1653 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1654 */
423f04d6 1655 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1656 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1657 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1658 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1659 if (repl
1aee41f6 1660 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1661 && repl->recovery_offset == MaxSector
1662 && !test_bit(Faulty, &repl->flags)
1663 && !test_and_set_bit(In_sync, &repl->flags)) {
1664 /* replacement has just become active */
1665 if (!rdev ||
1666 !test_and_clear_bit(In_sync, &rdev->flags))
1667 count++;
1668 if (rdev) {
1669 /* Replaced device not technically
1670 * faulty, but we need to be sure
1671 * it gets removed and never re-added
1672 */
1673 set_bit(Faulty, &rdev->flags);
1674 sysfs_notify_dirent_safe(
1675 rdev->sysfs_state);
1676 }
1677 }
ddac7c7e 1678 if (rdev
61e4947c 1679 && rdev->recovery_offset == MaxSector
ddac7c7e 1680 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1681 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1682 count++;
654e8b5a 1683 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1684 }
1685 }
6b965620
N
1686 mddev->degraded -= count;
1687 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1688
1689 print_conf(conf);
6b965620 1690 return count;
1da177e4
LT
1691}
1692
fd01b88c 1693static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1694{
e8096360 1695 struct r1conf *conf = mddev->private;
199050ea 1696 int err = -EEXIST;
41158c7e 1697 int mirror = 0;
0eaf822c 1698 struct raid1_info *p;
6c2fce2e 1699 int first = 0;
30194636 1700 int last = conf->raid_disks - 1;
1da177e4 1701
5389042f
N
1702 if (mddev->recovery_disabled == conf->recovery_disabled)
1703 return -EBUSY;
1704
1501efad
DW
1705 if (md_integrity_add_rdev(rdev, mddev))
1706 return -ENXIO;
1707
6c2fce2e
NB
1708 if (rdev->raid_disk >= 0)
1709 first = last = rdev->raid_disk;
1710
70bcecdb
GR
1711 /*
1712 * find the disk ... but prefer rdev->saved_raid_disk
1713 * if possible.
1714 */
1715 if (rdev->saved_raid_disk >= 0 &&
1716 rdev->saved_raid_disk >= first &&
1717 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1718 first = last = rdev->saved_raid_disk;
1719
7ef449d1
N
1720 for (mirror = first; mirror <= last; mirror++) {
1721 p = conf->mirrors+mirror;
1722 if (!p->rdev) {
1da177e4 1723
9092c02d
JB
1724 if (mddev->gendisk)
1725 disk_stack_limits(mddev->gendisk, rdev->bdev,
1726 rdev->data_offset << 9);
1da177e4
LT
1727
1728 p->head_position = 0;
1729 rdev->raid_disk = mirror;
199050ea 1730 err = 0;
6aea114a
N
1731 /* As all devices are equivalent, we don't need a full recovery
1732 * if this was recently any drive of the array
1733 */
1734 if (rdev->saved_raid_disk < 0)
41158c7e 1735 conf->fullsync = 1;
d6065f7b 1736 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1737 break;
1738 }
7ef449d1
N
1739 if (test_bit(WantReplacement, &p->rdev->flags) &&
1740 p[conf->raid_disks].rdev == NULL) {
1741 /* Add this device as a replacement */
1742 clear_bit(In_sync, &rdev->flags);
1743 set_bit(Replacement, &rdev->flags);
1744 rdev->raid_disk = mirror;
1745 err = 0;
1746 conf->fullsync = 1;
1747 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1748 break;
1749 }
1750 }
9092c02d 1751 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1752 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1753 print_conf(conf);
199050ea 1754 return err;
1da177e4
LT
1755}
1756
b8321b68 1757static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1758{
e8096360 1759 struct r1conf *conf = mddev->private;
1da177e4 1760 int err = 0;
b8321b68 1761 int number = rdev->raid_disk;
0eaf822c 1762 struct raid1_info *p = conf->mirrors + number;
1da177e4 1763
b014f14c
N
1764 if (rdev != p->rdev)
1765 p = conf->mirrors + conf->raid_disks + number;
1766
1da177e4 1767 print_conf(conf);
b8321b68 1768 if (rdev == p->rdev) {
b2d444d7 1769 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1770 atomic_read(&rdev->nr_pending)) {
1771 err = -EBUSY;
1772 goto abort;
1773 }
046abeed 1774 /* Only remove non-faulty devices if recovery
dfc70645
N
1775 * is not possible.
1776 */
1777 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1778 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1779 mddev->degraded < conf->raid_disks) {
1780 err = -EBUSY;
1781 goto abort;
1782 }
1da177e4 1783 p->rdev = NULL;
d787be40
N
1784 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1785 synchronize_rcu();
1786 if (atomic_read(&rdev->nr_pending)) {
1787 /* lost the race, try later */
1788 err = -EBUSY;
1789 p->rdev = rdev;
1790 goto abort;
1791 }
1792 }
1793 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1794 /* We just removed a device that is being replaced.
1795 * Move down the replacement. We drain all IO before
1796 * doing this to avoid confusion.
1797 */
1798 struct md_rdev *repl =
1799 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1800 freeze_array(conf, 0);
c1b45ec0
YY
1801 if (atomic_read(&repl->nr_pending)) {
1802 /* It means that some queued IO of retry_list
1803 * hold repl. Thus, we cannot set replacement
1804 * as NULL, avoiding rdev NULL pointer
1805 * dereference in sync_request_write and
1806 * handle_write_finished.
1807 */
1808 err = -EBUSY;
1809 unfreeze_array(conf);
1810 goto abort;
1811 }
8c7a2c2b
N
1812 clear_bit(Replacement, &repl->flags);
1813 p->rdev = repl;
1814 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1815 unfreeze_array(conf);
e5bc9c3c
GJ
1816 }
1817
1818 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1819 err = md_integrity_register(mddev);
1da177e4
LT
1820 }
1821abort:
1822
1823 print_conf(conf);
1824 return err;
1825}
1826
4246a0b6 1827static void end_sync_read(struct bio *bio)
1da177e4 1828{
98d30c58 1829 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1830
0fc280f6 1831 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1832
1da177e4
LT
1833 /*
1834 * we have read a block, now it needs to be re-written,
1835 * or re-read if the read failed.
1836 * We don't do much here, just schedule handling by raid1d
1837 */
4e4cbee9 1838 if (!bio->bi_status)
1da177e4 1839 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1840
1841 if (atomic_dec_and_test(&r1_bio->remaining))
1842 reschedule_retry(r1_bio);
1da177e4
LT
1843}
1844
4246a0b6 1845static void end_sync_write(struct bio *bio)
1da177e4 1846{
4e4cbee9 1847 int uptodate = !bio->bi_status;
98d30c58 1848 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1849 struct mddev *mddev = r1_bio->mddev;
e8096360 1850 struct r1conf *conf = mddev->private;
4367af55
N
1851 sector_t first_bad;
1852 int bad_sectors;
854abd75 1853 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1854
6b1117d5 1855 if (!uptodate) {
57dab0bd 1856 sector_t sync_blocks = 0;
6b1117d5
N
1857 sector_t s = r1_bio->sector;
1858 long sectors_to_go = r1_bio->sectors;
1859 /* make sure these bits doesn't get cleared. */
1860 do {
5e3db645 1861 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1862 &sync_blocks, 1);
1863 s += sync_blocks;
1864 sectors_to_go -= sync_blocks;
1865 } while (sectors_to_go > 0);
854abd75
N
1866 set_bit(WriteErrorSeen, &rdev->flags);
1867 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1868 set_bit(MD_RECOVERY_NEEDED, &
1869 mddev->recovery);
d8f05d29 1870 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1871 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1872 &first_bad, &bad_sectors) &&
1873 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1874 r1_bio->sector,
1875 r1_bio->sectors,
1876 &first_bad, &bad_sectors)
1877 )
4367af55 1878 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1879
1da177e4 1880 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1881 int s = r1_bio->sectors;
d8f05d29
N
1882 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1883 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1884 reschedule_retry(r1_bio);
1885 else {
1886 put_buf(r1_bio);
1887 md_done_sync(mddev, s, uptodate);
1888 }
1da177e4 1889 }
1da177e4
LT
1890}
1891
3cb03002 1892static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1893 int sectors, struct page *page, int rw)
1894{
796a5cf0 1895 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1896 /* success */
1897 return 1;
19d67169 1898 if (rw == WRITE) {
d8f05d29 1899 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1900 if (!test_and_set_bit(WantReplacement,
1901 &rdev->flags))
1902 set_bit(MD_RECOVERY_NEEDED, &
1903 rdev->mddev->recovery);
1904 }
d8f05d29
N
1905 /* need to record an error - either for the block or the device */
1906 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1907 md_error(rdev->mddev, rdev);
1908 return 0;
1909}
1910
9f2c9d12 1911static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1912{
a68e5870
N
1913 /* Try some synchronous reads of other devices to get
1914 * good data, much like with normal read errors. Only
1915 * read into the pages we already have so we don't
1916 * need to re-issue the read request.
1917 * We don't need to freeze the array, because being in an
1918 * active sync request, there is no normal IO, and
1919 * no overlapping syncs.
06f60385
N
1920 * We don't need to check is_badblock() again as we
1921 * made sure that anything with a bad block in range
1922 * will have bi_end_io clear.
a68e5870 1923 */
fd01b88c 1924 struct mddev *mddev = r1_bio->mddev;
e8096360 1925 struct r1conf *conf = mddev->private;
a68e5870 1926 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1927 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1928 sector_t sect = r1_bio->sector;
1929 int sectors = r1_bio->sectors;
1930 int idx = 0;
2e52d449
N
1931 struct md_rdev *rdev;
1932
1933 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1934 if (test_bit(FailFast, &rdev->flags)) {
1935 /* Don't try recovering from here - just fail it
1936 * ... unless it is the last working device of course */
1937 md_error(mddev, rdev);
1938 if (test_bit(Faulty, &rdev->flags))
1939 /* Don't try to read from here, but make sure
1940 * put_buf does it's thing
1941 */
1942 bio->bi_end_io = end_sync_write;
1943 }
a68e5870
N
1944
1945 while(sectors) {
1946 int s = sectors;
1947 int d = r1_bio->read_disk;
1948 int success = 0;
78d7f5f7 1949 int start;
a68e5870
N
1950
1951 if (s > (PAGE_SIZE>>9))
1952 s = PAGE_SIZE >> 9;
1953 do {
1954 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1955 /* No rcu protection needed here devices
1956 * can only be removed when no resync is
1957 * active, and resync is currently active
1958 */
1959 rdev = conf->mirrors[d].rdev;
9d3d8011 1960 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 1961 pages[idx],
796a5cf0 1962 REQ_OP_READ, 0, false)) {
a68e5870
N
1963 success = 1;
1964 break;
1965 }
1966 }
1967 d++;
8f19ccb2 1968 if (d == conf->raid_disks * 2)
a68e5870
N
1969 d = 0;
1970 } while (!success && d != r1_bio->read_disk);
1971
78d7f5f7 1972 if (!success) {
a68e5870 1973 char b[BDEVNAME_SIZE];
3a9f28a5
N
1974 int abort = 0;
1975 /* Cannot read from anywhere, this block is lost.
1976 * Record a bad block on each device. If that doesn't
1977 * work just disable and interrupt the recovery.
1978 * Don't fail devices as that won't really help.
1979 */
1d41c216 1980 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 1981 mdname(mddev), bio_devname(bio, b),
1d41c216 1982 (unsigned long long)r1_bio->sector);
8f19ccb2 1983 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1984 rdev = conf->mirrors[d].rdev;
1985 if (!rdev || test_bit(Faulty, &rdev->flags))
1986 continue;
1987 if (!rdev_set_badblocks(rdev, sect, s, 0))
1988 abort = 1;
1989 }
1990 if (abort) {
d890fa2b
N
1991 conf->recovery_disabled =
1992 mddev->recovery_disabled;
3a9f28a5
N
1993 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1994 md_done_sync(mddev, r1_bio->sectors, 0);
1995 put_buf(r1_bio);
1996 return 0;
1997 }
1998 /* Try next page */
1999 sectors -= s;
2000 sect += s;
2001 idx++;
2002 continue;
d11c171e 2003 }
78d7f5f7
N
2004
2005 start = d;
2006 /* write it back and re-read */
2007 while (d != r1_bio->read_disk) {
2008 if (d == 0)
8f19ccb2 2009 d = conf->raid_disks * 2;
78d7f5f7
N
2010 d--;
2011 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2012 continue;
2013 rdev = conf->mirrors[d].rdev;
d8f05d29 2014 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2015 pages[idx],
d8f05d29 2016 WRITE) == 0) {
78d7f5f7
N
2017 r1_bio->bios[d]->bi_end_io = NULL;
2018 rdev_dec_pending(rdev, mddev);
9d3d8011 2019 }
78d7f5f7
N
2020 }
2021 d = start;
2022 while (d != r1_bio->read_disk) {
2023 if (d == 0)
8f19ccb2 2024 d = conf->raid_disks * 2;
78d7f5f7
N
2025 d--;
2026 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2027 continue;
2028 rdev = conf->mirrors[d].rdev;
d8f05d29 2029 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2030 pages[idx],
d8f05d29 2031 READ) != 0)
9d3d8011 2032 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2033 }
a68e5870
N
2034 sectors -= s;
2035 sect += s;
2036 idx ++;
2037 }
78d7f5f7 2038 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2039 bio->bi_status = 0;
a68e5870
N
2040 return 1;
2041}
2042
c95e6385 2043static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2044{
2045 /* We have read all readable devices. If we haven't
2046 * got the block, then there is no hope left.
2047 * If we have, then we want to do a comparison
2048 * and skip the write if everything is the same.
2049 * If any blocks failed to read, then we need to
2050 * attempt an over-write
2051 */
fd01b88c 2052 struct mddev *mddev = r1_bio->mddev;
e8096360 2053 struct r1conf *conf = mddev->private;
a68e5870
N
2054 int primary;
2055 int i;
f4380a91 2056 int vcnt;
a68e5870 2057
30bc9b53
N
2058 /* Fix variable parts of all bios */
2059 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2060 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2061 blk_status_t status;
30bc9b53 2062 struct bio *b = r1_bio->bios[i];
98d30c58 2063 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2064 if (b->bi_end_io != end_sync_read)
2065 continue;
4246a0b6 2066 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2067 status = b->bi_status;
30bc9b53 2068 bio_reset(b);
4e4cbee9 2069 b->bi_status = status;
4f024f37 2070 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2071 conf->mirrors[i].rdev->data_offset;
74d46992 2072 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2073 b->bi_end_io = end_sync_read;
98d30c58
ML
2074 rp->raid_bio = r1_bio;
2075 b->bi_private = rp;
30bc9b53 2076
fb0eb5df
ML
2077 /* initialize bvec table again */
2078 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2079 }
8f19ccb2 2080 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2081 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2082 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2083 r1_bio->bios[primary]->bi_end_io = NULL;
2084 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2085 break;
2086 }
2087 r1_bio->read_disk = primary;
8f19ccb2 2088 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2089 int j;
78d7f5f7
N
2090 struct bio *pbio = r1_bio->bios[primary];
2091 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2092 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2093 struct page **ppages = get_resync_pages(pbio)->pages;
2094 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2095 struct bio_vec *bi;
8fc04e6e 2096 int page_len[RESYNC_PAGES] = { 0 };
a68e5870 2097
2aabaa65 2098 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2099 continue;
4246a0b6 2100 /* Now we can 'fixup' the error value */
4e4cbee9 2101 sbio->bi_status = 0;
78d7f5f7 2102
60928a91
ML
2103 bio_for_each_segment_all(bi, sbio, j)
2104 page_len[j] = bi->bv_len;
2105
4e4cbee9 2106 if (!status) {
78d7f5f7 2107 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2108 if (memcmp(page_address(ppages[j]),
2109 page_address(spages[j]),
60928a91 2110 page_len[j]))
78d7f5f7 2111 break;
69382e85 2112 }
78d7f5f7
N
2113 } else
2114 j = 0;
2115 if (j >= 0)
7f7583d4 2116 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2117 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2118 && !status)) {
78d7f5f7
N
2119 /* No need to write to this device. */
2120 sbio->bi_end_io = NULL;
2121 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2122 continue;
2123 }
d3b45c2a
KO
2124
2125 bio_copy_data(sbio, pbio);
78d7f5f7 2126 }
a68e5870
N
2127}
2128
9f2c9d12 2129static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2130{
e8096360 2131 struct r1conf *conf = mddev->private;
a68e5870 2132 int i;
8f19ccb2 2133 int disks = conf->raid_disks * 2;
037d2ff6 2134 struct bio *wbio;
a68e5870 2135
a68e5870
N
2136 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2137 /* ouch - failed to read all of that. */
2138 if (!fix_sync_read_error(r1_bio))
2139 return;
7ca78d57
N
2140
2141 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2142 process_checks(r1_bio);
2143
d11c171e
N
2144 /*
2145 * schedule writes
2146 */
1da177e4
LT
2147 atomic_set(&r1_bio->remaining, 1);
2148 for (i = 0; i < disks ; i++) {
2149 wbio = r1_bio->bios[i];
3e198f78
N
2150 if (wbio->bi_end_io == NULL ||
2151 (wbio->bi_end_io == end_sync_read &&
2152 (i == r1_bio->read_disk ||
2153 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2154 continue;
0c9d5b12
N
2155 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2156 continue;
1da177e4 2157
796a5cf0 2158 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2159 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2160 wbio->bi_opf |= MD_FAILFAST;
2161
3e198f78 2162 wbio->bi_end_io = end_sync_write;
1da177e4 2163 atomic_inc(&r1_bio->remaining);
aa8b57aa 2164 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2165
1da177e4
LT
2166 generic_make_request(wbio);
2167 }
2168
2169 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2170 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2171 int s = r1_bio->sectors;
2172 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2173 test_bit(R1BIO_WriteError, &r1_bio->state))
2174 reschedule_retry(r1_bio);
2175 else {
2176 put_buf(r1_bio);
2177 md_done_sync(mddev, s, 1);
2178 }
1da177e4
LT
2179 }
2180}
2181
2182/*
2183 * This is a kernel thread which:
2184 *
2185 * 1. Retries failed read operations on working mirrors.
2186 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2187 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2188 */
2189
e8096360 2190static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2191 sector_t sect, int sectors)
2192{
fd01b88c 2193 struct mddev *mddev = conf->mddev;
867868fb
N
2194 while(sectors) {
2195 int s = sectors;
2196 int d = read_disk;
2197 int success = 0;
2198 int start;
3cb03002 2199 struct md_rdev *rdev;
867868fb
N
2200
2201 if (s > (PAGE_SIZE>>9))
2202 s = PAGE_SIZE >> 9;
2203
2204 do {
d2eb35ac
N
2205 sector_t first_bad;
2206 int bad_sectors;
2207
707a6a42
N
2208 rcu_read_lock();
2209 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2210 if (rdev &&
da8840a7 2211 (test_bit(In_sync, &rdev->flags) ||
2212 (!test_bit(Faulty, &rdev->flags) &&
2213 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2214 is_badblock(rdev, sect, s,
707a6a42
N
2215 &first_bad, &bad_sectors) == 0) {
2216 atomic_inc(&rdev->nr_pending);
2217 rcu_read_unlock();
2218 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2219 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2220 success = 1;
2221 rdev_dec_pending(rdev, mddev);
2222 if (success)
2223 break;
2224 } else
2225 rcu_read_unlock();
2226 d++;
2227 if (d == conf->raid_disks * 2)
2228 d = 0;
867868fb
N
2229 } while (!success && d != read_disk);
2230
2231 if (!success) {
d8f05d29 2232 /* Cannot read from anywhere - mark it bad */
3cb03002 2233 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2234 if (!rdev_set_badblocks(rdev, sect, s, 0))
2235 md_error(mddev, rdev);
867868fb
N
2236 break;
2237 }
2238 /* write it back and re-read */
2239 start = d;
2240 while (d != read_disk) {
2241 if (d==0)
8f19ccb2 2242 d = conf->raid_disks * 2;
867868fb 2243 d--;
707a6a42
N
2244 rcu_read_lock();
2245 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2246 if (rdev &&
707a6a42
N
2247 !test_bit(Faulty, &rdev->flags)) {
2248 atomic_inc(&rdev->nr_pending);
2249 rcu_read_unlock();
d8f05d29
N
2250 r1_sync_page_io(rdev, sect, s,
2251 conf->tmppage, WRITE);
707a6a42
N
2252 rdev_dec_pending(rdev, mddev);
2253 } else
2254 rcu_read_unlock();
867868fb
N
2255 }
2256 d = start;
2257 while (d != read_disk) {
2258 char b[BDEVNAME_SIZE];
2259 if (d==0)
8f19ccb2 2260 d = conf->raid_disks * 2;
867868fb 2261 d--;
707a6a42
N
2262 rcu_read_lock();
2263 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2264 if (rdev &&
b8cb6b4c 2265 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2266 atomic_inc(&rdev->nr_pending);
2267 rcu_read_unlock();
d8f05d29
N
2268 if (r1_sync_page_io(rdev, sect, s,
2269 conf->tmppage, READ)) {
867868fb 2270 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2271 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2272 mdname(mddev), s,
2273 (unsigned long long)(sect +
2274 rdev->data_offset),
2275 bdevname(rdev->bdev, b));
867868fb 2276 }
707a6a42
N
2277 rdev_dec_pending(rdev, mddev);
2278 } else
2279 rcu_read_unlock();
867868fb
N
2280 }
2281 sectors -= s;
2282 sect += s;
2283 }
2284}
2285
9f2c9d12 2286static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2287{
fd01b88c 2288 struct mddev *mddev = r1_bio->mddev;
e8096360 2289 struct r1conf *conf = mddev->private;
3cb03002 2290 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2291
2292 /* bio has the data to be written to device 'i' where
2293 * we just recently had a write error.
2294 * We repeatedly clone the bio and trim down to one block,
2295 * then try the write. Where the write fails we record
2296 * a bad block.
2297 * It is conceivable that the bio doesn't exactly align with
2298 * blocks. We must handle this somehow.
2299 *
2300 * We currently own a reference on the rdev.
2301 */
2302
2303 int block_sectors;
2304 sector_t sector;
2305 int sectors;
2306 int sect_to_write = r1_bio->sectors;
2307 int ok = 1;
2308
2309 if (rdev->badblocks.shift < 0)
2310 return 0;
2311
ab713cdc
ND
2312 block_sectors = roundup(1 << rdev->badblocks.shift,
2313 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2314 sector = r1_bio->sector;
2315 sectors = ((sector + block_sectors)
2316 & ~(sector_t)(block_sectors - 1))
2317 - sector;
2318
cd5ff9a1
N
2319 while (sect_to_write) {
2320 struct bio *wbio;
2321 if (sectors > sect_to_write)
2322 sectors = sect_to_write;
2323 /* Write at 'sector' for 'sectors'*/
2324
b783863f 2325 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2326 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2327 GFP_NOIO,
2328 mddev->bio_set);
b783863f 2329 } else {
d7a10308
ML
2330 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2331 mddev->bio_set);
b783863f
KO
2332 }
2333
796a5cf0 2334 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2335 wbio->bi_iter.bi_sector = r1_bio->sector;
2336 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2337
6678d83f 2338 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2339 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2340 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2341
2342 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2343 /* failure! */
2344 ok = rdev_set_badblocks(rdev, sector,
2345 sectors, 0)
2346 && ok;
2347
2348 bio_put(wbio);
2349 sect_to_write -= sectors;
2350 sector += sectors;
2351 sectors = block_sectors;
2352 }
2353 return ok;
2354}
2355
e8096360 2356static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2357{
2358 int m;
2359 int s = r1_bio->sectors;
8f19ccb2 2360 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2361 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2362 struct bio *bio = r1_bio->bios[m];
2363 if (bio->bi_end_io == NULL)
2364 continue;
4e4cbee9 2365 if (!bio->bi_status &&
62096bce 2366 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2367 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2368 }
4e4cbee9 2369 if (bio->bi_status &&
62096bce
N
2370 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2371 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2372 md_error(conf->mddev, rdev);
2373 }
2374 }
2375 put_buf(r1_bio);
2376 md_done_sync(conf->mddev, s, 1);
2377}
2378
e8096360 2379static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2380{
fd76863e 2381 int m, idx;
55ce74d4 2382 bool fail = false;
fd76863e 2383
8f19ccb2 2384 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2385 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2386 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2387 rdev_clear_badblocks(rdev,
2388 r1_bio->sector,
c6563a8c 2389 r1_bio->sectors, 0);
62096bce
N
2390 rdev_dec_pending(rdev, conf->mddev);
2391 } else if (r1_bio->bios[m] != NULL) {
2392 /* This drive got a write error. We need to
2393 * narrow down and record precise write
2394 * errors.
2395 */
55ce74d4 2396 fail = true;
62096bce
N
2397 if (!narrow_write_error(r1_bio, m)) {
2398 md_error(conf->mddev,
2399 conf->mirrors[m].rdev);
2400 /* an I/O failed, we can't clear the bitmap */
2401 set_bit(R1BIO_Degraded, &r1_bio->state);
2402 }
2403 rdev_dec_pending(conf->mirrors[m].rdev,
2404 conf->mddev);
2405 }
55ce74d4
N
2406 if (fail) {
2407 spin_lock_irq(&conf->device_lock);
2408 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2409 idx = sector_to_idx(r1_bio->sector);
824e47da 2410 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2411 spin_unlock_irq(&conf->device_lock);
824e47da 2412 /*
2413 * In case freeze_array() is waiting for condition
2414 * get_unqueued_pending() == extra to be true.
2415 */
2416 wake_up(&conf->wait_barrier);
55ce74d4 2417 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2418 } else {
2419 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2420 close_write(r1_bio);
55ce74d4 2421 raid_end_bio_io(r1_bio);
bd8688a1 2422 }
62096bce
N
2423}
2424
e8096360 2425static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2426{
fd01b88c 2427 struct mddev *mddev = conf->mddev;
62096bce 2428 struct bio *bio;
3cb03002 2429 struct md_rdev *rdev;
109e3765 2430 sector_t bio_sector;
62096bce
N
2431
2432 clear_bit(R1BIO_ReadError, &r1_bio->state);
2433 /* we got a read error. Maybe the drive is bad. Maybe just
2434 * the block and we can fix it.
2435 * We freeze all other IO, and try reading the block from
2436 * other devices. When we find one, we re-write
2437 * and check it that fixes the read error.
2438 * This is all done synchronously while the array is
2439 * frozen
2440 */
7449f699
TM
2441
2442 bio = r1_bio->bios[r1_bio->read_disk];
109e3765 2443 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2444 bio_put(bio);
2445 r1_bio->bios[r1_bio->read_disk] = NULL;
2446
2e52d449
N
2447 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2448 if (mddev->ro == 0
2449 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2450 freeze_array(conf, 1);
62096bce
N
2451 fix_read_error(conf, r1_bio->read_disk,
2452 r1_bio->sector, r1_bio->sectors);
2453 unfreeze_array(conf);
7b42e348
GK
2454 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2455 md_error(mddev, rdev);
7449f699
TM
2456 } else {
2457 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2458 }
2459
2e52d449 2460 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2461 allow_barrier(conf, r1_bio->sector);
2462 bio = r1_bio->master_bio;
62096bce 2463
689389a0
N
2464 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2465 r1_bio->state = 0;
2466 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2467}
2468
4ed8731d 2469static void raid1d(struct md_thread *thread)
1da177e4 2470{
4ed8731d 2471 struct mddev *mddev = thread->mddev;
9f2c9d12 2472 struct r1bio *r1_bio;
1da177e4 2473 unsigned long flags;
e8096360 2474 struct r1conf *conf = mddev->private;
1da177e4 2475 struct list_head *head = &conf->retry_list;
e1dfa0a2 2476 struct blk_plug plug;
fd76863e 2477 int idx;
1da177e4
LT
2478
2479 md_check_recovery(mddev);
e1dfa0a2 2480
55ce74d4 2481 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2482 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2483 LIST_HEAD(tmp);
2484 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2485 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2486 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2487 spin_unlock_irqrestore(&conf->device_lock, flags);
2488 while (!list_empty(&tmp)) {
a452744b
MP
2489 r1_bio = list_first_entry(&tmp, struct r1bio,
2490 retry_list);
55ce74d4 2491 list_del(&r1_bio->retry_list);
fd76863e 2492 idx = sector_to_idx(r1_bio->sector);
824e47da 2493 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2494 if (mddev->degraded)
2495 set_bit(R1BIO_Degraded, &r1_bio->state);
2496 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2497 close_write(r1_bio);
55ce74d4
N
2498 raid_end_bio_io(r1_bio);
2499 }
2500 }
2501
e1dfa0a2 2502 blk_start_plug(&plug);
1da177e4 2503 for (;;) {
191ea9b2 2504
0021b7bc 2505 flush_pending_writes(conf);
191ea9b2 2506
a35e63ef
N
2507 spin_lock_irqsave(&conf->device_lock, flags);
2508 if (list_empty(head)) {
2509 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2510 break;
a35e63ef 2511 }
9f2c9d12 2512 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2513 list_del(head->prev);
fd76863e 2514 idx = sector_to_idx(r1_bio->sector);
824e47da 2515 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2516 spin_unlock_irqrestore(&conf->device_lock, flags);
2517
2518 mddev = r1_bio->mddev;
070ec55d 2519 conf = mddev->private;
4367af55 2520 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2521 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2522 test_bit(R1BIO_WriteError, &r1_bio->state))
2523 handle_sync_write_finished(conf, r1_bio);
2524 else
4367af55 2525 sync_request_write(mddev, r1_bio);
cd5ff9a1 2526 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2527 test_bit(R1BIO_WriteError, &r1_bio->state))
2528 handle_write_finished(conf, r1_bio);
2529 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2530 handle_read_error(conf, r1_bio);
2531 else
c230e7e5 2532 WARN_ON_ONCE(1);
62096bce 2533
1d9d5241 2534 cond_resched();
2953079c 2535 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2536 md_check_recovery(mddev);
1da177e4 2537 }
e1dfa0a2 2538 blk_finish_plug(&plug);
1da177e4
LT
2539}
2540
e8096360 2541static int init_resync(struct r1conf *conf)
1da177e4
LT
2542{
2543 int buffs;
2544
2545 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2546 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2547 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2548 conf->poolinfo);
2549 if (!conf->r1buf_pool)
2550 return -ENOMEM;
1da177e4
LT
2551 return 0;
2552}
2553
208410b5
SL
2554static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2555{
2556 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2557 struct resync_pages *rps;
2558 struct bio *bio;
2559 int i;
2560
2561 for (i = conf->poolinfo->raid_disks; i--; ) {
2562 bio = r1bio->bios[i];
2563 rps = bio->bi_private;
2564 bio_reset(bio);
2565 bio->bi_private = rps;
2566 }
2567 r1bio->master_bio = NULL;
2568 return r1bio;
2569}
2570
1da177e4
LT
2571/*
2572 * perform a "sync" on one "block"
2573 *
2574 * We need to make sure that no normal I/O request - particularly write
2575 * requests - conflict with active sync requests.
2576 *
2577 * This is achieved by tracking pending requests and a 'barrier' concept
2578 * that can be installed to exclude normal IO requests.
2579 */
2580
849674e4
SL
2581static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2582 int *skipped)
1da177e4 2583{
e8096360 2584 struct r1conf *conf = mddev->private;
9f2c9d12 2585 struct r1bio *r1_bio;
1da177e4
LT
2586 struct bio *bio;
2587 sector_t max_sector, nr_sectors;
3e198f78 2588 int disk = -1;
1da177e4 2589 int i;
3e198f78
N
2590 int wonly = -1;
2591 int write_targets = 0, read_targets = 0;
57dab0bd 2592 sector_t sync_blocks;
e3b9703e 2593 int still_degraded = 0;
06f60385
N
2594 int good_sectors = RESYNC_SECTORS;
2595 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2596 int idx = sector_to_idx(sector_nr);
022e510f 2597 int page_idx = 0;
1da177e4
LT
2598
2599 if (!conf->r1buf_pool)
2600 if (init_resync(conf))
57afd89f 2601 return 0;
1da177e4 2602
58c0fed4 2603 max_sector = mddev->dev_sectors;
1da177e4 2604 if (sector_nr >= max_sector) {
191ea9b2
N
2605 /* If we aborted, we need to abort the
2606 * sync on the 'current' bitmap chunk (there will
2607 * only be one in raid1 resync.
2608 * We can find the current addess in mddev->curr_resync
2609 */
6a806c51
N
2610 if (mddev->curr_resync < max_sector) /* aborted */
2611 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2612 &sync_blocks, 1);
6a806c51 2613 else /* completed sync */
191ea9b2 2614 conf->fullsync = 0;
6a806c51
N
2615
2616 bitmap_close_sync(mddev->bitmap);
1da177e4 2617 close_sync(conf);
c40f341f
GR
2618
2619 if (mddev_is_clustered(mddev)) {
2620 conf->cluster_sync_low = 0;
2621 conf->cluster_sync_high = 0;
c40f341f 2622 }
1da177e4
LT
2623 return 0;
2624 }
2625
07d84d10
N
2626 if (mddev->bitmap == NULL &&
2627 mddev->recovery_cp == MaxSector &&
6394cca5 2628 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2629 conf->fullsync == 0) {
2630 *skipped = 1;
2631 return max_sector - sector_nr;
2632 }
6394cca5
N
2633 /* before building a request, check if we can skip these blocks..
2634 * This call the bitmap_start_sync doesn't actually record anything
2635 */
e3b9703e 2636 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2637 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2638 /* We can skip this block, and probably several more */
2639 *skipped = 1;
2640 return sync_blocks;
2641 }
17999be4 2642
7ac50447
TM
2643 /*
2644 * If there is non-resync activity waiting for a turn, then let it
2645 * though before starting on this new sync request.
2646 */
824e47da 2647 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2648 schedule_timeout_uninterruptible(1);
2649
c40f341f
GR
2650 /* we are incrementing sector_nr below. To be safe, we check against
2651 * sector_nr + two times RESYNC_SECTORS
2652 */
2653
2654 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2655 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
208410b5 2656 r1_bio = raid1_alloc_init_r1buf(conf);
17999be4 2657
c2fd4c94 2658 raise_barrier(conf, sector_nr);
1da177e4 2659
3e198f78 2660 rcu_read_lock();
1da177e4 2661 /*
3e198f78
N
2662 * If we get a correctably read error during resync or recovery,
2663 * we might want to read from a different device. So we
2664 * flag all drives that could conceivably be read from for READ,
2665 * and any others (which will be non-In_sync devices) for WRITE.
2666 * If a read fails, we try reading from something else for which READ
2667 * is OK.
1da177e4 2668 */
1da177e4 2669
1da177e4
LT
2670 r1_bio->mddev = mddev;
2671 r1_bio->sector = sector_nr;
191ea9b2 2672 r1_bio->state = 0;
1da177e4 2673 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2674 /* make sure good_sectors won't go across barrier unit boundary */
2675 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2676
8f19ccb2 2677 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2678 struct md_rdev *rdev;
1da177e4 2679 bio = r1_bio->bios[i];
1da177e4 2680
3e198f78
N
2681 rdev = rcu_dereference(conf->mirrors[i].rdev);
2682 if (rdev == NULL ||
06f60385 2683 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2684 if (i < conf->raid_disks)
2685 still_degraded = 1;
3e198f78 2686 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2687 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2688 bio->bi_end_io = end_sync_write;
2689 write_targets ++;
3e198f78
N
2690 } else {
2691 /* may need to read from here */
06f60385
N
2692 sector_t first_bad = MaxSector;
2693 int bad_sectors;
2694
2695 if (is_badblock(rdev, sector_nr, good_sectors,
2696 &first_bad, &bad_sectors)) {
2697 if (first_bad > sector_nr)
2698 good_sectors = first_bad - sector_nr;
2699 else {
2700 bad_sectors -= (sector_nr - first_bad);
2701 if (min_bad == 0 ||
2702 min_bad > bad_sectors)
2703 min_bad = bad_sectors;
2704 }
2705 }
2706 if (sector_nr < first_bad) {
2707 if (test_bit(WriteMostly, &rdev->flags)) {
2708 if (wonly < 0)
2709 wonly = i;
2710 } else {
2711 if (disk < 0)
2712 disk = i;
2713 }
796a5cf0 2714 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2715 bio->bi_end_io = end_sync_read;
2716 read_targets++;
d57368af
AL
2717 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2718 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2719 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2720 /*
2721 * The device is suitable for reading (InSync),
2722 * but has bad block(s) here. Let's try to correct them,
2723 * if we are doing resync or repair. Otherwise, leave
2724 * this device alone for this sync request.
2725 */
796a5cf0 2726 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2727 bio->bi_end_io = end_sync_write;
2728 write_targets++;
3e198f78 2729 }
3e198f78 2730 }
06f60385
N
2731 if (bio->bi_end_io) {
2732 atomic_inc(&rdev->nr_pending);
4f024f37 2733 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2734 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2735 if (test_bit(FailFast, &rdev->flags))
2736 bio->bi_opf |= MD_FAILFAST;
06f60385 2737 }
1da177e4 2738 }
3e198f78
N
2739 rcu_read_unlock();
2740 if (disk < 0)
2741 disk = wonly;
2742 r1_bio->read_disk = disk;
191ea9b2 2743
06f60385
N
2744 if (read_targets == 0 && min_bad > 0) {
2745 /* These sectors are bad on all InSync devices, so we
2746 * need to mark them bad on all write targets
2747 */
2748 int ok = 1;
8f19ccb2 2749 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2750 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2751 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2752 ok = rdev_set_badblocks(rdev, sector_nr,
2753 min_bad, 0
2754 ) && ok;
2755 }
2953079c 2756 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2757 *skipped = 1;
2758 put_buf(r1_bio);
2759
2760 if (!ok) {
2761 /* Cannot record the badblocks, so need to
2762 * abort the resync.
2763 * If there are multiple read targets, could just
2764 * fail the really bad ones ???
2765 */
2766 conf->recovery_disabled = mddev->recovery_disabled;
2767 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2768 return 0;
2769 } else
2770 return min_bad;
2771
2772 }
2773 if (min_bad > 0 && min_bad < good_sectors) {
2774 /* only resync enough to reach the next bad->good
2775 * transition */
2776 good_sectors = min_bad;
2777 }
2778
3e198f78
N
2779 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2780 /* extra read targets are also write targets */
2781 write_targets += read_targets-1;
2782
2783 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2784 /* There is nowhere to write, so all non-sync
2785 * drives must be failed - so we are finished
2786 */
b7219ccb
N
2787 sector_t rv;
2788 if (min_bad > 0)
2789 max_sector = sector_nr + min_bad;
2790 rv = max_sector - sector_nr;
57afd89f 2791 *skipped = 1;
1da177e4 2792 put_buf(r1_bio);
1da177e4
LT
2793 return rv;
2794 }
2795
c6207277
N
2796 if (max_sector > mddev->resync_max)
2797 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2798 if (max_sector > sector_nr + good_sectors)
2799 max_sector = sector_nr + good_sectors;
1da177e4 2800 nr_sectors = 0;
289e99e8 2801 sync_blocks = 0;
1da177e4
LT
2802 do {
2803 struct page *page;
2804 int len = PAGE_SIZE;
2805 if (sector_nr + (len>>9) > max_sector)
2806 len = (max_sector - sector_nr) << 9;
2807 if (len == 0)
2808 break;
6a806c51
N
2809 if (sync_blocks == 0) {
2810 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2811 &sync_blocks, still_degraded) &&
2812 !conf->fullsync &&
2813 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2814 break;
7571ae88 2815 if ((len >> 9) > sync_blocks)
6a806c51 2816 len = sync_blocks<<9;
ab7a30c7 2817 }
191ea9b2 2818
8f19ccb2 2819 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2820 struct resync_pages *rp;
2821
1da177e4 2822 bio = r1_bio->bios[i];
98d30c58 2823 rp = get_resync_pages(bio);
1da177e4 2824 if (bio->bi_end_io) {
022e510f 2825 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2826
2827 /*
2828 * won't fail because the vec table is big
2829 * enough to hold all these pages
2830 */
2831 bio_add_page(bio, page, len, 0);
1da177e4
LT
2832 }
2833 }
2834 nr_sectors += len>>9;
2835 sector_nr += len>>9;
191ea9b2 2836 sync_blocks -= (len>>9);
022e510f 2837 } while (++page_idx < RESYNC_PAGES);
98d30c58 2838
1da177e4
LT
2839 r1_bio->sectors = nr_sectors;
2840
c40f341f
GR
2841 if (mddev_is_clustered(mddev) &&
2842 conf->cluster_sync_high < sector_nr + nr_sectors) {
2843 conf->cluster_sync_low = mddev->curr_resync_completed;
2844 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2845 /* Send resync message */
2846 md_cluster_ops->resync_info_update(mddev,
2847 conf->cluster_sync_low,
2848 conf->cluster_sync_high);
2849 }
2850
d11c171e
N
2851 /* For a user-requested sync, we read all readable devices and do a
2852 * compare
2853 */
2854 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2855 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2856 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2857 bio = r1_bio->bios[i];
2858 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2859 read_targets--;
74d46992 2860 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2861 if (read_targets == 1)
2862 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2863 generic_make_request(bio);
2864 }
2865 }
2866 } else {
2867 atomic_set(&r1_bio->remaining, 1);
2868 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2869 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2870 if (read_targets == 1)
2871 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2872 generic_make_request(bio);
1da177e4 2873
d11c171e 2874 }
1da177e4
LT
2875 return nr_sectors;
2876}
2877
fd01b88c 2878static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2879{
2880 if (sectors)
2881 return sectors;
2882
2883 return mddev->dev_sectors;
2884}
2885
e8096360 2886static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2887{
e8096360 2888 struct r1conf *conf;
709ae487 2889 int i;
0eaf822c 2890 struct raid1_info *disk;
3cb03002 2891 struct md_rdev *rdev;
709ae487 2892 int err = -ENOMEM;
1da177e4 2893
e8096360 2894 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2895 if (!conf)
709ae487 2896 goto abort;
1da177e4 2897
fd76863e 2898 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2899 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2900 if (!conf->nr_pending)
2901 goto abort;
2902
2903 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2904 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2905 if (!conf->nr_waiting)
2906 goto abort;
2907
2908 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2909 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2910 if (!conf->nr_queued)
2911 goto abort;
2912
2913 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2914 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2915 if (!conf->barrier)
2916 goto abort;
2917
0eaf822c 2918 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2919 * mddev->raid_disks * 2,
1da177e4
LT
2920 GFP_KERNEL);
2921 if (!conf->mirrors)
709ae487 2922 goto abort;
1da177e4 2923
ddaf22ab
N
2924 conf->tmppage = alloc_page(GFP_KERNEL);
2925 if (!conf->tmppage)
709ae487 2926 goto abort;
ddaf22ab 2927
709ae487 2928 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2929 if (!conf->poolinfo)
709ae487 2930 goto abort;
8f19ccb2 2931 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2932 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2933 r1bio_pool_free,
2934 conf->poolinfo);
2935 if (!conf->r1bio_pool)
709ae487
N
2936 goto abort;
2937
011067b0 2938 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
c230e7e5
N
2939 if (!conf->bio_split)
2940 goto abort;
2941
ed9bfdf1 2942 conf->poolinfo->mddev = mddev;
1da177e4 2943
c19d5798 2944 err = -EINVAL;
e7e72bf6 2945 spin_lock_init(&conf->device_lock);
dafb20fa 2946 rdev_for_each(rdev, mddev) {
709ae487 2947 int disk_idx = rdev->raid_disk;
1da177e4
LT
2948 if (disk_idx >= mddev->raid_disks
2949 || disk_idx < 0)
2950 continue;
c19d5798 2951 if (test_bit(Replacement, &rdev->flags))
02b898f2 2952 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2953 else
2954 disk = conf->mirrors + disk_idx;
1da177e4 2955
c19d5798
N
2956 if (disk->rdev)
2957 goto abort;
1da177e4 2958 disk->rdev = rdev;
1da177e4 2959 disk->head_position = 0;
12cee5a8 2960 disk->seq_start = MaxSector;
1da177e4
LT
2961 }
2962 conf->raid_disks = mddev->raid_disks;
2963 conf->mddev = mddev;
1da177e4 2964 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2965 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2966
2967 spin_lock_init(&conf->resync_lock);
17999be4 2968 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2969
191ea9b2 2970 bio_list_init(&conf->pending_bio_list);
34db0cd6 2971 conf->pending_count = 0;
d890fa2b 2972 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2973
c19d5798 2974 err = -EIO;
8f19ccb2 2975 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2976
2977 disk = conf->mirrors + i;
2978
c19d5798
N
2979 if (i < conf->raid_disks &&
2980 disk[conf->raid_disks].rdev) {
2981 /* This slot has a replacement. */
2982 if (!disk->rdev) {
2983 /* No original, just make the replacement
2984 * a recovering spare
2985 */
2986 disk->rdev =
2987 disk[conf->raid_disks].rdev;
2988 disk[conf->raid_disks].rdev = NULL;
2989 } else if (!test_bit(In_sync, &disk->rdev->flags))
2990 /* Original is not in_sync - bad */
2991 goto abort;
2992 }
2993
5fd6c1dc
N
2994 if (!disk->rdev ||
2995 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2996 disk->head_position = 0;
4f0a5e01
JB
2997 if (disk->rdev &&
2998 (disk->rdev->saved_raid_disk < 0))
918f0238 2999 conf->fullsync = 1;
be4d3280 3000 }
1da177e4 3001 }
709ae487 3002
709ae487 3003 err = -ENOMEM;
0232605d 3004 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3005 if (!conf->thread)
709ae487 3006 goto abort;
1da177e4 3007
709ae487
N
3008 return conf;
3009
3010 abort:
3011 if (conf) {
644df1a8 3012 mempool_destroy(conf->r1bio_pool);
709ae487
N
3013 kfree(conf->mirrors);
3014 safe_put_page(conf->tmppage);
3015 kfree(conf->poolinfo);
fd76863e 3016 kfree(conf->nr_pending);
3017 kfree(conf->nr_waiting);
3018 kfree(conf->nr_queued);
3019 kfree(conf->barrier);
c230e7e5
N
3020 if (conf->bio_split)
3021 bioset_free(conf->bio_split);
709ae487
N
3022 kfree(conf);
3023 }
3024 return ERR_PTR(err);
3025}
3026
afa0f557 3027static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3028static int raid1_run(struct mddev *mddev)
709ae487 3029{
e8096360 3030 struct r1conf *conf;
709ae487 3031 int i;
3cb03002 3032 struct md_rdev *rdev;
5220ea1e 3033 int ret;
2ff8cc2c 3034 bool discard_supported = false;
709ae487
N
3035
3036 if (mddev->level != 1) {
1d41c216
N
3037 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3038 mdname(mddev), mddev->level);
709ae487
N
3039 return -EIO;
3040 }
3041 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3042 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3043 mdname(mddev));
709ae487
N
3044 return -EIO;
3045 }
a415c0f1
N
3046 if (mddev_init_writes_pending(mddev) < 0)
3047 return -ENOMEM;
1da177e4 3048 /*
709ae487
N
3049 * copy the already verified devices into our private RAID1
3050 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3051 * should be freed in raid1_free()]
1da177e4 3052 */
709ae487
N
3053 if (mddev->private == NULL)
3054 conf = setup_conf(mddev);
3055 else
3056 conf = mddev->private;
1da177e4 3057
709ae487
N
3058 if (IS_ERR(conf))
3059 return PTR_ERR(conf);
1da177e4 3060
3deff1a7 3061 if (mddev->queue) {
5026d7a9 3062 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3063 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3064 }
5026d7a9 3065
dafb20fa 3066 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3067 if (!mddev->gendisk)
3068 continue;
709ae487
N
3069 disk_stack_limits(mddev->gendisk, rdev->bdev,
3070 rdev->data_offset << 9);
2ff8cc2c
SL
3071 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3072 discard_supported = true;
1da177e4 3073 }
191ea9b2 3074
709ae487
N
3075 mddev->degraded = 0;
3076 for (i=0; i < conf->raid_disks; i++)
3077 if (conf->mirrors[i].rdev == NULL ||
3078 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3079 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3080 mddev->degraded++;
3081
3082 if (conf->raid_disks - mddev->degraded == 1)
3083 mddev->recovery_cp = MaxSector;
3084
8c6ac868 3085 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3086 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3087 mdname(mddev));
3088 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3089 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3090 mddev->raid_disks);
709ae487 3091
1da177e4
LT
3092 /*
3093 * Ok, everything is just fine now
3094 */
709ae487
N
3095 mddev->thread = conf->thread;
3096 conf->thread = NULL;
3097 mddev->private = conf;
46533ff7 3098 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3099
1f403624 3100 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3101
1ed7242e 3102 if (mddev->queue) {
2ff8cc2c
SL
3103 if (discard_supported)
3104 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3105 mddev->queue);
3106 else
3107 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3108 mddev->queue);
1ed7242e 3109 }
5220ea1e 3110
3111 ret = md_integrity_register(mddev);
5aa61f42
N
3112 if (ret) {
3113 md_unregister_thread(&mddev->thread);
afa0f557 3114 raid1_free(mddev, conf);
5aa61f42 3115 }
5220ea1e 3116 return ret;
1da177e4
LT
3117}
3118
afa0f557 3119static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3120{
afa0f557 3121 struct r1conf *conf = priv;
409c57f3 3122
644df1a8 3123 mempool_destroy(conf->r1bio_pool);
990a8baf 3124 kfree(conf->mirrors);
0fea7ed8 3125 safe_put_page(conf->tmppage);
990a8baf 3126 kfree(conf->poolinfo);
fd76863e 3127 kfree(conf->nr_pending);
3128 kfree(conf->nr_waiting);
3129 kfree(conf->nr_queued);
3130 kfree(conf->barrier);
c230e7e5
N
3131 if (conf->bio_split)
3132 bioset_free(conf->bio_split);
1da177e4 3133 kfree(conf);
1da177e4
LT
3134}
3135
fd01b88c 3136static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3137{
3138 /* no resync is happening, and there is enough space
3139 * on all devices, so we can resize.
3140 * We need to make sure resync covers any new space.
3141 * If the array is shrinking we should possibly wait until
3142 * any io in the removed space completes, but it hardly seems
3143 * worth it.
3144 */
a4a6125a
N
3145 sector_t newsize = raid1_size(mddev, sectors, 0);
3146 if (mddev->external_size &&
3147 mddev->array_sectors > newsize)
b522adcd 3148 return -EINVAL;
a4a6125a
N
3149 if (mddev->bitmap) {
3150 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3151 if (ret)
3152 return ret;
3153 }
3154 md_set_array_sectors(mddev, newsize);
b522adcd 3155 if (sectors > mddev->dev_sectors &&
b098636c 3156 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3157 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3158 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3159 }
b522adcd 3160 mddev->dev_sectors = sectors;
4b5c7ae8 3161 mddev->resync_max_sectors = sectors;
1da177e4
LT
3162 return 0;
3163}
3164
fd01b88c 3165static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3166{
3167 /* We need to:
3168 * 1/ resize the r1bio_pool
3169 * 2/ resize conf->mirrors
3170 *
3171 * We allocate a new r1bio_pool if we can.
3172 * Then raise a device barrier and wait until all IO stops.
3173 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3174 *
3175 * At the same time, we "pack" the devices so that all the missing
3176 * devices have the higher raid_disk numbers.
1da177e4
LT
3177 */
3178 mempool_t *newpool, *oldpool;
3179 struct pool_info *newpoolinfo;
0eaf822c 3180 struct raid1_info *newmirrors;
e8096360 3181 struct r1conf *conf = mddev->private;
63c70c4f 3182 int cnt, raid_disks;
c04be0aa 3183 unsigned long flags;
2214c260 3184 int d, d2;
1da177e4 3185
63c70c4f 3186 /* Cannot change chunk_size, layout, or level */
664e7c41 3187 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3188 mddev->layout != mddev->new_layout ||
3189 mddev->level != mddev->new_level) {
664e7c41 3190 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3191 mddev->new_layout = mddev->layout;
3192 mddev->new_level = mddev->level;
3193 return -EINVAL;
3194 }
3195
2214c260
AP
3196 if (!mddev_is_clustered(mddev))
3197 md_allow_write(mddev);
2a2275d6 3198
63c70c4f
N
3199 raid_disks = mddev->raid_disks + mddev->delta_disks;
3200
6ea9c07c
N
3201 if (raid_disks < conf->raid_disks) {
3202 cnt=0;
3203 for (d= 0; d < conf->raid_disks; d++)
3204 if (conf->mirrors[d].rdev)
3205 cnt++;
3206 if (cnt > raid_disks)
1da177e4 3207 return -EBUSY;
6ea9c07c 3208 }
1da177e4
LT
3209
3210 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3211 if (!newpoolinfo)
3212 return -ENOMEM;
3213 newpoolinfo->mddev = mddev;
8f19ccb2 3214 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3215
3216 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3217 r1bio_pool_free, newpoolinfo);
3218 if (!newpool) {
3219 kfree(newpoolinfo);
3220 return -ENOMEM;
3221 }
0eaf822c 3222 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3223 GFP_KERNEL);
1da177e4
LT
3224 if (!newmirrors) {
3225 kfree(newpoolinfo);
3226 mempool_destroy(newpool);
3227 return -ENOMEM;
3228 }
1da177e4 3229
e2d59925 3230 freeze_array(conf, 0);
1da177e4
LT
3231
3232 /* ok, everything is stopped */
3233 oldpool = conf->r1bio_pool;
3234 conf->r1bio_pool = newpool;
6ea9c07c 3235
a88aa786 3236 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3237 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3238 if (rdev && rdev->raid_disk != d2) {
36fad858 3239 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3240 rdev->raid_disk = d2;
36fad858
NK
3241 sysfs_unlink_rdev(mddev, rdev);
3242 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3243 pr_warn("md/raid1:%s: cannot register rd%d\n",
3244 mdname(mddev), rdev->raid_disk);
6ea9c07c 3245 }
a88aa786
N
3246 if (rdev)
3247 newmirrors[d2++].rdev = rdev;
3248 }
1da177e4
LT
3249 kfree(conf->mirrors);
3250 conf->mirrors = newmirrors;
3251 kfree(conf->poolinfo);
3252 conf->poolinfo = newpoolinfo;
3253
c04be0aa 3254 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3255 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3256 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3257 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3258 mddev->delta_disks = 0;
1da177e4 3259
e2d59925 3260 unfreeze_array(conf);
1da177e4 3261
985ca973 3262 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3263 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3264 md_wakeup_thread(mddev->thread);
3265
3266 mempool_destroy(oldpool);
3267 return 0;
3268}
3269
b03e0ccb 3270static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3271{
e8096360 3272 struct r1conf *conf = mddev->private;
36fa3063 3273
b03e0ccb 3274 if (quiesce)
07169fd4 3275 freeze_array(conf, 0);
b03e0ccb 3276 else
07169fd4 3277 unfreeze_array(conf);
36fa3063
N
3278}
3279
fd01b88c 3280static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3281{
3282 /* raid1 can take over:
3283 * raid5 with 2 devices, any layout or chunk size
3284 */
3285 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3286 struct r1conf *conf;
709ae487
N
3287 mddev->new_level = 1;
3288 mddev->new_layout = 0;
3289 mddev->new_chunk_sectors = 0;
3290 conf = setup_conf(mddev);
6995f0b2 3291 if (!IS_ERR(conf)) {
07169fd4 3292 /* Array must appear to be quiesced */
3293 conf->array_frozen = 1;
394ed8e4
SL
3294 mddev_clear_unsupported_flags(mddev,
3295 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3296 }
709ae487
N
3297 return conf;
3298 }
3299 return ERR_PTR(-EINVAL);
3300}
1da177e4 3301
84fc4b56 3302static struct md_personality raid1_personality =
1da177e4
LT
3303{
3304 .name = "raid1",
2604b703 3305 .level = 1,
1da177e4 3306 .owner = THIS_MODULE,
849674e4
SL
3307 .make_request = raid1_make_request,
3308 .run = raid1_run,
afa0f557 3309 .free = raid1_free,
849674e4
SL
3310 .status = raid1_status,
3311 .error_handler = raid1_error,
1da177e4
LT
3312 .hot_add_disk = raid1_add_disk,
3313 .hot_remove_disk= raid1_remove_disk,
3314 .spare_active = raid1_spare_active,
849674e4 3315 .sync_request = raid1_sync_request,
1da177e4 3316 .resize = raid1_resize,
80c3a6ce 3317 .size = raid1_size,
63c70c4f 3318 .check_reshape = raid1_reshape,
36fa3063 3319 .quiesce = raid1_quiesce,
709ae487 3320 .takeover = raid1_takeover,
5c675f83 3321 .congested = raid1_congested,
1da177e4
LT
3322};
3323
3324static int __init raid_init(void)
3325{
2604b703 3326 return register_md_personality(&raid1_personality);
1da177e4
LT
3327}
3328
3329static void raid_exit(void)
3330{
2604b703 3331 unregister_md_personality(&raid1_personality);
1da177e4
LT
3332}
3333
3334module_init(raid_init);
3335module_exit(raid_exit);
3336MODULE_LICENSE("GPL");
0efb9e61 3337MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3338MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3339MODULE_ALIAS("md-raid1");
2604b703 3340MODULE_ALIAS("md-level-1");
34db0cd6
N
3341
3342module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);