]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/md/raid1.c
md: allow metadata update while suspending.
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
3f07c014
IM
40#include <linux/sched/signal.h>
41
109e3765 42#include <trace/events/block.h>
3f07c014 43
43b2e5d8 44#include "md.h"
ef740c37 45#include "raid1.h"
935fe098 46#include "md-bitmap.h"
191ea9b2 47
394ed8e4
SL
48#define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 50 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
51 (1L << MD_HAS_PPL) | \
52 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 53
1da177e4
LT
54/*
55 * Number of guaranteed r1bios in case of extreme VM load:
56 */
57#define NR_RAID1_BIOS 256
58
473e87ce
JB
59/* when we get a read error on a read-only array, we redirect to another
60 * device without failing the first device, or trying to over-write to
61 * correct the read error. To keep track of bad blocks on a per-bio
62 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63 */
64#define IO_BLOCKED ((struct bio *)1)
65/* When we successfully write to a known bad-block, we need to remove the
66 * bad-block marking which must be done from process context. So we record
67 * the success by setting devs[n].bio to IO_MADE_GOOD
68 */
69#define IO_MADE_GOOD ((struct bio *)2)
70
71#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72
34db0cd6
N
73/* When there are this many requests queue to be written by
74 * the raid1 thread, we become 'congested' to provide back-pressure
75 * for writeback.
76 */
77static int max_queued_requests = 1024;
1da177e4 78
fd76863e 79static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
80static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 81
578b54ad
N
82#define raid1_log(md, fmt, args...) \
83 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
84
fb0eb5df
ML
85#include "raid1-10.c"
86
98d30c58
ML
87/*
88 * for resync bio, r1bio pointer can be retrieved from the per-bio
89 * 'struct resync_pages'.
90 */
91static inline struct r1bio *get_resync_r1bio(struct bio *bio)
92{
93 return get_resync_pages(bio)->raid_bio;
94}
95
dd0fc66f 96static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
97{
98 struct pool_info *pi = data;
9f2c9d12 99 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
100
101 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 102 return kzalloc(size, gfp_flags);
1da177e4
LT
103}
104
105static void r1bio_pool_free(void *r1_bio, void *data)
106{
107 kfree(r1_bio);
108}
109
8e005f7c 110#define RESYNC_DEPTH 32
1da177e4 111#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 112#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
114#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 116
dd0fc66f 117static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
118{
119 struct pool_info *pi = data;
9f2c9d12 120 struct r1bio *r1_bio;
1da177e4 121 struct bio *bio;
da1aab3d 122 int need_pages;
98d30c58
ML
123 int j;
124 struct resync_pages *rps;
1da177e4
LT
125
126 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 127 if (!r1_bio)
1da177e4 128 return NULL;
1da177e4 129
98d30c58
ML
130 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
131 gfp_flags);
132 if (!rps)
133 goto out_free_r1bio;
134
1da177e4
LT
135 /*
136 * Allocate bios : 1 for reading, n-1 for writing
137 */
138 for (j = pi->raid_disks ; j-- ; ) {
6746557f 139 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
140 if (!bio)
141 goto out_free_bio;
142 r1_bio->bios[j] = bio;
143 }
144 /*
145 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
146 * the first bio.
147 * If this is a user-requested check/repair, allocate
148 * RESYNC_PAGES for each bio.
1da177e4 149 */
d11c171e 150 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 151 need_pages = pi->raid_disks;
d11c171e 152 else
da1aab3d 153 need_pages = 1;
98d30c58
ML
154 for (j = 0; j < pi->raid_disks; j++) {
155 struct resync_pages *rp = &rps[j];
156
d11c171e 157 bio = r1_bio->bios[j];
d11c171e 158
98d30c58
ML
159 if (j < need_pages) {
160 if (resync_alloc_pages(rp, gfp_flags))
161 goto out_free_pages;
162 } else {
163 memcpy(rp, &rps[0], sizeof(*rp));
164 resync_get_all_pages(rp);
165 }
166
98d30c58
ML
167 rp->raid_bio = r1_bio;
168 bio->bi_private = rp;
1da177e4
LT
169 }
170
171 r1_bio->master_bio = NULL;
172
173 return r1_bio;
174
da1aab3d 175out_free_pages:
491221f8 176 while (--j >= 0)
98d30c58 177 resync_free_pages(&rps[j]);
da1aab3d 178
1da177e4 179out_free_bio:
8f19ccb2 180 while (++j < pi->raid_disks)
1da177e4 181 bio_put(r1_bio->bios[j]);
98d30c58
ML
182 kfree(rps);
183
184out_free_r1bio:
1da177e4
LT
185 r1bio_pool_free(r1_bio, data);
186 return NULL;
187}
188
189static void r1buf_pool_free(void *__r1_bio, void *data)
190{
191 struct pool_info *pi = data;
98d30c58 192 int i;
9f2c9d12 193 struct r1bio *r1bio = __r1_bio;
98d30c58 194 struct resync_pages *rp = NULL;
1da177e4 195
98d30c58
ML
196 for (i = pi->raid_disks; i--; ) {
197 rp = get_resync_pages(r1bio->bios[i]);
198 resync_free_pages(rp);
1da177e4 199 bio_put(r1bio->bios[i]);
98d30c58
ML
200 }
201
202 /* resync pages array stored in the 1st bio's .bi_private */
203 kfree(rp);
1da177e4
LT
204
205 r1bio_pool_free(r1bio, data);
206}
207
e8096360 208static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
209{
210 int i;
211
8f19ccb2 212 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 213 struct bio **bio = r1_bio->bios + i;
4367af55 214 if (!BIO_SPECIAL(*bio))
1da177e4
LT
215 bio_put(*bio);
216 *bio = NULL;
217 }
218}
219
9f2c9d12 220static void free_r1bio(struct r1bio *r1_bio)
1da177e4 221{
e8096360 222 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 223
1da177e4
LT
224 put_all_bios(conf, r1_bio);
225 mempool_free(r1_bio, conf->r1bio_pool);
226}
227
9f2c9d12 228static void put_buf(struct r1bio *r1_bio)
1da177e4 229{
e8096360 230 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 231 sector_t sect = r1_bio->sector;
3e198f78
N
232 int i;
233
8f19ccb2 234 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
235 struct bio *bio = r1_bio->bios[i];
236 if (bio->bi_end_io)
237 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
238 }
1da177e4
LT
239
240 mempool_free(r1_bio, conf->r1buf_pool);
241
af5f42a7 242 lower_barrier(conf, sect);
1da177e4
LT
243}
244
9f2c9d12 245static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
246{
247 unsigned long flags;
fd01b88c 248 struct mddev *mddev = r1_bio->mddev;
e8096360 249 struct r1conf *conf = mddev->private;
fd76863e 250 int idx;
1da177e4 251
fd76863e 252 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
253 spin_lock_irqsave(&conf->device_lock, flags);
254 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 255 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
256 spin_unlock_irqrestore(&conf->device_lock, flags);
257
17999be4 258 wake_up(&conf->wait_barrier);
1da177e4
LT
259 md_wakeup_thread(mddev->thread);
260}
261
262/*
263 * raid_end_bio_io() is called when we have finished servicing a mirrored
264 * operation and are ready to return a success/failure code to the buffer
265 * cache layer.
266 */
9f2c9d12 267static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
268{
269 struct bio *bio = r1_bio->master_bio;
e8096360 270 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
271
272 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 273 bio->bi_status = BLK_STS_IOERR;
4246a0b6 274
37011e3a
N
275 bio_endio(bio);
276 /*
277 * Wake up any possible resync thread that waits for the device
278 * to go idle.
279 */
280 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
281}
282
9f2c9d12 283static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
284{
285 struct bio *bio = r1_bio->master_bio;
286
4b6d287f
N
287 /* if nobody has done the final endio yet, do it now */
288 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
289 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
291 (unsigned long long) bio->bi_iter.bi_sector,
292 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 293
d2eb35ac 294 call_bio_endio(r1_bio);
4b6d287f 295 }
1da177e4
LT
296 free_r1bio(r1_bio);
297}
298
299/*
300 * Update disk head position estimator based on IRQ completion info.
301 */
9f2c9d12 302static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 303{
e8096360 304 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
305
306 conf->mirrors[disk].head_position =
307 r1_bio->sector + (r1_bio->sectors);
308}
309
ba3ae3be
NK
310/*
311 * Find the disk number which triggered given bio
312 */
9f2c9d12 313static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
314{
315 int mirror;
30194636
N
316 struct r1conf *conf = r1_bio->mddev->private;
317 int raid_disks = conf->raid_disks;
ba3ae3be 318
8f19ccb2 319 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
320 if (r1_bio->bios[mirror] == bio)
321 break;
322
8f19ccb2 323 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
324 update_head_pos(mirror, r1_bio);
325
326 return mirror;
327}
328
4246a0b6 329static void raid1_end_read_request(struct bio *bio)
1da177e4 330{
4e4cbee9 331 int uptodate = !bio->bi_status;
9f2c9d12 332 struct r1bio *r1_bio = bio->bi_private;
e8096360 333 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 334 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 335
1da177e4
LT
336 /*
337 * this branch is our 'one mirror IO has finished' event handler:
338 */
e5872d58 339 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 340
dd00a99e
N
341 if (uptodate)
342 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
343 else if (test_bit(FailFast, &rdev->flags) &&
344 test_bit(R1BIO_FailFast, &r1_bio->state))
345 /* This was a fail-fast read so we definitely
346 * want to retry */
347 ;
dd00a99e
N
348 else {
349 /* If all other devices have failed, we want to return
350 * the error upwards rather than fail the last device.
351 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 352 */
dd00a99e
N
353 unsigned long flags;
354 spin_lock_irqsave(&conf->device_lock, flags);
355 if (r1_bio->mddev->degraded == conf->raid_disks ||
356 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 357 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
358 uptodate = 1;
359 spin_unlock_irqrestore(&conf->device_lock, flags);
360 }
1da177e4 361
7ad4d4a6 362 if (uptodate) {
1da177e4 363 raid_end_bio_io(r1_bio);
e5872d58 364 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 365 } else {
1da177e4
LT
366 /*
367 * oops, read error:
368 */
369 char b[BDEVNAME_SIZE];
1d41c216
N
370 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371 mdname(conf->mddev),
372 bdevname(rdev->bdev, b),
373 (unsigned long long)r1_bio->sector);
d2eb35ac 374 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 375 reschedule_retry(r1_bio);
7ad4d4a6 376 /* don't drop the reference on read_disk yet */
1da177e4 377 }
1da177e4
LT
378}
379
9f2c9d12 380static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
381{
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
384 bio_free_pages(r1_bio->behind_master_bio);
385 bio_put(r1_bio->behind_master_bio);
386 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
387 }
388 /* clear the bitmap if all writes complete successfully */
389 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390 r1_bio->sectors,
391 !test_bit(R1BIO_Degraded, &r1_bio->state),
392 test_bit(R1BIO_BehindIO, &r1_bio->state));
393 md_write_end(r1_bio->mddev);
394}
395
9f2c9d12 396static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 397{
cd5ff9a1
N
398 if (!atomic_dec_and_test(&r1_bio->remaining))
399 return;
400
401 if (test_bit(R1BIO_WriteError, &r1_bio->state))
402 reschedule_retry(r1_bio);
403 else {
404 close_write(r1_bio);
4367af55
N
405 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
406 reschedule_retry(r1_bio);
407 else
408 raid_end_bio_io(r1_bio);
4e78064f
N
409 }
410}
411
4246a0b6 412static void raid1_end_write_request(struct bio *bio)
1da177e4 413{
9f2c9d12 414 struct r1bio *r1_bio = bio->bi_private;
e5872d58 415 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 416 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 417 struct bio *to_put = NULL;
e5872d58
N
418 int mirror = find_bio_disk(r1_bio, bio);
419 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
420 bool discard_error;
421
4e4cbee9 422 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 423
e9c7469b
TH
424 /*
425 * 'one mirror IO has finished' event handler:
426 */
4e4cbee9 427 if (bio->bi_status && !discard_error) {
e5872d58
N
428 set_bit(WriteErrorSeen, &rdev->flags);
429 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
430 set_bit(MD_RECOVERY_NEEDED, &
431 conf->mddev->recovery);
432
212e7eb7
N
433 if (test_bit(FailFast, &rdev->flags) &&
434 (bio->bi_opf & MD_FAILFAST) &&
435 /* We never try FailFast to WriteMostly devices */
436 !test_bit(WriteMostly, &rdev->flags)) {
437 md_error(r1_bio->mddev, rdev);
438 if (!test_bit(Faulty, &rdev->flags))
439 /* This is the only remaining device,
440 * We need to retry the write without
441 * FailFast
442 */
443 set_bit(R1BIO_WriteError, &r1_bio->state);
444 else {
445 /* Finished with this branch */
446 r1_bio->bios[mirror] = NULL;
447 to_put = bio;
448 }
449 } else
450 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 451 } else {
1da177e4 452 /*
e9c7469b
TH
453 * Set R1BIO_Uptodate in our master bio, so that we
454 * will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer
456 * fails.
457 *
458 * The 'master' represents the composite IO operation
459 * to user-side. So if something waits for IO, then it
460 * will wait for the 'master' bio.
1da177e4 461 */
4367af55
N
462 sector_t first_bad;
463 int bad_sectors;
464
cd5ff9a1
N
465 r1_bio->bios[mirror] = NULL;
466 to_put = bio;
3056e3ae
AL
467 /*
468 * Do not set R1BIO_Uptodate if the current device is
469 * rebuilding or Faulty. This is because we cannot use
470 * such device for properly reading the data back (we could
471 * potentially use it, if the current write would have felt
472 * before rdev->recovery_offset, but for simplicity we don't
473 * check this here.
474 */
e5872d58
N
475 if (test_bit(In_sync, &rdev->flags) &&
476 !test_bit(Faulty, &rdev->flags))
3056e3ae 477 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 478
4367af55 479 /* Maybe we can clear some bad blocks. */
e5872d58 480 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 481 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
482 r1_bio->bios[mirror] = IO_MADE_GOOD;
483 set_bit(R1BIO_MadeGood, &r1_bio->state);
484 }
485 }
486
e9c7469b 487 if (behind) {
e5872d58 488 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
489 atomic_dec(&r1_bio->behind_remaining);
490
491 /*
492 * In behind mode, we ACK the master bio once the I/O
493 * has safely reached all non-writemostly
494 * disks. Setting the Returned bit ensures that this
495 * gets done only once -- we don't ever want to return
496 * -EIO here, instead we'll wait
497 */
498 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
499 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
500 /* Maybe we can return now */
501 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
502 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
503 pr_debug("raid1: behind end write sectors"
504 " %llu-%llu\n",
4f024f37
KO
505 (unsigned long long) mbio->bi_iter.bi_sector,
506 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 507 call_bio_endio(r1_bio);
4b6d287f
N
508 }
509 }
510 }
4367af55 511 if (r1_bio->bios[mirror] == NULL)
e5872d58 512 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 513
1da177e4 514 /*
1da177e4
LT
515 * Let's see if all mirrored write operations have finished
516 * already.
517 */
af6d7b76 518 r1_bio_write_done(r1_bio);
c70810b3 519
04b857f7
N
520 if (to_put)
521 bio_put(to_put);
1da177e4
LT
522}
523
fd76863e 524static sector_t align_to_barrier_unit_end(sector_t start_sector,
525 sector_t sectors)
526{
527 sector_t len;
528
529 WARN_ON(sectors == 0);
530 /*
531 * len is the number of sectors from start_sector to end of the
532 * barrier unit which start_sector belongs to.
533 */
534 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
535 start_sector;
536
537 if (len > sectors)
538 len = sectors;
539
540 return len;
541}
542
1da177e4
LT
543/*
544 * This routine returns the disk from which the requested read should
545 * be done. There is a per-array 'next expected sequential IO' sector
546 * number - if this matches on the next IO then we use the last disk.
547 * There is also a per-disk 'last know head position' sector that is
548 * maintained from IRQ contexts, both the normal and the resync IO
549 * completion handlers update this position correctly. If there is no
550 * perfect sequential match then we pick the disk whose head is closest.
551 *
552 * If there are 2 mirrors in the same 2 devices, performance degrades
553 * because position is mirror, not device based.
554 *
555 * The rdev for the device selected will have nr_pending incremented.
556 */
e8096360 557static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 558{
af3a2cd6 559 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
560 int sectors;
561 int best_good_sectors;
9dedf603
SL
562 int best_disk, best_dist_disk, best_pending_disk;
563 int has_nonrot_disk;
be4d3280 564 int disk;
76073054 565 sector_t best_dist;
9dedf603 566 unsigned int min_pending;
3cb03002 567 struct md_rdev *rdev;
f3ac8bf7 568 int choose_first;
12cee5a8 569 int choose_next_idle;
1da177e4
LT
570
571 rcu_read_lock();
572 /*
8ddf9efe 573 * Check if we can balance. We can balance on the whole
1da177e4
LT
574 * device if no resync is going on, or below the resync window.
575 * We take the first readable disk when above the resync window.
576 */
577 retry:
d2eb35ac 578 sectors = r1_bio->sectors;
76073054 579 best_disk = -1;
9dedf603 580 best_dist_disk = -1;
76073054 581 best_dist = MaxSector;
9dedf603
SL
582 best_pending_disk = -1;
583 min_pending = UINT_MAX;
d2eb35ac 584 best_good_sectors = 0;
9dedf603 585 has_nonrot_disk = 0;
12cee5a8 586 choose_next_idle = 0;
2e52d449 587 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 588
7d49ffcf
GR
589 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
590 (mddev_is_clustered(conf->mddev) &&
90382ed9 591 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
592 this_sector + sectors)))
593 choose_first = 1;
594 else
595 choose_first = 0;
1da177e4 596
be4d3280 597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 598 sector_t dist;
d2eb35ac
N
599 sector_t first_bad;
600 int bad_sectors;
9dedf603 601 unsigned int pending;
12cee5a8 602 bool nonrot;
d2eb35ac 603
f3ac8bf7
N
604 rdev = rcu_dereference(conf->mirrors[disk].rdev);
605 if (r1_bio->bios[disk] == IO_BLOCKED
606 || rdev == NULL
76073054 607 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 608 continue;
76073054
N
609 if (!test_bit(In_sync, &rdev->flags) &&
610 rdev->recovery_offset < this_sector + sectors)
1da177e4 611 continue;
76073054
N
612 if (test_bit(WriteMostly, &rdev->flags)) {
613 /* Don't balance among write-mostly, just
614 * use the first as a last resort */
d1901ef0 615 if (best_dist_disk < 0) {
307729c8
N
616 if (is_badblock(rdev, this_sector, sectors,
617 &first_bad, &bad_sectors)) {
816b0acf 618 if (first_bad <= this_sector)
307729c8
N
619 /* Cannot use this */
620 continue;
621 best_good_sectors = first_bad - this_sector;
622 } else
623 best_good_sectors = sectors;
d1901ef0
TH
624 best_dist_disk = disk;
625 best_pending_disk = disk;
307729c8 626 }
76073054
N
627 continue;
628 }
629 /* This is a reasonable device to use. It might
630 * even be best.
631 */
d2eb35ac
N
632 if (is_badblock(rdev, this_sector, sectors,
633 &first_bad, &bad_sectors)) {
634 if (best_dist < MaxSector)
635 /* already have a better device */
636 continue;
637 if (first_bad <= this_sector) {
638 /* cannot read here. If this is the 'primary'
639 * device, then we must not read beyond
640 * bad_sectors from another device..
641 */
642 bad_sectors -= (this_sector - first_bad);
643 if (choose_first && sectors > bad_sectors)
644 sectors = bad_sectors;
645 if (best_good_sectors > sectors)
646 best_good_sectors = sectors;
647
648 } else {
649 sector_t good_sectors = first_bad - this_sector;
650 if (good_sectors > best_good_sectors) {
651 best_good_sectors = good_sectors;
652 best_disk = disk;
653 }
654 if (choose_first)
655 break;
656 }
657 continue;
d82dd0e3
TM
658 } else {
659 if ((sectors > best_good_sectors) && (best_disk >= 0))
660 best_disk = -1;
d2eb35ac 661 best_good_sectors = sectors;
d82dd0e3 662 }
d2eb35ac 663
2e52d449
N
664 if (best_disk >= 0)
665 /* At least two disks to choose from so failfast is OK */
666 set_bit(R1BIO_FailFast, &r1_bio->state);
667
12cee5a8
SL
668 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
669 has_nonrot_disk |= nonrot;
9dedf603 670 pending = atomic_read(&rdev->nr_pending);
76073054 671 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 672 if (choose_first) {
76073054 673 best_disk = disk;
1da177e4
LT
674 break;
675 }
12cee5a8
SL
676 /* Don't change to another disk for sequential reads */
677 if (conf->mirrors[disk].next_seq_sect == this_sector
678 || dist == 0) {
679 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
680 struct raid1_info *mirror = &conf->mirrors[disk];
681
682 best_disk = disk;
683 /*
684 * If buffered sequential IO size exceeds optimal
685 * iosize, check if there is idle disk. If yes, choose
686 * the idle disk. read_balance could already choose an
687 * idle disk before noticing it's a sequential IO in
688 * this disk. This doesn't matter because this disk
689 * will idle, next time it will be utilized after the
690 * first disk has IO size exceeds optimal iosize. In
691 * this way, iosize of the first disk will be optimal
692 * iosize at least. iosize of the second disk might be
693 * small, but not a big deal since when the second disk
694 * starts IO, the first disk is likely still busy.
695 */
696 if (nonrot && opt_iosize > 0 &&
697 mirror->seq_start != MaxSector &&
698 mirror->next_seq_sect > opt_iosize &&
699 mirror->next_seq_sect - opt_iosize >=
700 mirror->seq_start) {
701 choose_next_idle = 1;
702 continue;
703 }
704 break;
705 }
12cee5a8
SL
706
707 if (choose_next_idle)
708 continue;
9dedf603
SL
709
710 if (min_pending > pending) {
711 min_pending = pending;
712 best_pending_disk = disk;
713 }
714
76073054
N
715 if (dist < best_dist) {
716 best_dist = dist;
9dedf603 717 best_dist_disk = disk;
1da177e4 718 }
f3ac8bf7 719 }
1da177e4 720
9dedf603
SL
721 /*
722 * If all disks are rotational, choose the closest disk. If any disk is
723 * non-rotational, choose the disk with less pending request even the
724 * disk is rotational, which might/might not be optimal for raids with
725 * mixed ratation/non-rotational disks depending on workload.
726 */
727 if (best_disk == -1) {
2e52d449 728 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
729 best_disk = best_pending_disk;
730 else
731 best_disk = best_dist_disk;
732 }
733
76073054
N
734 if (best_disk >= 0) {
735 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
736 if (!rdev)
737 goto retry;
738 atomic_inc(&rdev->nr_pending);
d2eb35ac 739 sectors = best_good_sectors;
12cee5a8
SL
740
741 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
742 conf->mirrors[best_disk].seq_start = this_sector;
743
be4d3280 744 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
745 }
746 rcu_read_unlock();
d2eb35ac 747 *max_sectors = sectors;
1da177e4 748
76073054 749 return best_disk;
1da177e4
LT
750}
751
5c675f83 752static int raid1_congested(struct mddev *mddev, int bits)
0d129228 753{
e8096360 754 struct r1conf *conf = mddev->private;
0d129228
N
755 int i, ret = 0;
756
4452226e 757 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
758 conf->pending_count >= max_queued_requests)
759 return 1;
760
0d129228 761 rcu_read_lock();
f53e29fc 762 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 763 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 764 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 765 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 766
1ed7242e
JB
767 BUG_ON(!q);
768
0d129228
N
769 /* Note the '|| 1' - when read_balance prefers
770 * non-congested targets, it can be removed
771 */
4452226e 772 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 773 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 774 else
dc3b17cc 775 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
776 }
777 }
778 rcu_read_unlock();
779 return ret;
780}
0d129228 781
673ca68d
N
782static void flush_bio_list(struct r1conf *conf, struct bio *bio)
783{
784 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
785 bitmap_unplug(conf->mddev->bitmap);
786 wake_up(&conf->wait_barrier);
787
788 while (bio) { /* submit pending writes */
789 struct bio *next = bio->bi_next;
74d46992 790 struct md_rdev *rdev = (void *)bio->bi_disk;
673ca68d 791 bio->bi_next = NULL;
74d46992 792 bio_set_dev(bio, rdev->bdev);
673ca68d 793 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 794 bio_io_error(bio);
673ca68d 795 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 796 !blk_queue_discard(bio->bi_disk->queue)))
673ca68d
N
797 /* Just ignore it */
798 bio_endio(bio);
799 else
800 generic_make_request(bio);
801 bio = next;
802 }
803}
804
e8096360 805static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
806{
807 /* Any writes that have been queued but are awaiting
808 * bitmap updates get flushed here.
a35e63ef 809 */
a35e63ef
N
810 spin_lock_irq(&conf->device_lock);
811
812 if (conf->pending_bio_list.head) {
813 struct bio *bio;
814 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 815 conf->pending_count = 0;
a35e63ef 816 spin_unlock_irq(&conf->device_lock);
673ca68d 817 flush_bio_list(conf, bio);
a35e63ef
N
818 } else
819 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
820}
821
17999be4
N
822/* Barriers....
823 * Sometimes we need to suspend IO while we do something else,
824 * either some resync/recovery, or reconfigure the array.
825 * To do this we raise a 'barrier'.
826 * The 'barrier' is a counter that can be raised multiple times
827 * to count how many activities are happening which preclude
828 * normal IO.
829 * We can only raise the barrier if there is no pending IO.
830 * i.e. if nr_pending == 0.
831 * We choose only to raise the barrier if no-one is waiting for the
832 * barrier to go down. This means that as soon as an IO request
833 * is ready, no other operations which require a barrier will start
834 * until the IO request has had a chance.
835 *
836 * So: regular IO calls 'wait_barrier'. When that returns there
837 * is no backgroup IO happening, It must arrange to call
838 * allow_barrier when it has finished its IO.
839 * backgroup IO calls must call raise_barrier. Once that returns
840 * there is no normal IO happeing. It must arrange to call
841 * lower_barrier when the particular background IO completes.
1da177e4 842 */
c2fd4c94 843static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 844{
fd76863e 845 int idx = sector_to_idx(sector_nr);
846
1da177e4 847 spin_lock_irq(&conf->resync_lock);
17999be4
N
848
849 /* Wait until no block IO is waiting */
824e47da 850 wait_event_lock_irq(conf->wait_barrier,
851 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 852 conf->resync_lock);
17999be4
N
853
854 /* block any new IO from starting */
824e47da 855 atomic_inc(&conf->barrier[idx]);
856 /*
857 * In raise_barrier() we firstly increase conf->barrier[idx] then
858 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
859 * increase conf->nr_pending[idx] then check conf->barrier[idx].
860 * A memory barrier here to make sure conf->nr_pending[idx] won't
861 * be fetched before conf->barrier[idx] is increased. Otherwise
862 * there will be a race between raise_barrier() and _wait_barrier().
863 */
864 smp_mb__after_atomic();
17999be4 865
79ef3a8a 866 /* For these conditions we must wait:
867 * A: while the array is in frozen state
fd76863e 868 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
869 * existing in corresponding I/O barrier bucket.
870 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
871 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 872 */
17999be4 873 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 874 !conf->array_frozen &&
824e47da 875 !atomic_read(&conf->nr_pending[idx]) &&
876 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
eed8c02e 877 conf->resync_lock);
17999be4 878
43ac9b84 879 atomic_inc(&conf->nr_sync_pending);
17999be4
N
880 spin_unlock_irq(&conf->resync_lock);
881}
882
fd76863e 883static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 884{
fd76863e 885 int idx = sector_to_idx(sector_nr);
886
824e47da 887 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 888
824e47da 889 atomic_dec(&conf->barrier[idx]);
43ac9b84 890 atomic_dec(&conf->nr_sync_pending);
17999be4
N
891 wake_up(&conf->wait_barrier);
892}
893
fd76863e 894static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 895{
824e47da 896 /*
897 * We need to increase conf->nr_pending[idx] very early here,
898 * then raise_barrier() can be blocked when it waits for
899 * conf->nr_pending[idx] to be 0. Then we can avoid holding
900 * conf->resync_lock when there is no barrier raised in same
901 * barrier unit bucket. Also if the array is frozen, I/O
902 * should be blocked until array is unfrozen.
903 */
904 atomic_inc(&conf->nr_pending[idx]);
905 /*
906 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
907 * check conf->barrier[idx]. In raise_barrier() we firstly increase
908 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
909 * barrier is necessary here to make sure conf->barrier[idx] won't be
910 * fetched before conf->nr_pending[idx] is increased. Otherwise there
911 * will be a race between _wait_barrier() and raise_barrier().
912 */
913 smp_mb__after_atomic();
79ef3a8a 914
824e47da 915 /*
916 * Don't worry about checking two atomic_t variables at same time
917 * here. If during we check conf->barrier[idx], the array is
918 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
919 * 0, it is safe to return and make the I/O continue. Because the
920 * array is frozen, all I/O returned here will eventually complete
921 * or be queued, no race will happen. See code comment in
922 * frozen_array().
923 */
924 if (!READ_ONCE(conf->array_frozen) &&
925 !atomic_read(&conf->barrier[idx]))
926 return;
79ef3a8a 927
824e47da 928 /*
929 * After holding conf->resync_lock, conf->nr_pending[idx]
930 * should be decreased before waiting for barrier to drop.
931 * Otherwise, we may encounter a race condition because
932 * raise_barrer() might be waiting for conf->nr_pending[idx]
933 * to be 0 at same time.
934 */
935 spin_lock_irq(&conf->resync_lock);
936 atomic_inc(&conf->nr_waiting[idx]);
937 atomic_dec(&conf->nr_pending[idx]);
938 /*
939 * In case freeze_array() is waiting for
940 * get_unqueued_pending() == extra
941 */
942 wake_up(&conf->wait_barrier);
943 /* Wait for the barrier in same barrier unit bucket to drop. */
944 wait_event_lock_irq(conf->wait_barrier,
945 !conf->array_frozen &&
946 !atomic_read(&conf->barrier[idx]),
947 conf->resync_lock);
948 atomic_inc(&conf->nr_pending[idx]);
949 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 950 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 951}
952
fd76863e 953static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 954{
fd76863e 955 int idx = sector_to_idx(sector_nr);
79ef3a8a 956
824e47da 957 /*
958 * Very similar to _wait_barrier(). The difference is, for read
959 * I/O we don't need wait for sync I/O, but if the whole array
960 * is frozen, the read I/O still has to wait until the array is
961 * unfrozen. Since there is no ordering requirement with
962 * conf->barrier[idx] here, memory barrier is unnecessary as well.
963 */
964 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 965
824e47da 966 if (!READ_ONCE(conf->array_frozen))
967 return;
968
969 spin_lock_irq(&conf->resync_lock);
970 atomic_inc(&conf->nr_waiting[idx]);
971 atomic_dec(&conf->nr_pending[idx]);
972 /*
973 * In case freeze_array() is waiting for
974 * get_unqueued_pending() == extra
975 */
976 wake_up(&conf->wait_barrier);
977 /* Wait for array to be unfrozen */
978 wait_event_lock_irq(conf->wait_barrier,
979 !conf->array_frozen,
980 conf->resync_lock);
981 atomic_inc(&conf->nr_pending[idx]);
982 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
983 spin_unlock_irq(&conf->resync_lock);
984}
985
fd76863e 986static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 987{
fd76863e 988 int idx = sector_to_idx(sector_nr);
79ef3a8a 989
fd76863e 990 _wait_barrier(conf, idx);
991}
992
993static void wait_all_barriers(struct r1conf *conf)
994{
995 int idx;
996
997 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
998 _wait_barrier(conf, idx);
999}
1000
1001static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1002{
824e47da 1003 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1004 wake_up(&conf->wait_barrier);
1005}
1006
fd76863e 1007static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1008{
1009 int idx = sector_to_idx(sector_nr);
1010
1011 _allow_barrier(conf, idx);
1012}
1013
1014static void allow_all_barriers(struct r1conf *conf)
1015{
1016 int idx;
1017
1018 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1019 _allow_barrier(conf, idx);
1020}
1021
1022/* conf->resync_lock should be held */
1023static int get_unqueued_pending(struct r1conf *conf)
1024{
1025 int idx, ret;
1026
43ac9b84
XN
1027 ret = atomic_read(&conf->nr_sync_pending);
1028 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1029 ret += atomic_read(&conf->nr_pending[idx]) -
1030 atomic_read(&conf->nr_queued[idx]);
fd76863e 1031
1032 return ret;
1033}
1034
e2d59925 1035static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1036{
fd76863e 1037 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1038 * go quiet.
fd76863e 1039 * This is called in two situations:
1040 * 1) management command handlers (reshape, remove disk, quiesce).
1041 * 2) one normal I/O request failed.
1042
1043 * After array_frozen is set to 1, new sync IO will be blocked at
1044 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1045 * or wait_read_barrier(). The flying I/Os will either complete or be
1046 * queued. When everything goes quite, there are only queued I/Os left.
1047
1048 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1049 * barrier bucket index which this I/O request hits. When all sync and
1050 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1051 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1052 * in handle_read_error(), we may call freeze_array() before trying to
1053 * fix the read error. In this case, the error read I/O is not queued,
1054 * so get_unqueued_pending() == 1.
1055 *
1056 * Therefore before this function returns, we need to wait until
1057 * get_unqueued_pendings(conf) gets equal to extra. For
1058 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1059 */
1060 spin_lock_irq(&conf->resync_lock);
b364e3d0 1061 conf->array_frozen = 1;
578b54ad 1062 raid1_log(conf->mddev, "wait freeze");
fd76863e 1063 wait_event_lock_irq_cmd(
1064 conf->wait_barrier,
1065 get_unqueued_pending(conf) == extra,
1066 conf->resync_lock,
1067 flush_pending_writes(conf));
ddaf22ab
N
1068 spin_unlock_irq(&conf->resync_lock);
1069}
e8096360 1070static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1071{
1072 /* reverse the effect of the freeze */
1073 spin_lock_irq(&conf->resync_lock);
b364e3d0 1074 conf->array_frozen = 0;
ddaf22ab 1075 spin_unlock_irq(&conf->resync_lock);
824e47da 1076 wake_up(&conf->wait_barrier);
ddaf22ab
N
1077}
1078
16d56e2f 1079static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1080 struct bio *bio)
4b6d287f 1081{
cb83efcf 1082 int size = bio->bi_iter.bi_size;
841c1316
ML
1083 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084 int i = 0;
1085 struct bio *behind_bio = NULL;
1086
1087 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1088 if (!behind_bio)
16d56e2f 1089 return;
4b6d287f 1090
41743c1f 1091 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1092 if (!bio_has_data(bio)) {
1093 behind_bio->bi_iter.bi_size = size;
41743c1f 1094 goto skip_copy;
16d56e2f 1095 }
41743c1f 1096
841c1316
ML
1097 while (i < vcnt && size) {
1098 struct page *page;
1099 int len = min_t(int, PAGE_SIZE, size);
1100
1101 page = alloc_page(GFP_NOIO);
1102 if (unlikely(!page))
1103 goto free_pages;
1104
1105 bio_add_page(behind_bio, page, len, 0);
1106
1107 size -= len;
1108 i++;
4b6d287f 1109 }
841c1316 1110
cb83efcf 1111 bio_copy_data(behind_bio, bio);
41743c1f 1112skip_copy:
841c1316 1113 r1_bio->behind_master_bio = behind_bio;;
af6d7b76 1114 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1115
16d56e2f 1116 return;
841c1316
ML
1117
1118free_pages:
4f024f37
KO
1119 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1120 bio->bi_iter.bi_size);
841c1316 1121 bio_free_pages(behind_bio);
16d56e2f 1122 bio_put(behind_bio);
4b6d287f
N
1123}
1124
f54a9d0e
N
1125struct raid1_plug_cb {
1126 struct blk_plug_cb cb;
1127 struct bio_list pending;
1128 int pending_cnt;
1129};
1130
1131static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1132{
1133 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1134 cb);
1135 struct mddev *mddev = plug->cb.data;
1136 struct r1conf *conf = mddev->private;
1137 struct bio *bio;
1138
874807a8 1139 if (from_schedule || current->bio_list) {
f54a9d0e
N
1140 spin_lock_irq(&conf->device_lock);
1141 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1142 conf->pending_count += plug->pending_cnt;
1143 spin_unlock_irq(&conf->device_lock);
ee0b0244 1144 wake_up(&conf->wait_barrier);
f54a9d0e
N
1145 md_wakeup_thread(mddev->thread);
1146 kfree(plug);
1147 return;
1148 }
1149
1150 /* we aren't scheduling, so we can do the write-out directly. */
1151 bio = bio_list_get(&plug->pending);
673ca68d 1152 flush_bio_list(conf, bio);
f54a9d0e
N
1153 kfree(plug);
1154}
1155
689389a0
N
1156static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1157{
1158 r1_bio->master_bio = bio;
1159 r1_bio->sectors = bio_sectors(bio);
1160 r1_bio->state = 0;
1161 r1_bio->mddev = mddev;
1162 r1_bio->sector = bio->bi_iter.bi_sector;
1163}
1164
fd76863e 1165static inline struct r1bio *
689389a0 1166alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1167{
1168 struct r1conf *conf = mddev->private;
1169 struct r1bio *r1_bio;
1170
1171 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
689389a0
N
1172 /* Ensure no bio records IO_BLOCKED */
1173 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1174 init_r1bio(r1_bio, mddev, bio);
fd76863e 1175 return r1_bio;
1176}
1177
c230e7e5 1178static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1179 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1180{
e8096360 1181 struct r1conf *conf = mddev->private;
0eaf822c 1182 struct raid1_info *mirror;
1da177e4 1183 struct bio *read_bio;
3b046a97
RL
1184 struct bitmap *bitmap = mddev->bitmap;
1185 const int op = bio_op(bio);
1186 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1187 int max_sectors;
1188 int rdisk;
689389a0
N
1189 bool print_msg = !!r1_bio;
1190 char b[BDEVNAME_SIZE];
3b046a97 1191
fd76863e 1192 /*
689389a0
N
1193 * If r1_bio is set, we are blocking the raid1d thread
1194 * so there is a tiny risk of deadlock. So ask for
1195 * emergency memory if needed.
fd76863e 1196 */
689389a0 1197 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1198
689389a0
N
1199 if (print_msg) {
1200 /* Need to get the block device name carefully */
1201 struct md_rdev *rdev;
1202 rcu_read_lock();
1203 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1204 if (rdev)
1205 bdevname(rdev->bdev, b);
1206 else
1207 strcpy(b, "???");
1208 rcu_read_unlock();
1209 }
3b046a97 1210
fd76863e 1211 /*
fd76863e 1212 * Still need barrier for READ in case that whole
1213 * array is frozen.
fd76863e 1214 */
fd76863e 1215 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1216
689389a0
N
1217 if (!r1_bio)
1218 r1_bio = alloc_r1bio(mddev, bio);
1219 else
1220 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1221 r1_bio->sectors = max_read_sectors;
fd76863e 1222
1223 /*
1224 * make_request() can abort the operation when read-ahead is being
1225 * used and no empty request is available.
1226 */
3b046a97
RL
1227 rdisk = read_balance(conf, r1_bio, &max_sectors);
1228
1229 if (rdisk < 0) {
1230 /* couldn't find anywhere to read from */
689389a0
N
1231 if (print_msg) {
1232 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1233 mdname(mddev),
1234 b,
1235 (unsigned long long)r1_bio->sector);
1236 }
3b046a97
RL
1237 raid_end_bio_io(r1_bio);
1238 return;
1239 }
1240 mirror = conf->mirrors + rdisk;
1241
689389a0
N
1242 if (print_msg)
1243 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1244 mdname(mddev),
1245 (unsigned long long)r1_bio->sector,
1246 bdevname(mirror->rdev->bdev, b));
1247
3b046a97
RL
1248 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1249 bitmap) {
1250 /*
1251 * Reading from a write-mostly device must take care not to
1252 * over-take any writes that are 'behind'
1253 */
1254 raid1_log(mddev, "wait behind writes");
1255 wait_event(bitmap->behind_wait,
1256 atomic_read(&bitmap->behind_writes) == 0);
1257 }
c230e7e5
N
1258
1259 if (max_sectors < bio_sectors(bio)) {
1260 struct bio *split = bio_split(bio, max_sectors,
689389a0 1261 gfp, conf->bio_split);
c230e7e5
N
1262 bio_chain(split, bio);
1263 generic_make_request(bio);
1264 bio = split;
1265 r1_bio->master_bio = bio;
1266 r1_bio->sectors = max_sectors;
1267 }
1268
3b046a97 1269 r1_bio->read_disk = rdisk;
3b046a97 1270
689389a0 1271 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
3b046a97
RL
1272
1273 r1_bio->bios[rdisk] = read_bio;
1274
1275 read_bio->bi_iter.bi_sector = r1_bio->sector +
1276 mirror->rdev->data_offset;
74d46992 1277 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1278 read_bio->bi_end_io = raid1_end_read_request;
1279 bio_set_op_attrs(read_bio, op, do_sync);
1280 if (test_bit(FailFast, &mirror->rdev->flags) &&
1281 test_bit(R1BIO_FailFast, &r1_bio->state))
1282 read_bio->bi_opf |= MD_FAILFAST;
1283 read_bio->bi_private = r1_bio;
1284
1285 if (mddev->gendisk)
74d46992
CH
1286 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1287 disk_devt(mddev->gendisk), r1_bio->sector);
3b046a97 1288
c230e7e5 1289 generic_make_request(read_bio);
3b046a97
RL
1290}
1291
c230e7e5
N
1292static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293 int max_write_sectors)
3b046a97
RL
1294{
1295 struct r1conf *conf = mddev->private;
fd76863e 1296 struct r1bio *r1_bio;
1f68f0c4 1297 int i, disks;
3b046a97 1298 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1299 unsigned long flags;
3cb03002 1300 struct md_rdev *blocked_rdev;
f54a9d0e
N
1301 struct blk_plug_cb *cb;
1302 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1303 int first_clone;
1f68f0c4 1304 int max_sectors;
191ea9b2 1305
1da177e4
LT
1306 /*
1307 * Register the new request and wait if the reconstruction
1308 * thread has put up a bar for new requests.
1309 * Continue immediately if no resync is active currently.
1310 */
62de608d 1311
3d310eb7 1312
b3143b9a 1313 if (mddev_is_clustered(mddev) &&
90382ed9 1314 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1315 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97
RL
1316
1317 /*
1318 * As the suspend_* range is controlled by userspace, we want
1319 * an interruptible wait.
6eef4b21
N
1320 */
1321 DEFINE_WAIT(w);
1322 for (;;) {
f9c79bc0 1323 sigset_t full, old;
6eef4b21
N
1324 prepare_to_wait(&conf->wait_barrier,
1325 &w, TASK_INTERRUPTIBLE);
b3143b9a
N
1326 if (!mddev_is_clustered(mddev) ||
1327 !md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1328 bio->bi_iter.bi_sector,
b3143b9a 1329 bio_end_sector(bio)))
6eef4b21 1330 break;
f9c79bc0
MP
1331 sigfillset(&full);
1332 sigprocmask(SIG_BLOCK, &full, &old);
6eef4b21 1333 schedule();
f9c79bc0 1334 sigprocmask(SIG_SETMASK, &old, NULL);
6eef4b21
N
1335 }
1336 finish_wait(&conf->wait_barrier, &w);
1337 }
fd76863e 1338 wait_barrier(conf, bio->bi_iter.bi_sector);
1339
689389a0 1340 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1341 r1_bio->sectors = max_write_sectors;
1da177e4 1342
34db0cd6
N
1343 if (conf->pending_count >= max_queued_requests) {
1344 md_wakeup_thread(mddev->thread);
578b54ad 1345 raid1_log(mddev, "wait queued");
34db0cd6
N
1346 wait_event(conf->wait_barrier,
1347 conf->pending_count < max_queued_requests);
1348 }
1f68f0c4 1349 /* first select target devices under rcu_lock and
1da177e4
LT
1350 * inc refcount on their rdev. Record them by setting
1351 * bios[x] to bio
1f68f0c4
N
1352 * If there are known/acknowledged bad blocks on any device on
1353 * which we have seen a write error, we want to avoid writing those
1354 * blocks.
1355 * This potentially requires several writes to write around
1356 * the bad blocks. Each set of writes gets it's own r1bio
1357 * with a set of bios attached.
1da177e4 1358 */
c3b328ac 1359
8f19ccb2 1360 disks = conf->raid_disks * 2;
6bfe0b49
DW
1361 retry_write:
1362 blocked_rdev = NULL;
1da177e4 1363 rcu_read_lock();
1f68f0c4 1364 max_sectors = r1_bio->sectors;
1da177e4 1365 for (i = 0; i < disks; i++) {
3cb03002 1366 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1367 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1368 atomic_inc(&rdev->nr_pending);
1369 blocked_rdev = rdev;
1370 break;
1371 }
1f68f0c4 1372 r1_bio->bios[i] = NULL;
8ae12666 1373 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1374 if (i < conf->raid_disks)
1375 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1376 continue;
1377 }
1378
1379 atomic_inc(&rdev->nr_pending);
1380 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1381 sector_t first_bad;
1382 int bad_sectors;
1383 int is_bad;
1384
3b046a97 1385 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1386 &first_bad, &bad_sectors);
1387 if (is_bad < 0) {
1388 /* mustn't write here until the bad block is
1389 * acknowledged*/
1390 set_bit(BlockedBadBlocks, &rdev->flags);
1391 blocked_rdev = rdev;
1392 break;
1393 }
1394 if (is_bad && first_bad <= r1_bio->sector) {
1395 /* Cannot write here at all */
1396 bad_sectors -= (r1_bio->sector - first_bad);
1397 if (bad_sectors < max_sectors)
1398 /* mustn't write more than bad_sectors
1399 * to other devices yet
1400 */
1401 max_sectors = bad_sectors;
03c902e1 1402 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1403 /* We don't set R1BIO_Degraded as that
1404 * only applies if the disk is
1405 * missing, so it might be re-added,
1406 * and we want to know to recover this
1407 * chunk.
1408 * In this case the device is here,
1409 * and the fact that this chunk is not
1410 * in-sync is recorded in the bad
1411 * block log
1412 */
1413 continue;
964147d5 1414 }
1f68f0c4
N
1415 if (is_bad) {
1416 int good_sectors = first_bad - r1_bio->sector;
1417 if (good_sectors < max_sectors)
1418 max_sectors = good_sectors;
1419 }
1420 }
1421 r1_bio->bios[i] = bio;
1da177e4
LT
1422 }
1423 rcu_read_unlock();
1424
6bfe0b49
DW
1425 if (unlikely(blocked_rdev)) {
1426 /* Wait for this device to become unblocked */
1427 int j;
1428
1429 for (j = 0; j < i; j++)
1430 if (r1_bio->bios[j])
1431 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1432 r1_bio->state = 0;
fd76863e 1433 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1434 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1435 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1436 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1437 goto retry_write;
1438 }
1439
c230e7e5
N
1440 if (max_sectors < bio_sectors(bio)) {
1441 struct bio *split = bio_split(bio, max_sectors,
1442 GFP_NOIO, conf->bio_split);
1443 bio_chain(split, bio);
1444 generic_make_request(bio);
1445 bio = split;
1446 r1_bio->master_bio = bio;
1f68f0c4 1447 r1_bio->sectors = max_sectors;
191ea9b2 1448 }
4b6d287f 1449
4e78064f 1450 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1451 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1452
1f68f0c4 1453 first_clone = 1;
d8c84c4f 1454
1da177e4 1455 for (i = 0; i < disks; i++) {
8e58e327 1456 struct bio *mbio = NULL;
1da177e4
LT
1457 if (!r1_bio->bios[i])
1458 continue;
1459
1f68f0c4
N
1460
1461 if (first_clone) {
1462 /* do behind I/O ?
1463 * Not if there are too many, or cannot
1464 * allocate memory, or a reader on WriteMostly
1465 * is waiting for behind writes to flush */
1466 if (bitmap &&
1467 (atomic_read(&bitmap->behind_writes)
1468 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1469 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1470 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1471 }
1f68f0c4
N
1472
1473 bitmap_startwrite(bitmap, r1_bio->sector,
1474 r1_bio->sectors,
1475 test_bit(R1BIO_BehindIO,
1476 &r1_bio->state));
1477 first_clone = 0;
1478 }
8e58e327 1479
16d56e2f
SL
1480 if (r1_bio->behind_master_bio)
1481 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1482 GFP_NOIO, mddev->bio_set);
1483 else
1484 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
8e58e327 1485
841c1316 1486 if (r1_bio->behind_master_bio) {
4b6d287f
N
1487 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1488 atomic_inc(&r1_bio->behind_remaining);
1489 }
1490
1f68f0c4
N
1491 r1_bio->bios[i] = mbio;
1492
4f024f37 1493 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1494 conf->mirrors[i].rdev->data_offset);
74d46992 1495 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1496 mbio->bi_end_io = raid1_end_write_request;
a682e003 1497 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1498 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500 conf->raid_disks - mddev->degraded > 1)
1501 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1502 mbio->bi_private = r1_bio;
1503
1da177e4 1504 atomic_inc(&r1_bio->remaining);
f54a9d0e 1505
109e3765 1506 if (mddev->gendisk)
74d46992 1507 trace_block_bio_remap(mbio->bi_disk->queue,
109e3765
N
1508 mbio, disk_devt(mddev->gendisk),
1509 r1_bio->sector);
1510 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1511 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
109e3765 1512
f54a9d0e
N
1513 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514 if (cb)
1515 plug = container_of(cb, struct raid1_plug_cb, cb);
1516 else
1517 plug = NULL;
f54a9d0e
N
1518 if (plug) {
1519 bio_list_add(&plug->pending, mbio);
1520 plug->pending_cnt++;
1521 } else {
23b245c0 1522 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1523 bio_list_add(&conf->pending_bio_list, mbio);
1524 conf->pending_count++;
23b245c0 1525 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1526 md_wakeup_thread(mddev->thread);
23b245c0 1527 }
1da177e4 1528 }
1f68f0c4 1529
079fa166
N
1530 r1_bio_write_done(r1_bio);
1531
1532 /* In case raid1d snuck in to freeze_array */
1533 wake_up(&conf->wait_barrier);
1da177e4
LT
1534}
1535
cc27b0c7 1536static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1537{
fd76863e 1538 sector_t sectors;
3b046a97 1539
aff8da09
SL
1540 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1541 md_flush_request(mddev, bio);
cc27b0c7 1542 return true;
aff8da09 1543 }
3b046a97 1544
c230e7e5
N
1545 /*
1546 * There is a limit to the maximum size, but
1547 * the read/write handler might find a lower limit
1548 * due to bad blocks. To avoid multiple splits,
1549 * we pass the maximum number of sectors down
1550 * and let the lower level perform the split.
1551 */
1552 sectors = align_to_barrier_unit_end(
1553 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1554
c230e7e5 1555 if (bio_data_dir(bio) == READ)
689389a0 1556 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1557 else {
1558 if (!md_write_start(mddev,bio))
1559 return false;
c230e7e5 1560 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1561 }
1562 return true;
3b046a97
RL
1563}
1564
849674e4 1565static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1566{
e8096360 1567 struct r1conf *conf = mddev->private;
1da177e4
LT
1568 int i;
1569
1570 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1571 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1572 rcu_read_lock();
1573 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1574 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1575 seq_printf(seq, "%s",
ddac7c7e
N
1576 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577 }
1578 rcu_read_unlock();
1da177e4
LT
1579 seq_printf(seq, "]");
1580}
1581
849674e4 1582static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1583{
1584 char b[BDEVNAME_SIZE];
e8096360 1585 struct r1conf *conf = mddev->private;
423f04d6 1586 unsigned long flags;
1da177e4
LT
1587
1588 /*
1589 * If it is not operational, then we have already marked it as dead
1590 * else if it is the last working disks, ignore the error, let the
1591 * next level up know.
1592 * else mark the drive as failed
1593 */
2e52d449 1594 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1595 if (test_bit(In_sync, &rdev->flags)
4044ba58 1596 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1597 /*
1598 * Don't fail the drive, act as though we were just a
4044ba58
N
1599 * normal single drive.
1600 * However don't try a recovery from this drive as
1601 * it is very likely to fail.
1da177e4 1602 */
5389042f 1603 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1604 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1605 return;
4044ba58 1606 }
de393cde 1607 set_bit(Blocked, &rdev->flags);
c04be0aa 1608 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1609 mddev->degraded++;
dd00a99e 1610 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1611 } else
1612 set_bit(Faulty, &rdev->flags);
423f04d6 1613 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1614 /*
1615 * if recovery is running, make sure it aborts.
1616 */
1617 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1618 set_mask_bits(&mddev->sb_flags, 0,
1619 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1620 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1621 "md/raid1:%s: Operation continuing on %d devices.\n",
1622 mdname(mddev), bdevname(rdev->bdev, b),
1623 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1624}
1625
e8096360 1626static void print_conf(struct r1conf *conf)
1da177e4
LT
1627{
1628 int i;
1da177e4 1629
1d41c216 1630 pr_debug("RAID1 conf printout:\n");
1da177e4 1631 if (!conf) {
1d41c216 1632 pr_debug("(!conf)\n");
1da177e4
LT
1633 return;
1634 }
1d41c216
N
1635 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1636 conf->raid_disks);
1da177e4 1637
ddac7c7e 1638 rcu_read_lock();
1da177e4
LT
1639 for (i = 0; i < conf->raid_disks; i++) {
1640 char b[BDEVNAME_SIZE];
3cb03002 1641 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1642 if (rdev)
1d41c216
N
1643 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1644 i, !test_bit(In_sync, &rdev->flags),
1645 !test_bit(Faulty, &rdev->flags),
1646 bdevname(rdev->bdev,b));
1da177e4 1647 }
ddac7c7e 1648 rcu_read_unlock();
1da177e4
LT
1649}
1650
e8096360 1651static void close_sync(struct r1conf *conf)
1da177e4 1652{
fd76863e 1653 wait_all_barriers(conf);
1654 allow_all_barriers(conf);
1da177e4
LT
1655
1656 mempool_destroy(conf->r1buf_pool);
1657 conf->r1buf_pool = NULL;
1658}
1659
fd01b88c 1660static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1661{
1662 int i;
e8096360 1663 struct r1conf *conf = mddev->private;
6b965620
N
1664 int count = 0;
1665 unsigned long flags;
1da177e4
LT
1666
1667 /*
f72ffdd6 1668 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1669 * and mark them readable.
1670 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1671 * device_lock used to avoid races with raid1_end_read_request
1672 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1673 */
423f04d6 1674 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1675 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1676 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1677 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1678 if (repl
1aee41f6 1679 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1680 && repl->recovery_offset == MaxSector
1681 && !test_bit(Faulty, &repl->flags)
1682 && !test_and_set_bit(In_sync, &repl->flags)) {
1683 /* replacement has just become active */
1684 if (!rdev ||
1685 !test_and_clear_bit(In_sync, &rdev->flags))
1686 count++;
1687 if (rdev) {
1688 /* Replaced device not technically
1689 * faulty, but we need to be sure
1690 * it gets removed and never re-added
1691 */
1692 set_bit(Faulty, &rdev->flags);
1693 sysfs_notify_dirent_safe(
1694 rdev->sysfs_state);
1695 }
1696 }
ddac7c7e 1697 if (rdev
61e4947c 1698 && rdev->recovery_offset == MaxSector
ddac7c7e 1699 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1700 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1701 count++;
654e8b5a 1702 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1703 }
1704 }
6b965620
N
1705 mddev->degraded -= count;
1706 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1707
1708 print_conf(conf);
6b965620 1709 return count;
1da177e4
LT
1710}
1711
fd01b88c 1712static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1713{
e8096360 1714 struct r1conf *conf = mddev->private;
199050ea 1715 int err = -EEXIST;
41158c7e 1716 int mirror = 0;
0eaf822c 1717 struct raid1_info *p;
6c2fce2e 1718 int first = 0;
30194636 1719 int last = conf->raid_disks - 1;
1da177e4 1720
5389042f
N
1721 if (mddev->recovery_disabled == conf->recovery_disabled)
1722 return -EBUSY;
1723
1501efad
DW
1724 if (md_integrity_add_rdev(rdev, mddev))
1725 return -ENXIO;
1726
6c2fce2e
NB
1727 if (rdev->raid_disk >= 0)
1728 first = last = rdev->raid_disk;
1729
70bcecdb
GR
1730 /*
1731 * find the disk ... but prefer rdev->saved_raid_disk
1732 * if possible.
1733 */
1734 if (rdev->saved_raid_disk >= 0 &&
1735 rdev->saved_raid_disk >= first &&
1736 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1737 first = last = rdev->saved_raid_disk;
1738
7ef449d1
N
1739 for (mirror = first; mirror <= last; mirror++) {
1740 p = conf->mirrors+mirror;
1741 if (!p->rdev) {
1da177e4 1742
9092c02d
JB
1743 if (mddev->gendisk)
1744 disk_stack_limits(mddev->gendisk, rdev->bdev,
1745 rdev->data_offset << 9);
1da177e4
LT
1746
1747 p->head_position = 0;
1748 rdev->raid_disk = mirror;
199050ea 1749 err = 0;
6aea114a
N
1750 /* As all devices are equivalent, we don't need a full recovery
1751 * if this was recently any drive of the array
1752 */
1753 if (rdev->saved_raid_disk < 0)
41158c7e 1754 conf->fullsync = 1;
d6065f7b 1755 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1756 break;
1757 }
7ef449d1
N
1758 if (test_bit(WantReplacement, &p->rdev->flags) &&
1759 p[conf->raid_disks].rdev == NULL) {
1760 /* Add this device as a replacement */
1761 clear_bit(In_sync, &rdev->flags);
1762 set_bit(Replacement, &rdev->flags);
1763 rdev->raid_disk = mirror;
1764 err = 0;
1765 conf->fullsync = 1;
1766 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1767 break;
1768 }
1769 }
9092c02d 1770 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1771 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1772 print_conf(conf);
199050ea 1773 return err;
1da177e4
LT
1774}
1775
b8321b68 1776static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1777{
e8096360 1778 struct r1conf *conf = mddev->private;
1da177e4 1779 int err = 0;
b8321b68 1780 int number = rdev->raid_disk;
0eaf822c 1781 struct raid1_info *p = conf->mirrors + number;
1da177e4 1782
b014f14c
N
1783 if (rdev != p->rdev)
1784 p = conf->mirrors + conf->raid_disks + number;
1785
1da177e4 1786 print_conf(conf);
b8321b68 1787 if (rdev == p->rdev) {
b2d444d7 1788 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1789 atomic_read(&rdev->nr_pending)) {
1790 err = -EBUSY;
1791 goto abort;
1792 }
046abeed 1793 /* Only remove non-faulty devices if recovery
dfc70645
N
1794 * is not possible.
1795 */
1796 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1797 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1798 mddev->degraded < conf->raid_disks) {
1799 err = -EBUSY;
1800 goto abort;
1801 }
1da177e4 1802 p->rdev = NULL;
d787be40
N
1803 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1804 synchronize_rcu();
1805 if (atomic_read(&rdev->nr_pending)) {
1806 /* lost the race, try later */
1807 err = -EBUSY;
1808 p->rdev = rdev;
1809 goto abort;
1810 }
1811 }
1812 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1813 /* We just removed a device that is being replaced.
1814 * Move down the replacement. We drain all IO before
1815 * doing this to avoid confusion.
1816 */
1817 struct md_rdev *repl =
1818 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1819 freeze_array(conf, 0);
8c7a2c2b
N
1820 clear_bit(Replacement, &repl->flags);
1821 p->rdev = repl;
1822 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1823 unfreeze_array(conf);
e5bc9c3c
GJ
1824 }
1825
1826 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1827 err = md_integrity_register(mddev);
1da177e4
LT
1828 }
1829abort:
1830
1831 print_conf(conf);
1832 return err;
1833}
1834
4246a0b6 1835static void end_sync_read(struct bio *bio)
1da177e4 1836{
98d30c58 1837 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1838
0fc280f6 1839 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1840
1da177e4
LT
1841 /*
1842 * we have read a block, now it needs to be re-written,
1843 * or re-read if the read failed.
1844 * We don't do much here, just schedule handling by raid1d
1845 */
4e4cbee9 1846 if (!bio->bi_status)
1da177e4 1847 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1848
1849 if (atomic_dec_and_test(&r1_bio->remaining))
1850 reschedule_retry(r1_bio);
1da177e4
LT
1851}
1852
4246a0b6 1853static void end_sync_write(struct bio *bio)
1da177e4 1854{
4e4cbee9 1855 int uptodate = !bio->bi_status;
98d30c58 1856 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1857 struct mddev *mddev = r1_bio->mddev;
e8096360 1858 struct r1conf *conf = mddev->private;
4367af55
N
1859 sector_t first_bad;
1860 int bad_sectors;
854abd75 1861 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1862
6b1117d5 1863 if (!uptodate) {
57dab0bd 1864 sector_t sync_blocks = 0;
6b1117d5
N
1865 sector_t s = r1_bio->sector;
1866 long sectors_to_go = r1_bio->sectors;
1867 /* make sure these bits doesn't get cleared. */
1868 do {
5e3db645 1869 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1870 &sync_blocks, 1);
1871 s += sync_blocks;
1872 sectors_to_go -= sync_blocks;
1873 } while (sectors_to_go > 0);
854abd75
N
1874 set_bit(WriteErrorSeen, &rdev->flags);
1875 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1876 set_bit(MD_RECOVERY_NEEDED, &
1877 mddev->recovery);
d8f05d29 1878 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1879 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1880 &first_bad, &bad_sectors) &&
1881 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1882 r1_bio->sector,
1883 r1_bio->sectors,
1884 &first_bad, &bad_sectors)
1885 )
4367af55 1886 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1887
1da177e4 1888 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1889 int s = r1_bio->sectors;
d8f05d29
N
1890 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1891 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1892 reschedule_retry(r1_bio);
1893 else {
1894 put_buf(r1_bio);
1895 md_done_sync(mddev, s, uptodate);
1896 }
1da177e4 1897 }
1da177e4
LT
1898}
1899
3cb03002 1900static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1901 int sectors, struct page *page, int rw)
1902{
796a5cf0 1903 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1904 /* success */
1905 return 1;
19d67169 1906 if (rw == WRITE) {
d8f05d29 1907 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1908 if (!test_and_set_bit(WantReplacement,
1909 &rdev->flags))
1910 set_bit(MD_RECOVERY_NEEDED, &
1911 rdev->mddev->recovery);
1912 }
d8f05d29
N
1913 /* need to record an error - either for the block or the device */
1914 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1915 md_error(rdev->mddev, rdev);
1916 return 0;
1917}
1918
9f2c9d12 1919static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1920{
a68e5870
N
1921 /* Try some synchronous reads of other devices to get
1922 * good data, much like with normal read errors. Only
1923 * read into the pages we already have so we don't
1924 * need to re-issue the read request.
1925 * We don't need to freeze the array, because being in an
1926 * active sync request, there is no normal IO, and
1927 * no overlapping syncs.
06f60385
N
1928 * We don't need to check is_badblock() again as we
1929 * made sure that anything with a bad block in range
1930 * will have bi_end_io clear.
a68e5870 1931 */
fd01b88c 1932 struct mddev *mddev = r1_bio->mddev;
e8096360 1933 struct r1conf *conf = mddev->private;
a68e5870 1934 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1935 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1936 sector_t sect = r1_bio->sector;
1937 int sectors = r1_bio->sectors;
1938 int idx = 0;
2e52d449
N
1939 struct md_rdev *rdev;
1940
1941 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1942 if (test_bit(FailFast, &rdev->flags)) {
1943 /* Don't try recovering from here - just fail it
1944 * ... unless it is the last working device of course */
1945 md_error(mddev, rdev);
1946 if (test_bit(Faulty, &rdev->flags))
1947 /* Don't try to read from here, but make sure
1948 * put_buf does it's thing
1949 */
1950 bio->bi_end_io = end_sync_write;
1951 }
a68e5870
N
1952
1953 while(sectors) {
1954 int s = sectors;
1955 int d = r1_bio->read_disk;
1956 int success = 0;
78d7f5f7 1957 int start;
a68e5870
N
1958
1959 if (s > (PAGE_SIZE>>9))
1960 s = PAGE_SIZE >> 9;
1961 do {
1962 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1963 /* No rcu protection needed here devices
1964 * can only be removed when no resync is
1965 * active, and resync is currently active
1966 */
1967 rdev = conf->mirrors[d].rdev;
9d3d8011 1968 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 1969 pages[idx],
796a5cf0 1970 REQ_OP_READ, 0, false)) {
a68e5870
N
1971 success = 1;
1972 break;
1973 }
1974 }
1975 d++;
8f19ccb2 1976 if (d == conf->raid_disks * 2)
a68e5870
N
1977 d = 0;
1978 } while (!success && d != r1_bio->read_disk);
1979
78d7f5f7 1980 if (!success) {
a68e5870 1981 char b[BDEVNAME_SIZE];
3a9f28a5
N
1982 int abort = 0;
1983 /* Cannot read from anywhere, this block is lost.
1984 * Record a bad block on each device. If that doesn't
1985 * work just disable and interrupt the recovery.
1986 * Don't fail devices as that won't really help.
1987 */
1d41c216 1988 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 1989 mdname(mddev), bio_devname(bio, b),
1d41c216 1990 (unsigned long long)r1_bio->sector);
8f19ccb2 1991 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1992 rdev = conf->mirrors[d].rdev;
1993 if (!rdev || test_bit(Faulty, &rdev->flags))
1994 continue;
1995 if (!rdev_set_badblocks(rdev, sect, s, 0))
1996 abort = 1;
1997 }
1998 if (abort) {
d890fa2b
N
1999 conf->recovery_disabled =
2000 mddev->recovery_disabled;
3a9f28a5
N
2001 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2002 md_done_sync(mddev, r1_bio->sectors, 0);
2003 put_buf(r1_bio);
2004 return 0;
2005 }
2006 /* Try next page */
2007 sectors -= s;
2008 sect += s;
2009 idx++;
2010 continue;
d11c171e 2011 }
78d7f5f7
N
2012
2013 start = d;
2014 /* write it back and re-read */
2015 while (d != r1_bio->read_disk) {
2016 if (d == 0)
8f19ccb2 2017 d = conf->raid_disks * 2;
78d7f5f7
N
2018 d--;
2019 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2020 continue;
2021 rdev = conf->mirrors[d].rdev;
d8f05d29 2022 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2023 pages[idx],
d8f05d29 2024 WRITE) == 0) {
78d7f5f7
N
2025 r1_bio->bios[d]->bi_end_io = NULL;
2026 rdev_dec_pending(rdev, mddev);
9d3d8011 2027 }
78d7f5f7
N
2028 }
2029 d = start;
2030 while (d != r1_bio->read_disk) {
2031 if (d == 0)
8f19ccb2 2032 d = conf->raid_disks * 2;
78d7f5f7
N
2033 d--;
2034 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2035 continue;
2036 rdev = conf->mirrors[d].rdev;
d8f05d29 2037 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2038 pages[idx],
d8f05d29 2039 READ) != 0)
9d3d8011 2040 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2041 }
a68e5870
N
2042 sectors -= s;
2043 sect += s;
2044 idx ++;
2045 }
78d7f5f7 2046 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2047 bio->bi_status = 0;
a68e5870
N
2048 return 1;
2049}
2050
c95e6385 2051static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2052{
2053 /* We have read all readable devices. If we haven't
2054 * got the block, then there is no hope left.
2055 * If we have, then we want to do a comparison
2056 * and skip the write if everything is the same.
2057 * If any blocks failed to read, then we need to
2058 * attempt an over-write
2059 */
fd01b88c 2060 struct mddev *mddev = r1_bio->mddev;
e8096360 2061 struct r1conf *conf = mddev->private;
a68e5870
N
2062 int primary;
2063 int i;
f4380a91 2064 int vcnt;
a68e5870 2065
30bc9b53
N
2066 /* Fix variable parts of all bios */
2067 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2068 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2069 blk_status_t status;
30bc9b53 2070 struct bio *b = r1_bio->bios[i];
98d30c58 2071 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2072 if (b->bi_end_io != end_sync_read)
2073 continue;
4246a0b6 2074 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2075 status = b->bi_status;
30bc9b53 2076 bio_reset(b);
4e4cbee9 2077 b->bi_status = status;
4f024f37 2078 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2079 conf->mirrors[i].rdev->data_offset;
74d46992 2080 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2081 b->bi_end_io = end_sync_read;
98d30c58
ML
2082 rp->raid_bio = r1_bio;
2083 b->bi_private = rp;
30bc9b53 2084
fb0eb5df
ML
2085 /* initialize bvec table again */
2086 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2087 }
8f19ccb2 2088 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2089 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2090 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2091 r1_bio->bios[primary]->bi_end_io = NULL;
2092 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2093 break;
2094 }
2095 r1_bio->read_disk = primary;
8f19ccb2 2096 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2097 int j;
78d7f5f7
N
2098 struct bio *pbio = r1_bio->bios[primary];
2099 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2100 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2101 struct page **ppages = get_resync_pages(pbio)->pages;
2102 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2103 struct bio_vec *bi;
8fc04e6e 2104 int page_len[RESYNC_PAGES] = { 0 };
a68e5870 2105
2aabaa65 2106 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2107 continue;
4246a0b6 2108 /* Now we can 'fixup' the error value */
4e4cbee9 2109 sbio->bi_status = 0;
78d7f5f7 2110
60928a91
ML
2111 bio_for_each_segment_all(bi, sbio, j)
2112 page_len[j] = bi->bv_len;
2113
4e4cbee9 2114 if (!status) {
78d7f5f7 2115 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2116 if (memcmp(page_address(ppages[j]),
2117 page_address(spages[j]),
60928a91 2118 page_len[j]))
78d7f5f7 2119 break;
69382e85 2120 }
78d7f5f7
N
2121 } else
2122 j = 0;
2123 if (j >= 0)
7f7583d4 2124 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2125 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2126 && !status)) {
78d7f5f7
N
2127 /* No need to write to this device. */
2128 sbio->bi_end_io = NULL;
2129 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2130 continue;
2131 }
d3b45c2a
KO
2132
2133 bio_copy_data(sbio, pbio);
78d7f5f7 2134 }
a68e5870
N
2135}
2136
9f2c9d12 2137static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2138{
e8096360 2139 struct r1conf *conf = mddev->private;
a68e5870 2140 int i;
8f19ccb2 2141 int disks = conf->raid_disks * 2;
037d2ff6 2142 struct bio *wbio;
a68e5870 2143
a68e5870
N
2144 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2145 /* ouch - failed to read all of that. */
2146 if (!fix_sync_read_error(r1_bio))
2147 return;
7ca78d57
N
2148
2149 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2150 process_checks(r1_bio);
2151
d11c171e
N
2152 /*
2153 * schedule writes
2154 */
1da177e4
LT
2155 atomic_set(&r1_bio->remaining, 1);
2156 for (i = 0; i < disks ; i++) {
2157 wbio = r1_bio->bios[i];
3e198f78
N
2158 if (wbio->bi_end_io == NULL ||
2159 (wbio->bi_end_io == end_sync_read &&
2160 (i == r1_bio->read_disk ||
2161 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2162 continue;
0c9d5b12
N
2163 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2164 continue;
1da177e4 2165
796a5cf0 2166 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2167 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2168 wbio->bi_opf |= MD_FAILFAST;
2169
3e198f78 2170 wbio->bi_end_io = end_sync_write;
1da177e4 2171 atomic_inc(&r1_bio->remaining);
aa8b57aa 2172 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2173
1da177e4
LT
2174 generic_make_request(wbio);
2175 }
2176
2177 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2178 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2179 int s = r1_bio->sectors;
2180 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2181 test_bit(R1BIO_WriteError, &r1_bio->state))
2182 reschedule_retry(r1_bio);
2183 else {
2184 put_buf(r1_bio);
2185 md_done_sync(mddev, s, 1);
2186 }
1da177e4
LT
2187 }
2188}
2189
2190/*
2191 * This is a kernel thread which:
2192 *
2193 * 1. Retries failed read operations on working mirrors.
2194 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2195 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2196 */
2197
e8096360 2198static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2199 sector_t sect, int sectors)
2200{
fd01b88c 2201 struct mddev *mddev = conf->mddev;
867868fb
N
2202 while(sectors) {
2203 int s = sectors;
2204 int d = read_disk;
2205 int success = 0;
2206 int start;
3cb03002 2207 struct md_rdev *rdev;
867868fb
N
2208
2209 if (s > (PAGE_SIZE>>9))
2210 s = PAGE_SIZE >> 9;
2211
2212 do {
d2eb35ac
N
2213 sector_t first_bad;
2214 int bad_sectors;
2215
707a6a42
N
2216 rcu_read_lock();
2217 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2218 if (rdev &&
da8840a7 2219 (test_bit(In_sync, &rdev->flags) ||
2220 (!test_bit(Faulty, &rdev->flags) &&
2221 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2222 is_badblock(rdev, sect, s,
707a6a42
N
2223 &first_bad, &bad_sectors) == 0) {
2224 atomic_inc(&rdev->nr_pending);
2225 rcu_read_unlock();
2226 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2227 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2228 success = 1;
2229 rdev_dec_pending(rdev, mddev);
2230 if (success)
2231 break;
2232 } else
2233 rcu_read_unlock();
2234 d++;
2235 if (d == conf->raid_disks * 2)
2236 d = 0;
867868fb
N
2237 } while (!success && d != read_disk);
2238
2239 if (!success) {
d8f05d29 2240 /* Cannot read from anywhere - mark it bad */
3cb03002 2241 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2242 if (!rdev_set_badblocks(rdev, sect, s, 0))
2243 md_error(mddev, rdev);
867868fb
N
2244 break;
2245 }
2246 /* write it back and re-read */
2247 start = d;
2248 while (d != read_disk) {
2249 if (d==0)
8f19ccb2 2250 d = conf->raid_disks * 2;
867868fb 2251 d--;
707a6a42
N
2252 rcu_read_lock();
2253 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2254 if (rdev &&
707a6a42
N
2255 !test_bit(Faulty, &rdev->flags)) {
2256 atomic_inc(&rdev->nr_pending);
2257 rcu_read_unlock();
d8f05d29
N
2258 r1_sync_page_io(rdev, sect, s,
2259 conf->tmppage, WRITE);
707a6a42
N
2260 rdev_dec_pending(rdev, mddev);
2261 } else
2262 rcu_read_unlock();
867868fb
N
2263 }
2264 d = start;
2265 while (d != read_disk) {
2266 char b[BDEVNAME_SIZE];
2267 if (d==0)
8f19ccb2 2268 d = conf->raid_disks * 2;
867868fb 2269 d--;
707a6a42
N
2270 rcu_read_lock();
2271 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2272 if (rdev &&
b8cb6b4c 2273 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2274 atomic_inc(&rdev->nr_pending);
2275 rcu_read_unlock();
d8f05d29
N
2276 if (r1_sync_page_io(rdev, sect, s,
2277 conf->tmppage, READ)) {
867868fb 2278 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2279 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2280 mdname(mddev), s,
2281 (unsigned long long)(sect +
2282 rdev->data_offset),
2283 bdevname(rdev->bdev, b));
867868fb 2284 }
707a6a42
N
2285 rdev_dec_pending(rdev, mddev);
2286 } else
2287 rcu_read_unlock();
867868fb
N
2288 }
2289 sectors -= s;
2290 sect += s;
2291 }
2292}
2293
9f2c9d12 2294static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2295{
fd01b88c 2296 struct mddev *mddev = r1_bio->mddev;
e8096360 2297 struct r1conf *conf = mddev->private;
3cb03002 2298 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2299
2300 /* bio has the data to be written to device 'i' where
2301 * we just recently had a write error.
2302 * We repeatedly clone the bio and trim down to one block,
2303 * then try the write. Where the write fails we record
2304 * a bad block.
2305 * It is conceivable that the bio doesn't exactly align with
2306 * blocks. We must handle this somehow.
2307 *
2308 * We currently own a reference on the rdev.
2309 */
2310
2311 int block_sectors;
2312 sector_t sector;
2313 int sectors;
2314 int sect_to_write = r1_bio->sectors;
2315 int ok = 1;
2316
2317 if (rdev->badblocks.shift < 0)
2318 return 0;
2319
ab713cdc
ND
2320 block_sectors = roundup(1 << rdev->badblocks.shift,
2321 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2322 sector = r1_bio->sector;
2323 sectors = ((sector + block_sectors)
2324 & ~(sector_t)(block_sectors - 1))
2325 - sector;
2326
cd5ff9a1
N
2327 while (sect_to_write) {
2328 struct bio *wbio;
2329 if (sectors > sect_to_write)
2330 sectors = sect_to_write;
2331 /* Write at 'sector' for 'sectors'*/
2332
b783863f 2333 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2334 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2335 GFP_NOIO,
2336 mddev->bio_set);
b783863f 2337 } else {
d7a10308
ML
2338 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2339 mddev->bio_set);
b783863f
KO
2340 }
2341
796a5cf0 2342 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2343 wbio->bi_iter.bi_sector = r1_bio->sector;
2344 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2345
6678d83f 2346 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2347 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2348 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2349
2350 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2351 /* failure! */
2352 ok = rdev_set_badblocks(rdev, sector,
2353 sectors, 0)
2354 && ok;
2355
2356 bio_put(wbio);
2357 sect_to_write -= sectors;
2358 sector += sectors;
2359 sectors = block_sectors;
2360 }
2361 return ok;
2362}
2363
e8096360 2364static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2365{
2366 int m;
2367 int s = r1_bio->sectors;
8f19ccb2 2368 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2369 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2370 struct bio *bio = r1_bio->bios[m];
2371 if (bio->bi_end_io == NULL)
2372 continue;
4e4cbee9 2373 if (!bio->bi_status &&
62096bce 2374 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2375 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2376 }
4e4cbee9 2377 if (bio->bi_status &&
62096bce
N
2378 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2379 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2380 md_error(conf->mddev, rdev);
2381 }
2382 }
2383 put_buf(r1_bio);
2384 md_done_sync(conf->mddev, s, 1);
2385}
2386
e8096360 2387static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2388{
fd76863e 2389 int m, idx;
55ce74d4 2390 bool fail = false;
fd76863e 2391
8f19ccb2 2392 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2393 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2394 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2395 rdev_clear_badblocks(rdev,
2396 r1_bio->sector,
c6563a8c 2397 r1_bio->sectors, 0);
62096bce
N
2398 rdev_dec_pending(rdev, conf->mddev);
2399 } else if (r1_bio->bios[m] != NULL) {
2400 /* This drive got a write error. We need to
2401 * narrow down and record precise write
2402 * errors.
2403 */
55ce74d4 2404 fail = true;
62096bce
N
2405 if (!narrow_write_error(r1_bio, m)) {
2406 md_error(conf->mddev,
2407 conf->mirrors[m].rdev);
2408 /* an I/O failed, we can't clear the bitmap */
2409 set_bit(R1BIO_Degraded, &r1_bio->state);
2410 }
2411 rdev_dec_pending(conf->mirrors[m].rdev,
2412 conf->mddev);
2413 }
55ce74d4
N
2414 if (fail) {
2415 spin_lock_irq(&conf->device_lock);
2416 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2417 idx = sector_to_idx(r1_bio->sector);
824e47da 2418 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2419 spin_unlock_irq(&conf->device_lock);
824e47da 2420 /*
2421 * In case freeze_array() is waiting for condition
2422 * get_unqueued_pending() == extra to be true.
2423 */
2424 wake_up(&conf->wait_barrier);
55ce74d4 2425 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2426 } else {
2427 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2428 close_write(r1_bio);
55ce74d4 2429 raid_end_bio_io(r1_bio);
bd8688a1 2430 }
62096bce
N
2431}
2432
e8096360 2433static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2434{
fd01b88c 2435 struct mddev *mddev = conf->mddev;
62096bce 2436 struct bio *bio;
3cb03002 2437 struct md_rdev *rdev;
109e3765 2438 sector_t bio_sector;
62096bce
N
2439
2440 clear_bit(R1BIO_ReadError, &r1_bio->state);
2441 /* we got a read error. Maybe the drive is bad. Maybe just
2442 * the block and we can fix it.
2443 * We freeze all other IO, and try reading the block from
2444 * other devices. When we find one, we re-write
2445 * and check it that fixes the read error.
2446 * This is all done synchronously while the array is
2447 * frozen
2448 */
7449f699
TM
2449
2450 bio = r1_bio->bios[r1_bio->read_disk];
109e3765 2451 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2452 bio_put(bio);
2453 r1_bio->bios[r1_bio->read_disk] = NULL;
2454
2e52d449
N
2455 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2456 if (mddev->ro == 0
2457 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2458 freeze_array(conf, 1);
62096bce
N
2459 fix_read_error(conf, r1_bio->read_disk,
2460 r1_bio->sector, r1_bio->sectors);
2461 unfreeze_array(conf);
7449f699
TM
2462 } else {
2463 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2464 }
2465
2e52d449 2466 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2467 allow_barrier(conf, r1_bio->sector);
2468 bio = r1_bio->master_bio;
62096bce 2469
689389a0
N
2470 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2471 r1_bio->state = 0;
2472 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2473}
2474
4ed8731d 2475static void raid1d(struct md_thread *thread)
1da177e4 2476{
4ed8731d 2477 struct mddev *mddev = thread->mddev;
9f2c9d12 2478 struct r1bio *r1_bio;
1da177e4 2479 unsigned long flags;
e8096360 2480 struct r1conf *conf = mddev->private;
1da177e4 2481 struct list_head *head = &conf->retry_list;
e1dfa0a2 2482 struct blk_plug plug;
fd76863e 2483 int idx;
1da177e4
LT
2484
2485 md_check_recovery(mddev);
e1dfa0a2 2486
55ce74d4 2487 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2488 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2489 LIST_HEAD(tmp);
2490 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2491 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2492 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2493 spin_unlock_irqrestore(&conf->device_lock, flags);
2494 while (!list_empty(&tmp)) {
a452744b
MP
2495 r1_bio = list_first_entry(&tmp, struct r1bio,
2496 retry_list);
55ce74d4 2497 list_del(&r1_bio->retry_list);
fd76863e 2498 idx = sector_to_idx(r1_bio->sector);
824e47da 2499 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2500 if (mddev->degraded)
2501 set_bit(R1BIO_Degraded, &r1_bio->state);
2502 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2503 close_write(r1_bio);
55ce74d4
N
2504 raid_end_bio_io(r1_bio);
2505 }
2506 }
2507
e1dfa0a2 2508 blk_start_plug(&plug);
1da177e4 2509 for (;;) {
191ea9b2 2510
0021b7bc 2511 flush_pending_writes(conf);
191ea9b2 2512
a35e63ef
N
2513 spin_lock_irqsave(&conf->device_lock, flags);
2514 if (list_empty(head)) {
2515 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2516 break;
a35e63ef 2517 }
9f2c9d12 2518 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2519 list_del(head->prev);
fd76863e 2520 idx = sector_to_idx(r1_bio->sector);
824e47da 2521 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
2523
2524 mddev = r1_bio->mddev;
070ec55d 2525 conf = mddev->private;
4367af55 2526 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2527 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2528 test_bit(R1BIO_WriteError, &r1_bio->state))
2529 handle_sync_write_finished(conf, r1_bio);
2530 else
4367af55 2531 sync_request_write(mddev, r1_bio);
cd5ff9a1 2532 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2533 test_bit(R1BIO_WriteError, &r1_bio->state))
2534 handle_write_finished(conf, r1_bio);
2535 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2536 handle_read_error(conf, r1_bio);
2537 else
c230e7e5 2538 WARN_ON_ONCE(1);
62096bce 2539
1d9d5241 2540 cond_resched();
2953079c 2541 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2542 md_check_recovery(mddev);
1da177e4 2543 }
e1dfa0a2 2544 blk_finish_plug(&plug);
1da177e4
LT
2545}
2546
e8096360 2547static int init_resync(struct r1conf *conf)
1da177e4
LT
2548{
2549 int buffs;
2550
2551 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2552 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2553 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2554 conf->poolinfo);
2555 if (!conf->r1buf_pool)
2556 return -ENOMEM;
1da177e4
LT
2557 return 0;
2558}
2559
208410b5
SL
2560static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2561{
2562 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2563 struct resync_pages *rps;
2564 struct bio *bio;
2565 int i;
2566
2567 for (i = conf->poolinfo->raid_disks; i--; ) {
2568 bio = r1bio->bios[i];
2569 rps = bio->bi_private;
2570 bio_reset(bio);
2571 bio->bi_private = rps;
2572 }
2573 r1bio->master_bio = NULL;
2574 return r1bio;
2575}
2576
1da177e4
LT
2577/*
2578 * perform a "sync" on one "block"
2579 *
2580 * We need to make sure that no normal I/O request - particularly write
2581 * requests - conflict with active sync requests.
2582 *
2583 * This is achieved by tracking pending requests and a 'barrier' concept
2584 * that can be installed to exclude normal IO requests.
2585 */
2586
849674e4
SL
2587static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2588 int *skipped)
1da177e4 2589{
e8096360 2590 struct r1conf *conf = mddev->private;
9f2c9d12 2591 struct r1bio *r1_bio;
1da177e4
LT
2592 struct bio *bio;
2593 sector_t max_sector, nr_sectors;
3e198f78 2594 int disk = -1;
1da177e4 2595 int i;
3e198f78
N
2596 int wonly = -1;
2597 int write_targets = 0, read_targets = 0;
57dab0bd 2598 sector_t sync_blocks;
e3b9703e 2599 int still_degraded = 0;
06f60385
N
2600 int good_sectors = RESYNC_SECTORS;
2601 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2602 int idx = sector_to_idx(sector_nr);
022e510f 2603 int page_idx = 0;
1da177e4
LT
2604
2605 if (!conf->r1buf_pool)
2606 if (init_resync(conf))
57afd89f 2607 return 0;
1da177e4 2608
58c0fed4 2609 max_sector = mddev->dev_sectors;
1da177e4 2610 if (sector_nr >= max_sector) {
191ea9b2
N
2611 /* If we aborted, we need to abort the
2612 * sync on the 'current' bitmap chunk (there will
2613 * only be one in raid1 resync.
2614 * We can find the current addess in mddev->curr_resync
2615 */
6a806c51
N
2616 if (mddev->curr_resync < max_sector) /* aborted */
2617 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2618 &sync_blocks, 1);
6a806c51 2619 else /* completed sync */
191ea9b2 2620 conf->fullsync = 0;
6a806c51
N
2621
2622 bitmap_close_sync(mddev->bitmap);
1da177e4 2623 close_sync(conf);
c40f341f
GR
2624
2625 if (mddev_is_clustered(mddev)) {
2626 conf->cluster_sync_low = 0;
2627 conf->cluster_sync_high = 0;
c40f341f 2628 }
1da177e4
LT
2629 return 0;
2630 }
2631
07d84d10
N
2632 if (mddev->bitmap == NULL &&
2633 mddev->recovery_cp == MaxSector &&
6394cca5 2634 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2635 conf->fullsync == 0) {
2636 *skipped = 1;
2637 return max_sector - sector_nr;
2638 }
6394cca5
N
2639 /* before building a request, check if we can skip these blocks..
2640 * This call the bitmap_start_sync doesn't actually record anything
2641 */
e3b9703e 2642 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2643 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2644 /* We can skip this block, and probably several more */
2645 *skipped = 1;
2646 return sync_blocks;
2647 }
17999be4 2648
7ac50447
TM
2649 /*
2650 * If there is non-resync activity waiting for a turn, then let it
2651 * though before starting on this new sync request.
2652 */
824e47da 2653 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2654 schedule_timeout_uninterruptible(1);
2655
c40f341f
GR
2656 /* we are incrementing sector_nr below. To be safe, we check against
2657 * sector_nr + two times RESYNC_SECTORS
2658 */
2659
2660 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2661 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
208410b5 2662 r1_bio = raid1_alloc_init_r1buf(conf);
17999be4 2663
c2fd4c94 2664 raise_barrier(conf, sector_nr);
1da177e4 2665
3e198f78 2666 rcu_read_lock();
1da177e4 2667 /*
3e198f78
N
2668 * If we get a correctably read error during resync or recovery,
2669 * we might want to read from a different device. So we
2670 * flag all drives that could conceivably be read from for READ,
2671 * and any others (which will be non-In_sync devices) for WRITE.
2672 * If a read fails, we try reading from something else for which READ
2673 * is OK.
1da177e4 2674 */
1da177e4 2675
1da177e4
LT
2676 r1_bio->mddev = mddev;
2677 r1_bio->sector = sector_nr;
191ea9b2 2678 r1_bio->state = 0;
1da177e4 2679 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2680 /* make sure good_sectors won't go across barrier unit boundary */
2681 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2682
8f19ccb2 2683 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2684 struct md_rdev *rdev;
1da177e4 2685 bio = r1_bio->bios[i];
1da177e4 2686
3e198f78
N
2687 rdev = rcu_dereference(conf->mirrors[i].rdev);
2688 if (rdev == NULL ||
06f60385 2689 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2690 if (i < conf->raid_disks)
2691 still_degraded = 1;
3e198f78 2692 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2693 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2694 bio->bi_end_io = end_sync_write;
2695 write_targets ++;
3e198f78
N
2696 } else {
2697 /* may need to read from here */
06f60385
N
2698 sector_t first_bad = MaxSector;
2699 int bad_sectors;
2700
2701 if (is_badblock(rdev, sector_nr, good_sectors,
2702 &first_bad, &bad_sectors)) {
2703 if (first_bad > sector_nr)
2704 good_sectors = first_bad - sector_nr;
2705 else {
2706 bad_sectors -= (sector_nr - first_bad);
2707 if (min_bad == 0 ||
2708 min_bad > bad_sectors)
2709 min_bad = bad_sectors;
2710 }
2711 }
2712 if (sector_nr < first_bad) {
2713 if (test_bit(WriteMostly, &rdev->flags)) {
2714 if (wonly < 0)
2715 wonly = i;
2716 } else {
2717 if (disk < 0)
2718 disk = i;
2719 }
796a5cf0 2720 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2721 bio->bi_end_io = end_sync_read;
2722 read_targets++;
d57368af
AL
2723 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2724 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2725 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2726 /*
2727 * The device is suitable for reading (InSync),
2728 * but has bad block(s) here. Let's try to correct them,
2729 * if we are doing resync or repair. Otherwise, leave
2730 * this device alone for this sync request.
2731 */
796a5cf0 2732 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2733 bio->bi_end_io = end_sync_write;
2734 write_targets++;
3e198f78 2735 }
3e198f78 2736 }
06f60385
N
2737 if (bio->bi_end_io) {
2738 atomic_inc(&rdev->nr_pending);
4f024f37 2739 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2740 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2741 if (test_bit(FailFast, &rdev->flags))
2742 bio->bi_opf |= MD_FAILFAST;
06f60385 2743 }
1da177e4 2744 }
3e198f78
N
2745 rcu_read_unlock();
2746 if (disk < 0)
2747 disk = wonly;
2748 r1_bio->read_disk = disk;
191ea9b2 2749
06f60385
N
2750 if (read_targets == 0 && min_bad > 0) {
2751 /* These sectors are bad on all InSync devices, so we
2752 * need to mark them bad on all write targets
2753 */
2754 int ok = 1;
8f19ccb2 2755 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2756 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2757 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2758 ok = rdev_set_badblocks(rdev, sector_nr,
2759 min_bad, 0
2760 ) && ok;
2761 }
2953079c 2762 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2763 *skipped = 1;
2764 put_buf(r1_bio);
2765
2766 if (!ok) {
2767 /* Cannot record the badblocks, so need to
2768 * abort the resync.
2769 * If there are multiple read targets, could just
2770 * fail the really bad ones ???
2771 */
2772 conf->recovery_disabled = mddev->recovery_disabled;
2773 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2774 return 0;
2775 } else
2776 return min_bad;
2777
2778 }
2779 if (min_bad > 0 && min_bad < good_sectors) {
2780 /* only resync enough to reach the next bad->good
2781 * transition */
2782 good_sectors = min_bad;
2783 }
2784
3e198f78
N
2785 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2786 /* extra read targets are also write targets */
2787 write_targets += read_targets-1;
2788
2789 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2790 /* There is nowhere to write, so all non-sync
2791 * drives must be failed - so we are finished
2792 */
b7219ccb
N
2793 sector_t rv;
2794 if (min_bad > 0)
2795 max_sector = sector_nr + min_bad;
2796 rv = max_sector - sector_nr;
57afd89f 2797 *skipped = 1;
1da177e4 2798 put_buf(r1_bio);
1da177e4
LT
2799 return rv;
2800 }
2801
c6207277
N
2802 if (max_sector > mddev->resync_max)
2803 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2804 if (max_sector > sector_nr + good_sectors)
2805 max_sector = sector_nr + good_sectors;
1da177e4 2806 nr_sectors = 0;
289e99e8 2807 sync_blocks = 0;
1da177e4
LT
2808 do {
2809 struct page *page;
2810 int len = PAGE_SIZE;
2811 if (sector_nr + (len>>9) > max_sector)
2812 len = (max_sector - sector_nr) << 9;
2813 if (len == 0)
2814 break;
6a806c51
N
2815 if (sync_blocks == 0) {
2816 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2817 &sync_blocks, still_degraded) &&
2818 !conf->fullsync &&
2819 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2820 break;
7571ae88 2821 if ((len >> 9) > sync_blocks)
6a806c51 2822 len = sync_blocks<<9;
ab7a30c7 2823 }
191ea9b2 2824
8f19ccb2 2825 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2826 struct resync_pages *rp;
2827
1da177e4 2828 bio = r1_bio->bios[i];
98d30c58 2829 rp = get_resync_pages(bio);
1da177e4 2830 if (bio->bi_end_io) {
022e510f 2831 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2832
2833 /*
2834 * won't fail because the vec table is big
2835 * enough to hold all these pages
2836 */
2837 bio_add_page(bio, page, len, 0);
1da177e4
LT
2838 }
2839 }
2840 nr_sectors += len>>9;
2841 sector_nr += len>>9;
191ea9b2 2842 sync_blocks -= (len>>9);
022e510f 2843 } while (++page_idx < RESYNC_PAGES);
98d30c58 2844
1da177e4
LT
2845 r1_bio->sectors = nr_sectors;
2846
c40f341f
GR
2847 if (mddev_is_clustered(mddev) &&
2848 conf->cluster_sync_high < sector_nr + nr_sectors) {
2849 conf->cluster_sync_low = mddev->curr_resync_completed;
2850 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2851 /* Send resync message */
2852 md_cluster_ops->resync_info_update(mddev,
2853 conf->cluster_sync_low,
2854 conf->cluster_sync_high);
2855 }
2856
d11c171e
N
2857 /* For a user-requested sync, we read all readable devices and do a
2858 * compare
2859 */
2860 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2861 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2862 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2863 bio = r1_bio->bios[i];
2864 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2865 read_targets--;
74d46992 2866 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2867 if (read_targets == 1)
2868 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2869 generic_make_request(bio);
2870 }
2871 }
2872 } else {
2873 atomic_set(&r1_bio->remaining, 1);
2874 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2875 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2876 if (read_targets == 1)
2877 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2878 generic_make_request(bio);
1da177e4 2879
d11c171e 2880 }
1da177e4
LT
2881 return nr_sectors;
2882}
2883
fd01b88c 2884static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2885{
2886 if (sectors)
2887 return sectors;
2888
2889 return mddev->dev_sectors;
2890}
2891
e8096360 2892static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2893{
e8096360 2894 struct r1conf *conf;
709ae487 2895 int i;
0eaf822c 2896 struct raid1_info *disk;
3cb03002 2897 struct md_rdev *rdev;
709ae487 2898 int err = -ENOMEM;
1da177e4 2899
e8096360 2900 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2901 if (!conf)
709ae487 2902 goto abort;
1da177e4 2903
fd76863e 2904 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2905 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2906 if (!conf->nr_pending)
2907 goto abort;
2908
2909 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2910 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2911 if (!conf->nr_waiting)
2912 goto abort;
2913
2914 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2915 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2916 if (!conf->nr_queued)
2917 goto abort;
2918
2919 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2920 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2921 if (!conf->barrier)
2922 goto abort;
2923
0eaf822c 2924 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2925 * mddev->raid_disks * 2,
1da177e4
LT
2926 GFP_KERNEL);
2927 if (!conf->mirrors)
709ae487 2928 goto abort;
1da177e4 2929
ddaf22ab
N
2930 conf->tmppage = alloc_page(GFP_KERNEL);
2931 if (!conf->tmppage)
709ae487 2932 goto abort;
ddaf22ab 2933
709ae487 2934 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2935 if (!conf->poolinfo)
709ae487 2936 goto abort;
8f19ccb2 2937 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2938 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2939 r1bio_pool_free,
2940 conf->poolinfo);
2941 if (!conf->r1bio_pool)
709ae487
N
2942 goto abort;
2943
011067b0 2944 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
c230e7e5
N
2945 if (!conf->bio_split)
2946 goto abort;
2947
ed9bfdf1 2948 conf->poolinfo->mddev = mddev;
1da177e4 2949
c19d5798 2950 err = -EINVAL;
e7e72bf6 2951 spin_lock_init(&conf->device_lock);
dafb20fa 2952 rdev_for_each(rdev, mddev) {
709ae487 2953 int disk_idx = rdev->raid_disk;
1da177e4
LT
2954 if (disk_idx >= mddev->raid_disks
2955 || disk_idx < 0)
2956 continue;
c19d5798 2957 if (test_bit(Replacement, &rdev->flags))
02b898f2 2958 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2959 else
2960 disk = conf->mirrors + disk_idx;
1da177e4 2961
c19d5798
N
2962 if (disk->rdev)
2963 goto abort;
1da177e4 2964 disk->rdev = rdev;
1da177e4 2965 disk->head_position = 0;
12cee5a8 2966 disk->seq_start = MaxSector;
1da177e4
LT
2967 }
2968 conf->raid_disks = mddev->raid_disks;
2969 conf->mddev = mddev;
1da177e4 2970 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2971 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2972
2973 spin_lock_init(&conf->resync_lock);
17999be4 2974 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2975
191ea9b2 2976 bio_list_init(&conf->pending_bio_list);
34db0cd6 2977 conf->pending_count = 0;
d890fa2b 2978 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2979
c19d5798 2980 err = -EIO;
8f19ccb2 2981 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2982
2983 disk = conf->mirrors + i;
2984
c19d5798
N
2985 if (i < conf->raid_disks &&
2986 disk[conf->raid_disks].rdev) {
2987 /* This slot has a replacement. */
2988 if (!disk->rdev) {
2989 /* No original, just make the replacement
2990 * a recovering spare
2991 */
2992 disk->rdev =
2993 disk[conf->raid_disks].rdev;
2994 disk[conf->raid_disks].rdev = NULL;
2995 } else if (!test_bit(In_sync, &disk->rdev->flags))
2996 /* Original is not in_sync - bad */
2997 goto abort;
2998 }
2999
5fd6c1dc
N
3000 if (!disk->rdev ||
3001 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3002 disk->head_position = 0;
4f0a5e01
JB
3003 if (disk->rdev &&
3004 (disk->rdev->saved_raid_disk < 0))
918f0238 3005 conf->fullsync = 1;
be4d3280 3006 }
1da177e4 3007 }
709ae487 3008
709ae487 3009 err = -ENOMEM;
0232605d 3010 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3011 if (!conf->thread)
709ae487 3012 goto abort;
1da177e4 3013
709ae487
N
3014 return conf;
3015
3016 abort:
3017 if (conf) {
644df1a8 3018 mempool_destroy(conf->r1bio_pool);
709ae487
N
3019 kfree(conf->mirrors);
3020 safe_put_page(conf->tmppage);
3021 kfree(conf->poolinfo);
fd76863e 3022 kfree(conf->nr_pending);
3023 kfree(conf->nr_waiting);
3024 kfree(conf->nr_queued);
3025 kfree(conf->barrier);
c230e7e5
N
3026 if (conf->bio_split)
3027 bioset_free(conf->bio_split);
709ae487
N
3028 kfree(conf);
3029 }
3030 return ERR_PTR(err);
3031}
3032
afa0f557 3033static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3034static int raid1_run(struct mddev *mddev)
709ae487 3035{
e8096360 3036 struct r1conf *conf;
709ae487 3037 int i;
3cb03002 3038 struct md_rdev *rdev;
5220ea1e 3039 int ret;
2ff8cc2c 3040 bool discard_supported = false;
709ae487
N
3041
3042 if (mddev->level != 1) {
1d41c216
N
3043 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3044 mdname(mddev), mddev->level);
709ae487
N
3045 return -EIO;
3046 }
3047 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3048 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3049 mdname(mddev));
709ae487
N
3050 return -EIO;
3051 }
a415c0f1
N
3052 if (mddev_init_writes_pending(mddev) < 0)
3053 return -ENOMEM;
1da177e4 3054 /*
709ae487
N
3055 * copy the already verified devices into our private RAID1
3056 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3057 * should be freed in raid1_free()]
1da177e4 3058 */
709ae487
N
3059 if (mddev->private == NULL)
3060 conf = setup_conf(mddev);
3061 else
3062 conf = mddev->private;
1da177e4 3063
709ae487
N
3064 if (IS_ERR(conf))
3065 return PTR_ERR(conf);
1da177e4 3066
3deff1a7 3067 if (mddev->queue) {
5026d7a9 3068 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3069 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3070 }
5026d7a9 3071
dafb20fa 3072 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3073 if (!mddev->gendisk)
3074 continue;
709ae487
N
3075 disk_stack_limits(mddev->gendisk, rdev->bdev,
3076 rdev->data_offset << 9);
2ff8cc2c
SL
3077 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3078 discard_supported = true;
1da177e4 3079 }
191ea9b2 3080
709ae487
N
3081 mddev->degraded = 0;
3082 for (i=0; i < conf->raid_disks; i++)
3083 if (conf->mirrors[i].rdev == NULL ||
3084 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3085 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3086 mddev->degraded++;
3087
3088 if (conf->raid_disks - mddev->degraded == 1)
3089 mddev->recovery_cp = MaxSector;
3090
8c6ac868 3091 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3092 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3093 mdname(mddev));
3094 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3095 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3096 mddev->raid_disks);
709ae487 3097
1da177e4
LT
3098 /*
3099 * Ok, everything is just fine now
3100 */
709ae487
N
3101 mddev->thread = conf->thread;
3102 conf->thread = NULL;
3103 mddev->private = conf;
46533ff7 3104 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3105
1f403624 3106 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3107
1ed7242e 3108 if (mddev->queue) {
2ff8cc2c
SL
3109 if (discard_supported)
3110 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3111 mddev->queue);
3112 else
3113 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3114 mddev->queue);
1ed7242e 3115 }
5220ea1e 3116
3117 ret = md_integrity_register(mddev);
5aa61f42
N
3118 if (ret) {
3119 md_unregister_thread(&mddev->thread);
afa0f557 3120 raid1_free(mddev, conf);
5aa61f42 3121 }
5220ea1e 3122 return ret;
1da177e4
LT
3123}
3124
afa0f557 3125static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3126{
afa0f557 3127 struct r1conf *conf = priv;
409c57f3 3128
644df1a8 3129 mempool_destroy(conf->r1bio_pool);
990a8baf 3130 kfree(conf->mirrors);
0fea7ed8 3131 safe_put_page(conf->tmppage);
990a8baf 3132 kfree(conf->poolinfo);
fd76863e 3133 kfree(conf->nr_pending);
3134 kfree(conf->nr_waiting);
3135 kfree(conf->nr_queued);
3136 kfree(conf->barrier);
c230e7e5
N
3137 if (conf->bio_split)
3138 bioset_free(conf->bio_split);
1da177e4 3139 kfree(conf);
1da177e4
LT
3140}
3141
fd01b88c 3142static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3143{
3144 /* no resync is happening, and there is enough space
3145 * on all devices, so we can resize.
3146 * We need to make sure resync covers any new space.
3147 * If the array is shrinking we should possibly wait until
3148 * any io in the removed space completes, but it hardly seems
3149 * worth it.
3150 */
a4a6125a
N
3151 sector_t newsize = raid1_size(mddev, sectors, 0);
3152 if (mddev->external_size &&
3153 mddev->array_sectors > newsize)
b522adcd 3154 return -EINVAL;
a4a6125a
N
3155 if (mddev->bitmap) {
3156 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3157 if (ret)
3158 return ret;
3159 }
3160 md_set_array_sectors(mddev, newsize);
b522adcd 3161 if (sectors > mddev->dev_sectors &&
b098636c 3162 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3163 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3164 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3165 }
b522adcd 3166 mddev->dev_sectors = sectors;
4b5c7ae8 3167 mddev->resync_max_sectors = sectors;
1da177e4
LT
3168 return 0;
3169}
3170
fd01b88c 3171static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3172{
3173 /* We need to:
3174 * 1/ resize the r1bio_pool
3175 * 2/ resize conf->mirrors
3176 *
3177 * We allocate a new r1bio_pool if we can.
3178 * Then raise a device barrier and wait until all IO stops.
3179 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3180 *
3181 * At the same time, we "pack" the devices so that all the missing
3182 * devices have the higher raid_disk numbers.
1da177e4
LT
3183 */
3184 mempool_t *newpool, *oldpool;
3185 struct pool_info *newpoolinfo;
0eaf822c 3186 struct raid1_info *newmirrors;
e8096360 3187 struct r1conf *conf = mddev->private;
63c70c4f 3188 int cnt, raid_disks;
c04be0aa 3189 unsigned long flags;
2214c260 3190 int d, d2;
1da177e4 3191
63c70c4f 3192 /* Cannot change chunk_size, layout, or level */
664e7c41 3193 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3194 mddev->layout != mddev->new_layout ||
3195 mddev->level != mddev->new_level) {
664e7c41 3196 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3197 mddev->new_layout = mddev->layout;
3198 mddev->new_level = mddev->level;
3199 return -EINVAL;
3200 }
3201
2214c260
AP
3202 if (!mddev_is_clustered(mddev))
3203 md_allow_write(mddev);
2a2275d6 3204
63c70c4f
N
3205 raid_disks = mddev->raid_disks + mddev->delta_disks;
3206
6ea9c07c
N
3207 if (raid_disks < conf->raid_disks) {
3208 cnt=0;
3209 for (d= 0; d < conf->raid_disks; d++)
3210 if (conf->mirrors[d].rdev)
3211 cnt++;
3212 if (cnt > raid_disks)
1da177e4 3213 return -EBUSY;
6ea9c07c 3214 }
1da177e4
LT
3215
3216 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3217 if (!newpoolinfo)
3218 return -ENOMEM;
3219 newpoolinfo->mddev = mddev;
8f19ccb2 3220 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3221
3222 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3223 r1bio_pool_free, newpoolinfo);
3224 if (!newpool) {
3225 kfree(newpoolinfo);
3226 return -ENOMEM;
3227 }
0eaf822c 3228 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3229 GFP_KERNEL);
1da177e4
LT
3230 if (!newmirrors) {
3231 kfree(newpoolinfo);
3232 mempool_destroy(newpool);
3233 return -ENOMEM;
3234 }
1da177e4 3235
e2d59925 3236 freeze_array(conf, 0);
1da177e4
LT
3237
3238 /* ok, everything is stopped */
3239 oldpool = conf->r1bio_pool;
3240 conf->r1bio_pool = newpool;
6ea9c07c 3241
a88aa786 3242 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3243 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3244 if (rdev && rdev->raid_disk != d2) {
36fad858 3245 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3246 rdev->raid_disk = d2;
36fad858
NK
3247 sysfs_unlink_rdev(mddev, rdev);
3248 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3249 pr_warn("md/raid1:%s: cannot register rd%d\n",
3250 mdname(mddev), rdev->raid_disk);
6ea9c07c 3251 }
a88aa786
N
3252 if (rdev)
3253 newmirrors[d2++].rdev = rdev;
3254 }
1da177e4
LT
3255 kfree(conf->mirrors);
3256 conf->mirrors = newmirrors;
3257 kfree(conf->poolinfo);
3258 conf->poolinfo = newpoolinfo;
3259
c04be0aa 3260 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3261 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3262 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3263 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3264 mddev->delta_disks = 0;
1da177e4 3265
e2d59925 3266 unfreeze_array(conf);
1da177e4 3267
985ca973 3268 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3269 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3270 md_wakeup_thread(mddev->thread);
3271
3272 mempool_destroy(oldpool);
3273 return 0;
3274}
3275
fd01b88c 3276static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3277{
e8096360 3278 struct r1conf *conf = mddev->private;
36fa3063
N
3279
3280 switch(state) {
6eef4b21
N
3281 case 2: /* wake for suspend */
3282 wake_up(&conf->wait_barrier);
3283 break;
9e6603da 3284 case 1:
07169fd4 3285 freeze_array(conf, 0);
36fa3063 3286 break;
9e6603da 3287 case 0:
07169fd4 3288 unfreeze_array(conf);
36fa3063
N
3289 break;
3290 }
36fa3063
N
3291}
3292
fd01b88c 3293static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3294{
3295 /* raid1 can take over:
3296 * raid5 with 2 devices, any layout or chunk size
3297 */
3298 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3299 struct r1conf *conf;
709ae487
N
3300 mddev->new_level = 1;
3301 mddev->new_layout = 0;
3302 mddev->new_chunk_sectors = 0;
3303 conf = setup_conf(mddev);
6995f0b2 3304 if (!IS_ERR(conf)) {
07169fd4 3305 /* Array must appear to be quiesced */
3306 conf->array_frozen = 1;
394ed8e4
SL
3307 mddev_clear_unsupported_flags(mddev,
3308 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3309 }
709ae487
N
3310 return conf;
3311 }
3312 return ERR_PTR(-EINVAL);
3313}
1da177e4 3314
84fc4b56 3315static struct md_personality raid1_personality =
1da177e4
LT
3316{
3317 .name = "raid1",
2604b703 3318 .level = 1,
1da177e4 3319 .owner = THIS_MODULE,
849674e4
SL
3320 .make_request = raid1_make_request,
3321 .run = raid1_run,
afa0f557 3322 .free = raid1_free,
849674e4
SL
3323 .status = raid1_status,
3324 .error_handler = raid1_error,
1da177e4
LT
3325 .hot_add_disk = raid1_add_disk,
3326 .hot_remove_disk= raid1_remove_disk,
3327 .spare_active = raid1_spare_active,
849674e4 3328 .sync_request = raid1_sync_request,
1da177e4 3329 .resize = raid1_resize,
80c3a6ce 3330 .size = raid1_size,
63c70c4f 3331 .check_reshape = raid1_reshape,
36fa3063 3332 .quiesce = raid1_quiesce,
709ae487 3333 .takeover = raid1_takeover,
5c675f83 3334 .congested = raid1_congested,
1da177e4
LT
3335};
3336
3337static int __init raid_init(void)
3338{
2604b703 3339 return register_md_personality(&raid1_personality);
1da177e4
LT
3340}
3341
3342static void raid_exit(void)
3343{
2604b703 3344 unregister_md_personality(&raid1_personality);
1da177e4
LT
3345}
3346
3347module_init(raid_init);
3348module_exit(raid_exit);
3349MODULE_LICENSE("GPL");
0efb9e61 3350MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3351MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3352MODULE_ALIAS("md-raid1");
2604b703 3353MODULE_ALIAS("md-level-1");
34db0cd6
N
3354
3355module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);