]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/md/raid1.c
md/raid1: minor typos and reformatting.
[mirror_ubuntu-zesty-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
79ef3a8a 265 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
266 }
267}
268
9f2c9d12 269static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
270{
271 struct bio *bio = r1_bio->master_bio;
272
4b6d287f
N
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 279
d2eb35ac 280 call_bio_endio(r1_bio);
4b6d287f 281 }
1da177e4
LT
282 free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
9f2c9d12 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 289{
e8096360 290 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294}
295
ba3ae3be
NK
296/*
297 * Find the disk number which triggered given bio
298 */
9f2c9d12 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
300{
301 int mirror;
30194636
N
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
ba3ae3be 304
8f19ccb2 305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
8f19ccb2 309 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313}
314
6712ecf8 315static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
316{
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 318 struct r1bio *r1_bio = bio->bi_private;
1da177e4 319 int mirror;
e8096360 320 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 321
1da177e4
LT
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
ddaf22ab
N
326 update_head_pos(mirror, r1_bio);
327
dd00a99e
N
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 334 */
dd00a99e
N
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
1da177e4 343
7ad4d4a6 344 if (uptodate) {
1da177e4 345 raid_end_bio_io(r1_bio);
7ad4d4a6
N
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
1da177e4
LT
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
8bda470e
CD
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
d2eb35ac 359 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 360 reschedule_retry(r1_bio);
7ad4d4a6 361 /* don't drop the reference on read_disk yet */
1da177e4 362 }
1da177e4
LT
363}
364
9f2c9d12 365static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
366{
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382}
383
9f2c9d12 384static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 385{
cd5ff9a1
N
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
4367af55
N
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
4e78064f
N
397 }
398}
399
6712ecf8 400static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
401{
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
e9c7469b 413 if (!uptodate) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
497
498/*
499 * This routine returns the disk from which the requested read should
500 * be done. There is a per-array 'next expected sequential IO' sector
501 * number - if this matches on the next IO then we use the last disk.
502 * There is also a per-disk 'last know head position' sector that is
503 * maintained from IRQ contexts, both the normal and the resync IO
504 * completion handlers update this position correctly. If there is no
505 * perfect sequential match then we pick the disk whose head is closest.
506 *
507 * If there are 2 mirrors in the same 2 devices, performance degrades
508 * because position is mirror, not device based.
509 *
510 * The rdev for the device selected will have nr_pending incremented.
511 */
e8096360 512static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 513{
af3a2cd6 514 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
515 int sectors;
516 int best_good_sectors;
9dedf603
SL
517 int best_disk, best_dist_disk, best_pending_disk;
518 int has_nonrot_disk;
be4d3280 519 int disk;
76073054 520 sector_t best_dist;
9dedf603 521 unsigned int min_pending;
3cb03002 522 struct md_rdev *rdev;
f3ac8bf7 523 int choose_first;
12cee5a8 524 int choose_next_idle;
1da177e4
LT
525
526 rcu_read_lock();
527 /*
8ddf9efe 528 * Check if we can balance. We can balance on the whole
1da177e4
LT
529 * device if no resync is going on, or below the resync window.
530 * We take the first readable disk when above the resync window.
531 */
532 retry:
d2eb35ac 533 sectors = r1_bio->sectors;
76073054 534 best_disk = -1;
9dedf603 535 best_dist_disk = -1;
76073054 536 best_dist = MaxSector;
9dedf603
SL
537 best_pending_disk = -1;
538 min_pending = UINT_MAX;
d2eb35ac 539 best_good_sectors = 0;
9dedf603 540 has_nonrot_disk = 0;
12cee5a8 541 choose_next_idle = 0;
d2eb35ac 542
c6d119cf 543 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
1da177e4 544
be4d3280 545 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 546 sector_t dist;
d2eb35ac
N
547 sector_t first_bad;
548 int bad_sectors;
9dedf603 549 unsigned int pending;
12cee5a8 550 bool nonrot;
d2eb35ac 551
f3ac8bf7
N
552 rdev = rcu_dereference(conf->mirrors[disk].rdev);
553 if (r1_bio->bios[disk] == IO_BLOCKED
554 || rdev == NULL
6b740b8d 555 || test_bit(Unmerged, &rdev->flags)
76073054 556 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 557 continue;
76073054
N
558 if (!test_bit(In_sync, &rdev->flags) &&
559 rdev->recovery_offset < this_sector + sectors)
1da177e4 560 continue;
76073054
N
561 if (test_bit(WriteMostly, &rdev->flags)) {
562 /* Don't balance among write-mostly, just
563 * use the first as a last resort */
307729c8
N
564 if (best_disk < 0) {
565 if (is_badblock(rdev, this_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (first_bad < this_sector)
568 /* Cannot use this */
569 continue;
570 best_good_sectors = first_bad - this_sector;
571 } else
572 best_good_sectors = sectors;
76073054 573 best_disk = disk;
307729c8 574 }
76073054
N
575 continue;
576 }
577 /* This is a reasonable device to use. It might
578 * even be best.
579 */
d2eb35ac
N
580 if (is_badblock(rdev, this_sector, sectors,
581 &first_bad, &bad_sectors)) {
582 if (best_dist < MaxSector)
583 /* already have a better device */
584 continue;
585 if (first_bad <= this_sector) {
586 /* cannot read here. If this is the 'primary'
587 * device, then we must not read beyond
588 * bad_sectors from another device..
589 */
590 bad_sectors -= (this_sector - first_bad);
591 if (choose_first && sectors > bad_sectors)
592 sectors = bad_sectors;
593 if (best_good_sectors > sectors)
594 best_good_sectors = sectors;
595
596 } else {
597 sector_t good_sectors = first_bad - this_sector;
598 if (good_sectors > best_good_sectors) {
599 best_good_sectors = good_sectors;
600 best_disk = disk;
601 }
602 if (choose_first)
603 break;
604 }
605 continue;
606 } else
607 best_good_sectors = sectors;
608
12cee5a8
SL
609 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 has_nonrot_disk |= nonrot;
9dedf603 611 pending = atomic_read(&rdev->nr_pending);
76073054 612 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 613 if (choose_first) {
76073054 614 best_disk = disk;
1da177e4
LT
615 break;
616 }
12cee5a8
SL
617 /* Don't change to another disk for sequential reads */
618 if (conf->mirrors[disk].next_seq_sect == this_sector
619 || dist == 0) {
620 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 struct raid1_info *mirror = &conf->mirrors[disk];
622
623 best_disk = disk;
624 /*
625 * If buffered sequential IO size exceeds optimal
626 * iosize, check if there is idle disk. If yes, choose
627 * the idle disk. read_balance could already choose an
628 * idle disk before noticing it's a sequential IO in
629 * this disk. This doesn't matter because this disk
630 * will idle, next time it will be utilized after the
631 * first disk has IO size exceeds optimal iosize. In
632 * this way, iosize of the first disk will be optimal
633 * iosize at least. iosize of the second disk might be
634 * small, but not a big deal since when the second disk
635 * starts IO, the first disk is likely still busy.
636 */
637 if (nonrot && opt_iosize > 0 &&
638 mirror->seq_start != MaxSector &&
639 mirror->next_seq_sect > opt_iosize &&
640 mirror->next_seq_sect - opt_iosize >=
641 mirror->seq_start) {
642 choose_next_idle = 1;
643 continue;
644 }
645 break;
646 }
647 /* If device is idle, use it */
648 if (pending == 0) {
649 best_disk = disk;
650 break;
651 }
652
653 if (choose_next_idle)
654 continue;
9dedf603
SL
655
656 if (min_pending > pending) {
657 min_pending = pending;
658 best_pending_disk = disk;
659 }
660
76073054
N
661 if (dist < best_dist) {
662 best_dist = dist;
9dedf603 663 best_dist_disk = disk;
1da177e4 664 }
f3ac8bf7 665 }
1da177e4 666
9dedf603
SL
667 /*
668 * If all disks are rotational, choose the closest disk. If any disk is
669 * non-rotational, choose the disk with less pending request even the
670 * disk is rotational, which might/might not be optimal for raids with
671 * mixed ratation/non-rotational disks depending on workload.
672 */
673 if (best_disk == -1) {
674 if (has_nonrot_disk)
675 best_disk = best_pending_disk;
676 else
677 best_disk = best_dist_disk;
678 }
679
76073054
N
680 if (best_disk >= 0) {
681 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
682 if (!rdev)
683 goto retry;
684 atomic_inc(&rdev->nr_pending);
76073054 685 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
686 /* cannot risk returning a device that failed
687 * before we inc'ed nr_pending
688 */
03c902e1 689 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
690 goto retry;
691 }
d2eb35ac 692 sectors = best_good_sectors;
12cee5a8
SL
693
694 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 conf->mirrors[best_disk].seq_start = this_sector;
696
be4d3280 697 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
698 }
699 rcu_read_unlock();
d2eb35ac 700 *max_sectors = sectors;
1da177e4 701
76073054 702 return best_disk;
1da177e4
LT
703}
704
6b740b8d
N
705static int raid1_mergeable_bvec(struct request_queue *q,
706 struct bvec_merge_data *bvm,
707 struct bio_vec *biovec)
708{
709 struct mddev *mddev = q->queuedata;
710 struct r1conf *conf = mddev->private;
711 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712 int max = biovec->bv_len;
713
714 if (mddev->merge_check_needed) {
715 int disk;
716 rcu_read_lock();
717 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718 struct md_rdev *rdev = rcu_dereference(
719 conf->mirrors[disk].rdev);
720 if (rdev && !test_bit(Faulty, &rdev->flags)) {
721 struct request_queue *q =
722 bdev_get_queue(rdev->bdev);
723 if (q->merge_bvec_fn) {
724 bvm->bi_sector = sector +
725 rdev->data_offset;
726 bvm->bi_bdev = rdev->bdev;
727 max = min(max, q->merge_bvec_fn(
728 q, bvm, biovec));
729 }
730 }
731 }
732 rcu_read_unlock();
733 }
734 return max;
735
736}
737
fd01b88c 738int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 739{
e8096360 740 struct r1conf *conf = mddev->private;
0d129228
N
741 int i, ret = 0;
742
34db0cd6
N
743 if ((bits & (1 << BDI_async_congested)) &&
744 conf->pending_count >= max_queued_requests)
745 return 1;
746
0d129228 747 rcu_read_lock();
f53e29fc 748 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 749 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 750 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 751 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 752
1ed7242e
JB
753 BUG_ON(!q);
754
0d129228
N
755 /* Note the '|| 1' - when read_balance prefers
756 * non-congested targets, it can be removed
757 */
91a9e99d 758 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
759 ret |= bdi_congested(&q->backing_dev_info, bits);
760 else
761 ret &= bdi_congested(&q->backing_dev_info, bits);
762 }
763 }
764 rcu_read_unlock();
765 return ret;
766}
1ed7242e 767EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 768
1ed7242e
JB
769static int raid1_congested(void *data, int bits)
770{
fd01b88c 771 struct mddev *mddev = data;
1ed7242e
JB
772
773 return mddev_congested(mddev, bits) ||
774 md_raid1_congested(mddev, bits);
775}
0d129228 776
e8096360 777static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
778{
779 /* Any writes that have been queued but are awaiting
780 * bitmap updates get flushed here.
a35e63ef 781 */
a35e63ef
N
782 spin_lock_irq(&conf->device_lock);
783
784 if (conf->pending_bio_list.head) {
785 struct bio *bio;
786 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 787 conf->pending_count = 0;
a35e63ef
N
788 spin_unlock_irq(&conf->device_lock);
789 /* flush any pending bitmap writes to
790 * disk before proceeding w/ I/O */
791 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 792 wake_up(&conf->wait_barrier);
a35e63ef
N
793
794 while (bio) { /* submit pending writes */
795 struct bio *next = bio->bi_next;
796 bio->bi_next = NULL;
2ff8cc2c
SL
797 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
799 /* Just ignore it */
800 bio_endio(bio, 0);
801 else
802 generic_make_request(bio);
a35e63ef
N
803 bio = next;
804 }
a35e63ef
N
805 } else
806 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
807}
808
17999be4
N
809/* Barriers....
810 * Sometimes we need to suspend IO while we do something else,
811 * either some resync/recovery, or reconfigure the array.
812 * To do this we raise a 'barrier'.
813 * The 'barrier' is a counter that can be raised multiple times
814 * to count how many activities are happening which preclude
815 * normal IO.
816 * We can only raise the barrier if there is no pending IO.
817 * i.e. if nr_pending == 0.
818 * We choose only to raise the barrier if no-one is waiting for the
819 * barrier to go down. This means that as soon as an IO request
820 * is ready, no other operations which require a barrier will start
821 * until the IO request has had a chance.
822 *
823 * So: regular IO calls 'wait_barrier'. When that returns there
824 * is no backgroup IO happening, It must arrange to call
825 * allow_barrier when it has finished its IO.
826 * backgroup IO calls must call raise_barrier. Once that returns
827 * there is no normal IO happeing. It must arrange to call
828 * lower_barrier when the particular background IO completes.
1da177e4 829 */
c2fd4c94 830static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
831{
832 spin_lock_irq(&conf->resync_lock);
17999be4
N
833
834 /* Wait until no block IO is waiting */
835 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 836 conf->resync_lock);
17999be4
N
837
838 /* block any new IO from starting */
839 conf->barrier++;
c2fd4c94 840 conf->next_resync = sector_nr;
17999be4 841
79ef3a8a 842 /* For these conditions we must wait:
843 * A: while the array is in frozen state
844 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
845 * the max count which allowed.
846 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
847 * next resync will reach to the window which normal bios are
848 * handling.
2f73d3c5 849 * D: while there are any active requests in the current window.
79ef3a8a 850 */
17999be4 851 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 852 !conf->array_frozen &&
79ef3a8a 853 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 854 conf->current_window_requests == 0 &&
79ef3a8a 855 (conf->start_next_window >=
856 conf->next_resync + RESYNC_SECTORS),
eed8c02e 857 conf->resync_lock);
17999be4 858
34e97f17 859 conf->nr_pending++;
17999be4
N
860 spin_unlock_irq(&conf->resync_lock);
861}
862
e8096360 863static void lower_barrier(struct r1conf *conf)
17999be4
N
864{
865 unsigned long flags;
709ae487 866 BUG_ON(conf->barrier <= 0);
17999be4
N
867 spin_lock_irqsave(&conf->resync_lock, flags);
868 conf->barrier--;
34e97f17 869 conf->nr_pending--;
17999be4
N
870 spin_unlock_irqrestore(&conf->resync_lock, flags);
871 wake_up(&conf->wait_barrier);
872}
873
79ef3a8a 874static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 875{
79ef3a8a 876 bool wait = false;
877
878 if (conf->array_frozen || !bio)
879 wait = true;
880 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
881 if ((conf->mddev->curr_resync_completed
882 >= bio_end_sector(bio)) ||
883 (conf->next_resync + NEXT_NORMALIO_DISTANCE
884 <= bio->bi_iter.bi_sector))
79ef3a8a 885 wait = false;
886 else
887 wait = true;
888 }
889
890 return wait;
891}
892
893static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
894{
895 sector_t sector = 0;
896
17999be4 897 spin_lock_irq(&conf->resync_lock);
79ef3a8a 898 if (need_to_wait_for_sync(conf, bio)) {
17999be4 899 conf->nr_waiting++;
d6b42dcb
N
900 /* Wait for the barrier to drop.
901 * However if there are already pending
902 * requests (preventing the barrier from
903 * rising completely), and the
5965b642 904 * per-process bio queue isn't empty,
d6b42dcb 905 * then don't wait, as we need to empty
5965b642
N
906 * that queue to allow conf->start_next_window
907 * to increase.
d6b42dcb
N
908 */
909 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 910 !conf->array_frozen &&
911 (!conf->barrier ||
5965b642
N
912 ((conf->start_next_window <
913 conf->next_resync + RESYNC_SECTORS) &&
914 current->bio_list &&
915 !bio_list_empty(current->bio_list))),
eed8c02e 916 conf->resync_lock);
17999be4 917 conf->nr_waiting--;
1da177e4 918 }
79ef3a8a 919
920 if (bio && bio_data_dir(bio) == WRITE) {
2f73d3c5 921 if (bio->bi_iter.bi_sector >=
23554960 922 conf->mddev->curr_resync_completed) {
79ef3a8a 923 if (conf->start_next_window == MaxSector)
924 conf->start_next_window =
925 conf->next_resync +
926 NEXT_NORMALIO_DISTANCE;
927
928 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 929 <= bio->bi_iter.bi_sector)
79ef3a8a 930 conf->next_window_requests++;
931 else
932 conf->current_window_requests++;
79ef3a8a 933 sector = conf->start_next_window;
41a336e0 934 }
79ef3a8a 935 }
936
17999be4 937 conf->nr_pending++;
1da177e4 938 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 939 return sector;
1da177e4
LT
940}
941
79ef3a8a 942static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
943 sector_t bi_sector)
17999be4
N
944{
945 unsigned long flags;
79ef3a8a 946
17999be4
N
947 spin_lock_irqsave(&conf->resync_lock, flags);
948 conf->nr_pending--;
79ef3a8a 949 if (start_next_window) {
950 if (start_next_window == conf->start_next_window) {
951 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
952 <= bi_sector)
953 conf->next_window_requests--;
954 else
955 conf->current_window_requests--;
956 } else
957 conf->current_window_requests--;
958
959 if (!conf->current_window_requests) {
960 if (conf->next_window_requests) {
961 conf->current_window_requests =
962 conf->next_window_requests;
963 conf->next_window_requests = 0;
964 conf->start_next_window +=
965 NEXT_NORMALIO_DISTANCE;
966 } else
967 conf->start_next_window = MaxSector;
968 }
969 }
17999be4
N
970 spin_unlock_irqrestore(&conf->resync_lock, flags);
971 wake_up(&conf->wait_barrier);
972}
973
e2d59925 974static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
975{
976 /* stop syncio and normal IO and wait for everything to
977 * go quite.
b364e3d0 978 * We wait until nr_pending match nr_queued+extra
1c830532
N
979 * This is called in the context of one normal IO request
980 * that has failed. Thus any sync request that might be pending
981 * will be blocked by nr_pending, and we need to wait for
982 * pending IO requests to complete or be queued for re-try.
e2d59925 983 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
984 * must match the number of pending IOs (nr_pending) before
985 * we continue.
ddaf22ab
N
986 */
987 spin_lock_irq(&conf->resync_lock);
b364e3d0 988 conf->array_frozen = 1;
eed8c02e 989 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 990 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
991 conf->resync_lock,
992 flush_pending_writes(conf));
ddaf22ab
N
993 spin_unlock_irq(&conf->resync_lock);
994}
e8096360 995static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
996{
997 /* reverse the effect of the freeze */
998 spin_lock_irq(&conf->resync_lock);
b364e3d0 999 conf->array_frozen = 0;
ddaf22ab
N
1000 wake_up(&conf->wait_barrier);
1001 spin_unlock_irq(&conf->resync_lock);
1002}
1003
17999be4 1004
4e78064f 1005/* duplicate the data pages for behind I/O
4e78064f 1006 */
9f2c9d12 1007static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
1008{
1009 int i;
1010 struct bio_vec *bvec;
2ca68f5e 1011 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 1012 GFP_NOIO);
2ca68f5e 1013 if (unlikely(!bvecs))
af6d7b76 1014 return;
4b6d287f 1015
cb34e057 1016 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1017 bvecs[i] = *bvec;
1018 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1019 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1020 goto do_sync_io;
2ca68f5e
N
1021 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1022 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1023 kunmap(bvecs[i].bv_page);
4b6d287f
N
1024 kunmap(bvec->bv_page);
1025 }
2ca68f5e 1026 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1027 r1_bio->behind_page_count = bio->bi_vcnt;
1028 set_bit(R1BIO_BehindIO, &r1_bio->state);
1029 return;
4b6d287f
N
1030
1031do_sync_io:
af6d7b76 1032 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1033 if (bvecs[i].bv_page)
1034 put_page(bvecs[i].bv_page);
1035 kfree(bvecs);
4f024f37
KO
1036 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1037 bio->bi_iter.bi_size);
4b6d287f
N
1038}
1039
f54a9d0e
N
1040struct raid1_plug_cb {
1041 struct blk_plug_cb cb;
1042 struct bio_list pending;
1043 int pending_cnt;
1044};
1045
1046static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1047{
1048 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1049 cb);
1050 struct mddev *mddev = plug->cb.data;
1051 struct r1conf *conf = mddev->private;
1052 struct bio *bio;
1053
874807a8 1054 if (from_schedule || current->bio_list) {
f54a9d0e
N
1055 spin_lock_irq(&conf->device_lock);
1056 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1057 conf->pending_count += plug->pending_cnt;
1058 spin_unlock_irq(&conf->device_lock);
ee0b0244 1059 wake_up(&conf->wait_barrier);
f54a9d0e
N
1060 md_wakeup_thread(mddev->thread);
1061 kfree(plug);
1062 return;
1063 }
1064
1065 /* we aren't scheduling, so we can do the write-out directly. */
1066 bio = bio_list_get(&plug->pending);
1067 bitmap_unplug(mddev->bitmap);
1068 wake_up(&conf->wait_barrier);
1069
1070 while (bio) { /* submit pending writes */
1071 struct bio *next = bio->bi_next;
1072 bio->bi_next = NULL;
32f9f570
SL
1073 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1074 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1075 /* Just ignore it */
1076 bio_endio(bio, 0);
1077 else
1078 generic_make_request(bio);
f54a9d0e
N
1079 bio = next;
1080 }
1081 kfree(plug);
1082}
1083
b4fdcb02 1084static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1085{
e8096360 1086 struct r1conf *conf = mddev->private;
0eaf822c 1087 struct raid1_info *mirror;
9f2c9d12 1088 struct r1bio *r1_bio;
1da177e4 1089 struct bio *read_bio;
1f68f0c4 1090 int i, disks;
84255d10 1091 struct bitmap *bitmap;
191ea9b2 1092 unsigned long flags;
a362357b 1093 const int rw = bio_data_dir(bio);
2c7d46ec 1094 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1095 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1096 const unsigned long do_discard = (bio->bi_rw
1097 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1098 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1099 struct md_rdev *blocked_rdev;
f54a9d0e
N
1100 struct blk_plug_cb *cb;
1101 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1102 int first_clone;
1103 int sectors_handled;
1104 int max_sectors;
79ef3a8a 1105 sector_t start_next_window;
191ea9b2 1106
1da177e4
LT
1107 /*
1108 * Register the new request and wait if the reconstruction
1109 * thread has put up a bar for new requests.
1110 * Continue immediately if no resync is active currently.
1111 */
62de608d 1112
3d310eb7
N
1113 md_write_start(mddev, bio); /* wait on superblock update early */
1114
6eef4b21 1115 if (bio_data_dir(bio) == WRITE &&
f73a1c7d 1116 bio_end_sector(bio) > mddev->suspend_lo &&
4f024f37 1117 bio->bi_iter.bi_sector < mddev->suspend_hi) {
6eef4b21
N
1118 /* As the suspend_* range is controlled by
1119 * userspace, we want an interruptible
1120 * wait.
1121 */
1122 DEFINE_WAIT(w);
1123 for (;;) {
1124 flush_signals(current);
1125 prepare_to_wait(&conf->wait_barrier,
1126 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1127 if (bio_end_sector(bio) <= mddev->suspend_lo ||
4f024f37 1128 bio->bi_iter.bi_sector >= mddev->suspend_hi)
6eef4b21
N
1129 break;
1130 schedule();
1131 }
1132 finish_wait(&conf->wait_barrier, &w);
1133 }
62de608d 1134
79ef3a8a 1135 start_next_window = wait_barrier(conf, bio);
1da177e4 1136
84255d10
N
1137 bitmap = mddev->bitmap;
1138
1da177e4
LT
1139 /*
1140 * make_request() can abort the operation when READA is being
1141 * used and no empty request is available.
1142 *
1143 */
1144 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1145
1146 r1_bio->master_bio = bio;
aa8b57aa 1147 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1148 r1_bio->state = 0;
1da177e4 1149 r1_bio->mddev = mddev;
4f024f37 1150 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1151
d2eb35ac
N
1152 /* We might need to issue multiple reads to different
1153 * devices if there are bad blocks around, so we keep
1154 * track of the number of reads in bio->bi_phys_segments.
1155 * If this is 0, there is only one r1_bio and no locking
1156 * will be needed when requests complete. If it is
1157 * non-zero, then it is the number of not-completed requests.
1158 */
1159 bio->bi_phys_segments = 0;
1160 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1161
a362357b 1162 if (rw == READ) {
1da177e4
LT
1163 /*
1164 * read balancing logic:
1165 */
d2eb35ac
N
1166 int rdisk;
1167
1168read_again:
1169 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1170
1171 if (rdisk < 0) {
1172 /* couldn't find anywhere to read from */
1173 raid_end_bio_io(r1_bio);
5a7bbad2 1174 return;
1da177e4
LT
1175 }
1176 mirror = conf->mirrors + rdisk;
1177
e555190d
N
1178 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1179 bitmap) {
1180 /* Reading from a write-mostly device must
1181 * take care not to over-take any writes
1182 * that are 'behind'
1183 */
1184 wait_event(bitmap->behind_wait,
1185 atomic_read(&bitmap->behind_writes) == 0);
1186 }
1da177e4 1187 r1_bio->read_disk = rdisk;
f0cc9a05 1188 r1_bio->start_next_window = 0;
1da177e4 1189
a167f663 1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1192 max_sectors);
1da177e4
LT
1193
1194 r1_bio->bios[rdisk] = read_bio;
1195
4f024f37
KO
1196 read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 mirror->rdev->data_offset;
1da177e4
LT
1198 read_bio->bi_bdev = mirror->rdev->bdev;
1199 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1200 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1201 read_bio->bi_private = r1_bio;
1202
d2eb35ac
N
1203 if (max_sectors < r1_bio->sectors) {
1204 /* could not read all from this device, so we will
1205 * need another r1_bio.
1206 */
d2eb35ac
N
1207
1208 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1209 - bio->bi_iter.bi_sector);
d2eb35ac
N
1210 r1_bio->sectors = max_sectors;
1211 spin_lock_irq(&conf->device_lock);
1212 if (bio->bi_phys_segments == 0)
1213 bio->bi_phys_segments = 2;
1214 else
1215 bio->bi_phys_segments++;
1216 spin_unlock_irq(&conf->device_lock);
1217 /* Cannot call generic_make_request directly
1218 * as that will be queued in __make_request
1219 * and subsequent mempool_alloc might block waiting
1220 * for it. So hand bio over to raid1d.
1221 */
1222 reschedule_retry(r1_bio);
1223
1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225
1226 r1_bio->master_bio = bio;
aa8b57aa 1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1228 r1_bio->state = 0;
1229 r1_bio->mddev = mddev;
4f024f37
KO
1230 r1_bio->sector = bio->bi_iter.bi_sector +
1231 sectors_handled;
d2eb35ac
N
1232 goto read_again;
1233 } else
1234 generic_make_request(read_bio);
5a7bbad2 1235 return;
1da177e4
LT
1236 }
1237
1238 /*
1239 * WRITE:
1240 */
34db0cd6
N
1241 if (conf->pending_count >= max_queued_requests) {
1242 md_wakeup_thread(mddev->thread);
1243 wait_event(conf->wait_barrier,
1244 conf->pending_count < max_queued_requests);
1245 }
1f68f0c4 1246 /* first select target devices under rcu_lock and
1da177e4
LT
1247 * inc refcount on their rdev. Record them by setting
1248 * bios[x] to bio
1f68f0c4
N
1249 * If there are known/acknowledged bad blocks on any device on
1250 * which we have seen a write error, we want to avoid writing those
1251 * blocks.
1252 * This potentially requires several writes to write around
1253 * the bad blocks. Each set of writes gets it's own r1bio
1254 * with a set of bios attached.
1da177e4 1255 */
c3b328ac 1256
8f19ccb2 1257 disks = conf->raid_disks * 2;
6bfe0b49 1258 retry_write:
79ef3a8a 1259 r1_bio->start_next_window = start_next_window;
6bfe0b49 1260 blocked_rdev = NULL;
1da177e4 1261 rcu_read_lock();
1f68f0c4 1262 max_sectors = r1_bio->sectors;
1da177e4 1263 for (i = 0; i < disks; i++) {
3cb03002 1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 atomic_inc(&rdev->nr_pending);
1267 blocked_rdev = rdev;
1268 break;
1269 }
1f68f0c4 1270 r1_bio->bios[i] = NULL;
6b740b8d
N
1271 if (!rdev || test_bit(Faulty, &rdev->flags)
1272 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1273 if (i < conf->raid_disks)
1274 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1275 continue;
1276 }
1277
1278 atomic_inc(&rdev->nr_pending);
1279 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 sector_t first_bad;
1281 int bad_sectors;
1282 int is_bad;
1283
1284 is_bad = is_badblock(rdev, r1_bio->sector,
1285 max_sectors,
1286 &first_bad, &bad_sectors);
1287 if (is_bad < 0) {
1288 /* mustn't write here until the bad block is
1289 * acknowledged*/
1290 set_bit(BlockedBadBlocks, &rdev->flags);
1291 blocked_rdev = rdev;
1292 break;
1293 }
1294 if (is_bad && first_bad <= r1_bio->sector) {
1295 /* Cannot write here at all */
1296 bad_sectors -= (r1_bio->sector - first_bad);
1297 if (bad_sectors < max_sectors)
1298 /* mustn't write more than bad_sectors
1299 * to other devices yet
1300 */
1301 max_sectors = bad_sectors;
03c902e1 1302 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1303 /* We don't set R1BIO_Degraded as that
1304 * only applies if the disk is
1305 * missing, so it might be re-added,
1306 * and we want to know to recover this
1307 * chunk.
1308 * In this case the device is here,
1309 * and the fact that this chunk is not
1310 * in-sync is recorded in the bad
1311 * block log
1312 */
1313 continue;
964147d5 1314 }
1f68f0c4
N
1315 if (is_bad) {
1316 int good_sectors = first_bad - r1_bio->sector;
1317 if (good_sectors < max_sectors)
1318 max_sectors = good_sectors;
1319 }
1320 }
1321 r1_bio->bios[i] = bio;
1da177e4
LT
1322 }
1323 rcu_read_unlock();
1324
6bfe0b49
DW
1325 if (unlikely(blocked_rdev)) {
1326 /* Wait for this device to become unblocked */
1327 int j;
79ef3a8a 1328 sector_t old = start_next_window;
6bfe0b49
DW
1329
1330 for (j = 0; j < i; j++)
1331 if (r1_bio->bios[j])
1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1333 r1_bio->state = 0;
4f024f37 1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1336 start_next_window = wait_barrier(conf, bio);
1337 /*
1338 * We must make sure the multi r1bios of bio have
1339 * the same value of bi_phys_segments
1340 */
1341 if (bio->bi_phys_segments && old &&
1342 old != start_next_window)
1343 /* Wait for the former r1bio(s) to complete */
1344 wait_event(conf->wait_barrier,
1345 bio->bi_phys_segments == 1);
6bfe0b49
DW
1346 goto retry_write;
1347 }
1348
1f68f0c4
N
1349 if (max_sectors < r1_bio->sectors) {
1350 /* We are splitting this write into multiple parts, so
1351 * we need to prepare for allocating another r1_bio.
1352 */
1353 r1_bio->sectors = max_sectors;
1354 spin_lock_irq(&conf->device_lock);
1355 if (bio->bi_phys_segments == 0)
1356 bio->bi_phys_segments = 2;
1357 else
1358 bio->bi_phys_segments++;
1359 spin_unlock_irq(&conf->device_lock);
191ea9b2 1360 }
4f024f37 1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1362
4e78064f 1363 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1364 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1365
1f68f0c4 1366 first_clone = 1;
1da177e4
LT
1367 for (i = 0; i < disks; i++) {
1368 struct bio *mbio;
1369 if (!r1_bio->bios[i])
1370 continue;
1371
a167f663 1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1374
1375 if (first_clone) {
1376 /* do behind I/O ?
1377 * Not if there are too many, or cannot
1378 * allocate memory, or a reader on WriteMostly
1379 * is waiting for behind writes to flush */
1380 if (bitmap &&
1381 (atomic_read(&bitmap->behind_writes)
1382 < mddev->bitmap_info.max_write_behind) &&
1383 !waitqueue_active(&bitmap->behind_wait))
1384 alloc_behind_pages(mbio, r1_bio);
1385
1386 bitmap_startwrite(bitmap, r1_bio->sector,
1387 r1_bio->sectors,
1388 test_bit(R1BIO_BehindIO,
1389 &r1_bio->state));
1390 first_clone = 0;
1391 }
2ca68f5e 1392 if (r1_bio->behind_bvecs) {
4b6d287f
N
1393 struct bio_vec *bvec;
1394 int j;
1395
cb34e057
KO
1396 /*
1397 * We trimmed the bio, so _all is legit
4b6d287f 1398 */
d74c6d51 1399 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 atomic_inc(&r1_bio->behind_remaining);
1403 }
1404
1f68f0c4
N
1405 r1_bio->bios[i] = mbio;
1406
4f024f37 1407 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1408 conf->mirrors[i].rdev->data_offset);
1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1411 mbio->bi_rw =
1412 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1413 mbio->bi_private = r1_bio;
1414
1da177e4 1415 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1416
1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418 if (cb)
1419 plug = container_of(cb, struct raid1_plug_cb, cb);
1420 else
1421 plug = NULL;
4e78064f 1422 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1423 if (plug) {
1424 bio_list_add(&plug->pending, mbio);
1425 plug->pending_cnt++;
1426 } else {
1427 bio_list_add(&conf->pending_bio_list, mbio);
1428 conf->pending_count++;
1429 }
4e78064f 1430 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1431 if (!plug)
b357f04a 1432 md_wakeup_thread(mddev->thread);
1da177e4 1433 }
079fa166
N
1434 /* Mustn't call r1_bio_write_done before this next test,
1435 * as it could result in the bio being freed.
1436 */
aa8b57aa 1437 if (sectors_handled < bio_sectors(bio)) {
079fa166 1438 r1_bio_write_done(r1_bio);
1f68f0c4
N
1439 /* We need another r1_bio. It has already been counted
1440 * in bio->bi_phys_segments
1441 */
1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 r1_bio->master_bio = bio;
aa8b57aa 1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1445 r1_bio->state = 0;
1446 r1_bio->mddev = mddev;
4f024f37 1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1448 goto retry_write;
1449 }
1450
079fa166
N
1451 r1_bio_write_done(r1_bio);
1452
1453 /* In case raid1d snuck in to freeze_array */
1454 wake_up(&conf->wait_barrier);
1da177e4
LT
1455}
1456
fd01b88c 1457static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1458{
e8096360 1459 struct r1conf *conf = mddev->private;
1da177e4
LT
1460 int i;
1461
1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1463 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1464 rcu_read_lock();
1465 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1467 seq_printf(seq, "%s",
ddac7c7e
N
1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469 }
1470 rcu_read_unlock();
1da177e4
LT
1471 seq_printf(seq, "]");
1472}
1473
1474
fd01b88c 1475static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1476{
1477 char b[BDEVNAME_SIZE];
e8096360 1478 struct r1conf *conf = mddev->private;
1da177e4
LT
1479
1480 /*
1481 * If it is not operational, then we have already marked it as dead
1482 * else if it is the last working disks, ignore the error, let the
1483 * next level up know.
1484 * else mark the drive as failed
1485 */
b2d444d7 1486 if (test_bit(In_sync, &rdev->flags)
4044ba58 1487 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1488 /*
1489 * Don't fail the drive, act as though we were just a
4044ba58
N
1490 * normal single drive.
1491 * However don't try a recovery from this drive as
1492 * it is very likely to fail.
1da177e4 1493 */
5389042f 1494 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1495 return;
4044ba58 1496 }
de393cde 1497 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1498 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499 unsigned long flags;
1500 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1501 mddev->degraded++;
dd00a99e 1502 set_bit(Faulty, &rdev->flags);
c04be0aa 1503 spin_unlock_irqrestore(&conf->device_lock, flags);
dd00a99e
N
1504 } else
1505 set_bit(Faulty, &rdev->flags);
2446dba0
N
1506 /*
1507 * if recovery is running, make sure it aborts.
1508 */
1509 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1510 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1511 printk(KERN_ALERT
1512 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1514 mdname(mddev), bdevname(rdev->bdev, b),
1515 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1516}
1517
e8096360 1518static void print_conf(struct r1conf *conf)
1da177e4
LT
1519{
1520 int i;
1da177e4 1521
9dd1e2fa 1522 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1523 if (!conf) {
9dd1e2fa 1524 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1525 return;
1526 }
9dd1e2fa 1527 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1528 conf->raid_disks);
1529
ddac7c7e 1530 rcu_read_lock();
1da177e4
LT
1531 for (i = 0; i < conf->raid_disks; i++) {
1532 char b[BDEVNAME_SIZE];
3cb03002 1533 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1534 if (rdev)
9dd1e2fa 1535 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1536 i, !test_bit(In_sync, &rdev->flags),
1537 !test_bit(Faulty, &rdev->flags),
1538 bdevname(rdev->bdev,b));
1da177e4 1539 }
ddac7c7e 1540 rcu_read_unlock();
1da177e4
LT
1541}
1542
e8096360 1543static void close_sync(struct r1conf *conf)
1da177e4 1544{
79ef3a8a 1545 wait_barrier(conf, NULL);
1546 allow_barrier(conf, 0, 0);
1da177e4
LT
1547
1548 mempool_destroy(conf->r1buf_pool);
1549 conf->r1buf_pool = NULL;
79ef3a8a 1550
669cc7ba 1551 spin_lock_irq(&conf->resync_lock);
79ef3a8a 1552 conf->next_resync = 0;
1553 conf->start_next_window = MaxSector;
669cc7ba
N
1554 conf->current_window_requests +=
1555 conf->next_window_requests;
1556 conf->next_window_requests = 0;
1557 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1558}
1559
fd01b88c 1560static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1561{
1562 int i;
e8096360 1563 struct r1conf *conf = mddev->private;
6b965620
N
1564 int count = 0;
1565 unsigned long flags;
1da177e4
LT
1566
1567 /*
1568 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1569 * and mark them readable.
1570 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1571 */
1572 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1573 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1574 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1575 if (repl
1576 && repl->recovery_offset == MaxSector
1577 && !test_bit(Faulty, &repl->flags)
1578 && !test_and_set_bit(In_sync, &repl->flags)) {
1579 /* replacement has just become active */
1580 if (!rdev ||
1581 !test_and_clear_bit(In_sync, &rdev->flags))
1582 count++;
1583 if (rdev) {
1584 /* Replaced device not technically
1585 * faulty, but we need to be sure
1586 * it gets removed and never re-added
1587 */
1588 set_bit(Faulty, &rdev->flags);
1589 sysfs_notify_dirent_safe(
1590 rdev->sysfs_state);
1591 }
1592 }
ddac7c7e 1593 if (rdev
61e4947c 1594 && rdev->recovery_offset == MaxSector
ddac7c7e 1595 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1596 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1597 count++;
654e8b5a 1598 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1599 }
1600 }
6b965620
N
1601 spin_lock_irqsave(&conf->device_lock, flags);
1602 mddev->degraded -= count;
1603 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1604
1605 print_conf(conf);
6b965620 1606 return count;
1da177e4
LT
1607}
1608
1609
fd01b88c 1610static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1611{
e8096360 1612 struct r1conf *conf = mddev->private;
199050ea 1613 int err = -EEXIST;
41158c7e 1614 int mirror = 0;
0eaf822c 1615 struct raid1_info *p;
6c2fce2e 1616 int first = 0;
30194636 1617 int last = conf->raid_disks - 1;
6b740b8d 1618 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1619
5389042f
N
1620 if (mddev->recovery_disabled == conf->recovery_disabled)
1621 return -EBUSY;
1622
6c2fce2e
NB
1623 if (rdev->raid_disk >= 0)
1624 first = last = rdev->raid_disk;
1625
6b740b8d
N
1626 if (q->merge_bvec_fn) {
1627 set_bit(Unmerged, &rdev->flags);
1628 mddev->merge_check_needed = 1;
1629 }
1630
7ef449d1
N
1631 for (mirror = first; mirror <= last; mirror++) {
1632 p = conf->mirrors+mirror;
1633 if (!p->rdev) {
1da177e4 1634
9092c02d
JB
1635 if (mddev->gendisk)
1636 disk_stack_limits(mddev->gendisk, rdev->bdev,
1637 rdev->data_offset << 9);
1da177e4
LT
1638
1639 p->head_position = 0;
1640 rdev->raid_disk = mirror;
199050ea 1641 err = 0;
6aea114a
N
1642 /* As all devices are equivalent, we don't need a full recovery
1643 * if this was recently any drive of the array
1644 */
1645 if (rdev->saved_raid_disk < 0)
41158c7e 1646 conf->fullsync = 1;
d6065f7b 1647 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1648 break;
1649 }
7ef449d1
N
1650 if (test_bit(WantReplacement, &p->rdev->flags) &&
1651 p[conf->raid_disks].rdev == NULL) {
1652 /* Add this device as a replacement */
1653 clear_bit(In_sync, &rdev->flags);
1654 set_bit(Replacement, &rdev->flags);
1655 rdev->raid_disk = mirror;
1656 err = 0;
1657 conf->fullsync = 1;
1658 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1659 break;
1660 }
1661 }
6b740b8d
N
1662 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1663 /* Some requests might not have seen this new
1664 * merge_bvec_fn. We must wait for them to complete
1665 * before merging the device fully.
1666 * First we make sure any code which has tested
1667 * our function has submitted the request, then
1668 * we wait for all outstanding requests to complete.
1669 */
1670 synchronize_sched();
e2d59925
N
1671 freeze_array(conf, 0);
1672 unfreeze_array(conf);
6b740b8d
N
1673 clear_bit(Unmerged, &rdev->flags);
1674 }
ac5e7113 1675 md_integrity_add_rdev(rdev, mddev);
9092c02d 1676 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1677 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1678 print_conf(conf);
199050ea 1679 return err;
1da177e4
LT
1680}
1681
b8321b68 1682static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1683{
e8096360 1684 struct r1conf *conf = mddev->private;
1da177e4 1685 int err = 0;
b8321b68 1686 int number = rdev->raid_disk;
0eaf822c 1687 struct raid1_info *p = conf->mirrors + number;
1da177e4 1688
b014f14c
N
1689 if (rdev != p->rdev)
1690 p = conf->mirrors + conf->raid_disks + number;
1691
1da177e4 1692 print_conf(conf);
b8321b68 1693 if (rdev == p->rdev) {
b2d444d7 1694 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1695 atomic_read(&rdev->nr_pending)) {
1696 err = -EBUSY;
1697 goto abort;
1698 }
046abeed 1699 /* Only remove non-faulty devices if recovery
dfc70645
N
1700 * is not possible.
1701 */
1702 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1703 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1704 mddev->degraded < conf->raid_disks) {
1705 err = -EBUSY;
1706 goto abort;
1707 }
1da177e4 1708 p->rdev = NULL;
fbd568a3 1709 synchronize_rcu();
1da177e4
LT
1710 if (atomic_read(&rdev->nr_pending)) {
1711 /* lost the race, try later */
1712 err = -EBUSY;
1713 p->rdev = rdev;
ac5e7113 1714 goto abort;
8c7a2c2b
N
1715 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1716 /* We just removed a device that is being replaced.
1717 * Move down the replacement. We drain all IO before
1718 * doing this to avoid confusion.
1719 */
1720 struct md_rdev *repl =
1721 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1722 freeze_array(conf, 0);
8c7a2c2b
N
1723 clear_bit(Replacement, &repl->flags);
1724 p->rdev = repl;
1725 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1726 unfreeze_array(conf);
8c7a2c2b
N
1727 clear_bit(WantReplacement, &rdev->flags);
1728 } else
b014f14c 1729 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1730 err = md_integrity_register(mddev);
1da177e4
LT
1731 }
1732abort:
1733
1734 print_conf(conf);
1735 return err;
1736}
1737
1738
6712ecf8 1739static void end_sync_read(struct bio *bio, int error)
1da177e4 1740{
9f2c9d12 1741 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1742
0fc280f6 1743 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1744
1da177e4
LT
1745 /*
1746 * we have read a block, now it needs to be re-written,
1747 * or re-read if the read failed.
1748 * We don't do much here, just schedule handling by raid1d
1749 */
69382e85 1750 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1751 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1752
1753 if (atomic_dec_and_test(&r1_bio->remaining))
1754 reschedule_retry(r1_bio);
1da177e4
LT
1755}
1756
6712ecf8 1757static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1758{
1759 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1760 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1761 struct mddev *mddev = r1_bio->mddev;
e8096360 1762 struct r1conf *conf = mddev->private;
1da177e4 1763 int mirror=0;
4367af55
N
1764 sector_t first_bad;
1765 int bad_sectors;
1da177e4 1766
ba3ae3be
NK
1767 mirror = find_bio_disk(r1_bio, bio);
1768
6b1117d5 1769 if (!uptodate) {
57dab0bd 1770 sector_t sync_blocks = 0;
6b1117d5
N
1771 sector_t s = r1_bio->sector;
1772 long sectors_to_go = r1_bio->sectors;
1773 /* make sure these bits doesn't get cleared. */
1774 do {
5e3db645 1775 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1776 &sync_blocks, 1);
1777 s += sync_blocks;
1778 sectors_to_go -= sync_blocks;
1779 } while (sectors_to_go > 0);
d8f05d29
N
1780 set_bit(WriteErrorSeen,
1781 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1782 if (!test_and_set_bit(WantReplacement,
1783 &conf->mirrors[mirror].rdev->flags))
1784 set_bit(MD_RECOVERY_NEEDED, &
1785 mddev->recovery);
d8f05d29 1786 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1787 } else if (is_badblock(conf->mirrors[mirror].rdev,
1788 r1_bio->sector,
1789 r1_bio->sectors,
3a9f28a5
N
1790 &first_bad, &bad_sectors) &&
1791 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1792 r1_bio->sector,
1793 r1_bio->sectors,
1794 &first_bad, &bad_sectors)
1795 )
4367af55 1796 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1797
1da177e4 1798 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1799 int s = r1_bio->sectors;
d8f05d29
N
1800 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1801 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1802 reschedule_retry(r1_bio);
1803 else {
1804 put_buf(r1_bio);
1805 md_done_sync(mddev, s, uptodate);
1806 }
1da177e4 1807 }
1da177e4
LT
1808}
1809
3cb03002 1810static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1811 int sectors, struct page *page, int rw)
1812{
1813 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1814 /* success */
1815 return 1;
19d67169 1816 if (rw == WRITE) {
d8f05d29 1817 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1818 if (!test_and_set_bit(WantReplacement,
1819 &rdev->flags))
1820 set_bit(MD_RECOVERY_NEEDED, &
1821 rdev->mddev->recovery);
1822 }
d8f05d29
N
1823 /* need to record an error - either for the block or the device */
1824 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1825 md_error(rdev->mddev, rdev);
1826 return 0;
1827}
1828
9f2c9d12 1829static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1830{
a68e5870
N
1831 /* Try some synchronous reads of other devices to get
1832 * good data, much like with normal read errors. Only
1833 * read into the pages we already have so we don't
1834 * need to re-issue the read request.
1835 * We don't need to freeze the array, because being in an
1836 * active sync request, there is no normal IO, and
1837 * no overlapping syncs.
06f60385
N
1838 * We don't need to check is_badblock() again as we
1839 * made sure that anything with a bad block in range
1840 * will have bi_end_io clear.
a68e5870 1841 */
fd01b88c 1842 struct mddev *mddev = r1_bio->mddev;
e8096360 1843 struct r1conf *conf = mddev->private;
a68e5870
N
1844 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1845 sector_t sect = r1_bio->sector;
1846 int sectors = r1_bio->sectors;
1847 int idx = 0;
1848
1849 while(sectors) {
1850 int s = sectors;
1851 int d = r1_bio->read_disk;
1852 int success = 0;
3cb03002 1853 struct md_rdev *rdev;
78d7f5f7 1854 int start;
a68e5870
N
1855
1856 if (s > (PAGE_SIZE>>9))
1857 s = PAGE_SIZE >> 9;
1858 do {
1859 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1860 /* No rcu protection needed here devices
1861 * can only be removed when no resync is
1862 * active, and resync is currently active
1863 */
1864 rdev = conf->mirrors[d].rdev;
9d3d8011 1865 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1866 bio->bi_io_vec[idx].bv_page,
1867 READ, false)) {
1868 success = 1;
1869 break;
1870 }
1871 }
1872 d++;
8f19ccb2 1873 if (d == conf->raid_disks * 2)
a68e5870
N
1874 d = 0;
1875 } while (!success && d != r1_bio->read_disk);
1876
78d7f5f7 1877 if (!success) {
a68e5870 1878 char b[BDEVNAME_SIZE];
3a9f28a5
N
1879 int abort = 0;
1880 /* Cannot read from anywhere, this block is lost.
1881 * Record a bad block on each device. If that doesn't
1882 * work just disable and interrupt the recovery.
1883 * Don't fail devices as that won't really help.
1884 */
a68e5870
N
1885 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1886 " for block %llu\n",
1887 mdname(mddev),
1888 bdevname(bio->bi_bdev, b),
1889 (unsigned long long)r1_bio->sector);
8f19ccb2 1890 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1891 rdev = conf->mirrors[d].rdev;
1892 if (!rdev || test_bit(Faulty, &rdev->flags))
1893 continue;
1894 if (!rdev_set_badblocks(rdev, sect, s, 0))
1895 abort = 1;
1896 }
1897 if (abort) {
d890fa2b
N
1898 conf->recovery_disabled =
1899 mddev->recovery_disabled;
3a9f28a5
N
1900 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1901 md_done_sync(mddev, r1_bio->sectors, 0);
1902 put_buf(r1_bio);
1903 return 0;
1904 }
1905 /* Try next page */
1906 sectors -= s;
1907 sect += s;
1908 idx++;
1909 continue;
d11c171e 1910 }
78d7f5f7
N
1911
1912 start = d;
1913 /* write it back and re-read */
1914 while (d != r1_bio->read_disk) {
1915 if (d == 0)
8f19ccb2 1916 d = conf->raid_disks * 2;
78d7f5f7
N
1917 d--;
1918 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919 continue;
1920 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1921 if (r1_sync_page_io(rdev, sect, s,
1922 bio->bi_io_vec[idx].bv_page,
1923 WRITE) == 0) {
78d7f5f7
N
1924 r1_bio->bios[d]->bi_end_io = NULL;
1925 rdev_dec_pending(rdev, mddev);
9d3d8011 1926 }
78d7f5f7
N
1927 }
1928 d = start;
1929 while (d != r1_bio->read_disk) {
1930 if (d == 0)
8f19ccb2 1931 d = conf->raid_disks * 2;
78d7f5f7
N
1932 d--;
1933 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1934 continue;
1935 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1936 if (r1_sync_page_io(rdev, sect, s,
1937 bio->bi_io_vec[idx].bv_page,
1938 READ) != 0)
9d3d8011 1939 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1940 }
a68e5870
N
1941 sectors -= s;
1942 sect += s;
1943 idx ++;
1944 }
78d7f5f7 1945 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1946 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1947 return 1;
1948}
1949
9f2c9d12 1950static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1951{
1952 /* We have read all readable devices. If we haven't
1953 * got the block, then there is no hope left.
1954 * If we have, then we want to do a comparison
1955 * and skip the write if everything is the same.
1956 * If any blocks failed to read, then we need to
1957 * attempt an over-write
1958 */
fd01b88c 1959 struct mddev *mddev = r1_bio->mddev;
e8096360 1960 struct r1conf *conf = mddev->private;
a68e5870
N
1961 int primary;
1962 int i;
f4380a91 1963 int vcnt;
a68e5870 1964
30bc9b53
N
1965 /* Fix variable parts of all bios */
1966 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1967 for (i = 0; i < conf->raid_disks * 2; i++) {
1968 int j;
1969 int size;
1877db75 1970 int uptodate;
30bc9b53
N
1971 struct bio *b = r1_bio->bios[i];
1972 if (b->bi_end_io != end_sync_read)
1973 continue;
1877db75
N
1974 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1975 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1976 bio_reset(b);
1877db75
N
1977 if (!uptodate)
1978 clear_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1979 b->bi_vcnt = vcnt;
4f024f37
KO
1980 b->bi_iter.bi_size = r1_bio->sectors << 9;
1981 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1982 conf->mirrors[i].rdev->data_offset;
1983 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1984 b->bi_end_io = end_sync_read;
1985 b->bi_private = r1_bio;
1986
4f024f37 1987 size = b->bi_iter.bi_size;
30bc9b53
N
1988 for (j = 0; j < vcnt ; j++) {
1989 struct bio_vec *bi;
1990 bi = &b->bi_io_vec[j];
1991 bi->bv_offset = 0;
1992 if (size > PAGE_SIZE)
1993 bi->bv_len = PAGE_SIZE;
1994 else
1995 bi->bv_len = size;
1996 size -= PAGE_SIZE;
1997 }
1998 }
8f19ccb2 1999 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
2000 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2001 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2002 r1_bio->bios[primary]->bi_end_io = NULL;
2003 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2004 break;
2005 }
2006 r1_bio->read_disk = primary;
8f19ccb2 2007 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2008 int j;
78d7f5f7
N
2009 struct bio *pbio = r1_bio->bios[primary];
2010 struct bio *sbio = r1_bio->bios[i];
1877db75 2011 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
a68e5870 2012
2aabaa65 2013 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2014 continue;
1877db75
N
2015 /* Now we can 'fixup' the BIO_UPTODATE flag */
2016 set_bit(BIO_UPTODATE, &sbio->bi_flags);
78d7f5f7 2017
1877db75 2018 if (uptodate) {
78d7f5f7
N
2019 for (j = vcnt; j-- ; ) {
2020 struct page *p, *s;
2021 p = pbio->bi_io_vec[j].bv_page;
2022 s = sbio->bi_io_vec[j].bv_page;
2023 if (memcmp(page_address(p),
2024 page_address(s),
5020ad7d 2025 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2026 break;
69382e85 2027 }
78d7f5f7
N
2028 } else
2029 j = 0;
2030 if (j >= 0)
7f7583d4 2031 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2032 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1877db75 2033 && uptodate)) {
78d7f5f7
N
2034 /* No need to write to this device. */
2035 sbio->bi_end_io = NULL;
2036 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2037 continue;
2038 }
d3b45c2a
KO
2039
2040 bio_copy_data(sbio, pbio);
78d7f5f7 2041 }
a68e5870
N
2042 return 0;
2043}
2044
9f2c9d12 2045static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2046{
e8096360 2047 struct r1conf *conf = mddev->private;
a68e5870 2048 int i;
8f19ccb2 2049 int disks = conf->raid_disks * 2;
a68e5870
N
2050 struct bio *bio, *wbio;
2051
2052 bio = r1_bio->bios[r1_bio->read_disk];
2053
a68e5870
N
2054 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055 /* ouch - failed to read all of that. */
2056 if (!fix_sync_read_error(r1_bio))
2057 return;
7ca78d57
N
2058
2059 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2060 if (process_checks(r1_bio) < 0)
2061 return;
d11c171e
N
2062 /*
2063 * schedule writes
2064 */
1da177e4
LT
2065 atomic_set(&r1_bio->remaining, 1);
2066 for (i = 0; i < disks ; i++) {
2067 wbio = r1_bio->bios[i];
3e198f78
N
2068 if (wbio->bi_end_io == NULL ||
2069 (wbio->bi_end_io == end_sync_read &&
2070 (i == r1_bio->read_disk ||
2071 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2072 continue;
2073
3e198f78
N
2074 wbio->bi_rw = WRITE;
2075 wbio->bi_end_io = end_sync_write;
1da177e4 2076 atomic_inc(&r1_bio->remaining);
aa8b57aa 2077 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2078
1da177e4
LT
2079 generic_make_request(wbio);
2080 }
2081
2082 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2083 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2084 int s = r1_bio->sectors;
2085 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2086 test_bit(R1BIO_WriteError, &r1_bio->state))
2087 reschedule_retry(r1_bio);
2088 else {
2089 put_buf(r1_bio);
2090 md_done_sync(mddev, s, 1);
2091 }
1da177e4
LT
2092 }
2093}
2094
2095/*
2096 * This is a kernel thread which:
2097 *
2098 * 1. Retries failed read operations on working mirrors.
2099 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2100 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2101 */
2102
e8096360 2103static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2104 sector_t sect, int sectors)
2105{
fd01b88c 2106 struct mddev *mddev = conf->mddev;
867868fb
N
2107 while(sectors) {
2108 int s = sectors;
2109 int d = read_disk;
2110 int success = 0;
2111 int start;
3cb03002 2112 struct md_rdev *rdev;
867868fb
N
2113
2114 if (s > (PAGE_SIZE>>9))
2115 s = PAGE_SIZE >> 9;
2116
2117 do {
2118 /* Note: no rcu protection needed here
2119 * as this is synchronous in the raid1d thread
2120 * which is the thread that might remove
2121 * a device. If raid1d ever becomes multi-threaded....
2122 */
d2eb35ac
N
2123 sector_t first_bad;
2124 int bad_sectors;
2125
867868fb
N
2126 rdev = conf->mirrors[d].rdev;
2127 if (rdev &&
da8840a7 2128 (test_bit(In_sync, &rdev->flags) ||
2129 (!test_bit(Faulty, &rdev->flags) &&
2130 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2131 is_badblock(rdev, sect, s,
2132 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2133 sync_page_io(rdev, sect, s<<9,
2134 conf->tmppage, READ, false))
867868fb
N
2135 success = 1;
2136 else {
2137 d++;
8f19ccb2 2138 if (d == conf->raid_disks * 2)
867868fb
N
2139 d = 0;
2140 }
2141 } while (!success && d != read_disk);
2142
2143 if (!success) {
d8f05d29 2144 /* Cannot read from anywhere - mark it bad */
3cb03002 2145 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2146 if (!rdev_set_badblocks(rdev, sect, s, 0))
2147 md_error(mddev, rdev);
867868fb
N
2148 break;
2149 }
2150 /* write it back and re-read */
2151 start = d;
2152 while (d != read_disk) {
2153 if (d==0)
8f19ccb2 2154 d = conf->raid_disks * 2;
867868fb
N
2155 d--;
2156 rdev = conf->mirrors[d].rdev;
2157 if (rdev &&
b8cb6b4c 2158 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2159 r1_sync_page_io(rdev, sect, s,
2160 conf->tmppage, WRITE);
867868fb
N
2161 }
2162 d = start;
2163 while (d != read_disk) {
2164 char b[BDEVNAME_SIZE];
2165 if (d==0)
8f19ccb2 2166 d = conf->raid_disks * 2;
867868fb
N
2167 d--;
2168 rdev = conf->mirrors[d].rdev;
2169 if (rdev &&
b8cb6b4c 2170 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2171 if (r1_sync_page_io(rdev, sect, s,
2172 conf->tmppage, READ)) {
867868fb
N
2173 atomic_add(s, &rdev->corrected_errors);
2174 printk(KERN_INFO
9dd1e2fa 2175 "md/raid1:%s: read error corrected "
867868fb
N
2176 "(%d sectors at %llu on %s)\n",
2177 mdname(mddev), s,
969b755a
RD
2178 (unsigned long long)(sect +
2179 rdev->data_offset),
867868fb
N
2180 bdevname(rdev->bdev, b));
2181 }
2182 }
2183 }
2184 sectors -= s;
2185 sect += s;
2186 }
2187}
2188
9f2c9d12 2189static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2190{
fd01b88c 2191 struct mddev *mddev = r1_bio->mddev;
e8096360 2192 struct r1conf *conf = mddev->private;
3cb03002 2193 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2194
2195 /* bio has the data to be written to device 'i' where
2196 * we just recently had a write error.
2197 * We repeatedly clone the bio and trim down to one block,
2198 * then try the write. Where the write fails we record
2199 * a bad block.
2200 * It is conceivable that the bio doesn't exactly align with
2201 * blocks. We must handle this somehow.
2202 *
2203 * We currently own a reference on the rdev.
2204 */
2205
2206 int block_sectors;
2207 sector_t sector;
2208 int sectors;
2209 int sect_to_write = r1_bio->sectors;
2210 int ok = 1;
2211
2212 if (rdev->badblocks.shift < 0)
2213 return 0;
2214
2215 block_sectors = 1 << rdev->badblocks.shift;
2216 sector = r1_bio->sector;
2217 sectors = ((sector + block_sectors)
2218 & ~(sector_t)(block_sectors - 1))
2219 - sector;
2220
cd5ff9a1
N
2221 while (sect_to_write) {
2222 struct bio *wbio;
2223 if (sectors > sect_to_write)
2224 sectors = sect_to_write;
2225 /* Write at 'sector' for 'sectors'*/
2226
b783863f
KO
2227 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2228 unsigned vcnt = r1_bio->behind_page_count;
2229 struct bio_vec *vec = r1_bio->behind_bvecs;
2230
2231 while (!vec->bv_page) {
2232 vec++;
2233 vcnt--;
2234 }
2235
2236 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2237 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2238
2239 wbio->bi_vcnt = vcnt;
2240 } else {
2241 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2242 }
2243
cd5ff9a1 2244 wbio->bi_rw = WRITE;
4f024f37
KO
2245 wbio->bi_iter.bi_sector = r1_bio->sector;
2246 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2247
6678d83f 2248 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2249 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2250 wbio->bi_bdev = rdev->bdev;
2251 if (submit_bio_wait(WRITE, wbio) == 0)
2252 /* failure! */
2253 ok = rdev_set_badblocks(rdev, sector,
2254 sectors, 0)
2255 && ok;
2256
2257 bio_put(wbio);
2258 sect_to_write -= sectors;
2259 sector += sectors;
2260 sectors = block_sectors;
2261 }
2262 return ok;
2263}
2264
e8096360 2265static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2266{
2267 int m;
2268 int s = r1_bio->sectors;
8f19ccb2 2269 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2270 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2271 struct bio *bio = r1_bio->bios[m];
2272 if (bio->bi_end_io == NULL)
2273 continue;
2274 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2276 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2277 }
2278 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2279 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2280 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2281 md_error(conf->mddev, rdev);
2282 }
2283 }
2284 put_buf(r1_bio);
2285 md_done_sync(conf->mddev, s, 1);
2286}
2287
e8096360 2288static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2289{
2290 int m;
8f19ccb2 2291 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2292 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2293 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2294 rdev_clear_badblocks(rdev,
2295 r1_bio->sector,
c6563a8c 2296 r1_bio->sectors, 0);
62096bce
N
2297 rdev_dec_pending(rdev, conf->mddev);
2298 } else if (r1_bio->bios[m] != NULL) {
2299 /* This drive got a write error. We need to
2300 * narrow down and record precise write
2301 * errors.
2302 */
2303 if (!narrow_write_error(r1_bio, m)) {
2304 md_error(conf->mddev,
2305 conf->mirrors[m].rdev);
2306 /* an I/O failed, we can't clear the bitmap */
2307 set_bit(R1BIO_Degraded, &r1_bio->state);
2308 }
2309 rdev_dec_pending(conf->mirrors[m].rdev,
2310 conf->mddev);
2311 }
2312 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2313 close_write(r1_bio);
2314 raid_end_bio_io(r1_bio);
2315}
2316
e8096360 2317static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2318{
2319 int disk;
2320 int max_sectors;
fd01b88c 2321 struct mddev *mddev = conf->mddev;
62096bce
N
2322 struct bio *bio;
2323 char b[BDEVNAME_SIZE];
3cb03002 2324 struct md_rdev *rdev;
62096bce
N
2325
2326 clear_bit(R1BIO_ReadError, &r1_bio->state);
2327 /* we got a read error. Maybe the drive is bad. Maybe just
2328 * the block and we can fix it.
2329 * We freeze all other IO, and try reading the block from
2330 * other devices. When we find one, we re-write
2331 * and check it that fixes the read error.
2332 * This is all done synchronously while the array is
2333 * frozen
2334 */
2335 if (mddev->ro == 0) {
e2d59925 2336 freeze_array(conf, 1);
62096bce
N
2337 fix_read_error(conf, r1_bio->read_disk,
2338 r1_bio->sector, r1_bio->sectors);
2339 unfreeze_array(conf);
2340 } else
2341 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2342 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2343
2344 bio = r1_bio->bios[r1_bio->read_disk];
2345 bdevname(bio->bi_bdev, b);
2346read_more:
2347 disk = read_balance(conf, r1_bio, &max_sectors);
2348 if (disk == -1) {
2349 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2350 " read error for block %llu\n",
2351 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2352 raid_end_bio_io(r1_bio);
2353 } else {
2354 const unsigned long do_sync
2355 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2356 if (bio) {
2357 r1_bio->bios[r1_bio->read_disk] =
2358 mddev->ro ? IO_BLOCKED : NULL;
2359 bio_put(bio);
2360 }
2361 r1_bio->read_disk = disk;
2362 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2363 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2364 max_sectors);
62096bce
N
2365 r1_bio->bios[r1_bio->read_disk] = bio;
2366 rdev = conf->mirrors[disk].rdev;
2367 printk_ratelimited(KERN_ERR
2368 "md/raid1:%s: redirecting sector %llu"
2369 " to other mirror: %s\n",
2370 mdname(mddev),
2371 (unsigned long long)r1_bio->sector,
2372 bdevname(rdev->bdev, b));
4f024f37 2373 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2374 bio->bi_bdev = rdev->bdev;
2375 bio->bi_end_io = raid1_end_read_request;
2376 bio->bi_rw = READ | do_sync;
2377 bio->bi_private = r1_bio;
2378 if (max_sectors < r1_bio->sectors) {
2379 /* Drat - have to split this up more */
2380 struct bio *mbio = r1_bio->master_bio;
2381 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2382 - mbio->bi_iter.bi_sector);
62096bce
N
2383 r1_bio->sectors = max_sectors;
2384 spin_lock_irq(&conf->device_lock);
2385 if (mbio->bi_phys_segments == 0)
2386 mbio->bi_phys_segments = 2;
2387 else
2388 mbio->bi_phys_segments++;
2389 spin_unlock_irq(&conf->device_lock);
2390 generic_make_request(bio);
2391 bio = NULL;
2392
2393 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2394
2395 r1_bio->master_bio = mbio;
aa8b57aa 2396 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2397 r1_bio->state = 0;
2398 set_bit(R1BIO_ReadError, &r1_bio->state);
2399 r1_bio->mddev = mddev;
4f024f37
KO
2400 r1_bio->sector = mbio->bi_iter.bi_sector +
2401 sectors_handled;
62096bce
N
2402
2403 goto read_more;
2404 } else
2405 generic_make_request(bio);
2406 }
2407}
2408
4ed8731d 2409static void raid1d(struct md_thread *thread)
1da177e4 2410{
4ed8731d 2411 struct mddev *mddev = thread->mddev;
9f2c9d12 2412 struct r1bio *r1_bio;
1da177e4 2413 unsigned long flags;
e8096360 2414 struct r1conf *conf = mddev->private;
1da177e4 2415 struct list_head *head = &conf->retry_list;
e1dfa0a2 2416 struct blk_plug plug;
1da177e4
LT
2417
2418 md_check_recovery(mddev);
e1dfa0a2
N
2419
2420 blk_start_plug(&plug);
1da177e4 2421 for (;;) {
191ea9b2 2422
0021b7bc 2423 flush_pending_writes(conf);
191ea9b2 2424
a35e63ef
N
2425 spin_lock_irqsave(&conf->device_lock, flags);
2426 if (list_empty(head)) {
2427 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2428 break;
a35e63ef 2429 }
9f2c9d12 2430 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2431 list_del(head->prev);
ddaf22ab 2432 conf->nr_queued--;
1da177e4
LT
2433 spin_unlock_irqrestore(&conf->device_lock, flags);
2434
2435 mddev = r1_bio->mddev;
070ec55d 2436 conf = mddev->private;
4367af55 2437 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2438 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2439 test_bit(R1BIO_WriteError, &r1_bio->state))
2440 handle_sync_write_finished(conf, r1_bio);
2441 else
4367af55 2442 sync_request_write(mddev, r1_bio);
cd5ff9a1 2443 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2444 test_bit(R1BIO_WriteError, &r1_bio->state))
2445 handle_write_finished(conf, r1_bio);
2446 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2447 handle_read_error(conf, r1_bio);
2448 else
d2eb35ac
N
2449 /* just a partial read to be scheduled from separate
2450 * context
2451 */
2452 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2453
1d9d5241 2454 cond_resched();
de393cde
N
2455 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2456 md_check_recovery(mddev);
1da177e4 2457 }
e1dfa0a2 2458 blk_finish_plug(&plug);
1da177e4
LT
2459}
2460
2461
e8096360 2462static int init_resync(struct r1conf *conf)
1da177e4
LT
2463{
2464 int buffs;
2465
2466 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2467 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2468 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2469 conf->poolinfo);
2470 if (!conf->r1buf_pool)
2471 return -ENOMEM;
2472 conf->next_resync = 0;
2473 return 0;
2474}
2475
2476/*
2477 * perform a "sync" on one "block"
2478 *
2479 * We need to make sure that no normal I/O request - particularly write
2480 * requests - conflict with active sync requests.
2481 *
2482 * This is achieved by tracking pending requests and a 'barrier' concept
2483 * that can be installed to exclude normal IO requests.
2484 */
2485
fd01b88c 2486static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2487{
e8096360 2488 struct r1conf *conf = mddev->private;
9f2c9d12 2489 struct r1bio *r1_bio;
1da177e4
LT
2490 struct bio *bio;
2491 sector_t max_sector, nr_sectors;
3e198f78 2492 int disk = -1;
1da177e4 2493 int i;
3e198f78
N
2494 int wonly = -1;
2495 int write_targets = 0, read_targets = 0;
57dab0bd 2496 sector_t sync_blocks;
e3b9703e 2497 int still_degraded = 0;
06f60385
N
2498 int good_sectors = RESYNC_SECTORS;
2499 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2500
2501 if (!conf->r1buf_pool)
2502 if (init_resync(conf))
57afd89f 2503 return 0;
1da177e4 2504
58c0fed4 2505 max_sector = mddev->dev_sectors;
1da177e4 2506 if (sector_nr >= max_sector) {
191ea9b2
N
2507 /* If we aborted, we need to abort the
2508 * sync on the 'current' bitmap chunk (there will
2509 * only be one in raid1 resync.
2510 * We can find the current addess in mddev->curr_resync
2511 */
6a806c51
N
2512 if (mddev->curr_resync < max_sector) /* aborted */
2513 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2514 &sync_blocks, 1);
6a806c51 2515 else /* completed sync */
191ea9b2 2516 conf->fullsync = 0;
6a806c51
N
2517
2518 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2519 close_sync(conf);
2520 return 0;
2521 }
2522
07d84d10
N
2523 if (mddev->bitmap == NULL &&
2524 mddev->recovery_cp == MaxSector &&
6394cca5 2525 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2526 conf->fullsync == 0) {
2527 *skipped = 1;
2528 return max_sector - sector_nr;
2529 }
6394cca5
N
2530 /* before building a request, check if we can skip these blocks..
2531 * This call the bitmap_start_sync doesn't actually record anything
2532 */
e3b9703e 2533 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2534 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2535 /* We can skip this block, and probably several more */
2536 *skipped = 1;
2537 return sync_blocks;
2538 }
1da177e4 2539 /*
17999be4
N
2540 * If there is non-resync activity waiting for a turn,
2541 * and resync is going fast enough,
2542 * then let it though before starting on this new sync request.
1da177e4 2543 */
17999be4 2544 if (!go_faster && conf->nr_waiting)
1da177e4 2545 msleep_interruptible(1000);
17999be4 2546
b47490c9 2547 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2548 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2549
c2fd4c94 2550 raise_barrier(conf, sector_nr);
1da177e4 2551
3e198f78 2552 rcu_read_lock();
1da177e4 2553 /*
3e198f78
N
2554 * If we get a correctably read error during resync or recovery,
2555 * we might want to read from a different device. So we
2556 * flag all drives that could conceivably be read from for READ,
2557 * and any others (which will be non-In_sync devices) for WRITE.
2558 * If a read fails, we try reading from something else for which READ
2559 * is OK.
1da177e4 2560 */
1da177e4 2561
1da177e4
LT
2562 r1_bio->mddev = mddev;
2563 r1_bio->sector = sector_nr;
191ea9b2 2564 r1_bio->state = 0;
1da177e4 2565 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2566
8f19ccb2 2567 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2568 struct md_rdev *rdev;
1da177e4 2569 bio = r1_bio->bios[i];
2aabaa65 2570 bio_reset(bio);
1da177e4 2571
3e198f78
N
2572 rdev = rcu_dereference(conf->mirrors[i].rdev);
2573 if (rdev == NULL ||
06f60385 2574 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2575 if (i < conf->raid_disks)
2576 still_degraded = 1;
3e198f78 2577 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2578 bio->bi_rw = WRITE;
2579 bio->bi_end_io = end_sync_write;
2580 write_targets ++;
3e198f78
N
2581 } else {
2582 /* may need to read from here */
06f60385
N
2583 sector_t first_bad = MaxSector;
2584 int bad_sectors;
2585
2586 if (is_badblock(rdev, sector_nr, good_sectors,
2587 &first_bad, &bad_sectors)) {
2588 if (first_bad > sector_nr)
2589 good_sectors = first_bad - sector_nr;
2590 else {
2591 bad_sectors -= (sector_nr - first_bad);
2592 if (min_bad == 0 ||
2593 min_bad > bad_sectors)
2594 min_bad = bad_sectors;
2595 }
2596 }
2597 if (sector_nr < first_bad) {
2598 if (test_bit(WriteMostly, &rdev->flags)) {
2599 if (wonly < 0)
2600 wonly = i;
2601 } else {
2602 if (disk < 0)
2603 disk = i;
2604 }
2605 bio->bi_rw = READ;
2606 bio->bi_end_io = end_sync_read;
2607 read_targets++;
d57368af
AL
2608 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2609 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2610 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2611 /*
2612 * The device is suitable for reading (InSync),
2613 * but has bad block(s) here. Let's try to correct them,
2614 * if we are doing resync or repair. Otherwise, leave
2615 * this device alone for this sync request.
2616 */
2617 bio->bi_rw = WRITE;
2618 bio->bi_end_io = end_sync_write;
2619 write_targets++;
3e198f78 2620 }
3e198f78 2621 }
06f60385
N
2622 if (bio->bi_end_io) {
2623 atomic_inc(&rdev->nr_pending);
4f024f37 2624 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2625 bio->bi_bdev = rdev->bdev;
2626 bio->bi_private = r1_bio;
2627 }
1da177e4 2628 }
3e198f78
N
2629 rcu_read_unlock();
2630 if (disk < 0)
2631 disk = wonly;
2632 r1_bio->read_disk = disk;
191ea9b2 2633
06f60385
N
2634 if (read_targets == 0 && min_bad > 0) {
2635 /* These sectors are bad on all InSync devices, so we
2636 * need to mark them bad on all write targets
2637 */
2638 int ok = 1;
8f19ccb2 2639 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2640 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2641 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2642 ok = rdev_set_badblocks(rdev, sector_nr,
2643 min_bad, 0
2644 ) && ok;
2645 }
2646 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2647 *skipped = 1;
2648 put_buf(r1_bio);
2649
2650 if (!ok) {
2651 /* Cannot record the badblocks, so need to
2652 * abort the resync.
2653 * If there are multiple read targets, could just
2654 * fail the really bad ones ???
2655 */
2656 conf->recovery_disabled = mddev->recovery_disabled;
2657 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2658 return 0;
2659 } else
2660 return min_bad;
2661
2662 }
2663 if (min_bad > 0 && min_bad < good_sectors) {
2664 /* only resync enough to reach the next bad->good
2665 * transition */
2666 good_sectors = min_bad;
2667 }
2668
3e198f78
N
2669 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2670 /* extra read targets are also write targets */
2671 write_targets += read_targets-1;
2672
2673 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2674 /* There is nowhere to write, so all non-sync
2675 * drives must be failed - so we are finished
2676 */
b7219ccb
N
2677 sector_t rv;
2678 if (min_bad > 0)
2679 max_sector = sector_nr + min_bad;
2680 rv = max_sector - sector_nr;
57afd89f 2681 *skipped = 1;
1da177e4 2682 put_buf(r1_bio);
1da177e4
LT
2683 return rv;
2684 }
2685
c6207277
N
2686 if (max_sector > mddev->resync_max)
2687 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2688 if (max_sector > sector_nr + good_sectors)
2689 max_sector = sector_nr + good_sectors;
1da177e4 2690 nr_sectors = 0;
289e99e8 2691 sync_blocks = 0;
1da177e4
LT
2692 do {
2693 struct page *page;
2694 int len = PAGE_SIZE;
2695 if (sector_nr + (len>>9) > max_sector)
2696 len = (max_sector - sector_nr) << 9;
2697 if (len == 0)
2698 break;
6a806c51
N
2699 if (sync_blocks == 0) {
2700 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2701 &sync_blocks, still_degraded) &&
2702 !conf->fullsync &&
2703 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2704 break;
9e77c485 2705 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2706 if ((len >> 9) > sync_blocks)
6a806c51 2707 len = sync_blocks<<9;
ab7a30c7 2708 }
191ea9b2 2709
8f19ccb2 2710 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2711 bio = r1_bio->bios[i];
2712 if (bio->bi_end_io) {
d11c171e 2713 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2714 if (bio_add_page(bio, page, len, 0) == 0) {
2715 /* stop here */
d11c171e 2716 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2717 while (i > 0) {
2718 i--;
2719 bio = r1_bio->bios[i];
6a806c51
N
2720 if (bio->bi_end_io==NULL)
2721 continue;
1da177e4
LT
2722 /* remove last page from this bio */
2723 bio->bi_vcnt--;
4f024f37 2724 bio->bi_iter.bi_size -= len;
1da177e4
LT
2725 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2726 }
2727 goto bio_full;
2728 }
2729 }
2730 }
2731 nr_sectors += len>>9;
2732 sector_nr += len>>9;
191ea9b2 2733 sync_blocks -= (len>>9);
1da177e4
LT
2734 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2735 bio_full:
1da177e4
LT
2736 r1_bio->sectors = nr_sectors;
2737
d11c171e
N
2738 /* For a user-requested sync, we read all readable devices and do a
2739 * compare
2740 */
2741 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2742 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2743 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2744 bio = r1_bio->bios[i];
2745 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2746 read_targets--;
ddac7c7e 2747 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2748 generic_make_request(bio);
2749 }
2750 }
2751 } else {
2752 atomic_set(&r1_bio->remaining, 1);
2753 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2754 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2755 generic_make_request(bio);
1da177e4 2756
d11c171e 2757 }
1da177e4
LT
2758 return nr_sectors;
2759}
2760
fd01b88c 2761static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2762{
2763 if (sectors)
2764 return sectors;
2765
2766 return mddev->dev_sectors;
2767}
2768
e8096360 2769static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2770{
e8096360 2771 struct r1conf *conf;
709ae487 2772 int i;
0eaf822c 2773 struct raid1_info *disk;
3cb03002 2774 struct md_rdev *rdev;
709ae487 2775 int err = -ENOMEM;
1da177e4 2776
e8096360 2777 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2778 if (!conf)
709ae487 2779 goto abort;
1da177e4 2780
0eaf822c 2781 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2782 * mddev->raid_disks * 2,
1da177e4
LT
2783 GFP_KERNEL);
2784 if (!conf->mirrors)
709ae487 2785 goto abort;
1da177e4 2786
ddaf22ab
N
2787 conf->tmppage = alloc_page(GFP_KERNEL);
2788 if (!conf->tmppage)
709ae487 2789 goto abort;
ddaf22ab 2790
709ae487 2791 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2792 if (!conf->poolinfo)
709ae487 2793 goto abort;
8f19ccb2 2794 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2795 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2796 r1bio_pool_free,
2797 conf->poolinfo);
2798 if (!conf->r1bio_pool)
709ae487
N
2799 goto abort;
2800
ed9bfdf1 2801 conf->poolinfo->mddev = mddev;
1da177e4 2802
c19d5798 2803 err = -EINVAL;
e7e72bf6 2804 spin_lock_init(&conf->device_lock);
dafb20fa 2805 rdev_for_each(rdev, mddev) {
aba336bd 2806 struct request_queue *q;
709ae487 2807 int disk_idx = rdev->raid_disk;
1da177e4
LT
2808 if (disk_idx >= mddev->raid_disks
2809 || disk_idx < 0)
2810 continue;
c19d5798 2811 if (test_bit(Replacement, &rdev->flags))
02b898f2 2812 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2813 else
2814 disk = conf->mirrors + disk_idx;
1da177e4 2815
c19d5798
N
2816 if (disk->rdev)
2817 goto abort;
1da177e4 2818 disk->rdev = rdev;
aba336bd
N
2819 q = bdev_get_queue(rdev->bdev);
2820 if (q->merge_bvec_fn)
2821 mddev->merge_check_needed = 1;
1da177e4
LT
2822
2823 disk->head_position = 0;
12cee5a8 2824 disk->seq_start = MaxSector;
1da177e4
LT
2825 }
2826 conf->raid_disks = mddev->raid_disks;
2827 conf->mddev = mddev;
1da177e4 2828 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2829
2830 spin_lock_init(&conf->resync_lock);
17999be4 2831 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2832
191ea9b2 2833 bio_list_init(&conf->pending_bio_list);
34db0cd6 2834 conf->pending_count = 0;
d890fa2b 2835 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2836
79ef3a8a 2837 conf->start_next_window = MaxSector;
2838 conf->current_window_requests = conf->next_window_requests = 0;
2839
c19d5798 2840 err = -EIO;
8f19ccb2 2841 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2842
2843 disk = conf->mirrors + i;
2844
c19d5798
N
2845 if (i < conf->raid_disks &&
2846 disk[conf->raid_disks].rdev) {
2847 /* This slot has a replacement. */
2848 if (!disk->rdev) {
2849 /* No original, just make the replacement
2850 * a recovering spare
2851 */
2852 disk->rdev =
2853 disk[conf->raid_disks].rdev;
2854 disk[conf->raid_disks].rdev = NULL;
2855 } else if (!test_bit(In_sync, &disk->rdev->flags))
2856 /* Original is not in_sync - bad */
2857 goto abort;
2858 }
2859
5fd6c1dc
N
2860 if (!disk->rdev ||
2861 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2862 disk->head_position = 0;
4f0a5e01
JB
2863 if (disk->rdev &&
2864 (disk->rdev->saved_raid_disk < 0))
918f0238 2865 conf->fullsync = 1;
be4d3280 2866 }
1da177e4 2867 }
709ae487 2868
709ae487 2869 err = -ENOMEM;
0232605d 2870 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2871 if (!conf->thread) {
2872 printk(KERN_ERR
9dd1e2fa 2873 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2874 mdname(mddev));
2875 goto abort;
11ce99e6 2876 }
1da177e4 2877
709ae487
N
2878 return conf;
2879
2880 abort:
2881 if (conf) {
2882 if (conf->r1bio_pool)
2883 mempool_destroy(conf->r1bio_pool);
2884 kfree(conf->mirrors);
2885 safe_put_page(conf->tmppage);
2886 kfree(conf->poolinfo);
2887 kfree(conf);
2888 }
2889 return ERR_PTR(err);
2890}
2891
5220ea1e 2892static int stop(struct mddev *mddev);
fd01b88c 2893static int run(struct mddev *mddev)
709ae487 2894{
e8096360 2895 struct r1conf *conf;
709ae487 2896 int i;
3cb03002 2897 struct md_rdev *rdev;
5220ea1e 2898 int ret;
2ff8cc2c 2899 bool discard_supported = false;
709ae487
N
2900
2901 if (mddev->level != 1) {
9dd1e2fa 2902 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2903 mdname(mddev), mddev->level);
2904 return -EIO;
2905 }
2906 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2907 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2908 mdname(mddev));
2909 return -EIO;
2910 }
1da177e4 2911 /*
709ae487
N
2912 * copy the already verified devices into our private RAID1
2913 * bookkeeping area. [whatever we allocate in run(),
2914 * should be freed in stop()]
1da177e4 2915 */
709ae487
N
2916 if (mddev->private == NULL)
2917 conf = setup_conf(mddev);
2918 else
2919 conf = mddev->private;
1da177e4 2920
709ae487
N
2921 if (IS_ERR(conf))
2922 return PTR_ERR(conf);
1da177e4 2923
c8dc9c65 2924 if (mddev->queue)
5026d7a9
PA
2925 blk_queue_max_write_same_sectors(mddev->queue, 0);
2926
dafb20fa 2927 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2928 if (!mddev->gendisk)
2929 continue;
709ae487
N
2930 disk_stack_limits(mddev->gendisk, rdev->bdev,
2931 rdev->data_offset << 9);
2ff8cc2c
SL
2932 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2933 discard_supported = true;
1da177e4 2934 }
191ea9b2 2935
709ae487
N
2936 mddev->degraded = 0;
2937 for (i=0; i < conf->raid_disks; i++)
2938 if (conf->mirrors[i].rdev == NULL ||
2939 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2940 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2941 mddev->degraded++;
2942
2943 if (conf->raid_disks - mddev->degraded == 1)
2944 mddev->recovery_cp = MaxSector;
2945
8c6ac868 2946 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2947 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2948 " -- starting background reconstruction\n",
2949 mdname(mddev));
1da177e4 2950 printk(KERN_INFO
9dd1e2fa 2951 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2952 mdname(mddev), mddev->raid_disks - mddev->degraded,
2953 mddev->raid_disks);
709ae487 2954
1da177e4
LT
2955 /*
2956 * Ok, everything is just fine now
2957 */
709ae487
N
2958 mddev->thread = conf->thread;
2959 conf->thread = NULL;
2960 mddev->private = conf;
2961
1f403624 2962 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2963
1ed7242e
JB
2964 if (mddev->queue) {
2965 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2966 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2967 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2968
2969 if (discard_supported)
2970 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2971 mddev->queue);
2972 else
2973 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2974 mddev->queue);
1ed7242e 2975 }
5220ea1e 2976
2977 ret = md_integrity_register(mddev);
2978 if (ret)
2979 stop(mddev);
2980 return ret;
1da177e4
LT
2981}
2982
fd01b88c 2983static int stop(struct mddev *mddev)
1da177e4 2984{
e8096360 2985 struct r1conf *conf = mddev->private;
4b6d287f 2986 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2987
2988 /* wait for behind writes to complete */
e555190d 2989 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2990 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2991 mdname(mddev));
4b6d287f 2992 /* need to kick something here to make sure I/O goes? */
e555190d
N
2993 wait_event(bitmap->behind_wait,
2994 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2995 }
1da177e4 2996
07169fd4 2997 freeze_array(conf, 0);
2998 unfreeze_array(conf);
409c57f3 2999
01f96c0a 3000 md_unregister_thread(&mddev->thread);
1da177e4
LT
3001 if (conf->r1bio_pool)
3002 mempool_destroy(conf->r1bio_pool);
990a8baf 3003 kfree(conf->mirrors);
0fea7ed8 3004 safe_put_page(conf->tmppage);
990a8baf 3005 kfree(conf->poolinfo);
1da177e4
LT
3006 kfree(conf);
3007 mddev->private = NULL;
3008 return 0;
3009}
3010
fd01b88c 3011static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3012{
3013 /* no resync is happening, and there is enough space
3014 * on all devices, so we can resize.
3015 * We need to make sure resync covers any new space.
3016 * If the array is shrinking we should possibly wait until
3017 * any io in the removed space completes, but it hardly seems
3018 * worth it.
3019 */
a4a6125a
N
3020 sector_t newsize = raid1_size(mddev, sectors, 0);
3021 if (mddev->external_size &&
3022 mddev->array_sectors > newsize)
b522adcd 3023 return -EINVAL;
a4a6125a
N
3024 if (mddev->bitmap) {
3025 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3026 if (ret)
3027 return ret;
3028 }
3029 md_set_array_sectors(mddev, newsize);
f233ea5c 3030 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3031 revalidate_disk(mddev->gendisk);
b522adcd 3032 if (sectors > mddev->dev_sectors &&
b098636c 3033 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3034 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3036 }
b522adcd 3037 mddev->dev_sectors = sectors;
4b5c7ae8 3038 mddev->resync_max_sectors = sectors;
1da177e4
LT
3039 return 0;
3040}
3041
fd01b88c 3042static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3043{
3044 /* We need to:
3045 * 1/ resize the r1bio_pool
3046 * 2/ resize conf->mirrors
3047 *
3048 * We allocate a new r1bio_pool if we can.
3049 * Then raise a device barrier and wait until all IO stops.
3050 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3051 *
3052 * At the same time, we "pack" the devices so that all the missing
3053 * devices have the higher raid_disk numbers.
1da177e4
LT
3054 */
3055 mempool_t *newpool, *oldpool;
3056 struct pool_info *newpoolinfo;
0eaf822c 3057 struct raid1_info *newmirrors;
e8096360 3058 struct r1conf *conf = mddev->private;
63c70c4f 3059 int cnt, raid_disks;
c04be0aa 3060 unsigned long flags;
b5470dc5 3061 int d, d2, err;
1da177e4 3062
63c70c4f 3063 /* Cannot change chunk_size, layout, or level */
664e7c41 3064 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3065 mddev->layout != mddev->new_layout ||
3066 mddev->level != mddev->new_level) {
664e7c41 3067 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3068 mddev->new_layout = mddev->layout;
3069 mddev->new_level = mddev->level;
3070 return -EINVAL;
3071 }
3072
b5470dc5
DW
3073 err = md_allow_write(mddev);
3074 if (err)
3075 return err;
2a2275d6 3076
63c70c4f
N
3077 raid_disks = mddev->raid_disks + mddev->delta_disks;
3078
6ea9c07c
N
3079 if (raid_disks < conf->raid_disks) {
3080 cnt=0;
3081 for (d= 0; d < conf->raid_disks; d++)
3082 if (conf->mirrors[d].rdev)
3083 cnt++;
3084 if (cnt > raid_disks)
1da177e4 3085 return -EBUSY;
6ea9c07c 3086 }
1da177e4
LT
3087
3088 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3089 if (!newpoolinfo)
3090 return -ENOMEM;
3091 newpoolinfo->mddev = mddev;
8f19ccb2 3092 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3093
3094 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3095 r1bio_pool_free, newpoolinfo);
3096 if (!newpool) {
3097 kfree(newpoolinfo);
3098 return -ENOMEM;
3099 }
0eaf822c 3100 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3101 GFP_KERNEL);
1da177e4
LT
3102 if (!newmirrors) {
3103 kfree(newpoolinfo);
3104 mempool_destroy(newpool);
3105 return -ENOMEM;
3106 }
1da177e4 3107
e2d59925 3108 freeze_array(conf, 0);
1da177e4
LT
3109
3110 /* ok, everything is stopped */
3111 oldpool = conf->r1bio_pool;
3112 conf->r1bio_pool = newpool;
6ea9c07c 3113
a88aa786 3114 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3115 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3116 if (rdev && rdev->raid_disk != d2) {
36fad858 3117 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3118 rdev->raid_disk = d2;
36fad858
NK
3119 sysfs_unlink_rdev(mddev, rdev);
3120 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3121 printk(KERN_WARNING
36fad858
NK
3122 "md/raid1:%s: cannot register rd%d\n",
3123 mdname(mddev), rdev->raid_disk);
6ea9c07c 3124 }
a88aa786
N
3125 if (rdev)
3126 newmirrors[d2++].rdev = rdev;
3127 }
1da177e4
LT
3128 kfree(conf->mirrors);
3129 conf->mirrors = newmirrors;
3130 kfree(conf->poolinfo);
3131 conf->poolinfo = newpoolinfo;
3132
c04be0aa 3133 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3134 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3135 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3136 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3137 mddev->delta_disks = 0;
1da177e4 3138
e2d59925 3139 unfreeze_array(conf);
1da177e4
LT
3140
3141 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3142 md_wakeup_thread(mddev->thread);
3143
3144 mempool_destroy(oldpool);
3145 return 0;
3146}
3147
fd01b88c 3148static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3149{
e8096360 3150 struct r1conf *conf = mddev->private;
36fa3063
N
3151
3152 switch(state) {
6eef4b21
N
3153 case 2: /* wake for suspend */
3154 wake_up(&conf->wait_barrier);
3155 break;
9e6603da 3156 case 1:
07169fd4 3157 freeze_array(conf, 0);
36fa3063 3158 break;
9e6603da 3159 case 0:
07169fd4 3160 unfreeze_array(conf);
36fa3063
N
3161 break;
3162 }
36fa3063
N
3163}
3164
fd01b88c 3165static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3166{
3167 /* raid1 can take over:
3168 * raid5 with 2 devices, any layout or chunk size
3169 */
3170 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3171 struct r1conf *conf;
709ae487
N
3172 mddev->new_level = 1;
3173 mddev->new_layout = 0;
3174 mddev->new_chunk_sectors = 0;
3175 conf = setup_conf(mddev);
3176 if (!IS_ERR(conf))
07169fd4 3177 /* Array must appear to be quiesced */
3178 conf->array_frozen = 1;
709ae487
N
3179 return conf;
3180 }
3181 return ERR_PTR(-EINVAL);
3182}
1da177e4 3183
84fc4b56 3184static struct md_personality raid1_personality =
1da177e4
LT
3185{
3186 .name = "raid1",
2604b703 3187 .level = 1,
1da177e4
LT
3188 .owner = THIS_MODULE,
3189 .make_request = make_request,
3190 .run = run,
3191 .stop = stop,
3192 .status = status,
3193 .error_handler = error,
3194 .hot_add_disk = raid1_add_disk,
3195 .hot_remove_disk= raid1_remove_disk,
3196 .spare_active = raid1_spare_active,
3197 .sync_request = sync_request,
3198 .resize = raid1_resize,
80c3a6ce 3199 .size = raid1_size,
63c70c4f 3200 .check_reshape = raid1_reshape,
36fa3063 3201 .quiesce = raid1_quiesce,
709ae487 3202 .takeover = raid1_takeover,
1da177e4
LT
3203};
3204
3205static int __init raid_init(void)
3206{
2604b703 3207 return register_md_personality(&raid1_personality);
1da177e4
LT
3208}
3209
3210static void raid_exit(void)
3211{
2604b703 3212 unregister_md_personality(&raid1_personality);
1da177e4
LT
3213}
3214
3215module_init(raid_init);
3216module_exit(raid_exit);
3217MODULE_LICENSE("GPL");
0efb9e61 3218MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3219MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3220MODULE_ALIAS("md-raid1");
2604b703 3221MODULE_ALIAS("md-level-1");
34db0cd6
N
3222
3223module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);