]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid1.c
Merge remote-tracking branches 'asoc/topic/sta529', 'asoc/topic/sti', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
3f07c014
IM
40#include <linux/sched/signal.h>
41
109e3765 42#include <trace/events/block.h>
3f07c014 43
43b2e5d8 44#include "md.h"
ef740c37
CH
45#include "raid1.h"
46#include "bitmap.h"
191ea9b2 47
394ed8e4
SL
48#define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
50 (1L << MD_JOURNAL_CLEAN))
51
1da177e4
LT
52/*
53 * Number of guaranteed r1bios in case of extreme VM load:
54 */
55#define NR_RAID1_BIOS 256
56
473e87ce
JB
57/* when we get a read error on a read-only array, we redirect to another
58 * device without failing the first device, or trying to over-write to
59 * correct the read error. To keep track of bad blocks on a per-bio
60 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
61 */
62#define IO_BLOCKED ((struct bio *)1)
63/* When we successfully write to a known bad-block, we need to remove the
64 * bad-block marking which must be done from process context. So we record
65 * the success by setting devs[n].bio to IO_MADE_GOOD
66 */
67#define IO_MADE_GOOD ((struct bio *)2)
68
69#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
70
34db0cd6
N
71/* When there are this many requests queue to be written by
72 * the raid1 thread, we become 'congested' to provide back-pressure
73 * for writeback.
74 */
75static int max_queued_requests = 1024;
1da177e4 76
fd76863e 77static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
78static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 79
578b54ad
N
80#define raid1_log(md, fmt, args...) \
81 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
82
dd0fc66f 83static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
84{
85 struct pool_info *pi = data;
9f2c9d12 86 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
87
88 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 89 return kzalloc(size, gfp_flags);
1da177e4
LT
90}
91
92static void r1bio_pool_free(void *r1_bio, void *data)
93{
94 kfree(r1_bio);
95}
96
97#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 98#define RESYNC_DEPTH 32
1da177e4
LT
99#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
100#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 101#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
102#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
103#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
104#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 105
dd0fc66f 106static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
107{
108 struct pool_info *pi = data;
9f2c9d12 109 struct r1bio *r1_bio;
1da177e4 110 struct bio *bio;
da1aab3d 111 int need_pages;
1da177e4
LT
112 int i, j;
113
114 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 115 if (!r1_bio)
1da177e4 116 return NULL;
1da177e4
LT
117
118 /*
119 * Allocate bios : 1 for reading, n-1 for writing
120 */
121 for (j = pi->raid_disks ; j-- ; ) {
6746557f 122 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
123 if (!bio)
124 goto out_free_bio;
125 r1_bio->bios[j] = bio;
126 }
127 /*
128 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
129 * the first bio.
130 * If this is a user-requested check/repair, allocate
131 * RESYNC_PAGES for each bio.
1da177e4 132 */
d11c171e 133 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 134 need_pages = pi->raid_disks;
d11c171e 135 else
da1aab3d
N
136 need_pages = 1;
137 for (j = 0; j < need_pages; j++) {
d11c171e 138 bio = r1_bio->bios[j];
a0787606 139 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 140
a0787606 141 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 142 goto out_free_pages;
d11c171e
N
143 }
144 /* If not user-requests, copy the page pointers to all bios */
145 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
146 for (i=0; i<RESYNC_PAGES ; i++)
147 for (j=1; j<pi->raid_disks; j++)
148 r1_bio->bios[j]->bi_io_vec[i].bv_page =
149 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
150 }
151
152 r1_bio->master_bio = NULL;
153
154 return r1_bio;
155
da1aab3d 156out_free_pages:
491221f8
GJ
157 while (--j >= 0)
158 bio_free_pages(r1_bio->bios[j]);
da1aab3d 159
1da177e4 160out_free_bio:
8f19ccb2 161 while (++j < pi->raid_disks)
1da177e4
LT
162 bio_put(r1_bio->bios[j]);
163 r1bio_pool_free(r1_bio, data);
164 return NULL;
165}
166
167static void r1buf_pool_free(void *__r1_bio, void *data)
168{
169 struct pool_info *pi = data;
d11c171e 170 int i,j;
9f2c9d12 171 struct r1bio *r1bio = __r1_bio;
1da177e4 172
d11c171e
N
173 for (i = 0; i < RESYNC_PAGES; i++)
174 for (j = pi->raid_disks; j-- ;) {
175 if (j == 0 ||
176 r1bio->bios[j]->bi_io_vec[i].bv_page !=
177 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 178 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 179 }
1da177e4
LT
180 for (i=0 ; i < pi->raid_disks; i++)
181 bio_put(r1bio->bios[i]);
182
183 r1bio_pool_free(r1bio, data);
184}
185
e8096360 186static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
187{
188 int i;
189
8f19ccb2 190 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 191 struct bio **bio = r1_bio->bios + i;
4367af55 192 if (!BIO_SPECIAL(*bio))
1da177e4
LT
193 bio_put(*bio);
194 *bio = NULL;
195 }
196}
197
9f2c9d12 198static void free_r1bio(struct r1bio *r1_bio)
1da177e4 199{
e8096360 200 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 201
1da177e4
LT
202 put_all_bios(conf, r1_bio);
203 mempool_free(r1_bio, conf->r1bio_pool);
204}
205
9f2c9d12 206static void put_buf(struct r1bio *r1_bio)
1da177e4 207{
e8096360 208 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 209 sector_t sect = r1_bio->sector;
3e198f78
N
210 int i;
211
8f19ccb2 212 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
213 struct bio *bio = r1_bio->bios[i];
214 if (bio->bi_end_io)
215 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
216 }
1da177e4
LT
217
218 mempool_free(r1_bio, conf->r1buf_pool);
219
af5f42a7 220 lower_barrier(conf, sect);
1da177e4
LT
221}
222
9f2c9d12 223static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
224{
225 unsigned long flags;
fd01b88c 226 struct mddev *mddev = r1_bio->mddev;
e8096360 227 struct r1conf *conf = mddev->private;
fd76863e 228 int idx;
1da177e4 229
fd76863e 230 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
231 spin_lock_irqsave(&conf->device_lock, flags);
232 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 233 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235
17999be4 236 wake_up(&conf->wait_barrier);
1da177e4
LT
237 md_wakeup_thread(mddev->thread);
238}
239
240/*
241 * raid_end_bio_io() is called when we have finished servicing a mirrored
242 * operation and are ready to return a success/failure code to the buffer
243 * cache layer.
244 */
9f2c9d12 245static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
246{
247 struct bio *bio = r1_bio->master_bio;
248 int done;
e8096360 249 struct r1conf *conf = r1_bio->mddev->private;
4f024f37 250 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
251
252 if (bio->bi_phys_segments) {
253 unsigned long flags;
254 spin_lock_irqsave(&conf->device_lock, flags);
255 bio->bi_phys_segments--;
256 done = (bio->bi_phys_segments == 0);
257 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 258 /*
259 * make_request() might be waiting for
260 * bi_phys_segments to decrease
261 */
262 wake_up(&conf->wait_barrier);
d2eb35ac
N
263 } else
264 done = 1;
265
266 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
267 bio->bi_error = -EIO;
268
d2eb35ac 269 if (done) {
4246a0b6 270 bio_endio(bio);
d2eb35ac
N
271 /*
272 * Wake up any possible resync thread that waits for the device
273 * to go idle.
274 */
fd76863e 275 allow_barrier(conf, bi_sector);
d2eb35ac
N
276 }
277}
278
9f2c9d12 279static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
280{
281 struct bio *bio = r1_bio->master_bio;
282
4b6d287f
N
283 /* if nobody has done the final endio yet, do it now */
284 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
285 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
286 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
287 (unsigned long long) bio->bi_iter.bi_sector,
288 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 289
d2eb35ac 290 call_bio_endio(r1_bio);
4b6d287f 291 }
1da177e4
LT
292 free_r1bio(r1_bio);
293}
294
295/*
296 * Update disk head position estimator based on IRQ completion info.
297 */
9f2c9d12 298static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 299{
e8096360 300 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
301
302 conf->mirrors[disk].head_position =
303 r1_bio->sector + (r1_bio->sectors);
304}
305
ba3ae3be
NK
306/*
307 * Find the disk number which triggered given bio
308 */
9f2c9d12 309static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
310{
311 int mirror;
30194636
N
312 struct r1conf *conf = r1_bio->mddev->private;
313 int raid_disks = conf->raid_disks;
ba3ae3be 314
8f19ccb2 315 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
316 if (r1_bio->bios[mirror] == bio)
317 break;
318
8f19ccb2 319 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
320 update_head_pos(mirror, r1_bio);
321
322 return mirror;
323}
324
4246a0b6 325static void raid1_end_read_request(struct bio *bio)
1da177e4 326{
4246a0b6 327 int uptodate = !bio->bi_error;
9f2c9d12 328 struct r1bio *r1_bio = bio->bi_private;
e8096360 329 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 330 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 331
1da177e4
LT
332 /*
333 * this branch is our 'one mirror IO has finished' event handler:
334 */
e5872d58 335 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 336
dd00a99e
N
337 if (uptodate)
338 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
339 else if (test_bit(FailFast, &rdev->flags) &&
340 test_bit(R1BIO_FailFast, &r1_bio->state))
341 /* This was a fail-fast read so we definitely
342 * want to retry */
343 ;
dd00a99e
N
344 else {
345 /* If all other devices have failed, we want to return
346 * the error upwards rather than fail the last device.
347 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 348 */
dd00a99e
N
349 unsigned long flags;
350 spin_lock_irqsave(&conf->device_lock, flags);
351 if (r1_bio->mddev->degraded == conf->raid_disks ||
352 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 353 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
354 uptodate = 1;
355 spin_unlock_irqrestore(&conf->device_lock, flags);
356 }
1da177e4 357
7ad4d4a6 358 if (uptodate) {
1da177e4 359 raid_end_bio_io(r1_bio);
e5872d58 360 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 361 } else {
1da177e4
LT
362 /*
363 * oops, read error:
364 */
365 char b[BDEVNAME_SIZE];
1d41c216
N
366 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
367 mdname(conf->mddev),
368 bdevname(rdev->bdev, b),
369 (unsigned long long)r1_bio->sector);
d2eb35ac 370 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 371 reschedule_retry(r1_bio);
7ad4d4a6 372 /* don't drop the reference on read_disk yet */
1da177e4 373 }
1da177e4
LT
374}
375
9f2c9d12 376static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
377{
378 /* it really is the end of this request */
379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 /* free extra copy of the data pages */
381 int i = r1_bio->behind_page_count;
382 while (i--)
383 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
384 kfree(r1_bio->behind_bvecs);
385 r1_bio->behind_bvecs = NULL;
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393}
394
9f2c9d12 395static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 396{
cd5ff9a1
N
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
4367af55
N
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
4e78064f
N
408 }
409}
410
4246a0b6 411static void raid1_end_write_request(struct bio *bio)
1da177e4 412{
9f2c9d12 413 struct r1bio *r1_bio = bio->bi_private;
e5872d58 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 415 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 416 struct bio *to_put = NULL;
e5872d58
N
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
419 bool discard_error;
420
421 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 422
e9c7469b
TH
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
e3f948cd 426 if (bio->bi_error && !discard_error) {
e5872d58
N
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
212e7eb7
N
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 450 } else {
1da177e4 451 /*
e9c7469b
TH
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
1da177e4 460 */
4367af55
N
461 sector_t first_bad;
462 int bad_sectors;
463
cd5ff9a1
N
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
3056e3ae
AL
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
e5872d58
N
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
3056e3ae 476 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 477
4367af55 478 /* Maybe we can clear some bad blocks. */
e5872d58 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 480 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
e9c7469b 486 if (behind) {
e5872d58 487 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
4f024f37
KO
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 506 call_bio_endio(r1_bio);
4b6d287f
N
507 }
508 }
509 }
4367af55 510 if (r1_bio->bios[mirror] == NULL)
e5872d58 511 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 512
1da177e4 513 /*
1da177e4
LT
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
af6d7b76 517 r1_bio_write_done(r1_bio);
c70810b3 518
04b857f7
N
519 if (to_put)
520 bio_put(to_put);
1da177e4
LT
521}
522
fd76863e 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525{
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540}
541
1da177e4
LT
542/*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
e8096360 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 557{
af3a2cd6 558 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
559 int sectors;
560 int best_good_sectors;
9dedf603
SL
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
be4d3280 563 int disk;
76073054 564 sector_t best_dist;
9dedf603 565 unsigned int min_pending;
3cb03002 566 struct md_rdev *rdev;
f3ac8bf7 567 int choose_first;
12cee5a8 568 int choose_next_idle;
1da177e4
LT
569
570 rcu_read_lock();
571 /*
8ddf9efe 572 * Check if we can balance. We can balance on the whole
1da177e4
LT
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
d2eb35ac 577 sectors = r1_bio->sectors;
76073054 578 best_disk = -1;
9dedf603 579 best_dist_disk = -1;
76073054 580 best_dist = MaxSector;
9dedf603
SL
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
d2eb35ac 583 best_good_sectors = 0;
9dedf603 584 has_nonrot_disk = 0;
12cee5a8 585 choose_next_idle = 0;
2e52d449 586 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 587
7d49ffcf
GR
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
90382ed9 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
1da177e4 595
be4d3280 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 597 sector_t dist;
d2eb35ac
N
598 sector_t first_bad;
599 int bad_sectors;
9dedf603 600 unsigned int pending;
12cee5a8 601 bool nonrot;
d2eb35ac 602
f3ac8bf7
N
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
76073054 606 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 607 continue;
76073054
N
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
1da177e4 610 continue;
76073054
N
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
d1901ef0 614 if (best_dist_disk < 0) {
307729c8
N
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
816b0acf 617 if (first_bad <= this_sector)
307729c8
N
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
d1901ef0
TH
623 best_dist_disk = disk;
624 best_pending_disk = disk;
307729c8 625 }
76073054
N
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
d2eb35ac
N
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
657 } else
658 best_good_sectors = sectors;
659
2e52d449
N
660 if (best_disk >= 0)
661 /* At least two disks to choose from so failfast is OK */
662 set_bit(R1BIO_FailFast, &r1_bio->state);
663
12cee5a8
SL
664 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
665 has_nonrot_disk |= nonrot;
9dedf603 666 pending = atomic_read(&rdev->nr_pending);
76073054 667 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 668 if (choose_first) {
76073054 669 best_disk = disk;
1da177e4
LT
670 break;
671 }
12cee5a8
SL
672 /* Don't change to another disk for sequential reads */
673 if (conf->mirrors[disk].next_seq_sect == this_sector
674 || dist == 0) {
675 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
676 struct raid1_info *mirror = &conf->mirrors[disk];
677
678 best_disk = disk;
679 /*
680 * If buffered sequential IO size exceeds optimal
681 * iosize, check if there is idle disk. If yes, choose
682 * the idle disk. read_balance could already choose an
683 * idle disk before noticing it's a sequential IO in
684 * this disk. This doesn't matter because this disk
685 * will idle, next time it will be utilized after the
686 * first disk has IO size exceeds optimal iosize. In
687 * this way, iosize of the first disk will be optimal
688 * iosize at least. iosize of the second disk might be
689 * small, but not a big deal since when the second disk
690 * starts IO, the first disk is likely still busy.
691 */
692 if (nonrot && opt_iosize > 0 &&
693 mirror->seq_start != MaxSector &&
694 mirror->next_seq_sect > opt_iosize &&
695 mirror->next_seq_sect - opt_iosize >=
696 mirror->seq_start) {
697 choose_next_idle = 1;
698 continue;
699 }
700 break;
701 }
12cee5a8
SL
702
703 if (choose_next_idle)
704 continue;
9dedf603
SL
705
706 if (min_pending > pending) {
707 min_pending = pending;
708 best_pending_disk = disk;
709 }
710
76073054
N
711 if (dist < best_dist) {
712 best_dist = dist;
9dedf603 713 best_dist_disk = disk;
1da177e4 714 }
f3ac8bf7 715 }
1da177e4 716
9dedf603
SL
717 /*
718 * If all disks are rotational, choose the closest disk. If any disk is
719 * non-rotational, choose the disk with less pending request even the
720 * disk is rotational, which might/might not be optimal for raids with
721 * mixed ratation/non-rotational disks depending on workload.
722 */
723 if (best_disk == -1) {
2e52d449 724 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
725 best_disk = best_pending_disk;
726 else
727 best_disk = best_dist_disk;
728 }
729
76073054
N
730 if (best_disk >= 0) {
731 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
732 if (!rdev)
733 goto retry;
734 atomic_inc(&rdev->nr_pending);
d2eb35ac 735 sectors = best_good_sectors;
12cee5a8
SL
736
737 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
738 conf->mirrors[best_disk].seq_start = this_sector;
739
be4d3280 740 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
741 }
742 rcu_read_unlock();
d2eb35ac 743 *max_sectors = sectors;
1da177e4 744
76073054 745 return best_disk;
1da177e4
LT
746}
747
5c675f83 748static int raid1_congested(struct mddev *mddev, int bits)
0d129228 749{
e8096360 750 struct r1conf *conf = mddev->private;
0d129228
N
751 int i, ret = 0;
752
4452226e 753 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
754 conf->pending_count >= max_queued_requests)
755 return 1;
756
0d129228 757 rcu_read_lock();
f53e29fc 758 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 759 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 760 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 761 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 762
1ed7242e
JB
763 BUG_ON(!q);
764
0d129228
N
765 /* Note the '|| 1' - when read_balance prefers
766 * non-congested targets, it can be removed
767 */
4452226e 768 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 769 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 770 else
dc3b17cc 771 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
772 }
773 }
774 rcu_read_unlock();
775 return ret;
776}
0d129228 777
e8096360 778static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
779{
780 /* Any writes that have been queued but are awaiting
781 * bitmap updates get flushed here.
a35e63ef 782 */
a35e63ef
N
783 spin_lock_irq(&conf->device_lock);
784
785 if (conf->pending_bio_list.head) {
786 struct bio *bio;
787 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 788 conf->pending_count = 0;
a35e63ef
N
789 spin_unlock_irq(&conf->device_lock);
790 /* flush any pending bitmap writes to
791 * disk before proceeding w/ I/O */
792 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 793 wake_up(&conf->wait_barrier);
a35e63ef
N
794
795 while (bio) { /* submit pending writes */
796 struct bio *next = bio->bi_next;
5e2c7a36 797 struct md_rdev *rdev = (void*)bio->bi_bdev;
a35e63ef 798 bio->bi_next = NULL;
5e2c7a36
N
799 bio->bi_bdev = rdev->bdev;
800 if (test_bit(Faulty, &rdev->flags)) {
801 bio->bi_error = -EIO;
802 bio_endio(bio);
803 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
804 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
2ff8cc2c 805 /* Just ignore it */
4246a0b6 806 bio_endio(bio);
2ff8cc2c
SL
807 else
808 generic_make_request(bio);
a35e63ef
N
809 bio = next;
810 }
a35e63ef
N
811 } else
812 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
813}
814
17999be4
N
815/* Barriers....
816 * Sometimes we need to suspend IO while we do something else,
817 * either some resync/recovery, or reconfigure the array.
818 * To do this we raise a 'barrier'.
819 * The 'barrier' is a counter that can be raised multiple times
820 * to count how many activities are happening which preclude
821 * normal IO.
822 * We can only raise the barrier if there is no pending IO.
823 * i.e. if nr_pending == 0.
824 * We choose only to raise the barrier if no-one is waiting for the
825 * barrier to go down. This means that as soon as an IO request
826 * is ready, no other operations which require a barrier will start
827 * until the IO request has had a chance.
828 *
829 * So: regular IO calls 'wait_barrier'. When that returns there
830 * is no backgroup IO happening, It must arrange to call
831 * allow_barrier when it has finished its IO.
832 * backgroup IO calls must call raise_barrier. Once that returns
833 * there is no normal IO happeing. It must arrange to call
834 * lower_barrier when the particular background IO completes.
1da177e4 835 */
c2fd4c94 836static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 837{
fd76863e 838 int idx = sector_to_idx(sector_nr);
839
1da177e4 840 spin_lock_irq(&conf->resync_lock);
17999be4
N
841
842 /* Wait until no block IO is waiting */
824e47da 843 wait_event_lock_irq(conf->wait_barrier,
844 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 845 conf->resync_lock);
17999be4
N
846
847 /* block any new IO from starting */
824e47da 848 atomic_inc(&conf->barrier[idx]);
849 /*
850 * In raise_barrier() we firstly increase conf->barrier[idx] then
851 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
852 * increase conf->nr_pending[idx] then check conf->barrier[idx].
853 * A memory barrier here to make sure conf->nr_pending[idx] won't
854 * be fetched before conf->barrier[idx] is increased. Otherwise
855 * there will be a race between raise_barrier() and _wait_barrier().
856 */
857 smp_mb__after_atomic();
17999be4 858
79ef3a8a 859 /* For these conditions we must wait:
860 * A: while the array is in frozen state
fd76863e 861 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
862 * existing in corresponding I/O barrier bucket.
863 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
864 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 865 */
17999be4 866 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 867 !conf->array_frozen &&
824e47da 868 !atomic_read(&conf->nr_pending[idx]) &&
869 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
eed8c02e 870 conf->resync_lock);
17999be4 871
824e47da 872 atomic_inc(&conf->nr_pending[idx]);
17999be4
N
873 spin_unlock_irq(&conf->resync_lock);
874}
875
fd76863e 876static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 877{
fd76863e 878 int idx = sector_to_idx(sector_nr);
879
824e47da 880 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 881
824e47da 882 atomic_dec(&conf->barrier[idx]);
883 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
884 wake_up(&conf->wait_barrier);
885}
886
fd76863e 887static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 888{
824e47da 889 /*
890 * We need to increase conf->nr_pending[idx] very early here,
891 * then raise_barrier() can be blocked when it waits for
892 * conf->nr_pending[idx] to be 0. Then we can avoid holding
893 * conf->resync_lock when there is no barrier raised in same
894 * barrier unit bucket. Also if the array is frozen, I/O
895 * should be blocked until array is unfrozen.
896 */
897 atomic_inc(&conf->nr_pending[idx]);
898 /*
899 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
900 * check conf->barrier[idx]. In raise_barrier() we firstly increase
901 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
902 * barrier is necessary here to make sure conf->barrier[idx] won't be
903 * fetched before conf->nr_pending[idx] is increased. Otherwise there
904 * will be a race between _wait_barrier() and raise_barrier().
905 */
906 smp_mb__after_atomic();
79ef3a8a 907
824e47da 908 /*
909 * Don't worry about checking two atomic_t variables at same time
910 * here. If during we check conf->barrier[idx], the array is
911 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
912 * 0, it is safe to return and make the I/O continue. Because the
913 * array is frozen, all I/O returned here will eventually complete
914 * or be queued, no race will happen. See code comment in
915 * frozen_array().
916 */
917 if (!READ_ONCE(conf->array_frozen) &&
918 !atomic_read(&conf->barrier[idx]))
919 return;
79ef3a8a 920
824e47da 921 /*
922 * After holding conf->resync_lock, conf->nr_pending[idx]
923 * should be decreased before waiting for barrier to drop.
924 * Otherwise, we may encounter a race condition because
925 * raise_barrer() might be waiting for conf->nr_pending[idx]
926 * to be 0 at same time.
927 */
928 spin_lock_irq(&conf->resync_lock);
929 atomic_inc(&conf->nr_waiting[idx]);
930 atomic_dec(&conf->nr_pending[idx]);
931 /*
932 * In case freeze_array() is waiting for
933 * get_unqueued_pending() == extra
934 */
935 wake_up(&conf->wait_barrier);
936 /* Wait for the barrier in same barrier unit bucket to drop. */
937 wait_event_lock_irq(conf->wait_barrier,
938 !conf->array_frozen &&
939 !atomic_read(&conf->barrier[idx]),
940 conf->resync_lock);
941 atomic_inc(&conf->nr_pending[idx]);
942 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 943 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 944}
945
fd76863e 946static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 947{
fd76863e 948 int idx = sector_to_idx(sector_nr);
79ef3a8a 949
824e47da 950 /*
951 * Very similar to _wait_barrier(). The difference is, for read
952 * I/O we don't need wait for sync I/O, but if the whole array
953 * is frozen, the read I/O still has to wait until the array is
954 * unfrozen. Since there is no ordering requirement with
955 * conf->barrier[idx] here, memory barrier is unnecessary as well.
956 */
957 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 958
824e47da 959 if (!READ_ONCE(conf->array_frozen))
960 return;
961
962 spin_lock_irq(&conf->resync_lock);
963 atomic_inc(&conf->nr_waiting[idx]);
964 atomic_dec(&conf->nr_pending[idx]);
965 /*
966 * In case freeze_array() is waiting for
967 * get_unqueued_pending() == extra
968 */
969 wake_up(&conf->wait_barrier);
970 /* Wait for array to be unfrozen */
971 wait_event_lock_irq(conf->wait_barrier,
972 !conf->array_frozen,
973 conf->resync_lock);
974 atomic_inc(&conf->nr_pending[idx]);
975 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
976 spin_unlock_irq(&conf->resync_lock);
977}
978
fd76863e 979static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 980{
fd76863e 981 int idx = sector_to_idx(sector_nr);
79ef3a8a 982
fd76863e 983 _wait_barrier(conf, idx);
984}
985
986static void wait_all_barriers(struct r1conf *conf)
987{
988 int idx;
989
990 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
991 _wait_barrier(conf, idx);
992}
993
994static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 995{
824e47da 996 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
997 wake_up(&conf->wait_barrier);
998}
999
fd76863e 1000static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1001{
1002 int idx = sector_to_idx(sector_nr);
1003
1004 _allow_barrier(conf, idx);
1005}
1006
1007static void allow_all_barriers(struct r1conf *conf)
1008{
1009 int idx;
1010
1011 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1012 _allow_barrier(conf, idx);
1013}
1014
1015/* conf->resync_lock should be held */
1016static int get_unqueued_pending(struct r1conf *conf)
1017{
1018 int idx, ret;
1019
1020 for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1021 ret += atomic_read(&conf->nr_pending[idx]) -
1022 atomic_read(&conf->nr_queued[idx]);
fd76863e 1023
1024 return ret;
1025}
1026
e2d59925 1027static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1028{
fd76863e 1029 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1030 * go quiet.
fd76863e 1031 * This is called in two situations:
1032 * 1) management command handlers (reshape, remove disk, quiesce).
1033 * 2) one normal I/O request failed.
1034
1035 * After array_frozen is set to 1, new sync IO will be blocked at
1036 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1037 * or wait_read_barrier(). The flying I/Os will either complete or be
1038 * queued. When everything goes quite, there are only queued I/Os left.
1039
1040 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1041 * barrier bucket index which this I/O request hits. When all sync and
1042 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1043 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1044 * in handle_read_error(), we may call freeze_array() before trying to
1045 * fix the read error. In this case, the error read I/O is not queued,
1046 * so get_unqueued_pending() == 1.
1047 *
1048 * Therefore before this function returns, we need to wait until
1049 * get_unqueued_pendings(conf) gets equal to extra. For
1050 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1051 */
1052 spin_lock_irq(&conf->resync_lock);
b364e3d0 1053 conf->array_frozen = 1;
578b54ad 1054 raid1_log(conf->mddev, "wait freeze");
fd76863e 1055 wait_event_lock_irq_cmd(
1056 conf->wait_barrier,
1057 get_unqueued_pending(conf) == extra,
1058 conf->resync_lock,
1059 flush_pending_writes(conf));
ddaf22ab
N
1060 spin_unlock_irq(&conf->resync_lock);
1061}
e8096360 1062static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1063{
1064 /* reverse the effect of the freeze */
1065 spin_lock_irq(&conf->resync_lock);
b364e3d0 1066 conf->array_frozen = 0;
ddaf22ab 1067 spin_unlock_irq(&conf->resync_lock);
824e47da 1068 wake_up(&conf->wait_barrier);
ddaf22ab
N
1069}
1070
f72ffdd6 1071/* duplicate the data pages for behind I/O
4e78064f 1072 */
9f2c9d12 1073static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
1074{
1075 int i;
1076 struct bio_vec *bvec;
2ca68f5e 1077 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 1078 GFP_NOIO);
2ca68f5e 1079 if (unlikely(!bvecs))
af6d7b76 1080 return;
4b6d287f 1081
cb34e057 1082 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1083 bvecs[i] = *bvec;
1084 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1085 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1086 goto do_sync_io;
2ca68f5e
N
1087 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1088 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1089 kunmap(bvecs[i].bv_page);
4b6d287f
N
1090 kunmap(bvec->bv_page);
1091 }
2ca68f5e 1092 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1093 r1_bio->behind_page_count = bio->bi_vcnt;
1094 set_bit(R1BIO_BehindIO, &r1_bio->state);
1095 return;
4b6d287f
N
1096
1097do_sync_io:
af6d7b76 1098 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1099 if (bvecs[i].bv_page)
1100 put_page(bvecs[i].bv_page);
1101 kfree(bvecs);
4f024f37
KO
1102 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1103 bio->bi_iter.bi_size);
4b6d287f
N
1104}
1105
f54a9d0e
N
1106struct raid1_plug_cb {
1107 struct blk_plug_cb cb;
1108 struct bio_list pending;
1109 int pending_cnt;
1110};
1111
1112static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1113{
1114 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1115 cb);
1116 struct mddev *mddev = plug->cb.data;
1117 struct r1conf *conf = mddev->private;
1118 struct bio *bio;
1119
874807a8 1120 if (from_schedule || current->bio_list) {
f54a9d0e
N
1121 spin_lock_irq(&conf->device_lock);
1122 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1123 conf->pending_count += plug->pending_cnt;
1124 spin_unlock_irq(&conf->device_lock);
ee0b0244 1125 wake_up(&conf->wait_barrier);
f54a9d0e
N
1126 md_wakeup_thread(mddev->thread);
1127 kfree(plug);
1128 return;
1129 }
1130
1131 /* we aren't scheduling, so we can do the write-out directly. */
1132 bio = bio_list_get(&plug->pending);
1133 bitmap_unplug(mddev->bitmap);
1134 wake_up(&conf->wait_barrier);
1135
1136 while (bio) { /* submit pending writes */
1137 struct bio *next = bio->bi_next;
5e2c7a36 1138 struct md_rdev *rdev = (void*)bio->bi_bdev;
f54a9d0e 1139 bio->bi_next = NULL;
5e2c7a36
N
1140 bio->bi_bdev = rdev->bdev;
1141 if (test_bit(Faulty, &rdev->flags)) {
1142 bio->bi_error = -EIO;
1143 bio_endio(bio);
1144 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
32f9f570 1146 /* Just ignore it */
4246a0b6 1147 bio_endio(bio);
32f9f570
SL
1148 else
1149 generic_make_request(bio);
f54a9d0e
N
1150 bio = next;
1151 }
1152 kfree(plug);
1153}
1154
fd76863e 1155static inline struct r1bio *
1156alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1157{
1158 struct r1conf *conf = mddev->private;
1159 struct r1bio *r1_bio;
1160
1161 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1162
1163 r1_bio->master_bio = bio;
1164 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1165 r1_bio->state = 0;
1166 r1_bio->mddev = mddev;
1167 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1168
1169 return r1_bio;
1170}
1171
1172static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1da177e4 1173{
e8096360 1174 struct r1conf *conf = mddev->private;
0eaf822c 1175 struct raid1_info *mirror;
fd76863e 1176 struct r1bio *r1_bio;
1da177e4 1177 struct bio *read_bio;
3b046a97
RL
1178 struct bitmap *bitmap = mddev->bitmap;
1179 const int op = bio_op(bio);
1180 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1181 int sectors_handled;
1182 int max_sectors;
1183 int rdisk;
1184
fd76863e 1185 /*
1186 * Still need barrier for READ in case that whole
1187 * array is frozen.
1188 */
1189 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1190
1191 r1_bio = alloc_r1bio(mddev, bio, 0);
3b046a97 1192
fd76863e 1193 /*
1194 * We might need to issue multiple reads to different
1195 * devices if there are bad blocks around, so we keep
1196 * track of the number of reads in bio->bi_phys_segments.
1197 * If this is 0, there is only one r1_bio and no locking
1198 * will be needed when requests complete. If it is
1199 * non-zero, then it is the number of not-completed requests.
1200 */
1201 bio->bi_phys_segments = 0;
1202 bio_clear_flag(bio, BIO_SEG_VALID);
1203
1204 /*
1205 * make_request() can abort the operation when read-ahead is being
1206 * used and no empty request is available.
1207 */
3b046a97
RL
1208read_again:
1209 rdisk = read_balance(conf, r1_bio, &max_sectors);
1210
1211 if (rdisk < 0) {
1212 /* couldn't find anywhere to read from */
1213 raid_end_bio_io(r1_bio);
1214 return;
1215 }
1216 mirror = conf->mirrors + rdisk;
1217
1218 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1219 bitmap) {
1220 /*
1221 * Reading from a write-mostly device must take care not to
1222 * over-take any writes that are 'behind'
1223 */
1224 raid1_log(mddev, "wait behind writes");
1225 wait_event(bitmap->behind_wait,
1226 atomic_read(&bitmap->behind_writes) == 0);
1227 }
1228 r1_bio->read_disk = rdisk;
3b046a97 1229
d7a10308 1230 read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
3b046a97
RL
1231 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1232 max_sectors);
1233
1234 r1_bio->bios[rdisk] = read_bio;
1235
1236 read_bio->bi_iter.bi_sector = r1_bio->sector +
1237 mirror->rdev->data_offset;
1238 read_bio->bi_bdev = mirror->rdev->bdev;
1239 read_bio->bi_end_io = raid1_end_read_request;
1240 bio_set_op_attrs(read_bio, op, do_sync);
1241 if (test_bit(FailFast, &mirror->rdev->flags) &&
1242 test_bit(R1BIO_FailFast, &r1_bio->state))
1243 read_bio->bi_opf |= MD_FAILFAST;
1244 read_bio->bi_private = r1_bio;
1245
1246 if (mddev->gendisk)
1247 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1248 read_bio, disk_devt(mddev->gendisk),
1249 r1_bio->sector);
1250
1251 if (max_sectors < r1_bio->sectors) {
1252 /*
1253 * could not read all from this device, so we will need another
1254 * r1_bio.
1255 */
1256 sectors_handled = (r1_bio->sector + max_sectors
1257 - bio->bi_iter.bi_sector);
1258 r1_bio->sectors = max_sectors;
1259 spin_lock_irq(&conf->device_lock);
1260 if (bio->bi_phys_segments == 0)
1261 bio->bi_phys_segments = 2;
1262 else
1263 bio->bi_phys_segments++;
1264 spin_unlock_irq(&conf->device_lock);
1265
1266 /*
1267 * Cannot call generic_make_request directly as that will be
1268 * queued in __make_request and subsequent mempool_alloc might
1269 * block waiting for it. So hand bio over to raid1d.
1270 */
1271 reschedule_retry(r1_bio);
1272
fd76863e 1273 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
3b046a97
RL
1274 goto read_again;
1275 } else
1276 generic_make_request(read_bio);
1277}
1278
fd76863e 1279static void raid1_write_request(struct mddev *mddev, struct bio *bio)
3b046a97
RL
1280{
1281 struct r1conf *conf = mddev->private;
fd76863e 1282 struct r1bio *r1_bio;
1f68f0c4 1283 int i, disks;
3b046a97 1284 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1285 unsigned long flags;
3cb03002 1286 struct md_rdev *blocked_rdev;
f54a9d0e
N
1287 struct blk_plug_cb *cb;
1288 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1289 int first_clone;
1290 int sectors_handled;
1291 int max_sectors;
191ea9b2 1292
1da177e4
LT
1293 /*
1294 * Register the new request and wait if the reconstruction
1295 * thread has put up a bar for new requests.
1296 * Continue immediately if no resync is active currently.
1297 */
62de608d 1298
3d310eb7
N
1299 md_write_start(mddev, bio); /* wait on superblock update early */
1300
3b046a97 1301 if ((bio_end_sector(bio) > mddev->suspend_lo &&
589a1c49
GR
1302 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303 (mddev_is_clustered(mddev) &&
90382ed9 1304 md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1305 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1306
1307 /*
1308 * As the suspend_* range is controlled by userspace, we want
1309 * an interruptible wait.
6eef4b21
N
1310 */
1311 DEFINE_WAIT(w);
1312 for (;;) {
1313 flush_signals(current);
1314 prepare_to_wait(&conf->wait_barrier,
1315 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1316 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1317 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1318 (mddev_is_clustered(mddev) &&
90382ed9 1319 !md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1320 bio->bi_iter.bi_sector,
1321 bio_end_sector(bio))))
6eef4b21
N
1322 break;
1323 schedule();
1324 }
1325 finish_wait(&conf->wait_barrier, &w);
1326 }
fd76863e 1327 wait_barrier(conf, bio->bi_iter.bi_sector);
1328
1329 r1_bio = alloc_r1bio(mddev, bio, 0);
1330
1331 /* We might need to issue multiple writes to different
1332 * devices if there are bad blocks around, so we keep
1333 * track of the number of writes in bio->bi_phys_segments.
1334 * If this is 0, there is only one r1_bio and no locking
1335 * will be needed when requests complete. If it is
1336 * non-zero, then it is the number of not-completed requests.
1337 */
1338 bio->bi_phys_segments = 0;
1339 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 1340
34db0cd6
N
1341 if (conf->pending_count >= max_queued_requests) {
1342 md_wakeup_thread(mddev->thread);
578b54ad 1343 raid1_log(mddev, "wait queued");
34db0cd6
N
1344 wait_event(conf->wait_barrier,
1345 conf->pending_count < max_queued_requests);
1346 }
1f68f0c4 1347 /* first select target devices under rcu_lock and
1da177e4
LT
1348 * inc refcount on their rdev. Record them by setting
1349 * bios[x] to bio
1f68f0c4
N
1350 * If there are known/acknowledged bad blocks on any device on
1351 * which we have seen a write error, we want to avoid writing those
1352 * blocks.
1353 * This potentially requires several writes to write around
1354 * the bad blocks. Each set of writes gets it's own r1bio
1355 * with a set of bios attached.
1da177e4 1356 */
c3b328ac 1357
8f19ccb2 1358 disks = conf->raid_disks * 2;
6bfe0b49
DW
1359 retry_write:
1360 blocked_rdev = NULL;
1da177e4 1361 rcu_read_lock();
1f68f0c4 1362 max_sectors = r1_bio->sectors;
1da177e4 1363 for (i = 0; i < disks; i++) {
3cb03002 1364 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1365 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1366 atomic_inc(&rdev->nr_pending);
1367 blocked_rdev = rdev;
1368 break;
1369 }
1f68f0c4 1370 r1_bio->bios[i] = NULL;
8ae12666 1371 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1372 if (i < conf->raid_disks)
1373 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1374 continue;
1375 }
1376
1377 atomic_inc(&rdev->nr_pending);
1378 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1379 sector_t first_bad;
1380 int bad_sectors;
1381 int is_bad;
1382
3b046a97 1383 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1384 &first_bad, &bad_sectors);
1385 if (is_bad < 0) {
1386 /* mustn't write here until the bad block is
1387 * acknowledged*/
1388 set_bit(BlockedBadBlocks, &rdev->flags);
1389 blocked_rdev = rdev;
1390 break;
1391 }
1392 if (is_bad && first_bad <= r1_bio->sector) {
1393 /* Cannot write here at all */
1394 bad_sectors -= (r1_bio->sector - first_bad);
1395 if (bad_sectors < max_sectors)
1396 /* mustn't write more than bad_sectors
1397 * to other devices yet
1398 */
1399 max_sectors = bad_sectors;
03c902e1 1400 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1401 /* We don't set R1BIO_Degraded as that
1402 * only applies if the disk is
1403 * missing, so it might be re-added,
1404 * and we want to know to recover this
1405 * chunk.
1406 * In this case the device is here,
1407 * and the fact that this chunk is not
1408 * in-sync is recorded in the bad
1409 * block log
1410 */
1411 continue;
964147d5 1412 }
1f68f0c4
N
1413 if (is_bad) {
1414 int good_sectors = first_bad - r1_bio->sector;
1415 if (good_sectors < max_sectors)
1416 max_sectors = good_sectors;
1417 }
1418 }
1419 r1_bio->bios[i] = bio;
1da177e4
LT
1420 }
1421 rcu_read_unlock();
1422
6bfe0b49
DW
1423 if (unlikely(blocked_rdev)) {
1424 /* Wait for this device to become unblocked */
1425 int j;
1426
1427 for (j = 0; j < i; j++)
1428 if (r1_bio->bios[j])
1429 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1430 r1_bio->state = 0;
fd76863e 1431 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1432 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1433 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1434 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1435 goto retry_write;
1436 }
1437
1f68f0c4
N
1438 if (max_sectors < r1_bio->sectors) {
1439 /* We are splitting this write into multiple parts, so
1440 * we need to prepare for allocating another r1_bio.
1441 */
1442 r1_bio->sectors = max_sectors;
1443 spin_lock_irq(&conf->device_lock);
1444 if (bio->bi_phys_segments == 0)
1445 bio->bi_phys_segments = 2;
1446 else
1447 bio->bi_phys_segments++;
1448 spin_unlock_irq(&conf->device_lock);
191ea9b2 1449 }
4f024f37 1450 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1451
4e78064f 1452 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1453 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1454
1f68f0c4 1455 first_clone = 1;
1da177e4 1456 for (i = 0; i < disks; i++) {
8e58e327
ML
1457 struct bio *mbio = NULL;
1458 sector_t offset;
1da177e4
LT
1459 if (!r1_bio->bios[i])
1460 continue;
1461
8e58e327 1462 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1f68f0c4
N
1463
1464 if (first_clone) {
1465 /* do behind I/O ?
1466 * Not if there are too many, or cannot
1467 * allocate memory, or a reader on WriteMostly
1468 * is waiting for behind writes to flush */
1469 if (bitmap &&
1470 (atomic_read(&bitmap->behind_writes)
1471 < mddev->bitmap_info.max_write_behind) &&
8e58e327
ML
1472 !waitqueue_active(&bitmap->behind_wait)) {
1473 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1474 mddev->bio_set,
1ec49223
SL
1475 offset << 9,
1476 max_sectors << 9);
1f68f0c4 1477 alloc_behind_pages(mbio, r1_bio);
8e58e327 1478 }
1f68f0c4
N
1479
1480 bitmap_startwrite(bitmap, r1_bio->sector,
1481 r1_bio->sectors,
1482 test_bit(R1BIO_BehindIO,
1483 &r1_bio->state));
1484 first_clone = 0;
1485 }
8e58e327
ML
1486
1487 if (!mbio) {
1ec49223
SL
1488 if (r1_bio->behind_bvecs)
1489 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1490 mddev->bio_set,
1491 offset << 9,
1492 max_sectors << 9);
1493 else {
1494 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1495 bio_trim(mbio, offset, max_sectors);
1496 }
8e58e327
ML
1497 }
1498
2ca68f5e 1499 if (r1_bio->behind_bvecs) {
4b6d287f
N
1500 struct bio_vec *bvec;
1501 int j;
1502
cb34e057
KO
1503 /*
1504 * We trimmed the bio, so _all is legit
4b6d287f 1505 */
d74c6d51 1506 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1507 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1508 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1509 atomic_inc(&r1_bio->behind_remaining);
1510 }
1511
1f68f0c4
N
1512 r1_bio->bios[i] = mbio;
1513
4f024f37 1514 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1515 conf->mirrors[i].rdev->data_offset);
109e3765 1516 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1f68f0c4 1517 mbio->bi_end_io = raid1_end_write_request;
a682e003 1518 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1519 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1520 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1521 conf->raid_disks - mddev->degraded > 1)
1522 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1523 mbio->bi_private = r1_bio;
1524
1da177e4 1525 atomic_inc(&r1_bio->remaining);
f54a9d0e 1526
109e3765
N
1527 if (mddev->gendisk)
1528 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1529 mbio, disk_devt(mddev->gendisk),
1530 r1_bio->sector);
1531 /* flush_pending_writes() needs access to the rdev so...*/
1532 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1533
f54a9d0e
N
1534 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535 if (cb)
1536 plug = container_of(cb, struct raid1_plug_cb, cb);
1537 else
1538 plug = NULL;
4e78064f 1539 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1540 if (plug) {
1541 bio_list_add(&plug->pending, mbio);
1542 plug->pending_cnt++;
1543 } else {
1544 bio_list_add(&conf->pending_bio_list, mbio);
1545 conf->pending_count++;
1546 }
4e78064f 1547 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1548 if (!plug)
b357f04a 1549 md_wakeup_thread(mddev->thread);
1da177e4 1550 }
079fa166
N
1551 /* Mustn't call r1_bio_write_done before this next test,
1552 * as it could result in the bio being freed.
1553 */
aa8b57aa 1554 if (sectors_handled < bio_sectors(bio)) {
079fa166 1555 r1_bio_write_done(r1_bio);
1f68f0c4
N
1556 /* We need another r1_bio. It has already been counted
1557 * in bio->bi_phys_segments
1558 */
fd76863e 1559 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1f68f0c4
N
1560 goto retry_write;
1561 }
1562
079fa166
N
1563 r1_bio_write_done(r1_bio);
1564
1565 /* In case raid1d snuck in to freeze_array */
1566 wake_up(&conf->wait_barrier);
1da177e4
LT
1567}
1568
3b046a97
RL
1569static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1570{
fd76863e 1571 struct bio *split;
1572 sector_t sectors;
3b046a97 1573
aff8da09
SL
1574 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1575 md_flush_request(mddev, bio);
1576 return;
1577 }
3b046a97 1578
fd76863e 1579 /* if bio exceeds barrier unit boundary, split it */
1580 do {
1581 sectors = align_to_barrier_unit_end(
1582 bio->bi_iter.bi_sector, bio_sectors(bio));
1583 if (sectors < bio_sectors(bio)) {
1584 split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1585 bio_chain(split, bio);
1586 } else {
1587 split = bio;
1588 }
3b046a97 1589
61eb2b43 1590 if (bio_data_dir(split) == READ) {
fd76863e 1591 raid1_read_request(mddev, split);
61eb2b43
SL
1592
1593 /*
1594 * If a bio is splitted, the first part of bio will
1595 * pass barrier but the bio is queued in
1596 * current->bio_list (see generic_make_request). If
1597 * there is a raise_barrier() called here, the second
1598 * part of bio can't pass barrier. But since the first
1599 * part bio isn't dispatched to underlaying disks yet,
1600 * the barrier is never released, hence raise_barrier
1601 * will alays wait. We have a deadlock.
1602 * Note, this only happens in read path. For write
1603 * path, the first part of bio is dispatched in a
1604 * schedule() call (because of blk plug) or offloaded
1605 * to raid10d.
1606 * Quitting from the function immediately can change
1607 * the bio order queued in bio_list and avoid the deadlock.
1608 */
1609 if (split != bio) {
1610 generic_make_request(bio);
1611 break;
1612 }
1613 } else
fd76863e 1614 raid1_write_request(mddev, split);
1615 } while (split != bio);
3b046a97
RL
1616}
1617
849674e4 1618static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1619{
e8096360 1620 struct r1conf *conf = mddev->private;
1da177e4
LT
1621 int i;
1622
1623 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1624 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1625 rcu_read_lock();
1626 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1627 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1628 seq_printf(seq, "%s",
ddac7c7e
N
1629 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1630 }
1631 rcu_read_unlock();
1da177e4
LT
1632 seq_printf(seq, "]");
1633}
1634
849674e4 1635static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1636{
1637 char b[BDEVNAME_SIZE];
e8096360 1638 struct r1conf *conf = mddev->private;
423f04d6 1639 unsigned long flags;
1da177e4
LT
1640
1641 /*
1642 * If it is not operational, then we have already marked it as dead
1643 * else if it is the last working disks, ignore the error, let the
1644 * next level up know.
1645 * else mark the drive as failed
1646 */
2e52d449 1647 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1648 if (test_bit(In_sync, &rdev->flags)
4044ba58 1649 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1650 /*
1651 * Don't fail the drive, act as though we were just a
4044ba58
N
1652 * normal single drive.
1653 * However don't try a recovery from this drive as
1654 * it is very likely to fail.
1da177e4 1655 */
5389042f 1656 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1657 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1658 return;
4044ba58 1659 }
de393cde 1660 set_bit(Blocked, &rdev->flags);
c04be0aa 1661 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1662 mddev->degraded++;
dd00a99e 1663 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1664 } else
1665 set_bit(Faulty, &rdev->flags);
423f04d6 1666 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1667 /*
1668 * if recovery is running, make sure it aborts.
1669 */
1670 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1671 set_mask_bits(&mddev->sb_flags, 0,
1672 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1673 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1674 "md/raid1:%s: Operation continuing on %d devices.\n",
1675 mdname(mddev), bdevname(rdev->bdev, b),
1676 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1677}
1678
e8096360 1679static void print_conf(struct r1conf *conf)
1da177e4
LT
1680{
1681 int i;
1da177e4 1682
1d41c216 1683 pr_debug("RAID1 conf printout:\n");
1da177e4 1684 if (!conf) {
1d41c216 1685 pr_debug("(!conf)\n");
1da177e4
LT
1686 return;
1687 }
1d41c216
N
1688 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1689 conf->raid_disks);
1da177e4 1690
ddac7c7e 1691 rcu_read_lock();
1da177e4
LT
1692 for (i = 0; i < conf->raid_disks; i++) {
1693 char b[BDEVNAME_SIZE];
3cb03002 1694 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1695 if (rdev)
1d41c216
N
1696 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1697 i, !test_bit(In_sync, &rdev->flags),
1698 !test_bit(Faulty, &rdev->flags),
1699 bdevname(rdev->bdev,b));
1da177e4 1700 }
ddac7c7e 1701 rcu_read_unlock();
1da177e4
LT
1702}
1703
e8096360 1704static void close_sync(struct r1conf *conf)
1da177e4 1705{
fd76863e 1706 wait_all_barriers(conf);
1707 allow_all_barriers(conf);
1da177e4
LT
1708
1709 mempool_destroy(conf->r1buf_pool);
1710 conf->r1buf_pool = NULL;
1711}
1712
fd01b88c 1713static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1714{
1715 int i;
e8096360 1716 struct r1conf *conf = mddev->private;
6b965620
N
1717 int count = 0;
1718 unsigned long flags;
1da177e4
LT
1719
1720 /*
f72ffdd6 1721 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1722 * and mark them readable.
1723 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1724 * device_lock used to avoid races with raid1_end_read_request
1725 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1726 */
423f04d6 1727 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1728 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1729 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1730 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1731 if (repl
1aee41f6 1732 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1733 && repl->recovery_offset == MaxSector
1734 && !test_bit(Faulty, &repl->flags)
1735 && !test_and_set_bit(In_sync, &repl->flags)) {
1736 /* replacement has just become active */
1737 if (!rdev ||
1738 !test_and_clear_bit(In_sync, &rdev->flags))
1739 count++;
1740 if (rdev) {
1741 /* Replaced device not technically
1742 * faulty, but we need to be sure
1743 * it gets removed and never re-added
1744 */
1745 set_bit(Faulty, &rdev->flags);
1746 sysfs_notify_dirent_safe(
1747 rdev->sysfs_state);
1748 }
1749 }
ddac7c7e 1750 if (rdev
61e4947c 1751 && rdev->recovery_offset == MaxSector
ddac7c7e 1752 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1753 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1754 count++;
654e8b5a 1755 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1756 }
1757 }
6b965620
N
1758 mddev->degraded -= count;
1759 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1760
1761 print_conf(conf);
6b965620 1762 return count;
1da177e4
LT
1763}
1764
fd01b88c 1765static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1766{
e8096360 1767 struct r1conf *conf = mddev->private;
199050ea 1768 int err = -EEXIST;
41158c7e 1769 int mirror = 0;
0eaf822c 1770 struct raid1_info *p;
6c2fce2e 1771 int first = 0;
30194636 1772 int last = conf->raid_disks - 1;
1da177e4 1773
5389042f
N
1774 if (mddev->recovery_disabled == conf->recovery_disabled)
1775 return -EBUSY;
1776
1501efad
DW
1777 if (md_integrity_add_rdev(rdev, mddev))
1778 return -ENXIO;
1779
6c2fce2e
NB
1780 if (rdev->raid_disk >= 0)
1781 first = last = rdev->raid_disk;
1782
70bcecdb
GR
1783 /*
1784 * find the disk ... but prefer rdev->saved_raid_disk
1785 * if possible.
1786 */
1787 if (rdev->saved_raid_disk >= 0 &&
1788 rdev->saved_raid_disk >= first &&
1789 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1790 first = last = rdev->saved_raid_disk;
1791
7ef449d1
N
1792 for (mirror = first; mirror <= last; mirror++) {
1793 p = conf->mirrors+mirror;
1794 if (!p->rdev) {
1da177e4 1795
9092c02d
JB
1796 if (mddev->gendisk)
1797 disk_stack_limits(mddev->gendisk, rdev->bdev,
1798 rdev->data_offset << 9);
1da177e4
LT
1799
1800 p->head_position = 0;
1801 rdev->raid_disk = mirror;
199050ea 1802 err = 0;
6aea114a
N
1803 /* As all devices are equivalent, we don't need a full recovery
1804 * if this was recently any drive of the array
1805 */
1806 if (rdev->saved_raid_disk < 0)
41158c7e 1807 conf->fullsync = 1;
d6065f7b 1808 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1809 break;
1810 }
7ef449d1
N
1811 if (test_bit(WantReplacement, &p->rdev->flags) &&
1812 p[conf->raid_disks].rdev == NULL) {
1813 /* Add this device as a replacement */
1814 clear_bit(In_sync, &rdev->flags);
1815 set_bit(Replacement, &rdev->flags);
1816 rdev->raid_disk = mirror;
1817 err = 0;
1818 conf->fullsync = 1;
1819 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1820 break;
1821 }
1822 }
9092c02d 1823 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1824 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1825 print_conf(conf);
199050ea 1826 return err;
1da177e4
LT
1827}
1828
b8321b68 1829static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1830{
e8096360 1831 struct r1conf *conf = mddev->private;
1da177e4 1832 int err = 0;
b8321b68 1833 int number = rdev->raid_disk;
0eaf822c 1834 struct raid1_info *p = conf->mirrors + number;
1da177e4 1835
b014f14c
N
1836 if (rdev != p->rdev)
1837 p = conf->mirrors + conf->raid_disks + number;
1838
1da177e4 1839 print_conf(conf);
b8321b68 1840 if (rdev == p->rdev) {
b2d444d7 1841 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1842 atomic_read(&rdev->nr_pending)) {
1843 err = -EBUSY;
1844 goto abort;
1845 }
046abeed 1846 /* Only remove non-faulty devices if recovery
dfc70645
N
1847 * is not possible.
1848 */
1849 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1850 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1851 mddev->degraded < conf->raid_disks) {
1852 err = -EBUSY;
1853 goto abort;
1854 }
1da177e4 1855 p->rdev = NULL;
d787be40
N
1856 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857 synchronize_rcu();
1858 if (atomic_read(&rdev->nr_pending)) {
1859 /* lost the race, try later */
1860 err = -EBUSY;
1861 p->rdev = rdev;
1862 goto abort;
1863 }
1864 }
1865 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1866 /* We just removed a device that is being replaced.
1867 * Move down the replacement. We drain all IO before
1868 * doing this to avoid confusion.
1869 */
1870 struct md_rdev *repl =
1871 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1872 freeze_array(conf, 0);
8c7a2c2b
N
1873 clear_bit(Replacement, &repl->flags);
1874 p->rdev = repl;
1875 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1876 unfreeze_array(conf);
8c7a2c2b
N
1877 clear_bit(WantReplacement, &rdev->flags);
1878 } else
b014f14c 1879 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1880 err = md_integrity_register(mddev);
1da177e4
LT
1881 }
1882abort:
1883
1884 print_conf(conf);
1885 return err;
1886}
1887
4246a0b6 1888static void end_sync_read(struct bio *bio)
1da177e4 1889{
9f2c9d12 1890 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1891
0fc280f6 1892 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1893
1da177e4
LT
1894 /*
1895 * we have read a block, now it needs to be re-written,
1896 * or re-read if the read failed.
1897 * We don't do much here, just schedule handling by raid1d
1898 */
4246a0b6 1899 if (!bio->bi_error)
1da177e4 1900 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1901
1902 if (atomic_dec_and_test(&r1_bio->remaining))
1903 reschedule_retry(r1_bio);
1da177e4
LT
1904}
1905
4246a0b6 1906static void end_sync_write(struct bio *bio)
1da177e4 1907{
4246a0b6 1908 int uptodate = !bio->bi_error;
9f2c9d12 1909 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1910 struct mddev *mddev = r1_bio->mddev;
e8096360 1911 struct r1conf *conf = mddev->private;
4367af55
N
1912 sector_t first_bad;
1913 int bad_sectors;
854abd75 1914 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1915
6b1117d5 1916 if (!uptodate) {
57dab0bd 1917 sector_t sync_blocks = 0;
6b1117d5
N
1918 sector_t s = r1_bio->sector;
1919 long sectors_to_go = r1_bio->sectors;
1920 /* make sure these bits doesn't get cleared. */
1921 do {
5e3db645 1922 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1923 &sync_blocks, 1);
1924 s += sync_blocks;
1925 sectors_to_go -= sync_blocks;
1926 } while (sectors_to_go > 0);
854abd75
N
1927 set_bit(WriteErrorSeen, &rdev->flags);
1928 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1929 set_bit(MD_RECOVERY_NEEDED, &
1930 mddev->recovery);
d8f05d29 1931 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1932 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1933 &first_bad, &bad_sectors) &&
1934 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1935 r1_bio->sector,
1936 r1_bio->sectors,
1937 &first_bad, &bad_sectors)
1938 )
4367af55 1939 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1940
1da177e4 1941 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1942 int s = r1_bio->sectors;
d8f05d29
N
1943 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1944 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1945 reschedule_retry(r1_bio);
1946 else {
1947 put_buf(r1_bio);
1948 md_done_sync(mddev, s, uptodate);
1949 }
1da177e4 1950 }
1da177e4
LT
1951}
1952
3cb03002 1953static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1954 int sectors, struct page *page, int rw)
1955{
796a5cf0 1956 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1957 /* success */
1958 return 1;
19d67169 1959 if (rw == WRITE) {
d8f05d29 1960 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1961 if (!test_and_set_bit(WantReplacement,
1962 &rdev->flags))
1963 set_bit(MD_RECOVERY_NEEDED, &
1964 rdev->mddev->recovery);
1965 }
d8f05d29
N
1966 /* need to record an error - either for the block or the device */
1967 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1968 md_error(rdev->mddev, rdev);
1969 return 0;
1970}
1971
9f2c9d12 1972static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1973{
a68e5870
N
1974 /* Try some synchronous reads of other devices to get
1975 * good data, much like with normal read errors. Only
1976 * read into the pages we already have so we don't
1977 * need to re-issue the read request.
1978 * We don't need to freeze the array, because being in an
1979 * active sync request, there is no normal IO, and
1980 * no overlapping syncs.
06f60385
N
1981 * We don't need to check is_badblock() again as we
1982 * made sure that anything with a bad block in range
1983 * will have bi_end_io clear.
a68e5870 1984 */
fd01b88c 1985 struct mddev *mddev = r1_bio->mddev;
e8096360 1986 struct r1conf *conf = mddev->private;
a68e5870
N
1987 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1988 sector_t sect = r1_bio->sector;
1989 int sectors = r1_bio->sectors;
1990 int idx = 0;
2e52d449
N
1991 struct md_rdev *rdev;
1992
1993 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1994 if (test_bit(FailFast, &rdev->flags)) {
1995 /* Don't try recovering from here - just fail it
1996 * ... unless it is the last working device of course */
1997 md_error(mddev, rdev);
1998 if (test_bit(Faulty, &rdev->flags))
1999 /* Don't try to read from here, but make sure
2000 * put_buf does it's thing
2001 */
2002 bio->bi_end_io = end_sync_write;
2003 }
a68e5870
N
2004
2005 while(sectors) {
2006 int s = sectors;
2007 int d = r1_bio->read_disk;
2008 int success = 0;
78d7f5f7 2009 int start;
a68e5870
N
2010
2011 if (s > (PAGE_SIZE>>9))
2012 s = PAGE_SIZE >> 9;
2013 do {
2014 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2015 /* No rcu protection needed here devices
2016 * can only be removed when no resync is
2017 * active, and resync is currently active
2018 */
2019 rdev = conf->mirrors[d].rdev;
9d3d8011 2020 if (sync_page_io(rdev, sect, s<<9,
a68e5870 2021 bio->bi_io_vec[idx].bv_page,
796a5cf0 2022 REQ_OP_READ, 0, false)) {
a68e5870
N
2023 success = 1;
2024 break;
2025 }
2026 }
2027 d++;
8f19ccb2 2028 if (d == conf->raid_disks * 2)
a68e5870
N
2029 d = 0;
2030 } while (!success && d != r1_bio->read_disk);
2031
78d7f5f7 2032 if (!success) {
a68e5870 2033 char b[BDEVNAME_SIZE];
3a9f28a5
N
2034 int abort = 0;
2035 /* Cannot read from anywhere, this block is lost.
2036 * Record a bad block on each device. If that doesn't
2037 * work just disable and interrupt the recovery.
2038 * Don't fail devices as that won't really help.
2039 */
1d41c216
N
2040 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2041 mdname(mddev),
2042 bdevname(bio->bi_bdev, b),
2043 (unsigned long long)r1_bio->sector);
8f19ccb2 2044 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2045 rdev = conf->mirrors[d].rdev;
2046 if (!rdev || test_bit(Faulty, &rdev->flags))
2047 continue;
2048 if (!rdev_set_badblocks(rdev, sect, s, 0))
2049 abort = 1;
2050 }
2051 if (abort) {
d890fa2b
N
2052 conf->recovery_disabled =
2053 mddev->recovery_disabled;
3a9f28a5
N
2054 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055 md_done_sync(mddev, r1_bio->sectors, 0);
2056 put_buf(r1_bio);
2057 return 0;
2058 }
2059 /* Try next page */
2060 sectors -= s;
2061 sect += s;
2062 idx++;
2063 continue;
d11c171e 2064 }
78d7f5f7
N
2065
2066 start = d;
2067 /* write it back and re-read */
2068 while (d != r1_bio->read_disk) {
2069 if (d == 0)
8f19ccb2 2070 d = conf->raid_disks * 2;
78d7f5f7
N
2071 d--;
2072 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2073 continue;
2074 rdev = conf->mirrors[d].rdev;
d8f05d29
N
2075 if (r1_sync_page_io(rdev, sect, s,
2076 bio->bi_io_vec[idx].bv_page,
2077 WRITE) == 0) {
78d7f5f7
N
2078 r1_bio->bios[d]->bi_end_io = NULL;
2079 rdev_dec_pending(rdev, mddev);
9d3d8011 2080 }
78d7f5f7
N
2081 }
2082 d = start;
2083 while (d != r1_bio->read_disk) {
2084 if (d == 0)
8f19ccb2 2085 d = conf->raid_disks * 2;
78d7f5f7
N
2086 d--;
2087 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2088 continue;
2089 rdev = conf->mirrors[d].rdev;
d8f05d29
N
2090 if (r1_sync_page_io(rdev, sect, s,
2091 bio->bi_io_vec[idx].bv_page,
2092 READ) != 0)
9d3d8011 2093 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2094 }
a68e5870
N
2095 sectors -= s;
2096 sect += s;
2097 idx ++;
2098 }
78d7f5f7 2099 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 2100 bio->bi_error = 0;
a68e5870
N
2101 return 1;
2102}
2103
c95e6385 2104static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2105{
2106 /* We have read all readable devices. If we haven't
2107 * got the block, then there is no hope left.
2108 * If we have, then we want to do a comparison
2109 * and skip the write if everything is the same.
2110 * If any blocks failed to read, then we need to
2111 * attempt an over-write
2112 */
fd01b88c 2113 struct mddev *mddev = r1_bio->mddev;
e8096360 2114 struct r1conf *conf = mddev->private;
a68e5870
N
2115 int primary;
2116 int i;
f4380a91 2117 int vcnt;
a68e5870 2118
30bc9b53
N
2119 /* Fix variable parts of all bios */
2120 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2121 for (i = 0; i < conf->raid_disks * 2; i++) {
2122 int j;
2123 int size;
4246a0b6 2124 int error;
30bc9b53
N
2125 struct bio *b = r1_bio->bios[i];
2126 if (b->bi_end_io != end_sync_read)
2127 continue;
4246a0b6
CH
2128 /* fixup the bio for reuse, but preserve errno */
2129 error = b->bi_error;
30bc9b53 2130 bio_reset(b);
4246a0b6 2131 b->bi_error = error;
30bc9b53 2132 b->bi_vcnt = vcnt;
4f024f37
KO
2133 b->bi_iter.bi_size = r1_bio->sectors << 9;
2134 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
2135 conf->mirrors[i].rdev->data_offset;
2136 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2137 b->bi_end_io = end_sync_read;
2138 b->bi_private = r1_bio;
2139
4f024f37 2140 size = b->bi_iter.bi_size;
30bc9b53
N
2141 for (j = 0; j < vcnt ; j++) {
2142 struct bio_vec *bi;
2143 bi = &b->bi_io_vec[j];
2144 bi->bv_offset = 0;
2145 if (size > PAGE_SIZE)
2146 bi->bv_len = PAGE_SIZE;
2147 else
2148 bi->bv_len = size;
2149 size -= PAGE_SIZE;
2150 }
2151 }
8f19ccb2 2152 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2153 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 2154 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
2155 r1_bio->bios[primary]->bi_end_io = NULL;
2156 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2157 break;
2158 }
2159 r1_bio->read_disk = primary;
8f19ccb2 2160 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2161 int j;
78d7f5f7
N
2162 struct bio *pbio = r1_bio->bios[primary];
2163 struct bio *sbio = r1_bio->bios[i];
4246a0b6 2164 int error = sbio->bi_error;
a68e5870 2165
2aabaa65 2166 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2167 continue;
4246a0b6
CH
2168 /* Now we can 'fixup' the error value */
2169 sbio->bi_error = 0;
78d7f5f7 2170
4246a0b6 2171 if (!error) {
78d7f5f7
N
2172 for (j = vcnt; j-- ; ) {
2173 struct page *p, *s;
2174 p = pbio->bi_io_vec[j].bv_page;
2175 s = sbio->bi_io_vec[j].bv_page;
2176 if (memcmp(page_address(p),
2177 page_address(s),
5020ad7d 2178 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2179 break;
69382e85 2180 }
78d7f5f7
N
2181 } else
2182 j = 0;
2183 if (j >= 0)
7f7583d4 2184 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2185 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 2186 && !error)) {
78d7f5f7
N
2187 /* No need to write to this device. */
2188 sbio->bi_end_io = NULL;
2189 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2190 continue;
2191 }
d3b45c2a
KO
2192
2193 bio_copy_data(sbio, pbio);
78d7f5f7 2194 }
a68e5870
N
2195}
2196
9f2c9d12 2197static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2198{
e8096360 2199 struct r1conf *conf = mddev->private;
a68e5870 2200 int i;
8f19ccb2 2201 int disks = conf->raid_disks * 2;
a68e5870
N
2202 struct bio *bio, *wbio;
2203
2204 bio = r1_bio->bios[r1_bio->read_disk];
2205
a68e5870
N
2206 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2207 /* ouch - failed to read all of that. */
2208 if (!fix_sync_read_error(r1_bio))
2209 return;
7ca78d57
N
2210
2211 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2212 process_checks(r1_bio);
2213
d11c171e
N
2214 /*
2215 * schedule writes
2216 */
1da177e4
LT
2217 atomic_set(&r1_bio->remaining, 1);
2218 for (i = 0; i < disks ; i++) {
2219 wbio = r1_bio->bios[i];
3e198f78
N
2220 if (wbio->bi_end_io == NULL ||
2221 (wbio->bi_end_io == end_sync_read &&
2222 (i == r1_bio->read_disk ||
2223 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2224 continue;
2225
796a5cf0 2226 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2227 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2228 wbio->bi_opf |= MD_FAILFAST;
2229
3e198f78 2230 wbio->bi_end_io = end_sync_write;
1da177e4 2231 atomic_inc(&r1_bio->remaining);
aa8b57aa 2232 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2233
1da177e4
LT
2234 generic_make_request(wbio);
2235 }
2236
2237 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2238 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2239 int s = r1_bio->sectors;
2240 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2241 test_bit(R1BIO_WriteError, &r1_bio->state))
2242 reschedule_retry(r1_bio);
2243 else {
2244 put_buf(r1_bio);
2245 md_done_sync(mddev, s, 1);
2246 }
1da177e4
LT
2247 }
2248}
2249
2250/*
2251 * This is a kernel thread which:
2252 *
2253 * 1. Retries failed read operations on working mirrors.
2254 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2255 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2256 */
2257
e8096360 2258static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2259 sector_t sect, int sectors)
2260{
fd01b88c 2261 struct mddev *mddev = conf->mddev;
867868fb
N
2262 while(sectors) {
2263 int s = sectors;
2264 int d = read_disk;
2265 int success = 0;
2266 int start;
3cb03002 2267 struct md_rdev *rdev;
867868fb
N
2268
2269 if (s > (PAGE_SIZE>>9))
2270 s = PAGE_SIZE >> 9;
2271
2272 do {
d2eb35ac
N
2273 sector_t first_bad;
2274 int bad_sectors;
2275
707a6a42
N
2276 rcu_read_lock();
2277 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2278 if (rdev &&
da8840a7 2279 (test_bit(In_sync, &rdev->flags) ||
2280 (!test_bit(Faulty, &rdev->flags) &&
2281 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2282 is_badblock(rdev, sect, s,
707a6a42
N
2283 &first_bad, &bad_sectors) == 0) {
2284 atomic_inc(&rdev->nr_pending);
2285 rcu_read_unlock();
2286 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2287 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2288 success = 1;
2289 rdev_dec_pending(rdev, mddev);
2290 if (success)
2291 break;
2292 } else
2293 rcu_read_unlock();
2294 d++;
2295 if (d == conf->raid_disks * 2)
2296 d = 0;
867868fb
N
2297 } while (!success && d != read_disk);
2298
2299 if (!success) {
d8f05d29 2300 /* Cannot read from anywhere - mark it bad */
3cb03002 2301 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2302 if (!rdev_set_badblocks(rdev, sect, s, 0))
2303 md_error(mddev, rdev);
867868fb
N
2304 break;
2305 }
2306 /* write it back and re-read */
2307 start = d;
2308 while (d != read_disk) {
2309 if (d==0)
8f19ccb2 2310 d = conf->raid_disks * 2;
867868fb 2311 d--;
707a6a42
N
2312 rcu_read_lock();
2313 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2314 if (rdev &&
707a6a42
N
2315 !test_bit(Faulty, &rdev->flags)) {
2316 atomic_inc(&rdev->nr_pending);
2317 rcu_read_unlock();
d8f05d29
N
2318 r1_sync_page_io(rdev, sect, s,
2319 conf->tmppage, WRITE);
707a6a42
N
2320 rdev_dec_pending(rdev, mddev);
2321 } else
2322 rcu_read_unlock();
867868fb
N
2323 }
2324 d = start;
2325 while (d != read_disk) {
2326 char b[BDEVNAME_SIZE];
2327 if (d==0)
8f19ccb2 2328 d = conf->raid_disks * 2;
867868fb 2329 d--;
707a6a42
N
2330 rcu_read_lock();
2331 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2332 if (rdev &&
b8cb6b4c 2333 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2334 atomic_inc(&rdev->nr_pending);
2335 rcu_read_unlock();
d8f05d29
N
2336 if (r1_sync_page_io(rdev, sect, s,
2337 conf->tmppage, READ)) {
867868fb 2338 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2339 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2340 mdname(mddev), s,
2341 (unsigned long long)(sect +
2342 rdev->data_offset),
2343 bdevname(rdev->bdev, b));
867868fb 2344 }
707a6a42
N
2345 rdev_dec_pending(rdev, mddev);
2346 } else
2347 rcu_read_unlock();
867868fb
N
2348 }
2349 sectors -= s;
2350 sect += s;
2351 }
2352}
2353
9f2c9d12 2354static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2355{
fd01b88c 2356 struct mddev *mddev = r1_bio->mddev;
e8096360 2357 struct r1conf *conf = mddev->private;
3cb03002 2358 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2359
2360 /* bio has the data to be written to device 'i' where
2361 * we just recently had a write error.
2362 * We repeatedly clone the bio and trim down to one block,
2363 * then try the write. Where the write fails we record
2364 * a bad block.
2365 * It is conceivable that the bio doesn't exactly align with
2366 * blocks. We must handle this somehow.
2367 *
2368 * We currently own a reference on the rdev.
2369 */
2370
2371 int block_sectors;
2372 sector_t sector;
2373 int sectors;
2374 int sect_to_write = r1_bio->sectors;
2375 int ok = 1;
2376
2377 if (rdev->badblocks.shift < 0)
2378 return 0;
2379
ab713cdc
ND
2380 block_sectors = roundup(1 << rdev->badblocks.shift,
2381 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2382 sector = r1_bio->sector;
2383 sectors = ((sector + block_sectors)
2384 & ~(sector_t)(block_sectors - 1))
2385 - sector;
2386
cd5ff9a1
N
2387 while (sect_to_write) {
2388 struct bio *wbio;
2389 if (sectors > sect_to_write)
2390 sectors = sect_to_write;
2391 /* Write at 'sector' for 'sectors'*/
2392
b783863f
KO
2393 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394 unsigned vcnt = r1_bio->behind_page_count;
2395 struct bio_vec *vec = r1_bio->behind_bvecs;
2396
2397 while (!vec->bv_page) {
2398 vec++;
2399 vcnt--;
2400 }
2401
2402 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2403 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2404
2405 wbio->bi_vcnt = vcnt;
2406 } else {
d7a10308
ML
2407 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2408 mddev->bio_set);
b783863f
KO
2409 }
2410
796a5cf0 2411 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2412 wbio->bi_iter.bi_sector = r1_bio->sector;
2413 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2414
6678d83f 2415 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2416 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2417 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2418
2419 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2420 /* failure! */
2421 ok = rdev_set_badblocks(rdev, sector,
2422 sectors, 0)
2423 && ok;
2424
2425 bio_put(wbio);
2426 sect_to_write -= sectors;
2427 sector += sectors;
2428 sectors = block_sectors;
2429 }
2430 return ok;
2431}
2432
e8096360 2433static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2434{
2435 int m;
2436 int s = r1_bio->sectors;
8f19ccb2 2437 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2438 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2439 struct bio *bio = r1_bio->bios[m];
2440 if (bio->bi_end_io == NULL)
2441 continue;
4246a0b6 2442 if (!bio->bi_error &&
62096bce 2443 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2444 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2445 }
4246a0b6 2446 if (bio->bi_error &&
62096bce
N
2447 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2448 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2449 md_error(conf->mddev, rdev);
2450 }
2451 }
2452 put_buf(r1_bio);
2453 md_done_sync(conf->mddev, s, 1);
2454}
2455
e8096360 2456static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2457{
fd76863e 2458 int m, idx;
55ce74d4 2459 bool fail = false;
fd76863e 2460
8f19ccb2 2461 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2462 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2463 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2464 rdev_clear_badblocks(rdev,
2465 r1_bio->sector,
c6563a8c 2466 r1_bio->sectors, 0);
62096bce
N
2467 rdev_dec_pending(rdev, conf->mddev);
2468 } else if (r1_bio->bios[m] != NULL) {
2469 /* This drive got a write error. We need to
2470 * narrow down and record precise write
2471 * errors.
2472 */
55ce74d4 2473 fail = true;
62096bce
N
2474 if (!narrow_write_error(r1_bio, m)) {
2475 md_error(conf->mddev,
2476 conf->mirrors[m].rdev);
2477 /* an I/O failed, we can't clear the bitmap */
2478 set_bit(R1BIO_Degraded, &r1_bio->state);
2479 }
2480 rdev_dec_pending(conf->mirrors[m].rdev,
2481 conf->mddev);
2482 }
55ce74d4
N
2483 if (fail) {
2484 spin_lock_irq(&conf->device_lock);
2485 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2486 idx = sector_to_idx(r1_bio->sector);
824e47da 2487 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2488 spin_unlock_irq(&conf->device_lock);
824e47da 2489 /*
2490 * In case freeze_array() is waiting for condition
2491 * get_unqueued_pending() == extra to be true.
2492 */
2493 wake_up(&conf->wait_barrier);
55ce74d4 2494 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2495 } else {
2496 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2497 close_write(r1_bio);
55ce74d4 2498 raid_end_bio_io(r1_bio);
bd8688a1 2499 }
62096bce
N
2500}
2501
e8096360 2502static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2503{
2504 int disk;
2505 int max_sectors;
fd01b88c 2506 struct mddev *mddev = conf->mddev;
62096bce
N
2507 struct bio *bio;
2508 char b[BDEVNAME_SIZE];
3cb03002 2509 struct md_rdev *rdev;
109e3765
N
2510 dev_t bio_dev;
2511 sector_t bio_sector;
62096bce
N
2512
2513 clear_bit(R1BIO_ReadError, &r1_bio->state);
2514 /* we got a read error. Maybe the drive is bad. Maybe just
2515 * the block and we can fix it.
2516 * We freeze all other IO, and try reading the block from
2517 * other devices. When we find one, we re-write
2518 * and check it that fixes the read error.
2519 * This is all done synchronously while the array is
2520 * frozen
2521 */
7449f699
TM
2522
2523 bio = r1_bio->bios[r1_bio->read_disk];
2524 bdevname(bio->bi_bdev, b);
109e3765
N
2525 bio_dev = bio->bi_bdev->bd_dev;
2526 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2527 bio_put(bio);
2528 r1_bio->bios[r1_bio->read_disk] = NULL;
2529
2e52d449
N
2530 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2531 if (mddev->ro == 0
2532 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2533 freeze_array(conf, 1);
62096bce
N
2534 fix_read_error(conf, r1_bio->read_disk,
2535 r1_bio->sector, r1_bio->sectors);
2536 unfreeze_array(conf);
7449f699
TM
2537 } else {
2538 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539 }
2540
2e52d449 2541 rdev_dec_pending(rdev, conf->mddev);
62096bce 2542
62096bce
N
2543read_more:
2544 disk = read_balance(conf, r1_bio, &max_sectors);
2545 if (disk == -1) {
1d41c216
N
2546 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2547 mdname(mddev), b, (unsigned long long)r1_bio->sector);
62096bce
N
2548 raid_end_bio_io(r1_bio);
2549 } else {
2550 const unsigned long do_sync
1eff9d32 2551 = r1_bio->master_bio->bi_opf & REQ_SYNC;
62096bce 2552 r1_bio->read_disk = disk;
d7a10308
ML
2553 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2554 mddev->bio_set);
4f024f37
KO
2555 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2556 max_sectors);
62096bce
N
2557 r1_bio->bios[r1_bio->read_disk] = bio;
2558 rdev = conf->mirrors[disk].rdev;
1d41c216
N
2559 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2560 mdname(mddev),
2561 (unsigned long long)r1_bio->sector,
2562 bdevname(rdev->bdev, b));
4f024f37 2563 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2564 bio->bi_bdev = rdev->bdev;
2565 bio->bi_end_io = raid1_end_read_request;
796a5cf0 2566 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2e52d449
N
2567 if (test_bit(FailFast, &rdev->flags) &&
2568 test_bit(R1BIO_FailFast, &r1_bio->state))
2569 bio->bi_opf |= MD_FAILFAST;
62096bce
N
2570 bio->bi_private = r1_bio;
2571 if (max_sectors < r1_bio->sectors) {
2572 /* Drat - have to split this up more */
2573 struct bio *mbio = r1_bio->master_bio;
2574 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2575 - mbio->bi_iter.bi_sector);
62096bce
N
2576 r1_bio->sectors = max_sectors;
2577 spin_lock_irq(&conf->device_lock);
2578 if (mbio->bi_phys_segments == 0)
2579 mbio->bi_phys_segments = 2;
2580 else
2581 mbio->bi_phys_segments++;
2582 spin_unlock_irq(&conf->device_lock);
109e3765
N
2583 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2584 bio, bio_dev, bio_sector);
62096bce
N
2585 generic_make_request(bio);
2586 bio = NULL;
2587
fd76863e 2588 r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
62096bce 2589 set_bit(R1BIO_ReadError, &r1_bio->state);
62096bce
N
2590
2591 goto read_more;
109e3765
N
2592 } else {
2593 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2594 bio, bio_dev, bio_sector);
62096bce 2595 generic_make_request(bio);
109e3765 2596 }
62096bce
N
2597 }
2598}
2599
4ed8731d 2600static void raid1d(struct md_thread *thread)
1da177e4 2601{
4ed8731d 2602 struct mddev *mddev = thread->mddev;
9f2c9d12 2603 struct r1bio *r1_bio;
1da177e4 2604 unsigned long flags;
e8096360 2605 struct r1conf *conf = mddev->private;
1da177e4 2606 struct list_head *head = &conf->retry_list;
e1dfa0a2 2607 struct blk_plug plug;
fd76863e 2608 int idx;
1da177e4
LT
2609
2610 md_check_recovery(mddev);
e1dfa0a2 2611
55ce74d4 2612 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2613 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2614 LIST_HEAD(tmp);
2615 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2616 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2617 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2618 spin_unlock_irqrestore(&conf->device_lock, flags);
2619 while (!list_empty(&tmp)) {
a452744b
MP
2620 r1_bio = list_first_entry(&tmp, struct r1bio,
2621 retry_list);
55ce74d4 2622 list_del(&r1_bio->retry_list);
fd76863e 2623 idx = sector_to_idx(r1_bio->sector);
824e47da 2624 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2625 if (mddev->degraded)
2626 set_bit(R1BIO_Degraded, &r1_bio->state);
2627 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2628 close_write(r1_bio);
55ce74d4
N
2629 raid_end_bio_io(r1_bio);
2630 }
2631 }
2632
e1dfa0a2 2633 blk_start_plug(&plug);
1da177e4 2634 for (;;) {
191ea9b2 2635
0021b7bc 2636 flush_pending_writes(conf);
191ea9b2 2637
a35e63ef
N
2638 spin_lock_irqsave(&conf->device_lock, flags);
2639 if (list_empty(head)) {
2640 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2641 break;
a35e63ef 2642 }
9f2c9d12 2643 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2644 list_del(head->prev);
fd76863e 2645 idx = sector_to_idx(r1_bio->sector);
824e47da 2646 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2647 spin_unlock_irqrestore(&conf->device_lock, flags);
2648
2649 mddev = r1_bio->mddev;
070ec55d 2650 conf = mddev->private;
4367af55 2651 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2652 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2653 test_bit(R1BIO_WriteError, &r1_bio->state))
2654 handle_sync_write_finished(conf, r1_bio);
2655 else
4367af55 2656 sync_request_write(mddev, r1_bio);
cd5ff9a1 2657 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2658 test_bit(R1BIO_WriteError, &r1_bio->state))
2659 handle_write_finished(conf, r1_bio);
2660 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2661 handle_read_error(conf, r1_bio);
2662 else
d2eb35ac
N
2663 /* just a partial read to be scheduled from separate
2664 * context
2665 */
2666 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2667
1d9d5241 2668 cond_resched();
2953079c 2669 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2670 md_check_recovery(mddev);
1da177e4 2671 }
e1dfa0a2 2672 blk_finish_plug(&plug);
1da177e4
LT
2673}
2674
e8096360 2675static int init_resync(struct r1conf *conf)
1da177e4
LT
2676{
2677 int buffs;
2678
2679 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2680 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2681 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2682 conf->poolinfo);
2683 if (!conf->r1buf_pool)
2684 return -ENOMEM;
1da177e4
LT
2685 return 0;
2686}
2687
2688/*
2689 * perform a "sync" on one "block"
2690 *
2691 * We need to make sure that no normal I/O request - particularly write
2692 * requests - conflict with active sync requests.
2693 *
2694 * This is achieved by tracking pending requests and a 'barrier' concept
2695 * that can be installed to exclude normal IO requests.
2696 */
2697
849674e4
SL
2698static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2699 int *skipped)
1da177e4 2700{
e8096360 2701 struct r1conf *conf = mddev->private;
9f2c9d12 2702 struct r1bio *r1_bio;
1da177e4
LT
2703 struct bio *bio;
2704 sector_t max_sector, nr_sectors;
3e198f78 2705 int disk = -1;
1da177e4 2706 int i;
3e198f78
N
2707 int wonly = -1;
2708 int write_targets = 0, read_targets = 0;
57dab0bd 2709 sector_t sync_blocks;
e3b9703e 2710 int still_degraded = 0;
06f60385
N
2711 int good_sectors = RESYNC_SECTORS;
2712 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2713 int idx = sector_to_idx(sector_nr);
1da177e4
LT
2714
2715 if (!conf->r1buf_pool)
2716 if (init_resync(conf))
57afd89f 2717 return 0;
1da177e4 2718
58c0fed4 2719 max_sector = mddev->dev_sectors;
1da177e4 2720 if (sector_nr >= max_sector) {
191ea9b2
N
2721 /* If we aborted, we need to abort the
2722 * sync on the 'current' bitmap chunk (there will
2723 * only be one in raid1 resync.
2724 * We can find the current addess in mddev->curr_resync
2725 */
6a806c51
N
2726 if (mddev->curr_resync < max_sector) /* aborted */
2727 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2728 &sync_blocks, 1);
6a806c51 2729 else /* completed sync */
191ea9b2 2730 conf->fullsync = 0;
6a806c51
N
2731
2732 bitmap_close_sync(mddev->bitmap);
1da177e4 2733 close_sync(conf);
c40f341f
GR
2734
2735 if (mddev_is_clustered(mddev)) {
2736 conf->cluster_sync_low = 0;
2737 conf->cluster_sync_high = 0;
c40f341f 2738 }
1da177e4
LT
2739 return 0;
2740 }
2741
07d84d10
N
2742 if (mddev->bitmap == NULL &&
2743 mddev->recovery_cp == MaxSector &&
6394cca5 2744 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2745 conf->fullsync == 0) {
2746 *skipped = 1;
2747 return max_sector - sector_nr;
2748 }
6394cca5
N
2749 /* before building a request, check if we can skip these blocks..
2750 * This call the bitmap_start_sync doesn't actually record anything
2751 */
e3b9703e 2752 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2753 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2754 /* We can skip this block, and probably several more */
2755 *skipped = 1;
2756 return sync_blocks;
2757 }
17999be4 2758
7ac50447
TM
2759 /*
2760 * If there is non-resync activity waiting for a turn, then let it
2761 * though before starting on this new sync request.
2762 */
824e47da 2763 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2764 schedule_timeout_uninterruptible(1);
2765
c40f341f
GR
2766 /* we are incrementing sector_nr below. To be safe, we check against
2767 * sector_nr + two times RESYNC_SECTORS
2768 */
2769
2770 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2771 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2772 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2773
c2fd4c94 2774 raise_barrier(conf, sector_nr);
1da177e4 2775
3e198f78 2776 rcu_read_lock();
1da177e4 2777 /*
3e198f78
N
2778 * If we get a correctably read error during resync or recovery,
2779 * we might want to read from a different device. So we
2780 * flag all drives that could conceivably be read from for READ,
2781 * and any others (which will be non-In_sync devices) for WRITE.
2782 * If a read fails, we try reading from something else for which READ
2783 * is OK.
1da177e4 2784 */
1da177e4 2785
1da177e4
LT
2786 r1_bio->mddev = mddev;
2787 r1_bio->sector = sector_nr;
191ea9b2 2788 r1_bio->state = 0;
1da177e4 2789 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2790 /* make sure good_sectors won't go across barrier unit boundary */
2791 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2792
8f19ccb2 2793 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2794 struct md_rdev *rdev;
1da177e4 2795 bio = r1_bio->bios[i];
2aabaa65 2796 bio_reset(bio);
1da177e4 2797
3e198f78
N
2798 rdev = rcu_dereference(conf->mirrors[i].rdev);
2799 if (rdev == NULL ||
06f60385 2800 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2801 if (i < conf->raid_disks)
2802 still_degraded = 1;
3e198f78 2803 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2804 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2805 bio->bi_end_io = end_sync_write;
2806 write_targets ++;
3e198f78
N
2807 } else {
2808 /* may need to read from here */
06f60385
N
2809 sector_t first_bad = MaxSector;
2810 int bad_sectors;
2811
2812 if (is_badblock(rdev, sector_nr, good_sectors,
2813 &first_bad, &bad_sectors)) {
2814 if (first_bad > sector_nr)
2815 good_sectors = first_bad - sector_nr;
2816 else {
2817 bad_sectors -= (sector_nr - first_bad);
2818 if (min_bad == 0 ||
2819 min_bad > bad_sectors)
2820 min_bad = bad_sectors;
2821 }
2822 }
2823 if (sector_nr < first_bad) {
2824 if (test_bit(WriteMostly, &rdev->flags)) {
2825 if (wonly < 0)
2826 wonly = i;
2827 } else {
2828 if (disk < 0)
2829 disk = i;
2830 }
796a5cf0 2831 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2832 bio->bi_end_io = end_sync_read;
2833 read_targets++;
d57368af
AL
2834 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2835 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2836 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2837 /*
2838 * The device is suitable for reading (InSync),
2839 * but has bad block(s) here. Let's try to correct them,
2840 * if we are doing resync or repair. Otherwise, leave
2841 * this device alone for this sync request.
2842 */
796a5cf0 2843 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2844 bio->bi_end_io = end_sync_write;
2845 write_targets++;
3e198f78 2846 }
3e198f78 2847 }
06f60385
N
2848 if (bio->bi_end_io) {
2849 atomic_inc(&rdev->nr_pending);
4f024f37 2850 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2851 bio->bi_bdev = rdev->bdev;
2852 bio->bi_private = r1_bio;
2e52d449
N
2853 if (test_bit(FailFast, &rdev->flags))
2854 bio->bi_opf |= MD_FAILFAST;
06f60385 2855 }
1da177e4 2856 }
3e198f78
N
2857 rcu_read_unlock();
2858 if (disk < 0)
2859 disk = wonly;
2860 r1_bio->read_disk = disk;
191ea9b2 2861
06f60385
N
2862 if (read_targets == 0 && min_bad > 0) {
2863 /* These sectors are bad on all InSync devices, so we
2864 * need to mark them bad on all write targets
2865 */
2866 int ok = 1;
8f19ccb2 2867 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2868 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2869 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2870 ok = rdev_set_badblocks(rdev, sector_nr,
2871 min_bad, 0
2872 ) && ok;
2873 }
2953079c 2874 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2875 *skipped = 1;
2876 put_buf(r1_bio);
2877
2878 if (!ok) {
2879 /* Cannot record the badblocks, so need to
2880 * abort the resync.
2881 * If there are multiple read targets, could just
2882 * fail the really bad ones ???
2883 */
2884 conf->recovery_disabled = mddev->recovery_disabled;
2885 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2886 return 0;
2887 } else
2888 return min_bad;
2889
2890 }
2891 if (min_bad > 0 && min_bad < good_sectors) {
2892 /* only resync enough to reach the next bad->good
2893 * transition */
2894 good_sectors = min_bad;
2895 }
2896
3e198f78
N
2897 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2898 /* extra read targets are also write targets */
2899 write_targets += read_targets-1;
2900
2901 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2902 /* There is nowhere to write, so all non-sync
2903 * drives must be failed - so we are finished
2904 */
b7219ccb
N
2905 sector_t rv;
2906 if (min_bad > 0)
2907 max_sector = sector_nr + min_bad;
2908 rv = max_sector - sector_nr;
57afd89f 2909 *skipped = 1;
1da177e4 2910 put_buf(r1_bio);
1da177e4
LT
2911 return rv;
2912 }
2913
c6207277
N
2914 if (max_sector > mddev->resync_max)
2915 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2916 if (max_sector > sector_nr + good_sectors)
2917 max_sector = sector_nr + good_sectors;
1da177e4 2918 nr_sectors = 0;
289e99e8 2919 sync_blocks = 0;
1da177e4
LT
2920 do {
2921 struct page *page;
2922 int len = PAGE_SIZE;
2923 if (sector_nr + (len>>9) > max_sector)
2924 len = (max_sector - sector_nr) << 9;
2925 if (len == 0)
2926 break;
6a806c51
N
2927 if (sync_blocks == 0) {
2928 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2929 &sync_blocks, still_degraded) &&
2930 !conf->fullsync &&
2931 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2932 break;
7571ae88 2933 if ((len >> 9) > sync_blocks)
6a806c51 2934 len = sync_blocks<<9;
ab7a30c7 2935 }
191ea9b2 2936
8f19ccb2 2937 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2938 bio = r1_bio->bios[i];
2939 if (bio->bi_end_io) {
d11c171e 2940 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2941 if (bio_add_page(bio, page, len, 0) == 0) {
2942 /* stop here */
d11c171e 2943 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2944 while (i > 0) {
2945 i--;
2946 bio = r1_bio->bios[i];
6a806c51
N
2947 if (bio->bi_end_io==NULL)
2948 continue;
1da177e4
LT
2949 /* remove last page from this bio */
2950 bio->bi_vcnt--;
4f024f37 2951 bio->bi_iter.bi_size -= len;
b7c44ed9 2952 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2953 }
2954 goto bio_full;
2955 }
2956 }
2957 }
2958 nr_sectors += len>>9;
2959 sector_nr += len>>9;
191ea9b2 2960 sync_blocks -= (len>>9);
1da177e4
LT
2961 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2962 bio_full:
1da177e4
LT
2963 r1_bio->sectors = nr_sectors;
2964
c40f341f
GR
2965 if (mddev_is_clustered(mddev) &&
2966 conf->cluster_sync_high < sector_nr + nr_sectors) {
2967 conf->cluster_sync_low = mddev->curr_resync_completed;
2968 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2969 /* Send resync message */
2970 md_cluster_ops->resync_info_update(mddev,
2971 conf->cluster_sync_low,
2972 conf->cluster_sync_high);
2973 }
2974
d11c171e
N
2975 /* For a user-requested sync, we read all readable devices and do a
2976 * compare
2977 */
2978 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2979 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2980 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2981 bio = r1_bio->bios[i];
2982 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2983 read_targets--;
ddac7c7e 2984 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2985 if (read_targets == 1)
2986 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2987 generic_make_request(bio);
2988 }
2989 }
2990 } else {
2991 atomic_set(&r1_bio->remaining, 1);
2992 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2993 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2994 if (read_targets == 1)
2995 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2996 generic_make_request(bio);
1da177e4 2997
d11c171e 2998 }
1da177e4
LT
2999 return nr_sectors;
3000}
3001
fd01b88c 3002static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3003{
3004 if (sectors)
3005 return sectors;
3006
3007 return mddev->dev_sectors;
3008}
3009
e8096360 3010static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 3011{
e8096360 3012 struct r1conf *conf;
709ae487 3013 int i;
0eaf822c 3014 struct raid1_info *disk;
3cb03002 3015 struct md_rdev *rdev;
709ae487 3016 int err = -ENOMEM;
1da177e4 3017
e8096360 3018 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 3019 if (!conf)
709ae487 3020 goto abort;
1da177e4 3021
fd76863e 3022 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3023 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3024 if (!conf->nr_pending)
3025 goto abort;
3026
3027 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3028 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3029 if (!conf->nr_waiting)
3030 goto abort;
3031
3032 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3033 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3034 if (!conf->nr_queued)
3035 goto abort;
3036
3037 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3038 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3039 if (!conf->barrier)
3040 goto abort;
3041
0eaf822c 3042 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 3043 * mddev->raid_disks * 2,
1da177e4
LT
3044 GFP_KERNEL);
3045 if (!conf->mirrors)
709ae487 3046 goto abort;
1da177e4 3047
ddaf22ab
N
3048 conf->tmppage = alloc_page(GFP_KERNEL);
3049 if (!conf->tmppage)
709ae487 3050 goto abort;
ddaf22ab 3051
709ae487 3052 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 3053 if (!conf->poolinfo)
709ae487 3054 goto abort;
8f19ccb2 3055 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
3056 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3057 r1bio_pool_free,
3058 conf->poolinfo);
3059 if (!conf->r1bio_pool)
709ae487
N
3060 goto abort;
3061
ed9bfdf1 3062 conf->poolinfo->mddev = mddev;
1da177e4 3063
c19d5798 3064 err = -EINVAL;
e7e72bf6 3065 spin_lock_init(&conf->device_lock);
dafb20fa 3066 rdev_for_each(rdev, mddev) {
aba336bd 3067 struct request_queue *q;
709ae487 3068 int disk_idx = rdev->raid_disk;
1da177e4
LT
3069 if (disk_idx >= mddev->raid_disks
3070 || disk_idx < 0)
3071 continue;
c19d5798 3072 if (test_bit(Replacement, &rdev->flags))
02b898f2 3073 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
3074 else
3075 disk = conf->mirrors + disk_idx;
1da177e4 3076
c19d5798
N
3077 if (disk->rdev)
3078 goto abort;
1da177e4 3079 disk->rdev = rdev;
aba336bd 3080 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
3081
3082 disk->head_position = 0;
12cee5a8 3083 disk->seq_start = MaxSector;
1da177e4
LT
3084 }
3085 conf->raid_disks = mddev->raid_disks;
3086 conf->mddev = mddev;
1da177e4 3087 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3088 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3089
3090 spin_lock_init(&conf->resync_lock);
17999be4 3091 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3092
191ea9b2 3093 bio_list_init(&conf->pending_bio_list);
34db0cd6 3094 conf->pending_count = 0;
d890fa2b 3095 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3096
c19d5798 3097 err = -EIO;
8f19ccb2 3098 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3099
3100 disk = conf->mirrors + i;
3101
c19d5798
N
3102 if (i < conf->raid_disks &&
3103 disk[conf->raid_disks].rdev) {
3104 /* This slot has a replacement. */
3105 if (!disk->rdev) {
3106 /* No original, just make the replacement
3107 * a recovering spare
3108 */
3109 disk->rdev =
3110 disk[conf->raid_disks].rdev;
3111 disk[conf->raid_disks].rdev = NULL;
3112 } else if (!test_bit(In_sync, &disk->rdev->flags))
3113 /* Original is not in_sync - bad */
3114 goto abort;
3115 }
3116
5fd6c1dc
N
3117 if (!disk->rdev ||
3118 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3119 disk->head_position = 0;
4f0a5e01
JB
3120 if (disk->rdev &&
3121 (disk->rdev->saved_raid_disk < 0))
918f0238 3122 conf->fullsync = 1;
be4d3280 3123 }
1da177e4 3124 }
709ae487 3125
709ae487 3126 err = -ENOMEM;
0232605d 3127 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3128 if (!conf->thread)
709ae487 3129 goto abort;
1da177e4 3130
709ae487
N
3131 return conf;
3132
3133 abort:
3134 if (conf) {
644df1a8 3135 mempool_destroy(conf->r1bio_pool);
709ae487
N
3136 kfree(conf->mirrors);
3137 safe_put_page(conf->tmppage);
3138 kfree(conf->poolinfo);
fd76863e 3139 kfree(conf->nr_pending);
3140 kfree(conf->nr_waiting);
3141 kfree(conf->nr_queued);
3142 kfree(conf->barrier);
709ae487
N
3143 kfree(conf);
3144 }
3145 return ERR_PTR(err);
3146}
3147
afa0f557 3148static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3149static int raid1_run(struct mddev *mddev)
709ae487 3150{
e8096360 3151 struct r1conf *conf;
709ae487 3152 int i;
3cb03002 3153 struct md_rdev *rdev;
5220ea1e 3154 int ret;
2ff8cc2c 3155 bool discard_supported = false;
709ae487
N
3156
3157 if (mddev->level != 1) {
1d41c216
N
3158 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3159 mdname(mddev), mddev->level);
709ae487
N
3160 return -EIO;
3161 }
3162 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3163 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3164 mdname(mddev));
709ae487
N
3165 return -EIO;
3166 }
1da177e4 3167 /*
709ae487
N
3168 * copy the already verified devices into our private RAID1
3169 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3170 * should be freed in raid1_free()]
1da177e4 3171 */
709ae487
N
3172 if (mddev->private == NULL)
3173 conf = setup_conf(mddev);
3174 else
3175 conf = mddev->private;
1da177e4 3176
709ae487
N
3177 if (IS_ERR(conf))
3178 return PTR_ERR(conf);
1da177e4 3179
c8dc9c65 3180 if (mddev->queue)
5026d7a9
PA
3181 blk_queue_max_write_same_sectors(mddev->queue, 0);
3182
dafb20fa 3183 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3184 if (!mddev->gendisk)
3185 continue;
709ae487
N
3186 disk_stack_limits(mddev->gendisk, rdev->bdev,
3187 rdev->data_offset << 9);
2ff8cc2c
SL
3188 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3189 discard_supported = true;
1da177e4 3190 }
191ea9b2 3191
709ae487
N
3192 mddev->degraded = 0;
3193 for (i=0; i < conf->raid_disks; i++)
3194 if (conf->mirrors[i].rdev == NULL ||
3195 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3196 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3197 mddev->degraded++;
3198
3199 if (conf->raid_disks - mddev->degraded == 1)
3200 mddev->recovery_cp = MaxSector;
3201
8c6ac868 3202 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3203 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3204 mdname(mddev));
3205 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3206 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3207 mddev->raid_disks);
709ae487 3208
1da177e4
LT
3209 /*
3210 * Ok, everything is just fine now
3211 */
709ae487
N
3212 mddev->thread = conf->thread;
3213 conf->thread = NULL;
3214 mddev->private = conf;
46533ff7 3215 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3216
1f403624 3217 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3218
1ed7242e 3219 if (mddev->queue) {
2ff8cc2c
SL
3220 if (discard_supported)
3221 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3222 mddev->queue);
3223 else
3224 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3225 mddev->queue);
1ed7242e 3226 }
5220ea1e 3227
3228 ret = md_integrity_register(mddev);
5aa61f42
N
3229 if (ret) {
3230 md_unregister_thread(&mddev->thread);
afa0f557 3231 raid1_free(mddev, conf);
5aa61f42 3232 }
5220ea1e 3233 return ret;
1da177e4
LT
3234}
3235
afa0f557 3236static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3237{
afa0f557 3238 struct r1conf *conf = priv;
409c57f3 3239
644df1a8 3240 mempool_destroy(conf->r1bio_pool);
990a8baf 3241 kfree(conf->mirrors);
0fea7ed8 3242 safe_put_page(conf->tmppage);
990a8baf 3243 kfree(conf->poolinfo);
fd76863e 3244 kfree(conf->nr_pending);
3245 kfree(conf->nr_waiting);
3246 kfree(conf->nr_queued);
3247 kfree(conf->barrier);
1da177e4 3248 kfree(conf);
1da177e4
LT
3249}
3250
fd01b88c 3251static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3252{
3253 /* no resync is happening, and there is enough space
3254 * on all devices, so we can resize.
3255 * We need to make sure resync covers any new space.
3256 * If the array is shrinking we should possibly wait until
3257 * any io in the removed space completes, but it hardly seems
3258 * worth it.
3259 */
a4a6125a
N
3260 sector_t newsize = raid1_size(mddev, sectors, 0);
3261 if (mddev->external_size &&
3262 mddev->array_sectors > newsize)
b522adcd 3263 return -EINVAL;
a4a6125a
N
3264 if (mddev->bitmap) {
3265 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3266 if (ret)
3267 return ret;
3268 }
3269 md_set_array_sectors(mddev, newsize);
b522adcd 3270 if (sectors > mddev->dev_sectors &&
b098636c 3271 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3272 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3273 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3274 }
b522adcd 3275 mddev->dev_sectors = sectors;
4b5c7ae8 3276 mddev->resync_max_sectors = sectors;
1da177e4
LT
3277 return 0;
3278}
3279
fd01b88c 3280static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3281{
3282 /* We need to:
3283 * 1/ resize the r1bio_pool
3284 * 2/ resize conf->mirrors
3285 *
3286 * We allocate a new r1bio_pool if we can.
3287 * Then raise a device barrier and wait until all IO stops.
3288 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3289 *
3290 * At the same time, we "pack" the devices so that all the missing
3291 * devices have the higher raid_disk numbers.
1da177e4
LT
3292 */
3293 mempool_t *newpool, *oldpool;
3294 struct pool_info *newpoolinfo;
0eaf822c 3295 struct raid1_info *newmirrors;
e8096360 3296 struct r1conf *conf = mddev->private;
63c70c4f 3297 int cnt, raid_disks;
c04be0aa 3298 unsigned long flags;
b5470dc5 3299 int d, d2, err;
1da177e4 3300
63c70c4f 3301 /* Cannot change chunk_size, layout, or level */
664e7c41 3302 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3303 mddev->layout != mddev->new_layout ||
3304 mddev->level != mddev->new_level) {
664e7c41 3305 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3306 mddev->new_layout = mddev->layout;
3307 mddev->new_level = mddev->level;
3308 return -EINVAL;
3309 }
3310
28c1b9fd
GR
3311 if (!mddev_is_clustered(mddev)) {
3312 err = md_allow_write(mddev);
3313 if (err)
3314 return err;
3315 }
2a2275d6 3316
63c70c4f
N
3317 raid_disks = mddev->raid_disks + mddev->delta_disks;
3318
6ea9c07c
N
3319 if (raid_disks < conf->raid_disks) {
3320 cnt=0;
3321 for (d= 0; d < conf->raid_disks; d++)
3322 if (conf->mirrors[d].rdev)
3323 cnt++;
3324 if (cnt > raid_disks)
1da177e4 3325 return -EBUSY;
6ea9c07c 3326 }
1da177e4
LT
3327
3328 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3329 if (!newpoolinfo)
3330 return -ENOMEM;
3331 newpoolinfo->mddev = mddev;
8f19ccb2 3332 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3333
3334 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3335 r1bio_pool_free, newpoolinfo);
3336 if (!newpool) {
3337 kfree(newpoolinfo);
3338 return -ENOMEM;
3339 }
0eaf822c 3340 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3341 GFP_KERNEL);
1da177e4
LT
3342 if (!newmirrors) {
3343 kfree(newpoolinfo);
3344 mempool_destroy(newpool);
3345 return -ENOMEM;
3346 }
1da177e4 3347
e2d59925 3348 freeze_array(conf, 0);
1da177e4
LT
3349
3350 /* ok, everything is stopped */
3351 oldpool = conf->r1bio_pool;
3352 conf->r1bio_pool = newpool;
6ea9c07c 3353
a88aa786 3354 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3355 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3356 if (rdev && rdev->raid_disk != d2) {
36fad858 3357 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3358 rdev->raid_disk = d2;
36fad858
NK
3359 sysfs_unlink_rdev(mddev, rdev);
3360 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3361 pr_warn("md/raid1:%s: cannot register rd%d\n",
3362 mdname(mddev), rdev->raid_disk);
6ea9c07c 3363 }
a88aa786
N
3364 if (rdev)
3365 newmirrors[d2++].rdev = rdev;
3366 }
1da177e4
LT
3367 kfree(conf->mirrors);
3368 conf->mirrors = newmirrors;
3369 kfree(conf->poolinfo);
3370 conf->poolinfo = newpoolinfo;
3371
c04be0aa 3372 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3373 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3374 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3375 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3376 mddev->delta_disks = 0;
1da177e4 3377
e2d59925 3378 unfreeze_array(conf);
1da177e4 3379
985ca973 3380 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3381 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3382 md_wakeup_thread(mddev->thread);
3383
3384 mempool_destroy(oldpool);
3385 return 0;
3386}
3387
fd01b88c 3388static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3389{
e8096360 3390 struct r1conf *conf = mddev->private;
36fa3063
N
3391
3392 switch(state) {
6eef4b21
N
3393 case 2: /* wake for suspend */
3394 wake_up(&conf->wait_barrier);
3395 break;
9e6603da 3396 case 1:
07169fd4 3397 freeze_array(conf, 0);
36fa3063 3398 break;
9e6603da 3399 case 0:
07169fd4 3400 unfreeze_array(conf);
36fa3063
N
3401 break;
3402 }
36fa3063
N
3403}
3404
fd01b88c 3405static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3406{
3407 /* raid1 can take over:
3408 * raid5 with 2 devices, any layout or chunk size
3409 */
3410 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3411 struct r1conf *conf;
709ae487
N
3412 mddev->new_level = 1;
3413 mddev->new_layout = 0;
3414 mddev->new_chunk_sectors = 0;
3415 conf = setup_conf(mddev);
6995f0b2 3416 if (!IS_ERR(conf)) {
07169fd4 3417 /* Array must appear to be quiesced */
3418 conf->array_frozen = 1;
394ed8e4
SL
3419 mddev_clear_unsupported_flags(mddev,
3420 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3421 }
709ae487
N
3422 return conf;
3423 }
3424 return ERR_PTR(-EINVAL);
3425}
1da177e4 3426
84fc4b56 3427static struct md_personality raid1_personality =
1da177e4
LT
3428{
3429 .name = "raid1",
2604b703 3430 .level = 1,
1da177e4 3431 .owner = THIS_MODULE,
849674e4
SL
3432 .make_request = raid1_make_request,
3433 .run = raid1_run,
afa0f557 3434 .free = raid1_free,
849674e4
SL
3435 .status = raid1_status,
3436 .error_handler = raid1_error,
1da177e4
LT
3437 .hot_add_disk = raid1_add_disk,
3438 .hot_remove_disk= raid1_remove_disk,
3439 .spare_active = raid1_spare_active,
849674e4 3440 .sync_request = raid1_sync_request,
1da177e4 3441 .resize = raid1_resize,
80c3a6ce 3442 .size = raid1_size,
63c70c4f 3443 .check_reshape = raid1_reshape,
36fa3063 3444 .quiesce = raid1_quiesce,
709ae487 3445 .takeover = raid1_takeover,
5c675f83 3446 .congested = raid1_congested,
1da177e4
LT
3447};
3448
3449static int __init raid_init(void)
3450{
2604b703 3451 return register_md_personality(&raid1_personality);
1da177e4
LT
3452}
3453
3454static void raid_exit(void)
3455{
2604b703 3456 unregister_md_personality(&raid1_personality);
1da177e4
LT
3457}
3458
3459module_init(raid_init);
3460module_exit(raid_exit);
3461MODULE_LICENSE("GPL");
0efb9e61 3462MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3463MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3464MODULE_ALIAS("md-raid1");
2604b703 3465MODULE_ALIAS("md-level-1");
34db0cd6
N
3466
3467module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);