]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/md/raid1.c
block: replace bi_bdev with a gendisk pointer and partitions index
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
3f07c014
IM
40#include <linux/sched/signal.h>
41
109e3765 42#include <trace/events/block.h>
3f07c014 43
43b2e5d8 44#include "md.h"
ef740c37
CH
45#include "raid1.h"
46#include "bitmap.h"
191ea9b2 47
394ed8e4
SL
48#define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
ea0213e0
AP
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
394ed8e4 52
1da177e4
LT
53/*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56#define NR_RAID1_BIOS 256
57
473e87ce
JB
58/* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63#define IO_BLOCKED ((struct bio *)1)
64/* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68#define IO_MADE_GOOD ((struct bio *)2)
69
70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
34db0cd6
N
72/* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76static int max_queued_requests = 1024;
1da177e4 77
fd76863e 78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 80
578b54ad
N
81#define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
fb0eb5df
ML
84#include "raid1-10.c"
85
98d30c58
ML
86/*
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
89 */
90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91{
92 return get_resync_pages(bio)->raid_bio;
93}
94
dd0fc66f 95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
99
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 101 return kzalloc(size, gfp_flags);
1da177e4
LT
102}
103
104static void r1bio_pool_free(void *r1_bio, void *data)
105{
106 kfree(r1_bio);
107}
108
8e005f7c 109#define RESYNC_DEPTH 32
1da177e4 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 115
dd0fc66f 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
117{
118 struct pool_info *pi = data;
9f2c9d12 119 struct r1bio *r1_bio;
1da177e4 120 struct bio *bio;
da1aab3d 121 int need_pages;
98d30c58
ML
122 int j;
123 struct resync_pages *rps;
1da177e4
LT
124
125 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 126 if (!r1_bio)
1da177e4 127 return NULL;
1da177e4 128
98d30c58
ML
129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 gfp_flags);
131 if (!rps)
132 goto out_free_r1bio;
133
1da177e4
LT
134 /*
135 * Allocate bios : 1 for reading, n-1 for writing
136 */
137 for (j = pi->raid_disks ; j-- ; ) {
6746557f 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
139 if (!bio)
140 goto out_free_bio;
141 r1_bio->bios[j] = bio;
142 }
143 /*
144 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
145 * the first bio.
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
1da177e4 148 */
d11c171e 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 150 need_pages = pi->raid_disks;
d11c171e 151 else
da1aab3d 152 need_pages = 1;
98d30c58
ML
153 for (j = 0; j < pi->raid_disks; j++) {
154 struct resync_pages *rp = &rps[j];
155
d11c171e 156 bio = r1_bio->bios[j];
d11c171e 157
98d30c58
ML
158 if (j < need_pages) {
159 if (resync_alloc_pages(rp, gfp_flags))
160 goto out_free_pages;
161 } else {
162 memcpy(rp, &rps[0], sizeof(*rp));
163 resync_get_all_pages(rp);
164 }
165
98d30c58
ML
166 rp->raid_bio = r1_bio;
167 bio->bi_private = rp;
1da177e4
LT
168 }
169
170 r1_bio->master_bio = NULL;
171
172 return r1_bio;
173
da1aab3d 174out_free_pages:
491221f8 175 while (--j >= 0)
98d30c58 176 resync_free_pages(&rps[j]);
da1aab3d 177
1da177e4 178out_free_bio:
8f19ccb2 179 while (++j < pi->raid_disks)
1da177e4 180 bio_put(r1_bio->bios[j]);
98d30c58
ML
181 kfree(rps);
182
183out_free_r1bio:
1da177e4
LT
184 r1bio_pool_free(r1_bio, data);
185 return NULL;
186}
187
188static void r1buf_pool_free(void *__r1_bio, void *data)
189{
190 struct pool_info *pi = data;
98d30c58 191 int i;
9f2c9d12 192 struct r1bio *r1bio = __r1_bio;
98d30c58 193 struct resync_pages *rp = NULL;
1da177e4 194
98d30c58
ML
195 for (i = pi->raid_disks; i--; ) {
196 rp = get_resync_pages(r1bio->bios[i]);
197 resync_free_pages(rp);
1da177e4 198 bio_put(r1bio->bios[i]);
98d30c58
ML
199 }
200
201 /* resync pages array stored in the 1st bio's .bi_private */
202 kfree(rp);
1da177e4
LT
203
204 r1bio_pool_free(r1bio, data);
205}
206
e8096360 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
208{
209 int i;
210
8f19ccb2 211 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 212 struct bio **bio = r1_bio->bios + i;
4367af55 213 if (!BIO_SPECIAL(*bio))
1da177e4
LT
214 bio_put(*bio);
215 *bio = NULL;
216 }
217}
218
9f2c9d12 219static void free_r1bio(struct r1bio *r1_bio)
1da177e4 220{
e8096360 221 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 222
1da177e4
LT
223 put_all_bios(conf, r1_bio);
224 mempool_free(r1_bio, conf->r1bio_pool);
225}
226
9f2c9d12 227static void put_buf(struct r1bio *r1_bio)
1da177e4 228{
e8096360 229 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 230 sector_t sect = r1_bio->sector;
3e198f78
N
231 int i;
232
8f19ccb2 233 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
234 struct bio *bio = r1_bio->bios[i];
235 if (bio->bi_end_io)
236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 }
1da177e4
LT
238
239 mempool_free(r1_bio, conf->r1buf_pool);
240
af5f42a7 241 lower_barrier(conf, sect);
1da177e4
LT
242}
243
9f2c9d12 244static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
245{
246 unsigned long flags;
fd01b88c 247 struct mddev *mddev = r1_bio->mddev;
e8096360 248 struct r1conf *conf = mddev->private;
fd76863e 249 int idx;
1da177e4 250
fd76863e 251 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
252 spin_lock_irqsave(&conf->device_lock, flags);
253 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 254 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
255 spin_unlock_irqrestore(&conf->device_lock, flags);
256
17999be4 257 wake_up(&conf->wait_barrier);
1da177e4
LT
258 md_wakeup_thread(mddev->thread);
259}
260
261/*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
9f2c9d12 266static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
267{
268 struct bio *bio = r1_bio->master_bio;
e8096360 269 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
270
271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 272 bio->bi_status = BLK_STS_IOERR;
4246a0b6 273
37011e3a
N
274 bio_endio(bio);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
280}
281
9f2c9d12 282static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
283{
284 struct bio *bio = r1_bio->master_bio;
285
4b6d287f
N
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
290 (unsigned long long) bio->bi_iter.bi_sector,
291 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 292
d2eb35ac 293 call_bio_endio(r1_bio);
4b6d287f 294 }
1da177e4
LT
295 free_r1bio(r1_bio);
296}
297
298/*
299 * Update disk head position estimator based on IRQ completion info.
300 */
9f2c9d12 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 302{
e8096360 303 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
304
305 conf->mirrors[disk].head_position =
306 r1_bio->sector + (r1_bio->sectors);
307}
308
ba3ae3be
NK
309/*
310 * Find the disk number which triggered given bio
311 */
9f2c9d12 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
313{
314 int mirror;
30194636
N
315 struct r1conf *conf = r1_bio->mddev->private;
316 int raid_disks = conf->raid_disks;
ba3ae3be 317
8f19ccb2 318 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
319 if (r1_bio->bios[mirror] == bio)
320 break;
321
8f19ccb2 322 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
323 update_head_pos(mirror, r1_bio);
324
325 return mirror;
326}
327
4246a0b6 328static void raid1_end_read_request(struct bio *bio)
1da177e4 329{
4e4cbee9 330 int uptodate = !bio->bi_status;
9f2c9d12 331 struct r1bio *r1_bio = bio->bi_private;
e8096360 332 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 334
1da177e4
LT
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
e5872d58 338 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 339
dd00a99e
N
340 if (uptodate)
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
342 else if (test_bit(FailFast, &rdev->flags) &&
343 test_bit(R1BIO_FailFast, &r1_bio->state))
344 /* This was a fail-fast read so we definitely
345 * want to retry */
346 ;
dd00a99e
N
347 else {
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 351 */
dd00a99e
N
352 unsigned long flags;
353 spin_lock_irqsave(&conf->device_lock, flags);
354 if (r1_bio->mddev->degraded == conf->raid_disks ||
355 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 356 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
357 uptodate = 1;
358 spin_unlock_irqrestore(&conf->device_lock, flags);
359 }
1da177e4 360
7ad4d4a6 361 if (uptodate) {
1da177e4 362 raid_end_bio_io(r1_bio);
e5872d58 363 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 364 } else {
1da177e4
LT
365 /*
366 * oops, read error:
367 */
368 char b[BDEVNAME_SIZE];
1d41c216
N
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 mdname(conf->mddev),
371 bdevname(rdev->bdev, b),
372 (unsigned long long)r1_bio->sector);
d2eb35ac 373 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 374 reschedule_retry(r1_bio);
7ad4d4a6 375 /* don't drop the reference on read_disk yet */
1da177e4 376 }
1da177e4
LT
377}
378
9f2c9d12 379static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
380{
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
383 bio_free_pages(r1_bio->behind_master_bio);
384 bio_put(r1_bio->behind_master_bio);
385 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393}
394
9f2c9d12 395static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 396{
cd5ff9a1
N
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
4367af55
N
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
4e78064f
N
408 }
409}
410
4246a0b6 411static void raid1_end_write_request(struct bio *bio)
1da177e4 412{
9f2c9d12 413 struct r1bio *r1_bio = bio->bi_private;
e5872d58 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 415 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 416 struct bio *to_put = NULL;
e5872d58
N
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
419 bool discard_error;
420
4e4cbee9 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 422
e9c7469b
TH
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
4e4cbee9 426 if (bio->bi_status && !discard_error) {
e5872d58
N
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
212e7eb7
N
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 450 } else {
1da177e4 451 /*
e9c7469b
TH
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
1da177e4 460 */
4367af55
N
461 sector_t first_bad;
462 int bad_sectors;
463
cd5ff9a1
N
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
3056e3ae
AL
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
e5872d58
N
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
3056e3ae 476 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 477
4367af55 478 /* Maybe we can clear some bad blocks. */
e5872d58 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 480 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
e9c7469b 486 if (behind) {
e5872d58 487 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
4f024f37
KO
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 506 call_bio_endio(r1_bio);
4b6d287f
N
507 }
508 }
509 }
4367af55 510 if (r1_bio->bios[mirror] == NULL)
e5872d58 511 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 512
1da177e4 513 /*
1da177e4
LT
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
af6d7b76 517 r1_bio_write_done(r1_bio);
c70810b3 518
04b857f7
N
519 if (to_put)
520 bio_put(to_put);
1da177e4
LT
521}
522
fd76863e 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525{
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540}
541
1da177e4
LT
542/*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
e8096360 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 557{
af3a2cd6 558 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
559 int sectors;
560 int best_good_sectors;
9dedf603
SL
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
be4d3280 563 int disk;
76073054 564 sector_t best_dist;
9dedf603 565 unsigned int min_pending;
3cb03002 566 struct md_rdev *rdev;
f3ac8bf7 567 int choose_first;
12cee5a8 568 int choose_next_idle;
1da177e4
LT
569
570 rcu_read_lock();
571 /*
8ddf9efe 572 * Check if we can balance. We can balance on the whole
1da177e4
LT
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
d2eb35ac 577 sectors = r1_bio->sectors;
76073054 578 best_disk = -1;
9dedf603 579 best_dist_disk = -1;
76073054 580 best_dist = MaxSector;
9dedf603
SL
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
d2eb35ac 583 best_good_sectors = 0;
9dedf603 584 has_nonrot_disk = 0;
12cee5a8 585 choose_next_idle = 0;
2e52d449 586 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 587
7d49ffcf
GR
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
90382ed9 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
1da177e4 595
be4d3280 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 597 sector_t dist;
d2eb35ac
N
598 sector_t first_bad;
599 int bad_sectors;
9dedf603 600 unsigned int pending;
12cee5a8 601 bool nonrot;
d2eb35ac 602
f3ac8bf7
N
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
76073054 606 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 607 continue;
76073054
N
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
1da177e4 610 continue;
76073054
N
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
d1901ef0 614 if (best_dist_disk < 0) {
307729c8
N
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
816b0acf 617 if (first_bad <= this_sector)
307729c8
N
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
d1901ef0
TH
623 best_dist_disk = disk;
624 best_pending_disk = disk;
307729c8 625 }
76073054
N
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
d2eb35ac
N
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
d82dd0e3
TM
657 } else {
658 if ((sectors > best_good_sectors) && (best_disk >= 0))
659 best_disk = -1;
d2eb35ac 660 best_good_sectors = sectors;
d82dd0e3 661 }
d2eb35ac 662
2e52d449
N
663 if (best_disk >= 0)
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast, &r1_bio->state);
666
12cee5a8
SL
667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 has_nonrot_disk |= nonrot;
9dedf603 669 pending = atomic_read(&rdev->nr_pending);
76073054 670 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 671 if (choose_first) {
76073054 672 best_disk = disk;
1da177e4
LT
673 break;
674 }
12cee5a8
SL
675 /* Don't change to another disk for sequential reads */
676 if (conf->mirrors[disk].next_seq_sect == this_sector
677 || dist == 0) {
678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 struct raid1_info *mirror = &conf->mirrors[disk];
680
681 best_disk = disk;
682 /*
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
694 */
695 if (nonrot && opt_iosize > 0 &&
696 mirror->seq_start != MaxSector &&
697 mirror->next_seq_sect > opt_iosize &&
698 mirror->next_seq_sect - opt_iosize >=
699 mirror->seq_start) {
700 choose_next_idle = 1;
701 continue;
702 }
703 break;
704 }
12cee5a8
SL
705
706 if (choose_next_idle)
707 continue;
9dedf603
SL
708
709 if (min_pending > pending) {
710 min_pending = pending;
711 best_pending_disk = disk;
712 }
713
76073054
N
714 if (dist < best_dist) {
715 best_dist = dist;
9dedf603 716 best_dist_disk = disk;
1da177e4 717 }
f3ac8bf7 718 }
1da177e4 719
9dedf603
SL
720 /*
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
725 */
726 if (best_disk == -1) {
2e52d449 727 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
728 best_disk = best_pending_disk;
729 else
730 best_disk = best_dist_disk;
731 }
732
76073054
N
733 if (best_disk >= 0) {
734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
735 if (!rdev)
736 goto retry;
737 atomic_inc(&rdev->nr_pending);
d2eb35ac 738 sectors = best_good_sectors;
12cee5a8
SL
739
740 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 conf->mirrors[best_disk].seq_start = this_sector;
742
be4d3280 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
744 }
745 rcu_read_unlock();
d2eb35ac 746 *max_sectors = sectors;
1da177e4 747
76073054 748 return best_disk;
1da177e4
LT
749}
750
5c675f83 751static int raid1_congested(struct mddev *mddev, int bits)
0d129228 752{
e8096360 753 struct r1conf *conf = mddev->private;
0d129228
N
754 int i, ret = 0;
755
4452226e 756 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
757 conf->pending_count >= max_queued_requests)
758 return 1;
759
0d129228 760 rcu_read_lock();
f53e29fc 761 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 763 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 764 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 765
1ed7242e
JB
766 BUG_ON(!q);
767
0d129228
N
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
770 */
4452226e 771 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 772 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 773 else
dc3b17cc 774 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
775 }
776 }
777 rcu_read_unlock();
778 return ret;
779}
0d129228 780
673ca68d
N
781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782{
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf->mddev->bitmap);
785 wake_up(&conf->wait_barrier);
786
787 while (bio) { /* submit pending writes */
788 struct bio *next = bio->bi_next;
74d46992 789 struct md_rdev *rdev = (void *)bio->bi_disk;
673ca68d 790 bio->bi_next = NULL;
74d46992 791 bio_set_dev(bio, rdev->bdev);
673ca68d 792 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 793 bio_io_error(bio);
673ca68d 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 795 !blk_queue_discard(bio->bi_disk->queue)))
673ca68d
N
796 /* Just ignore it */
797 bio_endio(bio);
798 else
799 generic_make_request(bio);
800 bio = next;
801 }
802}
803
e8096360 804static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
805{
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
a35e63ef 808 */
a35e63ef
N
809 spin_lock_irq(&conf->device_lock);
810
811 if (conf->pending_bio_list.head) {
812 struct bio *bio;
813 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 814 conf->pending_count = 0;
a35e63ef 815 spin_unlock_irq(&conf->device_lock);
673ca68d 816 flush_bio_list(conf, bio);
a35e63ef
N
817 } else
818 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
819}
820
17999be4
N
821/* Barriers....
822 * Sometimes we need to suspend IO while we do something else,
823 * either some resync/recovery, or reconfigure the array.
824 * To do this we raise a 'barrier'.
825 * The 'barrier' is a counter that can be raised multiple times
826 * to count how many activities are happening which preclude
827 * normal IO.
828 * We can only raise the barrier if there is no pending IO.
829 * i.e. if nr_pending == 0.
830 * We choose only to raise the barrier if no-one is waiting for the
831 * barrier to go down. This means that as soon as an IO request
832 * is ready, no other operations which require a barrier will start
833 * until the IO request has had a chance.
834 *
835 * So: regular IO calls 'wait_barrier'. When that returns there
836 * is no backgroup IO happening, It must arrange to call
837 * allow_barrier when it has finished its IO.
838 * backgroup IO calls must call raise_barrier. Once that returns
839 * there is no normal IO happeing. It must arrange to call
840 * lower_barrier when the particular background IO completes.
1da177e4 841 */
c2fd4c94 842static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 843{
fd76863e 844 int idx = sector_to_idx(sector_nr);
845
1da177e4 846 spin_lock_irq(&conf->resync_lock);
17999be4
N
847
848 /* Wait until no block IO is waiting */
824e47da 849 wait_event_lock_irq(conf->wait_barrier,
850 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 851 conf->resync_lock);
17999be4
N
852
853 /* block any new IO from starting */
824e47da 854 atomic_inc(&conf->barrier[idx]);
855 /*
856 * In raise_barrier() we firstly increase conf->barrier[idx] then
857 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
858 * increase conf->nr_pending[idx] then check conf->barrier[idx].
859 * A memory barrier here to make sure conf->nr_pending[idx] won't
860 * be fetched before conf->barrier[idx] is increased. Otherwise
861 * there will be a race between raise_barrier() and _wait_barrier().
862 */
863 smp_mb__after_atomic();
17999be4 864
79ef3a8a 865 /* For these conditions we must wait:
866 * A: while the array is in frozen state
fd76863e 867 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
868 * existing in corresponding I/O barrier bucket.
869 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
870 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 871 */
17999be4 872 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 873 !conf->array_frozen &&
824e47da 874 !atomic_read(&conf->nr_pending[idx]) &&
875 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
eed8c02e 876 conf->resync_lock);
17999be4 877
43ac9b84 878 atomic_inc(&conf->nr_sync_pending);
17999be4
N
879 spin_unlock_irq(&conf->resync_lock);
880}
881
fd76863e 882static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 883{
fd76863e 884 int idx = sector_to_idx(sector_nr);
885
824e47da 886 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 887
824e47da 888 atomic_dec(&conf->barrier[idx]);
43ac9b84 889 atomic_dec(&conf->nr_sync_pending);
17999be4
N
890 wake_up(&conf->wait_barrier);
891}
892
fd76863e 893static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 894{
824e47da 895 /*
896 * We need to increase conf->nr_pending[idx] very early here,
897 * then raise_barrier() can be blocked when it waits for
898 * conf->nr_pending[idx] to be 0. Then we can avoid holding
899 * conf->resync_lock when there is no barrier raised in same
900 * barrier unit bucket. Also if the array is frozen, I/O
901 * should be blocked until array is unfrozen.
902 */
903 atomic_inc(&conf->nr_pending[idx]);
904 /*
905 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
906 * check conf->barrier[idx]. In raise_barrier() we firstly increase
907 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
908 * barrier is necessary here to make sure conf->barrier[idx] won't be
909 * fetched before conf->nr_pending[idx] is increased. Otherwise there
910 * will be a race between _wait_barrier() and raise_barrier().
911 */
912 smp_mb__after_atomic();
79ef3a8a 913
824e47da 914 /*
915 * Don't worry about checking two atomic_t variables at same time
916 * here. If during we check conf->barrier[idx], the array is
917 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
918 * 0, it is safe to return and make the I/O continue. Because the
919 * array is frozen, all I/O returned here will eventually complete
920 * or be queued, no race will happen. See code comment in
921 * frozen_array().
922 */
923 if (!READ_ONCE(conf->array_frozen) &&
924 !atomic_read(&conf->barrier[idx]))
925 return;
79ef3a8a 926
824e47da 927 /*
928 * After holding conf->resync_lock, conf->nr_pending[idx]
929 * should be decreased before waiting for barrier to drop.
930 * Otherwise, we may encounter a race condition because
931 * raise_barrer() might be waiting for conf->nr_pending[idx]
932 * to be 0 at same time.
933 */
934 spin_lock_irq(&conf->resync_lock);
935 atomic_inc(&conf->nr_waiting[idx]);
936 atomic_dec(&conf->nr_pending[idx]);
937 /*
938 * In case freeze_array() is waiting for
939 * get_unqueued_pending() == extra
940 */
941 wake_up(&conf->wait_barrier);
942 /* Wait for the barrier in same barrier unit bucket to drop. */
943 wait_event_lock_irq(conf->wait_barrier,
944 !conf->array_frozen &&
945 !atomic_read(&conf->barrier[idx]),
946 conf->resync_lock);
947 atomic_inc(&conf->nr_pending[idx]);
948 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 949 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 950}
951
fd76863e 952static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 953{
fd76863e 954 int idx = sector_to_idx(sector_nr);
79ef3a8a 955
824e47da 956 /*
957 * Very similar to _wait_barrier(). The difference is, for read
958 * I/O we don't need wait for sync I/O, but if the whole array
959 * is frozen, the read I/O still has to wait until the array is
960 * unfrozen. Since there is no ordering requirement with
961 * conf->barrier[idx] here, memory barrier is unnecessary as well.
962 */
963 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 964
824e47da 965 if (!READ_ONCE(conf->array_frozen))
966 return;
967
968 spin_lock_irq(&conf->resync_lock);
969 atomic_inc(&conf->nr_waiting[idx]);
970 atomic_dec(&conf->nr_pending[idx]);
971 /*
972 * In case freeze_array() is waiting for
973 * get_unqueued_pending() == extra
974 */
975 wake_up(&conf->wait_barrier);
976 /* Wait for array to be unfrozen */
977 wait_event_lock_irq(conf->wait_barrier,
978 !conf->array_frozen,
979 conf->resync_lock);
980 atomic_inc(&conf->nr_pending[idx]);
981 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
982 spin_unlock_irq(&conf->resync_lock);
983}
984
fd76863e 985static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 986{
fd76863e 987 int idx = sector_to_idx(sector_nr);
79ef3a8a 988
fd76863e 989 _wait_barrier(conf, idx);
990}
991
992static void wait_all_barriers(struct r1conf *conf)
993{
994 int idx;
995
996 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
997 _wait_barrier(conf, idx);
998}
999
1000static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1001{
824e47da 1002 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1003 wake_up(&conf->wait_barrier);
1004}
1005
fd76863e 1006static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1007{
1008 int idx = sector_to_idx(sector_nr);
1009
1010 _allow_barrier(conf, idx);
1011}
1012
1013static void allow_all_barriers(struct r1conf *conf)
1014{
1015 int idx;
1016
1017 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018 _allow_barrier(conf, idx);
1019}
1020
1021/* conf->resync_lock should be held */
1022static int get_unqueued_pending(struct r1conf *conf)
1023{
1024 int idx, ret;
1025
43ac9b84
XN
1026 ret = atomic_read(&conf->nr_sync_pending);
1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1028 ret += atomic_read(&conf->nr_pending[idx]) -
1029 atomic_read(&conf->nr_queued[idx]);
fd76863e 1030
1031 return ret;
1032}
1033
e2d59925 1034static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1035{
fd76863e 1036 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1037 * go quiet.
fd76863e 1038 * This is called in two situations:
1039 * 1) management command handlers (reshape, remove disk, quiesce).
1040 * 2) one normal I/O request failed.
1041
1042 * After array_frozen is set to 1, new sync IO will be blocked at
1043 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1044 * or wait_read_barrier(). The flying I/Os will either complete or be
1045 * queued. When everything goes quite, there are only queued I/Os left.
1046
1047 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1048 * barrier bucket index which this I/O request hits. When all sync and
1049 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1050 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1051 * in handle_read_error(), we may call freeze_array() before trying to
1052 * fix the read error. In this case, the error read I/O is not queued,
1053 * so get_unqueued_pending() == 1.
1054 *
1055 * Therefore before this function returns, we need to wait until
1056 * get_unqueued_pendings(conf) gets equal to extra. For
1057 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1058 */
1059 spin_lock_irq(&conf->resync_lock);
b364e3d0 1060 conf->array_frozen = 1;
578b54ad 1061 raid1_log(conf->mddev, "wait freeze");
fd76863e 1062 wait_event_lock_irq_cmd(
1063 conf->wait_barrier,
1064 get_unqueued_pending(conf) == extra,
1065 conf->resync_lock,
1066 flush_pending_writes(conf));
ddaf22ab
N
1067 spin_unlock_irq(&conf->resync_lock);
1068}
e8096360 1069static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1070{
1071 /* reverse the effect of the freeze */
1072 spin_lock_irq(&conf->resync_lock);
b364e3d0 1073 conf->array_frozen = 0;
ddaf22ab 1074 spin_unlock_irq(&conf->resync_lock);
824e47da 1075 wake_up(&conf->wait_barrier);
ddaf22ab
N
1076}
1077
16d56e2f 1078static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1079 struct bio *bio)
4b6d287f 1080{
cb83efcf 1081 int size = bio->bi_iter.bi_size;
841c1316
ML
1082 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083 int i = 0;
1084 struct bio *behind_bio = NULL;
1085
1086 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1087 if (!behind_bio)
16d56e2f 1088 return;
4b6d287f 1089
41743c1f 1090 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1091 if (!bio_has_data(bio)) {
1092 behind_bio->bi_iter.bi_size = size;
41743c1f 1093 goto skip_copy;
16d56e2f 1094 }
41743c1f 1095
841c1316
ML
1096 while (i < vcnt && size) {
1097 struct page *page;
1098 int len = min_t(int, PAGE_SIZE, size);
1099
1100 page = alloc_page(GFP_NOIO);
1101 if (unlikely(!page))
1102 goto free_pages;
1103
1104 bio_add_page(behind_bio, page, len, 0);
1105
1106 size -= len;
1107 i++;
4b6d287f 1108 }
841c1316 1109
cb83efcf 1110 bio_copy_data(behind_bio, bio);
41743c1f 1111skip_copy:
841c1316 1112 r1_bio->behind_master_bio = behind_bio;;
af6d7b76 1113 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1114
16d56e2f 1115 return;
841c1316
ML
1116
1117free_pages:
4f024f37
KO
1118 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1119 bio->bi_iter.bi_size);
841c1316 1120 bio_free_pages(behind_bio);
16d56e2f 1121 bio_put(behind_bio);
4b6d287f
N
1122}
1123
f54a9d0e
N
1124struct raid1_plug_cb {
1125 struct blk_plug_cb cb;
1126 struct bio_list pending;
1127 int pending_cnt;
1128};
1129
1130static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1131{
1132 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1133 cb);
1134 struct mddev *mddev = plug->cb.data;
1135 struct r1conf *conf = mddev->private;
1136 struct bio *bio;
1137
874807a8 1138 if (from_schedule || current->bio_list) {
f54a9d0e
N
1139 spin_lock_irq(&conf->device_lock);
1140 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1141 conf->pending_count += plug->pending_cnt;
1142 spin_unlock_irq(&conf->device_lock);
ee0b0244 1143 wake_up(&conf->wait_barrier);
f54a9d0e
N
1144 md_wakeup_thread(mddev->thread);
1145 kfree(plug);
1146 return;
1147 }
1148
1149 /* we aren't scheduling, so we can do the write-out directly. */
1150 bio = bio_list_get(&plug->pending);
673ca68d 1151 flush_bio_list(conf, bio);
f54a9d0e
N
1152 kfree(plug);
1153}
1154
689389a0
N
1155static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1156{
1157 r1_bio->master_bio = bio;
1158 r1_bio->sectors = bio_sectors(bio);
1159 r1_bio->state = 0;
1160 r1_bio->mddev = mddev;
1161 r1_bio->sector = bio->bi_iter.bi_sector;
1162}
1163
fd76863e 1164static inline struct r1bio *
689389a0 1165alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1166{
1167 struct r1conf *conf = mddev->private;
1168 struct r1bio *r1_bio;
1169
1170 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
689389a0
N
1171 /* Ensure no bio records IO_BLOCKED */
1172 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1173 init_r1bio(r1_bio, mddev, bio);
fd76863e 1174 return r1_bio;
1175}
1176
c230e7e5 1177static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1178 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1179{
e8096360 1180 struct r1conf *conf = mddev->private;
0eaf822c 1181 struct raid1_info *mirror;
1da177e4 1182 struct bio *read_bio;
3b046a97
RL
1183 struct bitmap *bitmap = mddev->bitmap;
1184 const int op = bio_op(bio);
1185 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1186 int max_sectors;
1187 int rdisk;
689389a0
N
1188 bool print_msg = !!r1_bio;
1189 char b[BDEVNAME_SIZE];
3b046a97 1190
fd76863e 1191 /*
689389a0
N
1192 * If r1_bio is set, we are blocking the raid1d thread
1193 * so there is a tiny risk of deadlock. So ask for
1194 * emergency memory if needed.
fd76863e 1195 */
689389a0 1196 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1197
689389a0
N
1198 if (print_msg) {
1199 /* Need to get the block device name carefully */
1200 struct md_rdev *rdev;
1201 rcu_read_lock();
1202 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1203 if (rdev)
1204 bdevname(rdev->bdev, b);
1205 else
1206 strcpy(b, "???");
1207 rcu_read_unlock();
1208 }
3b046a97 1209
fd76863e 1210 /*
fd76863e 1211 * Still need barrier for READ in case that whole
1212 * array is frozen.
fd76863e 1213 */
fd76863e 1214 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1215
689389a0
N
1216 if (!r1_bio)
1217 r1_bio = alloc_r1bio(mddev, bio);
1218 else
1219 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1220 r1_bio->sectors = max_read_sectors;
fd76863e 1221
1222 /*
1223 * make_request() can abort the operation when read-ahead is being
1224 * used and no empty request is available.
1225 */
3b046a97
RL
1226 rdisk = read_balance(conf, r1_bio, &max_sectors);
1227
1228 if (rdisk < 0) {
1229 /* couldn't find anywhere to read from */
689389a0
N
1230 if (print_msg) {
1231 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1232 mdname(mddev),
1233 b,
1234 (unsigned long long)r1_bio->sector);
1235 }
3b046a97
RL
1236 raid_end_bio_io(r1_bio);
1237 return;
1238 }
1239 mirror = conf->mirrors + rdisk;
1240
689389a0
N
1241 if (print_msg)
1242 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243 mdname(mddev),
1244 (unsigned long long)r1_bio->sector,
1245 bdevname(mirror->rdev->bdev, b));
1246
3b046a97
RL
1247 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1248 bitmap) {
1249 /*
1250 * Reading from a write-mostly device must take care not to
1251 * over-take any writes that are 'behind'
1252 */
1253 raid1_log(mddev, "wait behind writes");
1254 wait_event(bitmap->behind_wait,
1255 atomic_read(&bitmap->behind_writes) == 0);
1256 }
c230e7e5
N
1257
1258 if (max_sectors < bio_sectors(bio)) {
1259 struct bio *split = bio_split(bio, max_sectors,
689389a0 1260 gfp, conf->bio_split);
c230e7e5
N
1261 bio_chain(split, bio);
1262 generic_make_request(bio);
1263 bio = split;
1264 r1_bio->master_bio = bio;
1265 r1_bio->sectors = max_sectors;
1266 }
1267
3b046a97 1268 r1_bio->read_disk = rdisk;
3b046a97 1269
689389a0 1270 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
3b046a97
RL
1271
1272 r1_bio->bios[rdisk] = read_bio;
1273
1274 read_bio->bi_iter.bi_sector = r1_bio->sector +
1275 mirror->rdev->data_offset;
74d46992 1276 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1277 read_bio->bi_end_io = raid1_end_read_request;
1278 bio_set_op_attrs(read_bio, op, do_sync);
1279 if (test_bit(FailFast, &mirror->rdev->flags) &&
1280 test_bit(R1BIO_FailFast, &r1_bio->state))
1281 read_bio->bi_opf |= MD_FAILFAST;
1282 read_bio->bi_private = r1_bio;
1283
1284 if (mddev->gendisk)
74d46992
CH
1285 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1286 disk_devt(mddev->gendisk), r1_bio->sector);
3b046a97 1287
c230e7e5 1288 generic_make_request(read_bio);
3b046a97
RL
1289}
1290
c230e7e5
N
1291static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1292 int max_write_sectors)
3b046a97
RL
1293{
1294 struct r1conf *conf = mddev->private;
fd76863e 1295 struct r1bio *r1_bio;
1f68f0c4 1296 int i, disks;
3b046a97 1297 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1298 unsigned long flags;
3cb03002 1299 struct md_rdev *blocked_rdev;
f54a9d0e
N
1300 struct blk_plug_cb *cb;
1301 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1302 int first_clone;
1f68f0c4 1303 int max_sectors;
191ea9b2 1304
1da177e4
LT
1305 /*
1306 * Register the new request and wait if the reconstruction
1307 * thread has put up a bar for new requests.
1308 * Continue immediately if no resync is active currently.
1309 */
62de608d 1310
3d310eb7 1311
3b046a97 1312 if ((bio_end_sector(bio) > mddev->suspend_lo &&
589a1c49
GR
1313 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1314 (mddev_is_clustered(mddev) &&
90382ed9 1315 md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1316 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1317
1318 /*
1319 * As the suspend_* range is controlled by userspace, we want
1320 * an interruptible wait.
6eef4b21
N
1321 */
1322 DEFINE_WAIT(w);
1323 for (;;) {
f9c79bc0 1324 sigset_t full, old;
6eef4b21
N
1325 prepare_to_wait(&conf->wait_barrier,
1326 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1327 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1328 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1329 (mddev_is_clustered(mddev) &&
90382ed9 1330 !md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1331 bio->bi_iter.bi_sector,
1332 bio_end_sector(bio))))
6eef4b21 1333 break;
f9c79bc0
MP
1334 sigfillset(&full);
1335 sigprocmask(SIG_BLOCK, &full, &old);
6eef4b21 1336 schedule();
f9c79bc0 1337 sigprocmask(SIG_SETMASK, &old, NULL);
6eef4b21
N
1338 }
1339 finish_wait(&conf->wait_barrier, &w);
1340 }
fd76863e 1341 wait_barrier(conf, bio->bi_iter.bi_sector);
1342
689389a0 1343 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1344 r1_bio->sectors = max_write_sectors;
1da177e4 1345
34db0cd6
N
1346 if (conf->pending_count >= max_queued_requests) {
1347 md_wakeup_thread(mddev->thread);
578b54ad 1348 raid1_log(mddev, "wait queued");
34db0cd6
N
1349 wait_event(conf->wait_barrier,
1350 conf->pending_count < max_queued_requests);
1351 }
1f68f0c4 1352 /* first select target devices under rcu_lock and
1da177e4
LT
1353 * inc refcount on their rdev. Record them by setting
1354 * bios[x] to bio
1f68f0c4
N
1355 * If there are known/acknowledged bad blocks on any device on
1356 * which we have seen a write error, we want to avoid writing those
1357 * blocks.
1358 * This potentially requires several writes to write around
1359 * the bad blocks. Each set of writes gets it's own r1bio
1360 * with a set of bios attached.
1da177e4 1361 */
c3b328ac 1362
8f19ccb2 1363 disks = conf->raid_disks * 2;
6bfe0b49
DW
1364 retry_write:
1365 blocked_rdev = NULL;
1da177e4 1366 rcu_read_lock();
1f68f0c4 1367 max_sectors = r1_bio->sectors;
1da177e4 1368 for (i = 0; i < disks; i++) {
3cb03002 1369 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1370 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1371 atomic_inc(&rdev->nr_pending);
1372 blocked_rdev = rdev;
1373 break;
1374 }
1f68f0c4 1375 r1_bio->bios[i] = NULL;
8ae12666 1376 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1377 if (i < conf->raid_disks)
1378 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1379 continue;
1380 }
1381
1382 atomic_inc(&rdev->nr_pending);
1383 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1384 sector_t first_bad;
1385 int bad_sectors;
1386 int is_bad;
1387
3b046a97 1388 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1389 &first_bad, &bad_sectors);
1390 if (is_bad < 0) {
1391 /* mustn't write here until the bad block is
1392 * acknowledged*/
1393 set_bit(BlockedBadBlocks, &rdev->flags);
1394 blocked_rdev = rdev;
1395 break;
1396 }
1397 if (is_bad && first_bad <= r1_bio->sector) {
1398 /* Cannot write here at all */
1399 bad_sectors -= (r1_bio->sector - first_bad);
1400 if (bad_sectors < max_sectors)
1401 /* mustn't write more than bad_sectors
1402 * to other devices yet
1403 */
1404 max_sectors = bad_sectors;
03c902e1 1405 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1406 /* We don't set R1BIO_Degraded as that
1407 * only applies if the disk is
1408 * missing, so it might be re-added,
1409 * and we want to know to recover this
1410 * chunk.
1411 * In this case the device is here,
1412 * and the fact that this chunk is not
1413 * in-sync is recorded in the bad
1414 * block log
1415 */
1416 continue;
964147d5 1417 }
1f68f0c4
N
1418 if (is_bad) {
1419 int good_sectors = first_bad - r1_bio->sector;
1420 if (good_sectors < max_sectors)
1421 max_sectors = good_sectors;
1422 }
1423 }
1424 r1_bio->bios[i] = bio;
1da177e4
LT
1425 }
1426 rcu_read_unlock();
1427
6bfe0b49
DW
1428 if (unlikely(blocked_rdev)) {
1429 /* Wait for this device to become unblocked */
1430 int j;
1431
1432 for (j = 0; j < i; j++)
1433 if (r1_bio->bios[j])
1434 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1435 r1_bio->state = 0;
fd76863e 1436 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1437 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1438 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1439 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1440 goto retry_write;
1441 }
1442
c230e7e5
N
1443 if (max_sectors < bio_sectors(bio)) {
1444 struct bio *split = bio_split(bio, max_sectors,
1445 GFP_NOIO, conf->bio_split);
1446 bio_chain(split, bio);
1447 generic_make_request(bio);
1448 bio = split;
1449 r1_bio->master_bio = bio;
1f68f0c4 1450 r1_bio->sectors = max_sectors;
191ea9b2 1451 }
4b6d287f 1452
4e78064f 1453 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1454 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1455
1f68f0c4 1456 first_clone = 1;
d8c84c4f 1457
1da177e4 1458 for (i = 0; i < disks; i++) {
8e58e327 1459 struct bio *mbio = NULL;
1da177e4
LT
1460 if (!r1_bio->bios[i])
1461 continue;
1462
1f68f0c4
N
1463
1464 if (first_clone) {
1465 /* do behind I/O ?
1466 * Not if there are too many, or cannot
1467 * allocate memory, or a reader on WriteMostly
1468 * is waiting for behind writes to flush */
1469 if (bitmap &&
1470 (atomic_read(&bitmap->behind_writes)
1471 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1472 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1473 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1474 }
1f68f0c4
N
1475
1476 bitmap_startwrite(bitmap, r1_bio->sector,
1477 r1_bio->sectors,
1478 test_bit(R1BIO_BehindIO,
1479 &r1_bio->state));
1480 first_clone = 0;
1481 }
8e58e327 1482
16d56e2f
SL
1483 if (r1_bio->behind_master_bio)
1484 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1485 GFP_NOIO, mddev->bio_set);
1486 else
1487 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
8e58e327 1488
841c1316 1489 if (r1_bio->behind_master_bio) {
4b6d287f
N
1490 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1491 atomic_inc(&r1_bio->behind_remaining);
1492 }
1493
1f68f0c4
N
1494 r1_bio->bios[i] = mbio;
1495
4f024f37 1496 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1497 conf->mirrors[i].rdev->data_offset);
74d46992 1498 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1499 mbio->bi_end_io = raid1_end_write_request;
a682e003 1500 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1501 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1502 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1503 conf->raid_disks - mddev->degraded > 1)
1504 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1505 mbio->bi_private = r1_bio;
1506
1da177e4 1507 atomic_inc(&r1_bio->remaining);
f54a9d0e 1508
109e3765 1509 if (mddev->gendisk)
74d46992 1510 trace_block_bio_remap(mbio->bi_disk->queue,
109e3765
N
1511 mbio, disk_devt(mddev->gendisk),
1512 r1_bio->sector);
1513 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1514 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
109e3765 1515
f54a9d0e
N
1516 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1517 if (cb)
1518 plug = container_of(cb, struct raid1_plug_cb, cb);
1519 else
1520 plug = NULL;
f54a9d0e
N
1521 if (plug) {
1522 bio_list_add(&plug->pending, mbio);
1523 plug->pending_cnt++;
1524 } else {
23b245c0 1525 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1526 bio_list_add(&conf->pending_bio_list, mbio);
1527 conf->pending_count++;
23b245c0 1528 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1529 md_wakeup_thread(mddev->thread);
23b245c0 1530 }
1da177e4 1531 }
1f68f0c4 1532
079fa166
N
1533 r1_bio_write_done(r1_bio);
1534
1535 /* In case raid1d snuck in to freeze_array */
1536 wake_up(&conf->wait_barrier);
1da177e4
LT
1537}
1538
cc27b0c7 1539static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1540{
fd76863e 1541 sector_t sectors;
3b046a97 1542
aff8da09
SL
1543 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1544 md_flush_request(mddev, bio);
cc27b0c7 1545 return true;
aff8da09 1546 }
3b046a97 1547
c230e7e5
N
1548 /*
1549 * There is a limit to the maximum size, but
1550 * the read/write handler might find a lower limit
1551 * due to bad blocks. To avoid multiple splits,
1552 * we pass the maximum number of sectors down
1553 * and let the lower level perform the split.
1554 */
1555 sectors = align_to_barrier_unit_end(
1556 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1557
c230e7e5 1558 if (bio_data_dir(bio) == READ)
689389a0 1559 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1560 else {
1561 if (!md_write_start(mddev,bio))
1562 return false;
c230e7e5 1563 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1564 }
1565 return true;
3b046a97
RL
1566}
1567
849674e4 1568static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1569{
e8096360 1570 struct r1conf *conf = mddev->private;
1da177e4
LT
1571 int i;
1572
1573 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1574 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1575 rcu_read_lock();
1576 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1577 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1578 seq_printf(seq, "%s",
ddac7c7e
N
1579 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1580 }
1581 rcu_read_unlock();
1da177e4
LT
1582 seq_printf(seq, "]");
1583}
1584
849674e4 1585static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1586{
1587 char b[BDEVNAME_SIZE];
e8096360 1588 struct r1conf *conf = mddev->private;
423f04d6 1589 unsigned long flags;
1da177e4
LT
1590
1591 /*
1592 * If it is not operational, then we have already marked it as dead
1593 * else if it is the last working disks, ignore the error, let the
1594 * next level up know.
1595 * else mark the drive as failed
1596 */
2e52d449 1597 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1598 if (test_bit(In_sync, &rdev->flags)
4044ba58 1599 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1600 /*
1601 * Don't fail the drive, act as though we were just a
4044ba58
N
1602 * normal single drive.
1603 * However don't try a recovery from this drive as
1604 * it is very likely to fail.
1da177e4 1605 */
5389042f 1606 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1607 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1608 return;
4044ba58 1609 }
de393cde 1610 set_bit(Blocked, &rdev->flags);
c04be0aa 1611 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1612 mddev->degraded++;
dd00a99e 1613 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1614 } else
1615 set_bit(Faulty, &rdev->flags);
423f04d6 1616 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1617 /*
1618 * if recovery is running, make sure it aborts.
1619 */
1620 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1621 set_mask_bits(&mddev->sb_flags, 0,
1622 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1623 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1624 "md/raid1:%s: Operation continuing on %d devices.\n",
1625 mdname(mddev), bdevname(rdev->bdev, b),
1626 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1627}
1628
e8096360 1629static void print_conf(struct r1conf *conf)
1da177e4
LT
1630{
1631 int i;
1da177e4 1632
1d41c216 1633 pr_debug("RAID1 conf printout:\n");
1da177e4 1634 if (!conf) {
1d41c216 1635 pr_debug("(!conf)\n");
1da177e4
LT
1636 return;
1637 }
1d41c216
N
1638 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1639 conf->raid_disks);
1da177e4 1640
ddac7c7e 1641 rcu_read_lock();
1da177e4
LT
1642 for (i = 0; i < conf->raid_disks; i++) {
1643 char b[BDEVNAME_SIZE];
3cb03002 1644 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1645 if (rdev)
1d41c216
N
1646 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1647 i, !test_bit(In_sync, &rdev->flags),
1648 !test_bit(Faulty, &rdev->flags),
1649 bdevname(rdev->bdev,b));
1da177e4 1650 }
ddac7c7e 1651 rcu_read_unlock();
1da177e4
LT
1652}
1653
e8096360 1654static void close_sync(struct r1conf *conf)
1da177e4 1655{
fd76863e 1656 wait_all_barriers(conf);
1657 allow_all_barriers(conf);
1da177e4
LT
1658
1659 mempool_destroy(conf->r1buf_pool);
1660 conf->r1buf_pool = NULL;
1661}
1662
fd01b88c 1663static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1664{
1665 int i;
e8096360 1666 struct r1conf *conf = mddev->private;
6b965620
N
1667 int count = 0;
1668 unsigned long flags;
1da177e4
LT
1669
1670 /*
f72ffdd6 1671 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1672 * and mark them readable.
1673 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1674 * device_lock used to avoid races with raid1_end_read_request
1675 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1676 */
423f04d6 1677 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1678 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1679 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1680 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1681 if (repl
1aee41f6 1682 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1683 && repl->recovery_offset == MaxSector
1684 && !test_bit(Faulty, &repl->flags)
1685 && !test_and_set_bit(In_sync, &repl->flags)) {
1686 /* replacement has just become active */
1687 if (!rdev ||
1688 !test_and_clear_bit(In_sync, &rdev->flags))
1689 count++;
1690 if (rdev) {
1691 /* Replaced device not technically
1692 * faulty, but we need to be sure
1693 * it gets removed and never re-added
1694 */
1695 set_bit(Faulty, &rdev->flags);
1696 sysfs_notify_dirent_safe(
1697 rdev->sysfs_state);
1698 }
1699 }
ddac7c7e 1700 if (rdev
61e4947c 1701 && rdev->recovery_offset == MaxSector
ddac7c7e 1702 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1703 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1704 count++;
654e8b5a 1705 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1706 }
1707 }
6b965620
N
1708 mddev->degraded -= count;
1709 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1710
1711 print_conf(conf);
6b965620 1712 return count;
1da177e4
LT
1713}
1714
fd01b88c 1715static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1716{
e8096360 1717 struct r1conf *conf = mddev->private;
199050ea 1718 int err = -EEXIST;
41158c7e 1719 int mirror = 0;
0eaf822c 1720 struct raid1_info *p;
6c2fce2e 1721 int first = 0;
30194636 1722 int last = conf->raid_disks - 1;
1da177e4 1723
5389042f
N
1724 if (mddev->recovery_disabled == conf->recovery_disabled)
1725 return -EBUSY;
1726
1501efad
DW
1727 if (md_integrity_add_rdev(rdev, mddev))
1728 return -ENXIO;
1729
6c2fce2e
NB
1730 if (rdev->raid_disk >= 0)
1731 first = last = rdev->raid_disk;
1732
70bcecdb
GR
1733 /*
1734 * find the disk ... but prefer rdev->saved_raid_disk
1735 * if possible.
1736 */
1737 if (rdev->saved_raid_disk >= 0 &&
1738 rdev->saved_raid_disk >= first &&
1739 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1740 first = last = rdev->saved_raid_disk;
1741
7ef449d1
N
1742 for (mirror = first; mirror <= last; mirror++) {
1743 p = conf->mirrors+mirror;
1744 if (!p->rdev) {
1da177e4 1745
9092c02d
JB
1746 if (mddev->gendisk)
1747 disk_stack_limits(mddev->gendisk, rdev->bdev,
1748 rdev->data_offset << 9);
1da177e4
LT
1749
1750 p->head_position = 0;
1751 rdev->raid_disk = mirror;
199050ea 1752 err = 0;
6aea114a
N
1753 /* As all devices are equivalent, we don't need a full recovery
1754 * if this was recently any drive of the array
1755 */
1756 if (rdev->saved_raid_disk < 0)
41158c7e 1757 conf->fullsync = 1;
d6065f7b 1758 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1759 break;
1760 }
7ef449d1
N
1761 if (test_bit(WantReplacement, &p->rdev->flags) &&
1762 p[conf->raid_disks].rdev == NULL) {
1763 /* Add this device as a replacement */
1764 clear_bit(In_sync, &rdev->flags);
1765 set_bit(Replacement, &rdev->flags);
1766 rdev->raid_disk = mirror;
1767 err = 0;
1768 conf->fullsync = 1;
1769 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1770 break;
1771 }
1772 }
9092c02d 1773 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1774 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1775 print_conf(conf);
199050ea 1776 return err;
1da177e4
LT
1777}
1778
b8321b68 1779static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1780{
e8096360 1781 struct r1conf *conf = mddev->private;
1da177e4 1782 int err = 0;
b8321b68 1783 int number = rdev->raid_disk;
0eaf822c 1784 struct raid1_info *p = conf->mirrors + number;
1da177e4 1785
b014f14c
N
1786 if (rdev != p->rdev)
1787 p = conf->mirrors + conf->raid_disks + number;
1788
1da177e4 1789 print_conf(conf);
b8321b68 1790 if (rdev == p->rdev) {
b2d444d7 1791 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1792 atomic_read(&rdev->nr_pending)) {
1793 err = -EBUSY;
1794 goto abort;
1795 }
046abeed 1796 /* Only remove non-faulty devices if recovery
dfc70645
N
1797 * is not possible.
1798 */
1799 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1800 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1801 mddev->degraded < conf->raid_disks) {
1802 err = -EBUSY;
1803 goto abort;
1804 }
1da177e4 1805 p->rdev = NULL;
d787be40
N
1806 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1807 synchronize_rcu();
1808 if (atomic_read(&rdev->nr_pending)) {
1809 /* lost the race, try later */
1810 err = -EBUSY;
1811 p->rdev = rdev;
1812 goto abort;
1813 }
1814 }
1815 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1816 /* We just removed a device that is being replaced.
1817 * Move down the replacement. We drain all IO before
1818 * doing this to avoid confusion.
1819 */
1820 struct md_rdev *repl =
1821 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1822 freeze_array(conf, 0);
8c7a2c2b
N
1823 clear_bit(Replacement, &repl->flags);
1824 p->rdev = repl;
1825 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1826 unfreeze_array(conf);
e5bc9c3c
GJ
1827 }
1828
1829 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1830 err = md_integrity_register(mddev);
1da177e4
LT
1831 }
1832abort:
1833
1834 print_conf(conf);
1835 return err;
1836}
1837
4246a0b6 1838static void end_sync_read(struct bio *bio)
1da177e4 1839{
98d30c58 1840 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1841
0fc280f6 1842 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1843
1da177e4
LT
1844 /*
1845 * we have read a block, now it needs to be re-written,
1846 * or re-read if the read failed.
1847 * We don't do much here, just schedule handling by raid1d
1848 */
4e4cbee9 1849 if (!bio->bi_status)
1da177e4 1850 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1851
1852 if (atomic_dec_and_test(&r1_bio->remaining))
1853 reschedule_retry(r1_bio);
1da177e4
LT
1854}
1855
4246a0b6 1856static void end_sync_write(struct bio *bio)
1da177e4 1857{
4e4cbee9 1858 int uptodate = !bio->bi_status;
98d30c58 1859 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1860 struct mddev *mddev = r1_bio->mddev;
e8096360 1861 struct r1conf *conf = mddev->private;
4367af55
N
1862 sector_t first_bad;
1863 int bad_sectors;
854abd75 1864 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1865
6b1117d5 1866 if (!uptodate) {
57dab0bd 1867 sector_t sync_blocks = 0;
6b1117d5
N
1868 sector_t s = r1_bio->sector;
1869 long sectors_to_go = r1_bio->sectors;
1870 /* make sure these bits doesn't get cleared. */
1871 do {
5e3db645 1872 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1873 &sync_blocks, 1);
1874 s += sync_blocks;
1875 sectors_to_go -= sync_blocks;
1876 } while (sectors_to_go > 0);
854abd75
N
1877 set_bit(WriteErrorSeen, &rdev->flags);
1878 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1879 set_bit(MD_RECOVERY_NEEDED, &
1880 mddev->recovery);
d8f05d29 1881 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1882 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1883 &first_bad, &bad_sectors) &&
1884 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1885 r1_bio->sector,
1886 r1_bio->sectors,
1887 &first_bad, &bad_sectors)
1888 )
4367af55 1889 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1890
1da177e4 1891 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1892 int s = r1_bio->sectors;
d8f05d29
N
1893 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1894 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1895 reschedule_retry(r1_bio);
1896 else {
1897 put_buf(r1_bio);
1898 md_done_sync(mddev, s, uptodate);
1899 }
1da177e4 1900 }
1da177e4
LT
1901}
1902
3cb03002 1903static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1904 int sectors, struct page *page, int rw)
1905{
796a5cf0 1906 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1907 /* success */
1908 return 1;
19d67169 1909 if (rw == WRITE) {
d8f05d29 1910 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1911 if (!test_and_set_bit(WantReplacement,
1912 &rdev->flags))
1913 set_bit(MD_RECOVERY_NEEDED, &
1914 rdev->mddev->recovery);
1915 }
d8f05d29
N
1916 /* need to record an error - either for the block or the device */
1917 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1918 md_error(rdev->mddev, rdev);
1919 return 0;
1920}
1921
9f2c9d12 1922static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1923{
a68e5870
N
1924 /* Try some synchronous reads of other devices to get
1925 * good data, much like with normal read errors. Only
1926 * read into the pages we already have so we don't
1927 * need to re-issue the read request.
1928 * We don't need to freeze the array, because being in an
1929 * active sync request, there is no normal IO, and
1930 * no overlapping syncs.
06f60385
N
1931 * We don't need to check is_badblock() again as we
1932 * made sure that anything with a bad block in range
1933 * will have bi_end_io clear.
a68e5870 1934 */
fd01b88c 1935 struct mddev *mddev = r1_bio->mddev;
e8096360 1936 struct r1conf *conf = mddev->private;
a68e5870 1937 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1938 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1939 sector_t sect = r1_bio->sector;
1940 int sectors = r1_bio->sectors;
1941 int idx = 0;
2e52d449
N
1942 struct md_rdev *rdev;
1943
1944 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1945 if (test_bit(FailFast, &rdev->flags)) {
1946 /* Don't try recovering from here - just fail it
1947 * ... unless it is the last working device of course */
1948 md_error(mddev, rdev);
1949 if (test_bit(Faulty, &rdev->flags))
1950 /* Don't try to read from here, but make sure
1951 * put_buf does it's thing
1952 */
1953 bio->bi_end_io = end_sync_write;
1954 }
a68e5870
N
1955
1956 while(sectors) {
1957 int s = sectors;
1958 int d = r1_bio->read_disk;
1959 int success = 0;
78d7f5f7 1960 int start;
a68e5870
N
1961
1962 if (s > (PAGE_SIZE>>9))
1963 s = PAGE_SIZE >> 9;
1964 do {
1965 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1966 /* No rcu protection needed here devices
1967 * can only be removed when no resync is
1968 * active, and resync is currently active
1969 */
1970 rdev = conf->mirrors[d].rdev;
9d3d8011 1971 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 1972 pages[idx],
796a5cf0 1973 REQ_OP_READ, 0, false)) {
a68e5870
N
1974 success = 1;
1975 break;
1976 }
1977 }
1978 d++;
8f19ccb2 1979 if (d == conf->raid_disks * 2)
a68e5870
N
1980 d = 0;
1981 } while (!success && d != r1_bio->read_disk);
1982
78d7f5f7 1983 if (!success) {
a68e5870 1984 char b[BDEVNAME_SIZE];
3a9f28a5
N
1985 int abort = 0;
1986 /* Cannot read from anywhere, this block is lost.
1987 * Record a bad block on each device. If that doesn't
1988 * work just disable and interrupt the recovery.
1989 * Don't fail devices as that won't really help.
1990 */
1d41c216 1991 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 1992 mdname(mddev), bio_devname(bio, b),
1d41c216 1993 (unsigned long long)r1_bio->sector);
8f19ccb2 1994 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1995 rdev = conf->mirrors[d].rdev;
1996 if (!rdev || test_bit(Faulty, &rdev->flags))
1997 continue;
1998 if (!rdev_set_badblocks(rdev, sect, s, 0))
1999 abort = 1;
2000 }
2001 if (abort) {
d890fa2b
N
2002 conf->recovery_disabled =
2003 mddev->recovery_disabled;
3a9f28a5
N
2004 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2005 md_done_sync(mddev, r1_bio->sectors, 0);
2006 put_buf(r1_bio);
2007 return 0;
2008 }
2009 /* Try next page */
2010 sectors -= s;
2011 sect += s;
2012 idx++;
2013 continue;
d11c171e 2014 }
78d7f5f7
N
2015
2016 start = d;
2017 /* write it back and re-read */
2018 while (d != r1_bio->read_disk) {
2019 if (d == 0)
8f19ccb2 2020 d = conf->raid_disks * 2;
78d7f5f7
N
2021 d--;
2022 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2023 continue;
2024 rdev = conf->mirrors[d].rdev;
d8f05d29 2025 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2026 pages[idx],
d8f05d29 2027 WRITE) == 0) {
78d7f5f7
N
2028 r1_bio->bios[d]->bi_end_io = NULL;
2029 rdev_dec_pending(rdev, mddev);
9d3d8011 2030 }
78d7f5f7
N
2031 }
2032 d = start;
2033 while (d != r1_bio->read_disk) {
2034 if (d == 0)
8f19ccb2 2035 d = conf->raid_disks * 2;
78d7f5f7
N
2036 d--;
2037 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2038 continue;
2039 rdev = conf->mirrors[d].rdev;
d8f05d29 2040 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2041 pages[idx],
d8f05d29 2042 READ) != 0)
9d3d8011 2043 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2044 }
a68e5870
N
2045 sectors -= s;
2046 sect += s;
2047 idx ++;
2048 }
78d7f5f7 2049 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2050 bio->bi_status = 0;
a68e5870
N
2051 return 1;
2052}
2053
c95e6385 2054static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2055{
2056 /* We have read all readable devices. If we haven't
2057 * got the block, then there is no hope left.
2058 * If we have, then we want to do a comparison
2059 * and skip the write if everything is the same.
2060 * If any blocks failed to read, then we need to
2061 * attempt an over-write
2062 */
fd01b88c 2063 struct mddev *mddev = r1_bio->mddev;
e8096360 2064 struct r1conf *conf = mddev->private;
a68e5870
N
2065 int primary;
2066 int i;
f4380a91 2067 int vcnt;
a68e5870 2068
30bc9b53
N
2069 /* Fix variable parts of all bios */
2070 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2071 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2072 blk_status_t status;
30bc9b53 2073 struct bio *b = r1_bio->bios[i];
98d30c58 2074 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2075 if (b->bi_end_io != end_sync_read)
2076 continue;
4246a0b6 2077 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2078 status = b->bi_status;
30bc9b53 2079 bio_reset(b);
4e4cbee9 2080 b->bi_status = status;
4f024f37 2081 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2082 conf->mirrors[i].rdev->data_offset;
74d46992 2083 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2084 b->bi_end_io = end_sync_read;
98d30c58
ML
2085 rp->raid_bio = r1_bio;
2086 b->bi_private = rp;
30bc9b53 2087
fb0eb5df
ML
2088 /* initialize bvec table again */
2089 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2090 }
8f19ccb2 2091 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2092 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2093 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2094 r1_bio->bios[primary]->bi_end_io = NULL;
2095 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2096 break;
2097 }
2098 r1_bio->read_disk = primary;
8f19ccb2 2099 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2100 int j;
78d7f5f7
N
2101 struct bio *pbio = r1_bio->bios[primary];
2102 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2103 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2104 struct page **ppages = get_resync_pages(pbio)->pages;
2105 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2106 struct bio_vec *bi;
8fc04e6e 2107 int page_len[RESYNC_PAGES] = { 0 };
a68e5870 2108
2aabaa65 2109 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2110 continue;
4246a0b6 2111 /* Now we can 'fixup' the error value */
4e4cbee9 2112 sbio->bi_status = 0;
78d7f5f7 2113
60928a91
ML
2114 bio_for_each_segment_all(bi, sbio, j)
2115 page_len[j] = bi->bv_len;
2116
4e4cbee9 2117 if (!status) {
78d7f5f7 2118 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2119 if (memcmp(page_address(ppages[j]),
2120 page_address(spages[j]),
60928a91 2121 page_len[j]))
78d7f5f7 2122 break;
69382e85 2123 }
78d7f5f7
N
2124 } else
2125 j = 0;
2126 if (j >= 0)
7f7583d4 2127 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2128 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2129 && !status)) {
78d7f5f7
N
2130 /* No need to write to this device. */
2131 sbio->bi_end_io = NULL;
2132 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2133 continue;
2134 }
d3b45c2a
KO
2135
2136 bio_copy_data(sbio, pbio);
78d7f5f7 2137 }
a68e5870
N
2138}
2139
9f2c9d12 2140static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2141{
e8096360 2142 struct r1conf *conf = mddev->private;
a68e5870 2143 int i;
8f19ccb2 2144 int disks = conf->raid_disks * 2;
037d2ff6 2145 struct bio *wbio;
a68e5870 2146
a68e5870
N
2147 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2148 /* ouch - failed to read all of that. */
2149 if (!fix_sync_read_error(r1_bio))
2150 return;
7ca78d57
N
2151
2152 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2153 process_checks(r1_bio);
2154
d11c171e
N
2155 /*
2156 * schedule writes
2157 */
1da177e4
LT
2158 atomic_set(&r1_bio->remaining, 1);
2159 for (i = 0; i < disks ; i++) {
2160 wbio = r1_bio->bios[i];
3e198f78
N
2161 if (wbio->bi_end_io == NULL ||
2162 (wbio->bi_end_io == end_sync_read &&
2163 (i == r1_bio->read_disk ||
2164 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2165 continue;
0c9d5b12
N
2166 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2167 continue;
1da177e4 2168
796a5cf0 2169 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2170 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2171 wbio->bi_opf |= MD_FAILFAST;
2172
3e198f78 2173 wbio->bi_end_io = end_sync_write;
1da177e4 2174 atomic_inc(&r1_bio->remaining);
aa8b57aa 2175 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2176
1da177e4
LT
2177 generic_make_request(wbio);
2178 }
2179
2180 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2181 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2182 int s = r1_bio->sectors;
2183 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2184 test_bit(R1BIO_WriteError, &r1_bio->state))
2185 reschedule_retry(r1_bio);
2186 else {
2187 put_buf(r1_bio);
2188 md_done_sync(mddev, s, 1);
2189 }
1da177e4
LT
2190 }
2191}
2192
2193/*
2194 * This is a kernel thread which:
2195 *
2196 * 1. Retries failed read operations on working mirrors.
2197 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2198 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2199 */
2200
e8096360 2201static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2202 sector_t sect, int sectors)
2203{
fd01b88c 2204 struct mddev *mddev = conf->mddev;
867868fb
N
2205 while(sectors) {
2206 int s = sectors;
2207 int d = read_disk;
2208 int success = 0;
2209 int start;
3cb03002 2210 struct md_rdev *rdev;
867868fb
N
2211
2212 if (s > (PAGE_SIZE>>9))
2213 s = PAGE_SIZE >> 9;
2214
2215 do {
d2eb35ac
N
2216 sector_t first_bad;
2217 int bad_sectors;
2218
707a6a42
N
2219 rcu_read_lock();
2220 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2221 if (rdev &&
da8840a7 2222 (test_bit(In_sync, &rdev->flags) ||
2223 (!test_bit(Faulty, &rdev->flags) &&
2224 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2225 is_badblock(rdev, sect, s,
707a6a42
N
2226 &first_bad, &bad_sectors) == 0) {
2227 atomic_inc(&rdev->nr_pending);
2228 rcu_read_unlock();
2229 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2230 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2231 success = 1;
2232 rdev_dec_pending(rdev, mddev);
2233 if (success)
2234 break;
2235 } else
2236 rcu_read_unlock();
2237 d++;
2238 if (d == conf->raid_disks * 2)
2239 d = 0;
867868fb
N
2240 } while (!success && d != read_disk);
2241
2242 if (!success) {
d8f05d29 2243 /* Cannot read from anywhere - mark it bad */
3cb03002 2244 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2245 if (!rdev_set_badblocks(rdev, sect, s, 0))
2246 md_error(mddev, rdev);
867868fb
N
2247 break;
2248 }
2249 /* write it back and re-read */
2250 start = d;
2251 while (d != read_disk) {
2252 if (d==0)
8f19ccb2 2253 d = conf->raid_disks * 2;
867868fb 2254 d--;
707a6a42
N
2255 rcu_read_lock();
2256 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2257 if (rdev &&
707a6a42
N
2258 !test_bit(Faulty, &rdev->flags)) {
2259 atomic_inc(&rdev->nr_pending);
2260 rcu_read_unlock();
d8f05d29
N
2261 r1_sync_page_io(rdev, sect, s,
2262 conf->tmppage, WRITE);
707a6a42
N
2263 rdev_dec_pending(rdev, mddev);
2264 } else
2265 rcu_read_unlock();
867868fb
N
2266 }
2267 d = start;
2268 while (d != read_disk) {
2269 char b[BDEVNAME_SIZE];
2270 if (d==0)
8f19ccb2 2271 d = conf->raid_disks * 2;
867868fb 2272 d--;
707a6a42
N
2273 rcu_read_lock();
2274 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2275 if (rdev &&
b8cb6b4c 2276 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2277 atomic_inc(&rdev->nr_pending);
2278 rcu_read_unlock();
d8f05d29
N
2279 if (r1_sync_page_io(rdev, sect, s,
2280 conf->tmppage, READ)) {
867868fb 2281 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2282 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2283 mdname(mddev), s,
2284 (unsigned long long)(sect +
2285 rdev->data_offset),
2286 bdevname(rdev->bdev, b));
867868fb 2287 }
707a6a42
N
2288 rdev_dec_pending(rdev, mddev);
2289 } else
2290 rcu_read_unlock();
867868fb
N
2291 }
2292 sectors -= s;
2293 sect += s;
2294 }
2295}
2296
9f2c9d12 2297static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2298{
fd01b88c 2299 struct mddev *mddev = r1_bio->mddev;
e8096360 2300 struct r1conf *conf = mddev->private;
3cb03002 2301 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2302
2303 /* bio has the data to be written to device 'i' where
2304 * we just recently had a write error.
2305 * We repeatedly clone the bio and trim down to one block,
2306 * then try the write. Where the write fails we record
2307 * a bad block.
2308 * It is conceivable that the bio doesn't exactly align with
2309 * blocks. We must handle this somehow.
2310 *
2311 * We currently own a reference on the rdev.
2312 */
2313
2314 int block_sectors;
2315 sector_t sector;
2316 int sectors;
2317 int sect_to_write = r1_bio->sectors;
2318 int ok = 1;
2319
2320 if (rdev->badblocks.shift < 0)
2321 return 0;
2322
ab713cdc
ND
2323 block_sectors = roundup(1 << rdev->badblocks.shift,
2324 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2325 sector = r1_bio->sector;
2326 sectors = ((sector + block_sectors)
2327 & ~(sector_t)(block_sectors - 1))
2328 - sector;
2329
cd5ff9a1
N
2330 while (sect_to_write) {
2331 struct bio *wbio;
2332 if (sectors > sect_to_write)
2333 sectors = sect_to_write;
2334 /* Write at 'sector' for 'sectors'*/
2335
b783863f 2336 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2337 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2338 GFP_NOIO,
2339 mddev->bio_set);
b783863f 2340 } else {
d7a10308
ML
2341 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2342 mddev->bio_set);
b783863f
KO
2343 }
2344
796a5cf0 2345 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2346 wbio->bi_iter.bi_sector = r1_bio->sector;
2347 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2348
6678d83f 2349 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2350 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2351 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2352
2353 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2354 /* failure! */
2355 ok = rdev_set_badblocks(rdev, sector,
2356 sectors, 0)
2357 && ok;
2358
2359 bio_put(wbio);
2360 sect_to_write -= sectors;
2361 sector += sectors;
2362 sectors = block_sectors;
2363 }
2364 return ok;
2365}
2366
e8096360 2367static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2368{
2369 int m;
2370 int s = r1_bio->sectors;
8f19ccb2 2371 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2372 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2373 struct bio *bio = r1_bio->bios[m];
2374 if (bio->bi_end_io == NULL)
2375 continue;
4e4cbee9 2376 if (!bio->bi_status &&
62096bce 2377 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2378 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2379 }
4e4cbee9 2380 if (bio->bi_status &&
62096bce
N
2381 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2382 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2383 md_error(conf->mddev, rdev);
2384 }
2385 }
2386 put_buf(r1_bio);
2387 md_done_sync(conf->mddev, s, 1);
2388}
2389
e8096360 2390static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2391{
fd76863e 2392 int m, idx;
55ce74d4 2393 bool fail = false;
fd76863e 2394
8f19ccb2 2395 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2396 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2397 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2398 rdev_clear_badblocks(rdev,
2399 r1_bio->sector,
c6563a8c 2400 r1_bio->sectors, 0);
62096bce
N
2401 rdev_dec_pending(rdev, conf->mddev);
2402 } else if (r1_bio->bios[m] != NULL) {
2403 /* This drive got a write error. We need to
2404 * narrow down and record precise write
2405 * errors.
2406 */
55ce74d4 2407 fail = true;
62096bce
N
2408 if (!narrow_write_error(r1_bio, m)) {
2409 md_error(conf->mddev,
2410 conf->mirrors[m].rdev);
2411 /* an I/O failed, we can't clear the bitmap */
2412 set_bit(R1BIO_Degraded, &r1_bio->state);
2413 }
2414 rdev_dec_pending(conf->mirrors[m].rdev,
2415 conf->mddev);
2416 }
55ce74d4
N
2417 if (fail) {
2418 spin_lock_irq(&conf->device_lock);
2419 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2420 idx = sector_to_idx(r1_bio->sector);
824e47da 2421 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2422 spin_unlock_irq(&conf->device_lock);
824e47da 2423 /*
2424 * In case freeze_array() is waiting for condition
2425 * get_unqueued_pending() == extra to be true.
2426 */
2427 wake_up(&conf->wait_barrier);
55ce74d4 2428 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2429 } else {
2430 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2431 close_write(r1_bio);
55ce74d4 2432 raid_end_bio_io(r1_bio);
bd8688a1 2433 }
62096bce
N
2434}
2435
e8096360 2436static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2437{
fd01b88c 2438 struct mddev *mddev = conf->mddev;
62096bce 2439 struct bio *bio;
3cb03002 2440 struct md_rdev *rdev;
109e3765 2441 sector_t bio_sector;
62096bce
N
2442
2443 clear_bit(R1BIO_ReadError, &r1_bio->state);
2444 /* we got a read error. Maybe the drive is bad. Maybe just
2445 * the block and we can fix it.
2446 * We freeze all other IO, and try reading the block from
2447 * other devices. When we find one, we re-write
2448 * and check it that fixes the read error.
2449 * This is all done synchronously while the array is
2450 * frozen
2451 */
7449f699
TM
2452
2453 bio = r1_bio->bios[r1_bio->read_disk];
109e3765 2454 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2455 bio_put(bio);
2456 r1_bio->bios[r1_bio->read_disk] = NULL;
2457
2e52d449
N
2458 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2459 if (mddev->ro == 0
2460 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2461 freeze_array(conf, 1);
62096bce
N
2462 fix_read_error(conf, r1_bio->read_disk,
2463 r1_bio->sector, r1_bio->sectors);
2464 unfreeze_array(conf);
7449f699
TM
2465 } else {
2466 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2467 }
2468
2e52d449 2469 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2470 allow_barrier(conf, r1_bio->sector);
2471 bio = r1_bio->master_bio;
62096bce 2472
689389a0
N
2473 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2474 r1_bio->state = 0;
2475 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2476}
2477
4ed8731d 2478static void raid1d(struct md_thread *thread)
1da177e4 2479{
4ed8731d 2480 struct mddev *mddev = thread->mddev;
9f2c9d12 2481 struct r1bio *r1_bio;
1da177e4 2482 unsigned long flags;
e8096360 2483 struct r1conf *conf = mddev->private;
1da177e4 2484 struct list_head *head = &conf->retry_list;
e1dfa0a2 2485 struct blk_plug plug;
fd76863e 2486 int idx;
1da177e4
LT
2487
2488 md_check_recovery(mddev);
e1dfa0a2 2489
55ce74d4 2490 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2491 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2492 LIST_HEAD(tmp);
2493 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2494 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2495 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2496 spin_unlock_irqrestore(&conf->device_lock, flags);
2497 while (!list_empty(&tmp)) {
a452744b
MP
2498 r1_bio = list_first_entry(&tmp, struct r1bio,
2499 retry_list);
55ce74d4 2500 list_del(&r1_bio->retry_list);
fd76863e 2501 idx = sector_to_idx(r1_bio->sector);
824e47da 2502 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2503 if (mddev->degraded)
2504 set_bit(R1BIO_Degraded, &r1_bio->state);
2505 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2506 close_write(r1_bio);
55ce74d4
N
2507 raid_end_bio_io(r1_bio);
2508 }
2509 }
2510
e1dfa0a2 2511 blk_start_plug(&plug);
1da177e4 2512 for (;;) {
191ea9b2 2513
0021b7bc 2514 flush_pending_writes(conf);
191ea9b2 2515
a35e63ef
N
2516 spin_lock_irqsave(&conf->device_lock, flags);
2517 if (list_empty(head)) {
2518 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2519 break;
a35e63ef 2520 }
9f2c9d12 2521 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2522 list_del(head->prev);
fd76863e 2523 idx = sector_to_idx(r1_bio->sector);
824e47da 2524 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2525 spin_unlock_irqrestore(&conf->device_lock, flags);
2526
2527 mddev = r1_bio->mddev;
070ec55d 2528 conf = mddev->private;
4367af55 2529 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2530 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2531 test_bit(R1BIO_WriteError, &r1_bio->state))
2532 handle_sync_write_finished(conf, r1_bio);
2533 else
4367af55 2534 sync_request_write(mddev, r1_bio);
cd5ff9a1 2535 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2536 test_bit(R1BIO_WriteError, &r1_bio->state))
2537 handle_write_finished(conf, r1_bio);
2538 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2539 handle_read_error(conf, r1_bio);
2540 else
c230e7e5 2541 WARN_ON_ONCE(1);
62096bce 2542
1d9d5241 2543 cond_resched();
2953079c 2544 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2545 md_check_recovery(mddev);
1da177e4 2546 }
e1dfa0a2 2547 blk_finish_plug(&plug);
1da177e4
LT
2548}
2549
e8096360 2550static int init_resync(struct r1conf *conf)
1da177e4
LT
2551{
2552 int buffs;
2553
2554 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2555 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2556 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2557 conf->poolinfo);
2558 if (!conf->r1buf_pool)
2559 return -ENOMEM;
1da177e4
LT
2560 return 0;
2561}
2562
2563/*
2564 * perform a "sync" on one "block"
2565 *
2566 * We need to make sure that no normal I/O request - particularly write
2567 * requests - conflict with active sync requests.
2568 *
2569 * This is achieved by tracking pending requests and a 'barrier' concept
2570 * that can be installed to exclude normal IO requests.
2571 */
2572
849674e4
SL
2573static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2574 int *skipped)
1da177e4 2575{
e8096360 2576 struct r1conf *conf = mddev->private;
9f2c9d12 2577 struct r1bio *r1_bio;
1da177e4
LT
2578 struct bio *bio;
2579 sector_t max_sector, nr_sectors;
3e198f78 2580 int disk = -1;
1da177e4 2581 int i;
3e198f78
N
2582 int wonly = -1;
2583 int write_targets = 0, read_targets = 0;
57dab0bd 2584 sector_t sync_blocks;
e3b9703e 2585 int still_degraded = 0;
06f60385
N
2586 int good_sectors = RESYNC_SECTORS;
2587 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2588 int idx = sector_to_idx(sector_nr);
022e510f 2589 int page_idx = 0;
1da177e4
LT
2590
2591 if (!conf->r1buf_pool)
2592 if (init_resync(conf))
57afd89f 2593 return 0;
1da177e4 2594
58c0fed4 2595 max_sector = mddev->dev_sectors;
1da177e4 2596 if (sector_nr >= max_sector) {
191ea9b2
N
2597 /* If we aborted, we need to abort the
2598 * sync on the 'current' bitmap chunk (there will
2599 * only be one in raid1 resync.
2600 * We can find the current addess in mddev->curr_resync
2601 */
6a806c51
N
2602 if (mddev->curr_resync < max_sector) /* aborted */
2603 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2604 &sync_blocks, 1);
6a806c51 2605 else /* completed sync */
191ea9b2 2606 conf->fullsync = 0;
6a806c51
N
2607
2608 bitmap_close_sync(mddev->bitmap);
1da177e4 2609 close_sync(conf);
c40f341f
GR
2610
2611 if (mddev_is_clustered(mddev)) {
2612 conf->cluster_sync_low = 0;
2613 conf->cluster_sync_high = 0;
c40f341f 2614 }
1da177e4
LT
2615 return 0;
2616 }
2617
07d84d10
N
2618 if (mddev->bitmap == NULL &&
2619 mddev->recovery_cp == MaxSector &&
6394cca5 2620 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2621 conf->fullsync == 0) {
2622 *skipped = 1;
2623 return max_sector - sector_nr;
2624 }
6394cca5
N
2625 /* before building a request, check if we can skip these blocks..
2626 * This call the bitmap_start_sync doesn't actually record anything
2627 */
e3b9703e 2628 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2629 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2630 /* We can skip this block, and probably several more */
2631 *skipped = 1;
2632 return sync_blocks;
2633 }
17999be4 2634
7ac50447
TM
2635 /*
2636 * If there is non-resync activity waiting for a turn, then let it
2637 * though before starting on this new sync request.
2638 */
824e47da 2639 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2640 schedule_timeout_uninterruptible(1);
2641
c40f341f
GR
2642 /* we are incrementing sector_nr below. To be safe, we check against
2643 * sector_nr + two times RESYNC_SECTORS
2644 */
2645
2646 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2647 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2648 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2649
c2fd4c94 2650 raise_barrier(conf, sector_nr);
1da177e4 2651
3e198f78 2652 rcu_read_lock();
1da177e4 2653 /*
3e198f78
N
2654 * If we get a correctably read error during resync or recovery,
2655 * we might want to read from a different device. So we
2656 * flag all drives that could conceivably be read from for READ,
2657 * and any others (which will be non-In_sync devices) for WRITE.
2658 * If a read fails, we try reading from something else for which READ
2659 * is OK.
1da177e4 2660 */
1da177e4 2661
1da177e4
LT
2662 r1_bio->mddev = mddev;
2663 r1_bio->sector = sector_nr;
191ea9b2 2664 r1_bio->state = 0;
1da177e4 2665 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2666 /* make sure good_sectors won't go across barrier unit boundary */
2667 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2668
8f19ccb2 2669 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2670 struct md_rdev *rdev;
1da177e4 2671 bio = r1_bio->bios[i];
1da177e4 2672
3e198f78
N
2673 rdev = rcu_dereference(conf->mirrors[i].rdev);
2674 if (rdev == NULL ||
06f60385 2675 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2676 if (i < conf->raid_disks)
2677 still_degraded = 1;
3e198f78 2678 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2679 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2680 bio->bi_end_io = end_sync_write;
2681 write_targets ++;
3e198f78
N
2682 } else {
2683 /* may need to read from here */
06f60385
N
2684 sector_t first_bad = MaxSector;
2685 int bad_sectors;
2686
2687 if (is_badblock(rdev, sector_nr, good_sectors,
2688 &first_bad, &bad_sectors)) {
2689 if (first_bad > sector_nr)
2690 good_sectors = first_bad - sector_nr;
2691 else {
2692 bad_sectors -= (sector_nr - first_bad);
2693 if (min_bad == 0 ||
2694 min_bad > bad_sectors)
2695 min_bad = bad_sectors;
2696 }
2697 }
2698 if (sector_nr < first_bad) {
2699 if (test_bit(WriteMostly, &rdev->flags)) {
2700 if (wonly < 0)
2701 wonly = i;
2702 } else {
2703 if (disk < 0)
2704 disk = i;
2705 }
796a5cf0 2706 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2707 bio->bi_end_io = end_sync_read;
2708 read_targets++;
d57368af
AL
2709 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2710 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2711 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2712 /*
2713 * The device is suitable for reading (InSync),
2714 * but has bad block(s) here. Let's try to correct them,
2715 * if we are doing resync or repair. Otherwise, leave
2716 * this device alone for this sync request.
2717 */
796a5cf0 2718 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2719 bio->bi_end_io = end_sync_write;
2720 write_targets++;
3e198f78 2721 }
3e198f78 2722 }
06f60385
N
2723 if (bio->bi_end_io) {
2724 atomic_inc(&rdev->nr_pending);
4f024f37 2725 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2726 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2727 if (test_bit(FailFast, &rdev->flags))
2728 bio->bi_opf |= MD_FAILFAST;
06f60385 2729 }
1da177e4 2730 }
3e198f78
N
2731 rcu_read_unlock();
2732 if (disk < 0)
2733 disk = wonly;
2734 r1_bio->read_disk = disk;
191ea9b2 2735
06f60385
N
2736 if (read_targets == 0 && min_bad > 0) {
2737 /* These sectors are bad on all InSync devices, so we
2738 * need to mark them bad on all write targets
2739 */
2740 int ok = 1;
8f19ccb2 2741 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2742 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2743 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2744 ok = rdev_set_badblocks(rdev, sector_nr,
2745 min_bad, 0
2746 ) && ok;
2747 }
2953079c 2748 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2749 *skipped = 1;
2750 put_buf(r1_bio);
2751
2752 if (!ok) {
2753 /* Cannot record the badblocks, so need to
2754 * abort the resync.
2755 * If there are multiple read targets, could just
2756 * fail the really bad ones ???
2757 */
2758 conf->recovery_disabled = mddev->recovery_disabled;
2759 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2760 return 0;
2761 } else
2762 return min_bad;
2763
2764 }
2765 if (min_bad > 0 && min_bad < good_sectors) {
2766 /* only resync enough to reach the next bad->good
2767 * transition */
2768 good_sectors = min_bad;
2769 }
2770
3e198f78
N
2771 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2772 /* extra read targets are also write targets */
2773 write_targets += read_targets-1;
2774
2775 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2776 /* There is nowhere to write, so all non-sync
2777 * drives must be failed - so we are finished
2778 */
b7219ccb
N
2779 sector_t rv;
2780 if (min_bad > 0)
2781 max_sector = sector_nr + min_bad;
2782 rv = max_sector - sector_nr;
57afd89f 2783 *skipped = 1;
1da177e4 2784 put_buf(r1_bio);
1da177e4
LT
2785 return rv;
2786 }
2787
c6207277
N
2788 if (max_sector > mddev->resync_max)
2789 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2790 if (max_sector > sector_nr + good_sectors)
2791 max_sector = sector_nr + good_sectors;
1da177e4 2792 nr_sectors = 0;
289e99e8 2793 sync_blocks = 0;
1da177e4
LT
2794 do {
2795 struct page *page;
2796 int len = PAGE_SIZE;
2797 if (sector_nr + (len>>9) > max_sector)
2798 len = (max_sector - sector_nr) << 9;
2799 if (len == 0)
2800 break;
6a806c51
N
2801 if (sync_blocks == 0) {
2802 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2803 &sync_blocks, still_degraded) &&
2804 !conf->fullsync &&
2805 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2806 break;
7571ae88 2807 if ((len >> 9) > sync_blocks)
6a806c51 2808 len = sync_blocks<<9;
ab7a30c7 2809 }
191ea9b2 2810
8f19ccb2 2811 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2812 struct resync_pages *rp;
2813
1da177e4 2814 bio = r1_bio->bios[i];
98d30c58 2815 rp = get_resync_pages(bio);
1da177e4 2816 if (bio->bi_end_io) {
022e510f 2817 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2818
2819 /*
2820 * won't fail because the vec table is big
2821 * enough to hold all these pages
2822 */
2823 bio_add_page(bio, page, len, 0);
1da177e4
LT
2824 }
2825 }
2826 nr_sectors += len>>9;
2827 sector_nr += len>>9;
191ea9b2 2828 sync_blocks -= (len>>9);
022e510f 2829 } while (++page_idx < RESYNC_PAGES);
98d30c58 2830
1da177e4
LT
2831 r1_bio->sectors = nr_sectors;
2832
c40f341f
GR
2833 if (mddev_is_clustered(mddev) &&
2834 conf->cluster_sync_high < sector_nr + nr_sectors) {
2835 conf->cluster_sync_low = mddev->curr_resync_completed;
2836 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2837 /* Send resync message */
2838 md_cluster_ops->resync_info_update(mddev,
2839 conf->cluster_sync_low,
2840 conf->cluster_sync_high);
2841 }
2842
d11c171e
N
2843 /* For a user-requested sync, we read all readable devices and do a
2844 * compare
2845 */
2846 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2847 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2848 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2849 bio = r1_bio->bios[i];
2850 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2851 read_targets--;
74d46992 2852 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2853 if (read_targets == 1)
2854 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2855 generic_make_request(bio);
2856 }
2857 }
2858 } else {
2859 atomic_set(&r1_bio->remaining, 1);
2860 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2861 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2862 if (read_targets == 1)
2863 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2864 generic_make_request(bio);
1da177e4 2865
d11c171e 2866 }
1da177e4
LT
2867 return nr_sectors;
2868}
2869
fd01b88c 2870static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2871{
2872 if (sectors)
2873 return sectors;
2874
2875 return mddev->dev_sectors;
2876}
2877
e8096360 2878static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2879{
e8096360 2880 struct r1conf *conf;
709ae487 2881 int i;
0eaf822c 2882 struct raid1_info *disk;
3cb03002 2883 struct md_rdev *rdev;
709ae487 2884 int err = -ENOMEM;
1da177e4 2885
e8096360 2886 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2887 if (!conf)
709ae487 2888 goto abort;
1da177e4 2889
fd76863e 2890 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2891 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2892 if (!conf->nr_pending)
2893 goto abort;
2894
2895 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2896 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2897 if (!conf->nr_waiting)
2898 goto abort;
2899
2900 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2901 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2902 if (!conf->nr_queued)
2903 goto abort;
2904
2905 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2906 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2907 if (!conf->barrier)
2908 goto abort;
2909
0eaf822c 2910 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2911 * mddev->raid_disks * 2,
1da177e4
LT
2912 GFP_KERNEL);
2913 if (!conf->mirrors)
709ae487 2914 goto abort;
1da177e4 2915
ddaf22ab
N
2916 conf->tmppage = alloc_page(GFP_KERNEL);
2917 if (!conf->tmppage)
709ae487 2918 goto abort;
ddaf22ab 2919
709ae487 2920 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2921 if (!conf->poolinfo)
709ae487 2922 goto abort;
8f19ccb2 2923 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2924 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2925 r1bio_pool_free,
2926 conf->poolinfo);
2927 if (!conf->r1bio_pool)
709ae487
N
2928 goto abort;
2929
011067b0 2930 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
c230e7e5
N
2931 if (!conf->bio_split)
2932 goto abort;
2933
ed9bfdf1 2934 conf->poolinfo->mddev = mddev;
1da177e4 2935
c19d5798 2936 err = -EINVAL;
e7e72bf6 2937 spin_lock_init(&conf->device_lock);
dafb20fa 2938 rdev_for_each(rdev, mddev) {
709ae487 2939 int disk_idx = rdev->raid_disk;
1da177e4
LT
2940 if (disk_idx >= mddev->raid_disks
2941 || disk_idx < 0)
2942 continue;
c19d5798 2943 if (test_bit(Replacement, &rdev->flags))
02b898f2 2944 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2945 else
2946 disk = conf->mirrors + disk_idx;
1da177e4 2947
c19d5798
N
2948 if (disk->rdev)
2949 goto abort;
1da177e4 2950 disk->rdev = rdev;
1da177e4 2951 disk->head_position = 0;
12cee5a8 2952 disk->seq_start = MaxSector;
1da177e4
LT
2953 }
2954 conf->raid_disks = mddev->raid_disks;
2955 conf->mddev = mddev;
1da177e4 2956 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2957 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2958
2959 spin_lock_init(&conf->resync_lock);
17999be4 2960 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2961
191ea9b2 2962 bio_list_init(&conf->pending_bio_list);
34db0cd6 2963 conf->pending_count = 0;
d890fa2b 2964 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2965
c19d5798 2966 err = -EIO;
8f19ccb2 2967 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2968
2969 disk = conf->mirrors + i;
2970
c19d5798
N
2971 if (i < conf->raid_disks &&
2972 disk[conf->raid_disks].rdev) {
2973 /* This slot has a replacement. */
2974 if (!disk->rdev) {
2975 /* No original, just make the replacement
2976 * a recovering spare
2977 */
2978 disk->rdev =
2979 disk[conf->raid_disks].rdev;
2980 disk[conf->raid_disks].rdev = NULL;
2981 } else if (!test_bit(In_sync, &disk->rdev->flags))
2982 /* Original is not in_sync - bad */
2983 goto abort;
2984 }
2985
5fd6c1dc
N
2986 if (!disk->rdev ||
2987 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2988 disk->head_position = 0;
4f0a5e01
JB
2989 if (disk->rdev &&
2990 (disk->rdev->saved_raid_disk < 0))
918f0238 2991 conf->fullsync = 1;
be4d3280 2992 }
1da177e4 2993 }
709ae487 2994
709ae487 2995 err = -ENOMEM;
0232605d 2996 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 2997 if (!conf->thread)
709ae487 2998 goto abort;
1da177e4 2999
709ae487
N
3000 return conf;
3001
3002 abort:
3003 if (conf) {
644df1a8 3004 mempool_destroy(conf->r1bio_pool);
709ae487
N
3005 kfree(conf->mirrors);
3006 safe_put_page(conf->tmppage);
3007 kfree(conf->poolinfo);
fd76863e 3008 kfree(conf->nr_pending);
3009 kfree(conf->nr_waiting);
3010 kfree(conf->nr_queued);
3011 kfree(conf->barrier);
c230e7e5
N
3012 if (conf->bio_split)
3013 bioset_free(conf->bio_split);
709ae487
N
3014 kfree(conf);
3015 }
3016 return ERR_PTR(err);
3017}
3018
afa0f557 3019static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3020static int raid1_run(struct mddev *mddev)
709ae487 3021{
e8096360 3022 struct r1conf *conf;
709ae487 3023 int i;
3cb03002 3024 struct md_rdev *rdev;
5220ea1e 3025 int ret;
2ff8cc2c 3026 bool discard_supported = false;
709ae487
N
3027
3028 if (mddev->level != 1) {
1d41c216
N
3029 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3030 mdname(mddev), mddev->level);
709ae487
N
3031 return -EIO;
3032 }
3033 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3034 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3035 mdname(mddev));
709ae487
N
3036 return -EIO;
3037 }
a415c0f1
N
3038 if (mddev_init_writes_pending(mddev) < 0)
3039 return -ENOMEM;
1da177e4 3040 /*
709ae487
N
3041 * copy the already verified devices into our private RAID1
3042 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3043 * should be freed in raid1_free()]
1da177e4 3044 */
709ae487
N
3045 if (mddev->private == NULL)
3046 conf = setup_conf(mddev);
3047 else
3048 conf = mddev->private;
1da177e4 3049
709ae487
N
3050 if (IS_ERR(conf))
3051 return PTR_ERR(conf);
1da177e4 3052
3deff1a7 3053 if (mddev->queue) {
5026d7a9 3054 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3055 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3056 }
5026d7a9 3057
dafb20fa 3058 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3059 if (!mddev->gendisk)
3060 continue;
709ae487
N
3061 disk_stack_limits(mddev->gendisk, rdev->bdev,
3062 rdev->data_offset << 9);
2ff8cc2c
SL
3063 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3064 discard_supported = true;
1da177e4 3065 }
191ea9b2 3066
709ae487
N
3067 mddev->degraded = 0;
3068 for (i=0; i < conf->raid_disks; i++)
3069 if (conf->mirrors[i].rdev == NULL ||
3070 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3071 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3072 mddev->degraded++;
3073
3074 if (conf->raid_disks - mddev->degraded == 1)
3075 mddev->recovery_cp = MaxSector;
3076
8c6ac868 3077 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3078 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3079 mdname(mddev));
3080 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3081 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3082 mddev->raid_disks);
709ae487 3083
1da177e4
LT
3084 /*
3085 * Ok, everything is just fine now
3086 */
709ae487
N
3087 mddev->thread = conf->thread;
3088 conf->thread = NULL;
3089 mddev->private = conf;
46533ff7 3090 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3091
1f403624 3092 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3093
1ed7242e 3094 if (mddev->queue) {
2ff8cc2c
SL
3095 if (discard_supported)
3096 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3097 mddev->queue);
3098 else
3099 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3100 mddev->queue);
1ed7242e 3101 }
5220ea1e 3102
3103 ret = md_integrity_register(mddev);
5aa61f42
N
3104 if (ret) {
3105 md_unregister_thread(&mddev->thread);
afa0f557 3106 raid1_free(mddev, conf);
5aa61f42 3107 }
5220ea1e 3108 return ret;
1da177e4
LT
3109}
3110
afa0f557 3111static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3112{
afa0f557 3113 struct r1conf *conf = priv;
409c57f3 3114
644df1a8 3115 mempool_destroy(conf->r1bio_pool);
990a8baf 3116 kfree(conf->mirrors);
0fea7ed8 3117 safe_put_page(conf->tmppage);
990a8baf 3118 kfree(conf->poolinfo);
fd76863e 3119 kfree(conf->nr_pending);
3120 kfree(conf->nr_waiting);
3121 kfree(conf->nr_queued);
3122 kfree(conf->barrier);
c230e7e5
N
3123 if (conf->bio_split)
3124 bioset_free(conf->bio_split);
1da177e4 3125 kfree(conf);
1da177e4
LT
3126}
3127
fd01b88c 3128static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3129{
3130 /* no resync is happening, and there is enough space
3131 * on all devices, so we can resize.
3132 * We need to make sure resync covers any new space.
3133 * If the array is shrinking we should possibly wait until
3134 * any io in the removed space completes, but it hardly seems
3135 * worth it.
3136 */
a4a6125a
N
3137 sector_t newsize = raid1_size(mddev, sectors, 0);
3138 if (mddev->external_size &&
3139 mddev->array_sectors > newsize)
b522adcd 3140 return -EINVAL;
a4a6125a
N
3141 if (mddev->bitmap) {
3142 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3143 if (ret)
3144 return ret;
3145 }
3146 md_set_array_sectors(mddev, newsize);
b522adcd 3147 if (sectors > mddev->dev_sectors &&
b098636c 3148 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3149 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3150 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3151 }
b522adcd 3152 mddev->dev_sectors = sectors;
4b5c7ae8 3153 mddev->resync_max_sectors = sectors;
1da177e4
LT
3154 return 0;
3155}
3156
fd01b88c 3157static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3158{
3159 /* We need to:
3160 * 1/ resize the r1bio_pool
3161 * 2/ resize conf->mirrors
3162 *
3163 * We allocate a new r1bio_pool if we can.
3164 * Then raise a device barrier and wait until all IO stops.
3165 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3166 *
3167 * At the same time, we "pack" the devices so that all the missing
3168 * devices have the higher raid_disk numbers.
1da177e4
LT
3169 */
3170 mempool_t *newpool, *oldpool;
3171 struct pool_info *newpoolinfo;
0eaf822c 3172 struct raid1_info *newmirrors;
e8096360 3173 struct r1conf *conf = mddev->private;
63c70c4f 3174 int cnt, raid_disks;
c04be0aa 3175 unsigned long flags;
2214c260 3176 int d, d2;
1da177e4 3177
63c70c4f 3178 /* Cannot change chunk_size, layout, or level */
664e7c41 3179 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3180 mddev->layout != mddev->new_layout ||
3181 mddev->level != mddev->new_level) {
664e7c41 3182 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3183 mddev->new_layout = mddev->layout;
3184 mddev->new_level = mddev->level;
3185 return -EINVAL;
3186 }
3187
2214c260
AP
3188 if (!mddev_is_clustered(mddev))
3189 md_allow_write(mddev);
2a2275d6 3190
63c70c4f
N
3191 raid_disks = mddev->raid_disks + mddev->delta_disks;
3192
6ea9c07c
N
3193 if (raid_disks < conf->raid_disks) {
3194 cnt=0;
3195 for (d= 0; d < conf->raid_disks; d++)
3196 if (conf->mirrors[d].rdev)
3197 cnt++;
3198 if (cnt > raid_disks)
1da177e4 3199 return -EBUSY;
6ea9c07c 3200 }
1da177e4
LT
3201
3202 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3203 if (!newpoolinfo)
3204 return -ENOMEM;
3205 newpoolinfo->mddev = mddev;
8f19ccb2 3206 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3207
3208 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3209 r1bio_pool_free, newpoolinfo);
3210 if (!newpool) {
3211 kfree(newpoolinfo);
3212 return -ENOMEM;
3213 }
0eaf822c 3214 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3215 GFP_KERNEL);
1da177e4
LT
3216 if (!newmirrors) {
3217 kfree(newpoolinfo);
3218 mempool_destroy(newpool);
3219 return -ENOMEM;
3220 }
1da177e4 3221
e2d59925 3222 freeze_array(conf, 0);
1da177e4
LT
3223
3224 /* ok, everything is stopped */
3225 oldpool = conf->r1bio_pool;
3226 conf->r1bio_pool = newpool;
6ea9c07c 3227
a88aa786 3228 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3229 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3230 if (rdev && rdev->raid_disk != d2) {
36fad858 3231 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3232 rdev->raid_disk = d2;
36fad858
NK
3233 sysfs_unlink_rdev(mddev, rdev);
3234 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3235 pr_warn("md/raid1:%s: cannot register rd%d\n",
3236 mdname(mddev), rdev->raid_disk);
6ea9c07c 3237 }
a88aa786
N
3238 if (rdev)
3239 newmirrors[d2++].rdev = rdev;
3240 }
1da177e4
LT
3241 kfree(conf->mirrors);
3242 conf->mirrors = newmirrors;
3243 kfree(conf->poolinfo);
3244 conf->poolinfo = newpoolinfo;
3245
c04be0aa 3246 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3247 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3248 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3249 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3250 mddev->delta_disks = 0;
1da177e4 3251
e2d59925 3252 unfreeze_array(conf);
1da177e4 3253
985ca973 3254 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3255 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3256 md_wakeup_thread(mddev->thread);
3257
3258 mempool_destroy(oldpool);
3259 return 0;
3260}
3261
fd01b88c 3262static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3263{
e8096360 3264 struct r1conf *conf = mddev->private;
36fa3063
N
3265
3266 switch(state) {
6eef4b21
N
3267 case 2: /* wake for suspend */
3268 wake_up(&conf->wait_barrier);
3269 break;
9e6603da 3270 case 1:
07169fd4 3271 freeze_array(conf, 0);
36fa3063 3272 break;
9e6603da 3273 case 0:
07169fd4 3274 unfreeze_array(conf);
36fa3063
N
3275 break;
3276 }
36fa3063
N
3277}
3278
fd01b88c 3279static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3280{
3281 /* raid1 can take over:
3282 * raid5 with 2 devices, any layout or chunk size
3283 */
3284 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3285 struct r1conf *conf;
709ae487
N
3286 mddev->new_level = 1;
3287 mddev->new_layout = 0;
3288 mddev->new_chunk_sectors = 0;
3289 conf = setup_conf(mddev);
6995f0b2 3290 if (!IS_ERR(conf)) {
07169fd4 3291 /* Array must appear to be quiesced */
3292 conf->array_frozen = 1;
394ed8e4
SL
3293 mddev_clear_unsupported_flags(mddev,
3294 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3295 }
709ae487
N
3296 return conf;
3297 }
3298 return ERR_PTR(-EINVAL);
3299}
1da177e4 3300
84fc4b56 3301static struct md_personality raid1_personality =
1da177e4
LT
3302{
3303 .name = "raid1",
2604b703 3304 .level = 1,
1da177e4 3305 .owner = THIS_MODULE,
849674e4
SL
3306 .make_request = raid1_make_request,
3307 .run = raid1_run,
afa0f557 3308 .free = raid1_free,
849674e4
SL
3309 .status = raid1_status,
3310 .error_handler = raid1_error,
1da177e4
LT
3311 .hot_add_disk = raid1_add_disk,
3312 .hot_remove_disk= raid1_remove_disk,
3313 .spare_active = raid1_spare_active,
849674e4 3314 .sync_request = raid1_sync_request,
1da177e4 3315 .resize = raid1_resize,
80c3a6ce 3316 .size = raid1_size,
63c70c4f 3317 .check_reshape = raid1_reshape,
36fa3063 3318 .quiesce = raid1_quiesce,
709ae487 3319 .takeover = raid1_takeover,
5c675f83 3320 .congested = raid1_congested,
1da177e4
LT
3321};
3322
3323static int __init raid_init(void)
3324{
2604b703 3325 return register_md_personality(&raid1_personality);
1da177e4
LT
3326}
3327
3328static void raid_exit(void)
3329{
2604b703 3330 unregister_md_personality(&raid1_personality);
1da177e4
LT
3331}
3332
3333module_init(raid_init);
3334module_exit(raid_exit);
3335MODULE_LICENSE("GPL");
0efb9e61 3336MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3337MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3338MODULE_ALIAS("md-raid1");
2604b703 3339MODULE_ALIAS("md-level-1");
34db0cd6
N
3340
3341module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);