]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/md/raid1.c
md/raid1: handle activation of replacement device when recovery completes.
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
34db0cd6
N
49/* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
51 * for writeback.
52 */
53static int max_queued_requests = 1024;
1da177e4 54
e8096360
N
55static void allow_barrier(struct r1conf *conf);
56static void lower_barrier(struct r1conf *conf);
1da177e4 57
dd0fc66f 58static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
59{
60 struct pool_info *pi = data;
9f2c9d12 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
62
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 64 return kzalloc(size, gfp_flags);
1da177e4
LT
65}
66
67static void r1bio_pool_free(void *r1_bio, void *data)
68{
69 kfree(r1_bio);
70}
71
72#define RESYNC_BLOCK_SIZE (64*1024)
73//#define RESYNC_BLOCK_SIZE PAGE_SIZE
74#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76#define RESYNC_WINDOW (2048*1024)
77
dd0fc66f 78static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
79{
80 struct pool_info *pi = data;
81 struct page *page;
9f2c9d12 82 struct r1bio *r1_bio;
1da177e4
LT
83 struct bio *bio;
84 int i, j;
85
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 87 if (!r1_bio)
1da177e4 88 return NULL;
1da177e4
LT
89
90 /*
91 * Allocate bios : 1 for reading, n-1 for writing
92 */
93 for (j = pi->raid_disks ; j-- ; ) {
6746557f 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
98 }
99 /*
100 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
1da177e4 104 */
d11c171e
N
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
115
116 bio->bi_io_vec[i].bv_page = page;
303a0e11 117 bio->bi_vcnt = i+1;
d11c171e
N
118 }
119 }
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
126 }
127
128 r1_bio->master_bio = NULL;
129
130 return r1_bio;
131
132out_free_pages:
303a0e11
N
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 136 j = -1;
1da177e4 137out_free_bio:
8f19ccb2 138 while (++j < pi->raid_disks)
1da177e4
LT
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
142}
143
144static void r1buf_pool_free(void *__r1_bio, void *data)
145{
146 struct pool_info *pi = data;
d11c171e 147 int i,j;
9f2c9d12 148 struct r1bio *r1bio = __r1_bio;
1da177e4 149
d11c171e
N
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 156 }
1da177e4
LT
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
159
160 r1bio_pool_free(r1bio, data);
161}
162
e8096360 163static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
164{
165 int i;
166
8f19ccb2 167 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 168 struct bio **bio = r1_bio->bios + i;
4367af55 169 if (!BIO_SPECIAL(*bio))
1da177e4
LT
170 bio_put(*bio);
171 *bio = NULL;
172 }
173}
174
9f2c9d12 175static void free_r1bio(struct r1bio *r1_bio)
1da177e4 176{
e8096360 177 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 178
1da177e4
LT
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
181}
182
9f2c9d12 183static void put_buf(struct r1bio *r1_bio)
1da177e4 184{
e8096360 185 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
186 int i;
187
8f19ccb2 188 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
189 struct bio *bio = r1_bio->bios[i];
190 if (bio->bi_end_io)
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 }
1da177e4
LT
193
194 mempool_free(r1_bio, conf->r1buf_pool);
195
17999be4 196 lower_barrier(conf);
1da177e4
LT
197}
198
9f2c9d12 199static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
200{
201 unsigned long flags;
fd01b88c 202 struct mddev *mddev = r1_bio->mddev;
e8096360 203 struct r1conf *conf = mddev->private;
1da177e4
LT
204
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 207 conf->nr_queued ++;
1da177e4
LT
208 spin_unlock_irqrestore(&conf->device_lock, flags);
209
17999be4 210 wake_up(&conf->wait_barrier);
1da177e4
LT
211 md_wakeup_thread(mddev->thread);
212}
213
214/*
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
217 * cache layer.
218 */
9f2c9d12 219static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
220{
221 struct bio *bio = r1_bio->master_bio;
222 int done;
e8096360 223 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
224
225 if (bio->bi_phys_segments) {
226 unsigned long flags;
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231 } else
232 done = 1;
233
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 if (done) {
237 bio_endio(bio, 0);
238 /*
239 * Wake up any possible resync thread that waits for the device
240 * to go idle.
241 */
242 allow_barrier(conf);
243 }
244}
245
9f2c9d12 246static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
247{
248 struct bio *bio = r1_bio->master_bio;
249
4b6d287f
N
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
4b6d287f 257
d2eb35ac 258 call_bio_endio(r1_bio);
4b6d287f 259 }
1da177e4
LT
260 free_r1bio(r1_bio);
261}
262
263/*
264 * Update disk head position estimator based on IRQ completion info.
265 */
9f2c9d12 266static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 267{
e8096360 268 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
269
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
272}
273
ba3ae3be
NK
274/*
275 * Find the disk number which triggered given bio
276 */
9f2c9d12 277static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
278{
279 int mirror;
30194636
N
280 struct r1conf *conf = r1_bio->mddev->private;
281 int raid_disks = conf->raid_disks;
ba3ae3be 282
8f19ccb2 283 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
284 if (r1_bio->bios[mirror] == bio)
285 break;
286
8f19ccb2 287 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
288 update_head_pos(mirror, r1_bio);
289
290 return mirror;
291}
292
6712ecf8 293static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
294{
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 296 struct r1bio *r1_bio = bio->bi_private;
1da177e4 297 int mirror;
e8096360 298 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 299
1da177e4
LT
300 mirror = r1_bio->read_disk;
301 /*
302 * this branch is our 'one mirror IO has finished' event handler:
303 */
ddaf22ab
N
304 update_head_pos(mirror, r1_bio);
305
dd00a99e
N
306 if (uptodate)
307 set_bit(R1BIO_Uptodate, &r1_bio->state);
308 else {
309 /* If all other devices have failed, we want to return
310 * the error upwards rather than fail the last device.
311 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 312 */
dd00a99e
N
313 unsigned long flags;
314 spin_lock_irqsave(&conf->device_lock, flags);
315 if (r1_bio->mddev->degraded == conf->raid_disks ||
316 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 uptodate = 1;
319 spin_unlock_irqrestore(&conf->device_lock, flags);
320 }
1da177e4 321
dd00a99e 322 if (uptodate)
1da177e4 323 raid_end_bio_io(r1_bio);
dd00a99e 324 else {
1da177e4
LT
325 /*
326 * oops, read error:
327 */
328 char b[BDEVNAME_SIZE];
8bda470e
CD
329 printk_ratelimited(
330 KERN_ERR "md/raid1:%s: %s: "
331 "rescheduling sector %llu\n",
332 mdname(conf->mddev),
333 bdevname(conf->mirrors[mirror].rdev->bdev,
334 b),
335 (unsigned long long)r1_bio->sector);
d2eb35ac 336 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
337 reschedule_retry(r1_bio);
338 }
339
340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
341}
342
9f2c9d12 343static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
344{
345 /* it really is the end of this request */
346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 /* free extra copy of the data pages */
348 int i = r1_bio->behind_page_count;
349 while (i--)
350 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 kfree(r1_bio->behind_bvecs);
352 r1_bio->behind_bvecs = NULL;
353 }
354 /* clear the bitmap if all writes complete successfully */
355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 r1_bio->sectors,
357 !test_bit(R1BIO_Degraded, &r1_bio->state),
358 test_bit(R1BIO_BehindIO, &r1_bio->state));
359 md_write_end(r1_bio->mddev);
360}
361
9f2c9d12 362static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 363{
cd5ff9a1
N
364 if (!atomic_dec_and_test(&r1_bio->remaining))
365 return;
366
367 if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 reschedule_retry(r1_bio);
369 else {
370 close_write(r1_bio);
4367af55
N
371 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else
374 raid_end_bio_io(r1_bio);
4e78064f
N
375 }
376}
377
6712ecf8 378static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
379{
380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 381 struct r1bio *r1_bio = bio->bi_private;
a9701a30 382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 383 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 384 struct bio *to_put = NULL;
1da177e4 385
ba3ae3be 386 mirror = find_bio_disk(r1_bio, bio);
1da177e4 387
e9c7469b
TH
388 /*
389 * 'one mirror IO has finished' event handler:
390 */
e9c7469b 391 if (!uptodate) {
cd5ff9a1
N
392 set_bit(WriteErrorSeen,
393 &conf->mirrors[mirror].rdev->flags);
394 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 395 } else {
1da177e4 396 /*
e9c7469b
TH
397 * Set R1BIO_Uptodate in our master bio, so that we
398 * will return a good error code for to the higher
399 * levels even if IO on some other mirrored buffer
400 * fails.
401 *
402 * The 'master' represents the composite IO operation
403 * to user-side. So if something waits for IO, then it
404 * will wait for the 'master' bio.
1da177e4 405 */
4367af55
N
406 sector_t first_bad;
407 int bad_sectors;
408
cd5ff9a1
N
409 r1_bio->bios[mirror] = NULL;
410 to_put = bio;
e9c7469b
TH
411 set_bit(R1BIO_Uptodate, &r1_bio->state);
412
4367af55
N
413 /* Maybe we can clear some bad blocks. */
414 if (is_badblock(conf->mirrors[mirror].rdev,
415 r1_bio->sector, r1_bio->sectors,
416 &first_bad, &bad_sectors)) {
417 r1_bio->bios[mirror] = IO_MADE_GOOD;
418 set_bit(R1BIO_MadeGood, &r1_bio->state);
419 }
420 }
421
e9c7469b
TH
422 if (behind) {
423 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
424 atomic_dec(&r1_bio->behind_remaining);
425
426 /*
427 * In behind mode, we ACK the master bio once the I/O
428 * has safely reached all non-writemostly
429 * disks. Setting the Returned bit ensures that this
430 * gets done only once -- we don't ever want to return
431 * -EIO here, instead we'll wait
432 */
433 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
434 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
435 /* Maybe we can return now */
436 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
437 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
438 pr_debug("raid1: behind end write sectors"
439 " %llu-%llu\n",
440 (unsigned long long) mbio->bi_sector,
441 (unsigned long long) mbio->bi_sector +
442 (mbio->bi_size >> 9) - 1);
d2eb35ac 443 call_bio_endio(r1_bio);
4b6d287f
N
444 }
445 }
446 }
4367af55
N
447 if (r1_bio->bios[mirror] == NULL)
448 rdev_dec_pending(conf->mirrors[mirror].rdev,
449 conf->mddev);
e9c7469b 450
1da177e4 451 /*
1da177e4
LT
452 * Let's see if all mirrored write operations have finished
453 * already.
454 */
af6d7b76 455 r1_bio_write_done(r1_bio);
c70810b3 456
04b857f7
N
457 if (to_put)
458 bio_put(to_put);
1da177e4
LT
459}
460
461
462/*
463 * This routine returns the disk from which the requested read should
464 * be done. There is a per-array 'next expected sequential IO' sector
465 * number - if this matches on the next IO then we use the last disk.
466 * There is also a per-disk 'last know head position' sector that is
467 * maintained from IRQ contexts, both the normal and the resync IO
468 * completion handlers update this position correctly. If there is no
469 * perfect sequential match then we pick the disk whose head is closest.
470 *
471 * If there are 2 mirrors in the same 2 devices, performance degrades
472 * because position is mirror, not device based.
473 *
474 * The rdev for the device selected will have nr_pending incremented.
475 */
e8096360 476static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 477{
af3a2cd6 478 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
479 int sectors;
480 int best_good_sectors;
f3ac8bf7 481 int start_disk;
76073054 482 int best_disk;
f3ac8bf7 483 int i;
76073054 484 sector_t best_dist;
3cb03002 485 struct md_rdev *rdev;
f3ac8bf7 486 int choose_first;
1da177e4
LT
487
488 rcu_read_lock();
489 /*
8ddf9efe 490 * Check if we can balance. We can balance on the whole
1da177e4
LT
491 * device if no resync is going on, or below the resync window.
492 * We take the first readable disk when above the resync window.
493 */
494 retry:
d2eb35ac 495 sectors = r1_bio->sectors;
76073054
N
496 best_disk = -1;
497 best_dist = MaxSector;
d2eb35ac
N
498 best_good_sectors = 0;
499
1da177e4
LT
500 if (conf->mddev->recovery_cp < MaxSector &&
501 (this_sector + sectors >= conf->next_resync)) {
f3ac8bf7
N
502 choose_first = 1;
503 start_disk = 0;
504 } else {
505 choose_first = 0;
506 start_disk = conf->last_used;
1da177e4
LT
507 }
508
8f19ccb2 509 for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
76073054 510 sector_t dist;
d2eb35ac
N
511 sector_t first_bad;
512 int bad_sectors;
513
f3ac8bf7
N
514 int disk = start_disk + i;
515 if (disk >= conf->raid_disks)
516 disk -= conf->raid_disks;
517
518 rdev = rcu_dereference(conf->mirrors[disk].rdev);
519 if (r1_bio->bios[disk] == IO_BLOCKED
520 || rdev == NULL
76073054 521 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 522 continue;
76073054
N
523 if (!test_bit(In_sync, &rdev->flags) &&
524 rdev->recovery_offset < this_sector + sectors)
1da177e4 525 continue;
76073054
N
526 if (test_bit(WriteMostly, &rdev->flags)) {
527 /* Don't balance among write-mostly, just
528 * use the first as a last resort */
529 if (best_disk < 0)
530 best_disk = disk;
531 continue;
532 }
533 /* This is a reasonable device to use. It might
534 * even be best.
535 */
d2eb35ac
N
536 if (is_badblock(rdev, this_sector, sectors,
537 &first_bad, &bad_sectors)) {
538 if (best_dist < MaxSector)
539 /* already have a better device */
540 continue;
541 if (first_bad <= this_sector) {
542 /* cannot read here. If this is the 'primary'
543 * device, then we must not read beyond
544 * bad_sectors from another device..
545 */
546 bad_sectors -= (this_sector - first_bad);
547 if (choose_first && sectors > bad_sectors)
548 sectors = bad_sectors;
549 if (best_good_sectors > sectors)
550 best_good_sectors = sectors;
551
552 } else {
553 sector_t good_sectors = first_bad - this_sector;
554 if (good_sectors > best_good_sectors) {
555 best_good_sectors = good_sectors;
556 best_disk = disk;
557 }
558 if (choose_first)
559 break;
560 }
561 continue;
562 } else
563 best_good_sectors = sectors;
564
76073054
N
565 dist = abs(this_sector - conf->mirrors[disk].head_position);
566 if (choose_first
567 /* Don't change to another disk for sequential reads */
568 || conf->next_seq_sect == this_sector
569 || dist == 0
570 /* If device is idle, use it */
571 || atomic_read(&rdev->nr_pending) == 0) {
572 best_disk = disk;
1da177e4
LT
573 break;
574 }
76073054
N
575 if (dist < best_dist) {
576 best_dist = dist;
577 best_disk = disk;
1da177e4 578 }
f3ac8bf7 579 }
1da177e4 580
76073054
N
581 if (best_disk >= 0) {
582 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
583 if (!rdev)
584 goto retry;
585 atomic_inc(&rdev->nr_pending);
76073054 586 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
587 /* cannot risk returning a device that failed
588 * before we inc'ed nr_pending
589 */
03c902e1 590 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
591 goto retry;
592 }
d2eb35ac 593 sectors = best_good_sectors;
8ddf9efe 594 conf->next_seq_sect = this_sector + sectors;
76073054 595 conf->last_used = best_disk;
1da177e4
LT
596 }
597 rcu_read_unlock();
d2eb35ac 598 *max_sectors = sectors;
1da177e4 599
76073054 600 return best_disk;
1da177e4
LT
601}
602
fd01b88c 603int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 604{
e8096360 605 struct r1conf *conf = mddev->private;
0d129228
N
606 int i, ret = 0;
607
34db0cd6
N
608 if ((bits & (1 << BDI_async_congested)) &&
609 conf->pending_count >= max_queued_requests)
610 return 1;
611
0d129228 612 rcu_read_lock();
30194636 613 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 614 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 615 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 616 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 617
1ed7242e
JB
618 BUG_ON(!q);
619
0d129228
N
620 /* Note the '|| 1' - when read_balance prefers
621 * non-congested targets, it can be removed
622 */
91a9e99d 623 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
624 ret |= bdi_congested(&q->backing_dev_info, bits);
625 else
626 ret &= bdi_congested(&q->backing_dev_info, bits);
627 }
628 }
629 rcu_read_unlock();
630 return ret;
631}
1ed7242e 632EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 633
1ed7242e
JB
634static int raid1_congested(void *data, int bits)
635{
fd01b88c 636 struct mddev *mddev = data;
1ed7242e
JB
637
638 return mddev_congested(mddev, bits) ||
639 md_raid1_congested(mddev, bits);
640}
0d129228 641
e8096360 642static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
643{
644 /* Any writes that have been queued but are awaiting
645 * bitmap updates get flushed here.
a35e63ef 646 */
a35e63ef
N
647 spin_lock_irq(&conf->device_lock);
648
649 if (conf->pending_bio_list.head) {
650 struct bio *bio;
651 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 652 conf->pending_count = 0;
a35e63ef
N
653 spin_unlock_irq(&conf->device_lock);
654 /* flush any pending bitmap writes to
655 * disk before proceeding w/ I/O */
656 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 657 wake_up(&conf->wait_barrier);
a35e63ef
N
658
659 while (bio) { /* submit pending writes */
660 struct bio *next = bio->bi_next;
661 bio->bi_next = NULL;
662 generic_make_request(bio);
663 bio = next;
664 }
a35e63ef
N
665 } else
666 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
667}
668
17999be4
N
669/* Barriers....
670 * Sometimes we need to suspend IO while we do something else,
671 * either some resync/recovery, or reconfigure the array.
672 * To do this we raise a 'barrier'.
673 * The 'barrier' is a counter that can be raised multiple times
674 * to count how many activities are happening which preclude
675 * normal IO.
676 * We can only raise the barrier if there is no pending IO.
677 * i.e. if nr_pending == 0.
678 * We choose only to raise the barrier if no-one is waiting for the
679 * barrier to go down. This means that as soon as an IO request
680 * is ready, no other operations which require a barrier will start
681 * until the IO request has had a chance.
682 *
683 * So: regular IO calls 'wait_barrier'. When that returns there
684 * is no backgroup IO happening, It must arrange to call
685 * allow_barrier when it has finished its IO.
686 * backgroup IO calls must call raise_barrier. Once that returns
687 * there is no normal IO happeing. It must arrange to call
688 * lower_barrier when the particular background IO completes.
1da177e4
LT
689 */
690#define RESYNC_DEPTH 32
691
e8096360 692static void raise_barrier(struct r1conf *conf)
1da177e4
LT
693{
694 spin_lock_irq(&conf->resync_lock);
17999be4
N
695
696 /* Wait until no block IO is waiting */
697 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 698 conf->resync_lock, );
17999be4
N
699
700 /* block any new IO from starting */
701 conf->barrier++;
702
046abeed 703 /* Now wait for all pending IO to complete */
17999be4
N
704 wait_event_lock_irq(conf->wait_barrier,
705 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 706 conf->resync_lock, );
17999be4
N
707
708 spin_unlock_irq(&conf->resync_lock);
709}
710
e8096360 711static void lower_barrier(struct r1conf *conf)
17999be4
N
712{
713 unsigned long flags;
709ae487 714 BUG_ON(conf->barrier <= 0);
17999be4
N
715 spin_lock_irqsave(&conf->resync_lock, flags);
716 conf->barrier--;
717 spin_unlock_irqrestore(&conf->resync_lock, flags);
718 wake_up(&conf->wait_barrier);
719}
720
e8096360 721static void wait_barrier(struct r1conf *conf)
17999be4
N
722{
723 spin_lock_irq(&conf->resync_lock);
724 if (conf->barrier) {
725 conf->nr_waiting++;
726 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
727 conf->resync_lock,
c3b328ac 728 );
17999be4 729 conf->nr_waiting--;
1da177e4 730 }
17999be4 731 conf->nr_pending++;
1da177e4
LT
732 spin_unlock_irq(&conf->resync_lock);
733}
734
e8096360 735static void allow_barrier(struct r1conf *conf)
17999be4
N
736{
737 unsigned long flags;
738 spin_lock_irqsave(&conf->resync_lock, flags);
739 conf->nr_pending--;
740 spin_unlock_irqrestore(&conf->resync_lock, flags);
741 wake_up(&conf->wait_barrier);
742}
743
e8096360 744static void freeze_array(struct r1conf *conf)
ddaf22ab
N
745{
746 /* stop syncio and normal IO and wait for everything to
747 * go quite.
748 * We increment barrier and nr_waiting, and then
1c830532
N
749 * wait until nr_pending match nr_queued+1
750 * This is called in the context of one normal IO request
751 * that has failed. Thus any sync request that might be pending
752 * will be blocked by nr_pending, and we need to wait for
753 * pending IO requests to complete or be queued for re-try.
754 * Thus the number queued (nr_queued) plus this request (1)
755 * must match the number of pending IOs (nr_pending) before
756 * we continue.
ddaf22ab
N
757 */
758 spin_lock_irq(&conf->resync_lock);
759 conf->barrier++;
760 conf->nr_waiting++;
761 wait_event_lock_irq(conf->wait_barrier,
1c830532 762 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 763 conf->resync_lock,
c3b328ac 764 flush_pending_writes(conf));
ddaf22ab
N
765 spin_unlock_irq(&conf->resync_lock);
766}
e8096360 767static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
768{
769 /* reverse the effect of the freeze */
770 spin_lock_irq(&conf->resync_lock);
771 conf->barrier--;
772 conf->nr_waiting--;
773 wake_up(&conf->wait_barrier);
774 spin_unlock_irq(&conf->resync_lock);
775}
776
17999be4 777
4e78064f 778/* duplicate the data pages for behind I/O
4e78064f 779 */
9f2c9d12 780static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
781{
782 int i;
783 struct bio_vec *bvec;
2ca68f5e 784 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 785 GFP_NOIO);
2ca68f5e 786 if (unlikely(!bvecs))
af6d7b76 787 return;
4b6d287f 788
4b6d287f 789 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
790 bvecs[i] = *bvec;
791 bvecs[i].bv_page = alloc_page(GFP_NOIO);
792 if (unlikely(!bvecs[i].bv_page))
4b6d287f 793 goto do_sync_io;
2ca68f5e
N
794 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
795 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
796 kunmap(bvecs[i].bv_page);
4b6d287f
N
797 kunmap(bvec->bv_page);
798 }
2ca68f5e 799 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
800 r1_bio->behind_page_count = bio->bi_vcnt;
801 set_bit(R1BIO_BehindIO, &r1_bio->state);
802 return;
4b6d287f
N
803
804do_sync_io:
af6d7b76 805 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
806 if (bvecs[i].bv_page)
807 put_page(bvecs[i].bv_page);
808 kfree(bvecs);
36a4e1fe 809 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
810}
811
b4fdcb02 812static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 813{
e8096360 814 struct r1conf *conf = mddev->private;
0f6d02d5 815 struct mirror_info *mirror;
9f2c9d12 816 struct r1bio *r1_bio;
1da177e4 817 struct bio *read_bio;
1f68f0c4 818 int i, disks;
84255d10 819 struct bitmap *bitmap;
191ea9b2 820 unsigned long flags;
a362357b 821 const int rw = bio_data_dir(bio);
2c7d46ec 822 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 823 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
3cb03002 824 struct md_rdev *blocked_rdev;
c3b328ac 825 int plugged;
1f68f0c4
N
826 int first_clone;
827 int sectors_handled;
828 int max_sectors;
191ea9b2 829
1da177e4
LT
830 /*
831 * Register the new request and wait if the reconstruction
832 * thread has put up a bar for new requests.
833 * Continue immediately if no resync is active currently.
834 */
62de608d 835
3d310eb7
N
836 md_write_start(mddev, bio); /* wait on superblock update early */
837
6eef4b21
N
838 if (bio_data_dir(bio) == WRITE &&
839 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
840 bio->bi_sector < mddev->suspend_hi) {
841 /* As the suspend_* range is controlled by
842 * userspace, we want an interruptible
843 * wait.
844 */
845 DEFINE_WAIT(w);
846 for (;;) {
847 flush_signals(current);
848 prepare_to_wait(&conf->wait_barrier,
849 &w, TASK_INTERRUPTIBLE);
850 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
851 bio->bi_sector >= mddev->suspend_hi)
852 break;
853 schedule();
854 }
855 finish_wait(&conf->wait_barrier, &w);
856 }
62de608d 857
17999be4 858 wait_barrier(conf);
1da177e4 859
84255d10
N
860 bitmap = mddev->bitmap;
861
1da177e4
LT
862 /*
863 * make_request() can abort the operation when READA is being
864 * used and no empty request is available.
865 *
866 */
867 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
868
869 r1_bio->master_bio = bio;
870 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 871 r1_bio->state = 0;
1da177e4
LT
872 r1_bio->mddev = mddev;
873 r1_bio->sector = bio->bi_sector;
874
d2eb35ac
N
875 /* We might need to issue multiple reads to different
876 * devices if there are bad blocks around, so we keep
877 * track of the number of reads in bio->bi_phys_segments.
878 * If this is 0, there is only one r1_bio and no locking
879 * will be needed when requests complete. If it is
880 * non-zero, then it is the number of not-completed requests.
881 */
882 bio->bi_phys_segments = 0;
883 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
884
a362357b 885 if (rw == READ) {
1da177e4
LT
886 /*
887 * read balancing logic:
888 */
d2eb35ac
N
889 int rdisk;
890
891read_again:
892 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
893
894 if (rdisk < 0) {
895 /* couldn't find anywhere to read from */
896 raid_end_bio_io(r1_bio);
5a7bbad2 897 return;
1da177e4
LT
898 }
899 mirror = conf->mirrors + rdisk;
900
e555190d
N
901 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
902 bitmap) {
903 /* Reading from a write-mostly device must
904 * take care not to over-take any writes
905 * that are 'behind'
906 */
907 wait_event(bitmap->behind_wait,
908 atomic_read(&bitmap->behind_writes) == 0);
909 }
1da177e4
LT
910 r1_bio->read_disk = rdisk;
911
a167f663 912 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
913 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
914 max_sectors);
1da177e4
LT
915
916 r1_bio->bios[rdisk] = read_bio;
917
918 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
919 read_bio->bi_bdev = mirror->rdev->bdev;
920 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 921 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
922 read_bio->bi_private = r1_bio;
923
d2eb35ac
N
924 if (max_sectors < r1_bio->sectors) {
925 /* could not read all from this device, so we will
926 * need another r1_bio.
927 */
d2eb35ac
N
928
929 sectors_handled = (r1_bio->sector + max_sectors
930 - bio->bi_sector);
931 r1_bio->sectors = max_sectors;
932 spin_lock_irq(&conf->device_lock);
933 if (bio->bi_phys_segments == 0)
934 bio->bi_phys_segments = 2;
935 else
936 bio->bi_phys_segments++;
937 spin_unlock_irq(&conf->device_lock);
938 /* Cannot call generic_make_request directly
939 * as that will be queued in __make_request
940 * and subsequent mempool_alloc might block waiting
941 * for it. So hand bio over to raid1d.
942 */
943 reschedule_retry(r1_bio);
944
945 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
946
947 r1_bio->master_bio = bio;
948 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
949 r1_bio->state = 0;
950 r1_bio->mddev = mddev;
951 r1_bio->sector = bio->bi_sector + sectors_handled;
952 goto read_again;
953 } else
954 generic_make_request(read_bio);
5a7bbad2 955 return;
1da177e4
LT
956 }
957
958 /*
959 * WRITE:
960 */
34db0cd6
N
961 if (conf->pending_count >= max_queued_requests) {
962 md_wakeup_thread(mddev->thread);
963 wait_event(conf->wait_barrier,
964 conf->pending_count < max_queued_requests);
965 }
1f68f0c4 966 /* first select target devices under rcu_lock and
1da177e4
LT
967 * inc refcount on their rdev. Record them by setting
968 * bios[x] to bio
1f68f0c4
N
969 * If there are known/acknowledged bad blocks on any device on
970 * which we have seen a write error, we want to avoid writing those
971 * blocks.
972 * This potentially requires several writes to write around
973 * the bad blocks. Each set of writes gets it's own r1bio
974 * with a set of bios attached.
1da177e4 975 */
c3b328ac
N
976 plugged = mddev_check_plugged(mddev);
977
8f19ccb2 978 disks = conf->raid_disks * 2;
6bfe0b49
DW
979 retry_write:
980 blocked_rdev = NULL;
1da177e4 981 rcu_read_lock();
1f68f0c4 982 max_sectors = r1_bio->sectors;
1da177e4 983 for (i = 0; i < disks; i++) {
3cb03002 984 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
985 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
986 atomic_inc(&rdev->nr_pending);
987 blocked_rdev = rdev;
988 break;
989 }
1f68f0c4
N
990 r1_bio->bios[i] = NULL;
991 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
992 if (i < conf->raid_disks)
993 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
994 continue;
995 }
996
997 atomic_inc(&rdev->nr_pending);
998 if (test_bit(WriteErrorSeen, &rdev->flags)) {
999 sector_t first_bad;
1000 int bad_sectors;
1001 int is_bad;
1002
1003 is_bad = is_badblock(rdev, r1_bio->sector,
1004 max_sectors,
1005 &first_bad, &bad_sectors);
1006 if (is_bad < 0) {
1007 /* mustn't write here until the bad block is
1008 * acknowledged*/
1009 set_bit(BlockedBadBlocks, &rdev->flags);
1010 blocked_rdev = rdev;
1011 break;
1012 }
1013 if (is_bad && first_bad <= r1_bio->sector) {
1014 /* Cannot write here at all */
1015 bad_sectors -= (r1_bio->sector - first_bad);
1016 if (bad_sectors < max_sectors)
1017 /* mustn't write more than bad_sectors
1018 * to other devices yet
1019 */
1020 max_sectors = bad_sectors;
03c902e1 1021 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1022 /* We don't set R1BIO_Degraded as that
1023 * only applies if the disk is
1024 * missing, so it might be re-added,
1025 * and we want to know to recover this
1026 * chunk.
1027 * In this case the device is here,
1028 * and the fact that this chunk is not
1029 * in-sync is recorded in the bad
1030 * block log
1031 */
1032 continue;
964147d5 1033 }
1f68f0c4
N
1034 if (is_bad) {
1035 int good_sectors = first_bad - r1_bio->sector;
1036 if (good_sectors < max_sectors)
1037 max_sectors = good_sectors;
1038 }
1039 }
1040 r1_bio->bios[i] = bio;
1da177e4
LT
1041 }
1042 rcu_read_unlock();
1043
6bfe0b49
DW
1044 if (unlikely(blocked_rdev)) {
1045 /* Wait for this device to become unblocked */
1046 int j;
1047
1048 for (j = 0; j < i; j++)
1049 if (r1_bio->bios[j])
1050 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1051 r1_bio->state = 0;
6bfe0b49
DW
1052 allow_barrier(conf);
1053 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1054 wait_barrier(conf);
1055 goto retry_write;
1056 }
1057
1f68f0c4
N
1058 if (max_sectors < r1_bio->sectors) {
1059 /* We are splitting this write into multiple parts, so
1060 * we need to prepare for allocating another r1_bio.
1061 */
1062 r1_bio->sectors = max_sectors;
1063 spin_lock_irq(&conf->device_lock);
1064 if (bio->bi_phys_segments == 0)
1065 bio->bi_phys_segments = 2;
1066 else
1067 bio->bi_phys_segments++;
1068 spin_unlock_irq(&conf->device_lock);
191ea9b2 1069 }
1f68f0c4 1070 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1071
4e78064f 1072 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1073 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1074
1f68f0c4 1075 first_clone = 1;
1da177e4
LT
1076 for (i = 0; i < disks; i++) {
1077 struct bio *mbio;
1078 if (!r1_bio->bios[i])
1079 continue;
1080
a167f663 1081 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1082 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1083
1084 if (first_clone) {
1085 /* do behind I/O ?
1086 * Not if there are too many, or cannot
1087 * allocate memory, or a reader on WriteMostly
1088 * is waiting for behind writes to flush */
1089 if (bitmap &&
1090 (atomic_read(&bitmap->behind_writes)
1091 < mddev->bitmap_info.max_write_behind) &&
1092 !waitqueue_active(&bitmap->behind_wait))
1093 alloc_behind_pages(mbio, r1_bio);
1094
1095 bitmap_startwrite(bitmap, r1_bio->sector,
1096 r1_bio->sectors,
1097 test_bit(R1BIO_BehindIO,
1098 &r1_bio->state));
1099 first_clone = 0;
1100 }
2ca68f5e 1101 if (r1_bio->behind_bvecs) {
4b6d287f
N
1102 struct bio_vec *bvec;
1103 int j;
1104
1105 /* Yes, I really want the '__' version so that
1106 * we clear any unused pointer in the io_vec, rather
1107 * than leave them unchanged. This is important
1108 * because when we come to free the pages, we won't
046abeed 1109 * know the original bi_idx, so we just free
4b6d287f
N
1110 * them all
1111 */
1112 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1113 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1114 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1115 atomic_inc(&r1_bio->behind_remaining);
1116 }
1117
1f68f0c4
N
1118 r1_bio->bios[i] = mbio;
1119
1120 mbio->bi_sector = (r1_bio->sector +
1121 conf->mirrors[i].rdev->data_offset);
1122 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1123 mbio->bi_end_io = raid1_end_write_request;
1124 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1125 mbio->bi_private = r1_bio;
1126
1da177e4 1127 atomic_inc(&r1_bio->remaining);
4e78064f
N
1128 spin_lock_irqsave(&conf->device_lock, flags);
1129 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1130 conf->pending_count++;
4e78064f 1131 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1132 }
079fa166
N
1133 /* Mustn't call r1_bio_write_done before this next test,
1134 * as it could result in the bio being freed.
1135 */
1f68f0c4 1136 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1137 r1_bio_write_done(r1_bio);
1f68f0c4
N
1138 /* We need another r1_bio. It has already been counted
1139 * in bio->bi_phys_segments
1140 */
1141 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1142 r1_bio->master_bio = bio;
1143 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1144 r1_bio->state = 0;
1145 r1_bio->mddev = mddev;
1146 r1_bio->sector = bio->bi_sector + sectors_handled;
1147 goto retry_write;
1148 }
1149
079fa166
N
1150 r1_bio_write_done(r1_bio);
1151
1152 /* In case raid1d snuck in to freeze_array */
1153 wake_up(&conf->wait_barrier);
1154
c3b328ac 1155 if (do_sync || !bitmap || !plugged)
e3881a68 1156 md_wakeup_thread(mddev->thread);
1da177e4
LT
1157}
1158
fd01b88c 1159static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1160{
e8096360 1161 struct r1conf *conf = mddev->private;
1da177e4
LT
1162 int i;
1163
1164 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1165 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1166 rcu_read_lock();
1167 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1168 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1169 seq_printf(seq, "%s",
ddac7c7e
N
1170 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1171 }
1172 rcu_read_unlock();
1da177e4
LT
1173 seq_printf(seq, "]");
1174}
1175
1176
fd01b88c 1177static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1178{
1179 char b[BDEVNAME_SIZE];
e8096360 1180 struct r1conf *conf = mddev->private;
1da177e4
LT
1181
1182 /*
1183 * If it is not operational, then we have already marked it as dead
1184 * else if it is the last working disks, ignore the error, let the
1185 * next level up know.
1186 * else mark the drive as failed
1187 */
b2d444d7 1188 if (test_bit(In_sync, &rdev->flags)
4044ba58 1189 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1190 /*
1191 * Don't fail the drive, act as though we were just a
4044ba58
N
1192 * normal single drive.
1193 * However don't try a recovery from this drive as
1194 * it is very likely to fail.
1da177e4 1195 */
5389042f 1196 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1197 return;
4044ba58 1198 }
de393cde 1199 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1200 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1201 unsigned long flags;
1202 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1203 mddev->degraded++;
dd00a99e 1204 set_bit(Faulty, &rdev->flags);
c04be0aa 1205 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1206 /*
1207 * if recovery is running, make sure it aborts.
1208 */
dfc70645 1209 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1210 } else
1211 set_bit(Faulty, &rdev->flags);
850b2b42 1212 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1213 printk(KERN_ALERT
1214 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1215 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1216 mdname(mddev), bdevname(rdev->bdev, b),
1217 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1218}
1219
e8096360 1220static void print_conf(struct r1conf *conf)
1da177e4
LT
1221{
1222 int i;
1da177e4 1223
9dd1e2fa 1224 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1225 if (!conf) {
9dd1e2fa 1226 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1227 return;
1228 }
9dd1e2fa 1229 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1230 conf->raid_disks);
1231
ddac7c7e 1232 rcu_read_lock();
1da177e4
LT
1233 for (i = 0; i < conf->raid_disks; i++) {
1234 char b[BDEVNAME_SIZE];
3cb03002 1235 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1236 if (rdev)
9dd1e2fa 1237 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1238 i, !test_bit(In_sync, &rdev->flags),
1239 !test_bit(Faulty, &rdev->flags),
1240 bdevname(rdev->bdev,b));
1da177e4 1241 }
ddac7c7e 1242 rcu_read_unlock();
1da177e4
LT
1243}
1244
e8096360 1245static void close_sync(struct r1conf *conf)
1da177e4 1246{
17999be4
N
1247 wait_barrier(conf);
1248 allow_barrier(conf);
1da177e4
LT
1249
1250 mempool_destroy(conf->r1buf_pool);
1251 conf->r1buf_pool = NULL;
1252}
1253
fd01b88c 1254static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1255{
1256 int i;
e8096360 1257 struct r1conf *conf = mddev->private;
6b965620
N
1258 int count = 0;
1259 unsigned long flags;
1da177e4
LT
1260
1261 /*
1262 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1263 * and mark them readable.
1264 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1265 */
1266 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1267 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1268 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1269 if (repl
1270 && repl->recovery_offset == MaxSector
1271 && !test_bit(Faulty, &repl->flags)
1272 && !test_and_set_bit(In_sync, &repl->flags)) {
1273 /* replacement has just become active */
1274 if (!rdev ||
1275 !test_and_clear_bit(In_sync, &rdev->flags))
1276 count++;
1277 if (rdev) {
1278 /* Replaced device not technically
1279 * faulty, but we need to be sure
1280 * it gets removed and never re-added
1281 */
1282 set_bit(Faulty, &rdev->flags);
1283 sysfs_notify_dirent_safe(
1284 rdev->sysfs_state);
1285 }
1286 }
ddac7c7e
N
1287 if (rdev
1288 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1289 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1290 count++;
654e8b5a 1291 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1292 }
1293 }
6b965620
N
1294 spin_lock_irqsave(&conf->device_lock, flags);
1295 mddev->degraded -= count;
1296 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1297
1298 print_conf(conf);
6b965620 1299 return count;
1da177e4
LT
1300}
1301
1302
fd01b88c 1303static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1304{
e8096360 1305 struct r1conf *conf = mddev->private;
199050ea 1306 int err = -EEXIST;
41158c7e 1307 int mirror = 0;
0f6d02d5 1308 struct mirror_info *p;
6c2fce2e 1309 int first = 0;
30194636 1310 int last = conf->raid_disks - 1;
1da177e4 1311
5389042f
N
1312 if (mddev->recovery_disabled == conf->recovery_disabled)
1313 return -EBUSY;
1314
6c2fce2e
NB
1315 if (rdev->raid_disk >= 0)
1316 first = last = rdev->raid_disk;
1317
1318 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1319 if ( !(p=conf->mirrors+mirror)->rdev) {
1320
8f6c2e4b
MP
1321 disk_stack_limits(mddev->gendisk, rdev->bdev,
1322 rdev->data_offset << 9);
627a2d3c
N
1323 /* as we don't honour merge_bvec_fn, we must
1324 * never risk violating it, so limit
1325 * ->max_segments to one lying with a single
1326 * page, as a one page request is never in
1327 * violation.
1da177e4 1328 */
627a2d3c
N
1329 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1330 blk_queue_max_segments(mddev->queue, 1);
1331 blk_queue_segment_boundary(mddev->queue,
1332 PAGE_CACHE_SIZE - 1);
1333 }
1da177e4
LT
1334
1335 p->head_position = 0;
1336 rdev->raid_disk = mirror;
199050ea 1337 err = 0;
6aea114a
N
1338 /* As all devices are equivalent, we don't need a full recovery
1339 * if this was recently any drive of the array
1340 */
1341 if (rdev->saved_raid_disk < 0)
41158c7e 1342 conf->fullsync = 1;
d6065f7b 1343 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1344 break;
1345 }
ac5e7113 1346 md_integrity_add_rdev(rdev, mddev);
1da177e4 1347 print_conf(conf);
199050ea 1348 return err;
1da177e4
LT
1349}
1350
b8321b68 1351static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1352{
e8096360 1353 struct r1conf *conf = mddev->private;
1da177e4 1354 int err = 0;
b8321b68 1355 int number = rdev->raid_disk;
0f6d02d5 1356 struct mirror_info *p = conf->mirrors+ number;
1da177e4 1357
b014f14c
N
1358 if (rdev != p->rdev)
1359 p = conf->mirrors + conf->raid_disks + number;
1360
1da177e4 1361 print_conf(conf);
b8321b68 1362 if (rdev == p->rdev) {
b2d444d7 1363 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1364 atomic_read(&rdev->nr_pending)) {
1365 err = -EBUSY;
1366 goto abort;
1367 }
046abeed 1368 /* Only remove non-faulty devices if recovery
dfc70645
N
1369 * is not possible.
1370 */
1371 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1372 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1373 mddev->degraded < conf->raid_disks) {
1374 err = -EBUSY;
1375 goto abort;
1376 }
1da177e4 1377 p->rdev = NULL;
fbd568a3 1378 synchronize_rcu();
1da177e4
LT
1379 if (atomic_read(&rdev->nr_pending)) {
1380 /* lost the race, try later */
1381 err = -EBUSY;
1382 p->rdev = rdev;
ac5e7113 1383 goto abort;
8c7a2c2b
N
1384 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1385 /* We just removed a device that is being replaced.
1386 * Move down the replacement. We drain all IO before
1387 * doing this to avoid confusion.
1388 */
1389 struct md_rdev *repl =
1390 conf->mirrors[conf->raid_disks + number].rdev;
1391 raise_barrier(conf);
1392 clear_bit(Replacement, &repl->flags);
1393 p->rdev = repl;
1394 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1395 lower_barrier(conf);
1396 clear_bit(WantReplacement, &rdev->flags);
1397 } else
b014f14c 1398 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1399 err = md_integrity_register(mddev);
1da177e4
LT
1400 }
1401abort:
1402
1403 print_conf(conf);
1404 return err;
1405}
1406
1407
6712ecf8 1408static void end_sync_read(struct bio *bio, int error)
1da177e4 1409{
9f2c9d12 1410 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1411
0fc280f6 1412 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1413
1da177e4
LT
1414 /*
1415 * we have read a block, now it needs to be re-written,
1416 * or re-read if the read failed.
1417 * We don't do much here, just schedule handling by raid1d
1418 */
69382e85 1419 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1420 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1421
1422 if (atomic_dec_and_test(&r1_bio->remaining))
1423 reschedule_retry(r1_bio);
1da177e4
LT
1424}
1425
6712ecf8 1426static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1427{
1428 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1429 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1430 struct mddev *mddev = r1_bio->mddev;
e8096360 1431 struct r1conf *conf = mddev->private;
1da177e4 1432 int mirror=0;
4367af55
N
1433 sector_t first_bad;
1434 int bad_sectors;
1da177e4 1435
ba3ae3be
NK
1436 mirror = find_bio_disk(r1_bio, bio);
1437
6b1117d5 1438 if (!uptodate) {
57dab0bd 1439 sector_t sync_blocks = 0;
6b1117d5
N
1440 sector_t s = r1_bio->sector;
1441 long sectors_to_go = r1_bio->sectors;
1442 /* make sure these bits doesn't get cleared. */
1443 do {
5e3db645 1444 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1445 &sync_blocks, 1);
1446 s += sync_blocks;
1447 sectors_to_go -= sync_blocks;
1448 } while (sectors_to_go > 0);
d8f05d29
N
1449 set_bit(WriteErrorSeen,
1450 &conf->mirrors[mirror].rdev->flags);
1451 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1452 } else if (is_badblock(conf->mirrors[mirror].rdev,
1453 r1_bio->sector,
1454 r1_bio->sectors,
3a9f28a5
N
1455 &first_bad, &bad_sectors) &&
1456 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1457 r1_bio->sector,
1458 r1_bio->sectors,
1459 &first_bad, &bad_sectors)
1460 )
4367af55 1461 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1462
1da177e4 1463 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1464 int s = r1_bio->sectors;
d8f05d29
N
1465 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1466 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1467 reschedule_retry(r1_bio);
1468 else {
1469 put_buf(r1_bio);
1470 md_done_sync(mddev, s, uptodate);
1471 }
1da177e4 1472 }
1da177e4
LT
1473}
1474
3cb03002 1475static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1476 int sectors, struct page *page, int rw)
1477{
1478 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1479 /* success */
1480 return 1;
1481 if (rw == WRITE)
1482 set_bit(WriteErrorSeen, &rdev->flags);
1483 /* need to record an error - either for the block or the device */
1484 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1485 md_error(rdev->mddev, rdev);
1486 return 0;
1487}
1488
9f2c9d12 1489static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1490{
a68e5870
N
1491 /* Try some synchronous reads of other devices to get
1492 * good data, much like with normal read errors. Only
1493 * read into the pages we already have so we don't
1494 * need to re-issue the read request.
1495 * We don't need to freeze the array, because being in an
1496 * active sync request, there is no normal IO, and
1497 * no overlapping syncs.
06f60385
N
1498 * We don't need to check is_badblock() again as we
1499 * made sure that anything with a bad block in range
1500 * will have bi_end_io clear.
a68e5870 1501 */
fd01b88c 1502 struct mddev *mddev = r1_bio->mddev;
e8096360 1503 struct r1conf *conf = mddev->private;
a68e5870
N
1504 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1505 sector_t sect = r1_bio->sector;
1506 int sectors = r1_bio->sectors;
1507 int idx = 0;
1508
1509 while(sectors) {
1510 int s = sectors;
1511 int d = r1_bio->read_disk;
1512 int success = 0;
3cb03002 1513 struct md_rdev *rdev;
78d7f5f7 1514 int start;
a68e5870
N
1515
1516 if (s > (PAGE_SIZE>>9))
1517 s = PAGE_SIZE >> 9;
1518 do {
1519 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1520 /* No rcu protection needed here devices
1521 * can only be removed when no resync is
1522 * active, and resync is currently active
1523 */
1524 rdev = conf->mirrors[d].rdev;
9d3d8011 1525 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1526 bio->bi_io_vec[idx].bv_page,
1527 READ, false)) {
1528 success = 1;
1529 break;
1530 }
1531 }
1532 d++;
8f19ccb2 1533 if (d == conf->raid_disks * 2)
a68e5870
N
1534 d = 0;
1535 } while (!success && d != r1_bio->read_disk);
1536
78d7f5f7 1537 if (!success) {
a68e5870 1538 char b[BDEVNAME_SIZE];
3a9f28a5
N
1539 int abort = 0;
1540 /* Cannot read from anywhere, this block is lost.
1541 * Record a bad block on each device. If that doesn't
1542 * work just disable and interrupt the recovery.
1543 * Don't fail devices as that won't really help.
1544 */
a68e5870
N
1545 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1546 " for block %llu\n",
1547 mdname(mddev),
1548 bdevname(bio->bi_bdev, b),
1549 (unsigned long long)r1_bio->sector);
8f19ccb2 1550 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1551 rdev = conf->mirrors[d].rdev;
1552 if (!rdev || test_bit(Faulty, &rdev->flags))
1553 continue;
1554 if (!rdev_set_badblocks(rdev, sect, s, 0))
1555 abort = 1;
1556 }
1557 if (abort) {
d890fa2b
N
1558 conf->recovery_disabled =
1559 mddev->recovery_disabled;
3a9f28a5
N
1560 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1561 md_done_sync(mddev, r1_bio->sectors, 0);
1562 put_buf(r1_bio);
1563 return 0;
1564 }
1565 /* Try next page */
1566 sectors -= s;
1567 sect += s;
1568 idx++;
1569 continue;
d11c171e 1570 }
78d7f5f7
N
1571
1572 start = d;
1573 /* write it back and re-read */
1574 while (d != r1_bio->read_disk) {
1575 if (d == 0)
8f19ccb2 1576 d = conf->raid_disks * 2;
78d7f5f7
N
1577 d--;
1578 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1579 continue;
1580 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1581 if (r1_sync_page_io(rdev, sect, s,
1582 bio->bi_io_vec[idx].bv_page,
1583 WRITE) == 0) {
78d7f5f7
N
1584 r1_bio->bios[d]->bi_end_io = NULL;
1585 rdev_dec_pending(rdev, mddev);
9d3d8011 1586 }
78d7f5f7
N
1587 }
1588 d = start;
1589 while (d != r1_bio->read_disk) {
1590 if (d == 0)
8f19ccb2 1591 d = conf->raid_disks * 2;
78d7f5f7
N
1592 d--;
1593 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1594 continue;
1595 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1596 if (r1_sync_page_io(rdev, sect, s,
1597 bio->bi_io_vec[idx].bv_page,
1598 READ) != 0)
9d3d8011 1599 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1600 }
a68e5870
N
1601 sectors -= s;
1602 sect += s;
1603 idx ++;
1604 }
78d7f5f7 1605 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1606 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1607 return 1;
1608}
1609
9f2c9d12 1610static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1611{
1612 /* We have read all readable devices. If we haven't
1613 * got the block, then there is no hope left.
1614 * If we have, then we want to do a comparison
1615 * and skip the write if everything is the same.
1616 * If any blocks failed to read, then we need to
1617 * attempt an over-write
1618 */
fd01b88c 1619 struct mddev *mddev = r1_bio->mddev;
e8096360 1620 struct r1conf *conf = mddev->private;
a68e5870
N
1621 int primary;
1622 int i;
1623
8f19ccb2 1624 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1625 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1626 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1627 r1_bio->bios[primary]->bi_end_io = NULL;
1628 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1629 break;
1630 }
1631 r1_bio->read_disk = primary;
8f19ccb2 1632 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7
N
1633 int j;
1634 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1635 struct bio *pbio = r1_bio->bios[primary];
1636 struct bio *sbio = r1_bio->bios[i];
1637 int size;
a68e5870 1638
78d7f5f7
N
1639 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1640 continue;
1641
1642 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1643 for (j = vcnt; j-- ; ) {
1644 struct page *p, *s;
1645 p = pbio->bi_io_vec[j].bv_page;
1646 s = sbio->bi_io_vec[j].bv_page;
1647 if (memcmp(page_address(p),
1648 page_address(s),
1649 PAGE_SIZE))
1650 break;
69382e85 1651 }
78d7f5f7
N
1652 } else
1653 j = 0;
1654 if (j >= 0)
1655 mddev->resync_mismatches += r1_bio->sectors;
1656 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1657 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1658 /* No need to write to this device. */
1659 sbio->bi_end_io = NULL;
1660 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1661 continue;
1662 }
1663 /* fixup the bio for reuse */
1664 sbio->bi_vcnt = vcnt;
1665 sbio->bi_size = r1_bio->sectors << 9;
1666 sbio->bi_idx = 0;
1667 sbio->bi_phys_segments = 0;
1668 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1669 sbio->bi_flags |= 1 << BIO_UPTODATE;
1670 sbio->bi_next = NULL;
1671 sbio->bi_sector = r1_bio->sector +
1672 conf->mirrors[i].rdev->data_offset;
1673 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1674 size = sbio->bi_size;
1675 for (j = 0; j < vcnt ; j++) {
1676 struct bio_vec *bi;
1677 bi = &sbio->bi_io_vec[j];
1678 bi->bv_offset = 0;
1679 if (size > PAGE_SIZE)
1680 bi->bv_len = PAGE_SIZE;
1681 else
1682 bi->bv_len = size;
1683 size -= PAGE_SIZE;
1684 memcpy(page_address(bi->bv_page),
1685 page_address(pbio->bi_io_vec[j].bv_page),
1686 PAGE_SIZE);
69382e85 1687 }
78d7f5f7 1688 }
a68e5870
N
1689 return 0;
1690}
1691
9f2c9d12 1692static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1693{
e8096360 1694 struct r1conf *conf = mddev->private;
a68e5870 1695 int i;
8f19ccb2 1696 int disks = conf->raid_disks * 2;
a68e5870
N
1697 struct bio *bio, *wbio;
1698
1699 bio = r1_bio->bios[r1_bio->read_disk];
1700
a68e5870
N
1701 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1702 /* ouch - failed to read all of that. */
1703 if (!fix_sync_read_error(r1_bio))
1704 return;
7ca78d57
N
1705
1706 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1707 if (process_checks(r1_bio) < 0)
1708 return;
d11c171e
N
1709 /*
1710 * schedule writes
1711 */
1da177e4
LT
1712 atomic_set(&r1_bio->remaining, 1);
1713 for (i = 0; i < disks ; i++) {
1714 wbio = r1_bio->bios[i];
3e198f78
N
1715 if (wbio->bi_end_io == NULL ||
1716 (wbio->bi_end_io == end_sync_read &&
1717 (i == r1_bio->read_disk ||
1718 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1719 continue;
1720
3e198f78
N
1721 wbio->bi_rw = WRITE;
1722 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1723 atomic_inc(&r1_bio->remaining);
1724 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1725
1da177e4
LT
1726 generic_make_request(wbio);
1727 }
1728
1729 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1730 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1731 md_done_sync(mddev, r1_bio->sectors, 1);
1732 put_buf(r1_bio);
1733 }
1734}
1735
1736/*
1737 * This is a kernel thread which:
1738 *
1739 * 1. Retries failed read operations on working mirrors.
1740 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1741 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1742 */
1743
e8096360 1744static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1745 sector_t sect, int sectors)
1746{
fd01b88c 1747 struct mddev *mddev = conf->mddev;
867868fb
N
1748 while(sectors) {
1749 int s = sectors;
1750 int d = read_disk;
1751 int success = 0;
1752 int start;
3cb03002 1753 struct md_rdev *rdev;
867868fb
N
1754
1755 if (s > (PAGE_SIZE>>9))
1756 s = PAGE_SIZE >> 9;
1757
1758 do {
1759 /* Note: no rcu protection needed here
1760 * as this is synchronous in the raid1d thread
1761 * which is the thread that might remove
1762 * a device. If raid1d ever becomes multi-threaded....
1763 */
d2eb35ac
N
1764 sector_t first_bad;
1765 int bad_sectors;
1766
867868fb
N
1767 rdev = conf->mirrors[d].rdev;
1768 if (rdev &&
1769 test_bit(In_sync, &rdev->flags) &&
d2eb35ac
N
1770 is_badblock(rdev, sect, s,
1771 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1772 sync_page_io(rdev, sect, s<<9,
1773 conf->tmppage, READ, false))
867868fb
N
1774 success = 1;
1775 else {
1776 d++;
8f19ccb2 1777 if (d == conf->raid_disks * 2)
867868fb
N
1778 d = 0;
1779 }
1780 } while (!success && d != read_disk);
1781
1782 if (!success) {
d8f05d29 1783 /* Cannot read from anywhere - mark it bad */
3cb03002 1784 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
1785 if (!rdev_set_badblocks(rdev, sect, s, 0))
1786 md_error(mddev, rdev);
867868fb
N
1787 break;
1788 }
1789 /* write it back and re-read */
1790 start = d;
1791 while (d != read_disk) {
1792 if (d==0)
8f19ccb2 1793 d = conf->raid_disks * 2;
867868fb
N
1794 d--;
1795 rdev = conf->mirrors[d].rdev;
1796 if (rdev &&
d8f05d29
N
1797 test_bit(In_sync, &rdev->flags))
1798 r1_sync_page_io(rdev, sect, s,
1799 conf->tmppage, WRITE);
867868fb
N
1800 }
1801 d = start;
1802 while (d != read_disk) {
1803 char b[BDEVNAME_SIZE];
1804 if (d==0)
8f19ccb2 1805 d = conf->raid_disks * 2;
867868fb
N
1806 d--;
1807 rdev = conf->mirrors[d].rdev;
1808 if (rdev &&
1809 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
1810 if (r1_sync_page_io(rdev, sect, s,
1811 conf->tmppage, READ)) {
867868fb
N
1812 atomic_add(s, &rdev->corrected_errors);
1813 printk(KERN_INFO
9dd1e2fa 1814 "md/raid1:%s: read error corrected "
867868fb
N
1815 "(%d sectors at %llu on %s)\n",
1816 mdname(mddev), s,
969b755a
RD
1817 (unsigned long long)(sect +
1818 rdev->data_offset),
867868fb
N
1819 bdevname(rdev->bdev, b));
1820 }
1821 }
1822 }
1823 sectors -= s;
1824 sect += s;
1825 }
1826}
1827
cd5ff9a1
N
1828static void bi_complete(struct bio *bio, int error)
1829{
1830 complete((struct completion *)bio->bi_private);
1831}
1832
1833static int submit_bio_wait(int rw, struct bio *bio)
1834{
1835 struct completion event;
1836 rw |= REQ_SYNC;
1837
1838 init_completion(&event);
1839 bio->bi_private = &event;
1840 bio->bi_end_io = bi_complete;
1841 submit_bio(rw, bio);
1842 wait_for_completion(&event);
1843
1844 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1845}
1846
9f2c9d12 1847static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 1848{
fd01b88c 1849 struct mddev *mddev = r1_bio->mddev;
e8096360 1850 struct r1conf *conf = mddev->private;
3cb03002 1851 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
1852 int vcnt, idx;
1853 struct bio_vec *vec;
1854
1855 /* bio has the data to be written to device 'i' where
1856 * we just recently had a write error.
1857 * We repeatedly clone the bio and trim down to one block,
1858 * then try the write. Where the write fails we record
1859 * a bad block.
1860 * It is conceivable that the bio doesn't exactly align with
1861 * blocks. We must handle this somehow.
1862 *
1863 * We currently own a reference on the rdev.
1864 */
1865
1866 int block_sectors;
1867 sector_t sector;
1868 int sectors;
1869 int sect_to_write = r1_bio->sectors;
1870 int ok = 1;
1871
1872 if (rdev->badblocks.shift < 0)
1873 return 0;
1874
1875 block_sectors = 1 << rdev->badblocks.shift;
1876 sector = r1_bio->sector;
1877 sectors = ((sector + block_sectors)
1878 & ~(sector_t)(block_sectors - 1))
1879 - sector;
1880
1881 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1882 vcnt = r1_bio->behind_page_count;
1883 vec = r1_bio->behind_bvecs;
1884 idx = 0;
1885 while (vec[idx].bv_page == NULL)
1886 idx++;
1887 } else {
1888 vcnt = r1_bio->master_bio->bi_vcnt;
1889 vec = r1_bio->master_bio->bi_io_vec;
1890 idx = r1_bio->master_bio->bi_idx;
1891 }
1892 while (sect_to_write) {
1893 struct bio *wbio;
1894 if (sectors > sect_to_write)
1895 sectors = sect_to_write;
1896 /* Write at 'sector' for 'sectors'*/
1897
1898 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1899 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1900 wbio->bi_sector = r1_bio->sector;
1901 wbio->bi_rw = WRITE;
1902 wbio->bi_vcnt = vcnt;
1903 wbio->bi_size = r1_bio->sectors << 9;
1904 wbio->bi_idx = idx;
1905
1906 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1907 wbio->bi_sector += rdev->data_offset;
1908 wbio->bi_bdev = rdev->bdev;
1909 if (submit_bio_wait(WRITE, wbio) == 0)
1910 /* failure! */
1911 ok = rdev_set_badblocks(rdev, sector,
1912 sectors, 0)
1913 && ok;
1914
1915 bio_put(wbio);
1916 sect_to_write -= sectors;
1917 sector += sectors;
1918 sectors = block_sectors;
1919 }
1920 return ok;
1921}
1922
e8096360 1923static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1924{
1925 int m;
1926 int s = r1_bio->sectors;
8f19ccb2 1927 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 1928 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1929 struct bio *bio = r1_bio->bios[m];
1930 if (bio->bi_end_io == NULL)
1931 continue;
1932 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1933 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1934 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1935 }
1936 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1937 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1938 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1939 md_error(conf->mddev, rdev);
1940 }
1941 }
1942 put_buf(r1_bio);
1943 md_done_sync(conf->mddev, s, 1);
1944}
1945
e8096360 1946static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1947{
1948 int m;
8f19ccb2 1949 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 1950 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 1951 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1952 rdev_clear_badblocks(rdev,
1953 r1_bio->sector,
1954 r1_bio->sectors);
1955 rdev_dec_pending(rdev, conf->mddev);
1956 } else if (r1_bio->bios[m] != NULL) {
1957 /* This drive got a write error. We need to
1958 * narrow down and record precise write
1959 * errors.
1960 */
1961 if (!narrow_write_error(r1_bio, m)) {
1962 md_error(conf->mddev,
1963 conf->mirrors[m].rdev);
1964 /* an I/O failed, we can't clear the bitmap */
1965 set_bit(R1BIO_Degraded, &r1_bio->state);
1966 }
1967 rdev_dec_pending(conf->mirrors[m].rdev,
1968 conf->mddev);
1969 }
1970 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1971 close_write(r1_bio);
1972 raid_end_bio_io(r1_bio);
1973}
1974
e8096360 1975static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1976{
1977 int disk;
1978 int max_sectors;
fd01b88c 1979 struct mddev *mddev = conf->mddev;
62096bce
N
1980 struct bio *bio;
1981 char b[BDEVNAME_SIZE];
3cb03002 1982 struct md_rdev *rdev;
62096bce
N
1983
1984 clear_bit(R1BIO_ReadError, &r1_bio->state);
1985 /* we got a read error. Maybe the drive is bad. Maybe just
1986 * the block and we can fix it.
1987 * We freeze all other IO, and try reading the block from
1988 * other devices. When we find one, we re-write
1989 * and check it that fixes the read error.
1990 * This is all done synchronously while the array is
1991 * frozen
1992 */
1993 if (mddev->ro == 0) {
1994 freeze_array(conf);
1995 fix_read_error(conf, r1_bio->read_disk,
1996 r1_bio->sector, r1_bio->sectors);
1997 unfreeze_array(conf);
1998 } else
1999 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2000
2001 bio = r1_bio->bios[r1_bio->read_disk];
2002 bdevname(bio->bi_bdev, b);
2003read_more:
2004 disk = read_balance(conf, r1_bio, &max_sectors);
2005 if (disk == -1) {
2006 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2007 " read error for block %llu\n",
2008 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2009 raid_end_bio_io(r1_bio);
2010 } else {
2011 const unsigned long do_sync
2012 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2013 if (bio) {
2014 r1_bio->bios[r1_bio->read_disk] =
2015 mddev->ro ? IO_BLOCKED : NULL;
2016 bio_put(bio);
2017 }
2018 r1_bio->read_disk = disk;
2019 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2020 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2021 r1_bio->bios[r1_bio->read_disk] = bio;
2022 rdev = conf->mirrors[disk].rdev;
2023 printk_ratelimited(KERN_ERR
2024 "md/raid1:%s: redirecting sector %llu"
2025 " to other mirror: %s\n",
2026 mdname(mddev),
2027 (unsigned long long)r1_bio->sector,
2028 bdevname(rdev->bdev, b));
2029 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2030 bio->bi_bdev = rdev->bdev;
2031 bio->bi_end_io = raid1_end_read_request;
2032 bio->bi_rw = READ | do_sync;
2033 bio->bi_private = r1_bio;
2034 if (max_sectors < r1_bio->sectors) {
2035 /* Drat - have to split this up more */
2036 struct bio *mbio = r1_bio->master_bio;
2037 int sectors_handled = (r1_bio->sector + max_sectors
2038 - mbio->bi_sector);
2039 r1_bio->sectors = max_sectors;
2040 spin_lock_irq(&conf->device_lock);
2041 if (mbio->bi_phys_segments == 0)
2042 mbio->bi_phys_segments = 2;
2043 else
2044 mbio->bi_phys_segments++;
2045 spin_unlock_irq(&conf->device_lock);
2046 generic_make_request(bio);
2047 bio = NULL;
2048
2049 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2050
2051 r1_bio->master_bio = mbio;
2052 r1_bio->sectors = (mbio->bi_size >> 9)
2053 - sectors_handled;
2054 r1_bio->state = 0;
2055 set_bit(R1BIO_ReadError, &r1_bio->state);
2056 r1_bio->mddev = mddev;
2057 r1_bio->sector = mbio->bi_sector + sectors_handled;
2058
2059 goto read_more;
2060 } else
2061 generic_make_request(bio);
2062 }
2063}
2064
fd01b88c 2065static void raid1d(struct mddev *mddev)
1da177e4 2066{
9f2c9d12 2067 struct r1bio *r1_bio;
1da177e4 2068 unsigned long flags;
e8096360 2069 struct r1conf *conf = mddev->private;
1da177e4 2070 struct list_head *head = &conf->retry_list;
e1dfa0a2 2071 struct blk_plug plug;
1da177e4
LT
2072
2073 md_check_recovery(mddev);
e1dfa0a2
N
2074
2075 blk_start_plug(&plug);
1da177e4 2076 for (;;) {
191ea9b2 2077
c3b328ac
N
2078 if (atomic_read(&mddev->plug_cnt) == 0)
2079 flush_pending_writes(conf);
191ea9b2 2080
a35e63ef
N
2081 spin_lock_irqsave(&conf->device_lock, flags);
2082 if (list_empty(head)) {
2083 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2084 break;
a35e63ef 2085 }
9f2c9d12 2086 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2087 list_del(head->prev);
ddaf22ab 2088 conf->nr_queued--;
1da177e4
LT
2089 spin_unlock_irqrestore(&conf->device_lock, flags);
2090
2091 mddev = r1_bio->mddev;
070ec55d 2092 conf = mddev->private;
4367af55 2093 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2094 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2095 test_bit(R1BIO_WriteError, &r1_bio->state))
2096 handle_sync_write_finished(conf, r1_bio);
2097 else
4367af55 2098 sync_request_write(mddev, r1_bio);
cd5ff9a1 2099 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2100 test_bit(R1BIO_WriteError, &r1_bio->state))
2101 handle_write_finished(conf, r1_bio);
2102 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2103 handle_read_error(conf, r1_bio);
2104 else
d2eb35ac
N
2105 /* just a partial read to be scheduled from separate
2106 * context
2107 */
2108 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2109
1d9d5241 2110 cond_resched();
de393cde
N
2111 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2112 md_check_recovery(mddev);
1da177e4 2113 }
e1dfa0a2 2114 blk_finish_plug(&plug);
1da177e4
LT
2115}
2116
2117
e8096360 2118static int init_resync(struct r1conf *conf)
1da177e4
LT
2119{
2120 int buffs;
2121
2122 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2123 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2124 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2125 conf->poolinfo);
2126 if (!conf->r1buf_pool)
2127 return -ENOMEM;
2128 conf->next_resync = 0;
2129 return 0;
2130}
2131
2132/*
2133 * perform a "sync" on one "block"
2134 *
2135 * We need to make sure that no normal I/O request - particularly write
2136 * requests - conflict with active sync requests.
2137 *
2138 * This is achieved by tracking pending requests and a 'barrier' concept
2139 * that can be installed to exclude normal IO requests.
2140 */
2141
fd01b88c 2142static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2143{
e8096360 2144 struct r1conf *conf = mddev->private;
9f2c9d12 2145 struct r1bio *r1_bio;
1da177e4
LT
2146 struct bio *bio;
2147 sector_t max_sector, nr_sectors;
3e198f78 2148 int disk = -1;
1da177e4 2149 int i;
3e198f78
N
2150 int wonly = -1;
2151 int write_targets = 0, read_targets = 0;
57dab0bd 2152 sector_t sync_blocks;
e3b9703e 2153 int still_degraded = 0;
06f60385
N
2154 int good_sectors = RESYNC_SECTORS;
2155 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2156
2157 if (!conf->r1buf_pool)
2158 if (init_resync(conf))
57afd89f 2159 return 0;
1da177e4 2160
58c0fed4 2161 max_sector = mddev->dev_sectors;
1da177e4 2162 if (sector_nr >= max_sector) {
191ea9b2
N
2163 /* If we aborted, we need to abort the
2164 * sync on the 'current' bitmap chunk (there will
2165 * only be one in raid1 resync.
2166 * We can find the current addess in mddev->curr_resync
2167 */
6a806c51
N
2168 if (mddev->curr_resync < max_sector) /* aborted */
2169 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2170 &sync_blocks, 1);
6a806c51 2171 else /* completed sync */
191ea9b2 2172 conf->fullsync = 0;
6a806c51
N
2173
2174 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2175 close_sync(conf);
2176 return 0;
2177 }
2178
07d84d10
N
2179 if (mddev->bitmap == NULL &&
2180 mddev->recovery_cp == MaxSector &&
6394cca5 2181 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2182 conf->fullsync == 0) {
2183 *skipped = 1;
2184 return max_sector - sector_nr;
2185 }
6394cca5
N
2186 /* before building a request, check if we can skip these blocks..
2187 * This call the bitmap_start_sync doesn't actually record anything
2188 */
e3b9703e 2189 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2190 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2191 /* We can skip this block, and probably several more */
2192 *skipped = 1;
2193 return sync_blocks;
2194 }
1da177e4 2195 /*
17999be4
N
2196 * If there is non-resync activity waiting for a turn,
2197 * and resync is going fast enough,
2198 * then let it though before starting on this new sync request.
1da177e4 2199 */
17999be4 2200 if (!go_faster && conf->nr_waiting)
1da177e4 2201 msleep_interruptible(1000);
17999be4 2202
b47490c9 2203 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2204 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2205 raise_barrier(conf);
2206
2207 conf->next_resync = sector_nr;
1da177e4 2208
3e198f78 2209 rcu_read_lock();
1da177e4 2210 /*
3e198f78
N
2211 * If we get a correctably read error during resync or recovery,
2212 * we might want to read from a different device. So we
2213 * flag all drives that could conceivably be read from for READ,
2214 * and any others (which will be non-In_sync devices) for WRITE.
2215 * If a read fails, we try reading from something else for which READ
2216 * is OK.
1da177e4 2217 */
1da177e4 2218
1da177e4
LT
2219 r1_bio->mddev = mddev;
2220 r1_bio->sector = sector_nr;
191ea9b2 2221 r1_bio->state = 0;
1da177e4 2222 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2223
8f19ccb2 2224 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2225 struct md_rdev *rdev;
1da177e4
LT
2226 bio = r1_bio->bios[i];
2227
2228 /* take from bio_init */
2229 bio->bi_next = NULL;
db8d9d35 2230 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2231 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 2232 bio->bi_rw = READ;
1da177e4
LT
2233 bio->bi_vcnt = 0;
2234 bio->bi_idx = 0;
2235 bio->bi_phys_segments = 0;
1da177e4
LT
2236 bio->bi_size = 0;
2237 bio->bi_end_io = NULL;
2238 bio->bi_private = NULL;
2239
3e198f78
N
2240 rdev = rcu_dereference(conf->mirrors[i].rdev);
2241 if (rdev == NULL ||
06f60385 2242 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2243 if (i < conf->raid_disks)
2244 still_degraded = 1;
3e198f78 2245 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2246 bio->bi_rw = WRITE;
2247 bio->bi_end_io = end_sync_write;
2248 write_targets ++;
3e198f78
N
2249 } else {
2250 /* may need to read from here */
06f60385
N
2251 sector_t first_bad = MaxSector;
2252 int bad_sectors;
2253
2254 if (is_badblock(rdev, sector_nr, good_sectors,
2255 &first_bad, &bad_sectors)) {
2256 if (first_bad > sector_nr)
2257 good_sectors = first_bad - sector_nr;
2258 else {
2259 bad_sectors -= (sector_nr - first_bad);
2260 if (min_bad == 0 ||
2261 min_bad > bad_sectors)
2262 min_bad = bad_sectors;
2263 }
2264 }
2265 if (sector_nr < first_bad) {
2266 if (test_bit(WriteMostly, &rdev->flags)) {
2267 if (wonly < 0)
2268 wonly = i;
2269 } else {
2270 if (disk < 0)
2271 disk = i;
2272 }
2273 bio->bi_rw = READ;
2274 bio->bi_end_io = end_sync_read;
2275 read_targets++;
3e198f78 2276 }
3e198f78 2277 }
06f60385
N
2278 if (bio->bi_end_io) {
2279 atomic_inc(&rdev->nr_pending);
2280 bio->bi_sector = sector_nr + rdev->data_offset;
2281 bio->bi_bdev = rdev->bdev;
2282 bio->bi_private = r1_bio;
2283 }
1da177e4 2284 }
3e198f78
N
2285 rcu_read_unlock();
2286 if (disk < 0)
2287 disk = wonly;
2288 r1_bio->read_disk = disk;
191ea9b2 2289
06f60385
N
2290 if (read_targets == 0 && min_bad > 0) {
2291 /* These sectors are bad on all InSync devices, so we
2292 * need to mark them bad on all write targets
2293 */
2294 int ok = 1;
8f19ccb2 2295 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2296 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
3cb03002 2297 struct md_rdev *rdev =
06f60385
N
2298 rcu_dereference(conf->mirrors[i].rdev);
2299 ok = rdev_set_badblocks(rdev, sector_nr,
2300 min_bad, 0
2301 ) && ok;
2302 }
2303 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2304 *skipped = 1;
2305 put_buf(r1_bio);
2306
2307 if (!ok) {
2308 /* Cannot record the badblocks, so need to
2309 * abort the resync.
2310 * If there are multiple read targets, could just
2311 * fail the really bad ones ???
2312 */
2313 conf->recovery_disabled = mddev->recovery_disabled;
2314 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2315 return 0;
2316 } else
2317 return min_bad;
2318
2319 }
2320 if (min_bad > 0 && min_bad < good_sectors) {
2321 /* only resync enough to reach the next bad->good
2322 * transition */
2323 good_sectors = min_bad;
2324 }
2325
3e198f78
N
2326 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2327 /* extra read targets are also write targets */
2328 write_targets += read_targets-1;
2329
2330 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2331 /* There is nowhere to write, so all non-sync
2332 * drives must be failed - so we are finished
2333 */
57afd89f
N
2334 sector_t rv = max_sector - sector_nr;
2335 *skipped = 1;
1da177e4 2336 put_buf(r1_bio);
1da177e4
LT
2337 return rv;
2338 }
2339
c6207277
N
2340 if (max_sector > mddev->resync_max)
2341 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2342 if (max_sector > sector_nr + good_sectors)
2343 max_sector = sector_nr + good_sectors;
1da177e4 2344 nr_sectors = 0;
289e99e8 2345 sync_blocks = 0;
1da177e4
LT
2346 do {
2347 struct page *page;
2348 int len = PAGE_SIZE;
2349 if (sector_nr + (len>>9) > max_sector)
2350 len = (max_sector - sector_nr) << 9;
2351 if (len == 0)
2352 break;
6a806c51
N
2353 if (sync_blocks == 0) {
2354 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2355 &sync_blocks, still_degraded) &&
2356 !conf->fullsync &&
2357 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2358 break;
9e77c485 2359 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2360 if ((len >> 9) > sync_blocks)
6a806c51 2361 len = sync_blocks<<9;
ab7a30c7 2362 }
191ea9b2 2363
8f19ccb2 2364 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2365 bio = r1_bio->bios[i];
2366 if (bio->bi_end_io) {
d11c171e 2367 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2368 if (bio_add_page(bio, page, len, 0) == 0) {
2369 /* stop here */
d11c171e 2370 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2371 while (i > 0) {
2372 i--;
2373 bio = r1_bio->bios[i];
6a806c51
N
2374 if (bio->bi_end_io==NULL)
2375 continue;
1da177e4
LT
2376 /* remove last page from this bio */
2377 bio->bi_vcnt--;
2378 bio->bi_size -= len;
2379 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2380 }
2381 goto bio_full;
2382 }
2383 }
2384 }
2385 nr_sectors += len>>9;
2386 sector_nr += len>>9;
191ea9b2 2387 sync_blocks -= (len>>9);
1da177e4
LT
2388 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2389 bio_full:
1da177e4
LT
2390 r1_bio->sectors = nr_sectors;
2391
d11c171e
N
2392 /* For a user-requested sync, we read all readable devices and do a
2393 * compare
2394 */
2395 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2396 atomic_set(&r1_bio->remaining, read_targets);
8f19ccb2 2397 for (i = 0; i < conf->raid_disks * 2; i++) {
d11c171e
N
2398 bio = r1_bio->bios[i];
2399 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 2400 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2401 generic_make_request(bio);
2402 }
2403 }
2404 } else {
2405 atomic_set(&r1_bio->remaining, 1);
2406 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2407 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2408 generic_make_request(bio);
1da177e4 2409
d11c171e 2410 }
1da177e4
LT
2411 return nr_sectors;
2412}
2413
fd01b88c 2414static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2415{
2416 if (sectors)
2417 return sectors;
2418
2419 return mddev->dev_sectors;
2420}
2421
e8096360 2422static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2423{
e8096360 2424 struct r1conf *conf;
709ae487 2425 int i;
0f6d02d5 2426 struct mirror_info *disk;
3cb03002 2427 struct md_rdev *rdev;
709ae487 2428 int err = -ENOMEM;
1da177e4 2429
e8096360 2430 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2431 if (!conf)
709ae487 2432 goto abort;
1da177e4 2433
8f19ccb2
N
2434 conf->mirrors = kzalloc(sizeof(struct mirror_info)
2435 * mddev->raid_disks * 2,
1da177e4
LT
2436 GFP_KERNEL);
2437 if (!conf->mirrors)
709ae487 2438 goto abort;
1da177e4 2439
ddaf22ab
N
2440 conf->tmppage = alloc_page(GFP_KERNEL);
2441 if (!conf->tmppage)
709ae487 2442 goto abort;
ddaf22ab 2443
709ae487 2444 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2445 if (!conf->poolinfo)
709ae487 2446 goto abort;
8f19ccb2 2447 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2448 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2449 r1bio_pool_free,
2450 conf->poolinfo);
2451 if (!conf->r1bio_pool)
709ae487
N
2452 goto abort;
2453
ed9bfdf1 2454 conf->poolinfo->mddev = mddev;
1da177e4 2455
e7e72bf6 2456 spin_lock_init(&conf->device_lock);
159ec1fc 2457 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 2458 int disk_idx = rdev->raid_disk;
1da177e4
LT
2459 if (disk_idx >= mddev->raid_disks
2460 || disk_idx < 0)
2461 continue;
2462 disk = conf->mirrors + disk_idx;
2463
2464 disk->rdev = rdev;
1da177e4
LT
2465
2466 disk->head_position = 0;
1da177e4
LT
2467 }
2468 conf->raid_disks = mddev->raid_disks;
2469 conf->mddev = mddev;
1da177e4 2470 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2471
2472 spin_lock_init(&conf->resync_lock);
17999be4 2473 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2474
191ea9b2 2475 bio_list_init(&conf->pending_bio_list);
34db0cd6 2476 conf->pending_count = 0;
d890fa2b 2477 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2478
709ae487 2479 conf->last_used = -1;
8f19ccb2 2480 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2481
2482 disk = conf->mirrors + i;
2483
5fd6c1dc
N
2484 if (!disk->rdev ||
2485 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2486 disk->head_position = 0;
918f0238
N
2487 if (disk->rdev)
2488 conf->fullsync = 1;
709ae487
N
2489 } else if (conf->last_used < 0)
2490 /*
2491 * The first working device is used as a
2492 * starting point to read balancing.
2493 */
2494 conf->last_used = i;
1da177e4 2495 }
709ae487
N
2496
2497 err = -EIO;
2498 if (conf->last_used < 0) {
9dd1e2fa 2499 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
2500 mdname(mddev));
2501 goto abort;
2502 }
2503 err = -ENOMEM;
2504 conf->thread = md_register_thread(raid1d, mddev, NULL);
2505 if (!conf->thread) {
2506 printk(KERN_ERR
9dd1e2fa 2507 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2508 mdname(mddev));
2509 goto abort;
11ce99e6 2510 }
1da177e4 2511
709ae487
N
2512 return conf;
2513
2514 abort:
2515 if (conf) {
2516 if (conf->r1bio_pool)
2517 mempool_destroy(conf->r1bio_pool);
2518 kfree(conf->mirrors);
2519 safe_put_page(conf->tmppage);
2520 kfree(conf->poolinfo);
2521 kfree(conf);
2522 }
2523 return ERR_PTR(err);
2524}
2525
fd01b88c 2526static int run(struct mddev *mddev)
709ae487 2527{
e8096360 2528 struct r1conf *conf;
709ae487 2529 int i;
3cb03002 2530 struct md_rdev *rdev;
709ae487
N
2531
2532 if (mddev->level != 1) {
9dd1e2fa 2533 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2534 mdname(mddev), mddev->level);
2535 return -EIO;
2536 }
2537 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2538 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2539 mdname(mddev));
2540 return -EIO;
2541 }
1da177e4 2542 /*
709ae487
N
2543 * copy the already verified devices into our private RAID1
2544 * bookkeeping area. [whatever we allocate in run(),
2545 * should be freed in stop()]
1da177e4 2546 */
709ae487
N
2547 if (mddev->private == NULL)
2548 conf = setup_conf(mddev);
2549 else
2550 conf = mddev->private;
1da177e4 2551
709ae487
N
2552 if (IS_ERR(conf))
2553 return PTR_ERR(conf);
1da177e4 2554
709ae487 2555 list_for_each_entry(rdev, &mddev->disks, same_set) {
1ed7242e
JB
2556 if (!mddev->gendisk)
2557 continue;
709ae487
N
2558 disk_stack_limits(mddev->gendisk, rdev->bdev,
2559 rdev->data_offset << 9);
2560 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2561 * violating it, so limit ->max_segments to 1 lying within
2562 * a single page, as a one page request is never in violation.
709ae487 2563 */
627a2d3c
N
2564 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2565 blk_queue_max_segments(mddev->queue, 1);
2566 blk_queue_segment_boundary(mddev->queue,
2567 PAGE_CACHE_SIZE - 1);
2568 }
1da177e4 2569 }
191ea9b2 2570
709ae487
N
2571 mddev->degraded = 0;
2572 for (i=0; i < conf->raid_disks; i++)
2573 if (conf->mirrors[i].rdev == NULL ||
2574 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2575 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2576 mddev->degraded++;
2577
2578 if (conf->raid_disks - mddev->degraded == 1)
2579 mddev->recovery_cp = MaxSector;
2580
8c6ac868 2581 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2582 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2583 " -- starting background reconstruction\n",
2584 mdname(mddev));
1da177e4 2585 printk(KERN_INFO
9dd1e2fa 2586 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2587 mdname(mddev), mddev->raid_disks - mddev->degraded,
2588 mddev->raid_disks);
709ae487 2589
1da177e4
LT
2590 /*
2591 * Ok, everything is just fine now
2592 */
709ae487
N
2593 mddev->thread = conf->thread;
2594 conf->thread = NULL;
2595 mddev->private = conf;
2596
1f403624 2597 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2598
1ed7242e
JB
2599 if (mddev->queue) {
2600 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2601 mddev->queue->backing_dev_info.congested_data = mddev;
2602 }
a91a2785 2603 return md_integrity_register(mddev);
1da177e4
LT
2604}
2605
fd01b88c 2606static int stop(struct mddev *mddev)
1da177e4 2607{
e8096360 2608 struct r1conf *conf = mddev->private;
4b6d287f 2609 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2610
2611 /* wait for behind writes to complete */
e555190d 2612 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2613 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2614 mdname(mddev));
4b6d287f 2615 /* need to kick something here to make sure I/O goes? */
e555190d
N
2616 wait_event(bitmap->behind_wait,
2617 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2618 }
1da177e4 2619
409c57f3
N
2620 raise_barrier(conf);
2621 lower_barrier(conf);
2622
01f96c0a 2623 md_unregister_thread(&mddev->thread);
1da177e4
LT
2624 if (conf->r1bio_pool)
2625 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2626 kfree(conf->mirrors);
2627 kfree(conf->poolinfo);
1da177e4
LT
2628 kfree(conf);
2629 mddev->private = NULL;
2630 return 0;
2631}
2632
fd01b88c 2633static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2634{
2635 /* no resync is happening, and there is enough space
2636 * on all devices, so we can resize.
2637 * We need to make sure resync covers any new space.
2638 * If the array is shrinking we should possibly wait until
2639 * any io in the removed space completes, but it hardly seems
2640 * worth it.
2641 */
1f403624 2642 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2643 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2644 return -EINVAL;
f233ea5c 2645 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2646 revalidate_disk(mddev->gendisk);
b522adcd 2647 if (sectors > mddev->dev_sectors &&
b098636c 2648 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2649 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2651 }
b522adcd 2652 mddev->dev_sectors = sectors;
4b5c7ae8 2653 mddev->resync_max_sectors = sectors;
1da177e4
LT
2654 return 0;
2655}
2656
fd01b88c 2657static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2658{
2659 /* We need to:
2660 * 1/ resize the r1bio_pool
2661 * 2/ resize conf->mirrors
2662 *
2663 * We allocate a new r1bio_pool if we can.
2664 * Then raise a device barrier and wait until all IO stops.
2665 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2666 *
2667 * At the same time, we "pack" the devices so that all the missing
2668 * devices have the higher raid_disk numbers.
1da177e4
LT
2669 */
2670 mempool_t *newpool, *oldpool;
2671 struct pool_info *newpoolinfo;
0f6d02d5 2672 struct mirror_info *newmirrors;
e8096360 2673 struct r1conf *conf = mddev->private;
63c70c4f 2674 int cnt, raid_disks;
c04be0aa 2675 unsigned long flags;
b5470dc5 2676 int d, d2, err;
1da177e4 2677
63c70c4f 2678 /* Cannot change chunk_size, layout, or level */
664e7c41 2679 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2680 mddev->layout != mddev->new_layout ||
2681 mddev->level != mddev->new_level) {
664e7c41 2682 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2683 mddev->new_layout = mddev->layout;
2684 mddev->new_level = mddev->level;
2685 return -EINVAL;
2686 }
2687
b5470dc5
DW
2688 err = md_allow_write(mddev);
2689 if (err)
2690 return err;
2a2275d6 2691
63c70c4f
N
2692 raid_disks = mddev->raid_disks + mddev->delta_disks;
2693
6ea9c07c
N
2694 if (raid_disks < conf->raid_disks) {
2695 cnt=0;
2696 for (d= 0; d < conf->raid_disks; d++)
2697 if (conf->mirrors[d].rdev)
2698 cnt++;
2699 if (cnt > raid_disks)
1da177e4 2700 return -EBUSY;
6ea9c07c 2701 }
1da177e4
LT
2702
2703 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2704 if (!newpoolinfo)
2705 return -ENOMEM;
2706 newpoolinfo->mddev = mddev;
8f19ccb2 2707 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2708
2709 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2710 r1bio_pool_free, newpoolinfo);
2711 if (!newpool) {
2712 kfree(newpoolinfo);
2713 return -ENOMEM;
2714 }
8f19ccb2
N
2715 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2716 GFP_KERNEL);
1da177e4
LT
2717 if (!newmirrors) {
2718 kfree(newpoolinfo);
2719 mempool_destroy(newpool);
2720 return -ENOMEM;
2721 }
1da177e4 2722
17999be4 2723 raise_barrier(conf);
1da177e4
LT
2724
2725 /* ok, everything is stopped */
2726 oldpool = conf->r1bio_pool;
2727 conf->r1bio_pool = newpool;
6ea9c07c 2728
a88aa786 2729 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2730 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2731 if (rdev && rdev->raid_disk != d2) {
36fad858 2732 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2733 rdev->raid_disk = d2;
36fad858
NK
2734 sysfs_unlink_rdev(mddev, rdev);
2735 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2736 printk(KERN_WARNING
36fad858
NK
2737 "md/raid1:%s: cannot register rd%d\n",
2738 mdname(mddev), rdev->raid_disk);
6ea9c07c 2739 }
a88aa786
N
2740 if (rdev)
2741 newmirrors[d2++].rdev = rdev;
2742 }
1da177e4
LT
2743 kfree(conf->mirrors);
2744 conf->mirrors = newmirrors;
2745 kfree(conf->poolinfo);
2746 conf->poolinfo = newpoolinfo;
2747
c04be0aa 2748 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2749 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2750 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2751 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2752 mddev->delta_disks = 0;
1da177e4 2753
6ea9c07c 2754 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2755 lower_barrier(conf);
1da177e4
LT
2756
2757 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2758 md_wakeup_thread(mddev->thread);
2759
2760 mempool_destroy(oldpool);
2761 return 0;
2762}
2763
fd01b88c 2764static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 2765{
e8096360 2766 struct r1conf *conf = mddev->private;
36fa3063
N
2767
2768 switch(state) {
6eef4b21
N
2769 case 2: /* wake for suspend */
2770 wake_up(&conf->wait_barrier);
2771 break;
9e6603da 2772 case 1:
17999be4 2773 raise_barrier(conf);
36fa3063 2774 break;
9e6603da 2775 case 0:
17999be4 2776 lower_barrier(conf);
36fa3063
N
2777 break;
2778 }
36fa3063
N
2779}
2780
fd01b88c 2781static void *raid1_takeover(struct mddev *mddev)
709ae487
N
2782{
2783 /* raid1 can take over:
2784 * raid5 with 2 devices, any layout or chunk size
2785 */
2786 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 2787 struct r1conf *conf;
709ae487
N
2788 mddev->new_level = 1;
2789 mddev->new_layout = 0;
2790 mddev->new_chunk_sectors = 0;
2791 conf = setup_conf(mddev);
2792 if (!IS_ERR(conf))
2793 conf->barrier = 1;
2794 return conf;
2795 }
2796 return ERR_PTR(-EINVAL);
2797}
1da177e4 2798
84fc4b56 2799static struct md_personality raid1_personality =
1da177e4
LT
2800{
2801 .name = "raid1",
2604b703 2802 .level = 1,
1da177e4
LT
2803 .owner = THIS_MODULE,
2804 .make_request = make_request,
2805 .run = run,
2806 .stop = stop,
2807 .status = status,
2808 .error_handler = error,
2809 .hot_add_disk = raid1_add_disk,
2810 .hot_remove_disk= raid1_remove_disk,
2811 .spare_active = raid1_spare_active,
2812 .sync_request = sync_request,
2813 .resize = raid1_resize,
80c3a6ce 2814 .size = raid1_size,
63c70c4f 2815 .check_reshape = raid1_reshape,
36fa3063 2816 .quiesce = raid1_quiesce,
709ae487 2817 .takeover = raid1_takeover,
1da177e4
LT
2818};
2819
2820static int __init raid_init(void)
2821{
2604b703 2822 return register_md_personality(&raid1_personality);
1da177e4
LT
2823}
2824
2825static void raid_exit(void)
2826{
2604b703 2827 unregister_md_personality(&raid1_personality);
1da177e4
LT
2828}
2829
2830module_init(raid_init);
2831module_exit(raid_exit);
2832MODULE_LICENSE("GPL");
0efb9e61 2833MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2834MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2835MODULE_ALIAS("md-raid1");
2604b703 2836MODULE_ALIAS("md-level-1");
34db0cd6
N
2837
2838module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);