]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/md/raid1.c
md/raid10: If there is a spare and a want_replacement device, start replacement.
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
34db0cd6
N
49/* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
51 * for writeback.
52 */
53static int max_queued_requests = 1024;
1da177e4 54
e8096360
N
55static void allow_barrier(struct r1conf *conf);
56static void lower_barrier(struct r1conf *conf);
1da177e4 57
dd0fc66f 58static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
59{
60 struct pool_info *pi = data;
9f2c9d12 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
62
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 64 return kzalloc(size, gfp_flags);
1da177e4
LT
65}
66
67static void r1bio_pool_free(void *r1_bio, void *data)
68{
69 kfree(r1_bio);
70}
71
72#define RESYNC_BLOCK_SIZE (64*1024)
73//#define RESYNC_BLOCK_SIZE PAGE_SIZE
74#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76#define RESYNC_WINDOW (2048*1024)
77
dd0fc66f 78static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
79{
80 struct pool_info *pi = data;
81 struct page *page;
9f2c9d12 82 struct r1bio *r1_bio;
1da177e4
LT
83 struct bio *bio;
84 int i, j;
85
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 87 if (!r1_bio)
1da177e4 88 return NULL;
1da177e4
LT
89
90 /*
91 * Allocate bios : 1 for reading, n-1 for writing
92 */
93 for (j = pi->raid_disks ; j-- ; ) {
6746557f 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
98 }
99 /*
100 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
1da177e4 104 */
d11c171e
N
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
115
116 bio->bi_io_vec[i].bv_page = page;
303a0e11 117 bio->bi_vcnt = i+1;
d11c171e
N
118 }
119 }
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
126 }
127
128 r1_bio->master_bio = NULL;
129
130 return r1_bio;
131
132out_free_pages:
303a0e11
N
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 136 j = -1;
1da177e4
LT
137out_free_bio:
138 while ( ++j < pi->raid_disks )
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
142}
143
144static void r1buf_pool_free(void *__r1_bio, void *data)
145{
146 struct pool_info *pi = data;
d11c171e 147 int i,j;
9f2c9d12 148 struct r1bio *r1bio = __r1_bio;
1da177e4 149
d11c171e
N
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 156 }
1da177e4
LT
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
159
160 r1bio_pool_free(r1bio, data);
161}
162
e8096360 163static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
164{
165 int i;
166
167 for (i = 0; i < conf->raid_disks; i++) {
168 struct bio **bio = r1_bio->bios + i;
4367af55 169 if (!BIO_SPECIAL(*bio))
1da177e4
LT
170 bio_put(*bio);
171 *bio = NULL;
172 }
173}
174
9f2c9d12 175static void free_r1bio(struct r1bio *r1_bio)
1da177e4 176{
e8096360 177 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 178
1da177e4
LT
179 put_all_bios(conf, r1_bio);
180 mempool_free(r1_bio, conf->r1bio_pool);
181}
182
9f2c9d12 183static void put_buf(struct r1bio *r1_bio)
1da177e4 184{
e8096360 185 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
186 int i;
187
188 for (i=0; i<conf->raid_disks; i++) {
189 struct bio *bio = r1_bio->bios[i];
190 if (bio->bi_end_io)
191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 }
1da177e4
LT
193
194 mempool_free(r1_bio, conf->r1buf_pool);
195
17999be4 196 lower_barrier(conf);
1da177e4
LT
197}
198
9f2c9d12 199static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
200{
201 unsigned long flags;
fd01b88c 202 struct mddev *mddev = r1_bio->mddev;
e8096360 203 struct r1conf *conf = mddev->private;
1da177e4
LT
204
205 spin_lock_irqsave(&conf->device_lock, flags);
206 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 207 conf->nr_queued ++;
1da177e4
LT
208 spin_unlock_irqrestore(&conf->device_lock, flags);
209
17999be4 210 wake_up(&conf->wait_barrier);
1da177e4
LT
211 md_wakeup_thread(mddev->thread);
212}
213
214/*
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
217 * cache layer.
218 */
9f2c9d12 219static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
220{
221 struct bio *bio = r1_bio->master_bio;
222 int done;
e8096360 223 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
224
225 if (bio->bi_phys_segments) {
226 unsigned long flags;
227 spin_lock_irqsave(&conf->device_lock, flags);
228 bio->bi_phys_segments--;
229 done = (bio->bi_phys_segments == 0);
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231 } else
232 done = 1;
233
234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 if (done) {
237 bio_endio(bio, 0);
238 /*
239 * Wake up any possible resync thread that waits for the device
240 * to go idle.
241 */
242 allow_barrier(conf);
243 }
244}
245
9f2c9d12 246static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
247{
248 struct bio *bio = r1_bio->master_bio;
249
4b6d287f
N
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 (unsigned long long) bio->bi_sector,
255 (unsigned long long) bio->bi_sector +
256 (bio->bi_size >> 9) - 1);
4b6d287f 257
d2eb35ac 258 call_bio_endio(r1_bio);
4b6d287f 259 }
1da177e4
LT
260 free_r1bio(r1_bio);
261}
262
263/*
264 * Update disk head position estimator based on IRQ completion info.
265 */
9f2c9d12 266static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 267{
e8096360 268 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
269
270 conf->mirrors[disk].head_position =
271 r1_bio->sector + (r1_bio->sectors);
272}
273
ba3ae3be
NK
274/*
275 * Find the disk number which triggered given bio
276 */
9f2c9d12 277static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
278{
279 int mirror;
280 int raid_disks = r1_bio->mddev->raid_disks;
281
282 for (mirror = 0; mirror < raid_disks; mirror++)
283 if (r1_bio->bios[mirror] == bio)
284 break;
285
286 BUG_ON(mirror == raid_disks);
287 update_head_pos(mirror, r1_bio);
288
289 return mirror;
290}
291
6712ecf8 292static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
293{
294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 295 struct r1bio *r1_bio = bio->bi_private;
1da177e4 296 int mirror;
e8096360 297 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 298
1da177e4
LT
299 mirror = r1_bio->read_disk;
300 /*
301 * this branch is our 'one mirror IO has finished' event handler:
302 */
ddaf22ab
N
303 update_head_pos(mirror, r1_bio);
304
dd00a99e
N
305 if (uptodate)
306 set_bit(R1BIO_Uptodate, &r1_bio->state);
307 else {
308 /* If all other devices have failed, we want to return
309 * the error upwards rather than fail the last device.
310 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 311 */
dd00a99e
N
312 unsigned long flags;
313 spin_lock_irqsave(&conf->device_lock, flags);
314 if (r1_bio->mddev->degraded == conf->raid_disks ||
315 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
316 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
317 uptodate = 1;
318 spin_unlock_irqrestore(&conf->device_lock, flags);
319 }
1da177e4 320
dd00a99e 321 if (uptodate)
1da177e4 322 raid_end_bio_io(r1_bio);
dd00a99e 323 else {
1da177e4
LT
324 /*
325 * oops, read error:
326 */
327 char b[BDEVNAME_SIZE];
8bda470e
CD
328 printk_ratelimited(
329 KERN_ERR "md/raid1:%s: %s: "
330 "rescheduling sector %llu\n",
331 mdname(conf->mddev),
332 bdevname(conf->mirrors[mirror].rdev->bdev,
333 b),
334 (unsigned long long)r1_bio->sector);
d2eb35ac 335 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
336 reschedule_retry(r1_bio);
337 }
338
339 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
340}
341
9f2c9d12 342static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
343{
344 /* it really is the end of this request */
345 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
346 /* free extra copy of the data pages */
347 int i = r1_bio->behind_page_count;
348 while (i--)
349 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
350 kfree(r1_bio->behind_bvecs);
351 r1_bio->behind_bvecs = NULL;
352 }
353 /* clear the bitmap if all writes complete successfully */
354 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
355 r1_bio->sectors,
356 !test_bit(R1BIO_Degraded, &r1_bio->state),
357 test_bit(R1BIO_BehindIO, &r1_bio->state));
358 md_write_end(r1_bio->mddev);
359}
360
9f2c9d12 361static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 362{
cd5ff9a1
N
363 if (!atomic_dec_and_test(&r1_bio->remaining))
364 return;
365
366 if (test_bit(R1BIO_WriteError, &r1_bio->state))
367 reschedule_retry(r1_bio);
368 else {
369 close_write(r1_bio);
4367af55
N
370 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
371 reschedule_retry(r1_bio);
372 else
373 raid_end_bio_io(r1_bio);
4e78064f
N
374 }
375}
376
6712ecf8 377static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
378{
379 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 380 struct r1bio *r1_bio = bio->bi_private;
a9701a30 381 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 382 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 383 struct bio *to_put = NULL;
1da177e4 384
ba3ae3be 385 mirror = find_bio_disk(r1_bio, bio);
1da177e4 386
e9c7469b
TH
387 /*
388 * 'one mirror IO has finished' event handler:
389 */
e9c7469b 390 if (!uptodate) {
cd5ff9a1
N
391 set_bit(WriteErrorSeen,
392 &conf->mirrors[mirror].rdev->flags);
393 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 394 } else {
1da177e4 395 /*
e9c7469b
TH
396 * Set R1BIO_Uptodate in our master bio, so that we
397 * will return a good error code for to the higher
398 * levels even if IO on some other mirrored buffer
399 * fails.
400 *
401 * The 'master' represents the composite IO operation
402 * to user-side. So if something waits for IO, then it
403 * will wait for the 'master' bio.
1da177e4 404 */
4367af55
N
405 sector_t first_bad;
406 int bad_sectors;
407
cd5ff9a1
N
408 r1_bio->bios[mirror] = NULL;
409 to_put = bio;
e9c7469b
TH
410 set_bit(R1BIO_Uptodate, &r1_bio->state);
411
4367af55
N
412 /* Maybe we can clear some bad blocks. */
413 if (is_badblock(conf->mirrors[mirror].rdev,
414 r1_bio->sector, r1_bio->sectors,
415 &first_bad, &bad_sectors)) {
416 r1_bio->bios[mirror] = IO_MADE_GOOD;
417 set_bit(R1BIO_MadeGood, &r1_bio->state);
418 }
419 }
420
e9c7469b
TH
421 if (behind) {
422 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
423 atomic_dec(&r1_bio->behind_remaining);
424
425 /*
426 * In behind mode, we ACK the master bio once the I/O
427 * has safely reached all non-writemostly
428 * disks. Setting the Returned bit ensures that this
429 * gets done only once -- we don't ever want to return
430 * -EIO here, instead we'll wait
431 */
432 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
433 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
434 /* Maybe we can return now */
435 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
436 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
437 pr_debug("raid1: behind end write sectors"
438 " %llu-%llu\n",
439 (unsigned long long) mbio->bi_sector,
440 (unsigned long long) mbio->bi_sector +
441 (mbio->bi_size >> 9) - 1);
d2eb35ac 442 call_bio_endio(r1_bio);
4b6d287f
N
443 }
444 }
445 }
4367af55
N
446 if (r1_bio->bios[mirror] == NULL)
447 rdev_dec_pending(conf->mirrors[mirror].rdev,
448 conf->mddev);
e9c7469b 449
1da177e4 450 /*
1da177e4
LT
451 * Let's see if all mirrored write operations have finished
452 * already.
453 */
af6d7b76 454 r1_bio_write_done(r1_bio);
c70810b3 455
04b857f7
N
456 if (to_put)
457 bio_put(to_put);
1da177e4
LT
458}
459
460
461/*
462 * This routine returns the disk from which the requested read should
463 * be done. There is a per-array 'next expected sequential IO' sector
464 * number - if this matches on the next IO then we use the last disk.
465 * There is also a per-disk 'last know head position' sector that is
466 * maintained from IRQ contexts, both the normal and the resync IO
467 * completion handlers update this position correctly. If there is no
468 * perfect sequential match then we pick the disk whose head is closest.
469 *
470 * If there are 2 mirrors in the same 2 devices, performance degrades
471 * because position is mirror, not device based.
472 *
473 * The rdev for the device selected will have nr_pending incremented.
474 */
e8096360 475static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 476{
af3a2cd6 477 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
478 int sectors;
479 int best_good_sectors;
f3ac8bf7 480 int start_disk;
76073054 481 int best_disk;
f3ac8bf7 482 int i;
76073054 483 sector_t best_dist;
3cb03002 484 struct md_rdev *rdev;
f3ac8bf7 485 int choose_first;
1da177e4
LT
486
487 rcu_read_lock();
488 /*
8ddf9efe 489 * Check if we can balance. We can balance on the whole
1da177e4
LT
490 * device if no resync is going on, or below the resync window.
491 * We take the first readable disk when above the resync window.
492 */
493 retry:
d2eb35ac 494 sectors = r1_bio->sectors;
76073054
N
495 best_disk = -1;
496 best_dist = MaxSector;
d2eb35ac
N
497 best_good_sectors = 0;
498
1da177e4
LT
499 if (conf->mddev->recovery_cp < MaxSector &&
500 (this_sector + sectors >= conf->next_resync)) {
f3ac8bf7
N
501 choose_first = 1;
502 start_disk = 0;
503 } else {
504 choose_first = 0;
505 start_disk = conf->last_used;
1da177e4
LT
506 }
507
f3ac8bf7 508 for (i = 0 ; i < conf->raid_disks ; i++) {
76073054 509 sector_t dist;
d2eb35ac
N
510 sector_t first_bad;
511 int bad_sectors;
512
f3ac8bf7
N
513 int disk = start_disk + i;
514 if (disk >= conf->raid_disks)
515 disk -= conf->raid_disks;
516
517 rdev = rcu_dereference(conf->mirrors[disk].rdev);
518 if (r1_bio->bios[disk] == IO_BLOCKED
519 || rdev == NULL
76073054 520 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 521 continue;
76073054
N
522 if (!test_bit(In_sync, &rdev->flags) &&
523 rdev->recovery_offset < this_sector + sectors)
1da177e4 524 continue;
76073054
N
525 if (test_bit(WriteMostly, &rdev->flags)) {
526 /* Don't balance among write-mostly, just
527 * use the first as a last resort */
528 if (best_disk < 0)
529 best_disk = disk;
530 continue;
531 }
532 /* This is a reasonable device to use. It might
533 * even be best.
534 */
d2eb35ac
N
535 if (is_badblock(rdev, this_sector, sectors,
536 &first_bad, &bad_sectors)) {
537 if (best_dist < MaxSector)
538 /* already have a better device */
539 continue;
540 if (first_bad <= this_sector) {
541 /* cannot read here. If this is the 'primary'
542 * device, then we must not read beyond
543 * bad_sectors from another device..
544 */
545 bad_sectors -= (this_sector - first_bad);
546 if (choose_first && sectors > bad_sectors)
547 sectors = bad_sectors;
548 if (best_good_sectors > sectors)
549 best_good_sectors = sectors;
550
551 } else {
552 sector_t good_sectors = first_bad - this_sector;
553 if (good_sectors > best_good_sectors) {
554 best_good_sectors = good_sectors;
555 best_disk = disk;
556 }
557 if (choose_first)
558 break;
559 }
560 continue;
561 } else
562 best_good_sectors = sectors;
563
76073054
N
564 dist = abs(this_sector - conf->mirrors[disk].head_position);
565 if (choose_first
566 /* Don't change to another disk for sequential reads */
567 || conf->next_seq_sect == this_sector
568 || dist == 0
569 /* If device is idle, use it */
570 || atomic_read(&rdev->nr_pending) == 0) {
571 best_disk = disk;
1da177e4
LT
572 break;
573 }
76073054
N
574 if (dist < best_dist) {
575 best_dist = dist;
576 best_disk = disk;
1da177e4 577 }
f3ac8bf7 578 }
1da177e4 579
76073054
N
580 if (best_disk >= 0) {
581 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
582 if (!rdev)
583 goto retry;
584 atomic_inc(&rdev->nr_pending);
76073054 585 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
586 /* cannot risk returning a device that failed
587 * before we inc'ed nr_pending
588 */
03c902e1 589 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
590 goto retry;
591 }
d2eb35ac 592 sectors = best_good_sectors;
8ddf9efe 593 conf->next_seq_sect = this_sector + sectors;
76073054 594 conf->last_used = best_disk;
1da177e4
LT
595 }
596 rcu_read_unlock();
d2eb35ac 597 *max_sectors = sectors;
1da177e4 598
76073054 599 return best_disk;
1da177e4
LT
600}
601
fd01b88c 602int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 603{
e8096360 604 struct r1conf *conf = mddev->private;
0d129228
N
605 int i, ret = 0;
606
34db0cd6
N
607 if ((bits & (1 << BDI_async_congested)) &&
608 conf->pending_count >= max_queued_requests)
609 return 1;
610
0d129228
N
611 rcu_read_lock();
612 for (i = 0; i < mddev->raid_disks; i++) {
3cb03002 613 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 614 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 615 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 616
1ed7242e
JB
617 BUG_ON(!q);
618
0d129228
N
619 /* Note the '|| 1' - when read_balance prefers
620 * non-congested targets, it can be removed
621 */
91a9e99d 622 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
623 ret |= bdi_congested(&q->backing_dev_info, bits);
624 else
625 ret &= bdi_congested(&q->backing_dev_info, bits);
626 }
627 }
628 rcu_read_unlock();
629 return ret;
630}
1ed7242e 631EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 632
1ed7242e
JB
633static int raid1_congested(void *data, int bits)
634{
fd01b88c 635 struct mddev *mddev = data;
1ed7242e
JB
636
637 return mddev_congested(mddev, bits) ||
638 md_raid1_congested(mddev, bits);
639}
0d129228 640
e8096360 641static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
642{
643 /* Any writes that have been queued but are awaiting
644 * bitmap updates get flushed here.
a35e63ef 645 */
a35e63ef
N
646 spin_lock_irq(&conf->device_lock);
647
648 if (conf->pending_bio_list.head) {
649 struct bio *bio;
650 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 651 conf->pending_count = 0;
a35e63ef
N
652 spin_unlock_irq(&conf->device_lock);
653 /* flush any pending bitmap writes to
654 * disk before proceeding w/ I/O */
655 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 656 wake_up(&conf->wait_barrier);
a35e63ef
N
657
658 while (bio) { /* submit pending writes */
659 struct bio *next = bio->bi_next;
660 bio->bi_next = NULL;
661 generic_make_request(bio);
662 bio = next;
663 }
a35e63ef
N
664 } else
665 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
666}
667
17999be4
N
668/* Barriers....
669 * Sometimes we need to suspend IO while we do something else,
670 * either some resync/recovery, or reconfigure the array.
671 * To do this we raise a 'barrier'.
672 * The 'barrier' is a counter that can be raised multiple times
673 * to count how many activities are happening which preclude
674 * normal IO.
675 * We can only raise the barrier if there is no pending IO.
676 * i.e. if nr_pending == 0.
677 * We choose only to raise the barrier if no-one is waiting for the
678 * barrier to go down. This means that as soon as an IO request
679 * is ready, no other operations which require a barrier will start
680 * until the IO request has had a chance.
681 *
682 * So: regular IO calls 'wait_barrier'. When that returns there
683 * is no backgroup IO happening, It must arrange to call
684 * allow_barrier when it has finished its IO.
685 * backgroup IO calls must call raise_barrier. Once that returns
686 * there is no normal IO happeing. It must arrange to call
687 * lower_barrier when the particular background IO completes.
1da177e4
LT
688 */
689#define RESYNC_DEPTH 32
690
e8096360 691static void raise_barrier(struct r1conf *conf)
1da177e4
LT
692{
693 spin_lock_irq(&conf->resync_lock);
17999be4
N
694
695 /* Wait until no block IO is waiting */
696 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 697 conf->resync_lock, );
17999be4
N
698
699 /* block any new IO from starting */
700 conf->barrier++;
701
046abeed 702 /* Now wait for all pending IO to complete */
17999be4
N
703 wait_event_lock_irq(conf->wait_barrier,
704 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 705 conf->resync_lock, );
17999be4
N
706
707 spin_unlock_irq(&conf->resync_lock);
708}
709
e8096360 710static void lower_barrier(struct r1conf *conf)
17999be4
N
711{
712 unsigned long flags;
709ae487 713 BUG_ON(conf->barrier <= 0);
17999be4
N
714 spin_lock_irqsave(&conf->resync_lock, flags);
715 conf->barrier--;
716 spin_unlock_irqrestore(&conf->resync_lock, flags);
717 wake_up(&conf->wait_barrier);
718}
719
e8096360 720static void wait_barrier(struct r1conf *conf)
17999be4
N
721{
722 spin_lock_irq(&conf->resync_lock);
723 if (conf->barrier) {
724 conf->nr_waiting++;
725 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
726 conf->resync_lock,
c3b328ac 727 );
17999be4 728 conf->nr_waiting--;
1da177e4 729 }
17999be4 730 conf->nr_pending++;
1da177e4
LT
731 spin_unlock_irq(&conf->resync_lock);
732}
733
e8096360 734static void allow_barrier(struct r1conf *conf)
17999be4
N
735{
736 unsigned long flags;
737 spin_lock_irqsave(&conf->resync_lock, flags);
738 conf->nr_pending--;
739 spin_unlock_irqrestore(&conf->resync_lock, flags);
740 wake_up(&conf->wait_barrier);
741}
742
e8096360 743static void freeze_array(struct r1conf *conf)
ddaf22ab
N
744{
745 /* stop syncio and normal IO and wait for everything to
746 * go quite.
747 * We increment barrier and nr_waiting, and then
1c830532
N
748 * wait until nr_pending match nr_queued+1
749 * This is called in the context of one normal IO request
750 * that has failed. Thus any sync request that might be pending
751 * will be blocked by nr_pending, and we need to wait for
752 * pending IO requests to complete or be queued for re-try.
753 * Thus the number queued (nr_queued) plus this request (1)
754 * must match the number of pending IOs (nr_pending) before
755 * we continue.
ddaf22ab
N
756 */
757 spin_lock_irq(&conf->resync_lock);
758 conf->barrier++;
759 conf->nr_waiting++;
760 wait_event_lock_irq(conf->wait_barrier,
1c830532 761 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 762 conf->resync_lock,
c3b328ac 763 flush_pending_writes(conf));
ddaf22ab
N
764 spin_unlock_irq(&conf->resync_lock);
765}
e8096360 766static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
767{
768 /* reverse the effect of the freeze */
769 spin_lock_irq(&conf->resync_lock);
770 conf->barrier--;
771 conf->nr_waiting--;
772 wake_up(&conf->wait_barrier);
773 spin_unlock_irq(&conf->resync_lock);
774}
775
17999be4 776
4e78064f 777/* duplicate the data pages for behind I/O
4e78064f 778 */
9f2c9d12 779static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
780{
781 int i;
782 struct bio_vec *bvec;
2ca68f5e 783 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 784 GFP_NOIO);
2ca68f5e 785 if (unlikely(!bvecs))
af6d7b76 786 return;
4b6d287f 787
4b6d287f 788 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
789 bvecs[i] = *bvec;
790 bvecs[i].bv_page = alloc_page(GFP_NOIO);
791 if (unlikely(!bvecs[i].bv_page))
4b6d287f 792 goto do_sync_io;
2ca68f5e
N
793 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
794 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
795 kunmap(bvecs[i].bv_page);
4b6d287f
N
796 kunmap(bvec->bv_page);
797 }
2ca68f5e 798 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
799 r1_bio->behind_page_count = bio->bi_vcnt;
800 set_bit(R1BIO_BehindIO, &r1_bio->state);
801 return;
4b6d287f
N
802
803do_sync_io:
af6d7b76 804 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
805 if (bvecs[i].bv_page)
806 put_page(bvecs[i].bv_page);
807 kfree(bvecs);
36a4e1fe 808 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
809}
810
b4fdcb02 811static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 812{
e8096360 813 struct r1conf *conf = mddev->private;
0f6d02d5 814 struct mirror_info *mirror;
9f2c9d12 815 struct r1bio *r1_bio;
1da177e4 816 struct bio *read_bio;
1f68f0c4 817 int i, disks;
84255d10 818 struct bitmap *bitmap;
191ea9b2 819 unsigned long flags;
a362357b 820 const int rw = bio_data_dir(bio);
2c7d46ec 821 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 822 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
3cb03002 823 struct md_rdev *blocked_rdev;
c3b328ac 824 int plugged;
1f68f0c4
N
825 int first_clone;
826 int sectors_handled;
827 int max_sectors;
191ea9b2 828
1da177e4
LT
829 /*
830 * Register the new request and wait if the reconstruction
831 * thread has put up a bar for new requests.
832 * Continue immediately if no resync is active currently.
833 */
62de608d 834
3d310eb7
N
835 md_write_start(mddev, bio); /* wait on superblock update early */
836
6eef4b21
N
837 if (bio_data_dir(bio) == WRITE &&
838 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
839 bio->bi_sector < mddev->suspend_hi) {
840 /* As the suspend_* range is controlled by
841 * userspace, we want an interruptible
842 * wait.
843 */
844 DEFINE_WAIT(w);
845 for (;;) {
846 flush_signals(current);
847 prepare_to_wait(&conf->wait_barrier,
848 &w, TASK_INTERRUPTIBLE);
849 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
850 bio->bi_sector >= mddev->suspend_hi)
851 break;
852 schedule();
853 }
854 finish_wait(&conf->wait_barrier, &w);
855 }
62de608d 856
17999be4 857 wait_barrier(conf);
1da177e4 858
84255d10
N
859 bitmap = mddev->bitmap;
860
1da177e4
LT
861 /*
862 * make_request() can abort the operation when READA is being
863 * used and no empty request is available.
864 *
865 */
866 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
867
868 r1_bio->master_bio = bio;
869 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 870 r1_bio->state = 0;
1da177e4
LT
871 r1_bio->mddev = mddev;
872 r1_bio->sector = bio->bi_sector;
873
d2eb35ac
N
874 /* We might need to issue multiple reads to different
875 * devices if there are bad blocks around, so we keep
876 * track of the number of reads in bio->bi_phys_segments.
877 * If this is 0, there is only one r1_bio and no locking
878 * will be needed when requests complete. If it is
879 * non-zero, then it is the number of not-completed requests.
880 */
881 bio->bi_phys_segments = 0;
882 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
883
a362357b 884 if (rw == READ) {
1da177e4
LT
885 /*
886 * read balancing logic:
887 */
d2eb35ac
N
888 int rdisk;
889
890read_again:
891 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
892
893 if (rdisk < 0) {
894 /* couldn't find anywhere to read from */
895 raid_end_bio_io(r1_bio);
5a7bbad2 896 return;
1da177e4
LT
897 }
898 mirror = conf->mirrors + rdisk;
899
e555190d
N
900 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
901 bitmap) {
902 /* Reading from a write-mostly device must
903 * take care not to over-take any writes
904 * that are 'behind'
905 */
906 wait_event(bitmap->behind_wait,
907 atomic_read(&bitmap->behind_writes) == 0);
908 }
1da177e4
LT
909 r1_bio->read_disk = rdisk;
910
a167f663 911 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
912 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
913 max_sectors);
1da177e4
LT
914
915 r1_bio->bios[rdisk] = read_bio;
916
917 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
918 read_bio->bi_bdev = mirror->rdev->bdev;
919 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 920 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
921 read_bio->bi_private = r1_bio;
922
d2eb35ac
N
923 if (max_sectors < r1_bio->sectors) {
924 /* could not read all from this device, so we will
925 * need another r1_bio.
926 */
d2eb35ac
N
927
928 sectors_handled = (r1_bio->sector + max_sectors
929 - bio->bi_sector);
930 r1_bio->sectors = max_sectors;
931 spin_lock_irq(&conf->device_lock);
932 if (bio->bi_phys_segments == 0)
933 bio->bi_phys_segments = 2;
934 else
935 bio->bi_phys_segments++;
936 spin_unlock_irq(&conf->device_lock);
937 /* Cannot call generic_make_request directly
938 * as that will be queued in __make_request
939 * and subsequent mempool_alloc might block waiting
940 * for it. So hand bio over to raid1d.
941 */
942 reschedule_retry(r1_bio);
943
944 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
945
946 r1_bio->master_bio = bio;
947 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
948 r1_bio->state = 0;
949 r1_bio->mddev = mddev;
950 r1_bio->sector = bio->bi_sector + sectors_handled;
951 goto read_again;
952 } else
953 generic_make_request(read_bio);
5a7bbad2 954 return;
1da177e4
LT
955 }
956
957 /*
958 * WRITE:
959 */
34db0cd6
N
960 if (conf->pending_count >= max_queued_requests) {
961 md_wakeup_thread(mddev->thread);
962 wait_event(conf->wait_barrier,
963 conf->pending_count < max_queued_requests);
964 }
1f68f0c4 965 /* first select target devices under rcu_lock and
1da177e4
LT
966 * inc refcount on their rdev. Record them by setting
967 * bios[x] to bio
1f68f0c4
N
968 * If there are known/acknowledged bad blocks on any device on
969 * which we have seen a write error, we want to avoid writing those
970 * blocks.
971 * This potentially requires several writes to write around
972 * the bad blocks. Each set of writes gets it's own r1bio
973 * with a set of bios attached.
1da177e4 974 */
c3b328ac
N
975 plugged = mddev_check_plugged(mddev);
976
1da177e4 977 disks = conf->raid_disks;
6bfe0b49
DW
978 retry_write:
979 blocked_rdev = NULL;
1da177e4 980 rcu_read_lock();
1f68f0c4 981 max_sectors = r1_bio->sectors;
1da177e4 982 for (i = 0; i < disks; i++) {
3cb03002 983 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
984 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
985 atomic_inc(&rdev->nr_pending);
986 blocked_rdev = rdev;
987 break;
988 }
1f68f0c4
N
989 r1_bio->bios[i] = NULL;
990 if (!rdev || test_bit(Faulty, &rdev->flags)) {
991 set_bit(R1BIO_Degraded, &r1_bio->state);
992 continue;
993 }
994
995 atomic_inc(&rdev->nr_pending);
996 if (test_bit(WriteErrorSeen, &rdev->flags)) {
997 sector_t first_bad;
998 int bad_sectors;
999 int is_bad;
1000
1001 is_bad = is_badblock(rdev, r1_bio->sector,
1002 max_sectors,
1003 &first_bad, &bad_sectors);
1004 if (is_bad < 0) {
1005 /* mustn't write here until the bad block is
1006 * acknowledged*/
1007 set_bit(BlockedBadBlocks, &rdev->flags);
1008 blocked_rdev = rdev;
1009 break;
1010 }
1011 if (is_bad && first_bad <= r1_bio->sector) {
1012 /* Cannot write here at all */
1013 bad_sectors -= (r1_bio->sector - first_bad);
1014 if (bad_sectors < max_sectors)
1015 /* mustn't write more than bad_sectors
1016 * to other devices yet
1017 */
1018 max_sectors = bad_sectors;
03c902e1 1019 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1020 /* We don't set R1BIO_Degraded as that
1021 * only applies if the disk is
1022 * missing, so it might be re-added,
1023 * and we want to know to recover this
1024 * chunk.
1025 * In this case the device is here,
1026 * and the fact that this chunk is not
1027 * in-sync is recorded in the bad
1028 * block log
1029 */
1030 continue;
964147d5 1031 }
1f68f0c4
N
1032 if (is_bad) {
1033 int good_sectors = first_bad - r1_bio->sector;
1034 if (good_sectors < max_sectors)
1035 max_sectors = good_sectors;
1036 }
1037 }
1038 r1_bio->bios[i] = bio;
1da177e4
LT
1039 }
1040 rcu_read_unlock();
1041
6bfe0b49
DW
1042 if (unlikely(blocked_rdev)) {
1043 /* Wait for this device to become unblocked */
1044 int j;
1045
1046 for (j = 0; j < i; j++)
1047 if (r1_bio->bios[j])
1048 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1049 r1_bio->state = 0;
6bfe0b49
DW
1050 allow_barrier(conf);
1051 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1052 wait_barrier(conf);
1053 goto retry_write;
1054 }
1055
1f68f0c4
N
1056 if (max_sectors < r1_bio->sectors) {
1057 /* We are splitting this write into multiple parts, so
1058 * we need to prepare for allocating another r1_bio.
1059 */
1060 r1_bio->sectors = max_sectors;
1061 spin_lock_irq(&conf->device_lock);
1062 if (bio->bi_phys_segments == 0)
1063 bio->bi_phys_segments = 2;
1064 else
1065 bio->bi_phys_segments++;
1066 spin_unlock_irq(&conf->device_lock);
191ea9b2 1067 }
1f68f0c4 1068 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1069
4e78064f 1070 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1071 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1072
1f68f0c4 1073 first_clone = 1;
1da177e4
LT
1074 for (i = 0; i < disks; i++) {
1075 struct bio *mbio;
1076 if (!r1_bio->bios[i])
1077 continue;
1078
a167f663 1079 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1080 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1081
1082 if (first_clone) {
1083 /* do behind I/O ?
1084 * Not if there are too many, or cannot
1085 * allocate memory, or a reader on WriteMostly
1086 * is waiting for behind writes to flush */
1087 if (bitmap &&
1088 (atomic_read(&bitmap->behind_writes)
1089 < mddev->bitmap_info.max_write_behind) &&
1090 !waitqueue_active(&bitmap->behind_wait))
1091 alloc_behind_pages(mbio, r1_bio);
1092
1093 bitmap_startwrite(bitmap, r1_bio->sector,
1094 r1_bio->sectors,
1095 test_bit(R1BIO_BehindIO,
1096 &r1_bio->state));
1097 first_clone = 0;
1098 }
2ca68f5e 1099 if (r1_bio->behind_bvecs) {
4b6d287f
N
1100 struct bio_vec *bvec;
1101 int j;
1102
1103 /* Yes, I really want the '__' version so that
1104 * we clear any unused pointer in the io_vec, rather
1105 * than leave them unchanged. This is important
1106 * because when we come to free the pages, we won't
046abeed 1107 * know the original bi_idx, so we just free
4b6d287f
N
1108 * them all
1109 */
1110 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1111 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1112 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1113 atomic_inc(&r1_bio->behind_remaining);
1114 }
1115
1f68f0c4
N
1116 r1_bio->bios[i] = mbio;
1117
1118 mbio->bi_sector = (r1_bio->sector +
1119 conf->mirrors[i].rdev->data_offset);
1120 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1121 mbio->bi_end_io = raid1_end_write_request;
1122 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1123 mbio->bi_private = r1_bio;
1124
1da177e4 1125 atomic_inc(&r1_bio->remaining);
4e78064f
N
1126 spin_lock_irqsave(&conf->device_lock, flags);
1127 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1128 conf->pending_count++;
4e78064f 1129 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1130 }
079fa166
N
1131 /* Mustn't call r1_bio_write_done before this next test,
1132 * as it could result in the bio being freed.
1133 */
1f68f0c4 1134 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1135 r1_bio_write_done(r1_bio);
1f68f0c4
N
1136 /* We need another r1_bio. It has already been counted
1137 * in bio->bi_phys_segments
1138 */
1139 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1140 r1_bio->master_bio = bio;
1141 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1142 r1_bio->state = 0;
1143 r1_bio->mddev = mddev;
1144 r1_bio->sector = bio->bi_sector + sectors_handled;
1145 goto retry_write;
1146 }
1147
079fa166
N
1148 r1_bio_write_done(r1_bio);
1149
1150 /* In case raid1d snuck in to freeze_array */
1151 wake_up(&conf->wait_barrier);
1152
c3b328ac 1153 if (do_sync || !bitmap || !plugged)
e3881a68 1154 md_wakeup_thread(mddev->thread);
1da177e4
LT
1155}
1156
fd01b88c 1157static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1158{
e8096360 1159 struct r1conf *conf = mddev->private;
1da177e4
LT
1160 int i;
1161
1162 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1163 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1164 rcu_read_lock();
1165 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1166 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1167 seq_printf(seq, "%s",
ddac7c7e
N
1168 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1169 }
1170 rcu_read_unlock();
1da177e4
LT
1171 seq_printf(seq, "]");
1172}
1173
1174
fd01b88c 1175static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1176{
1177 char b[BDEVNAME_SIZE];
e8096360 1178 struct r1conf *conf = mddev->private;
1da177e4
LT
1179
1180 /*
1181 * If it is not operational, then we have already marked it as dead
1182 * else if it is the last working disks, ignore the error, let the
1183 * next level up know.
1184 * else mark the drive as failed
1185 */
b2d444d7 1186 if (test_bit(In_sync, &rdev->flags)
4044ba58 1187 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1188 /*
1189 * Don't fail the drive, act as though we were just a
4044ba58
N
1190 * normal single drive.
1191 * However don't try a recovery from this drive as
1192 * it is very likely to fail.
1da177e4 1193 */
5389042f 1194 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1195 return;
4044ba58 1196 }
de393cde 1197 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1198 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1199 unsigned long flags;
1200 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1201 mddev->degraded++;
dd00a99e 1202 set_bit(Faulty, &rdev->flags);
c04be0aa 1203 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1204 /*
1205 * if recovery is running, make sure it aborts.
1206 */
dfc70645 1207 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1208 } else
1209 set_bit(Faulty, &rdev->flags);
850b2b42 1210 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1211 printk(KERN_ALERT
1212 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1213 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1214 mdname(mddev), bdevname(rdev->bdev, b),
1215 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1216}
1217
e8096360 1218static void print_conf(struct r1conf *conf)
1da177e4
LT
1219{
1220 int i;
1da177e4 1221
9dd1e2fa 1222 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1223 if (!conf) {
9dd1e2fa 1224 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1225 return;
1226 }
9dd1e2fa 1227 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1228 conf->raid_disks);
1229
ddac7c7e 1230 rcu_read_lock();
1da177e4
LT
1231 for (i = 0; i < conf->raid_disks; i++) {
1232 char b[BDEVNAME_SIZE];
3cb03002 1233 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1234 if (rdev)
9dd1e2fa 1235 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1236 i, !test_bit(In_sync, &rdev->flags),
1237 !test_bit(Faulty, &rdev->flags),
1238 bdevname(rdev->bdev,b));
1da177e4 1239 }
ddac7c7e 1240 rcu_read_unlock();
1da177e4
LT
1241}
1242
e8096360 1243static void close_sync(struct r1conf *conf)
1da177e4 1244{
17999be4
N
1245 wait_barrier(conf);
1246 allow_barrier(conf);
1da177e4
LT
1247
1248 mempool_destroy(conf->r1buf_pool);
1249 conf->r1buf_pool = NULL;
1250}
1251
fd01b88c 1252static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1253{
1254 int i;
e8096360 1255 struct r1conf *conf = mddev->private;
6b965620
N
1256 int count = 0;
1257 unsigned long flags;
1da177e4
LT
1258
1259 /*
1260 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1261 * and mark them readable.
1262 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1263 */
1264 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1265 struct md_rdev *rdev = conf->mirrors[i].rdev;
ddac7c7e
N
1266 if (rdev
1267 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1268 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1269 count++;
654e8b5a 1270 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1271 }
1272 }
6b965620
N
1273 spin_lock_irqsave(&conf->device_lock, flags);
1274 mddev->degraded -= count;
1275 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1276
1277 print_conf(conf);
6b965620 1278 return count;
1da177e4
LT
1279}
1280
1281
fd01b88c 1282static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1283{
e8096360 1284 struct r1conf *conf = mddev->private;
199050ea 1285 int err = -EEXIST;
41158c7e 1286 int mirror = 0;
0f6d02d5 1287 struct mirror_info *p;
6c2fce2e
NB
1288 int first = 0;
1289 int last = mddev->raid_disks - 1;
1da177e4 1290
5389042f
N
1291 if (mddev->recovery_disabled == conf->recovery_disabled)
1292 return -EBUSY;
1293
6c2fce2e
NB
1294 if (rdev->raid_disk >= 0)
1295 first = last = rdev->raid_disk;
1296
1297 for (mirror = first; mirror <= last; mirror++)
1da177e4
LT
1298 if ( !(p=conf->mirrors+mirror)->rdev) {
1299
8f6c2e4b
MP
1300 disk_stack_limits(mddev->gendisk, rdev->bdev,
1301 rdev->data_offset << 9);
627a2d3c
N
1302 /* as we don't honour merge_bvec_fn, we must
1303 * never risk violating it, so limit
1304 * ->max_segments to one lying with a single
1305 * page, as a one page request is never in
1306 * violation.
1da177e4 1307 */
627a2d3c
N
1308 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1309 blk_queue_max_segments(mddev->queue, 1);
1310 blk_queue_segment_boundary(mddev->queue,
1311 PAGE_CACHE_SIZE - 1);
1312 }
1da177e4
LT
1313
1314 p->head_position = 0;
1315 rdev->raid_disk = mirror;
199050ea 1316 err = 0;
6aea114a
N
1317 /* As all devices are equivalent, we don't need a full recovery
1318 * if this was recently any drive of the array
1319 */
1320 if (rdev->saved_raid_disk < 0)
41158c7e 1321 conf->fullsync = 1;
d6065f7b 1322 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1323 break;
1324 }
ac5e7113 1325 md_integrity_add_rdev(rdev, mddev);
1da177e4 1326 print_conf(conf);
199050ea 1327 return err;
1da177e4
LT
1328}
1329
b8321b68 1330static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1331{
e8096360 1332 struct r1conf *conf = mddev->private;
1da177e4 1333 int err = 0;
b8321b68 1334 int number = rdev->raid_disk;
0f6d02d5 1335 struct mirror_info *p = conf->mirrors+ number;
1da177e4
LT
1336
1337 print_conf(conf);
b8321b68 1338 if (rdev == p->rdev) {
b2d444d7 1339 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1340 atomic_read(&rdev->nr_pending)) {
1341 err = -EBUSY;
1342 goto abort;
1343 }
046abeed 1344 /* Only remove non-faulty devices if recovery
dfc70645
N
1345 * is not possible.
1346 */
1347 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1348 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1349 mddev->degraded < conf->raid_disks) {
1350 err = -EBUSY;
1351 goto abort;
1352 }
1da177e4 1353 p->rdev = NULL;
fbd568a3 1354 synchronize_rcu();
1da177e4
LT
1355 if (atomic_read(&rdev->nr_pending)) {
1356 /* lost the race, try later */
1357 err = -EBUSY;
1358 p->rdev = rdev;
ac5e7113 1359 goto abort;
1da177e4 1360 }
a91a2785 1361 err = md_integrity_register(mddev);
1da177e4
LT
1362 }
1363abort:
1364
1365 print_conf(conf);
1366 return err;
1367}
1368
1369
6712ecf8 1370static void end_sync_read(struct bio *bio, int error)
1da177e4 1371{
9f2c9d12 1372 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1373
0fc280f6 1374 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1375
1da177e4
LT
1376 /*
1377 * we have read a block, now it needs to be re-written,
1378 * or re-read if the read failed.
1379 * We don't do much here, just schedule handling by raid1d
1380 */
69382e85 1381 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1382 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1383
1384 if (atomic_dec_and_test(&r1_bio->remaining))
1385 reschedule_retry(r1_bio);
1da177e4
LT
1386}
1387
6712ecf8 1388static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1389{
1390 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1391 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1392 struct mddev *mddev = r1_bio->mddev;
e8096360 1393 struct r1conf *conf = mddev->private;
1da177e4 1394 int mirror=0;
4367af55
N
1395 sector_t first_bad;
1396 int bad_sectors;
1da177e4 1397
ba3ae3be
NK
1398 mirror = find_bio_disk(r1_bio, bio);
1399
6b1117d5 1400 if (!uptodate) {
57dab0bd 1401 sector_t sync_blocks = 0;
6b1117d5
N
1402 sector_t s = r1_bio->sector;
1403 long sectors_to_go = r1_bio->sectors;
1404 /* make sure these bits doesn't get cleared. */
1405 do {
5e3db645 1406 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1407 &sync_blocks, 1);
1408 s += sync_blocks;
1409 sectors_to_go -= sync_blocks;
1410 } while (sectors_to_go > 0);
d8f05d29
N
1411 set_bit(WriteErrorSeen,
1412 &conf->mirrors[mirror].rdev->flags);
1413 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1414 } else if (is_badblock(conf->mirrors[mirror].rdev,
1415 r1_bio->sector,
1416 r1_bio->sectors,
3a9f28a5
N
1417 &first_bad, &bad_sectors) &&
1418 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1419 r1_bio->sector,
1420 r1_bio->sectors,
1421 &first_bad, &bad_sectors)
1422 )
4367af55 1423 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1424
1da177e4 1425 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1426 int s = r1_bio->sectors;
d8f05d29
N
1427 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1428 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1429 reschedule_retry(r1_bio);
1430 else {
1431 put_buf(r1_bio);
1432 md_done_sync(mddev, s, uptodate);
1433 }
1da177e4 1434 }
1da177e4
LT
1435}
1436
3cb03002 1437static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1438 int sectors, struct page *page, int rw)
1439{
1440 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1441 /* success */
1442 return 1;
1443 if (rw == WRITE)
1444 set_bit(WriteErrorSeen, &rdev->flags);
1445 /* need to record an error - either for the block or the device */
1446 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1447 md_error(rdev->mddev, rdev);
1448 return 0;
1449}
1450
9f2c9d12 1451static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1452{
a68e5870
N
1453 /* Try some synchronous reads of other devices to get
1454 * good data, much like with normal read errors. Only
1455 * read into the pages we already have so we don't
1456 * need to re-issue the read request.
1457 * We don't need to freeze the array, because being in an
1458 * active sync request, there is no normal IO, and
1459 * no overlapping syncs.
06f60385
N
1460 * We don't need to check is_badblock() again as we
1461 * made sure that anything with a bad block in range
1462 * will have bi_end_io clear.
a68e5870 1463 */
fd01b88c 1464 struct mddev *mddev = r1_bio->mddev;
e8096360 1465 struct r1conf *conf = mddev->private;
a68e5870
N
1466 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1467 sector_t sect = r1_bio->sector;
1468 int sectors = r1_bio->sectors;
1469 int idx = 0;
1470
1471 while(sectors) {
1472 int s = sectors;
1473 int d = r1_bio->read_disk;
1474 int success = 0;
3cb03002 1475 struct md_rdev *rdev;
78d7f5f7 1476 int start;
a68e5870
N
1477
1478 if (s > (PAGE_SIZE>>9))
1479 s = PAGE_SIZE >> 9;
1480 do {
1481 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1482 /* No rcu protection needed here devices
1483 * can only be removed when no resync is
1484 * active, and resync is currently active
1485 */
1486 rdev = conf->mirrors[d].rdev;
9d3d8011 1487 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1488 bio->bi_io_vec[idx].bv_page,
1489 READ, false)) {
1490 success = 1;
1491 break;
1492 }
1493 }
1494 d++;
1495 if (d == conf->raid_disks)
1496 d = 0;
1497 } while (!success && d != r1_bio->read_disk);
1498
78d7f5f7 1499 if (!success) {
a68e5870 1500 char b[BDEVNAME_SIZE];
3a9f28a5
N
1501 int abort = 0;
1502 /* Cannot read from anywhere, this block is lost.
1503 * Record a bad block on each device. If that doesn't
1504 * work just disable and interrupt the recovery.
1505 * Don't fail devices as that won't really help.
1506 */
a68e5870
N
1507 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1508 " for block %llu\n",
1509 mdname(mddev),
1510 bdevname(bio->bi_bdev, b),
1511 (unsigned long long)r1_bio->sector);
3a9f28a5
N
1512 for (d = 0; d < conf->raid_disks; d++) {
1513 rdev = conf->mirrors[d].rdev;
1514 if (!rdev || test_bit(Faulty, &rdev->flags))
1515 continue;
1516 if (!rdev_set_badblocks(rdev, sect, s, 0))
1517 abort = 1;
1518 }
1519 if (abort) {
d890fa2b
N
1520 conf->recovery_disabled =
1521 mddev->recovery_disabled;
3a9f28a5
N
1522 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1523 md_done_sync(mddev, r1_bio->sectors, 0);
1524 put_buf(r1_bio);
1525 return 0;
1526 }
1527 /* Try next page */
1528 sectors -= s;
1529 sect += s;
1530 idx++;
1531 continue;
d11c171e 1532 }
78d7f5f7
N
1533
1534 start = d;
1535 /* write it back and re-read */
1536 while (d != r1_bio->read_disk) {
1537 if (d == 0)
1538 d = conf->raid_disks;
1539 d--;
1540 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1541 continue;
1542 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1543 if (r1_sync_page_io(rdev, sect, s,
1544 bio->bi_io_vec[idx].bv_page,
1545 WRITE) == 0) {
78d7f5f7
N
1546 r1_bio->bios[d]->bi_end_io = NULL;
1547 rdev_dec_pending(rdev, mddev);
9d3d8011 1548 }
78d7f5f7
N
1549 }
1550 d = start;
1551 while (d != r1_bio->read_disk) {
1552 if (d == 0)
1553 d = conf->raid_disks;
1554 d--;
1555 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1556 continue;
1557 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1558 if (r1_sync_page_io(rdev, sect, s,
1559 bio->bi_io_vec[idx].bv_page,
1560 READ) != 0)
9d3d8011 1561 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1562 }
a68e5870
N
1563 sectors -= s;
1564 sect += s;
1565 idx ++;
1566 }
78d7f5f7 1567 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1568 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1569 return 1;
1570}
1571
9f2c9d12 1572static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1573{
1574 /* We have read all readable devices. If we haven't
1575 * got the block, then there is no hope left.
1576 * If we have, then we want to do a comparison
1577 * and skip the write if everything is the same.
1578 * If any blocks failed to read, then we need to
1579 * attempt an over-write
1580 */
fd01b88c 1581 struct mddev *mddev = r1_bio->mddev;
e8096360 1582 struct r1conf *conf = mddev->private;
a68e5870
N
1583 int primary;
1584 int i;
1585
78d7f5f7 1586 for (primary = 0; primary < conf->raid_disks; primary++)
a68e5870
N
1587 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1588 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1589 r1_bio->bios[primary]->bi_end_io = NULL;
1590 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1591 break;
1592 }
1593 r1_bio->read_disk = primary;
78d7f5f7
N
1594 for (i = 0; i < conf->raid_disks; i++) {
1595 int j;
1596 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1597 struct bio *pbio = r1_bio->bios[primary];
1598 struct bio *sbio = r1_bio->bios[i];
1599 int size;
a68e5870 1600
78d7f5f7
N
1601 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1602 continue;
1603
1604 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1605 for (j = vcnt; j-- ; ) {
1606 struct page *p, *s;
1607 p = pbio->bi_io_vec[j].bv_page;
1608 s = sbio->bi_io_vec[j].bv_page;
1609 if (memcmp(page_address(p),
1610 page_address(s),
1611 PAGE_SIZE))
1612 break;
69382e85 1613 }
78d7f5f7
N
1614 } else
1615 j = 0;
1616 if (j >= 0)
1617 mddev->resync_mismatches += r1_bio->sectors;
1618 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1619 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1620 /* No need to write to this device. */
1621 sbio->bi_end_io = NULL;
1622 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1623 continue;
1624 }
1625 /* fixup the bio for reuse */
1626 sbio->bi_vcnt = vcnt;
1627 sbio->bi_size = r1_bio->sectors << 9;
1628 sbio->bi_idx = 0;
1629 sbio->bi_phys_segments = 0;
1630 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1631 sbio->bi_flags |= 1 << BIO_UPTODATE;
1632 sbio->bi_next = NULL;
1633 sbio->bi_sector = r1_bio->sector +
1634 conf->mirrors[i].rdev->data_offset;
1635 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1636 size = sbio->bi_size;
1637 for (j = 0; j < vcnt ; j++) {
1638 struct bio_vec *bi;
1639 bi = &sbio->bi_io_vec[j];
1640 bi->bv_offset = 0;
1641 if (size > PAGE_SIZE)
1642 bi->bv_len = PAGE_SIZE;
1643 else
1644 bi->bv_len = size;
1645 size -= PAGE_SIZE;
1646 memcpy(page_address(bi->bv_page),
1647 page_address(pbio->bi_io_vec[j].bv_page),
1648 PAGE_SIZE);
69382e85 1649 }
78d7f5f7 1650 }
a68e5870
N
1651 return 0;
1652}
1653
9f2c9d12 1654static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1655{
e8096360 1656 struct r1conf *conf = mddev->private;
a68e5870
N
1657 int i;
1658 int disks = conf->raid_disks;
1659 struct bio *bio, *wbio;
1660
1661 bio = r1_bio->bios[r1_bio->read_disk];
1662
a68e5870
N
1663 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1664 /* ouch - failed to read all of that. */
1665 if (!fix_sync_read_error(r1_bio))
1666 return;
7ca78d57
N
1667
1668 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1669 if (process_checks(r1_bio) < 0)
1670 return;
d11c171e
N
1671 /*
1672 * schedule writes
1673 */
1da177e4
LT
1674 atomic_set(&r1_bio->remaining, 1);
1675 for (i = 0; i < disks ; i++) {
1676 wbio = r1_bio->bios[i];
3e198f78
N
1677 if (wbio->bi_end_io == NULL ||
1678 (wbio->bi_end_io == end_sync_read &&
1679 (i == r1_bio->read_disk ||
1680 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1681 continue;
1682
3e198f78
N
1683 wbio->bi_rw = WRITE;
1684 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1685 atomic_inc(&r1_bio->remaining);
1686 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1687
1da177e4
LT
1688 generic_make_request(wbio);
1689 }
1690
1691 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1692 /* if we're here, all write(s) have completed, so clean up */
1da177e4
LT
1693 md_done_sync(mddev, r1_bio->sectors, 1);
1694 put_buf(r1_bio);
1695 }
1696}
1697
1698/*
1699 * This is a kernel thread which:
1700 *
1701 * 1. Retries failed read operations on working mirrors.
1702 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1703 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1704 */
1705
e8096360 1706static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1707 sector_t sect, int sectors)
1708{
fd01b88c 1709 struct mddev *mddev = conf->mddev;
867868fb
N
1710 while(sectors) {
1711 int s = sectors;
1712 int d = read_disk;
1713 int success = 0;
1714 int start;
3cb03002 1715 struct md_rdev *rdev;
867868fb
N
1716
1717 if (s > (PAGE_SIZE>>9))
1718 s = PAGE_SIZE >> 9;
1719
1720 do {
1721 /* Note: no rcu protection needed here
1722 * as this is synchronous in the raid1d thread
1723 * which is the thread that might remove
1724 * a device. If raid1d ever becomes multi-threaded....
1725 */
d2eb35ac
N
1726 sector_t first_bad;
1727 int bad_sectors;
1728
867868fb
N
1729 rdev = conf->mirrors[d].rdev;
1730 if (rdev &&
1731 test_bit(In_sync, &rdev->flags) &&
d2eb35ac
N
1732 is_badblock(rdev, sect, s,
1733 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1734 sync_page_io(rdev, sect, s<<9,
1735 conf->tmppage, READ, false))
867868fb
N
1736 success = 1;
1737 else {
1738 d++;
1739 if (d == conf->raid_disks)
1740 d = 0;
1741 }
1742 } while (!success && d != read_disk);
1743
1744 if (!success) {
d8f05d29 1745 /* Cannot read from anywhere - mark it bad */
3cb03002 1746 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
1747 if (!rdev_set_badblocks(rdev, sect, s, 0))
1748 md_error(mddev, rdev);
867868fb
N
1749 break;
1750 }
1751 /* write it back and re-read */
1752 start = d;
1753 while (d != read_disk) {
1754 if (d==0)
1755 d = conf->raid_disks;
1756 d--;
1757 rdev = conf->mirrors[d].rdev;
1758 if (rdev &&
d8f05d29
N
1759 test_bit(In_sync, &rdev->flags))
1760 r1_sync_page_io(rdev, sect, s,
1761 conf->tmppage, WRITE);
867868fb
N
1762 }
1763 d = start;
1764 while (d != read_disk) {
1765 char b[BDEVNAME_SIZE];
1766 if (d==0)
1767 d = conf->raid_disks;
1768 d--;
1769 rdev = conf->mirrors[d].rdev;
1770 if (rdev &&
1771 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
1772 if (r1_sync_page_io(rdev, sect, s,
1773 conf->tmppage, READ)) {
867868fb
N
1774 atomic_add(s, &rdev->corrected_errors);
1775 printk(KERN_INFO
9dd1e2fa 1776 "md/raid1:%s: read error corrected "
867868fb
N
1777 "(%d sectors at %llu on %s)\n",
1778 mdname(mddev), s,
969b755a
RD
1779 (unsigned long long)(sect +
1780 rdev->data_offset),
867868fb
N
1781 bdevname(rdev->bdev, b));
1782 }
1783 }
1784 }
1785 sectors -= s;
1786 sect += s;
1787 }
1788}
1789
cd5ff9a1
N
1790static void bi_complete(struct bio *bio, int error)
1791{
1792 complete((struct completion *)bio->bi_private);
1793}
1794
1795static int submit_bio_wait(int rw, struct bio *bio)
1796{
1797 struct completion event;
1798 rw |= REQ_SYNC;
1799
1800 init_completion(&event);
1801 bio->bi_private = &event;
1802 bio->bi_end_io = bi_complete;
1803 submit_bio(rw, bio);
1804 wait_for_completion(&event);
1805
1806 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1807}
1808
9f2c9d12 1809static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 1810{
fd01b88c 1811 struct mddev *mddev = r1_bio->mddev;
e8096360 1812 struct r1conf *conf = mddev->private;
3cb03002 1813 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
1814 int vcnt, idx;
1815 struct bio_vec *vec;
1816
1817 /* bio has the data to be written to device 'i' where
1818 * we just recently had a write error.
1819 * We repeatedly clone the bio and trim down to one block,
1820 * then try the write. Where the write fails we record
1821 * a bad block.
1822 * It is conceivable that the bio doesn't exactly align with
1823 * blocks. We must handle this somehow.
1824 *
1825 * We currently own a reference on the rdev.
1826 */
1827
1828 int block_sectors;
1829 sector_t sector;
1830 int sectors;
1831 int sect_to_write = r1_bio->sectors;
1832 int ok = 1;
1833
1834 if (rdev->badblocks.shift < 0)
1835 return 0;
1836
1837 block_sectors = 1 << rdev->badblocks.shift;
1838 sector = r1_bio->sector;
1839 sectors = ((sector + block_sectors)
1840 & ~(sector_t)(block_sectors - 1))
1841 - sector;
1842
1843 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1844 vcnt = r1_bio->behind_page_count;
1845 vec = r1_bio->behind_bvecs;
1846 idx = 0;
1847 while (vec[idx].bv_page == NULL)
1848 idx++;
1849 } else {
1850 vcnt = r1_bio->master_bio->bi_vcnt;
1851 vec = r1_bio->master_bio->bi_io_vec;
1852 idx = r1_bio->master_bio->bi_idx;
1853 }
1854 while (sect_to_write) {
1855 struct bio *wbio;
1856 if (sectors > sect_to_write)
1857 sectors = sect_to_write;
1858 /* Write at 'sector' for 'sectors'*/
1859
1860 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1861 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1862 wbio->bi_sector = r1_bio->sector;
1863 wbio->bi_rw = WRITE;
1864 wbio->bi_vcnt = vcnt;
1865 wbio->bi_size = r1_bio->sectors << 9;
1866 wbio->bi_idx = idx;
1867
1868 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1869 wbio->bi_sector += rdev->data_offset;
1870 wbio->bi_bdev = rdev->bdev;
1871 if (submit_bio_wait(WRITE, wbio) == 0)
1872 /* failure! */
1873 ok = rdev_set_badblocks(rdev, sector,
1874 sectors, 0)
1875 && ok;
1876
1877 bio_put(wbio);
1878 sect_to_write -= sectors;
1879 sector += sectors;
1880 sectors = block_sectors;
1881 }
1882 return ok;
1883}
1884
e8096360 1885static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1886{
1887 int m;
1888 int s = r1_bio->sectors;
1889 for (m = 0; m < conf->raid_disks ; m++) {
3cb03002 1890 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1891 struct bio *bio = r1_bio->bios[m];
1892 if (bio->bi_end_io == NULL)
1893 continue;
1894 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1895 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1896 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1897 }
1898 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1899 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1900 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1901 md_error(conf->mddev, rdev);
1902 }
1903 }
1904 put_buf(r1_bio);
1905 md_done_sync(conf->mddev, s, 1);
1906}
1907
e8096360 1908static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1909{
1910 int m;
1911 for (m = 0; m < conf->raid_disks ; m++)
1912 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 1913 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
1914 rdev_clear_badblocks(rdev,
1915 r1_bio->sector,
1916 r1_bio->sectors);
1917 rdev_dec_pending(rdev, conf->mddev);
1918 } else if (r1_bio->bios[m] != NULL) {
1919 /* This drive got a write error. We need to
1920 * narrow down and record precise write
1921 * errors.
1922 */
1923 if (!narrow_write_error(r1_bio, m)) {
1924 md_error(conf->mddev,
1925 conf->mirrors[m].rdev);
1926 /* an I/O failed, we can't clear the bitmap */
1927 set_bit(R1BIO_Degraded, &r1_bio->state);
1928 }
1929 rdev_dec_pending(conf->mirrors[m].rdev,
1930 conf->mddev);
1931 }
1932 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1933 close_write(r1_bio);
1934 raid_end_bio_io(r1_bio);
1935}
1936
e8096360 1937static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
1938{
1939 int disk;
1940 int max_sectors;
fd01b88c 1941 struct mddev *mddev = conf->mddev;
62096bce
N
1942 struct bio *bio;
1943 char b[BDEVNAME_SIZE];
3cb03002 1944 struct md_rdev *rdev;
62096bce
N
1945
1946 clear_bit(R1BIO_ReadError, &r1_bio->state);
1947 /* we got a read error. Maybe the drive is bad. Maybe just
1948 * the block and we can fix it.
1949 * We freeze all other IO, and try reading the block from
1950 * other devices. When we find one, we re-write
1951 * and check it that fixes the read error.
1952 * This is all done synchronously while the array is
1953 * frozen
1954 */
1955 if (mddev->ro == 0) {
1956 freeze_array(conf);
1957 fix_read_error(conf, r1_bio->read_disk,
1958 r1_bio->sector, r1_bio->sectors);
1959 unfreeze_array(conf);
1960 } else
1961 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1962
1963 bio = r1_bio->bios[r1_bio->read_disk];
1964 bdevname(bio->bi_bdev, b);
1965read_more:
1966 disk = read_balance(conf, r1_bio, &max_sectors);
1967 if (disk == -1) {
1968 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1969 " read error for block %llu\n",
1970 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1971 raid_end_bio_io(r1_bio);
1972 } else {
1973 const unsigned long do_sync
1974 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1975 if (bio) {
1976 r1_bio->bios[r1_bio->read_disk] =
1977 mddev->ro ? IO_BLOCKED : NULL;
1978 bio_put(bio);
1979 }
1980 r1_bio->read_disk = disk;
1981 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1982 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1983 r1_bio->bios[r1_bio->read_disk] = bio;
1984 rdev = conf->mirrors[disk].rdev;
1985 printk_ratelimited(KERN_ERR
1986 "md/raid1:%s: redirecting sector %llu"
1987 " to other mirror: %s\n",
1988 mdname(mddev),
1989 (unsigned long long)r1_bio->sector,
1990 bdevname(rdev->bdev, b));
1991 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1992 bio->bi_bdev = rdev->bdev;
1993 bio->bi_end_io = raid1_end_read_request;
1994 bio->bi_rw = READ | do_sync;
1995 bio->bi_private = r1_bio;
1996 if (max_sectors < r1_bio->sectors) {
1997 /* Drat - have to split this up more */
1998 struct bio *mbio = r1_bio->master_bio;
1999 int sectors_handled = (r1_bio->sector + max_sectors
2000 - mbio->bi_sector);
2001 r1_bio->sectors = max_sectors;
2002 spin_lock_irq(&conf->device_lock);
2003 if (mbio->bi_phys_segments == 0)
2004 mbio->bi_phys_segments = 2;
2005 else
2006 mbio->bi_phys_segments++;
2007 spin_unlock_irq(&conf->device_lock);
2008 generic_make_request(bio);
2009 bio = NULL;
2010
2011 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2012
2013 r1_bio->master_bio = mbio;
2014 r1_bio->sectors = (mbio->bi_size >> 9)
2015 - sectors_handled;
2016 r1_bio->state = 0;
2017 set_bit(R1BIO_ReadError, &r1_bio->state);
2018 r1_bio->mddev = mddev;
2019 r1_bio->sector = mbio->bi_sector + sectors_handled;
2020
2021 goto read_more;
2022 } else
2023 generic_make_request(bio);
2024 }
2025}
2026
fd01b88c 2027static void raid1d(struct mddev *mddev)
1da177e4 2028{
9f2c9d12 2029 struct r1bio *r1_bio;
1da177e4 2030 unsigned long flags;
e8096360 2031 struct r1conf *conf = mddev->private;
1da177e4 2032 struct list_head *head = &conf->retry_list;
e1dfa0a2 2033 struct blk_plug plug;
1da177e4
LT
2034
2035 md_check_recovery(mddev);
e1dfa0a2
N
2036
2037 blk_start_plug(&plug);
1da177e4 2038 for (;;) {
191ea9b2 2039
c3b328ac
N
2040 if (atomic_read(&mddev->plug_cnt) == 0)
2041 flush_pending_writes(conf);
191ea9b2 2042
a35e63ef
N
2043 spin_lock_irqsave(&conf->device_lock, flags);
2044 if (list_empty(head)) {
2045 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2046 break;
a35e63ef 2047 }
9f2c9d12 2048 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2049 list_del(head->prev);
ddaf22ab 2050 conf->nr_queued--;
1da177e4
LT
2051 spin_unlock_irqrestore(&conf->device_lock, flags);
2052
2053 mddev = r1_bio->mddev;
070ec55d 2054 conf = mddev->private;
4367af55 2055 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2056 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2057 test_bit(R1BIO_WriteError, &r1_bio->state))
2058 handle_sync_write_finished(conf, r1_bio);
2059 else
4367af55 2060 sync_request_write(mddev, r1_bio);
cd5ff9a1 2061 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2062 test_bit(R1BIO_WriteError, &r1_bio->state))
2063 handle_write_finished(conf, r1_bio);
2064 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2065 handle_read_error(conf, r1_bio);
2066 else
d2eb35ac
N
2067 /* just a partial read to be scheduled from separate
2068 * context
2069 */
2070 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2071
1d9d5241 2072 cond_resched();
de393cde
N
2073 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2074 md_check_recovery(mddev);
1da177e4 2075 }
e1dfa0a2 2076 blk_finish_plug(&plug);
1da177e4
LT
2077}
2078
2079
e8096360 2080static int init_resync(struct r1conf *conf)
1da177e4
LT
2081{
2082 int buffs;
2083
2084 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2085 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2086 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2087 conf->poolinfo);
2088 if (!conf->r1buf_pool)
2089 return -ENOMEM;
2090 conf->next_resync = 0;
2091 return 0;
2092}
2093
2094/*
2095 * perform a "sync" on one "block"
2096 *
2097 * We need to make sure that no normal I/O request - particularly write
2098 * requests - conflict with active sync requests.
2099 *
2100 * This is achieved by tracking pending requests and a 'barrier' concept
2101 * that can be installed to exclude normal IO requests.
2102 */
2103
fd01b88c 2104static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2105{
e8096360 2106 struct r1conf *conf = mddev->private;
9f2c9d12 2107 struct r1bio *r1_bio;
1da177e4
LT
2108 struct bio *bio;
2109 sector_t max_sector, nr_sectors;
3e198f78 2110 int disk = -1;
1da177e4 2111 int i;
3e198f78
N
2112 int wonly = -1;
2113 int write_targets = 0, read_targets = 0;
57dab0bd 2114 sector_t sync_blocks;
e3b9703e 2115 int still_degraded = 0;
06f60385
N
2116 int good_sectors = RESYNC_SECTORS;
2117 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2118
2119 if (!conf->r1buf_pool)
2120 if (init_resync(conf))
57afd89f 2121 return 0;
1da177e4 2122
58c0fed4 2123 max_sector = mddev->dev_sectors;
1da177e4 2124 if (sector_nr >= max_sector) {
191ea9b2
N
2125 /* If we aborted, we need to abort the
2126 * sync on the 'current' bitmap chunk (there will
2127 * only be one in raid1 resync.
2128 * We can find the current addess in mddev->curr_resync
2129 */
6a806c51
N
2130 if (mddev->curr_resync < max_sector) /* aborted */
2131 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2132 &sync_blocks, 1);
6a806c51 2133 else /* completed sync */
191ea9b2 2134 conf->fullsync = 0;
6a806c51
N
2135
2136 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2137 close_sync(conf);
2138 return 0;
2139 }
2140
07d84d10
N
2141 if (mddev->bitmap == NULL &&
2142 mddev->recovery_cp == MaxSector &&
6394cca5 2143 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2144 conf->fullsync == 0) {
2145 *skipped = 1;
2146 return max_sector - sector_nr;
2147 }
6394cca5
N
2148 /* before building a request, check if we can skip these blocks..
2149 * This call the bitmap_start_sync doesn't actually record anything
2150 */
e3b9703e 2151 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2152 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2153 /* We can skip this block, and probably several more */
2154 *skipped = 1;
2155 return sync_blocks;
2156 }
1da177e4 2157 /*
17999be4
N
2158 * If there is non-resync activity waiting for a turn,
2159 * and resync is going fast enough,
2160 * then let it though before starting on this new sync request.
1da177e4 2161 */
17999be4 2162 if (!go_faster && conf->nr_waiting)
1da177e4 2163 msleep_interruptible(1000);
17999be4 2164
b47490c9 2165 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2166 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2167 raise_barrier(conf);
2168
2169 conf->next_resync = sector_nr;
1da177e4 2170
3e198f78 2171 rcu_read_lock();
1da177e4 2172 /*
3e198f78
N
2173 * If we get a correctably read error during resync or recovery,
2174 * we might want to read from a different device. So we
2175 * flag all drives that could conceivably be read from for READ,
2176 * and any others (which will be non-In_sync devices) for WRITE.
2177 * If a read fails, we try reading from something else for which READ
2178 * is OK.
1da177e4 2179 */
1da177e4 2180
1da177e4
LT
2181 r1_bio->mddev = mddev;
2182 r1_bio->sector = sector_nr;
191ea9b2 2183 r1_bio->state = 0;
1da177e4 2184 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4
LT
2185
2186 for (i=0; i < conf->raid_disks; i++) {
3cb03002 2187 struct md_rdev *rdev;
1da177e4
LT
2188 bio = r1_bio->bios[i];
2189
2190 /* take from bio_init */
2191 bio->bi_next = NULL;
db8d9d35 2192 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2193 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 2194 bio->bi_rw = READ;
1da177e4
LT
2195 bio->bi_vcnt = 0;
2196 bio->bi_idx = 0;
2197 bio->bi_phys_segments = 0;
1da177e4
LT
2198 bio->bi_size = 0;
2199 bio->bi_end_io = NULL;
2200 bio->bi_private = NULL;
2201
3e198f78
N
2202 rdev = rcu_dereference(conf->mirrors[i].rdev);
2203 if (rdev == NULL ||
06f60385 2204 test_bit(Faulty, &rdev->flags)) {
e3b9703e 2205 still_degraded = 1;
3e198f78 2206 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2207 bio->bi_rw = WRITE;
2208 bio->bi_end_io = end_sync_write;
2209 write_targets ++;
3e198f78
N
2210 } else {
2211 /* may need to read from here */
06f60385
N
2212 sector_t first_bad = MaxSector;
2213 int bad_sectors;
2214
2215 if (is_badblock(rdev, sector_nr, good_sectors,
2216 &first_bad, &bad_sectors)) {
2217 if (first_bad > sector_nr)
2218 good_sectors = first_bad - sector_nr;
2219 else {
2220 bad_sectors -= (sector_nr - first_bad);
2221 if (min_bad == 0 ||
2222 min_bad > bad_sectors)
2223 min_bad = bad_sectors;
2224 }
2225 }
2226 if (sector_nr < first_bad) {
2227 if (test_bit(WriteMostly, &rdev->flags)) {
2228 if (wonly < 0)
2229 wonly = i;
2230 } else {
2231 if (disk < 0)
2232 disk = i;
2233 }
2234 bio->bi_rw = READ;
2235 bio->bi_end_io = end_sync_read;
2236 read_targets++;
3e198f78 2237 }
3e198f78 2238 }
06f60385
N
2239 if (bio->bi_end_io) {
2240 atomic_inc(&rdev->nr_pending);
2241 bio->bi_sector = sector_nr + rdev->data_offset;
2242 bio->bi_bdev = rdev->bdev;
2243 bio->bi_private = r1_bio;
2244 }
1da177e4 2245 }
3e198f78
N
2246 rcu_read_unlock();
2247 if (disk < 0)
2248 disk = wonly;
2249 r1_bio->read_disk = disk;
191ea9b2 2250
06f60385
N
2251 if (read_targets == 0 && min_bad > 0) {
2252 /* These sectors are bad on all InSync devices, so we
2253 * need to mark them bad on all write targets
2254 */
2255 int ok = 1;
2256 for (i = 0 ; i < conf->raid_disks ; i++)
2257 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
3cb03002 2258 struct md_rdev *rdev =
06f60385
N
2259 rcu_dereference(conf->mirrors[i].rdev);
2260 ok = rdev_set_badblocks(rdev, sector_nr,
2261 min_bad, 0
2262 ) && ok;
2263 }
2264 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2265 *skipped = 1;
2266 put_buf(r1_bio);
2267
2268 if (!ok) {
2269 /* Cannot record the badblocks, so need to
2270 * abort the resync.
2271 * If there are multiple read targets, could just
2272 * fail the really bad ones ???
2273 */
2274 conf->recovery_disabled = mddev->recovery_disabled;
2275 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2276 return 0;
2277 } else
2278 return min_bad;
2279
2280 }
2281 if (min_bad > 0 && min_bad < good_sectors) {
2282 /* only resync enough to reach the next bad->good
2283 * transition */
2284 good_sectors = min_bad;
2285 }
2286
3e198f78
N
2287 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2288 /* extra read targets are also write targets */
2289 write_targets += read_targets-1;
2290
2291 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2292 /* There is nowhere to write, so all non-sync
2293 * drives must be failed - so we are finished
2294 */
57afd89f
N
2295 sector_t rv = max_sector - sector_nr;
2296 *skipped = 1;
1da177e4 2297 put_buf(r1_bio);
1da177e4
LT
2298 return rv;
2299 }
2300
c6207277
N
2301 if (max_sector > mddev->resync_max)
2302 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2303 if (max_sector > sector_nr + good_sectors)
2304 max_sector = sector_nr + good_sectors;
1da177e4 2305 nr_sectors = 0;
289e99e8 2306 sync_blocks = 0;
1da177e4
LT
2307 do {
2308 struct page *page;
2309 int len = PAGE_SIZE;
2310 if (sector_nr + (len>>9) > max_sector)
2311 len = (max_sector - sector_nr) << 9;
2312 if (len == 0)
2313 break;
6a806c51
N
2314 if (sync_blocks == 0) {
2315 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2316 &sync_blocks, still_degraded) &&
2317 !conf->fullsync &&
2318 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2319 break;
9e77c485 2320 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2321 if ((len >> 9) > sync_blocks)
6a806c51 2322 len = sync_blocks<<9;
ab7a30c7 2323 }
191ea9b2 2324
1da177e4
LT
2325 for (i=0 ; i < conf->raid_disks; i++) {
2326 bio = r1_bio->bios[i];
2327 if (bio->bi_end_io) {
d11c171e 2328 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2329 if (bio_add_page(bio, page, len, 0) == 0) {
2330 /* stop here */
d11c171e 2331 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2332 while (i > 0) {
2333 i--;
2334 bio = r1_bio->bios[i];
6a806c51
N
2335 if (bio->bi_end_io==NULL)
2336 continue;
1da177e4
LT
2337 /* remove last page from this bio */
2338 bio->bi_vcnt--;
2339 bio->bi_size -= len;
2340 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2341 }
2342 goto bio_full;
2343 }
2344 }
2345 }
2346 nr_sectors += len>>9;
2347 sector_nr += len>>9;
191ea9b2 2348 sync_blocks -= (len>>9);
1da177e4
LT
2349 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2350 bio_full:
1da177e4
LT
2351 r1_bio->sectors = nr_sectors;
2352
d11c171e
N
2353 /* For a user-requested sync, we read all readable devices and do a
2354 * compare
2355 */
2356 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2357 atomic_set(&r1_bio->remaining, read_targets);
2358 for (i=0; i<conf->raid_disks; i++) {
2359 bio = r1_bio->bios[i];
2360 if (bio->bi_end_io == end_sync_read) {
ddac7c7e 2361 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2362 generic_make_request(bio);
2363 }
2364 }
2365 } else {
2366 atomic_set(&r1_bio->remaining, 1);
2367 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2368 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2369 generic_make_request(bio);
1da177e4 2370
d11c171e 2371 }
1da177e4
LT
2372 return nr_sectors;
2373}
2374
fd01b88c 2375static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2376{
2377 if (sectors)
2378 return sectors;
2379
2380 return mddev->dev_sectors;
2381}
2382
e8096360 2383static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2384{
e8096360 2385 struct r1conf *conf;
709ae487 2386 int i;
0f6d02d5 2387 struct mirror_info *disk;
3cb03002 2388 struct md_rdev *rdev;
709ae487 2389 int err = -ENOMEM;
1da177e4 2390
e8096360 2391 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2392 if (!conf)
709ae487 2393 goto abort;
1da177e4 2394
9ffae0cf 2395 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
2396 GFP_KERNEL);
2397 if (!conf->mirrors)
709ae487 2398 goto abort;
1da177e4 2399
ddaf22ab
N
2400 conf->tmppage = alloc_page(GFP_KERNEL);
2401 if (!conf->tmppage)
709ae487 2402 goto abort;
ddaf22ab 2403
709ae487 2404 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2405 if (!conf->poolinfo)
709ae487 2406 goto abort;
1da177e4
LT
2407 conf->poolinfo->raid_disks = mddev->raid_disks;
2408 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2409 r1bio_pool_free,
2410 conf->poolinfo);
2411 if (!conf->r1bio_pool)
709ae487
N
2412 goto abort;
2413
ed9bfdf1 2414 conf->poolinfo->mddev = mddev;
1da177e4 2415
e7e72bf6 2416 spin_lock_init(&conf->device_lock);
159ec1fc 2417 list_for_each_entry(rdev, &mddev->disks, same_set) {
709ae487 2418 int disk_idx = rdev->raid_disk;
1da177e4
LT
2419 if (disk_idx >= mddev->raid_disks
2420 || disk_idx < 0)
2421 continue;
2422 disk = conf->mirrors + disk_idx;
2423
2424 disk->rdev = rdev;
1da177e4
LT
2425
2426 disk->head_position = 0;
1da177e4
LT
2427 }
2428 conf->raid_disks = mddev->raid_disks;
2429 conf->mddev = mddev;
1da177e4 2430 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2431
2432 spin_lock_init(&conf->resync_lock);
17999be4 2433 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2434
191ea9b2 2435 bio_list_init(&conf->pending_bio_list);
34db0cd6 2436 conf->pending_count = 0;
d890fa2b 2437 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2438
709ae487 2439 conf->last_used = -1;
1da177e4
LT
2440 for (i = 0; i < conf->raid_disks; i++) {
2441
2442 disk = conf->mirrors + i;
2443
5fd6c1dc
N
2444 if (!disk->rdev ||
2445 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2446 disk->head_position = 0;
918f0238
N
2447 if (disk->rdev)
2448 conf->fullsync = 1;
709ae487
N
2449 } else if (conf->last_used < 0)
2450 /*
2451 * The first working device is used as a
2452 * starting point to read balancing.
2453 */
2454 conf->last_used = i;
1da177e4 2455 }
709ae487
N
2456
2457 err = -EIO;
2458 if (conf->last_used < 0) {
9dd1e2fa 2459 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
709ae487
N
2460 mdname(mddev));
2461 goto abort;
2462 }
2463 err = -ENOMEM;
2464 conf->thread = md_register_thread(raid1d, mddev, NULL);
2465 if (!conf->thread) {
2466 printk(KERN_ERR
9dd1e2fa 2467 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2468 mdname(mddev));
2469 goto abort;
11ce99e6 2470 }
1da177e4 2471
709ae487
N
2472 return conf;
2473
2474 abort:
2475 if (conf) {
2476 if (conf->r1bio_pool)
2477 mempool_destroy(conf->r1bio_pool);
2478 kfree(conf->mirrors);
2479 safe_put_page(conf->tmppage);
2480 kfree(conf->poolinfo);
2481 kfree(conf);
2482 }
2483 return ERR_PTR(err);
2484}
2485
fd01b88c 2486static int run(struct mddev *mddev)
709ae487 2487{
e8096360 2488 struct r1conf *conf;
709ae487 2489 int i;
3cb03002 2490 struct md_rdev *rdev;
709ae487
N
2491
2492 if (mddev->level != 1) {
9dd1e2fa 2493 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2494 mdname(mddev), mddev->level);
2495 return -EIO;
2496 }
2497 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2498 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2499 mdname(mddev));
2500 return -EIO;
2501 }
1da177e4 2502 /*
709ae487
N
2503 * copy the already verified devices into our private RAID1
2504 * bookkeeping area. [whatever we allocate in run(),
2505 * should be freed in stop()]
1da177e4 2506 */
709ae487
N
2507 if (mddev->private == NULL)
2508 conf = setup_conf(mddev);
2509 else
2510 conf = mddev->private;
1da177e4 2511
709ae487
N
2512 if (IS_ERR(conf))
2513 return PTR_ERR(conf);
1da177e4 2514
709ae487 2515 list_for_each_entry(rdev, &mddev->disks, same_set) {
1ed7242e
JB
2516 if (!mddev->gendisk)
2517 continue;
709ae487
N
2518 disk_stack_limits(mddev->gendisk, rdev->bdev,
2519 rdev->data_offset << 9);
2520 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2521 * violating it, so limit ->max_segments to 1 lying within
2522 * a single page, as a one page request is never in violation.
709ae487 2523 */
627a2d3c
N
2524 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2525 blk_queue_max_segments(mddev->queue, 1);
2526 blk_queue_segment_boundary(mddev->queue,
2527 PAGE_CACHE_SIZE - 1);
2528 }
1da177e4 2529 }
191ea9b2 2530
709ae487
N
2531 mddev->degraded = 0;
2532 for (i=0; i < conf->raid_disks; i++)
2533 if (conf->mirrors[i].rdev == NULL ||
2534 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2535 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2536 mddev->degraded++;
2537
2538 if (conf->raid_disks - mddev->degraded == 1)
2539 mddev->recovery_cp = MaxSector;
2540
8c6ac868 2541 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2542 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2543 " -- starting background reconstruction\n",
2544 mdname(mddev));
1da177e4 2545 printk(KERN_INFO
9dd1e2fa 2546 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2547 mdname(mddev), mddev->raid_disks - mddev->degraded,
2548 mddev->raid_disks);
709ae487 2549
1da177e4
LT
2550 /*
2551 * Ok, everything is just fine now
2552 */
709ae487
N
2553 mddev->thread = conf->thread;
2554 conf->thread = NULL;
2555 mddev->private = conf;
2556
1f403624 2557 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2558
1ed7242e
JB
2559 if (mddev->queue) {
2560 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2561 mddev->queue->backing_dev_info.congested_data = mddev;
2562 }
a91a2785 2563 return md_integrity_register(mddev);
1da177e4
LT
2564}
2565
fd01b88c 2566static int stop(struct mddev *mddev)
1da177e4 2567{
e8096360 2568 struct r1conf *conf = mddev->private;
4b6d287f 2569 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2570
2571 /* wait for behind writes to complete */
e555190d 2572 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2573 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2574 mdname(mddev));
4b6d287f 2575 /* need to kick something here to make sure I/O goes? */
e555190d
N
2576 wait_event(bitmap->behind_wait,
2577 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2578 }
1da177e4 2579
409c57f3
N
2580 raise_barrier(conf);
2581 lower_barrier(conf);
2582
01f96c0a 2583 md_unregister_thread(&mddev->thread);
1da177e4
LT
2584 if (conf->r1bio_pool)
2585 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2586 kfree(conf->mirrors);
2587 kfree(conf->poolinfo);
1da177e4
LT
2588 kfree(conf);
2589 mddev->private = NULL;
2590 return 0;
2591}
2592
fd01b88c 2593static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2594{
2595 /* no resync is happening, and there is enough space
2596 * on all devices, so we can resize.
2597 * We need to make sure resync covers any new space.
2598 * If the array is shrinking we should possibly wait until
2599 * any io in the removed space completes, but it hardly seems
2600 * worth it.
2601 */
1f403624 2602 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
b522adcd
DW
2603 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2604 return -EINVAL;
f233ea5c 2605 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2606 revalidate_disk(mddev->gendisk);
b522adcd 2607 if (sectors > mddev->dev_sectors &&
b098636c 2608 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2609 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2611 }
b522adcd 2612 mddev->dev_sectors = sectors;
4b5c7ae8 2613 mddev->resync_max_sectors = sectors;
1da177e4
LT
2614 return 0;
2615}
2616
fd01b88c 2617static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2618{
2619 /* We need to:
2620 * 1/ resize the r1bio_pool
2621 * 2/ resize conf->mirrors
2622 *
2623 * We allocate a new r1bio_pool if we can.
2624 * Then raise a device barrier and wait until all IO stops.
2625 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2626 *
2627 * At the same time, we "pack" the devices so that all the missing
2628 * devices have the higher raid_disk numbers.
1da177e4
LT
2629 */
2630 mempool_t *newpool, *oldpool;
2631 struct pool_info *newpoolinfo;
0f6d02d5 2632 struct mirror_info *newmirrors;
e8096360 2633 struct r1conf *conf = mddev->private;
63c70c4f 2634 int cnt, raid_disks;
c04be0aa 2635 unsigned long flags;
b5470dc5 2636 int d, d2, err;
1da177e4 2637
63c70c4f 2638 /* Cannot change chunk_size, layout, or level */
664e7c41 2639 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2640 mddev->layout != mddev->new_layout ||
2641 mddev->level != mddev->new_level) {
664e7c41 2642 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2643 mddev->new_layout = mddev->layout;
2644 mddev->new_level = mddev->level;
2645 return -EINVAL;
2646 }
2647
b5470dc5
DW
2648 err = md_allow_write(mddev);
2649 if (err)
2650 return err;
2a2275d6 2651
63c70c4f
N
2652 raid_disks = mddev->raid_disks + mddev->delta_disks;
2653
6ea9c07c
N
2654 if (raid_disks < conf->raid_disks) {
2655 cnt=0;
2656 for (d= 0; d < conf->raid_disks; d++)
2657 if (conf->mirrors[d].rdev)
2658 cnt++;
2659 if (cnt > raid_disks)
1da177e4 2660 return -EBUSY;
6ea9c07c 2661 }
1da177e4
LT
2662
2663 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2664 if (!newpoolinfo)
2665 return -ENOMEM;
2666 newpoolinfo->mddev = mddev;
2667 newpoolinfo->raid_disks = raid_disks;
2668
2669 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2670 r1bio_pool_free, newpoolinfo);
2671 if (!newpool) {
2672 kfree(newpoolinfo);
2673 return -ENOMEM;
2674 }
9ffae0cf 2675 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1da177e4
LT
2676 if (!newmirrors) {
2677 kfree(newpoolinfo);
2678 mempool_destroy(newpool);
2679 return -ENOMEM;
2680 }
1da177e4 2681
17999be4 2682 raise_barrier(conf);
1da177e4
LT
2683
2684 /* ok, everything is stopped */
2685 oldpool = conf->r1bio_pool;
2686 conf->r1bio_pool = newpool;
6ea9c07c 2687
a88aa786 2688 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2689 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2690 if (rdev && rdev->raid_disk != d2) {
36fad858 2691 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2692 rdev->raid_disk = d2;
36fad858
NK
2693 sysfs_unlink_rdev(mddev, rdev);
2694 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2695 printk(KERN_WARNING
36fad858
NK
2696 "md/raid1:%s: cannot register rd%d\n",
2697 mdname(mddev), rdev->raid_disk);
6ea9c07c 2698 }
a88aa786
N
2699 if (rdev)
2700 newmirrors[d2++].rdev = rdev;
2701 }
1da177e4
LT
2702 kfree(conf->mirrors);
2703 conf->mirrors = newmirrors;
2704 kfree(conf->poolinfo);
2705 conf->poolinfo = newpoolinfo;
2706
c04be0aa 2707 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2708 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2709 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2710 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2711 mddev->delta_disks = 0;
1da177e4 2712
6ea9c07c 2713 conf->last_used = 0; /* just make sure it is in-range */
17999be4 2714 lower_barrier(conf);
1da177e4
LT
2715
2716 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2717 md_wakeup_thread(mddev->thread);
2718
2719 mempool_destroy(oldpool);
2720 return 0;
2721}
2722
fd01b88c 2723static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 2724{
e8096360 2725 struct r1conf *conf = mddev->private;
36fa3063
N
2726
2727 switch(state) {
6eef4b21
N
2728 case 2: /* wake for suspend */
2729 wake_up(&conf->wait_barrier);
2730 break;
9e6603da 2731 case 1:
17999be4 2732 raise_barrier(conf);
36fa3063 2733 break;
9e6603da 2734 case 0:
17999be4 2735 lower_barrier(conf);
36fa3063
N
2736 break;
2737 }
36fa3063
N
2738}
2739
fd01b88c 2740static void *raid1_takeover(struct mddev *mddev)
709ae487
N
2741{
2742 /* raid1 can take over:
2743 * raid5 with 2 devices, any layout or chunk size
2744 */
2745 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 2746 struct r1conf *conf;
709ae487
N
2747 mddev->new_level = 1;
2748 mddev->new_layout = 0;
2749 mddev->new_chunk_sectors = 0;
2750 conf = setup_conf(mddev);
2751 if (!IS_ERR(conf))
2752 conf->barrier = 1;
2753 return conf;
2754 }
2755 return ERR_PTR(-EINVAL);
2756}
1da177e4 2757
84fc4b56 2758static struct md_personality raid1_personality =
1da177e4
LT
2759{
2760 .name = "raid1",
2604b703 2761 .level = 1,
1da177e4
LT
2762 .owner = THIS_MODULE,
2763 .make_request = make_request,
2764 .run = run,
2765 .stop = stop,
2766 .status = status,
2767 .error_handler = error,
2768 .hot_add_disk = raid1_add_disk,
2769 .hot_remove_disk= raid1_remove_disk,
2770 .spare_active = raid1_spare_active,
2771 .sync_request = sync_request,
2772 .resize = raid1_resize,
80c3a6ce 2773 .size = raid1_size,
63c70c4f 2774 .check_reshape = raid1_reshape,
36fa3063 2775 .quiesce = raid1_quiesce,
709ae487 2776 .takeover = raid1_takeover,
1da177e4
LT
2777};
2778
2779static int __init raid_init(void)
2780{
2604b703 2781 return register_md_personality(&raid1_personality);
1da177e4
LT
2782}
2783
2784static void raid_exit(void)
2785{
2604b703 2786 unregister_md_personality(&raid1_personality);
1da177e4
LT
2787}
2788
2789module_init(raid_init);
2790module_exit(raid_exit);
2791MODULE_LICENSE("GPL");
0efb9e61 2792MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2793MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2794MODULE_ALIAS("md-raid1");
2604b703 2795MODULE_ALIAS("md-level-1");
34db0cd6
N
2796
2797module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);