]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/md/raid1.c
md/bitmap: don't pass -1 to bitmap_storage_alloc.
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
258 bio->bi_error = -EIO;
259
d2eb35ac 260 if (done) {
4246a0b6 261 bio_endio(bio);
d2eb35ac
N
262 /*
263 * Wake up any possible resync thread that waits for the device
264 * to go idle.
265 */
79ef3a8a 266 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
267 }
268}
269
9f2c9d12 270static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
271{
272 struct bio *bio = r1_bio->master_bio;
273
4b6d287f
N
274 /* if nobody has done the final endio yet, do it now */
275 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
276 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
277 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
278 (unsigned long long) bio->bi_iter.bi_sector,
279 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 280
d2eb35ac 281 call_bio_endio(r1_bio);
4b6d287f 282 }
1da177e4
LT
283 free_r1bio(r1_bio);
284}
285
286/*
287 * Update disk head position estimator based on IRQ completion info.
288 */
9f2c9d12 289static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 290{
e8096360 291 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
292
293 conf->mirrors[disk].head_position =
294 r1_bio->sector + (r1_bio->sectors);
295}
296
ba3ae3be
NK
297/*
298 * Find the disk number which triggered given bio
299 */
9f2c9d12 300static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
301{
302 int mirror;
30194636
N
303 struct r1conf *conf = r1_bio->mddev->private;
304 int raid_disks = conf->raid_disks;
ba3ae3be 305
8f19ccb2 306 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
307 if (r1_bio->bios[mirror] == bio)
308 break;
309
8f19ccb2 310 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
311 update_head_pos(mirror, r1_bio);
312
313 return mirror;
314}
315
4246a0b6 316static void raid1_end_read_request(struct bio *bio)
1da177e4 317{
4246a0b6 318 int uptodate = !bio->bi_error;
9f2c9d12 319 struct r1bio *r1_bio = bio->bi_private;
1da177e4 320 int mirror;
e8096360 321 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 322
1da177e4
LT
323 mirror = r1_bio->read_disk;
324 /*
325 * this branch is our 'one mirror IO has finished' event handler:
326 */
ddaf22ab
N
327 update_head_pos(mirror, r1_bio);
328
dd00a99e
N
329 if (uptodate)
330 set_bit(R1BIO_Uptodate, &r1_bio->state);
331 else {
332 /* If all other devices have failed, we want to return
333 * the error upwards rather than fail the last device.
334 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 335 */
dd00a99e
N
336 unsigned long flags;
337 spin_lock_irqsave(&conf->device_lock, flags);
338 if (r1_bio->mddev->degraded == conf->raid_disks ||
339 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
34cab6f4 340 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
dd00a99e
N
341 uptodate = 1;
342 spin_unlock_irqrestore(&conf->device_lock, flags);
343 }
1da177e4 344
7ad4d4a6 345 if (uptodate) {
1da177e4 346 raid_end_bio_io(r1_bio);
7ad4d4a6
N
347 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
348 } else {
1da177e4
LT
349 /*
350 * oops, read error:
351 */
352 char b[BDEVNAME_SIZE];
8bda470e
CD
353 printk_ratelimited(
354 KERN_ERR "md/raid1:%s: %s: "
355 "rescheduling sector %llu\n",
356 mdname(conf->mddev),
357 bdevname(conf->mirrors[mirror].rdev->bdev,
358 b),
359 (unsigned long long)r1_bio->sector);
d2eb35ac 360 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 361 reschedule_retry(r1_bio);
7ad4d4a6 362 /* don't drop the reference on read_disk yet */
1da177e4 363 }
1da177e4
LT
364}
365
9f2c9d12 366static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
367{
368 /* it really is the end of this request */
369 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
370 /* free extra copy of the data pages */
371 int i = r1_bio->behind_page_count;
372 while (i--)
373 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
374 kfree(r1_bio->behind_bvecs);
375 r1_bio->behind_bvecs = NULL;
376 }
377 /* clear the bitmap if all writes complete successfully */
378 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
379 r1_bio->sectors,
380 !test_bit(R1BIO_Degraded, &r1_bio->state),
381 test_bit(R1BIO_BehindIO, &r1_bio->state));
382 md_write_end(r1_bio->mddev);
383}
384
9f2c9d12 385static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 386{
cd5ff9a1
N
387 if (!atomic_dec_and_test(&r1_bio->remaining))
388 return;
389
390 if (test_bit(R1BIO_WriteError, &r1_bio->state))
391 reschedule_retry(r1_bio);
392 else {
393 close_write(r1_bio);
4367af55
N
394 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
395 reschedule_retry(r1_bio);
396 else
397 raid_end_bio_io(r1_bio);
4e78064f
N
398 }
399}
400
4246a0b6 401static void raid1_end_write_request(struct bio *bio)
1da177e4 402{
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
4246a0b6 413 if (bio->bi_error) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
e8096360 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 512{
af3a2cd6 513 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
514 int sectors;
515 int best_good_sectors;
9dedf603
SL
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
be4d3280 518 int disk;
76073054 519 sector_t best_dist;
9dedf603 520 unsigned int min_pending;
3cb03002 521 struct md_rdev *rdev;
f3ac8bf7 522 int choose_first;
12cee5a8 523 int choose_next_idle;
1da177e4
LT
524
525 rcu_read_lock();
526 /*
8ddf9efe 527 * Check if we can balance. We can balance on the whole
1da177e4
LT
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
d2eb35ac 532 sectors = r1_bio->sectors;
76073054 533 best_disk = -1;
9dedf603 534 best_dist_disk = -1;
76073054 535 best_dist = MaxSector;
9dedf603
SL
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
d2eb35ac 538 best_good_sectors = 0;
9dedf603 539 has_nonrot_disk = 0;
12cee5a8 540 choose_next_idle = 0;
d2eb35ac 541
7d49ffcf
GR
542 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 (mddev_is_clustered(conf->mddev) &&
90382ed9 544 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
545 this_sector + sectors)))
546 choose_first = 1;
547 else
548 choose_first = 0;
1da177e4 549
be4d3280 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 551 sector_t dist;
d2eb35ac
N
552 sector_t first_bad;
553 int bad_sectors;
9dedf603 554 unsigned int pending;
12cee5a8 555 bool nonrot;
d2eb35ac 556
f3ac8bf7
N
557 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 if (r1_bio->bios[disk] == IO_BLOCKED
559 || rdev == NULL
76073054 560 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 561 continue;
76073054
N
562 if (!test_bit(In_sync, &rdev->flags) &&
563 rdev->recovery_offset < this_sector + sectors)
1da177e4 564 continue;
76073054
N
565 if (test_bit(WriteMostly, &rdev->flags)) {
566 /* Don't balance among write-mostly, just
567 * use the first as a last resort */
d1901ef0 568 if (best_dist_disk < 0) {
307729c8
N
569 if (is_badblock(rdev, this_sector, sectors,
570 &first_bad, &bad_sectors)) {
571 if (first_bad < this_sector)
572 /* Cannot use this */
573 continue;
574 best_good_sectors = first_bad - this_sector;
575 } else
576 best_good_sectors = sectors;
d1901ef0
TH
577 best_dist_disk = disk;
578 best_pending_disk = disk;
307729c8 579 }
76073054
N
580 continue;
581 }
582 /* This is a reasonable device to use. It might
583 * even be best.
584 */
d2eb35ac
N
585 if (is_badblock(rdev, this_sector, sectors,
586 &first_bad, &bad_sectors)) {
587 if (best_dist < MaxSector)
588 /* already have a better device */
589 continue;
590 if (first_bad <= this_sector) {
591 /* cannot read here. If this is the 'primary'
592 * device, then we must not read beyond
593 * bad_sectors from another device..
594 */
595 bad_sectors -= (this_sector - first_bad);
596 if (choose_first && sectors > bad_sectors)
597 sectors = bad_sectors;
598 if (best_good_sectors > sectors)
599 best_good_sectors = sectors;
600
601 } else {
602 sector_t good_sectors = first_bad - this_sector;
603 if (good_sectors > best_good_sectors) {
604 best_good_sectors = good_sectors;
605 best_disk = disk;
606 }
607 if (choose_first)
608 break;
609 }
610 continue;
611 } else
612 best_good_sectors = sectors;
613
12cee5a8
SL
614 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
615 has_nonrot_disk |= nonrot;
9dedf603 616 pending = atomic_read(&rdev->nr_pending);
76073054 617 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 618 if (choose_first) {
76073054 619 best_disk = disk;
1da177e4
LT
620 break;
621 }
12cee5a8
SL
622 /* Don't change to another disk for sequential reads */
623 if (conf->mirrors[disk].next_seq_sect == this_sector
624 || dist == 0) {
625 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
626 struct raid1_info *mirror = &conf->mirrors[disk];
627
628 best_disk = disk;
629 /*
630 * If buffered sequential IO size exceeds optimal
631 * iosize, check if there is idle disk. If yes, choose
632 * the idle disk. read_balance could already choose an
633 * idle disk before noticing it's a sequential IO in
634 * this disk. This doesn't matter because this disk
635 * will idle, next time it will be utilized after the
636 * first disk has IO size exceeds optimal iosize. In
637 * this way, iosize of the first disk will be optimal
638 * iosize at least. iosize of the second disk might be
639 * small, but not a big deal since when the second disk
640 * starts IO, the first disk is likely still busy.
641 */
642 if (nonrot && opt_iosize > 0 &&
643 mirror->seq_start != MaxSector &&
644 mirror->next_seq_sect > opt_iosize &&
645 mirror->next_seq_sect - opt_iosize >=
646 mirror->seq_start) {
647 choose_next_idle = 1;
648 continue;
649 }
650 break;
651 }
652 /* If device is idle, use it */
653 if (pending == 0) {
654 best_disk = disk;
655 break;
656 }
657
658 if (choose_next_idle)
659 continue;
9dedf603
SL
660
661 if (min_pending > pending) {
662 min_pending = pending;
663 best_pending_disk = disk;
664 }
665
76073054
N
666 if (dist < best_dist) {
667 best_dist = dist;
9dedf603 668 best_dist_disk = disk;
1da177e4 669 }
f3ac8bf7 670 }
1da177e4 671
9dedf603
SL
672 /*
673 * If all disks are rotational, choose the closest disk. If any disk is
674 * non-rotational, choose the disk with less pending request even the
675 * disk is rotational, which might/might not be optimal for raids with
676 * mixed ratation/non-rotational disks depending on workload.
677 */
678 if (best_disk == -1) {
679 if (has_nonrot_disk)
680 best_disk = best_pending_disk;
681 else
682 best_disk = best_dist_disk;
683 }
684
76073054
N
685 if (best_disk >= 0) {
686 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
687 if (!rdev)
688 goto retry;
689 atomic_inc(&rdev->nr_pending);
76073054 690 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
691 /* cannot risk returning a device that failed
692 * before we inc'ed nr_pending
693 */
03c902e1 694 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
695 goto retry;
696 }
d2eb35ac 697 sectors = best_good_sectors;
12cee5a8
SL
698
699 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
700 conf->mirrors[best_disk].seq_start = this_sector;
701
be4d3280 702 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
703 }
704 rcu_read_unlock();
d2eb35ac 705 *max_sectors = sectors;
1da177e4 706
76073054 707 return best_disk;
1da177e4
LT
708}
709
5c675f83 710static int raid1_congested(struct mddev *mddev, int bits)
0d129228 711{
e8096360 712 struct r1conf *conf = mddev->private;
0d129228
N
713 int i, ret = 0;
714
4452226e 715 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
716 conf->pending_count >= max_queued_requests)
717 return 1;
718
0d129228 719 rcu_read_lock();
f53e29fc 720 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 721 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 722 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 723 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 724
1ed7242e
JB
725 BUG_ON(!q);
726
0d129228
N
727 /* Note the '|| 1' - when read_balance prefers
728 * non-congested targets, it can be removed
729 */
4452226e 730 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
731 ret |= bdi_congested(&q->backing_dev_info, bits);
732 else
733 ret &= bdi_congested(&q->backing_dev_info, bits);
734 }
735 }
736 rcu_read_unlock();
737 return ret;
738}
0d129228 739
e8096360 740static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
741{
742 /* Any writes that have been queued but are awaiting
743 * bitmap updates get flushed here.
a35e63ef 744 */
a35e63ef
N
745 spin_lock_irq(&conf->device_lock);
746
747 if (conf->pending_bio_list.head) {
748 struct bio *bio;
749 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 750 conf->pending_count = 0;
a35e63ef
N
751 spin_unlock_irq(&conf->device_lock);
752 /* flush any pending bitmap writes to
753 * disk before proceeding w/ I/O */
754 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 755 wake_up(&conf->wait_barrier);
a35e63ef
N
756
757 while (bio) { /* submit pending writes */
758 struct bio *next = bio->bi_next;
759 bio->bi_next = NULL;
2ff8cc2c
SL
760 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
761 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
762 /* Just ignore it */
4246a0b6 763 bio_endio(bio);
2ff8cc2c
SL
764 else
765 generic_make_request(bio);
a35e63ef
N
766 bio = next;
767 }
a35e63ef
N
768 } else
769 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
770}
771
17999be4
N
772/* Barriers....
773 * Sometimes we need to suspend IO while we do something else,
774 * either some resync/recovery, or reconfigure the array.
775 * To do this we raise a 'barrier'.
776 * The 'barrier' is a counter that can be raised multiple times
777 * to count how many activities are happening which preclude
778 * normal IO.
779 * We can only raise the barrier if there is no pending IO.
780 * i.e. if nr_pending == 0.
781 * We choose only to raise the barrier if no-one is waiting for the
782 * barrier to go down. This means that as soon as an IO request
783 * is ready, no other operations which require a barrier will start
784 * until the IO request has had a chance.
785 *
786 * So: regular IO calls 'wait_barrier'. When that returns there
787 * is no backgroup IO happening, It must arrange to call
788 * allow_barrier when it has finished its IO.
789 * backgroup IO calls must call raise_barrier. Once that returns
790 * there is no normal IO happeing. It must arrange to call
791 * lower_barrier when the particular background IO completes.
1da177e4 792 */
c2fd4c94 793static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
794{
795 spin_lock_irq(&conf->resync_lock);
17999be4
N
796
797 /* Wait until no block IO is waiting */
798 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 799 conf->resync_lock);
17999be4
N
800
801 /* block any new IO from starting */
802 conf->barrier++;
c2fd4c94 803 conf->next_resync = sector_nr;
17999be4 804
79ef3a8a 805 /* For these conditions we must wait:
806 * A: while the array is in frozen state
807 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
808 * the max count which allowed.
809 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
810 * next resync will reach to the window which normal bios are
811 * handling.
2f73d3c5 812 * D: while there are any active requests in the current window.
79ef3a8a 813 */
17999be4 814 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 815 !conf->array_frozen &&
79ef3a8a 816 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 817 conf->current_window_requests == 0 &&
79ef3a8a 818 (conf->start_next_window >=
819 conf->next_resync + RESYNC_SECTORS),
eed8c02e 820 conf->resync_lock);
17999be4 821
34e97f17 822 conf->nr_pending++;
17999be4
N
823 spin_unlock_irq(&conf->resync_lock);
824}
825
e8096360 826static void lower_barrier(struct r1conf *conf)
17999be4
N
827{
828 unsigned long flags;
709ae487 829 BUG_ON(conf->barrier <= 0);
17999be4
N
830 spin_lock_irqsave(&conf->resync_lock, flags);
831 conf->barrier--;
34e97f17 832 conf->nr_pending--;
17999be4
N
833 spin_unlock_irqrestore(&conf->resync_lock, flags);
834 wake_up(&conf->wait_barrier);
835}
836
79ef3a8a 837static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 838{
79ef3a8a 839 bool wait = false;
840
841 if (conf->array_frozen || !bio)
842 wait = true;
843 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
844 if ((conf->mddev->curr_resync_completed
845 >= bio_end_sector(bio)) ||
846 (conf->next_resync + NEXT_NORMALIO_DISTANCE
847 <= bio->bi_iter.bi_sector))
79ef3a8a 848 wait = false;
849 else
850 wait = true;
851 }
852
853 return wait;
854}
855
856static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
857{
858 sector_t sector = 0;
859
17999be4 860 spin_lock_irq(&conf->resync_lock);
79ef3a8a 861 if (need_to_wait_for_sync(conf, bio)) {
17999be4 862 conf->nr_waiting++;
d6b42dcb
N
863 /* Wait for the barrier to drop.
864 * However if there are already pending
865 * requests (preventing the barrier from
866 * rising completely), and the
5965b642 867 * per-process bio queue isn't empty,
d6b42dcb 868 * then don't wait, as we need to empty
5965b642
N
869 * that queue to allow conf->start_next_window
870 * to increase.
d6b42dcb
N
871 */
872 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 873 !conf->array_frozen &&
874 (!conf->barrier ||
5965b642
N
875 ((conf->start_next_window <
876 conf->next_resync + RESYNC_SECTORS) &&
877 current->bio_list &&
878 !bio_list_empty(current->bio_list))),
eed8c02e 879 conf->resync_lock);
17999be4 880 conf->nr_waiting--;
1da177e4 881 }
79ef3a8a 882
883 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 884 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 885 if (conf->start_next_window == MaxSector)
886 conf->start_next_window =
887 conf->next_resync +
888 NEXT_NORMALIO_DISTANCE;
889
890 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 891 <= bio->bi_iter.bi_sector)
79ef3a8a 892 conf->next_window_requests++;
893 else
894 conf->current_window_requests++;
79ef3a8a 895 sector = conf->start_next_window;
41a336e0 896 }
79ef3a8a 897 }
898
17999be4 899 conf->nr_pending++;
1da177e4 900 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 901 return sector;
1da177e4
LT
902}
903
79ef3a8a 904static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
905 sector_t bi_sector)
17999be4
N
906{
907 unsigned long flags;
79ef3a8a 908
17999be4
N
909 spin_lock_irqsave(&conf->resync_lock, flags);
910 conf->nr_pending--;
79ef3a8a 911 if (start_next_window) {
912 if (start_next_window == conf->start_next_window) {
913 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
914 <= bi_sector)
915 conf->next_window_requests--;
916 else
917 conf->current_window_requests--;
918 } else
919 conf->current_window_requests--;
920
921 if (!conf->current_window_requests) {
922 if (conf->next_window_requests) {
923 conf->current_window_requests =
924 conf->next_window_requests;
925 conf->next_window_requests = 0;
926 conf->start_next_window +=
927 NEXT_NORMALIO_DISTANCE;
928 } else
929 conf->start_next_window = MaxSector;
930 }
931 }
17999be4
N
932 spin_unlock_irqrestore(&conf->resync_lock, flags);
933 wake_up(&conf->wait_barrier);
934}
935
e2d59925 936static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
937{
938 /* stop syncio and normal IO and wait for everything to
939 * go quite.
b364e3d0 940 * We wait until nr_pending match nr_queued+extra
1c830532
N
941 * This is called in the context of one normal IO request
942 * that has failed. Thus any sync request that might be pending
943 * will be blocked by nr_pending, and we need to wait for
944 * pending IO requests to complete or be queued for re-try.
e2d59925 945 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
946 * must match the number of pending IOs (nr_pending) before
947 * we continue.
ddaf22ab
N
948 */
949 spin_lock_irq(&conf->resync_lock);
b364e3d0 950 conf->array_frozen = 1;
eed8c02e 951 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 952 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
953 conf->resync_lock,
954 flush_pending_writes(conf));
ddaf22ab
N
955 spin_unlock_irq(&conf->resync_lock);
956}
e8096360 957static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
958{
959 /* reverse the effect of the freeze */
960 spin_lock_irq(&conf->resync_lock);
b364e3d0 961 conf->array_frozen = 0;
ddaf22ab
N
962 wake_up(&conf->wait_barrier);
963 spin_unlock_irq(&conf->resync_lock);
964}
965
f72ffdd6 966/* duplicate the data pages for behind I/O
4e78064f 967 */
9f2c9d12 968static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
969{
970 int i;
971 struct bio_vec *bvec;
2ca68f5e 972 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 973 GFP_NOIO);
2ca68f5e 974 if (unlikely(!bvecs))
af6d7b76 975 return;
4b6d287f 976
cb34e057 977 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
978 bvecs[i] = *bvec;
979 bvecs[i].bv_page = alloc_page(GFP_NOIO);
980 if (unlikely(!bvecs[i].bv_page))
4b6d287f 981 goto do_sync_io;
2ca68f5e
N
982 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
983 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
984 kunmap(bvecs[i].bv_page);
4b6d287f
N
985 kunmap(bvec->bv_page);
986 }
2ca68f5e 987 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
988 r1_bio->behind_page_count = bio->bi_vcnt;
989 set_bit(R1BIO_BehindIO, &r1_bio->state);
990 return;
4b6d287f
N
991
992do_sync_io:
af6d7b76 993 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
994 if (bvecs[i].bv_page)
995 put_page(bvecs[i].bv_page);
996 kfree(bvecs);
4f024f37
KO
997 pr_debug("%dB behind alloc failed, doing sync I/O\n",
998 bio->bi_iter.bi_size);
4b6d287f
N
999}
1000
f54a9d0e
N
1001struct raid1_plug_cb {
1002 struct blk_plug_cb cb;
1003 struct bio_list pending;
1004 int pending_cnt;
1005};
1006
1007static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1008{
1009 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1010 cb);
1011 struct mddev *mddev = plug->cb.data;
1012 struct r1conf *conf = mddev->private;
1013 struct bio *bio;
1014
874807a8 1015 if (from_schedule || current->bio_list) {
f54a9d0e
N
1016 spin_lock_irq(&conf->device_lock);
1017 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1018 conf->pending_count += plug->pending_cnt;
1019 spin_unlock_irq(&conf->device_lock);
ee0b0244 1020 wake_up(&conf->wait_barrier);
f54a9d0e
N
1021 md_wakeup_thread(mddev->thread);
1022 kfree(plug);
1023 return;
1024 }
1025
1026 /* we aren't scheduling, so we can do the write-out directly. */
1027 bio = bio_list_get(&plug->pending);
1028 bitmap_unplug(mddev->bitmap);
1029 wake_up(&conf->wait_barrier);
1030
1031 while (bio) { /* submit pending writes */
1032 struct bio *next = bio->bi_next;
1033 bio->bi_next = NULL;
32f9f570
SL
1034 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1035 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1036 /* Just ignore it */
4246a0b6 1037 bio_endio(bio);
32f9f570
SL
1038 else
1039 generic_make_request(bio);
f54a9d0e
N
1040 bio = next;
1041 }
1042 kfree(plug);
1043}
1044
b4fdcb02 1045static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1046{
e8096360 1047 struct r1conf *conf = mddev->private;
0eaf822c 1048 struct raid1_info *mirror;
9f2c9d12 1049 struct r1bio *r1_bio;
1da177e4 1050 struct bio *read_bio;
1f68f0c4 1051 int i, disks;
84255d10 1052 struct bitmap *bitmap;
191ea9b2 1053 unsigned long flags;
a362357b 1054 const int rw = bio_data_dir(bio);
2c7d46ec 1055 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1056 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1057 const unsigned long do_discard = (bio->bi_rw
1058 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1059 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1060 struct md_rdev *blocked_rdev;
f54a9d0e
N
1061 struct blk_plug_cb *cb;
1062 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1063 int first_clone;
1064 int sectors_handled;
1065 int max_sectors;
79ef3a8a 1066 sector_t start_next_window;
191ea9b2 1067
1da177e4
LT
1068 /*
1069 * Register the new request and wait if the reconstruction
1070 * thread has put up a bar for new requests.
1071 * Continue immediately if no resync is active currently.
1072 */
62de608d 1073
3d310eb7
N
1074 md_write_start(mddev, bio); /* wait on superblock update early */
1075
6eef4b21 1076 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1077 ((bio_end_sector(bio) > mddev->suspend_lo &&
1078 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1079 (mddev_is_clustered(mddev) &&
90382ed9
GR
1080 md_cluster_ops->area_resyncing(mddev, WRITE,
1081 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1082 /* As the suspend_* range is controlled by
1083 * userspace, we want an interruptible
1084 * wait.
1085 */
1086 DEFINE_WAIT(w);
1087 for (;;) {
1088 flush_signals(current);
1089 prepare_to_wait(&conf->wait_barrier,
1090 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1091 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1092 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1093 (mddev_is_clustered(mddev) &&
90382ed9 1094 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1095 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1096 break;
1097 schedule();
1098 }
1099 finish_wait(&conf->wait_barrier, &w);
1100 }
62de608d 1101
79ef3a8a 1102 start_next_window = wait_barrier(conf, bio);
1da177e4 1103
84255d10
N
1104 bitmap = mddev->bitmap;
1105
1da177e4
LT
1106 /*
1107 * make_request() can abort the operation when READA is being
1108 * used and no empty request is available.
1109 *
1110 */
1111 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1112
1113 r1_bio->master_bio = bio;
aa8b57aa 1114 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1115 r1_bio->state = 0;
1da177e4 1116 r1_bio->mddev = mddev;
4f024f37 1117 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1118
d2eb35ac
N
1119 /* We might need to issue multiple reads to different
1120 * devices if there are bad blocks around, so we keep
1121 * track of the number of reads in bio->bi_phys_segments.
1122 * If this is 0, there is only one r1_bio and no locking
1123 * will be needed when requests complete. If it is
1124 * non-zero, then it is the number of not-completed requests.
1125 */
1126 bio->bi_phys_segments = 0;
b7c44ed9 1127 bio_clear_flag(bio, BIO_SEG_VALID);
d2eb35ac 1128
a362357b 1129 if (rw == READ) {
1da177e4
LT
1130 /*
1131 * read balancing logic:
1132 */
d2eb35ac
N
1133 int rdisk;
1134
1135read_again:
1136 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1137
1138 if (rdisk < 0) {
1139 /* couldn't find anywhere to read from */
1140 raid_end_bio_io(r1_bio);
5a7bbad2 1141 return;
1da177e4
LT
1142 }
1143 mirror = conf->mirrors + rdisk;
1144
e555190d
N
1145 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1146 bitmap) {
1147 /* Reading from a write-mostly device must
1148 * take care not to over-take any writes
1149 * that are 'behind'
1150 */
1151 wait_event(bitmap->behind_wait,
1152 atomic_read(&bitmap->behind_writes) == 0);
1153 }
1da177e4 1154 r1_bio->read_disk = rdisk;
f0cc9a05 1155 r1_bio->start_next_window = 0;
1da177e4 1156
a167f663 1157 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1158 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1159 max_sectors);
1da177e4
LT
1160
1161 r1_bio->bios[rdisk] = read_bio;
1162
4f024f37
KO
1163 read_bio->bi_iter.bi_sector = r1_bio->sector +
1164 mirror->rdev->data_offset;
1da177e4
LT
1165 read_bio->bi_bdev = mirror->rdev->bdev;
1166 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1167 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1168 read_bio->bi_private = r1_bio;
1169
d2eb35ac
N
1170 if (max_sectors < r1_bio->sectors) {
1171 /* could not read all from this device, so we will
1172 * need another r1_bio.
1173 */
d2eb35ac
N
1174
1175 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1176 - bio->bi_iter.bi_sector);
d2eb35ac
N
1177 r1_bio->sectors = max_sectors;
1178 spin_lock_irq(&conf->device_lock);
1179 if (bio->bi_phys_segments == 0)
1180 bio->bi_phys_segments = 2;
1181 else
1182 bio->bi_phys_segments++;
1183 spin_unlock_irq(&conf->device_lock);
1184 /* Cannot call generic_make_request directly
1185 * as that will be queued in __make_request
1186 * and subsequent mempool_alloc might block waiting
1187 * for it. So hand bio over to raid1d.
1188 */
1189 reschedule_retry(r1_bio);
1190
1191 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1192
1193 r1_bio->master_bio = bio;
aa8b57aa 1194 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1195 r1_bio->state = 0;
1196 r1_bio->mddev = mddev;
4f024f37
KO
1197 r1_bio->sector = bio->bi_iter.bi_sector +
1198 sectors_handled;
d2eb35ac
N
1199 goto read_again;
1200 } else
1201 generic_make_request(read_bio);
5a7bbad2 1202 return;
1da177e4
LT
1203 }
1204
1205 /*
1206 * WRITE:
1207 */
34db0cd6
N
1208 if (conf->pending_count >= max_queued_requests) {
1209 md_wakeup_thread(mddev->thread);
1210 wait_event(conf->wait_barrier,
1211 conf->pending_count < max_queued_requests);
1212 }
1f68f0c4 1213 /* first select target devices under rcu_lock and
1da177e4
LT
1214 * inc refcount on their rdev. Record them by setting
1215 * bios[x] to bio
1f68f0c4
N
1216 * If there are known/acknowledged bad blocks on any device on
1217 * which we have seen a write error, we want to avoid writing those
1218 * blocks.
1219 * This potentially requires several writes to write around
1220 * the bad blocks. Each set of writes gets it's own r1bio
1221 * with a set of bios attached.
1da177e4 1222 */
c3b328ac 1223
8f19ccb2 1224 disks = conf->raid_disks * 2;
6bfe0b49 1225 retry_write:
79ef3a8a 1226 r1_bio->start_next_window = start_next_window;
6bfe0b49 1227 blocked_rdev = NULL;
1da177e4 1228 rcu_read_lock();
1f68f0c4 1229 max_sectors = r1_bio->sectors;
1da177e4 1230 for (i = 0; i < disks; i++) {
3cb03002 1231 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1232 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1233 atomic_inc(&rdev->nr_pending);
1234 blocked_rdev = rdev;
1235 break;
1236 }
1f68f0c4 1237 r1_bio->bios[i] = NULL;
8ae12666 1238 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1239 if (i < conf->raid_disks)
1240 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1241 continue;
1242 }
1243
1244 atomic_inc(&rdev->nr_pending);
1245 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1246 sector_t first_bad;
1247 int bad_sectors;
1248 int is_bad;
1249
1250 is_bad = is_badblock(rdev, r1_bio->sector,
1251 max_sectors,
1252 &first_bad, &bad_sectors);
1253 if (is_bad < 0) {
1254 /* mustn't write here until the bad block is
1255 * acknowledged*/
1256 set_bit(BlockedBadBlocks, &rdev->flags);
1257 blocked_rdev = rdev;
1258 break;
1259 }
1260 if (is_bad && first_bad <= r1_bio->sector) {
1261 /* Cannot write here at all */
1262 bad_sectors -= (r1_bio->sector - first_bad);
1263 if (bad_sectors < max_sectors)
1264 /* mustn't write more than bad_sectors
1265 * to other devices yet
1266 */
1267 max_sectors = bad_sectors;
03c902e1 1268 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1269 /* We don't set R1BIO_Degraded as that
1270 * only applies if the disk is
1271 * missing, so it might be re-added,
1272 * and we want to know to recover this
1273 * chunk.
1274 * In this case the device is here,
1275 * and the fact that this chunk is not
1276 * in-sync is recorded in the bad
1277 * block log
1278 */
1279 continue;
964147d5 1280 }
1f68f0c4
N
1281 if (is_bad) {
1282 int good_sectors = first_bad - r1_bio->sector;
1283 if (good_sectors < max_sectors)
1284 max_sectors = good_sectors;
1285 }
1286 }
1287 r1_bio->bios[i] = bio;
1da177e4
LT
1288 }
1289 rcu_read_unlock();
1290
6bfe0b49
DW
1291 if (unlikely(blocked_rdev)) {
1292 /* Wait for this device to become unblocked */
1293 int j;
79ef3a8a 1294 sector_t old = start_next_window;
6bfe0b49
DW
1295
1296 for (j = 0; j < i; j++)
1297 if (r1_bio->bios[j])
1298 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1299 r1_bio->state = 0;
4f024f37 1300 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1301 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1302 start_next_window = wait_barrier(conf, bio);
1303 /*
1304 * We must make sure the multi r1bios of bio have
1305 * the same value of bi_phys_segments
1306 */
1307 if (bio->bi_phys_segments && old &&
1308 old != start_next_window)
1309 /* Wait for the former r1bio(s) to complete */
1310 wait_event(conf->wait_barrier,
1311 bio->bi_phys_segments == 1);
6bfe0b49
DW
1312 goto retry_write;
1313 }
1314
1f68f0c4
N
1315 if (max_sectors < r1_bio->sectors) {
1316 /* We are splitting this write into multiple parts, so
1317 * we need to prepare for allocating another r1_bio.
1318 */
1319 r1_bio->sectors = max_sectors;
1320 spin_lock_irq(&conf->device_lock);
1321 if (bio->bi_phys_segments == 0)
1322 bio->bi_phys_segments = 2;
1323 else
1324 bio->bi_phys_segments++;
1325 spin_unlock_irq(&conf->device_lock);
191ea9b2 1326 }
4f024f37 1327 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1328
4e78064f 1329 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1330 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1331
1f68f0c4 1332 first_clone = 1;
1da177e4
LT
1333 for (i = 0; i < disks; i++) {
1334 struct bio *mbio;
1335 if (!r1_bio->bios[i])
1336 continue;
1337
a167f663 1338 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1339 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1340
1341 if (first_clone) {
1342 /* do behind I/O ?
1343 * Not if there are too many, or cannot
1344 * allocate memory, or a reader on WriteMostly
1345 * is waiting for behind writes to flush */
1346 if (bitmap &&
1347 (atomic_read(&bitmap->behind_writes)
1348 < mddev->bitmap_info.max_write_behind) &&
1349 !waitqueue_active(&bitmap->behind_wait))
1350 alloc_behind_pages(mbio, r1_bio);
1351
1352 bitmap_startwrite(bitmap, r1_bio->sector,
1353 r1_bio->sectors,
1354 test_bit(R1BIO_BehindIO,
1355 &r1_bio->state));
1356 first_clone = 0;
1357 }
2ca68f5e 1358 if (r1_bio->behind_bvecs) {
4b6d287f
N
1359 struct bio_vec *bvec;
1360 int j;
1361
cb34e057
KO
1362 /*
1363 * We trimmed the bio, so _all is legit
4b6d287f 1364 */
d74c6d51 1365 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1366 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1367 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1368 atomic_inc(&r1_bio->behind_remaining);
1369 }
1370
1f68f0c4
N
1371 r1_bio->bios[i] = mbio;
1372
4f024f37 1373 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1374 conf->mirrors[i].rdev->data_offset);
1375 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1376 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1377 mbio->bi_rw =
1378 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1379 mbio->bi_private = r1_bio;
1380
1da177e4 1381 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1382
1383 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1384 if (cb)
1385 plug = container_of(cb, struct raid1_plug_cb, cb);
1386 else
1387 plug = NULL;
4e78064f 1388 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1389 if (plug) {
1390 bio_list_add(&plug->pending, mbio);
1391 plug->pending_cnt++;
1392 } else {
1393 bio_list_add(&conf->pending_bio_list, mbio);
1394 conf->pending_count++;
1395 }
4e78064f 1396 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1397 if (!plug)
b357f04a 1398 md_wakeup_thread(mddev->thread);
1da177e4 1399 }
079fa166
N
1400 /* Mustn't call r1_bio_write_done before this next test,
1401 * as it could result in the bio being freed.
1402 */
aa8b57aa 1403 if (sectors_handled < bio_sectors(bio)) {
079fa166 1404 r1_bio_write_done(r1_bio);
1f68f0c4
N
1405 /* We need another r1_bio. It has already been counted
1406 * in bio->bi_phys_segments
1407 */
1408 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1409 r1_bio->master_bio = bio;
aa8b57aa 1410 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1411 r1_bio->state = 0;
1412 r1_bio->mddev = mddev;
4f024f37 1413 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1414 goto retry_write;
1415 }
1416
079fa166
N
1417 r1_bio_write_done(r1_bio);
1418
1419 /* In case raid1d snuck in to freeze_array */
1420 wake_up(&conf->wait_barrier);
1da177e4
LT
1421}
1422
fd01b88c 1423static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1424{
e8096360 1425 struct r1conf *conf = mddev->private;
1da177e4
LT
1426 int i;
1427
1428 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1429 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1430 rcu_read_lock();
1431 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1432 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1433 seq_printf(seq, "%s",
ddac7c7e
N
1434 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1435 }
1436 rcu_read_unlock();
1da177e4
LT
1437 seq_printf(seq, "]");
1438}
1439
fd01b88c 1440static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1441{
1442 char b[BDEVNAME_SIZE];
e8096360 1443 struct r1conf *conf = mddev->private;
423f04d6 1444 unsigned long flags;
1da177e4
LT
1445
1446 /*
1447 * If it is not operational, then we have already marked it as dead
1448 * else if it is the last working disks, ignore the error, let the
1449 * next level up know.
1450 * else mark the drive as failed
1451 */
b2d444d7 1452 if (test_bit(In_sync, &rdev->flags)
4044ba58 1453 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1454 /*
1455 * Don't fail the drive, act as though we were just a
4044ba58
N
1456 * normal single drive.
1457 * However don't try a recovery from this drive as
1458 * it is very likely to fail.
1da177e4 1459 */
5389042f 1460 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1461 return;
4044ba58 1462 }
de393cde 1463 set_bit(Blocked, &rdev->flags);
423f04d6 1464 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1465 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1466 mddev->degraded++;
dd00a99e 1467 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1468 } else
1469 set_bit(Faulty, &rdev->flags);
423f04d6 1470 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1471 /*
1472 * if recovery is running, make sure it aborts.
1473 */
1474 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1475 set_bit(MD_CHANGE_DEVS, &mddev->flags);
55ce74d4 1476 set_bit(MD_CHANGE_PENDING, &mddev->flags);
067032bc
JP
1477 printk(KERN_ALERT
1478 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1479 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1480 mdname(mddev), bdevname(rdev->bdev, b),
1481 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1482}
1483
e8096360 1484static void print_conf(struct r1conf *conf)
1da177e4
LT
1485{
1486 int i;
1da177e4 1487
9dd1e2fa 1488 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1489 if (!conf) {
9dd1e2fa 1490 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1491 return;
1492 }
9dd1e2fa 1493 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1494 conf->raid_disks);
1495
ddac7c7e 1496 rcu_read_lock();
1da177e4
LT
1497 for (i = 0; i < conf->raid_disks; i++) {
1498 char b[BDEVNAME_SIZE];
3cb03002 1499 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1500 if (rdev)
9dd1e2fa 1501 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1502 i, !test_bit(In_sync, &rdev->flags),
1503 !test_bit(Faulty, &rdev->flags),
1504 bdevname(rdev->bdev,b));
1da177e4 1505 }
ddac7c7e 1506 rcu_read_unlock();
1da177e4
LT
1507}
1508
e8096360 1509static void close_sync(struct r1conf *conf)
1da177e4 1510{
79ef3a8a 1511 wait_barrier(conf, NULL);
1512 allow_barrier(conf, 0, 0);
1da177e4
LT
1513
1514 mempool_destroy(conf->r1buf_pool);
1515 conf->r1buf_pool = NULL;
79ef3a8a 1516
669cc7ba 1517 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1518 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1519 conf->start_next_window = MaxSector;
669cc7ba
N
1520 conf->current_window_requests +=
1521 conf->next_window_requests;
1522 conf->next_window_requests = 0;
1523 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1524}
1525
fd01b88c 1526static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1527{
1528 int i;
e8096360 1529 struct r1conf *conf = mddev->private;
6b965620
N
1530 int count = 0;
1531 unsigned long flags;
1da177e4
LT
1532
1533 /*
f72ffdd6 1534 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1535 * and mark them readable.
1536 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1537 * device_lock used to avoid races with raid1_end_read_request
1538 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1539 */
423f04d6 1540 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1541 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1542 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1543 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1544 if (repl
1aee41f6 1545 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1546 && repl->recovery_offset == MaxSector
1547 && !test_bit(Faulty, &repl->flags)
1548 && !test_and_set_bit(In_sync, &repl->flags)) {
1549 /* replacement has just become active */
1550 if (!rdev ||
1551 !test_and_clear_bit(In_sync, &rdev->flags))
1552 count++;
1553 if (rdev) {
1554 /* Replaced device not technically
1555 * faulty, but we need to be sure
1556 * it gets removed and never re-added
1557 */
1558 set_bit(Faulty, &rdev->flags);
1559 sysfs_notify_dirent_safe(
1560 rdev->sysfs_state);
1561 }
1562 }
ddac7c7e 1563 if (rdev
61e4947c 1564 && rdev->recovery_offset == MaxSector
ddac7c7e 1565 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1566 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1567 count++;
654e8b5a 1568 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1569 }
1570 }
6b965620
N
1571 mddev->degraded -= count;
1572 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1573
1574 print_conf(conf);
6b965620 1575 return count;
1da177e4
LT
1576}
1577
fd01b88c 1578static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1579{
e8096360 1580 struct r1conf *conf = mddev->private;
199050ea 1581 int err = -EEXIST;
41158c7e 1582 int mirror = 0;
0eaf822c 1583 struct raid1_info *p;
6c2fce2e 1584 int first = 0;
30194636 1585 int last = conf->raid_disks - 1;
1da177e4 1586
5389042f
N
1587 if (mddev->recovery_disabled == conf->recovery_disabled)
1588 return -EBUSY;
1589
6c2fce2e
NB
1590 if (rdev->raid_disk >= 0)
1591 first = last = rdev->raid_disk;
1592
7ef449d1
N
1593 for (mirror = first; mirror <= last; mirror++) {
1594 p = conf->mirrors+mirror;
1595 if (!p->rdev) {
1da177e4 1596
9092c02d
JB
1597 if (mddev->gendisk)
1598 disk_stack_limits(mddev->gendisk, rdev->bdev,
1599 rdev->data_offset << 9);
1da177e4
LT
1600
1601 p->head_position = 0;
1602 rdev->raid_disk = mirror;
199050ea 1603 err = 0;
6aea114a
N
1604 /* As all devices are equivalent, we don't need a full recovery
1605 * if this was recently any drive of the array
1606 */
1607 if (rdev->saved_raid_disk < 0)
41158c7e 1608 conf->fullsync = 1;
d6065f7b 1609 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1610 break;
1611 }
7ef449d1
N
1612 if (test_bit(WantReplacement, &p->rdev->flags) &&
1613 p[conf->raid_disks].rdev == NULL) {
1614 /* Add this device as a replacement */
1615 clear_bit(In_sync, &rdev->flags);
1616 set_bit(Replacement, &rdev->flags);
1617 rdev->raid_disk = mirror;
1618 err = 0;
1619 conf->fullsync = 1;
1620 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621 break;
1622 }
1623 }
ac5e7113 1624 md_integrity_add_rdev(rdev, mddev);
9092c02d 1625 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1626 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1627 print_conf(conf);
199050ea 1628 return err;
1da177e4
LT
1629}
1630
b8321b68 1631static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1632{
e8096360 1633 struct r1conf *conf = mddev->private;
1da177e4 1634 int err = 0;
b8321b68 1635 int number = rdev->raid_disk;
0eaf822c 1636 struct raid1_info *p = conf->mirrors + number;
1da177e4 1637
b014f14c
N
1638 if (rdev != p->rdev)
1639 p = conf->mirrors + conf->raid_disks + number;
1640
1da177e4 1641 print_conf(conf);
b8321b68 1642 if (rdev == p->rdev) {
b2d444d7 1643 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1644 atomic_read(&rdev->nr_pending)) {
1645 err = -EBUSY;
1646 goto abort;
1647 }
046abeed 1648 /* Only remove non-faulty devices if recovery
dfc70645
N
1649 * is not possible.
1650 */
1651 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1652 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1653 mddev->degraded < conf->raid_disks) {
1654 err = -EBUSY;
1655 goto abort;
1656 }
1da177e4 1657 p->rdev = NULL;
fbd568a3 1658 synchronize_rcu();
1da177e4
LT
1659 if (atomic_read(&rdev->nr_pending)) {
1660 /* lost the race, try later */
1661 err = -EBUSY;
1662 p->rdev = rdev;
ac5e7113 1663 goto abort;
8c7a2c2b
N
1664 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1665 /* We just removed a device that is being replaced.
1666 * Move down the replacement. We drain all IO before
1667 * doing this to avoid confusion.
1668 */
1669 struct md_rdev *repl =
1670 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1671 freeze_array(conf, 0);
8c7a2c2b
N
1672 clear_bit(Replacement, &repl->flags);
1673 p->rdev = repl;
1674 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1675 unfreeze_array(conf);
8c7a2c2b
N
1676 clear_bit(WantReplacement, &rdev->flags);
1677 } else
b014f14c 1678 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1679 err = md_integrity_register(mddev);
1da177e4
LT
1680 }
1681abort:
1682
1683 print_conf(conf);
1684 return err;
1685}
1686
4246a0b6 1687static void end_sync_read(struct bio *bio)
1da177e4 1688{
9f2c9d12 1689 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1690
0fc280f6 1691 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1692
1da177e4
LT
1693 /*
1694 * we have read a block, now it needs to be re-written,
1695 * or re-read if the read failed.
1696 * We don't do much here, just schedule handling by raid1d
1697 */
4246a0b6 1698 if (!bio->bi_error)
1da177e4 1699 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1700
1701 if (atomic_dec_and_test(&r1_bio->remaining))
1702 reschedule_retry(r1_bio);
1da177e4
LT
1703}
1704
4246a0b6 1705static void end_sync_write(struct bio *bio)
1da177e4 1706{
4246a0b6 1707 int uptodate = !bio->bi_error;
9f2c9d12 1708 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1709 struct mddev *mddev = r1_bio->mddev;
e8096360 1710 struct r1conf *conf = mddev->private;
1da177e4 1711 int mirror=0;
4367af55
N
1712 sector_t first_bad;
1713 int bad_sectors;
1da177e4 1714
ba3ae3be
NK
1715 mirror = find_bio_disk(r1_bio, bio);
1716
6b1117d5 1717 if (!uptodate) {
57dab0bd 1718 sector_t sync_blocks = 0;
6b1117d5
N
1719 sector_t s = r1_bio->sector;
1720 long sectors_to_go = r1_bio->sectors;
1721 /* make sure these bits doesn't get cleared. */
1722 do {
5e3db645 1723 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1724 &sync_blocks, 1);
1725 s += sync_blocks;
1726 sectors_to_go -= sync_blocks;
1727 } while (sectors_to_go > 0);
d8f05d29
N
1728 set_bit(WriteErrorSeen,
1729 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1730 if (!test_and_set_bit(WantReplacement,
1731 &conf->mirrors[mirror].rdev->flags))
1732 set_bit(MD_RECOVERY_NEEDED, &
1733 mddev->recovery);
d8f05d29 1734 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1735 } else if (is_badblock(conf->mirrors[mirror].rdev,
1736 r1_bio->sector,
1737 r1_bio->sectors,
3a9f28a5
N
1738 &first_bad, &bad_sectors) &&
1739 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1740 r1_bio->sector,
1741 r1_bio->sectors,
1742 &first_bad, &bad_sectors)
1743 )
4367af55 1744 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1745
1da177e4 1746 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1747 int s = r1_bio->sectors;
d8f05d29
N
1748 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1749 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1750 reschedule_retry(r1_bio);
1751 else {
1752 put_buf(r1_bio);
1753 md_done_sync(mddev, s, uptodate);
1754 }
1da177e4 1755 }
1da177e4
LT
1756}
1757
3cb03002 1758static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1759 int sectors, struct page *page, int rw)
1760{
1761 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1762 /* success */
1763 return 1;
19d67169 1764 if (rw == WRITE) {
d8f05d29 1765 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1766 if (!test_and_set_bit(WantReplacement,
1767 &rdev->flags))
1768 set_bit(MD_RECOVERY_NEEDED, &
1769 rdev->mddev->recovery);
1770 }
d8f05d29
N
1771 /* need to record an error - either for the block or the device */
1772 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1773 md_error(rdev->mddev, rdev);
1774 return 0;
1775}
1776
9f2c9d12 1777static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1778{
a68e5870
N
1779 /* Try some synchronous reads of other devices to get
1780 * good data, much like with normal read errors. Only
1781 * read into the pages we already have so we don't
1782 * need to re-issue the read request.
1783 * We don't need to freeze the array, because being in an
1784 * active sync request, there is no normal IO, and
1785 * no overlapping syncs.
06f60385
N
1786 * We don't need to check is_badblock() again as we
1787 * made sure that anything with a bad block in range
1788 * will have bi_end_io clear.
a68e5870 1789 */
fd01b88c 1790 struct mddev *mddev = r1_bio->mddev;
e8096360 1791 struct r1conf *conf = mddev->private;
a68e5870
N
1792 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1793 sector_t sect = r1_bio->sector;
1794 int sectors = r1_bio->sectors;
1795 int idx = 0;
1796
1797 while(sectors) {
1798 int s = sectors;
1799 int d = r1_bio->read_disk;
1800 int success = 0;
3cb03002 1801 struct md_rdev *rdev;
78d7f5f7 1802 int start;
a68e5870
N
1803
1804 if (s > (PAGE_SIZE>>9))
1805 s = PAGE_SIZE >> 9;
1806 do {
1807 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1808 /* No rcu protection needed here devices
1809 * can only be removed when no resync is
1810 * active, and resync is currently active
1811 */
1812 rdev = conf->mirrors[d].rdev;
9d3d8011 1813 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1814 bio->bi_io_vec[idx].bv_page,
1815 READ, false)) {
1816 success = 1;
1817 break;
1818 }
1819 }
1820 d++;
8f19ccb2 1821 if (d == conf->raid_disks * 2)
a68e5870
N
1822 d = 0;
1823 } while (!success && d != r1_bio->read_disk);
1824
78d7f5f7 1825 if (!success) {
a68e5870 1826 char b[BDEVNAME_SIZE];
3a9f28a5
N
1827 int abort = 0;
1828 /* Cannot read from anywhere, this block is lost.
1829 * Record a bad block on each device. If that doesn't
1830 * work just disable and interrupt the recovery.
1831 * Don't fail devices as that won't really help.
1832 */
a68e5870
N
1833 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1834 " for block %llu\n",
1835 mdname(mddev),
1836 bdevname(bio->bi_bdev, b),
1837 (unsigned long long)r1_bio->sector);
8f19ccb2 1838 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1839 rdev = conf->mirrors[d].rdev;
1840 if (!rdev || test_bit(Faulty, &rdev->flags))
1841 continue;
1842 if (!rdev_set_badblocks(rdev, sect, s, 0))
1843 abort = 1;
1844 }
1845 if (abort) {
d890fa2b
N
1846 conf->recovery_disabled =
1847 mddev->recovery_disabled;
3a9f28a5
N
1848 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1849 md_done_sync(mddev, r1_bio->sectors, 0);
1850 put_buf(r1_bio);
1851 return 0;
1852 }
1853 /* Try next page */
1854 sectors -= s;
1855 sect += s;
1856 idx++;
1857 continue;
d11c171e 1858 }
78d7f5f7
N
1859
1860 start = d;
1861 /* write it back and re-read */
1862 while (d != r1_bio->read_disk) {
1863 if (d == 0)
8f19ccb2 1864 d = conf->raid_disks * 2;
78d7f5f7
N
1865 d--;
1866 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1867 continue;
1868 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1869 if (r1_sync_page_io(rdev, sect, s,
1870 bio->bi_io_vec[idx].bv_page,
1871 WRITE) == 0) {
78d7f5f7
N
1872 r1_bio->bios[d]->bi_end_io = NULL;
1873 rdev_dec_pending(rdev, mddev);
9d3d8011 1874 }
78d7f5f7
N
1875 }
1876 d = start;
1877 while (d != r1_bio->read_disk) {
1878 if (d == 0)
8f19ccb2 1879 d = conf->raid_disks * 2;
78d7f5f7
N
1880 d--;
1881 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1882 continue;
1883 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1884 if (r1_sync_page_io(rdev, sect, s,
1885 bio->bi_io_vec[idx].bv_page,
1886 READ) != 0)
9d3d8011 1887 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1888 }
a68e5870
N
1889 sectors -= s;
1890 sect += s;
1891 idx ++;
1892 }
78d7f5f7 1893 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1894 bio->bi_error = 0;
a68e5870
N
1895 return 1;
1896}
1897
c95e6385 1898static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1899{
1900 /* We have read all readable devices. If we haven't
1901 * got the block, then there is no hope left.
1902 * If we have, then we want to do a comparison
1903 * and skip the write if everything is the same.
1904 * If any blocks failed to read, then we need to
1905 * attempt an over-write
1906 */
fd01b88c 1907 struct mddev *mddev = r1_bio->mddev;
e8096360 1908 struct r1conf *conf = mddev->private;
a68e5870
N
1909 int primary;
1910 int i;
f4380a91 1911 int vcnt;
a68e5870 1912
30bc9b53
N
1913 /* Fix variable parts of all bios */
1914 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1915 for (i = 0; i < conf->raid_disks * 2; i++) {
1916 int j;
1917 int size;
4246a0b6 1918 int error;
30bc9b53
N
1919 struct bio *b = r1_bio->bios[i];
1920 if (b->bi_end_io != end_sync_read)
1921 continue;
4246a0b6
CH
1922 /* fixup the bio for reuse, but preserve errno */
1923 error = b->bi_error;
30bc9b53 1924 bio_reset(b);
4246a0b6 1925 b->bi_error = error;
30bc9b53 1926 b->bi_vcnt = vcnt;
4f024f37
KO
1927 b->bi_iter.bi_size = r1_bio->sectors << 9;
1928 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1929 conf->mirrors[i].rdev->data_offset;
1930 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1931 b->bi_end_io = end_sync_read;
1932 b->bi_private = r1_bio;
1933
4f024f37 1934 size = b->bi_iter.bi_size;
30bc9b53
N
1935 for (j = 0; j < vcnt ; j++) {
1936 struct bio_vec *bi;
1937 bi = &b->bi_io_vec[j];
1938 bi->bv_offset = 0;
1939 if (size > PAGE_SIZE)
1940 bi->bv_len = PAGE_SIZE;
1941 else
1942 bi->bv_len = size;
1943 size -= PAGE_SIZE;
1944 }
1945 }
8f19ccb2 1946 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 1947 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 1948 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
1949 r1_bio->bios[primary]->bi_end_io = NULL;
1950 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1951 break;
1952 }
1953 r1_bio->read_disk = primary;
8f19ccb2 1954 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1955 int j;
78d7f5f7
N
1956 struct bio *pbio = r1_bio->bios[primary];
1957 struct bio *sbio = r1_bio->bios[i];
4246a0b6 1958 int error = sbio->bi_error;
a68e5870 1959
2aabaa65 1960 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 1961 continue;
4246a0b6
CH
1962 /* Now we can 'fixup' the error value */
1963 sbio->bi_error = 0;
78d7f5f7 1964
4246a0b6 1965 if (!error) {
78d7f5f7
N
1966 for (j = vcnt; j-- ; ) {
1967 struct page *p, *s;
1968 p = pbio->bi_io_vec[j].bv_page;
1969 s = sbio->bi_io_vec[j].bv_page;
1970 if (memcmp(page_address(p),
1971 page_address(s),
5020ad7d 1972 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1973 break;
69382e85 1974 }
78d7f5f7
N
1975 } else
1976 j = 0;
1977 if (j >= 0)
7f7583d4 1978 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 1979 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 1980 && !error)) {
78d7f5f7
N
1981 /* No need to write to this device. */
1982 sbio->bi_end_io = NULL;
1983 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1984 continue;
1985 }
d3b45c2a
KO
1986
1987 bio_copy_data(sbio, pbio);
78d7f5f7 1988 }
a68e5870
N
1989}
1990
9f2c9d12 1991static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1992{
e8096360 1993 struct r1conf *conf = mddev->private;
a68e5870 1994 int i;
8f19ccb2 1995 int disks = conf->raid_disks * 2;
a68e5870
N
1996 struct bio *bio, *wbio;
1997
1998 bio = r1_bio->bios[r1_bio->read_disk];
1999
a68e5870
N
2000 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2001 /* ouch - failed to read all of that. */
2002 if (!fix_sync_read_error(r1_bio))
2003 return;
7ca78d57
N
2004
2005 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2006 process_checks(r1_bio);
2007
d11c171e
N
2008 /*
2009 * schedule writes
2010 */
1da177e4
LT
2011 atomic_set(&r1_bio->remaining, 1);
2012 for (i = 0; i < disks ; i++) {
2013 wbio = r1_bio->bios[i];
3e198f78
N
2014 if (wbio->bi_end_io == NULL ||
2015 (wbio->bi_end_io == end_sync_read &&
2016 (i == r1_bio->read_disk ||
2017 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2018 continue;
2019
3e198f78
N
2020 wbio->bi_rw = WRITE;
2021 wbio->bi_end_io = end_sync_write;
1da177e4 2022 atomic_inc(&r1_bio->remaining);
aa8b57aa 2023 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2024
1da177e4
LT
2025 generic_make_request(wbio);
2026 }
2027
2028 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2029 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2030 int s = r1_bio->sectors;
2031 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2032 test_bit(R1BIO_WriteError, &r1_bio->state))
2033 reschedule_retry(r1_bio);
2034 else {
2035 put_buf(r1_bio);
2036 md_done_sync(mddev, s, 1);
2037 }
1da177e4
LT
2038 }
2039}
2040
2041/*
2042 * This is a kernel thread which:
2043 *
2044 * 1. Retries failed read operations on working mirrors.
2045 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2046 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2047 */
2048
e8096360 2049static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2050 sector_t sect, int sectors)
2051{
fd01b88c 2052 struct mddev *mddev = conf->mddev;
867868fb
N
2053 while(sectors) {
2054 int s = sectors;
2055 int d = read_disk;
2056 int success = 0;
2057 int start;
3cb03002 2058 struct md_rdev *rdev;
867868fb
N
2059
2060 if (s > (PAGE_SIZE>>9))
2061 s = PAGE_SIZE >> 9;
2062
2063 do {
2064 /* Note: no rcu protection needed here
2065 * as this is synchronous in the raid1d thread
2066 * which is the thread that might remove
2067 * a device. If raid1d ever becomes multi-threaded....
2068 */
d2eb35ac
N
2069 sector_t first_bad;
2070 int bad_sectors;
2071
867868fb
N
2072 rdev = conf->mirrors[d].rdev;
2073 if (rdev &&
da8840a7 2074 (test_bit(In_sync, &rdev->flags) ||
2075 (!test_bit(Faulty, &rdev->flags) &&
2076 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2077 is_badblock(rdev, sect, s,
2078 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2079 sync_page_io(rdev, sect, s<<9,
2080 conf->tmppage, READ, false))
867868fb
N
2081 success = 1;
2082 else {
2083 d++;
8f19ccb2 2084 if (d == conf->raid_disks * 2)
867868fb
N
2085 d = 0;
2086 }
2087 } while (!success && d != read_disk);
2088
2089 if (!success) {
d8f05d29 2090 /* Cannot read from anywhere - mark it bad */
3cb03002 2091 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2092 if (!rdev_set_badblocks(rdev, sect, s, 0))
2093 md_error(mddev, rdev);
867868fb
N
2094 break;
2095 }
2096 /* write it back and re-read */
2097 start = d;
2098 while (d != read_disk) {
2099 if (d==0)
8f19ccb2 2100 d = conf->raid_disks * 2;
867868fb
N
2101 d--;
2102 rdev = conf->mirrors[d].rdev;
2103 if (rdev &&
b8cb6b4c 2104 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2105 r1_sync_page_io(rdev, sect, s,
2106 conf->tmppage, WRITE);
867868fb
N
2107 }
2108 d = start;
2109 while (d != read_disk) {
2110 char b[BDEVNAME_SIZE];
2111 if (d==0)
8f19ccb2 2112 d = conf->raid_disks * 2;
867868fb
N
2113 d--;
2114 rdev = conf->mirrors[d].rdev;
2115 if (rdev &&
b8cb6b4c 2116 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2117 if (r1_sync_page_io(rdev, sect, s,
2118 conf->tmppage, READ)) {
867868fb
N
2119 atomic_add(s, &rdev->corrected_errors);
2120 printk(KERN_INFO
9dd1e2fa 2121 "md/raid1:%s: read error corrected "
867868fb
N
2122 "(%d sectors at %llu on %s)\n",
2123 mdname(mddev), s,
969b755a
RD
2124 (unsigned long long)(sect +
2125 rdev->data_offset),
867868fb
N
2126 bdevname(rdev->bdev, b));
2127 }
2128 }
2129 }
2130 sectors -= s;
2131 sect += s;
2132 }
2133}
2134
9f2c9d12 2135static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2136{
fd01b88c 2137 struct mddev *mddev = r1_bio->mddev;
e8096360 2138 struct r1conf *conf = mddev->private;
3cb03002 2139 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2140
2141 /* bio has the data to be written to device 'i' where
2142 * we just recently had a write error.
2143 * We repeatedly clone the bio and trim down to one block,
2144 * then try the write. Where the write fails we record
2145 * a bad block.
2146 * It is conceivable that the bio doesn't exactly align with
2147 * blocks. We must handle this somehow.
2148 *
2149 * We currently own a reference on the rdev.
2150 */
2151
2152 int block_sectors;
2153 sector_t sector;
2154 int sectors;
2155 int sect_to_write = r1_bio->sectors;
2156 int ok = 1;
2157
2158 if (rdev->badblocks.shift < 0)
2159 return 0;
2160
ab713cdc
ND
2161 block_sectors = roundup(1 << rdev->badblocks.shift,
2162 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2163 sector = r1_bio->sector;
2164 sectors = ((sector + block_sectors)
2165 & ~(sector_t)(block_sectors - 1))
2166 - sector;
2167
cd5ff9a1
N
2168 while (sect_to_write) {
2169 struct bio *wbio;
2170 if (sectors > sect_to_write)
2171 sectors = sect_to_write;
2172 /* Write at 'sector' for 'sectors'*/
2173
b783863f
KO
2174 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2175 unsigned vcnt = r1_bio->behind_page_count;
2176 struct bio_vec *vec = r1_bio->behind_bvecs;
2177
2178 while (!vec->bv_page) {
2179 vec++;
2180 vcnt--;
2181 }
2182
2183 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2184 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2185
2186 wbio->bi_vcnt = vcnt;
2187 } else {
2188 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2189 }
2190
cd5ff9a1 2191 wbio->bi_rw = WRITE;
4f024f37
KO
2192 wbio->bi_iter.bi_sector = r1_bio->sector;
2193 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2194
6678d83f 2195 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2196 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2197 wbio->bi_bdev = rdev->bdev;
2198 if (submit_bio_wait(WRITE, wbio) == 0)
2199 /* failure! */
2200 ok = rdev_set_badblocks(rdev, sector,
2201 sectors, 0)
2202 && ok;
2203
2204 bio_put(wbio);
2205 sect_to_write -= sectors;
2206 sector += sectors;
2207 sectors = block_sectors;
2208 }
2209 return ok;
2210}
2211
e8096360 2212static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2213{
2214 int m;
2215 int s = r1_bio->sectors;
8f19ccb2 2216 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2217 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2218 struct bio *bio = r1_bio->bios[m];
2219 if (bio->bi_end_io == NULL)
2220 continue;
4246a0b6 2221 if (!bio->bi_error &&
62096bce 2222 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2223 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2224 }
4246a0b6 2225 if (bio->bi_error &&
62096bce
N
2226 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2227 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2228 md_error(conf->mddev, rdev);
2229 }
2230 }
2231 put_buf(r1_bio);
2232 md_done_sync(conf->mddev, s, 1);
2233}
2234
e8096360 2235static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2236{
2237 int m;
55ce74d4 2238 bool fail = false;
8f19ccb2 2239 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2240 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2241 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2242 rdev_clear_badblocks(rdev,
2243 r1_bio->sector,
c6563a8c 2244 r1_bio->sectors, 0);
62096bce
N
2245 rdev_dec_pending(rdev, conf->mddev);
2246 } else if (r1_bio->bios[m] != NULL) {
2247 /* This drive got a write error. We need to
2248 * narrow down and record precise write
2249 * errors.
2250 */
55ce74d4 2251 fail = true;
62096bce
N
2252 if (!narrow_write_error(r1_bio, m)) {
2253 md_error(conf->mddev,
2254 conf->mirrors[m].rdev);
2255 /* an I/O failed, we can't clear the bitmap */
2256 set_bit(R1BIO_Degraded, &r1_bio->state);
2257 }
2258 rdev_dec_pending(conf->mirrors[m].rdev,
2259 conf->mddev);
2260 }
2261 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2262 close_write(r1_bio);
55ce74d4
N
2263 if (fail) {
2264 spin_lock_irq(&conf->device_lock);
2265 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2266 spin_unlock_irq(&conf->device_lock);
2267 md_wakeup_thread(conf->mddev->thread);
2268 } else
2269 raid_end_bio_io(r1_bio);
62096bce
N
2270}
2271
e8096360 2272static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2273{
2274 int disk;
2275 int max_sectors;
fd01b88c 2276 struct mddev *mddev = conf->mddev;
62096bce
N
2277 struct bio *bio;
2278 char b[BDEVNAME_SIZE];
3cb03002 2279 struct md_rdev *rdev;
62096bce
N
2280
2281 clear_bit(R1BIO_ReadError, &r1_bio->state);
2282 /* we got a read error. Maybe the drive is bad. Maybe just
2283 * the block and we can fix it.
2284 * We freeze all other IO, and try reading the block from
2285 * other devices. When we find one, we re-write
2286 * and check it that fixes the read error.
2287 * This is all done synchronously while the array is
2288 * frozen
2289 */
2290 if (mddev->ro == 0) {
e2d59925 2291 freeze_array(conf, 1);
62096bce
N
2292 fix_read_error(conf, r1_bio->read_disk,
2293 r1_bio->sector, r1_bio->sectors);
2294 unfreeze_array(conf);
2295 } else
2296 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2297 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2298
2299 bio = r1_bio->bios[r1_bio->read_disk];
2300 bdevname(bio->bi_bdev, b);
2301read_more:
2302 disk = read_balance(conf, r1_bio, &max_sectors);
2303 if (disk == -1) {
2304 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2305 " read error for block %llu\n",
2306 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2307 raid_end_bio_io(r1_bio);
2308 } else {
2309 const unsigned long do_sync
2310 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2311 if (bio) {
2312 r1_bio->bios[r1_bio->read_disk] =
2313 mddev->ro ? IO_BLOCKED : NULL;
2314 bio_put(bio);
2315 }
2316 r1_bio->read_disk = disk;
2317 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2318 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2319 max_sectors);
62096bce
N
2320 r1_bio->bios[r1_bio->read_disk] = bio;
2321 rdev = conf->mirrors[disk].rdev;
2322 printk_ratelimited(KERN_ERR
2323 "md/raid1:%s: redirecting sector %llu"
2324 " to other mirror: %s\n",
2325 mdname(mddev),
2326 (unsigned long long)r1_bio->sector,
2327 bdevname(rdev->bdev, b));
4f024f37 2328 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2329 bio->bi_bdev = rdev->bdev;
2330 bio->bi_end_io = raid1_end_read_request;
2331 bio->bi_rw = READ | do_sync;
2332 bio->bi_private = r1_bio;
2333 if (max_sectors < r1_bio->sectors) {
2334 /* Drat - have to split this up more */
2335 struct bio *mbio = r1_bio->master_bio;
2336 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2337 - mbio->bi_iter.bi_sector);
62096bce
N
2338 r1_bio->sectors = max_sectors;
2339 spin_lock_irq(&conf->device_lock);
2340 if (mbio->bi_phys_segments == 0)
2341 mbio->bi_phys_segments = 2;
2342 else
2343 mbio->bi_phys_segments++;
2344 spin_unlock_irq(&conf->device_lock);
2345 generic_make_request(bio);
2346 bio = NULL;
2347
2348 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2349
2350 r1_bio->master_bio = mbio;
aa8b57aa 2351 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2352 r1_bio->state = 0;
2353 set_bit(R1BIO_ReadError, &r1_bio->state);
2354 r1_bio->mddev = mddev;
4f024f37
KO
2355 r1_bio->sector = mbio->bi_iter.bi_sector +
2356 sectors_handled;
62096bce
N
2357
2358 goto read_more;
2359 } else
2360 generic_make_request(bio);
2361 }
2362}
2363
4ed8731d 2364static void raid1d(struct md_thread *thread)
1da177e4 2365{
4ed8731d 2366 struct mddev *mddev = thread->mddev;
9f2c9d12 2367 struct r1bio *r1_bio;
1da177e4 2368 unsigned long flags;
e8096360 2369 struct r1conf *conf = mddev->private;
1da177e4 2370 struct list_head *head = &conf->retry_list;
e1dfa0a2 2371 struct blk_plug plug;
1da177e4
LT
2372
2373 md_check_recovery(mddev);
e1dfa0a2 2374
55ce74d4
N
2375 if (!list_empty_careful(&conf->bio_end_io_list) &&
2376 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2377 LIST_HEAD(tmp);
2378 spin_lock_irqsave(&conf->device_lock, flags);
2379 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2380 list_add(&tmp, &conf->bio_end_io_list);
2381 list_del_init(&conf->bio_end_io_list);
2382 }
2383 spin_unlock_irqrestore(&conf->device_lock, flags);
2384 while (!list_empty(&tmp)) {
2385 r1_bio = list_first_entry(&conf->bio_end_io_list,
2386 struct r1bio, retry_list);
2387 list_del(&r1_bio->retry_list);
2388 raid_end_bio_io(r1_bio);
2389 }
2390 }
2391
e1dfa0a2 2392 blk_start_plug(&plug);
1da177e4 2393 for (;;) {
191ea9b2 2394
0021b7bc 2395 flush_pending_writes(conf);
191ea9b2 2396
a35e63ef
N
2397 spin_lock_irqsave(&conf->device_lock, flags);
2398 if (list_empty(head)) {
2399 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2400 break;
a35e63ef 2401 }
9f2c9d12 2402 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2403 list_del(head->prev);
ddaf22ab 2404 conf->nr_queued--;
1da177e4
LT
2405 spin_unlock_irqrestore(&conf->device_lock, flags);
2406
2407 mddev = r1_bio->mddev;
070ec55d 2408 conf = mddev->private;
4367af55 2409 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2410 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2411 test_bit(R1BIO_WriteError, &r1_bio->state))
2412 handle_sync_write_finished(conf, r1_bio);
2413 else
4367af55 2414 sync_request_write(mddev, r1_bio);
cd5ff9a1 2415 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2416 test_bit(R1BIO_WriteError, &r1_bio->state))
2417 handle_write_finished(conf, r1_bio);
2418 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2419 handle_read_error(conf, r1_bio);
2420 else
d2eb35ac
N
2421 /* just a partial read to be scheduled from separate
2422 * context
2423 */
2424 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2425
1d9d5241 2426 cond_resched();
de393cde
N
2427 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2428 md_check_recovery(mddev);
1da177e4 2429 }
e1dfa0a2 2430 blk_finish_plug(&plug);
1da177e4
LT
2431}
2432
e8096360 2433static int init_resync(struct r1conf *conf)
1da177e4
LT
2434{
2435 int buffs;
2436
2437 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2438 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2439 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2440 conf->poolinfo);
2441 if (!conf->r1buf_pool)
2442 return -ENOMEM;
2443 conf->next_resync = 0;
2444 return 0;
2445}
2446
2447/*
2448 * perform a "sync" on one "block"
2449 *
2450 * We need to make sure that no normal I/O request - particularly write
2451 * requests - conflict with active sync requests.
2452 *
2453 * This is achieved by tracking pending requests and a 'barrier' concept
2454 * that can be installed to exclude normal IO requests.
2455 */
2456
09314799 2457static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 2458{
e8096360 2459 struct r1conf *conf = mddev->private;
9f2c9d12 2460 struct r1bio *r1_bio;
1da177e4
LT
2461 struct bio *bio;
2462 sector_t max_sector, nr_sectors;
3e198f78 2463 int disk = -1;
1da177e4 2464 int i;
3e198f78
N
2465 int wonly = -1;
2466 int write_targets = 0, read_targets = 0;
57dab0bd 2467 sector_t sync_blocks;
e3b9703e 2468 int still_degraded = 0;
06f60385
N
2469 int good_sectors = RESYNC_SECTORS;
2470 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2471
2472 if (!conf->r1buf_pool)
2473 if (init_resync(conf))
57afd89f 2474 return 0;
1da177e4 2475
58c0fed4 2476 max_sector = mddev->dev_sectors;
1da177e4 2477 if (sector_nr >= max_sector) {
191ea9b2
N
2478 /* If we aborted, we need to abort the
2479 * sync on the 'current' bitmap chunk (there will
2480 * only be one in raid1 resync.
2481 * We can find the current addess in mddev->curr_resync
2482 */
6a806c51
N
2483 if (mddev->curr_resync < max_sector) /* aborted */
2484 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2485 &sync_blocks, 1);
6a806c51 2486 else /* completed sync */
191ea9b2 2487 conf->fullsync = 0;
6a806c51
N
2488
2489 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2490 close_sync(conf);
2491 return 0;
2492 }
2493
07d84d10
N
2494 if (mddev->bitmap == NULL &&
2495 mddev->recovery_cp == MaxSector &&
6394cca5 2496 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2497 conf->fullsync == 0) {
2498 *skipped = 1;
2499 return max_sector - sector_nr;
2500 }
6394cca5
N
2501 /* before building a request, check if we can skip these blocks..
2502 * This call the bitmap_start_sync doesn't actually record anything
2503 */
e3b9703e 2504 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2505 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2506 /* We can skip this block, and probably several more */
2507 *skipped = 1;
2508 return sync_blocks;
2509 }
17999be4 2510
b47490c9 2511 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2512 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2513
c2fd4c94 2514 raise_barrier(conf, sector_nr);
1da177e4 2515
3e198f78 2516 rcu_read_lock();
1da177e4 2517 /*
3e198f78
N
2518 * If we get a correctably read error during resync or recovery,
2519 * we might want to read from a different device. So we
2520 * flag all drives that could conceivably be read from for READ,
2521 * and any others (which will be non-In_sync devices) for WRITE.
2522 * If a read fails, we try reading from something else for which READ
2523 * is OK.
1da177e4 2524 */
1da177e4 2525
1da177e4
LT
2526 r1_bio->mddev = mddev;
2527 r1_bio->sector = sector_nr;
191ea9b2 2528 r1_bio->state = 0;
1da177e4 2529 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2530
8f19ccb2 2531 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2532 struct md_rdev *rdev;
1da177e4 2533 bio = r1_bio->bios[i];
2aabaa65 2534 bio_reset(bio);
1da177e4 2535
3e198f78
N
2536 rdev = rcu_dereference(conf->mirrors[i].rdev);
2537 if (rdev == NULL ||
06f60385 2538 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2539 if (i < conf->raid_disks)
2540 still_degraded = 1;
3e198f78 2541 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2542 bio->bi_rw = WRITE;
2543 bio->bi_end_io = end_sync_write;
2544 write_targets ++;
3e198f78
N
2545 } else {
2546 /* may need to read from here */
06f60385
N
2547 sector_t first_bad = MaxSector;
2548 int bad_sectors;
2549
2550 if (is_badblock(rdev, sector_nr, good_sectors,
2551 &first_bad, &bad_sectors)) {
2552 if (first_bad > sector_nr)
2553 good_sectors = first_bad - sector_nr;
2554 else {
2555 bad_sectors -= (sector_nr - first_bad);
2556 if (min_bad == 0 ||
2557 min_bad > bad_sectors)
2558 min_bad = bad_sectors;
2559 }
2560 }
2561 if (sector_nr < first_bad) {
2562 if (test_bit(WriteMostly, &rdev->flags)) {
2563 if (wonly < 0)
2564 wonly = i;
2565 } else {
2566 if (disk < 0)
2567 disk = i;
2568 }
2569 bio->bi_rw = READ;
2570 bio->bi_end_io = end_sync_read;
2571 read_targets++;
d57368af
AL
2572 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2573 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2574 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2575 /*
2576 * The device is suitable for reading (InSync),
2577 * but has bad block(s) here. Let's try to correct them,
2578 * if we are doing resync or repair. Otherwise, leave
2579 * this device alone for this sync request.
2580 */
2581 bio->bi_rw = WRITE;
2582 bio->bi_end_io = end_sync_write;
2583 write_targets++;
3e198f78 2584 }
3e198f78 2585 }
06f60385
N
2586 if (bio->bi_end_io) {
2587 atomic_inc(&rdev->nr_pending);
4f024f37 2588 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2589 bio->bi_bdev = rdev->bdev;
2590 bio->bi_private = r1_bio;
2591 }
1da177e4 2592 }
3e198f78
N
2593 rcu_read_unlock();
2594 if (disk < 0)
2595 disk = wonly;
2596 r1_bio->read_disk = disk;
191ea9b2 2597
06f60385
N
2598 if (read_targets == 0 && min_bad > 0) {
2599 /* These sectors are bad on all InSync devices, so we
2600 * need to mark them bad on all write targets
2601 */
2602 int ok = 1;
8f19ccb2 2603 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2604 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2605 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2606 ok = rdev_set_badblocks(rdev, sector_nr,
2607 min_bad, 0
2608 ) && ok;
2609 }
2610 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2611 *skipped = 1;
2612 put_buf(r1_bio);
2613
2614 if (!ok) {
2615 /* Cannot record the badblocks, so need to
2616 * abort the resync.
2617 * If there are multiple read targets, could just
2618 * fail the really bad ones ???
2619 */
2620 conf->recovery_disabled = mddev->recovery_disabled;
2621 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2622 return 0;
2623 } else
2624 return min_bad;
2625
2626 }
2627 if (min_bad > 0 && min_bad < good_sectors) {
2628 /* only resync enough to reach the next bad->good
2629 * transition */
2630 good_sectors = min_bad;
2631 }
2632
3e198f78
N
2633 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2634 /* extra read targets are also write targets */
2635 write_targets += read_targets-1;
2636
2637 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2638 /* There is nowhere to write, so all non-sync
2639 * drives must be failed - so we are finished
2640 */
b7219ccb
N
2641 sector_t rv;
2642 if (min_bad > 0)
2643 max_sector = sector_nr + min_bad;
2644 rv = max_sector - sector_nr;
57afd89f 2645 *skipped = 1;
1da177e4 2646 put_buf(r1_bio);
1da177e4
LT
2647 return rv;
2648 }
2649
c6207277
N
2650 if (max_sector > mddev->resync_max)
2651 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2652 if (max_sector > sector_nr + good_sectors)
2653 max_sector = sector_nr + good_sectors;
1da177e4 2654 nr_sectors = 0;
289e99e8 2655 sync_blocks = 0;
1da177e4
LT
2656 do {
2657 struct page *page;
2658 int len = PAGE_SIZE;
2659 if (sector_nr + (len>>9) > max_sector)
2660 len = (max_sector - sector_nr) << 9;
2661 if (len == 0)
2662 break;
6a806c51
N
2663 if (sync_blocks == 0) {
2664 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2665 &sync_blocks, still_degraded) &&
2666 !conf->fullsync &&
2667 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2668 break;
9e77c485 2669 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2670 if ((len >> 9) > sync_blocks)
6a806c51 2671 len = sync_blocks<<9;
ab7a30c7 2672 }
191ea9b2 2673
8f19ccb2 2674 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2675 bio = r1_bio->bios[i];
2676 if (bio->bi_end_io) {
d11c171e 2677 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2678 if (bio_add_page(bio, page, len, 0) == 0) {
2679 /* stop here */
d11c171e 2680 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2681 while (i > 0) {
2682 i--;
2683 bio = r1_bio->bios[i];
6a806c51
N
2684 if (bio->bi_end_io==NULL)
2685 continue;
1da177e4
LT
2686 /* remove last page from this bio */
2687 bio->bi_vcnt--;
4f024f37 2688 bio->bi_iter.bi_size -= len;
b7c44ed9 2689 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2690 }
2691 goto bio_full;
2692 }
2693 }
2694 }
2695 nr_sectors += len>>9;
2696 sector_nr += len>>9;
191ea9b2 2697 sync_blocks -= (len>>9);
1da177e4
LT
2698 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2699 bio_full:
1da177e4
LT
2700 r1_bio->sectors = nr_sectors;
2701
d11c171e
N
2702 /* For a user-requested sync, we read all readable devices and do a
2703 * compare
2704 */
2705 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2706 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2707 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2708 bio = r1_bio->bios[i];
2709 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2710 read_targets--;
ddac7c7e 2711 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2712 generic_make_request(bio);
2713 }
2714 }
2715 } else {
2716 atomic_set(&r1_bio->remaining, 1);
2717 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2718 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2719 generic_make_request(bio);
1da177e4 2720
d11c171e 2721 }
1da177e4
LT
2722 return nr_sectors;
2723}
2724
fd01b88c 2725static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2726{
2727 if (sectors)
2728 return sectors;
2729
2730 return mddev->dev_sectors;
2731}
2732
e8096360 2733static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2734{
e8096360 2735 struct r1conf *conf;
709ae487 2736 int i;
0eaf822c 2737 struct raid1_info *disk;
3cb03002 2738 struct md_rdev *rdev;
709ae487 2739 int err = -ENOMEM;
1da177e4 2740
e8096360 2741 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2742 if (!conf)
709ae487 2743 goto abort;
1da177e4 2744
0eaf822c 2745 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2746 * mddev->raid_disks * 2,
1da177e4
LT
2747 GFP_KERNEL);
2748 if (!conf->mirrors)
709ae487 2749 goto abort;
1da177e4 2750
ddaf22ab
N
2751 conf->tmppage = alloc_page(GFP_KERNEL);
2752 if (!conf->tmppage)
709ae487 2753 goto abort;
ddaf22ab 2754
709ae487 2755 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2756 if (!conf->poolinfo)
709ae487 2757 goto abort;
8f19ccb2 2758 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2759 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2760 r1bio_pool_free,
2761 conf->poolinfo);
2762 if (!conf->r1bio_pool)
709ae487
N
2763 goto abort;
2764
ed9bfdf1 2765 conf->poolinfo->mddev = mddev;
1da177e4 2766
c19d5798 2767 err = -EINVAL;
e7e72bf6 2768 spin_lock_init(&conf->device_lock);
dafb20fa 2769 rdev_for_each(rdev, mddev) {
aba336bd 2770 struct request_queue *q;
709ae487 2771 int disk_idx = rdev->raid_disk;
1da177e4
LT
2772 if (disk_idx >= mddev->raid_disks
2773 || disk_idx < 0)
2774 continue;
c19d5798 2775 if (test_bit(Replacement, &rdev->flags))
02b898f2 2776 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2777 else
2778 disk = conf->mirrors + disk_idx;
1da177e4 2779
c19d5798
N
2780 if (disk->rdev)
2781 goto abort;
1da177e4 2782 disk->rdev = rdev;
aba336bd 2783 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2784
2785 disk->head_position = 0;
12cee5a8 2786 disk->seq_start = MaxSector;
1da177e4
LT
2787 }
2788 conf->raid_disks = mddev->raid_disks;
2789 conf->mddev = mddev;
1da177e4 2790 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2791 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2792
2793 spin_lock_init(&conf->resync_lock);
17999be4 2794 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2795
191ea9b2 2796 bio_list_init(&conf->pending_bio_list);
34db0cd6 2797 conf->pending_count = 0;
d890fa2b 2798 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2799
79ef3a8a 2800 conf->start_next_window = MaxSector;
2801 conf->current_window_requests = conf->next_window_requests = 0;
2802
c19d5798 2803 err = -EIO;
8f19ccb2 2804 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2805
2806 disk = conf->mirrors + i;
2807
c19d5798
N
2808 if (i < conf->raid_disks &&
2809 disk[conf->raid_disks].rdev) {
2810 /* This slot has a replacement. */
2811 if (!disk->rdev) {
2812 /* No original, just make the replacement
2813 * a recovering spare
2814 */
2815 disk->rdev =
2816 disk[conf->raid_disks].rdev;
2817 disk[conf->raid_disks].rdev = NULL;
2818 } else if (!test_bit(In_sync, &disk->rdev->flags))
2819 /* Original is not in_sync - bad */
2820 goto abort;
2821 }
2822
5fd6c1dc
N
2823 if (!disk->rdev ||
2824 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2825 disk->head_position = 0;
4f0a5e01
JB
2826 if (disk->rdev &&
2827 (disk->rdev->saved_raid_disk < 0))
918f0238 2828 conf->fullsync = 1;
be4d3280 2829 }
1da177e4 2830 }
709ae487 2831
709ae487 2832 err = -ENOMEM;
0232605d 2833 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2834 if (!conf->thread) {
2835 printk(KERN_ERR
9dd1e2fa 2836 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2837 mdname(mddev));
2838 goto abort;
11ce99e6 2839 }
1da177e4 2840
709ae487
N
2841 return conf;
2842
2843 abort:
2844 if (conf) {
644df1a8 2845 mempool_destroy(conf->r1bio_pool);
709ae487
N
2846 kfree(conf->mirrors);
2847 safe_put_page(conf->tmppage);
2848 kfree(conf->poolinfo);
2849 kfree(conf);
2850 }
2851 return ERR_PTR(err);
2852}
2853
afa0f557 2854static void raid1_free(struct mddev *mddev, void *priv);
fd01b88c 2855static int run(struct mddev *mddev)
709ae487 2856{
e8096360 2857 struct r1conf *conf;
709ae487 2858 int i;
3cb03002 2859 struct md_rdev *rdev;
5220ea1e 2860 int ret;
2ff8cc2c 2861 bool discard_supported = false;
709ae487
N
2862
2863 if (mddev->level != 1) {
9dd1e2fa 2864 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2865 mdname(mddev), mddev->level);
2866 return -EIO;
2867 }
2868 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2869 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2870 mdname(mddev));
2871 return -EIO;
2872 }
1da177e4 2873 /*
709ae487
N
2874 * copy the already verified devices into our private RAID1
2875 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2876 * should be freed in raid1_free()]
1da177e4 2877 */
709ae487
N
2878 if (mddev->private == NULL)
2879 conf = setup_conf(mddev);
2880 else
2881 conf = mddev->private;
1da177e4 2882
709ae487
N
2883 if (IS_ERR(conf))
2884 return PTR_ERR(conf);
1da177e4 2885
c8dc9c65 2886 if (mddev->queue)
5026d7a9
PA
2887 blk_queue_max_write_same_sectors(mddev->queue, 0);
2888
dafb20fa 2889 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2890 if (!mddev->gendisk)
2891 continue;
709ae487
N
2892 disk_stack_limits(mddev->gendisk, rdev->bdev,
2893 rdev->data_offset << 9);
2ff8cc2c
SL
2894 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2895 discard_supported = true;
1da177e4 2896 }
191ea9b2 2897
709ae487
N
2898 mddev->degraded = 0;
2899 for (i=0; i < conf->raid_disks; i++)
2900 if (conf->mirrors[i].rdev == NULL ||
2901 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2902 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2903 mddev->degraded++;
2904
2905 if (conf->raid_disks - mddev->degraded == 1)
2906 mddev->recovery_cp = MaxSector;
2907
8c6ac868 2908 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2909 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2910 " -- starting background reconstruction\n",
2911 mdname(mddev));
f72ffdd6 2912 printk(KERN_INFO
9dd1e2fa 2913 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2914 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2915 mddev->raid_disks);
709ae487 2916
1da177e4
LT
2917 /*
2918 * Ok, everything is just fine now
2919 */
709ae487
N
2920 mddev->thread = conf->thread;
2921 conf->thread = NULL;
2922 mddev->private = conf;
2923
1f403624 2924 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2925
1ed7242e 2926 if (mddev->queue) {
2ff8cc2c
SL
2927 if (discard_supported)
2928 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2929 mddev->queue);
2930 else
2931 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2932 mddev->queue);
1ed7242e 2933 }
5220ea1e 2934
2935 ret = md_integrity_register(mddev);
5aa61f42
N
2936 if (ret) {
2937 md_unregister_thread(&mddev->thread);
afa0f557 2938 raid1_free(mddev, conf);
5aa61f42 2939 }
5220ea1e 2940 return ret;
1da177e4
LT
2941}
2942
afa0f557 2943static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2944{
afa0f557 2945 struct r1conf *conf = priv;
409c57f3 2946
644df1a8 2947 mempool_destroy(conf->r1bio_pool);
990a8baf 2948 kfree(conf->mirrors);
0fea7ed8 2949 safe_put_page(conf->tmppage);
990a8baf 2950 kfree(conf->poolinfo);
1da177e4 2951 kfree(conf);
1da177e4
LT
2952}
2953
fd01b88c 2954static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2955{
2956 /* no resync is happening, and there is enough space
2957 * on all devices, so we can resize.
2958 * We need to make sure resync covers any new space.
2959 * If the array is shrinking we should possibly wait until
2960 * any io in the removed space completes, but it hardly seems
2961 * worth it.
2962 */
a4a6125a
N
2963 sector_t newsize = raid1_size(mddev, sectors, 0);
2964 if (mddev->external_size &&
2965 mddev->array_sectors > newsize)
b522adcd 2966 return -EINVAL;
a4a6125a
N
2967 if (mddev->bitmap) {
2968 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2969 if (ret)
2970 return ret;
2971 }
2972 md_set_array_sectors(mddev, newsize);
f233ea5c 2973 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2974 revalidate_disk(mddev->gendisk);
b522adcd 2975 if (sectors > mddev->dev_sectors &&
b098636c 2976 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2977 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2978 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2979 }
b522adcd 2980 mddev->dev_sectors = sectors;
4b5c7ae8 2981 mddev->resync_max_sectors = sectors;
1da177e4
LT
2982 return 0;
2983}
2984
fd01b88c 2985static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2986{
2987 /* We need to:
2988 * 1/ resize the r1bio_pool
2989 * 2/ resize conf->mirrors
2990 *
2991 * We allocate a new r1bio_pool if we can.
2992 * Then raise a device barrier and wait until all IO stops.
2993 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2994 *
2995 * At the same time, we "pack" the devices so that all the missing
2996 * devices have the higher raid_disk numbers.
1da177e4
LT
2997 */
2998 mempool_t *newpool, *oldpool;
2999 struct pool_info *newpoolinfo;
0eaf822c 3000 struct raid1_info *newmirrors;
e8096360 3001 struct r1conf *conf = mddev->private;
63c70c4f 3002 int cnt, raid_disks;
c04be0aa 3003 unsigned long flags;
b5470dc5 3004 int d, d2, err;
1da177e4 3005
63c70c4f 3006 /* Cannot change chunk_size, layout, or level */
664e7c41 3007 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3008 mddev->layout != mddev->new_layout ||
3009 mddev->level != mddev->new_level) {
664e7c41 3010 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3011 mddev->new_layout = mddev->layout;
3012 mddev->new_level = mddev->level;
3013 return -EINVAL;
3014 }
3015
b5470dc5
DW
3016 err = md_allow_write(mddev);
3017 if (err)
3018 return err;
2a2275d6 3019
63c70c4f
N
3020 raid_disks = mddev->raid_disks + mddev->delta_disks;
3021
6ea9c07c
N
3022 if (raid_disks < conf->raid_disks) {
3023 cnt=0;
3024 for (d= 0; d < conf->raid_disks; d++)
3025 if (conf->mirrors[d].rdev)
3026 cnt++;
3027 if (cnt > raid_disks)
1da177e4 3028 return -EBUSY;
6ea9c07c 3029 }
1da177e4
LT
3030
3031 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3032 if (!newpoolinfo)
3033 return -ENOMEM;
3034 newpoolinfo->mddev = mddev;
8f19ccb2 3035 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3036
3037 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3038 r1bio_pool_free, newpoolinfo);
3039 if (!newpool) {
3040 kfree(newpoolinfo);
3041 return -ENOMEM;
3042 }
0eaf822c 3043 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3044 GFP_KERNEL);
1da177e4
LT
3045 if (!newmirrors) {
3046 kfree(newpoolinfo);
3047 mempool_destroy(newpool);
3048 return -ENOMEM;
3049 }
1da177e4 3050
e2d59925 3051 freeze_array(conf, 0);
1da177e4
LT
3052
3053 /* ok, everything is stopped */
3054 oldpool = conf->r1bio_pool;
3055 conf->r1bio_pool = newpool;
6ea9c07c 3056
a88aa786 3057 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3058 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3059 if (rdev && rdev->raid_disk != d2) {
36fad858 3060 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3061 rdev->raid_disk = d2;
36fad858
NK
3062 sysfs_unlink_rdev(mddev, rdev);
3063 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3064 printk(KERN_WARNING
36fad858
NK
3065 "md/raid1:%s: cannot register rd%d\n",
3066 mdname(mddev), rdev->raid_disk);
6ea9c07c 3067 }
a88aa786
N
3068 if (rdev)
3069 newmirrors[d2++].rdev = rdev;
3070 }
1da177e4
LT
3071 kfree(conf->mirrors);
3072 conf->mirrors = newmirrors;
3073 kfree(conf->poolinfo);
3074 conf->poolinfo = newpoolinfo;
3075
c04be0aa 3076 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3077 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3078 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3079 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3080 mddev->delta_disks = 0;
1da177e4 3081
e2d59925 3082 unfreeze_array(conf);
1da177e4 3083
985ca973 3084 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3085 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3086 md_wakeup_thread(mddev->thread);
3087
3088 mempool_destroy(oldpool);
3089 return 0;
3090}
3091
fd01b88c 3092static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3093{
e8096360 3094 struct r1conf *conf = mddev->private;
36fa3063
N
3095
3096 switch(state) {
6eef4b21
N
3097 case 2: /* wake for suspend */
3098 wake_up(&conf->wait_barrier);
3099 break;
9e6603da 3100 case 1:
07169fd4 3101 freeze_array(conf, 0);
36fa3063 3102 break;
9e6603da 3103 case 0:
07169fd4 3104 unfreeze_array(conf);
36fa3063
N
3105 break;
3106 }
36fa3063
N
3107}
3108
fd01b88c 3109static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3110{
3111 /* raid1 can take over:
3112 * raid5 with 2 devices, any layout or chunk size
3113 */
3114 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3115 struct r1conf *conf;
709ae487
N
3116 mddev->new_level = 1;
3117 mddev->new_layout = 0;
3118 mddev->new_chunk_sectors = 0;
3119 conf = setup_conf(mddev);
3120 if (!IS_ERR(conf))
07169fd4 3121 /* Array must appear to be quiesced */
3122 conf->array_frozen = 1;
709ae487
N
3123 return conf;
3124 }
3125 return ERR_PTR(-EINVAL);
3126}
1da177e4 3127
84fc4b56 3128static struct md_personality raid1_personality =
1da177e4
LT
3129{
3130 .name = "raid1",
2604b703 3131 .level = 1,
1da177e4
LT
3132 .owner = THIS_MODULE,
3133 .make_request = make_request,
3134 .run = run,
afa0f557 3135 .free = raid1_free,
1da177e4
LT
3136 .status = status,
3137 .error_handler = error,
3138 .hot_add_disk = raid1_add_disk,
3139 .hot_remove_disk= raid1_remove_disk,
3140 .spare_active = raid1_spare_active,
3141 .sync_request = sync_request,
3142 .resize = raid1_resize,
80c3a6ce 3143 .size = raid1_size,
63c70c4f 3144 .check_reshape = raid1_reshape,
36fa3063 3145 .quiesce = raid1_quiesce,
709ae487 3146 .takeover = raid1_takeover,
5c675f83 3147 .congested = raid1_congested,
1da177e4
LT
3148};
3149
3150static int __init raid_init(void)
3151{
2604b703 3152 return register_md_personality(&raid1_personality);
1da177e4
LT
3153}
3154
3155static void raid_exit(void)
3156{
2604b703 3157 unregister_md_personality(&raid1_personality);
1da177e4
LT
3158}
3159
3160module_init(raid_init);
3161module_exit(raid_exit);
3162MODULE_LICENSE("GPL");
0efb9e61 3163MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3164MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3165MODULE_ALIAS("md-raid1");
2604b703 3166MODULE_ALIAS("md-level-1");
34db0cd6
N
3167
3168module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);