]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/md/raid1.c
md/raid1,raid10: use freeze_array in place of raise_barrier in various places.
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
95 struct page *page;
9f2c9d12 96 struct r1bio *r1_bio;
1da177e4
LT
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 101 if (!r1_bio)
1da177e4 102 return NULL;
1da177e4
LT
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
6746557f 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
1da177e4 118 */
d11c171e
N
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
303a0e11 131 bio->bi_vcnt = i+1;
d11c171e
N
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146out_free_pages:
303a0e11
N
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 150 j = -1;
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258}
259
9f2c9d12 260static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
261{
262 struct bio *bio = r1_bio->master_bio;
263
4b6d287f
N
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
4b6d287f 271
d2eb35ac 272 call_bio_endio(r1_bio);
4b6d287f 273 }
1da177e4
LT
274 free_r1bio(r1_bio);
275}
276
277/*
278 * Update disk head position estimator based on IRQ completion info.
279 */
9f2c9d12 280static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 281{
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286}
287
ba3ae3be
NK
288/*
289 * Find the disk number which triggered given bio
290 */
9f2c9d12 291static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
292{
293 int mirror;
30194636
N
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
ba3ae3be 296
8f19ccb2 297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
8f19ccb2 301 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305}
306
6712ecf8 307static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 310 struct r1bio *r1_bio = bio->bi_private;
1da177e4 311 int mirror;
e8096360 312 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 313
1da177e4
LT
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
ddaf22ab
N
318 update_head_pos(mirror, r1_bio);
319
dd00a99e
N
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 326 */
dd00a99e
N
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
1da177e4 335
7ad4d4a6 336 if (uptodate) {
1da177e4 337 raid_end_bio_io(r1_bio);
7ad4d4a6
N
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
1da177e4
LT
340 /*
341 * oops, read error:
342 */
343 char b[BDEVNAME_SIZE];
8bda470e
CD
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
349 b),
350 (unsigned long long)r1_bio->sector);
d2eb35ac 351 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 352 reschedule_retry(r1_bio);
7ad4d4a6 353 /* don't drop the reference on read_disk yet */
1da177e4 354 }
1da177e4
LT
355}
356
9f2c9d12 357static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
358{
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374}
375
9f2c9d12 376static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 377{
cd5ff9a1
N
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
4367af55
N
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
4e78064f
N
389 }
390}
391
6712ecf8 392static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r1bio *r1_bio = bio->bi_private;
a9701a30 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 397 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 398 struct bio *to_put = NULL;
1da177e4 399
ba3ae3be 400 mirror = find_bio_disk(r1_bio, bio);
1da177e4 401
e9c7469b
TH
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
e9c7469b 405 if (!uptodate) {
cd5ff9a1
N
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
19d67169
N
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
cd5ff9a1 413 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 414 } else {
1da177e4 415 /*
e9c7469b
TH
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
1da177e4 424 */
4367af55
N
425 sector_t first_bad;
426 int bad_sectors;
427
cd5ff9a1
N
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
3056e3ae
AL
430 /*
431 * Do not set R1BIO_Uptodate if the current device is
432 * rebuilding or Faulty. This is because we cannot use
433 * such device for properly reading the data back (we could
434 * potentially use it, if the current write would have felt
435 * before rdev->recovery_offset, but for simplicity we don't
436 * check this here.
437 */
438 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
439 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
440 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 441
4367af55
N
442 /* Maybe we can clear some bad blocks. */
443 if (is_badblock(conf->mirrors[mirror].rdev,
444 r1_bio->sector, r1_bio->sectors,
445 &first_bad, &bad_sectors)) {
446 r1_bio->bios[mirror] = IO_MADE_GOOD;
447 set_bit(R1BIO_MadeGood, &r1_bio->state);
448 }
449 }
450
e9c7469b
TH
451 if (behind) {
452 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
453 atomic_dec(&r1_bio->behind_remaining);
454
455 /*
456 * In behind mode, we ACK the master bio once the I/O
457 * has safely reached all non-writemostly
458 * disks. Setting the Returned bit ensures that this
459 * gets done only once -- we don't ever want to return
460 * -EIO here, instead we'll wait
461 */
462 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
463 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
464 /* Maybe we can return now */
465 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
466 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
467 pr_debug("raid1: behind end write sectors"
468 " %llu-%llu\n",
469 (unsigned long long) mbio->bi_sector,
470 (unsigned long long) mbio->bi_sector +
471 (mbio->bi_size >> 9) - 1);
d2eb35ac 472 call_bio_endio(r1_bio);
4b6d287f
N
473 }
474 }
475 }
4367af55
N
476 if (r1_bio->bios[mirror] == NULL)
477 rdev_dec_pending(conf->mirrors[mirror].rdev,
478 conf->mddev);
e9c7469b 479
1da177e4 480 /*
1da177e4
LT
481 * Let's see if all mirrored write operations have finished
482 * already.
483 */
af6d7b76 484 r1_bio_write_done(r1_bio);
c70810b3 485
04b857f7
N
486 if (to_put)
487 bio_put(to_put);
1da177e4
LT
488}
489
490
491/*
492 * This routine returns the disk from which the requested read should
493 * be done. There is a per-array 'next expected sequential IO' sector
494 * number - if this matches on the next IO then we use the last disk.
495 * There is also a per-disk 'last know head position' sector that is
496 * maintained from IRQ contexts, both the normal and the resync IO
497 * completion handlers update this position correctly. If there is no
498 * perfect sequential match then we pick the disk whose head is closest.
499 *
500 * If there are 2 mirrors in the same 2 devices, performance degrades
501 * because position is mirror, not device based.
502 *
503 * The rdev for the device selected will have nr_pending incremented.
504 */
e8096360 505static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 506{
af3a2cd6 507 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
508 int sectors;
509 int best_good_sectors;
9dedf603
SL
510 int best_disk, best_dist_disk, best_pending_disk;
511 int has_nonrot_disk;
be4d3280 512 int disk;
76073054 513 sector_t best_dist;
9dedf603 514 unsigned int min_pending;
3cb03002 515 struct md_rdev *rdev;
f3ac8bf7 516 int choose_first;
12cee5a8 517 int choose_next_idle;
1da177e4
LT
518
519 rcu_read_lock();
520 /*
8ddf9efe 521 * Check if we can balance. We can balance on the whole
1da177e4
LT
522 * device if no resync is going on, or below the resync window.
523 * We take the first readable disk when above the resync window.
524 */
525 retry:
d2eb35ac 526 sectors = r1_bio->sectors;
76073054 527 best_disk = -1;
9dedf603 528 best_dist_disk = -1;
76073054 529 best_dist = MaxSector;
9dedf603
SL
530 best_pending_disk = -1;
531 min_pending = UINT_MAX;
d2eb35ac 532 best_good_sectors = 0;
9dedf603 533 has_nonrot_disk = 0;
12cee5a8 534 choose_next_idle = 0;
d2eb35ac 535
1da177e4 536 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 537 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 538 choose_first = 1;
be4d3280 539 else
f3ac8bf7 540 choose_first = 0;
1da177e4 541
be4d3280 542 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 543 sector_t dist;
d2eb35ac
N
544 sector_t first_bad;
545 int bad_sectors;
9dedf603 546 unsigned int pending;
12cee5a8 547 bool nonrot;
d2eb35ac 548
f3ac8bf7
N
549 rdev = rcu_dereference(conf->mirrors[disk].rdev);
550 if (r1_bio->bios[disk] == IO_BLOCKED
551 || rdev == NULL
6b740b8d 552 || test_bit(Unmerged, &rdev->flags)
76073054 553 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 554 continue;
76073054
N
555 if (!test_bit(In_sync, &rdev->flags) &&
556 rdev->recovery_offset < this_sector + sectors)
1da177e4 557 continue;
76073054
N
558 if (test_bit(WriteMostly, &rdev->flags)) {
559 /* Don't balance among write-mostly, just
560 * use the first as a last resort */
307729c8
N
561 if (best_disk < 0) {
562 if (is_badblock(rdev, this_sector, sectors,
563 &first_bad, &bad_sectors)) {
564 if (first_bad < this_sector)
565 /* Cannot use this */
566 continue;
567 best_good_sectors = first_bad - this_sector;
568 } else
569 best_good_sectors = sectors;
76073054 570 best_disk = disk;
307729c8 571 }
76073054
N
572 continue;
573 }
574 /* This is a reasonable device to use. It might
575 * even be best.
576 */
d2eb35ac
N
577 if (is_badblock(rdev, this_sector, sectors,
578 &first_bad, &bad_sectors)) {
579 if (best_dist < MaxSector)
580 /* already have a better device */
581 continue;
582 if (first_bad <= this_sector) {
583 /* cannot read here. If this is the 'primary'
584 * device, then we must not read beyond
585 * bad_sectors from another device..
586 */
587 bad_sectors -= (this_sector - first_bad);
588 if (choose_first && sectors > bad_sectors)
589 sectors = bad_sectors;
590 if (best_good_sectors > sectors)
591 best_good_sectors = sectors;
592
593 } else {
594 sector_t good_sectors = first_bad - this_sector;
595 if (good_sectors > best_good_sectors) {
596 best_good_sectors = good_sectors;
597 best_disk = disk;
598 }
599 if (choose_first)
600 break;
601 }
602 continue;
603 } else
604 best_good_sectors = sectors;
605
12cee5a8
SL
606 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
607 has_nonrot_disk |= nonrot;
9dedf603 608 pending = atomic_read(&rdev->nr_pending);
76073054 609 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 610 if (choose_first) {
76073054 611 best_disk = disk;
1da177e4
LT
612 break;
613 }
12cee5a8
SL
614 /* Don't change to another disk for sequential reads */
615 if (conf->mirrors[disk].next_seq_sect == this_sector
616 || dist == 0) {
617 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
618 struct raid1_info *mirror = &conf->mirrors[disk];
619
620 best_disk = disk;
621 /*
622 * If buffered sequential IO size exceeds optimal
623 * iosize, check if there is idle disk. If yes, choose
624 * the idle disk. read_balance could already choose an
625 * idle disk before noticing it's a sequential IO in
626 * this disk. This doesn't matter because this disk
627 * will idle, next time it will be utilized after the
628 * first disk has IO size exceeds optimal iosize. In
629 * this way, iosize of the first disk will be optimal
630 * iosize at least. iosize of the second disk might be
631 * small, but not a big deal since when the second disk
632 * starts IO, the first disk is likely still busy.
633 */
634 if (nonrot && opt_iosize > 0 &&
635 mirror->seq_start != MaxSector &&
636 mirror->next_seq_sect > opt_iosize &&
637 mirror->next_seq_sect - opt_iosize >=
638 mirror->seq_start) {
639 choose_next_idle = 1;
640 continue;
641 }
642 break;
643 }
644 /* If device is idle, use it */
645 if (pending == 0) {
646 best_disk = disk;
647 break;
648 }
649
650 if (choose_next_idle)
651 continue;
9dedf603
SL
652
653 if (min_pending > pending) {
654 min_pending = pending;
655 best_pending_disk = disk;
656 }
657
76073054
N
658 if (dist < best_dist) {
659 best_dist = dist;
9dedf603 660 best_dist_disk = disk;
1da177e4 661 }
f3ac8bf7 662 }
1da177e4 663
9dedf603
SL
664 /*
665 * If all disks are rotational, choose the closest disk. If any disk is
666 * non-rotational, choose the disk with less pending request even the
667 * disk is rotational, which might/might not be optimal for raids with
668 * mixed ratation/non-rotational disks depending on workload.
669 */
670 if (best_disk == -1) {
671 if (has_nonrot_disk)
672 best_disk = best_pending_disk;
673 else
674 best_disk = best_dist_disk;
675 }
676
76073054
N
677 if (best_disk >= 0) {
678 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
679 if (!rdev)
680 goto retry;
681 atomic_inc(&rdev->nr_pending);
76073054 682 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
683 /* cannot risk returning a device that failed
684 * before we inc'ed nr_pending
685 */
03c902e1 686 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
687 goto retry;
688 }
d2eb35ac 689 sectors = best_good_sectors;
12cee5a8
SL
690
691 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
692 conf->mirrors[best_disk].seq_start = this_sector;
693
be4d3280 694 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
695 }
696 rcu_read_unlock();
d2eb35ac 697 *max_sectors = sectors;
1da177e4 698
76073054 699 return best_disk;
1da177e4
LT
700}
701
6b740b8d
N
702static int raid1_mergeable_bvec(struct request_queue *q,
703 struct bvec_merge_data *bvm,
704 struct bio_vec *biovec)
705{
706 struct mddev *mddev = q->queuedata;
707 struct r1conf *conf = mddev->private;
708 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
709 int max = biovec->bv_len;
710
711 if (mddev->merge_check_needed) {
712 int disk;
713 rcu_read_lock();
714 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
715 struct md_rdev *rdev = rcu_dereference(
716 conf->mirrors[disk].rdev);
717 if (rdev && !test_bit(Faulty, &rdev->flags)) {
718 struct request_queue *q =
719 bdev_get_queue(rdev->bdev);
720 if (q->merge_bvec_fn) {
721 bvm->bi_sector = sector +
722 rdev->data_offset;
723 bvm->bi_bdev = rdev->bdev;
724 max = min(max, q->merge_bvec_fn(
725 q, bvm, biovec));
726 }
727 }
728 }
729 rcu_read_unlock();
730 }
731 return max;
732
733}
734
fd01b88c 735int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 736{
e8096360 737 struct r1conf *conf = mddev->private;
0d129228
N
738 int i, ret = 0;
739
34db0cd6
N
740 if ((bits & (1 << BDI_async_congested)) &&
741 conf->pending_count >= max_queued_requests)
742 return 1;
743
0d129228 744 rcu_read_lock();
f53e29fc 745 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 746 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 748 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 749
1ed7242e
JB
750 BUG_ON(!q);
751
0d129228
N
752 /* Note the '|| 1' - when read_balance prefers
753 * non-congested targets, it can be removed
754 */
91a9e99d 755 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
756 ret |= bdi_congested(&q->backing_dev_info, bits);
757 else
758 ret &= bdi_congested(&q->backing_dev_info, bits);
759 }
760 }
761 rcu_read_unlock();
762 return ret;
763}
1ed7242e 764EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 765
1ed7242e
JB
766static int raid1_congested(void *data, int bits)
767{
fd01b88c 768 struct mddev *mddev = data;
1ed7242e
JB
769
770 return mddev_congested(mddev, bits) ||
771 md_raid1_congested(mddev, bits);
772}
0d129228 773
e8096360 774static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
775{
776 /* Any writes that have been queued but are awaiting
777 * bitmap updates get flushed here.
a35e63ef 778 */
a35e63ef
N
779 spin_lock_irq(&conf->device_lock);
780
781 if (conf->pending_bio_list.head) {
782 struct bio *bio;
783 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 784 conf->pending_count = 0;
a35e63ef
N
785 spin_unlock_irq(&conf->device_lock);
786 /* flush any pending bitmap writes to
787 * disk before proceeding w/ I/O */
788 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 789 wake_up(&conf->wait_barrier);
a35e63ef
N
790
791 while (bio) { /* submit pending writes */
792 struct bio *next = bio->bi_next;
793 bio->bi_next = NULL;
2ff8cc2c
SL
794 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
795 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796 /* Just ignore it */
797 bio_endio(bio, 0);
798 else
799 generic_make_request(bio);
a35e63ef
N
800 bio = next;
801 }
a35e63ef
N
802 } else
803 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
804}
805
17999be4
N
806/* Barriers....
807 * Sometimes we need to suspend IO while we do something else,
808 * either some resync/recovery, or reconfigure the array.
809 * To do this we raise a 'barrier'.
810 * The 'barrier' is a counter that can be raised multiple times
811 * to count how many activities are happening which preclude
812 * normal IO.
813 * We can only raise the barrier if there is no pending IO.
814 * i.e. if nr_pending == 0.
815 * We choose only to raise the barrier if no-one is waiting for the
816 * barrier to go down. This means that as soon as an IO request
817 * is ready, no other operations which require a barrier will start
818 * until the IO request has had a chance.
819 *
820 * So: regular IO calls 'wait_barrier'. When that returns there
821 * is no backgroup IO happening, It must arrange to call
822 * allow_barrier when it has finished its IO.
823 * backgroup IO calls must call raise_barrier. Once that returns
824 * there is no normal IO happeing. It must arrange to call
825 * lower_barrier when the particular background IO completes.
1da177e4
LT
826 */
827#define RESYNC_DEPTH 32
828
e8096360 829static void raise_barrier(struct r1conf *conf)
1da177e4
LT
830{
831 spin_lock_irq(&conf->resync_lock);
17999be4
N
832
833 /* Wait until no block IO is waiting */
834 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 835 conf->resync_lock);
17999be4
N
836
837 /* block any new IO from starting */
838 conf->barrier++;
839
046abeed 840 /* Now wait for all pending IO to complete */
17999be4
N
841 wait_event_lock_irq(conf->wait_barrier,
842 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 843 conf->resync_lock);
17999be4
N
844
845 spin_unlock_irq(&conf->resync_lock);
846}
847
e8096360 848static void lower_barrier(struct r1conf *conf)
17999be4
N
849{
850 unsigned long flags;
709ae487 851 BUG_ON(conf->barrier <= 0);
17999be4
N
852 spin_lock_irqsave(&conf->resync_lock, flags);
853 conf->barrier--;
854 spin_unlock_irqrestore(&conf->resync_lock, flags);
855 wake_up(&conf->wait_barrier);
856}
857
e8096360 858static void wait_barrier(struct r1conf *conf)
17999be4
N
859{
860 spin_lock_irq(&conf->resync_lock);
861 if (conf->barrier) {
862 conf->nr_waiting++;
d6b42dcb
N
863 /* Wait for the barrier to drop.
864 * However if there are already pending
865 * requests (preventing the barrier from
866 * rising completely), and the
867 * pre-process bio queue isn't empty,
868 * then don't wait, as we need to empty
869 * that queue to get the nr_pending
870 * count down.
871 */
872 wait_event_lock_irq(conf->wait_barrier,
873 !conf->barrier ||
874 (conf->nr_pending &&
875 current->bio_list &&
876 !bio_list_empty(current->bio_list)),
eed8c02e 877 conf->resync_lock);
17999be4 878 conf->nr_waiting--;
1da177e4 879 }
17999be4 880 conf->nr_pending++;
1da177e4
LT
881 spin_unlock_irq(&conf->resync_lock);
882}
883
e8096360 884static void allow_barrier(struct r1conf *conf)
17999be4
N
885{
886 unsigned long flags;
887 spin_lock_irqsave(&conf->resync_lock, flags);
888 conf->nr_pending--;
889 spin_unlock_irqrestore(&conf->resync_lock, flags);
890 wake_up(&conf->wait_barrier);
891}
892
e2d59925 893static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
894{
895 /* stop syncio and normal IO and wait for everything to
896 * go quite.
897 * We increment barrier and nr_waiting, and then
e2d59925 898 * wait until nr_pending match nr_queued+extra
1c830532
N
899 * This is called in the context of one normal IO request
900 * that has failed. Thus any sync request that might be pending
901 * will be blocked by nr_pending, and we need to wait for
902 * pending IO requests to complete or be queued for re-try.
e2d59925 903 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
904 * must match the number of pending IOs (nr_pending) before
905 * we continue.
ddaf22ab
N
906 */
907 spin_lock_irq(&conf->resync_lock);
908 conf->barrier++;
909 conf->nr_waiting++;
eed8c02e 910 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 911 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
912 conf->resync_lock,
913 flush_pending_writes(conf));
ddaf22ab
N
914 spin_unlock_irq(&conf->resync_lock);
915}
e8096360 916static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
917{
918 /* reverse the effect of the freeze */
919 spin_lock_irq(&conf->resync_lock);
920 conf->barrier--;
921 conf->nr_waiting--;
922 wake_up(&conf->wait_barrier);
923 spin_unlock_irq(&conf->resync_lock);
924}
925
17999be4 926
4e78064f 927/* duplicate the data pages for behind I/O
4e78064f 928 */
9f2c9d12 929static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
930{
931 int i;
932 struct bio_vec *bvec;
2ca68f5e 933 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 934 GFP_NOIO);
2ca68f5e 935 if (unlikely(!bvecs))
af6d7b76 936 return;
4b6d287f 937
4b6d287f 938 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
939 bvecs[i] = *bvec;
940 bvecs[i].bv_page = alloc_page(GFP_NOIO);
941 if (unlikely(!bvecs[i].bv_page))
4b6d287f 942 goto do_sync_io;
2ca68f5e
N
943 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
944 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
945 kunmap(bvecs[i].bv_page);
4b6d287f
N
946 kunmap(bvec->bv_page);
947 }
2ca68f5e 948 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
949 r1_bio->behind_page_count = bio->bi_vcnt;
950 set_bit(R1BIO_BehindIO, &r1_bio->state);
951 return;
4b6d287f
N
952
953do_sync_io:
af6d7b76 954 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
955 if (bvecs[i].bv_page)
956 put_page(bvecs[i].bv_page);
957 kfree(bvecs);
36a4e1fe 958 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
959}
960
f54a9d0e
N
961struct raid1_plug_cb {
962 struct blk_plug_cb cb;
963 struct bio_list pending;
964 int pending_cnt;
965};
966
967static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
968{
969 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
970 cb);
971 struct mddev *mddev = plug->cb.data;
972 struct r1conf *conf = mddev->private;
973 struct bio *bio;
974
874807a8 975 if (from_schedule || current->bio_list) {
f54a9d0e
N
976 spin_lock_irq(&conf->device_lock);
977 bio_list_merge(&conf->pending_bio_list, &plug->pending);
978 conf->pending_count += plug->pending_cnt;
979 spin_unlock_irq(&conf->device_lock);
ee0b0244 980 wake_up(&conf->wait_barrier);
f54a9d0e
N
981 md_wakeup_thread(mddev->thread);
982 kfree(plug);
983 return;
984 }
985
986 /* we aren't scheduling, so we can do the write-out directly. */
987 bio = bio_list_get(&plug->pending);
988 bitmap_unplug(mddev->bitmap);
989 wake_up(&conf->wait_barrier);
990
991 while (bio) { /* submit pending writes */
992 struct bio *next = bio->bi_next;
993 bio->bi_next = NULL;
32f9f570
SL
994 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
995 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
996 /* Just ignore it */
997 bio_endio(bio, 0);
998 else
999 generic_make_request(bio);
f54a9d0e
N
1000 bio = next;
1001 }
1002 kfree(plug);
1003}
1004
b4fdcb02 1005static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1006{
e8096360 1007 struct r1conf *conf = mddev->private;
0eaf822c 1008 struct raid1_info *mirror;
9f2c9d12 1009 struct r1bio *r1_bio;
1da177e4 1010 struct bio *read_bio;
1f68f0c4 1011 int i, disks;
84255d10 1012 struct bitmap *bitmap;
191ea9b2 1013 unsigned long flags;
a362357b 1014 const int rw = bio_data_dir(bio);
2c7d46ec 1015 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1016 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1017 const unsigned long do_discard = (bio->bi_rw
1018 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1019 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1020 struct md_rdev *blocked_rdev;
f54a9d0e
N
1021 struct blk_plug_cb *cb;
1022 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1023 int first_clone;
1024 int sectors_handled;
1025 int max_sectors;
191ea9b2 1026
1da177e4
LT
1027 /*
1028 * Register the new request and wait if the reconstruction
1029 * thread has put up a bar for new requests.
1030 * Continue immediately if no resync is active currently.
1031 */
62de608d 1032
3d310eb7
N
1033 md_write_start(mddev, bio); /* wait on superblock update early */
1034
6eef4b21
N
1035 if (bio_data_dir(bio) == WRITE &&
1036 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1037 bio->bi_sector < mddev->suspend_hi) {
1038 /* As the suspend_* range is controlled by
1039 * userspace, we want an interruptible
1040 * wait.
1041 */
1042 DEFINE_WAIT(w);
1043 for (;;) {
1044 flush_signals(current);
1045 prepare_to_wait(&conf->wait_barrier,
1046 &w, TASK_INTERRUPTIBLE);
1047 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1048 bio->bi_sector >= mddev->suspend_hi)
1049 break;
1050 schedule();
1051 }
1052 finish_wait(&conf->wait_barrier, &w);
1053 }
62de608d 1054
17999be4 1055 wait_barrier(conf);
1da177e4 1056
84255d10
N
1057 bitmap = mddev->bitmap;
1058
1da177e4
LT
1059 /*
1060 * make_request() can abort the operation when READA is being
1061 * used and no empty request is available.
1062 *
1063 */
1064 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1065
1066 r1_bio->master_bio = bio;
1067 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 1068 r1_bio->state = 0;
1da177e4
LT
1069 r1_bio->mddev = mddev;
1070 r1_bio->sector = bio->bi_sector;
1071
d2eb35ac
N
1072 /* We might need to issue multiple reads to different
1073 * devices if there are bad blocks around, so we keep
1074 * track of the number of reads in bio->bi_phys_segments.
1075 * If this is 0, there is only one r1_bio and no locking
1076 * will be needed when requests complete. If it is
1077 * non-zero, then it is the number of not-completed requests.
1078 */
1079 bio->bi_phys_segments = 0;
1080 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1081
a362357b 1082 if (rw == READ) {
1da177e4
LT
1083 /*
1084 * read balancing logic:
1085 */
d2eb35ac
N
1086 int rdisk;
1087
1088read_again:
1089 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1090
1091 if (rdisk < 0) {
1092 /* couldn't find anywhere to read from */
1093 raid_end_bio_io(r1_bio);
5a7bbad2 1094 return;
1da177e4
LT
1095 }
1096 mirror = conf->mirrors + rdisk;
1097
e555190d
N
1098 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099 bitmap) {
1100 /* Reading from a write-mostly device must
1101 * take care not to over-take any writes
1102 * that are 'behind'
1103 */
1104 wait_event(bitmap->behind_wait,
1105 atomic_read(&bitmap->behind_writes) == 0);
1106 }
1da177e4
LT
1107 r1_bio->read_disk = rdisk;
1108
a167f663 1109 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
1110 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1111 max_sectors);
1da177e4
LT
1112
1113 r1_bio->bios[rdisk] = read_bio;
1114
1115 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1116 read_bio->bi_bdev = mirror->rdev->bdev;
1117 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1118 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1119 read_bio->bi_private = r1_bio;
1120
d2eb35ac
N
1121 if (max_sectors < r1_bio->sectors) {
1122 /* could not read all from this device, so we will
1123 * need another r1_bio.
1124 */
d2eb35ac
N
1125
1126 sectors_handled = (r1_bio->sector + max_sectors
1127 - bio->bi_sector);
1128 r1_bio->sectors = max_sectors;
1129 spin_lock_irq(&conf->device_lock);
1130 if (bio->bi_phys_segments == 0)
1131 bio->bi_phys_segments = 2;
1132 else
1133 bio->bi_phys_segments++;
1134 spin_unlock_irq(&conf->device_lock);
1135 /* Cannot call generic_make_request directly
1136 * as that will be queued in __make_request
1137 * and subsequent mempool_alloc might block waiting
1138 * for it. So hand bio over to raid1d.
1139 */
1140 reschedule_retry(r1_bio);
1141
1142 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1143
1144 r1_bio->master_bio = bio;
1145 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1146 r1_bio->state = 0;
1147 r1_bio->mddev = mddev;
1148 r1_bio->sector = bio->bi_sector + sectors_handled;
1149 goto read_again;
1150 } else
1151 generic_make_request(read_bio);
5a7bbad2 1152 return;
1da177e4
LT
1153 }
1154
1155 /*
1156 * WRITE:
1157 */
34db0cd6
N
1158 if (conf->pending_count >= max_queued_requests) {
1159 md_wakeup_thread(mddev->thread);
1160 wait_event(conf->wait_barrier,
1161 conf->pending_count < max_queued_requests);
1162 }
1f68f0c4 1163 /* first select target devices under rcu_lock and
1da177e4
LT
1164 * inc refcount on their rdev. Record them by setting
1165 * bios[x] to bio
1f68f0c4
N
1166 * If there are known/acknowledged bad blocks on any device on
1167 * which we have seen a write error, we want to avoid writing those
1168 * blocks.
1169 * This potentially requires several writes to write around
1170 * the bad blocks. Each set of writes gets it's own r1bio
1171 * with a set of bios attached.
1da177e4 1172 */
c3b328ac 1173
8f19ccb2 1174 disks = conf->raid_disks * 2;
6bfe0b49
DW
1175 retry_write:
1176 blocked_rdev = NULL;
1da177e4 1177 rcu_read_lock();
1f68f0c4 1178 max_sectors = r1_bio->sectors;
1da177e4 1179 for (i = 0; i < disks; i++) {
3cb03002 1180 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1181 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1182 atomic_inc(&rdev->nr_pending);
1183 blocked_rdev = rdev;
1184 break;
1185 }
1f68f0c4 1186 r1_bio->bios[i] = NULL;
6b740b8d
N
1187 if (!rdev || test_bit(Faulty, &rdev->flags)
1188 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1189 if (i < conf->raid_disks)
1190 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1191 continue;
1192 }
1193
1194 atomic_inc(&rdev->nr_pending);
1195 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1196 sector_t first_bad;
1197 int bad_sectors;
1198 int is_bad;
1199
1200 is_bad = is_badblock(rdev, r1_bio->sector,
1201 max_sectors,
1202 &first_bad, &bad_sectors);
1203 if (is_bad < 0) {
1204 /* mustn't write here until the bad block is
1205 * acknowledged*/
1206 set_bit(BlockedBadBlocks, &rdev->flags);
1207 blocked_rdev = rdev;
1208 break;
1209 }
1210 if (is_bad && first_bad <= r1_bio->sector) {
1211 /* Cannot write here at all */
1212 bad_sectors -= (r1_bio->sector - first_bad);
1213 if (bad_sectors < max_sectors)
1214 /* mustn't write more than bad_sectors
1215 * to other devices yet
1216 */
1217 max_sectors = bad_sectors;
03c902e1 1218 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1219 /* We don't set R1BIO_Degraded as that
1220 * only applies if the disk is
1221 * missing, so it might be re-added,
1222 * and we want to know to recover this
1223 * chunk.
1224 * In this case the device is here,
1225 * and the fact that this chunk is not
1226 * in-sync is recorded in the bad
1227 * block log
1228 */
1229 continue;
964147d5 1230 }
1f68f0c4
N
1231 if (is_bad) {
1232 int good_sectors = first_bad - r1_bio->sector;
1233 if (good_sectors < max_sectors)
1234 max_sectors = good_sectors;
1235 }
1236 }
1237 r1_bio->bios[i] = bio;
1da177e4
LT
1238 }
1239 rcu_read_unlock();
1240
6bfe0b49
DW
1241 if (unlikely(blocked_rdev)) {
1242 /* Wait for this device to become unblocked */
1243 int j;
1244
1245 for (j = 0; j < i; j++)
1246 if (r1_bio->bios[j])
1247 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1248 r1_bio->state = 0;
6bfe0b49
DW
1249 allow_barrier(conf);
1250 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1251 wait_barrier(conf);
1252 goto retry_write;
1253 }
1254
1f68f0c4
N
1255 if (max_sectors < r1_bio->sectors) {
1256 /* We are splitting this write into multiple parts, so
1257 * we need to prepare for allocating another r1_bio.
1258 */
1259 r1_bio->sectors = max_sectors;
1260 spin_lock_irq(&conf->device_lock);
1261 if (bio->bi_phys_segments == 0)
1262 bio->bi_phys_segments = 2;
1263 else
1264 bio->bi_phys_segments++;
1265 spin_unlock_irq(&conf->device_lock);
191ea9b2 1266 }
1f68f0c4 1267 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1268
4e78064f 1269 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1270 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1271
1f68f0c4 1272 first_clone = 1;
1da177e4
LT
1273 for (i = 0; i < disks; i++) {
1274 struct bio *mbio;
1275 if (!r1_bio->bios[i])
1276 continue;
1277
a167f663 1278 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1279 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1280
1281 if (first_clone) {
1282 /* do behind I/O ?
1283 * Not if there are too many, or cannot
1284 * allocate memory, or a reader on WriteMostly
1285 * is waiting for behind writes to flush */
1286 if (bitmap &&
1287 (atomic_read(&bitmap->behind_writes)
1288 < mddev->bitmap_info.max_write_behind) &&
1289 !waitqueue_active(&bitmap->behind_wait))
1290 alloc_behind_pages(mbio, r1_bio);
1291
1292 bitmap_startwrite(bitmap, r1_bio->sector,
1293 r1_bio->sectors,
1294 test_bit(R1BIO_BehindIO,
1295 &r1_bio->state));
1296 first_clone = 0;
1297 }
2ca68f5e 1298 if (r1_bio->behind_bvecs) {
4b6d287f
N
1299 struct bio_vec *bvec;
1300 int j;
1301
1302 /* Yes, I really want the '__' version so that
1303 * we clear any unused pointer in the io_vec, rather
1304 * than leave them unchanged. This is important
1305 * because when we come to free the pages, we won't
046abeed 1306 * know the original bi_idx, so we just free
4b6d287f
N
1307 * them all
1308 */
1309 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1310 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1311 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1312 atomic_inc(&r1_bio->behind_remaining);
1313 }
1314
1f68f0c4
N
1315 r1_bio->bios[i] = mbio;
1316
1317 mbio->bi_sector = (r1_bio->sector +
1318 conf->mirrors[i].rdev->data_offset);
1319 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1320 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1321 mbio->bi_rw =
1322 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1323 mbio->bi_private = r1_bio;
1324
1da177e4 1325 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1326
1327 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1328 if (cb)
1329 plug = container_of(cb, struct raid1_plug_cb, cb);
1330 else
1331 plug = NULL;
4e78064f 1332 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1333 if (plug) {
1334 bio_list_add(&plug->pending, mbio);
1335 plug->pending_cnt++;
1336 } else {
1337 bio_list_add(&conf->pending_bio_list, mbio);
1338 conf->pending_count++;
1339 }
4e78064f 1340 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1341 if (!plug)
b357f04a 1342 md_wakeup_thread(mddev->thread);
1da177e4 1343 }
079fa166
N
1344 /* Mustn't call r1_bio_write_done before this next test,
1345 * as it could result in the bio being freed.
1346 */
1f68f0c4 1347 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1348 r1_bio_write_done(r1_bio);
1f68f0c4
N
1349 /* We need another r1_bio. It has already been counted
1350 * in bio->bi_phys_segments
1351 */
1352 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1353 r1_bio->master_bio = bio;
1354 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1355 r1_bio->state = 0;
1356 r1_bio->mddev = mddev;
1357 r1_bio->sector = bio->bi_sector + sectors_handled;
1358 goto retry_write;
1359 }
1360
079fa166
N
1361 r1_bio_write_done(r1_bio);
1362
1363 /* In case raid1d snuck in to freeze_array */
1364 wake_up(&conf->wait_barrier);
1da177e4
LT
1365}
1366
fd01b88c 1367static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1368{
e8096360 1369 struct r1conf *conf = mddev->private;
1da177e4
LT
1370 int i;
1371
1372 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1373 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1374 rcu_read_lock();
1375 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1376 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1377 seq_printf(seq, "%s",
ddac7c7e
N
1378 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1379 }
1380 rcu_read_unlock();
1da177e4
LT
1381 seq_printf(seq, "]");
1382}
1383
1384
fd01b88c 1385static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1386{
1387 char b[BDEVNAME_SIZE];
e8096360 1388 struct r1conf *conf = mddev->private;
1da177e4
LT
1389
1390 /*
1391 * If it is not operational, then we have already marked it as dead
1392 * else if it is the last working disks, ignore the error, let the
1393 * next level up know.
1394 * else mark the drive as failed
1395 */
b2d444d7 1396 if (test_bit(In_sync, &rdev->flags)
4044ba58 1397 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1398 /*
1399 * Don't fail the drive, act as though we were just a
4044ba58
N
1400 * normal single drive.
1401 * However don't try a recovery from this drive as
1402 * it is very likely to fail.
1da177e4 1403 */
5389042f 1404 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1405 return;
4044ba58 1406 }
de393cde 1407 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1408 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1409 unsigned long flags;
1410 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1411 mddev->degraded++;
dd00a99e 1412 set_bit(Faulty, &rdev->flags);
c04be0aa 1413 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1414 /*
1415 * if recovery is running, make sure it aborts.
1416 */
dfc70645 1417 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1418 } else
1419 set_bit(Faulty, &rdev->flags);
850b2b42 1420 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1421 printk(KERN_ALERT
1422 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1423 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1424 mdname(mddev), bdevname(rdev->bdev, b),
1425 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1426}
1427
e8096360 1428static void print_conf(struct r1conf *conf)
1da177e4
LT
1429{
1430 int i;
1da177e4 1431
9dd1e2fa 1432 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1433 if (!conf) {
9dd1e2fa 1434 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1435 return;
1436 }
9dd1e2fa 1437 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1438 conf->raid_disks);
1439
ddac7c7e 1440 rcu_read_lock();
1da177e4
LT
1441 for (i = 0; i < conf->raid_disks; i++) {
1442 char b[BDEVNAME_SIZE];
3cb03002 1443 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1444 if (rdev)
9dd1e2fa 1445 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1446 i, !test_bit(In_sync, &rdev->flags),
1447 !test_bit(Faulty, &rdev->flags),
1448 bdevname(rdev->bdev,b));
1da177e4 1449 }
ddac7c7e 1450 rcu_read_unlock();
1da177e4
LT
1451}
1452
e8096360 1453static void close_sync(struct r1conf *conf)
1da177e4 1454{
17999be4
N
1455 wait_barrier(conf);
1456 allow_barrier(conf);
1da177e4
LT
1457
1458 mempool_destroy(conf->r1buf_pool);
1459 conf->r1buf_pool = NULL;
1460}
1461
fd01b88c 1462static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1463{
1464 int i;
e8096360 1465 struct r1conf *conf = mddev->private;
6b965620
N
1466 int count = 0;
1467 unsigned long flags;
1da177e4
LT
1468
1469 /*
1470 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1471 * and mark them readable.
1472 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1473 */
1474 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1475 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1476 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1477 if (repl
1478 && repl->recovery_offset == MaxSector
1479 && !test_bit(Faulty, &repl->flags)
1480 && !test_and_set_bit(In_sync, &repl->flags)) {
1481 /* replacement has just become active */
1482 if (!rdev ||
1483 !test_and_clear_bit(In_sync, &rdev->flags))
1484 count++;
1485 if (rdev) {
1486 /* Replaced device not technically
1487 * faulty, but we need to be sure
1488 * it gets removed and never re-added
1489 */
1490 set_bit(Faulty, &rdev->flags);
1491 sysfs_notify_dirent_safe(
1492 rdev->sysfs_state);
1493 }
1494 }
ddac7c7e
N
1495 if (rdev
1496 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1497 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1498 count++;
654e8b5a 1499 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1500 }
1501 }
6b965620
N
1502 spin_lock_irqsave(&conf->device_lock, flags);
1503 mddev->degraded -= count;
1504 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1505
1506 print_conf(conf);
6b965620 1507 return count;
1da177e4
LT
1508}
1509
1510
fd01b88c 1511static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1512{
e8096360 1513 struct r1conf *conf = mddev->private;
199050ea 1514 int err = -EEXIST;
41158c7e 1515 int mirror = 0;
0eaf822c 1516 struct raid1_info *p;
6c2fce2e 1517 int first = 0;
30194636 1518 int last = conf->raid_disks - 1;
6b740b8d 1519 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1520
5389042f
N
1521 if (mddev->recovery_disabled == conf->recovery_disabled)
1522 return -EBUSY;
1523
6c2fce2e
NB
1524 if (rdev->raid_disk >= 0)
1525 first = last = rdev->raid_disk;
1526
6b740b8d
N
1527 if (q->merge_bvec_fn) {
1528 set_bit(Unmerged, &rdev->flags);
1529 mddev->merge_check_needed = 1;
1530 }
1531
7ef449d1
N
1532 for (mirror = first; mirror <= last; mirror++) {
1533 p = conf->mirrors+mirror;
1534 if (!p->rdev) {
1da177e4 1535
8f6c2e4b
MP
1536 disk_stack_limits(mddev->gendisk, rdev->bdev,
1537 rdev->data_offset << 9);
1da177e4
LT
1538
1539 p->head_position = 0;
1540 rdev->raid_disk = mirror;
199050ea 1541 err = 0;
6aea114a
N
1542 /* As all devices are equivalent, we don't need a full recovery
1543 * if this was recently any drive of the array
1544 */
1545 if (rdev->saved_raid_disk < 0)
41158c7e 1546 conf->fullsync = 1;
d6065f7b 1547 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1548 break;
1549 }
7ef449d1
N
1550 if (test_bit(WantReplacement, &p->rdev->flags) &&
1551 p[conf->raid_disks].rdev == NULL) {
1552 /* Add this device as a replacement */
1553 clear_bit(In_sync, &rdev->flags);
1554 set_bit(Replacement, &rdev->flags);
1555 rdev->raid_disk = mirror;
1556 err = 0;
1557 conf->fullsync = 1;
1558 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1559 break;
1560 }
1561 }
6b740b8d
N
1562 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1563 /* Some requests might not have seen this new
1564 * merge_bvec_fn. We must wait for them to complete
1565 * before merging the device fully.
1566 * First we make sure any code which has tested
1567 * our function has submitted the request, then
1568 * we wait for all outstanding requests to complete.
1569 */
1570 synchronize_sched();
e2d59925
N
1571 freeze_array(conf, 0);
1572 unfreeze_array(conf);
6b740b8d
N
1573 clear_bit(Unmerged, &rdev->flags);
1574 }
ac5e7113 1575 md_integrity_add_rdev(rdev, mddev);
2ff8cc2c
SL
1576 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1577 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1578 print_conf(conf);
199050ea 1579 return err;
1da177e4
LT
1580}
1581
b8321b68 1582static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1583{
e8096360 1584 struct r1conf *conf = mddev->private;
1da177e4 1585 int err = 0;
b8321b68 1586 int number = rdev->raid_disk;
0eaf822c 1587 struct raid1_info *p = conf->mirrors + number;
1da177e4 1588
b014f14c
N
1589 if (rdev != p->rdev)
1590 p = conf->mirrors + conf->raid_disks + number;
1591
1da177e4 1592 print_conf(conf);
b8321b68 1593 if (rdev == p->rdev) {
b2d444d7 1594 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1595 atomic_read(&rdev->nr_pending)) {
1596 err = -EBUSY;
1597 goto abort;
1598 }
046abeed 1599 /* Only remove non-faulty devices if recovery
dfc70645
N
1600 * is not possible.
1601 */
1602 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1603 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1604 mddev->degraded < conf->raid_disks) {
1605 err = -EBUSY;
1606 goto abort;
1607 }
1da177e4 1608 p->rdev = NULL;
fbd568a3 1609 synchronize_rcu();
1da177e4
LT
1610 if (atomic_read(&rdev->nr_pending)) {
1611 /* lost the race, try later */
1612 err = -EBUSY;
1613 p->rdev = rdev;
ac5e7113 1614 goto abort;
8c7a2c2b
N
1615 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1616 /* We just removed a device that is being replaced.
1617 * Move down the replacement. We drain all IO before
1618 * doing this to avoid confusion.
1619 */
1620 struct md_rdev *repl =
1621 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1622 freeze_array(conf, 0);
8c7a2c2b
N
1623 clear_bit(Replacement, &repl->flags);
1624 p->rdev = repl;
1625 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1626 unfreeze_array(conf);
8c7a2c2b
N
1627 clear_bit(WantReplacement, &rdev->flags);
1628 } else
b014f14c 1629 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1630 err = md_integrity_register(mddev);
1da177e4
LT
1631 }
1632abort:
1633
1634 print_conf(conf);
1635 return err;
1636}
1637
1638
6712ecf8 1639static void end_sync_read(struct bio *bio, int error)
1da177e4 1640{
9f2c9d12 1641 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1642
0fc280f6 1643 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1644
1da177e4
LT
1645 /*
1646 * we have read a block, now it needs to be re-written,
1647 * or re-read if the read failed.
1648 * We don't do much here, just schedule handling by raid1d
1649 */
69382e85 1650 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1651 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1652
1653 if (atomic_dec_and_test(&r1_bio->remaining))
1654 reschedule_retry(r1_bio);
1da177e4
LT
1655}
1656
6712ecf8 1657static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1658{
1659 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1660 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1661 struct mddev *mddev = r1_bio->mddev;
e8096360 1662 struct r1conf *conf = mddev->private;
1da177e4 1663 int mirror=0;
4367af55
N
1664 sector_t first_bad;
1665 int bad_sectors;
1da177e4 1666
ba3ae3be
NK
1667 mirror = find_bio_disk(r1_bio, bio);
1668
6b1117d5 1669 if (!uptodate) {
57dab0bd 1670 sector_t sync_blocks = 0;
6b1117d5
N
1671 sector_t s = r1_bio->sector;
1672 long sectors_to_go = r1_bio->sectors;
1673 /* make sure these bits doesn't get cleared. */
1674 do {
5e3db645 1675 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1676 &sync_blocks, 1);
1677 s += sync_blocks;
1678 sectors_to_go -= sync_blocks;
1679 } while (sectors_to_go > 0);
d8f05d29
N
1680 set_bit(WriteErrorSeen,
1681 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1682 if (!test_and_set_bit(WantReplacement,
1683 &conf->mirrors[mirror].rdev->flags))
1684 set_bit(MD_RECOVERY_NEEDED, &
1685 mddev->recovery);
d8f05d29 1686 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1687 } else if (is_badblock(conf->mirrors[mirror].rdev,
1688 r1_bio->sector,
1689 r1_bio->sectors,
3a9f28a5
N
1690 &first_bad, &bad_sectors) &&
1691 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1692 r1_bio->sector,
1693 r1_bio->sectors,
1694 &first_bad, &bad_sectors)
1695 )
4367af55 1696 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1697
1da177e4 1698 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1699 int s = r1_bio->sectors;
d8f05d29
N
1700 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1701 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1702 reschedule_retry(r1_bio);
1703 else {
1704 put_buf(r1_bio);
1705 md_done_sync(mddev, s, uptodate);
1706 }
1da177e4 1707 }
1da177e4
LT
1708}
1709
3cb03002 1710static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1711 int sectors, struct page *page, int rw)
1712{
1713 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1714 /* success */
1715 return 1;
19d67169 1716 if (rw == WRITE) {
d8f05d29 1717 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1718 if (!test_and_set_bit(WantReplacement,
1719 &rdev->flags))
1720 set_bit(MD_RECOVERY_NEEDED, &
1721 rdev->mddev->recovery);
1722 }
d8f05d29
N
1723 /* need to record an error - either for the block or the device */
1724 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1725 md_error(rdev->mddev, rdev);
1726 return 0;
1727}
1728
9f2c9d12 1729static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1730{
a68e5870
N
1731 /* Try some synchronous reads of other devices to get
1732 * good data, much like with normal read errors. Only
1733 * read into the pages we already have so we don't
1734 * need to re-issue the read request.
1735 * We don't need to freeze the array, because being in an
1736 * active sync request, there is no normal IO, and
1737 * no overlapping syncs.
06f60385
N
1738 * We don't need to check is_badblock() again as we
1739 * made sure that anything with a bad block in range
1740 * will have bi_end_io clear.
a68e5870 1741 */
fd01b88c 1742 struct mddev *mddev = r1_bio->mddev;
e8096360 1743 struct r1conf *conf = mddev->private;
a68e5870
N
1744 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1745 sector_t sect = r1_bio->sector;
1746 int sectors = r1_bio->sectors;
1747 int idx = 0;
1748
1749 while(sectors) {
1750 int s = sectors;
1751 int d = r1_bio->read_disk;
1752 int success = 0;
3cb03002 1753 struct md_rdev *rdev;
78d7f5f7 1754 int start;
a68e5870
N
1755
1756 if (s > (PAGE_SIZE>>9))
1757 s = PAGE_SIZE >> 9;
1758 do {
1759 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1760 /* No rcu protection needed here devices
1761 * can only be removed when no resync is
1762 * active, and resync is currently active
1763 */
1764 rdev = conf->mirrors[d].rdev;
9d3d8011 1765 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1766 bio->bi_io_vec[idx].bv_page,
1767 READ, false)) {
1768 success = 1;
1769 break;
1770 }
1771 }
1772 d++;
8f19ccb2 1773 if (d == conf->raid_disks * 2)
a68e5870
N
1774 d = 0;
1775 } while (!success && d != r1_bio->read_disk);
1776
78d7f5f7 1777 if (!success) {
a68e5870 1778 char b[BDEVNAME_SIZE];
3a9f28a5
N
1779 int abort = 0;
1780 /* Cannot read from anywhere, this block is lost.
1781 * Record a bad block on each device. If that doesn't
1782 * work just disable and interrupt the recovery.
1783 * Don't fail devices as that won't really help.
1784 */
a68e5870
N
1785 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1786 " for block %llu\n",
1787 mdname(mddev),
1788 bdevname(bio->bi_bdev, b),
1789 (unsigned long long)r1_bio->sector);
8f19ccb2 1790 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1791 rdev = conf->mirrors[d].rdev;
1792 if (!rdev || test_bit(Faulty, &rdev->flags))
1793 continue;
1794 if (!rdev_set_badblocks(rdev, sect, s, 0))
1795 abort = 1;
1796 }
1797 if (abort) {
d890fa2b
N
1798 conf->recovery_disabled =
1799 mddev->recovery_disabled;
3a9f28a5
N
1800 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1801 md_done_sync(mddev, r1_bio->sectors, 0);
1802 put_buf(r1_bio);
1803 return 0;
1804 }
1805 /* Try next page */
1806 sectors -= s;
1807 sect += s;
1808 idx++;
1809 continue;
d11c171e 1810 }
78d7f5f7
N
1811
1812 start = d;
1813 /* write it back and re-read */
1814 while (d != r1_bio->read_disk) {
1815 if (d == 0)
8f19ccb2 1816 d = conf->raid_disks * 2;
78d7f5f7
N
1817 d--;
1818 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1819 continue;
1820 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1821 if (r1_sync_page_io(rdev, sect, s,
1822 bio->bi_io_vec[idx].bv_page,
1823 WRITE) == 0) {
78d7f5f7
N
1824 r1_bio->bios[d]->bi_end_io = NULL;
1825 rdev_dec_pending(rdev, mddev);
9d3d8011 1826 }
78d7f5f7
N
1827 }
1828 d = start;
1829 while (d != r1_bio->read_disk) {
1830 if (d == 0)
8f19ccb2 1831 d = conf->raid_disks * 2;
78d7f5f7
N
1832 d--;
1833 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1834 continue;
1835 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1836 if (r1_sync_page_io(rdev, sect, s,
1837 bio->bi_io_vec[idx].bv_page,
1838 READ) != 0)
9d3d8011 1839 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1840 }
a68e5870
N
1841 sectors -= s;
1842 sect += s;
1843 idx ++;
1844 }
78d7f5f7 1845 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1846 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1847 return 1;
1848}
1849
9f2c9d12 1850static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1851{
1852 /* We have read all readable devices. If we haven't
1853 * got the block, then there is no hope left.
1854 * If we have, then we want to do a comparison
1855 * and skip the write if everything is the same.
1856 * If any blocks failed to read, then we need to
1857 * attempt an over-write
1858 */
fd01b88c 1859 struct mddev *mddev = r1_bio->mddev;
e8096360 1860 struct r1conf *conf = mddev->private;
a68e5870
N
1861 int primary;
1862 int i;
f4380a91 1863 int vcnt;
a68e5870 1864
8f19ccb2 1865 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1866 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1867 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1868 r1_bio->bios[primary]->bi_end_io = NULL;
1869 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1870 break;
1871 }
1872 r1_bio->read_disk = primary;
f4380a91 1873 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
8f19ccb2 1874 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1875 int j;
78d7f5f7
N
1876 struct bio *pbio = r1_bio->bios[primary];
1877 struct bio *sbio = r1_bio->bios[i];
1878 int size;
a68e5870 1879
78d7f5f7
N
1880 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1881 continue;
1882
1883 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1884 for (j = vcnt; j-- ; ) {
1885 struct page *p, *s;
1886 p = pbio->bi_io_vec[j].bv_page;
1887 s = sbio->bi_io_vec[j].bv_page;
1888 if (memcmp(page_address(p),
1889 page_address(s),
5020ad7d 1890 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1891 break;
69382e85 1892 }
78d7f5f7
N
1893 } else
1894 j = 0;
1895 if (j >= 0)
7f7583d4 1896 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7
N
1897 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1898 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1899 /* No need to write to this device. */
1900 sbio->bi_end_io = NULL;
1901 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1902 continue;
1903 }
1904 /* fixup the bio for reuse */
1905 sbio->bi_vcnt = vcnt;
1906 sbio->bi_size = r1_bio->sectors << 9;
1907 sbio->bi_idx = 0;
1908 sbio->bi_phys_segments = 0;
1909 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1910 sbio->bi_flags |= 1 << BIO_UPTODATE;
1911 sbio->bi_next = NULL;
1912 sbio->bi_sector = r1_bio->sector +
1913 conf->mirrors[i].rdev->data_offset;
1914 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1915 size = sbio->bi_size;
1916 for (j = 0; j < vcnt ; j++) {
1917 struct bio_vec *bi;
1918 bi = &sbio->bi_io_vec[j];
1919 bi->bv_offset = 0;
1920 if (size > PAGE_SIZE)
1921 bi->bv_len = PAGE_SIZE;
1922 else
1923 bi->bv_len = size;
1924 size -= PAGE_SIZE;
1925 memcpy(page_address(bi->bv_page),
1926 page_address(pbio->bi_io_vec[j].bv_page),
1927 PAGE_SIZE);
69382e85 1928 }
78d7f5f7 1929 }
a68e5870
N
1930 return 0;
1931}
1932
9f2c9d12 1933static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1934{
e8096360 1935 struct r1conf *conf = mddev->private;
a68e5870 1936 int i;
8f19ccb2 1937 int disks = conf->raid_disks * 2;
a68e5870
N
1938 struct bio *bio, *wbio;
1939
1940 bio = r1_bio->bios[r1_bio->read_disk];
1941
a68e5870
N
1942 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1943 /* ouch - failed to read all of that. */
1944 if (!fix_sync_read_error(r1_bio))
1945 return;
7ca78d57
N
1946
1947 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1948 if (process_checks(r1_bio) < 0)
1949 return;
d11c171e
N
1950 /*
1951 * schedule writes
1952 */
1da177e4
LT
1953 atomic_set(&r1_bio->remaining, 1);
1954 for (i = 0; i < disks ; i++) {
1955 wbio = r1_bio->bios[i];
3e198f78
N
1956 if (wbio->bi_end_io == NULL ||
1957 (wbio->bi_end_io == end_sync_read &&
1958 (i == r1_bio->read_disk ||
1959 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1960 continue;
1961
3e198f78
N
1962 wbio->bi_rw = WRITE;
1963 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1964 atomic_inc(&r1_bio->remaining);
1965 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1966
1da177e4
LT
1967 generic_make_request(wbio);
1968 }
1969
1970 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1971 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1972 int s = r1_bio->sectors;
1973 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1974 test_bit(R1BIO_WriteError, &r1_bio->state))
1975 reschedule_retry(r1_bio);
1976 else {
1977 put_buf(r1_bio);
1978 md_done_sync(mddev, s, 1);
1979 }
1da177e4
LT
1980 }
1981}
1982
1983/*
1984 * This is a kernel thread which:
1985 *
1986 * 1. Retries failed read operations on working mirrors.
1987 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1988 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1989 */
1990
e8096360 1991static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1992 sector_t sect, int sectors)
1993{
fd01b88c 1994 struct mddev *mddev = conf->mddev;
867868fb
N
1995 while(sectors) {
1996 int s = sectors;
1997 int d = read_disk;
1998 int success = 0;
1999 int start;
3cb03002 2000 struct md_rdev *rdev;
867868fb
N
2001
2002 if (s > (PAGE_SIZE>>9))
2003 s = PAGE_SIZE >> 9;
2004
2005 do {
2006 /* Note: no rcu protection needed here
2007 * as this is synchronous in the raid1d thread
2008 * which is the thread that might remove
2009 * a device. If raid1d ever becomes multi-threaded....
2010 */
d2eb35ac
N
2011 sector_t first_bad;
2012 int bad_sectors;
2013
867868fb
N
2014 rdev = conf->mirrors[d].rdev;
2015 if (rdev &&
da8840a7 2016 (test_bit(In_sync, &rdev->flags) ||
2017 (!test_bit(Faulty, &rdev->flags) &&
2018 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2019 is_badblock(rdev, sect, s,
2020 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2021 sync_page_io(rdev, sect, s<<9,
2022 conf->tmppage, READ, false))
867868fb
N
2023 success = 1;
2024 else {
2025 d++;
8f19ccb2 2026 if (d == conf->raid_disks * 2)
867868fb
N
2027 d = 0;
2028 }
2029 } while (!success && d != read_disk);
2030
2031 if (!success) {
d8f05d29 2032 /* Cannot read from anywhere - mark it bad */
3cb03002 2033 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2034 if (!rdev_set_badblocks(rdev, sect, s, 0))
2035 md_error(mddev, rdev);
867868fb
N
2036 break;
2037 }
2038 /* write it back and re-read */
2039 start = d;
2040 while (d != read_disk) {
2041 if (d==0)
8f19ccb2 2042 d = conf->raid_disks * 2;
867868fb
N
2043 d--;
2044 rdev = conf->mirrors[d].rdev;
2045 if (rdev &&
d8f05d29
N
2046 test_bit(In_sync, &rdev->flags))
2047 r1_sync_page_io(rdev, sect, s,
2048 conf->tmppage, WRITE);
867868fb
N
2049 }
2050 d = start;
2051 while (d != read_disk) {
2052 char b[BDEVNAME_SIZE];
2053 if (d==0)
8f19ccb2 2054 d = conf->raid_disks * 2;
867868fb
N
2055 d--;
2056 rdev = conf->mirrors[d].rdev;
2057 if (rdev &&
2058 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
2059 if (r1_sync_page_io(rdev, sect, s,
2060 conf->tmppage, READ)) {
867868fb
N
2061 atomic_add(s, &rdev->corrected_errors);
2062 printk(KERN_INFO
9dd1e2fa 2063 "md/raid1:%s: read error corrected "
867868fb
N
2064 "(%d sectors at %llu on %s)\n",
2065 mdname(mddev), s,
969b755a
RD
2066 (unsigned long long)(sect +
2067 rdev->data_offset),
867868fb
N
2068 bdevname(rdev->bdev, b));
2069 }
2070 }
2071 }
2072 sectors -= s;
2073 sect += s;
2074 }
2075}
2076
cd5ff9a1
N
2077static void bi_complete(struct bio *bio, int error)
2078{
2079 complete((struct completion *)bio->bi_private);
2080}
2081
2082static int submit_bio_wait(int rw, struct bio *bio)
2083{
2084 struct completion event;
2085 rw |= REQ_SYNC;
2086
2087 init_completion(&event);
2088 bio->bi_private = &event;
2089 bio->bi_end_io = bi_complete;
2090 submit_bio(rw, bio);
2091 wait_for_completion(&event);
2092
2093 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2094}
2095
9f2c9d12 2096static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2097{
fd01b88c 2098 struct mddev *mddev = r1_bio->mddev;
e8096360 2099 struct r1conf *conf = mddev->private;
3cb03002 2100 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2101 int vcnt, idx;
2102 struct bio_vec *vec;
2103
2104 /* bio has the data to be written to device 'i' where
2105 * we just recently had a write error.
2106 * We repeatedly clone the bio and trim down to one block,
2107 * then try the write. Where the write fails we record
2108 * a bad block.
2109 * It is conceivable that the bio doesn't exactly align with
2110 * blocks. We must handle this somehow.
2111 *
2112 * We currently own a reference on the rdev.
2113 */
2114
2115 int block_sectors;
2116 sector_t sector;
2117 int sectors;
2118 int sect_to_write = r1_bio->sectors;
2119 int ok = 1;
2120
2121 if (rdev->badblocks.shift < 0)
2122 return 0;
2123
2124 block_sectors = 1 << rdev->badblocks.shift;
2125 sector = r1_bio->sector;
2126 sectors = ((sector + block_sectors)
2127 & ~(sector_t)(block_sectors - 1))
2128 - sector;
2129
2130 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2131 vcnt = r1_bio->behind_page_count;
2132 vec = r1_bio->behind_bvecs;
2133 idx = 0;
2134 while (vec[idx].bv_page == NULL)
2135 idx++;
2136 } else {
2137 vcnt = r1_bio->master_bio->bi_vcnt;
2138 vec = r1_bio->master_bio->bi_io_vec;
2139 idx = r1_bio->master_bio->bi_idx;
2140 }
2141 while (sect_to_write) {
2142 struct bio *wbio;
2143 if (sectors > sect_to_write)
2144 sectors = sect_to_write;
2145 /* Write at 'sector' for 'sectors'*/
2146
2147 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2148 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2149 wbio->bi_sector = r1_bio->sector;
2150 wbio->bi_rw = WRITE;
2151 wbio->bi_vcnt = vcnt;
2152 wbio->bi_size = r1_bio->sectors << 9;
2153 wbio->bi_idx = idx;
2154
2155 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2156 wbio->bi_sector += rdev->data_offset;
2157 wbio->bi_bdev = rdev->bdev;
2158 if (submit_bio_wait(WRITE, wbio) == 0)
2159 /* failure! */
2160 ok = rdev_set_badblocks(rdev, sector,
2161 sectors, 0)
2162 && ok;
2163
2164 bio_put(wbio);
2165 sect_to_write -= sectors;
2166 sector += sectors;
2167 sectors = block_sectors;
2168 }
2169 return ok;
2170}
2171
e8096360 2172static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2173{
2174 int m;
2175 int s = r1_bio->sectors;
8f19ccb2 2176 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2177 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2178 struct bio *bio = r1_bio->bios[m];
2179 if (bio->bi_end_io == NULL)
2180 continue;
2181 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2182 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2183 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2184 }
2185 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2186 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2187 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2188 md_error(conf->mddev, rdev);
2189 }
2190 }
2191 put_buf(r1_bio);
2192 md_done_sync(conf->mddev, s, 1);
2193}
2194
e8096360 2195static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2196{
2197 int m;
8f19ccb2 2198 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2199 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2200 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2201 rdev_clear_badblocks(rdev,
2202 r1_bio->sector,
c6563a8c 2203 r1_bio->sectors, 0);
62096bce
N
2204 rdev_dec_pending(rdev, conf->mddev);
2205 } else if (r1_bio->bios[m] != NULL) {
2206 /* This drive got a write error. We need to
2207 * narrow down and record precise write
2208 * errors.
2209 */
2210 if (!narrow_write_error(r1_bio, m)) {
2211 md_error(conf->mddev,
2212 conf->mirrors[m].rdev);
2213 /* an I/O failed, we can't clear the bitmap */
2214 set_bit(R1BIO_Degraded, &r1_bio->state);
2215 }
2216 rdev_dec_pending(conf->mirrors[m].rdev,
2217 conf->mddev);
2218 }
2219 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2220 close_write(r1_bio);
2221 raid_end_bio_io(r1_bio);
2222}
2223
e8096360 2224static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2225{
2226 int disk;
2227 int max_sectors;
fd01b88c 2228 struct mddev *mddev = conf->mddev;
62096bce
N
2229 struct bio *bio;
2230 char b[BDEVNAME_SIZE];
3cb03002 2231 struct md_rdev *rdev;
62096bce
N
2232
2233 clear_bit(R1BIO_ReadError, &r1_bio->state);
2234 /* we got a read error. Maybe the drive is bad. Maybe just
2235 * the block and we can fix it.
2236 * We freeze all other IO, and try reading the block from
2237 * other devices. When we find one, we re-write
2238 * and check it that fixes the read error.
2239 * This is all done synchronously while the array is
2240 * frozen
2241 */
2242 if (mddev->ro == 0) {
e2d59925 2243 freeze_array(conf, 1);
62096bce
N
2244 fix_read_error(conf, r1_bio->read_disk,
2245 r1_bio->sector, r1_bio->sectors);
2246 unfreeze_array(conf);
2247 } else
2248 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2249 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2250
2251 bio = r1_bio->bios[r1_bio->read_disk];
2252 bdevname(bio->bi_bdev, b);
2253read_more:
2254 disk = read_balance(conf, r1_bio, &max_sectors);
2255 if (disk == -1) {
2256 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2257 " read error for block %llu\n",
2258 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2259 raid_end_bio_io(r1_bio);
2260 } else {
2261 const unsigned long do_sync
2262 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2263 if (bio) {
2264 r1_bio->bios[r1_bio->read_disk] =
2265 mddev->ro ? IO_BLOCKED : NULL;
2266 bio_put(bio);
2267 }
2268 r1_bio->read_disk = disk;
2269 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2270 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2271 r1_bio->bios[r1_bio->read_disk] = bio;
2272 rdev = conf->mirrors[disk].rdev;
2273 printk_ratelimited(KERN_ERR
2274 "md/raid1:%s: redirecting sector %llu"
2275 " to other mirror: %s\n",
2276 mdname(mddev),
2277 (unsigned long long)r1_bio->sector,
2278 bdevname(rdev->bdev, b));
2279 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2280 bio->bi_bdev = rdev->bdev;
2281 bio->bi_end_io = raid1_end_read_request;
2282 bio->bi_rw = READ | do_sync;
2283 bio->bi_private = r1_bio;
2284 if (max_sectors < r1_bio->sectors) {
2285 /* Drat - have to split this up more */
2286 struct bio *mbio = r1_bio->master_bio;
2287 int sectors_handled = (r1_bio->sector + max_sectors
2288 - mbio->bi_sector);
2289 r1_bio->sectors = max_sectors;
2290 spin_lock_irq(&conf->device_lock);
2291 if (mbio->bi_phys_segments == 0)
2292 mbio->bi_phys_segments = 2;
2293 else
2294 mbio->bi_phys_segments++;
2295 spin_unlock_irq(&conf->device_lock);
2296 generic_make_request(bio);
2297 bio = NULL;
2298
2299 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2300
2301 r1_bio->master_bio = mbio;
2302 r1_bio->sectors = (mbio->bi_size >> 9)
2303 - sectors_handled;
2304 r1_bio->state = 0;
2305 set_bit(R1BIO_ReadError, &r1_bio->state);
2306 r1_bio->mddev = mddev;
2307 r1_bio->sector = mbio->bi_sector + sectors_handled;
2308
2309 goto read_more;
2310 } else
2311 generic_make_request(bio);
2312 }
2313}
2314
4ed8731d 2315static void raid1d(struct md_thread *thread)
1da177e4 2316{
4ed8731d 2317 struct mddev *mddev = thread->mddev;
9f2c9d12 2318 struct r1bio *r1_bio;
1da177e4 2319 unsigned long flags;
e8096360 2320 struct r1conf *conf = mddev->private;
1da177e4 2321 struct list_head *head = &conf->retry_list;
e1dfa0a2 2322 struct blk_plug plug;
1da177e4
LT
2323
2324 md_check_recovery(mddev);
e1dfa0a2
N
2325
2326 blk_start_plug(&plug);
1da177e4 2327 for (;;) {
191ea9b2 2328
0021b7bc 2329 flush_pending_writes(conf);
191ea9b2 2330
a35e63ef
N
2331 spin_lock_irqsave(&conf->device_lock, flags);
2332 if (list_empty(head)) {
2333 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2334 break;
a35e63ef 2335 }
9f2c9d12 2336 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2337 list_del(head->prev);
ddaf22ab 2338 conf->nr_queued--;
1da177e4
LT
2339 spin_unlock_irqrestore(&conf->device_lock, flags);
2340
2341 mddev = r1_bio->mddev;
070ec55d 2342 conf = mddev->private;
4367af55 2343 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2344 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2345 test_bit(R1BIO_WriteError, &r1_bio->state))
2346 handle_sync_write_finished(conf, r1_bio);
2347 else
4367af55 2348 sync_request_write(mddev, r1_bio);
cd5ff9a1 2349 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2350 test_bit(R1BIO_WriteError, &r1_bio->state))
2351 handle_write_finished(conf, r1_bio);
2352 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2353 handle_read_error(conf, r1_bio);
2354 else
d2eb35ac
N
2355 /* just a partial read to be scheduled from separate
2356 * context
2357 */
2358 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2359
1d9d5241 2360 cond_resched();
de393cde
N
2361 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2362 md_check_recovery(mddev);
1da177e4 2363 }
e1dfa0a2 2364 blk_finish_plug(&plug);
1da177e4
LT
2365}
2366
2367
e8096360 2368static int init_resync(struct r1conf *conf)
1da177e4
LT
2369{
2370 int buffs;
2371
2372 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2373 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2374 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2375 conf->poolinfo);
2376 if (!conf->r1buf_pool)
2377 return -ENOMEM;
2378 conf->next_resync = 0;
2379 return 0;
2380}
2381
2382/*
2383 * perform a "sync" on one "block"
2384 *
2385 * We need to make sure that no normal I/O request - particularly write
2386 * requests - conflict with active sync requests.
2387 *
2388 * This is achieved by tracking pending requests and a 'barrier' concept
2389 * that can be installed to exclude normal IO requests.
2390 */
2391
fd01b88c 2392static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2393{
e8096360 2394 struct r1conf *conf = mddev->private;
9f2c9d12 2395 struct r1bio *r1_bio;
1da177e4
LT
2396 struct bio *bio;
2397 sector_t max_sector, nr_sectors;
3e198f78 2398 int disk = -1;
1da177e4 2399 int i;
3e198f78
N
2400 int wonly = -1;
2401 int write_targets = 0, read_targets = 0;
57dab0bd 2402 sector_t sync_blocks;
e3b9703e 2403 int still_degraded = 0;
06f60385
N
2404 int good_sectors = RESYNC_SECTORS;
2405 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2406
2407 if (!conf->r1buf_pool)
2408 if (init_resync(conf))
57afd89f 2409 return 0;
1da177e4 2410
58c0fed4 2411 max_sector = mddev->dev_sectors;
1da177e4 2412 if (sector_nr >= max_sector) {
191ea9b2
N
2413 /* If we aborted, we need to abort the
2414 * sync on the 'current' bitmap chunk (there will
2415 * only be one in raid1 resync.
2416 * We can find the current addess in mddev->curr_resync
2417 */
6a806c51
N
2418 if (mddev->curr_resync < max_sector) /* aborted */
2419 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2420 &sync_blocks, 1);
6a806c51 2421 else /* completed sync */
191ea9b2 2422 conf->fullsync = 0;
6a806c51
N
2423
2424 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2425 close_sync(conf);
2426 return 0;
2427 }
2428
07d84d10
N
2429 if (mddev->bitmap == NULL &&
2430 mddev->recovery_cp == MaxSector &&
6394cca5 2431 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2432 conf->fullsync == 0) {
2433 *skipped = 1;
2434 return max_sector - sector_nr;
2435 }
6394cca5
N
2436 /* before building a request, check if we can skip these blocks..
2437 * This call the bitmap_start_sync doesn't actually record anything
2438 */
e3b9703e 2439 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2440 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2441 /* We can skip this block, and probably several more */
2442 *skipped = 1;
2443 return sync_blocks;
2444 }
1da177e4 2445 /*
17999be4
N
2446 * If there is non-resync activity waiting for a turn,
2447 * and resync is going fast enough,
2448 * then let it though before starting on this new sync request.
1da177e4 2449 */
17999be4 2450 if (!go_faster && conf->nr_waiting)
1da177e4 2451 msleep_interruptible(1000);
17999be4 2452
b47490c9 2453 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2454 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2455 raise_barrier(conf);
2456
2457 conf->next_resync = sector_nr;
1da177e4 2458
3e198f78 2459 rcu_read_lock();
1da177e4 2460 /*
3e198f78
N
2461 * If we get a correctably read error during resync or recovery,
2462 * we might want to read from a different device. So we
2463 * flag all drives that could conceivably be read from for READ,
2464 * and any others (which will be non-In_sync devices) for WRITE.
2465 * If a read fails, we try reading from something else for which READ
2466 * is OK.
1da177e4 2467 */
1da177e4 2468
1da177e4
LT
2469 r1_bio->mddev = mddev;
2470 r1_bio->sector = sector_nr;
191ea9b2 2471 r1_bio->state = 0;
1da177e4 2472 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2473
8f19ccb2 2474 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2475 struct md_rdev *rdev;
1da177e4
LT
2476 bio = r1_bio->bios[i];
2477
2478 /* take from bio_init */
2479 bio->bi_next = NULL;
db8d9d35 2480 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2481 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 2482 bio->bi_rw = READ;
1da177e4
LT
2483 bio->bi_vcnt = 0;
2484 bio->bi_idx = 0;
2485 bio->bi_phys_segments = 0;
1da177e4
LT
2486 bio->bi_size = 0;
2487 bio->bi_end_io = NULL;
2488 bio->bi_private = NULL;
2489
3e198f78
N
2490 rdev = rcu_dereference(conf->mirrors[i].rdev);
2491 if (rdev == NULL ||
06f60385 2492 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2493 if (i < conf->raid_disks)
2494 still_degraded = 1;
3e198f78 2495 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2496 bio->bi_rw = WRITE;
2497 bio->bi_end_io = end_sync_write;
2498 write_targets ++;
3e198f78
N
2499 } else {
2500 /* may need to read from here */
06f60385
N
2501 sector_t first_bad = MaxSector;
2502 int bad_sectors;
2503
2504 if (is_badblock(rdev, sector_nr, good_sectors,
2505 &first_bad, &bad_sectors)) {
2506 if (first_bad > sector_nr)
2507 good_sectors = first_bad - sector_nr;
2508 else {
2509 bad_sectors -= (sector_nr - first_bad);
2510 if (min_bad == 0 ||
2511 min_bad > bad_sectors)
2512 min_bad = bad_sectors;
2513 }
2514 }
2515 if (sector_nr < first_bad) {
2516 if (test_bit(WriteMostly, &rdev->flags)) {
2517 if (wonly < 0)
2518 wonly = i;
2519 } else {
2520 if (disk < 0)
2521 disk = i;
2522 }
2523 bio->bi_rw = READ;
2524 bio->bi_end_io = end_sync_read;
2525 read_targets++;
d57368af
AL
2526 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2527 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2528 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2529 /*
2530 * The device is suitable for reading (InSync),
2531 * but has bad block(s) here. Let's try to correct them,
2532 * if we are doing resync or repair. Otherwise, leave
2533 * this device alone for this sync request.
2534 */
2535 bio->bi_rw = WRITE;
2536 bio->bi_end_io = end_sync_write;
2537 write_targets++;
3e198f78 2538 }
3e198f78 2539 }
06f60385
N
2540 if (bio->bi_end_io) {
2541 atomic_inc(&rdev->nr_pending);
2542 bio->bi_sector = sector_nr + rdev->data_offset;
2543 bio->bi_bdev = rdev->bdev;
2544 bio->bi_private = r1_bio;
2545 }
1da177e4 2546 }
3e198f78
N
2547 rcu_read_unlock();
2548 if (disk < 0)
2549 disk = wonly;
2550 r1_bio->read_disk = disk;
191ea9b2 2551
06f60385
N
2552 if (read_targets == 0 && min_bad > 0) {
2553 /* These sectors are bad on all InSync devices, so we
2554 * need to mark them bad on all write targets
2555 */
2556 int ok = 1;
8f19ccb2 2557 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2558 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2559 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2560 ok = rdev_set_badblocks(rdev, sector_nr,
2561 min_bad, 0
2562 ) && ok;
2563 }
2564 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2565 *skipped = 1;
2566 put_buf(r1_bio);
2567
2568 if (!ok) {
2569 /* Cannot record the badblocks, so need to
2570 * abort the resync.
2571 * If there are multiple read targets, could just
2572 * fail the really bad ones ???
2573 */
2574 conf->recovery_disabled = mddev->recovery_disabled;
2575 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2576 return 0;
2577 } else
2578 return min_bad;
2579
2580 }
2581 if (min_bad > 0 && min_bad < good_sectors) {
2582 /* only resync enough to reach the next bad->good
2583 * transition */
2584 good_sectors = min_bad;
2585 }
2586
3e198f78
N
2587 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2588 /* extra read targets are also write targets */
2589 write_targets += read_targets-1;
2590
2591 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2592 /* There is nowhere to write, so all non-sync
2593 * drives must be failed - so we are finished
2594 */
b7219ccb
N
2595 sector_t rv;
2596 if (min_bad > 0)
2597 max_sector = sector_nr + min_bad;
2598 rv = max_sector - sector_nr;
57afd89f 2599 *skipped = 1;
1da177e4 2600 put_buf(r1_bio);
1da177e4
LT
2601 return rv;
2602 }
2603
c6207277
N
2604 if (max_sector > mddev->resync_max)
2605 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2606 if (max_sector > sector_nr + good_sectors)
2607 max_sector = sector_nr + good_sectors;
1da177e4 2608 nr_sectors = 0;
289e99e8 2609 sync_blocks = 0;
1da177e4
LT
2610 do {
2611 struct page *page;
2612 int len = PAGE_SIZE;
2613 if (sector_nr + (len>>9) > max_sector)
2614 len = (max_sector - sector_nr) << 9;
2615 if (len == 0)
2616 break;
6a806c51
N
2617 if (sync_blocks == 0) {
2618 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2619 &sync_blocks, still_degraded) &&
2620 !conf->fullsync &&
2621 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2622 break;
9e77c485 2623 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2624 if ((len >> 9) > sync_blocks)
6a806c51 2625 len = sync_blocks<<9;
ab7a30c7 2626 }
191ea9b2 2627
8f19ccb2 2628 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2629 bio = r1_bio->bios[i];
2630 if (bio->bi_end_io) {
d11c171e 2631 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2632 if (bio_add_page(bio, page, len, 0) == 0) {
2633 /* stop here */
d11c171e 2634 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2635 while (i > 0) {
2636 i--;
2637 bio = r1_bio->bios[i];
6a806c51
N
2638 if (bio->bi_end_io==NULL)
2639 continue;
1da177e4
LT
2640 /* remove last page from this bio */
2641 bio->bi_vcnt--;
2642 bio->bi_size -= len;
2643 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2644 }
2645 goto bio_full;
2646 }
2647 }
2648 }
2649 nr_sectors += len>>9;
2650 sector_nr += len>>9;
191ea9b2 2651 sync_blocks -= (len>>9);
1da177e4
LT
2652 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2653 bio_full:
1da177e4
LT
2654 r1_bio->sectors = nr_sectors;
2655
d11c171e
N
2656 /* For a user-requested sync, we read all readable devices and do a
2657 * compare
2658 */
2659 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2660 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2661 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2662 bio = r1_bio->bios[i];
2663 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2664 read_targets--;
ddac7c7e 2665 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2666 generic_make_request(bio);
2667 }
2668 }
2669 } else {
2670 atomic_set(&r1_bio->remaining, 1);
2671 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2672 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2673 generic_make_request(bio);
1da177e4 2674
d11c171e 2675 }
1da177e4
LT
2676 return nr_sectors;
2677}
2678
fd01b88c 2679static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2680{
2681 if (sectors)
2682 return sectors;
2683
2684 return mddev->dev_sectors;
2685}
2686
e8096360 2687static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2688{
e8096360 2689 struct r1conf *conf;
709ae487 2690 int i;
0eaf822c 2691 struct raid1_info *disk;
3cb03002 2692 struct md_rdev *rdev;
709ae487 2693 int err = -ENOMEM;
1da177e4 2694
e8096360 2695 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2696 if (!conf)
709ae487 2697 goto abort;
1da177e4 2698
0eaf822c 2699 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2700 * mddev->raid_disks * 2,
1da177e4
LT
2701 GFP_KERNEL);
2702 if (!conf->mirrors)
709ae487 2703 goto abort;
1da177e4 2704
ddaf22ab
N
2705 conf->tmppage = alloc_page(GFP_KERNEL);
2706 if (!conf->tmppage)
709ae487 2707 goto abort;
ddaf22ab 2708
709ae487 2709 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2710 if (!conf->poolinfo)
709ae487 2711 goto abort;
8f19ccb2 2712 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2713 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2714 r1bio_pool_free,
2715 conf->poolinfo);
2716 if (!conf->r1bio_pool)
709ae487
N
2717 goto abort;
2718
ed9bfdf1 2719 conf->poolinfo->mddev = mddev;
1da177e4 2720
c19d5798 2721 err = -EINVAL;
e7e72bf6 2722 spin_lock_init(&conf->device_lock);
dafb20fa 2723 rdev_for_each(rdev, mddev) {
aba336bd 2724 struct request_queue *q;
709ae487 2725 int disk_idx = rdev->raid_disk;
1da177e4
LT
2726 if (disk_idx >= mddev->raid_disks
2727 || disk_idx < 0)
2728 continue;
c19d5798 2729 if (test_bit(Replacement, &rdev->flags))
02b898f2 2730 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2731 else
2732 disk = conf->mirrors + disk_idx;
1da177e4 2733
c19d5798
N
2734 if (disk->rdev)
2735 goto abort;
1da177e4 2736 disk->rdev = rdev;
aba336bd
N
2737 q = bdev_get_queue(rdev->bdev);
2738 if (q->merge_bvec_fn)
2739 mddev->merge_check_needed = 1;
1da177e4
LT
2740
2741 disk->head_position = 0;
12cee5a8 2742 disk->seq_start = MaxSector;
1da177e4
LT
2743 }
2744 conf->raid_disks = mddev->raid_disks;
2745 conf->mddev = mddev;
1da177e4 2746 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2747
2748 spin_lock_init(&conf->resync_lock);
17999be4 2749 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2750
191ea9b2 2751 bio_list_init(&conf->pending_bio_list);
34db0cd6 2752 conf->pending_count = 0;
d890fa2b 2753 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2754
c19d5798 2755 err = -EIO;
8f19ccb2 2756 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2757
2758 disk = conf->mirrors + i;
2759
c19d5798
N
2760 if (i < conf->raid_disks &&
2761 disk[conf->raid_disks].rdev) {
2762 /* This slot has a replacement. */
2763 if (!disk->rdev) {
2764 /* No original, just make the replacement
2765 * a recovering spare
2766 */
2767 disk->rdev =
2768 disk[conf->raid_disks].rdev;
2769 disk[conf->raid_disks].rdev = NULL;
2770 } else if (!test_bit(In_sync, &disk->rdev->flags))
2771 /* Original is not in_sync - bad */
2772 goto abort;
2773 }
2774
5fd6c1dc
N
2775 if (!disk->rdev ||
2776 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2777 disk->head_position = 0;
4f0a5e01
JB
2778 if (disk->rdev &&
2779 (disk->rdev->saved_raid_disk < 0))
918f0238 2780 conf->fullsync = 1;
be4d3280 2781 }
1da177e4 2782 }
709ae487 2783
709ae487 2784 err = -ENOMEM;
0232605d 2785 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2786 if (!conf->thread) {
2787 printk(KERN_ERR
9dd1e2fa 2788 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2789 mdname(mddev));
2790 goto abort;
11ce99e6 2791 }
1da177e4 2792
709ae487
N
2793 return conf;
2794
2795 abort:
2796 if (conf) {
2797 if (conf->r1bio_pool)
2798 mempool_destroy(conf->r1bio_pool);
2799 kfree(conf->mirrors);
2800 safe_put_page(conf->tmppage);
2801 kfree(conf->poolinfo);
2802 kfree(conf);
2803 }
2804 return ERR_PTR(err);
2805}
2806
5220ea1e 2807static int stop(struct mddev *mddev);
fd01b88c 2808static int run(struct mddev *mddev)
709ae487 2809{
e8096360 2810 struct r1conf *conf;
709ae487 2811 int i;
3cb03002 2812 struct md_rdev *rdev;
5220ea1e 2813 int ret;
2ff8cc2c 2814 bool discard_supported = false;
709ae487
N
2815
2816 if (mddev->level != 1) {
9dd1e2fa 2817 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2818 mdname(mddev), mddev->level);
2819 return -EIO;
2820 }
2821 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2822 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2823 mdname(mddev));
2824 return -EIO;
2825 }
1da177e4 2826 /*
709ae487
N
2827 * copy the already verified devices into our private RAID1
2828 * bookkeeping area. [whatever we allocate in run(),
2829 * should be freed in stop()]
1da177e4 2830 */
709ae487
N
2831 if (mddev->private == NULL)
2832 conf = setup_conf(mddev);
2833 else
2834 conf = mddev->private;
1da177e4 2835
709ae487
N
2836 if (IS_ERR(conf))
2837 return PTR_ERR(conf);
1da177e4 2838
c8dc9c65
JL
2839 if (mddev->queue)
2840 blk_queue_max_write_same_sectors(mddev->queue,
2841 mddev->chunk_sectors);
dafb20fa 2842 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2843 if (!mddev->gendisk)
2844 continue;
709ae487
N
2845 disk_stack_limits(mddev->gendisk, rdev->bdev,
2846 rdev->data_offset << 9);
2ff8cc2c
SL
2847 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2848 discard_supported = true;
1da177e4 2849 }
191ea9b2 2850
709ae487
N
2851 mddev->degraded = 0;
2852 for (i=0; i < conf->raid_disks; i++)
2853 if (conf->mirrors[i].rdev == NULL ||
2854 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2855 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2856 mddev->degraded++;
2857
2858 if (conf->raid_disks - mddev->degraded == 1)
2859 mddev->recovery_cp = MaxSector;
2860
8c6ac868 2861 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2862 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2863 " -- starting background reconstruction\n",
2864 mdname(mddev));
1da177e4 2865 printk(KERN_INFO
9dd1e2fa 2866 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2867 mdname(mddev), mddev->raid_disks - mddev->degraded,
2868 mddev->raid_disks);
709ae487 2869
1da177e4
LT
2870 /*
2871 * Ok, everything is just fine now
2872 */
709ae487
N
2873 mddev->thread = conf->thread;
2874 conf->thread = NULL;
2875 mddev->private = conf;
2876
1f403624 2877 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2878
1ed7242e
JB
2879 if (mddev->queue) {
2880 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2881 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2882 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2883
2884 if (discard_supported)
2885 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2886 mddev->queue);
2887 else
2888 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2889 mddev->queue);
1ed7242e 2890 }
5220ea1e 2891
2892 ret = md_integrity_register(mddev);
2893 if (ret)
2894 stop(mddev);
2895 return ret;
1da177e4
LT
2896}
2897
fd01b88c 2898static int stop(struct mddev *mddev)
1da177e4 2899{
e8096360 2900 struct r1conf *conf = mddev->private;
4b6d287f 2901 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2902
2903 /* wait for behind writes to complete */
e555190d 2904 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2905 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2906 mdname(mddev));
4b6d287f 2907 /* need to kick something here to make sure I/O goes? */
e555190d
N
2908 wait_event(bitmap->behind_wait,
2909 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2910 }
1da177e4 2911
409c57f3
N
2912 raise_barrier(conf);
2913 lower_barrier(conf);
2914
01f96c0a 2915 md_unregister_thread(&mddev->thread);
1da177e4
LT
2916 if (conf->r1bio_pool)
2917 mempool_destroy(conf->r1bio_pool);
990a8baf 2918 kfree(conf->mirrors);
0fea7ed8 2919 safe_put_page(conf->tmppage);
990a8baf 2920 kfree(conf->poolinfo);
1da177e4
LT
2921 kfree(conf);
2922 mddev->private = NULL;
2923 return 0;
2924}
2925
fd01b88c 2926static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2927{
2928 /* no resync is happening, and there is enough space
2929 * on all devices, so we can resize.
2930 * We need to make sure resync covers any new space.
2931 * If the array is shrinking we should possibly wait until
2932 * any io in the removed space completes, but it hardly seems
2933 * worth it.
2934 */
a4a6125a
N
2935 sector_t newsize = raid1_size(mddev, sectors, 0);
2936 if (mddev->external_size &&
2937 mddev->array_sectors > newsize)
b522adcd 2938 return -EINVAL;
a4a6125a
N
2939 if (mddev->bitmap) {
2940 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2941 if (ret)
2942 return ret;
2943 }
2944 md_set_array_sectors(mddev, newsize);
f233ea5c 2945 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2946 revalidate_disk(mddev->gendisk);
b522adcd 2947 if (sectors > mddev->dev_sectors &&
b098636c 2948 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2949 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2950 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2951 }
b522adcd 2952 mddev->dev_sectors = sectors;
4b5c7ae8 2953 mddev->resync_max_sectors = sectors;
1da177e4
LT
2954 return 0;
2955}
2956
fd01b88c 2957static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2958{
2959 /* We need to:
2960 * 1/ resize the r1bio_pool
2961 * 2/ resize conf->mirrors
2962 *
2963 * We allocate a new r1bio_pool if we can.
2964 * Then raise a device barrier and wait until all IO stops.
2965 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2966 *
2967 * At the same time, we "pack" the devices so that all the missing
2968 * devices have the higher raid_disk numbers.
1da177e4
LT
2969 */
2970 mempool_t *newpool, *oldpool;
2971 struct pool_info *newpoolinfo;
0eaf822c 2972 struct raid1_info *newmirrors;
e8096360 2973 struct r1conf *conf = mddev->private;
63c70c4f 2974 int cnt, raid_disks;
c04be0aa 2975 unsigned long flags;
b5470dc5 2976 int d, d2, err;
1da177e4 2977
63c70c4f 2978 /* Cannot change chunk_size, layout, or level */
664e7c41 2979 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2980 mddev->layout != mddev->new_layout ||
2981 mddev->level != mddev->new_level) {
664e7c41 2982 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2983 mddev->new_layout = mddev->layout;
2984 mddev->new_level = mddev->level;
2985 return -EINVAL;
2986 }
2987
b5470dc5
DW
2988 err = md_allow_write(mddev);
2989 if (err)
2990 return err;
2a2275d6 2991
63c70c4f
N
2992 raid_disks = mddev->raid_disks + mddev->delta_disks;
2993
6ea9c07c
N
2994 if (raid_disks < conf->raid_disks) {
2995 cnt=0;
2996 for (d= 0; d < conf->raid_disks; d++)
2997 if (conf->mirrors[d].rdev)
2998 cnt++;
2999 if (cnt > raid_disks)
1da177e4 3000 return -EBUSY;
6ea9c07c 3001 }
1da177e4
LT
3002
3003 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3004 if (!newpoolinfo)
3005 return -ENOMEM;
3006 newpoolinfo->mddev = mddev;
8f19ccb2 3007 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3008
3009 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3010 r1bio_pool_free, newpoolinfo);
3011 if (!newpool) {
3012 kfree(newpoolinfo);
3013 return -ENOMEM;
3014 }
0eaf822c 3015 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3016 GFP_KERNEL);
1da177e4
LT
3017 if (!newmirrors) {
3018 kfree(newpoolinfo);
3019 mempool_destroy(newpool);
3020 return -ENOMEM;
3021 }
1da177e4 3022
e2d59925 3023 freeze_array(conf, 0);
1da177e4
LT
3024
3025 /* ok, everything is stopped */
3026 oldpool = conf->r1bio_pool;
3027 conf->r1bio_pool = newpool;
6ea9c07c 3028
a88aa786 3029 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3030 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3031 if (rdev && rdev->raid_disk != d2) {
36fad858 3032 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3033 rdev->raid_disk = d2;
36fad858
NK
3034 sysfs_unlink_rdev(mddev, rdev);
3035 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3036 printk(KERN_WARNING
36fad858
NK
3037 "md/raid1:%s: cannot register rd%d\n",
3038 mdname(mddev), rdev->raid_disk);
6ea9c07c 3039 }
a88aa786
N
3040 if (rdev)
3041 newmirrors[d2++].rdev = rdev;
3042 }
1da177e4
LT
3043 kfree(conf->mirrors);
3044 conf->mirrors = newmirrors;
3045 kfree(conf->poolinfo);
3046 conf->poolinfo = newpoolinfo;
3047
c04be0aa 3048 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3049 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3050 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3051 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3052 mddev->delta_disks = 0;
1da177e4 3053
e2d59925 3054 unfreeze_array(conf);
1da177e4
LT
3055
3056 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3057 md_wakeup_thread(mddev->thread);
3058
3059 mempool_destroy(oldpool);
3060 return 0;
3061}
3062
fd01b88c 3063static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3064{
e8096360 3065 struct r1conf *conf = mddev->private;
36fa3063
N
3066
3067 switch(state) {
6eef4b21
N
3068 case 2: /* wake for suspend */
3069 wake_up(&conf->wait_barrier);
3070 break;
9e6603da 3071 case 1:
17999be4 3072 raise_barrier(conf);
36fa3063 3073 break;
9e6603da 3074 case 0:
17999be4 3075 lower_barrier(conf);
36fa3063
N
3076 break;
3077 }
36fa3063
N
3078}
3079
fd01b88c 3080static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3081{
3082 /* raid1 can take over:
3083 * raid5 with 2 devices, any layout or chunk size
3084 */
3085 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3086 struct r1conf *conf;
709ae487
N
3087 mddev->new_level = 1;
3088 mddev->new_layout = 0;
3089 mddev->new_chunk_sectors = 0;
3090 conf = setup_conf(mddev);
3091 if (!IS_ERR(conf))
3092 conf->barrier = 1;
3093 return conf;
3094 }
3095 return ERR_PTR(-EINVAL);
3096}
1da177e4 3097
84fc4b56 3098static struct md_personality raid1_personality =
1da177e4
LT
3099{
3100 .name = "raid1",
2604b703 3101 .level = 1,
1da177e4
LT
3102 .owner = THIS_MODULE,
3103 .make_request = make_request,
3104 .run = run,
3105 .stop = stop,
3106 .status = status,
3107 .error_handler = error,
3108 .hot_add_disk = raid1_add_disk,
3109 .hot_remove_disk= raid1_remove_disk,
3110 .spare_active = raid1_spare_active,
3111 .sync_request = sync_request,
3112 .resize = raid1_resize,
80c3a6ce 3113 .size = raid1_size,
63c70c4f 3114 .check_reshape = raid1_reshape,
36fa3063 3115 .quiesce = raid1_quiesce,
709ae487 3116 .takeover = raid1_takeover,
1da177e4
LT
3117};
3118
3119static int __init raid_init(void)
3120{
2604b703 3121 return register_md_personality(&raid1_personality);
1da177e4
LT
3122}
3123
3124static void raid_exit(void)
3125{
2604b703 3126 unregister_md_personality(&raid1_personality);
1da177e4
LT
3127}
3128
3129module_init(raid_init);
3130module_exit(raid_exit);
3131MODULE_LICENSE("GPL");
0efb9e61 3132MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3133MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3134MODULE_ALIAS("md-raid1");
2604b703 3135MODULE_ALIAS("md-level-1");
34db0cd6
N
3136
3137module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);