]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/md/raid1.c
md/raid1: small cleanup in raid1_end_read/write_request
[mirror_ubuntu-eoan-kernel.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
8e005f7c 95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 96
dd0fc66f 97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
98{
99 struct pool_info *pi = data;
9f2c9d12 100 struct r1bio *r1_bio;
1da177e4 101 struct bio *bio;
da1aab3d 102 int need_pages;
1da177e4
LT
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 106 if (!r1_bio)
1da177e4 107 return NULL;
1da177e4
LT
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
6746557f 113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
1da177e4 123 */
d11c171e 124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 125 need_pages = pi->raid_disks;
d11c171e 126 else
da1aab3d
N
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
d11c171e 129 bio = r1_bio->bios[j];
a0787606 130 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 131
a0787606 132 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 133 goto out_free_pages;
d11c171e
N
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
da1aab3d
N
147out_free_pages:
148 while (--j >= 0) {
149 struct bio_vec *bv;
150
151 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 __free_page(bv->bv_page);
153 }
154
1da177e4 155out_free_bio:
8f19ccb2 156 while (++j < pi->raid_disks)
1da177e4
LT
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
160}
161
162static void r1buf_pool_free(void *__r1_bio, void *data)
163{
164 struct pool_info *pi = data;
d11c171e 165 int i,j;
9f2c9d12 166 struct r1bio *r1bio = __r1_bio;
1da177e4 167
d11c171e
N
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 174 }
1da177e4
LT
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
177
178 r1bio_pool_free(r1bio, data);
179}
180
e8096360 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
182{
183 int i;
184
8f19ccb2 185 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 186 struct bio **bio = r1_bio->bios + i;
4367af55 187 if (!BIO_SPECIAL(*bio))
1da177e4
LT
188 bio_put(*bio);
189 *bio = NULL;
190 }
191}
192
9f2c9d12 193static void free_r1bio(struct r1bio *r1_bio)
1da177e4 194{
e8096360 195 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 196
1da177e4
LT
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
199}
200
9f2c9d12 201static void put_buf(struct r1bio *r1_bio)
1da177e4 202{
e8096360 203 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
204 int i;
205
8f19ccb2 206 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 }
1da177e4
LT
211
212 mempool_free(r1_bio, conf->r1buf_pool);
213
17999be4 214 lower_barrier(conf);
1da177e4
LT
215}
216
9f2c9d12 217static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
218{
219 unsigned long flags;
fd01b88c 220 struct mddev *mddev = r1_bio->mddev;
e8096360 221 struct r1conf *conf = mddev->private;
1da177e4
LT
222
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 225 conf->nr_queued ++;
1da177e4
LT
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
17999be4 228 wake_up(&conf->wait_barrier);
1da177e4
LT
229 md_wakeup_thread(mddev->thread);
230}
231
232/*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
9f2c9d12 237static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
238{
239 struct bio *bio = r1_bio->master_bio;
240 int done;
e8096360 241 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 242 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 243 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
244
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 251 /*
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
254 */
255 wake_up(&conf->wait_barrier);
d2eb35ac
N
256 } else
257 done = 1;
258
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
260 bio->bi_error = -EIO;
261
d2eb35ac 262 if (done) {
4246a0b6 263 bio_endio(bio);
d2eb35ac
N
264 /*
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
267 */
79ef3a8a 268 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
269 }
270}
271
9f2c9d12 272static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
273{
274 struct bio *bio = r1_bio->master_bio;
275
4b6d287f
N
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 282
d2eb35ac 283 call_bio_endio(r1_bio);
4b6d287f 284 }
1da177e4
LT
285 free_r1bio(r1_bio);
286}
287
288/*
289 * Update disk head position estimator based on IRQ completion info.
290 */
9f2c9d12 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 292{
e8096360 293 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
294
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
297}
298
ba3ae3be
NK
299/*
300 * Find the disk number which triggered given bio
301 */
9f2c9d12 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
303{
304 int mirror;
30194636
N
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
ba3ae3be 307
8f19ccb2 308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
309 if (r1_bio->bios[mirror] == bio)
310 break;
311
8f19ccb2 312 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
313 update_head_pos(mirror, r1_bio);
314
315 return mirror;
316}
317
4246a0b6 318static void raid1_end_read_request(struct bio *bio)
1da177e4 319{
4246a0b6 320 int uptodate = !bio->bi_error;
9f2c9d12 321 struct r1bio *r1_bio = bio->bi_private;
e8096360 322 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 323 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 324
1da177e4
LT
325 /*
326 * this branch is our 'one mirror IO has finished' event handler:
327 */
e5872d58 328 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 329
dd00a99e
N
330 if (uptodate)
331 set_bit(R1BIO_Uptodate, &r1_bio->state);
332 else {
333 /* If all other devices have failed, we want to return
334 * the error upwards rather than fail the last device.
335 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 336 */
dd00a99e
N
337 unsigned long flags;
338 spin_lock_irqsave(&conf->device_lock, flags);
339 if (r1_bio->mddev->degraded == conf->raid_disks ||
340 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 341 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
342 uptodate = 1;
343 spin_unlock_irqrestore(&conf->device_lock, flags);
344 }
1da177e4 345
7ad4d4a6 346 if (uptodate) {
1da177e4 347 raid_end_bio_io(r1_bio);
e5872d58 348 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 349 } else {
1da177e4
LT
350 /*
351 * oops, read error:
352 */
353 char b[BDEVNAME_SIZE];
8bda470e
CD
354 printk_ratelimited(
355 KERN_ERR "md/raid1:%s: %s: "
356 "rescheduling sector %llu\n",
357 mdname(conf->mddev),
e5872d58 358 bdevname(rdev->bdev,
8bda470e
CD
359 b),
360 (unsigned long long)r1_bio->sector);
d2eb35ac 361 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 362 reschedule_retry(r1_bio);
7ad4d4a6 363 /* don't drop the reference on read_disk yet */
1da177e4 364 }
1da177e4
LT
365}
366
9f2c9d12 367static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
368{
369 /* it really is the end of this request */
370 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
371 /* free extra copy of the data pages */
372 int i = r1_bio->behind_page_count;
373 while (i--)
374 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
375 kfree(r1_bio->behind_bvecs);
376 r1_bio->behind_bvecs = NULL;
377 }
378 /* clear the bitmap if all writes complete successfully */
379 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
380 r1_bio->sectors,
381 !test_bit(R1BIO_Degraded, &r1_bio->state),
382 test_bit(R1BIO_BehindIO, &r1_bio->state));
383 md_write_end(r1_bio->mddev);
384}
385
9f2c9d12 386static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 387{
cd5ff9a1
N
388 if (!atomic_dec_and_test(&r1_bio->remaining))
389 return;
390
391 if (test_bit(R1BIO_WriteError, &r1_bio->state))
392 reschedule_retry(r1_bio);
393 else {
394 close_write(r1_bio);
4367af55
N
395 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
396 reschedule_retry(r1_bio);
397 else
398 raid_end_bio_io(r1_bio);
4e78064f
N
399 }
400}
401
4246a0b6 402static void raid1_end_write_request(struct bio *bio)
1da177e4 403{
9f2c9d12 404 struct r1bio *r1_bio = bio->bi_private;
e5872d58 405 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 406 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 407 struct bio *to_put = NULL;
e5872d58
N
408 int mirror = find_bio_disk(r1_bio, bio);
409 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
1da177e4 410
e9c7469b
TH
411 /*
412 * 'one mirror IO has finished' event handler:
413 */
4246a0b6 414 if (bio->bi_error) {
e5872d58
N
415 set_bit(WriteErrorSeen, &rdev->flags);
416 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
417 set_bit(MD_RECOVERY_NEEDED, &
418 conf->mddev->recovery);
419
cd5ff9a1 420 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 421 } else {
1da177e4 422 /*
e9c7469b
TH
423 * Set R1BIO_Uptodate in our master bio, so that we
424 * will return a good error code for to the higher
425 * levels even if IO on some other mirrored buffer
426 * fails.
427 *
428 * The 'master' represents the composite IO operation
429 * to user-side. So if something waits for IO, then it
430 * will wait for the 'master' bio.
1da177e4 431 */
4367af55
N
432 sector_t first_bad;
433 int bad_sectors;
434
cd5ff9a1
N
435 r1_bio->bios[mirror] = NULL;
436 to_put = bio;
3056e3ae
AL
437 /*
438 * Do not set R1BIO_Uptodate if the current device is
439 * rebuilding or Faulty. This is because we cannot use
440 * such device for properly reading the data back (we could
441 * potentially use it, if the current write would have felt
442 * before rdev->recovery_offset, but for simplicity we don't
443 * check this here.
444 */
e5872d58
N
445 if (test_bit(In_sync, &rdev->flags) &&
446 !test_bit(Faulty, &rdev->flags))
3056e3ae 447 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 448
4367af55 449 /* Maybe we can clear some bad blocks. */
e5872d58 450 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
4367af55
N
451 &first_bad, &bad_sectors)) {
452 r1_bio->bios[mirror] = IO_MADE_GOOD;
453 set_bit(R1BIO_MadeGood, &r1_bio->state);
454 }
455 }
456
e9c7469b 457 if (behind) {
e5872d58 458 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
459 atomic_dec(&r1_bio->behind_remaining);
460
461 /*
462 * In behind mode, we ACK the master bio once the I/O
463 * has safely reached all non-writemostly
464 * disks. Setting the Returned bit ensures that this
465 * gets done only once -- we don't ever want to return
466 * -EIO here, instead we'll wait
467 */
468 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
469 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
470 /* Maybe we can return now */
471 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
472 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
473 pr_debug("raid1: behind end write sectors"
474 " %llu-%llu\n",
4f024f37
KO
475 (unsigned long long) mbio->bi_iter.bi_sector,
476 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 477 call_bio_endio(r1_bio);
4b6d287f
N
478 }
479 }
480 }
4367af55 481 if (r1_bio->bios[mirror] == NULL)
e5872d58 482 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 483
1da177e4 484 /*
1da177e4
LT
485 * Let's see if all mirrored write operations have finished
486 * already.
487 */
af6d7b76 488 r1_bio_write_done(r1_bio);
c70810b3 489
04b857f7
N
490 if (to_put)
491 bio_put(to_put);
1da177e4
LT
492}
493
1da177e4
LT
494/*
495 * This routine returns the disk from which the requested read should
496 * be done. There is a per-array 'next expected sequential IO' sector
497 * number - if this matches on the next IO then we use the last disk.
498 * There is also a per-disk 'last know head position' sector that is
499 * maintained from IRQ contexts, both the normal and the resync IO
500 * completion handlers update this position correctly. If there is no
501 * perfect sequential match then we pick the disk whose head is closest.
502 *
503 * If there are 2 mirrors in the same 2 devices, performance degrades
504 * because position is mirror, not device based.
505 *
506 * The rdev for the device selected will have nr_pending incremented.
507 */
e8096360 508static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 509{
af3a2cd6 510 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
511 int sectors;
512 int best_good_sectors;
9dedf603
SL
513 int best_disk, best_dist_disk, best_pending_disk;
514 int has_nonrot_disk;
be4d3280 515 int disk;
76073054 516 sector_t best_dist;
9dedf603 517 unsigned int min_pending;
3cb03002 518 struct md_rdev *rdev;
f3ac8bf7 519 int choose_first;
12cee5a8 520 int choose_next_idle;
1da177e4
LT
521
522 rcu_read_lock();
523 /*
8ddf9efe 524 * Check if we can balance. We can balance on the whole
1da177e4
LT
525 * device if no resync is going on, or below the resync window.
526 * We take the first readable disk when above the resync window.
527 */
528 retry:
d2eb35ac 529 sectors = r1_bio->sectors;
76073054 530 best_disk = -1;
9dedf603 531 best_dist_disk = -1;
76073054 532 best_dist = MaxSector;
9dedf603
SL
533 best_pending_disk = -1;
534 min_pending = UINT_MAX;
d2eb35ac 535 best_good_sectors = 0;
9dedf603 536 has_nonrot_disk = 0;
12cee5a8 537 choose_next_idle = 0;
d2eb35ac 538
7d49ffcf
GR
539 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
540 (mddev_is_clustered(conf->mddev) &&
90382ed9 541 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
542 this_sector + sectors)))
543 choose_first = 1;
544 else
545 choose_first = 0;
1da177e4 546
be4d3280 547 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 548 sector_t dist;
d2eb35ac
N
549 sector_t first_bad;
550 int bad_sectors;
9dedf603 551 unsigned int pending;
12cee5a8 552 bool nonrot;
d2eb35ac 553
f3ac8bf7
N
554 rdev = rcu_dereference(conf->mirrors[disk].rdev);
555 if (r1_bio->bios[disk] == IO_BLOCKED
556 || rdev == NULL
76073054 557 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 558 continue;
76073054
N
559 if (!test_bit(In_sync, &rdev->flags) &&
560 rdev->recovery_offset < this_sector + sectors)
1da177e4 561 continue;
76073054
N
562 if (test_bit(WriteMostly, &rdev->flags)) {
563 /* Don't balance among write-mostly, just
564 * use the first as a last resort */
d1901ef0 565 if (best_dist_disk < 0) {
307729c8
N
566 if (is_badblock(rdev, this_sector, sectors,
567 &first_bad, &bad_sectors)) {
816b0acf 568 if (first_bad <= this_sector)
307729c8
N
569 /* Cannot use this */
570 continue;
571 best_good_sectors = first_bad - this_sector;
572 } else
573 best_good_sectors = sectors;
d1901ef0
TH
574 best_dist_disk = disk;
575 best_pending_disk = disk;
307729c8 576 }
76073054
N
577 continue;
578 }
579 /* This is a reasonable device to use. It might
580 * even be best.
581 */
d2eb35ac
N
582 if (is_badblock(rdev, this_sector, sectors,
583 &first_bad, &bad_sectors)) {
584 if (best_dist < MaxSector)
585 /* already have a better device */
586 continue;
587 if (first_bad <= this_sector) {
588 /* cannot read here. If this is the 'primary'
589 * device, then we must not read beyond
590 * bad_sectors from another device..
591 */
592 bad_sectors -= (this_sector - first_bad);
593 if (choose_first && sectors > bad_sectors)
594 sectors = bad_sectors;
595 if (best_good_sectors > sectors)
596 best_good_sectors = sectors;
597
598 } else {
599 sector_t good_sectors = first_bad - this_sector;
600 if (good_sectors > best_good_sectors) {
601 best_good_sectors = good_sectors;
602 best_disk = disk;
603 }
604 if (choose_first)
605 break;
606 }
607 continue;
608 } else
609 best_good_sectors = sectors;
610
12cee5a8
SL
611 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
612 has_nonrot_disk |= nonrot;
9dedf603 613 pending = atomic_read(&rdev->nr_pending);
76073054 614 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 615 if (choose_first) {
76073054 616 best_disk = disk;
1da177e4
LT
617 break;
618 }
12cee5a8
SL
619 /* Don't change to another disk for sequential reads */
620 if (conf->mirrors[disk].next_seq_sect == this_sector
621 || dist == 0) {
622 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
623 struct raid1_info *mirror = &conf->mirrors[disk];
624
625 best_disk = disk;
626 /*
627 * If buffered sequential IO size exceeds optimal
628 * iosize, check if there is idle disk. If yes, choose
629 * the idle disk. read_balance could already choose an
630 * idle disk before noticing it's a sequential IO in
631 * this disk. This doesn't matter because this disk
632 * will idle, next time it will be utilized after the
633 * first disk has IO size exceeds optimal iosize. In
634 * this way, iosize of the first disk will be optimal
635 * iosize at least. iosize of the second disk might be
636 * small, but not a big deal since when the second disk
637 * starts IO, the first disk is likely still busy.
638 */
639 if (nonrot && opt_iosize > 0 &&
640 mirror->seq_start != MaxSector &&
641 mirror->next_seq_sect > opt_iosize &&
642 mirror->next_seq_sect - opt_iosize >=
643 mirror->seq_start) {
644 choose_next_idle = 1;
645 continue;
646 }
647 break;
648 }
649 /* If device is idle, use it */
650 if (pending == 0) {
651 best_disk = disk;
652 break;
653 }
654
655 if (choose_next_idle)
656 continue;
9dedf603
SL
657
658 if (min_pending > pending) {
659 min_pending = pending;
660 best_pending_disk = disk;
661 }
662
76073054
N
663 if (dist < best_dist) {
664 best_dist = dist;
9dedf603 665 best_dist_disk = disk;
1da177e4 666 }
f3ac8bf7 667 }
1da177e4 668
9dedf603
SL
669 /*
670 * If all disks are rotational, choose the closest disk. If any disk is
671 * non-rotational, choose the disk with less pending request even the
672 * disk is rotational, which might/might not be optimal for raids with
673 * mixed ratation/non-rotational disks depending on workload.
674 */
675 if (best_disk == -1) {
676 if (has_nonrot_disk)
677 best_disk = best_pending_disk;
678 else
679 best_disk = best_dist_disk;
680 }
681
76073054
N
682 if (best_disk >= 0) {
683 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
684 if (!rdev)
685 goto retry;
686 atomic_inc(&rdev->nr_pending);
d2eb35ac 687 sectors = best_good_sectors;
12cee5a8
SL
688
689 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 conf->mirrors[best_disk].seq_start = this_sector;
691
be4d3280 692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
693 }
694 rcu_read_unlock();
d2eb35ac 695 *max_sectors = sectors;
1da177e4 696
76073054 697 return best_disk;
1da177e4
LT
698}
699
5c675f83 700static int raid1_congested(struct mddev *mddev, int bits)
0d129228 701{
e8096360 702 struct r1conf *conf = mddev->private;
0d129228
N
703 int i, ret = 0;
704
4452226e 705 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
706 conf->pending_count >= max_queued_requests)
707 return 1;
708
0d129228 709 rcu_read_lock();
f53e29fc 710 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 711 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 712 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 713 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 714
1ed7242e
JB
715 BUG_ON(!q);
716
0d129228
N
717 /* Note the '|| 1' - when read_balance prefers
718 * non-congested targets, it can be removed
719 */
4452226e 720 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
721 ret |= bdi_congested(&q->backing_dev_info, bits);
722 else
723 ret &= bdi_congested(&q->backing_dev_info, bits);
724 }
725 }
726 rcu_read_unlock();
727 return ret;
728}
0d129228 729
e8096360 730static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
731{
732 /* Any writes that have been queued but are awaiting
733 * bitmap updates get flushed here.
a35e63ef 734 */
a35e63ef
N
735 spin_lock_irq(&conf->device_lock);
736
737 if (conf->pending_bio_list.head) {
738 struct bio *bio;
739 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 740 conf->pending_count = 0;
a35e63ef
N
741 spin_unlock_irq(&conf->device_lock);
742 /* flush any pending bitmap writes to
743 * disk before proceeding w/ I/O */
744 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 745 wake_up(&conf->wait_barrier);
a35e63ef
N
746
747 while (bio) { /* submit pending writes */
748 struct bio *next = bio->bi_next;
749 bio->bi_next = NULL;
2ff8cc2c
SL
750 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
751 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
752 /* Just ignore it */
4246a0b6 753 bio_endio(bio);
2ff8cc2c
SL
754 else
755 generic_make_request(bio);
a35e63ef
N
756 bio = next;
757 }
a35e63ef
N
758 } else
759 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
760}
761
17999be4
N
762/* Barriers....
763 * Sometimes we need to suspend IO while we do something else,
764 * either some resync/recovery, or reconfigure the array.
765 * To do this we raise a 'barrier'.
766 * The 'barrier' is a counter that can be raised multiple times
767 * to count how many activities are happening which preclude
768 * normal IO.
769 * We can only raise the barrier if there is no pending IO.
770 * i.e. if nr_pending == 0.
771 * We choose only to raise the barrier if no-one is waiting for the
772 * barrier to go down. This means that as soon as an IO request
773 * is ready, no other operations which require a barrier will start
774 * until the IO request has had a chance.
775 *
776 * So: regular IO calls 'wait_barrier'. When that returns there
777 * is no backgroup IO happening, It must arrange to call
778 * allow_barrier when it has finished its IO.
779 * backgroup IO calls must call raise_barrier. Once that returns
780 * there is no normal IO happeing. It must arrange to call
781 * lower_barrier when the particular background IO completes.
1da177e4 782 */
c2fd4c94 783static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
784{
785 spin_lock_irq(&conf->resync_lock);
17999be4
N
786
787 /* Wait until no block IO is waiting */
788 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 789 conf->resync_lock);
17999be4
N
790
791 /* block any new IO from starting */
792 conf->barrier++;
c2fd4c94 793 conf->next_resync = sector_nr;
17999be4 794
79ef3a8a 795 /* For these conditions we must wait:
796 * A: while the array is in frozen state
797 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
798 * the max count which allowed.
799 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
800 * next resync will reach to the window which normal bios are
801 * handling.
2f73d3c5 802 * D: while there are any active requests in the current window.
79ef3a8a 803 */
17999be4 804 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 805 !conf->array_frozen &&
79ef3a8a 806 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 807 conf->current_window_requests == 0 &&
79ef3a8a 808 (conf->start_next_window >=
809 conf->next_resync + RESYNC_SECTORS),
eed8c02e 810 conf->resync_lock);
17999be4 811
34e97f17 812 conf->nr_pending++;
17999be4
N
813 spin_unlock_irq(&conf->resync_lock);
814}
815
e8096360 816static void lower_barrier(struct r1conf *conf)
17999be4
N
817{
818 unsigned long flags;
709ae487 819 BUG_ON(conf->barrier <= 0);
17999be4
N
820 spin_lock_irqsave(&conf->resync_lock, flags);
821 conf->barrier--;
34e97f17 822 conf->nr_pending--;
17999be4
N
823 spin_unlock_irqrestore(&conf->resync_lock, flags);
824 wake_up(&conf->wait_barrier);
825}
826
79ef3a8a 827static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 828{
79ef3a8a 829 bool wait = false;
830
831 if (conf->array_frozen || !bio)
832 wait = true;
833 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
834 if ((conf->mddev->curr_resync_completed
835 >= bio_end_sector(bio)) ||
836 (conf->next_resync + NEXT_NORMALIO_DISTANCE
837 <= bio->bi_iter.bi_sector))
79ef3a8a 838 wait = false;
839 else
840 wait = true;
841 }
842
843 return wait;
844}
845
846static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
847{
848 sector_t sector = 0;
849
17999be4 850 spin_lock_irq(&conf->resync_lock);
79ef3a8a 851 if (need_to_wait_for_sync(conf, bio)) {
17999be4 852 conf->nr_waiting++;
d6b42dcb
N
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
5965b642 857 * per-process bio queue isn't empty,
d6b42dcb 858 * then don't wait, as we need to empty
5965b642
N
859 * that queue to allow conf->start_next_window
860 * to increase.
d6b42dcb
N
861 */
862 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 863 !conf->array_frozen &&
864 (!conf->barrier ||
5965b642
N
865 ((conf->start_next_window <
866 conf->next_resync + RESYNC_SECTORS) &&
867 current->bio_list &&
868 !bio_list_empty(current->bio_list))),
eed8c02e 869 conf->resync_lock);
17999be4 870 conf->nr_waiting--;
1da177e4 871 }
79ef3a8a 872
873 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 874 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 875 if (conf->start_next_window == MaxSector)
876 conf->start_next_window =
877 conf->next_resync +
878 NEXT_NORMALIO_DISTANCE;
879
880 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 881 <= bio->bi_iter.bi_sector)
79ef3a8a 882 conf->next_window_requests++;
883 else
884 conf->current_window_requests++;
79ef3a8a 885 sector = conf->start_next_window;
41a336e0 886 }
79ef3a8a 887 }
888
17999be4 889 conf->nr_pending++;
1da177e4 890 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 891 return sector;
1da177e4
LT
892}
893
79ef3a8a 894static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
895 sector_t bi_sector)
17999be4
N
896{
897 unsigned long flags;
79ef3a8a 898
17999be4
N
899 spin_lock_irqsave(&conf->resync_lock, flags);
900 conf->nr_pending--;
79ef3a8a 901 if (start_next_window) {
902 if (start_next_window == conf->start_next_window) {
903 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
904 <= bi_sector)
905 conf->next_window_requests--;
906 else
907 conf->current_window_requests--;
908 } else
909 conf->current_window_requests--;
910
911 if (!conf->current_window_requests) {
912 if (conf->next_window_requests) {
913 conf->current_window_requests =
914 conf->next_window_requests;
915 conf->next_window_requests = 0;
916 conf->start_next_window +=
917 NEXT_NORMALIO_DISTANCE;
918 } else
919 conf->start_next_window = MaxSector;
920 }
921 }
17999be4
N
922 spin_unlock_irqrestore(&conf->resync_lock, flags);
923 wake_up(&conf->wait_barrier);
924}
925
e2d59925 926static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
927{
928 /* stop syncio and normal IO and wait for everything to
929 * go quite.
b364e3d0 930 * We wait until nr_pending match nr_queued+extra
1c830532
N
931 * This is called in the context of one normal IO request
932 * that has failed. Thus any sync request that might be pending
933 * will be blocked by nr_pending, and we need to wait for
934 * pending IO requests to complete or be queued for re-try.
e2d59925 935 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
936 * must match the number of pending IOs (nr_pending) before
937 * we continue.
ddaf22ab
N
938 */
939 spin_lock_irq(&conf->resync_lock);
b364e3d0 940 conf->array_frozen = 1;
eed8c02e 941 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 942 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
943 conf->resync_lock,
944 flush_pending_writes(conf));
ddaf22ab
N
945 spin_unlock_irq(&conf->resync_lock);
946}
e8096360 947static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
948{
949 /* reverse the effect of the freeze */
950 spin_lock_irq(&conf->resync_lock);
b364e3d0 951 conf->array_frozen = 0;
ddaf22ab
N
952 wake_up(&conf->wait_barrier);
953 spin_unlock_irq(&conf->resync_lock);
954}
955
f72ffdd6 956/* duplicate the data pages for behind I/O
4e78064f 957 */
9f2c9d12 958static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
959{
960 int i;
961 struct bio_vec *bvec;
2ca68f5e 962 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 963 GFP_NOIO);
2ca68f5e 964 if (unlikely(!bvecs))
af6d7b76 965 return;
4b6d287f 966
cb34e057 967 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
968 bvecs[i] = *bvec;
969 bvecs[i].bv_page = alloc_page(GFP_NOIO);
970 if (unlikely(!bvecs[i].bv_page))
4b6d287f 971 goto do_sync_io;
2ca68f5e
N
972 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
973 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
974 kunmap(bvecs[i].bv_page);
4b6d287f
N
975 kunmap(bvec->bv_page);
976 }
2ca68f5e 977 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
978 r1_bio->behind_page_count = bio->bi_vcnt;
979 set_bit(R1BIO_BehindIO, &r1_bio->state);
980 return;
4b6d287f
N
981
982do_sync_io:
af6d7b76 983 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
984 if (bvecs[i].bv_page)
985 put_page(bvecs[i].bv_page);
986 kfree(bvecs);
4f024f37
KO
987 pr_debug("%dB behind alloc failed, doing sync I/O\n",
988 bio->bi_iter.bi_size);
4b6d287f
N
989}
990
f54a9d0e
N
991struct raid1_plug_cb {
992 struct blk_plug_cb cb;
993 struct bio_list pending;
994 int pending_cnt;
995};
996
997static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
998{
999 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1000 cb);
1001 struct mddev *mddev = plug->cb.data;
1002 struct r1conf *conf = mddev->private;
1003 struct bio *bio;
1004
874807a8 1005 if (from_schedule || current->bio_list) {
f54a9d0e
N
1006 spin_lock_irq(&conf->device_lock);
1007 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1008 conf->pending_count += plug->pending_cnt;
1009 spin_unlock_irq(&conf->device_lock);
ee0b0244 1010 wake_up(&conf->wait_barrier);
f54a9d0e
N
1011 md_wakeup_thread(mddev->thread);
1012 kfree(plug);
1013 return;
1014 }
1015
1016 /* we aren't scheduling, so we can do the write-out directly. */
1017 bio = bio_list_get(&plug->pending);
1018 bitmap_unplug(mddev->bitmap);
1019 wake_up(&conf->wait_barrier);
1020
1021 while (bio) { /* submit pending writes */
1022 struct bio *next = bio->bi_next;
1023 bio->bi_next = NULL;
32f9f570
SL
1024 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1025 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1026 /* Just ignore it */
4246a0b6 1027 bio_endio(bio);
32f9f570
SL
1028 else
1029 generic_make_request(bio);
f54a9d0e
N
1030 bio = next;
1031 }
1032 kfree(plug);
1033}
1034
849674e4 1035static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1036{
e8096360 1037 struct r1conf *conf = mddev->private;
0eaf822c 1038 struct raid1_info *mirror;
9f2c9d12 1039 struct r1bio *r1_bio;
1da177e4 1040 struct bio *read_bio;
1f68f0c4 1041 int i, disks;
84255d10 1042 struct bitmap *bitmap;
191ea9b2 1043 unsigned long flags;
a362357b 1044 const int rw = bio_data_dir(bio);
2c7d46ec 1045 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1046 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1047 const unsigned long do_discard = (bio->bi_rw
1048 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1049 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1050 struct md_rdev *blocked_rdev;
f54a9d0e
N
1051 struct blk_plug_cb *cb;
1052 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1053 int first_clone;
1054 int sectors_handled;
1055 int max_sectors;
79ef3a8a 1056 sector_t start_next_window;
191ea9b2 1057
1da177e4
LT
1058 /*
1059 * Register the new request and wait if the reconstruction
1060 * thread has put up a bar for new requests.
1061 * Continue immediately if no resync is active currently.
1062 */
62de608d 1063
3d310eb7
N
1064 md_write_start(mddev, bio); /* wait on superblock update early */
1065
6eef4b21 1066 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1067 ((bio_end_sector(bio) > mddev->suspend_lo &&
1068 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1069 (mddev_is_clustered(mddev) &&
90382ed9
GR
1070 md_cluster_ops->area_resyncing(mddev, WRITE,
1071 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1072 /* As the suspend_* range is controlled by
1073 * userspace, we want an interruptible
1074 * wait.
1075 */
1076 DEFINE_WAIT(w);
1077 for (;;) {
1078 flush_signals(current);
1079 prepare_to_wait(&conf->wait_barrier,
1080 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1081 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1082 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1083 (mddev_is_clustered(mddev) &&
90382ed9 1084 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1085 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1086 break;
1087 schedule();
1088 }
1089 finish_wait(&conf->wait_barrier, &w);
1090 }
62de608d 1091
79ef3a8a 1092 start_next_window = wait_barrier(conf, bio);
1da177e4 1093
84255d10
N
1094 bitmap = mddev->bitmap;
1095
1da177e4
LT
1096 /*
1097 * make_request() can abort the operation when READA is being
1098 * used and no empty request is available.
1099 *
1100 */
1101 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1102
1103 r1_bio->master_bio = bio;
aa8b57aa 1104 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1105 r1_bio->state = 0;
1da177e4 1106 r1_bio->mddev = mddev;
4f024f37 1107 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1108
d2eb35ac
N
1109 /* We might need to issue multiple reads to different
1110 * devices if there are bad blocks around, so we keep
1111 * track of the number of reads in bio->bi_phys_segments.
1112 * If this is 0, there is only one r1_bio and no locking
1113 * will be needed when requests complete. If it is
1114 * non-zero, then it is the number of not-completed requests.
1115 */
1116 bio->bi_phys_segments = 0;
b7c44ed9 1117 bio_clear_flag(bio, BIO_SEG_VALID);
d2eb35ac 1118
a362357b 1119 if (rw == READ) {
1da177e4
LT
1120 /*
1121 * read balancing logic:
1122 */
d2eb35ac
N
1123 int rdisk;
1124
1125read_again:
1126 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1127
1128 if (rdisk < 0) {
1129 /* couldn't find anywhere to read from */
1130 raid_end_bio_io(r1_bio);
5a7bbad2 1131 return;
1da177e4
LT
1132 }
1133 mirror = conf->mirrors + rdisk;
1134
e555190d
N
1135 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1136 bitmap) {
1137 /* Reading from a write-mostly device must
1138 * take care not to over-take any writes
1139 * that are 'behind'
1140 */
1141 wait_event(bitmap->behind_wait,
1142 atomic_read(&bitmap->behind_writes) == 0);
1143 }
1da177e4 1144 r1_bio->read_disk = rdisk;
f0cc9a05 1145 r1_bio->start_next_window = 0;
1da177e4 1146
a167f663 1147 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1148 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1149 max_sectors);
1da177e4
LT
1150
1151 r1_bio->bios[rdisk] = read_bio;
1152
4f024f37
KO
1153 read_bio->bi_iter.bi_sector = r1_bio->sector +
1154 mirror->rdev->data_offset;
1da177e4
LT
1155 read_bio->bi_bdev = mirror->rdev->bdev;
1156 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1157 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1158 read_bio->bi_private = r1_bio;
1159
d2eb35ac
N
1160 if (max_sectors < r1_bio->sectors) {
1161 /* could not read all from this device, so we will
1162 * need another r1_bio.
1163 */
d2eb35ac
N
1164
1165 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1166 - bio->bi_iter.bi_sector);
d2eb35ac
N
1167 r1_bio->sectors = max_sectors;
1168 spin_lock_irq(&conf->device_lock);
1169 if (bio->bi_phys_segments == 0)
1170 bio->bi_phys_segments = 2;
1171 else
1172 bio->bi_phys_segments++;
1173 spin_unlock_irq(&conf->device_lock);
1174 /* Cannot call generic_make_request directly
1175 * as that will be queued in __make_request
1176 * and subsequent mempool_alloc might block waiting
1177 * for it. So hand bio over to raid1d.
1178 */
1179 reschedule_retry(r1_bio);
1180
1181 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1182
1183 r1_bio->master_bio = bio;
aa8b57aa 1184 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1185 r1_bio->state = 0;
1186 r1_bio->mddev = mddev;
4f024f37
KO
1187 r1_bio->sector = bio->bi_iter.bi_sector +
1188 sectors_handled;
d2eb35ac
N
1189 goto read_again;
1190 } else
1191 generic_make_request(read_bio);
5a7bbad2 1192 return;
1da177e4
LT
1193 }
1194
1195 /*
1196 * WRITE:
1197 */
34db0cd6
N
1198 if (conf->pending_count >= max_queued_requests) {
1199 md_wakeup_thread(mddev->thread);
1200 wait_event(conf->wait_barrier,
1201 conf->pending_count < max_queued_requests);
1202 }
1f68f0c4 1203 /* first select target devices under rcu_lock and
1da177e4
LT
1204 * inc refcount on their rdev. Record them by setting
1205 * bios[x] to bio
1f68f0c4
N
1206 * If there are known/acknowledged bad blocks on any device on
1207 * which we have seen a write error, we want to avoid writing those
1208 * blocks.
1209 * This potentially requires several writes to write around
1210 * the bad blocks. Each set of writes gets it's own r1bio
1211 * with a set of bios attached.
1da177e4 1212 */
c3b328ac 1213
8f19ccb2 1214 disks = conf->raid_disks * 2;
6bfe0b49 1215 retry_write:
79ef3a8a 1216 r1_bio->start_next_window = start_next_window;
6bfe0b49 1217 blocked_rdev = NULL;
1da177e4 1218 rcu_read_lock();
1f68f0c4 1219 max_sectors = r1_bio->sectors;
1da177e4 1220 for (i = 0; i < disks; i++) {
3cb03002 1221 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1222 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1223 atomic_inc(&rdev->nr_pending);
1224 blocked_rdev = rdev;
1225 break;
1226 }
1f68f0c4 1227 r1_bio->bios[i] = NULL;
8ae12666 1228 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1229 if (i < conf->raid_disks)
1230 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1231 continue;
1232 }
1233
1234 atomic_inc(&rdev->nr_pending);
1235 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1236 sector_t first_bad;
1237 int bad_sectors;
1238 int is_bad;
1239
1240 is_bad = is_badblock(rdev, r1_bio->sector,
1241 max_sectors,
1242 &first_bad, &bad_sectors);
1243 if (is_bad < 0) {
1244 /* mustn't write here until the bad block is
1245 * acknowledged*/
1246 set_bit(BlockedBadBlocks, &rdev->flags);
1247 blocked_rdev = rdev;
1248 break;
1249 }
1250 if (is_bad && first_bad <= r1_bio->sector) {
1251 /* Cannot write here at all */
1252 bad_sectors -= (r1_bio->sector - first_bad);
1253 if (bad_sectors < max_sectors)
1254 /* mustn't write more than bad_sectors
1255 * to other devices yet
1256 */
1257 max_sectors = bad_sectors;
03c902e1 1258 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1259 /* We don't set R1BIO_Degraded as that
1260 * only applies if the disk is
1261 * missing, so it might be re-added,
1262 * and we want to know to recover this
1263 * chunk.
1264 * In this case the device is here,
1265 * and the fact that this chunk is not
1266 * in-sync is recorded in the bad
1267 * block log
1268 */
1269 continue;
964147d5 1270 }
1f68f0c4
N
1271 if (is_bad) {
1272 int good_sectors = first_bad - r1_bio->sector;
1273 if (good_sectors < max_sectors)
1274 max_sectors = good_sectors;
1275 }
1276 }
1277 r1_bio->bios[i] = bio;
1da177e4
LT
1278 }
1279 rcu_read_unlock();
1280
6bfe0b49
DW
1281 if (unlikely(blocked_rdev)) {
1282 /* Wait for this device to become unblocked */
1283 int j;
79ef3a8a 1284 sector_t old = start_next_window;
6bfe0b49
DW
1285
1286 for (j = 0; j < i; j++)
1287 if (r1_bio->bios[j])
1288 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1289 r1_bio->state = 0;
4f024f37 1290 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1291 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1292 start_next_window = wait_barrier(conf, bio);
1293 /*
1294 * We must make sure the multi r1bios of bio have
1295 * the same value of bi_phys_segments
1296 */
1297 if (bio->bi_phys_segments && old &&
1298 old != start_next_window)
1299 /* Wait for the former r1bio(s) to complete */
1300 wait_event(conf->wait_barrier,
1301 bio->bi_phys_segments == 1);
6bfe0b49
DW
1302 goto retry_write;
1303 }
1304
1f68f0c4
N
1305 if (max_sectors < r1_bio->sectors) {
1306 /* We are splitting this write into multiple parts, so
1307 * we need to prepare for allocating another r1_bio.
1308 */
1309 r1_bio->sectors = max_sectors;
1310 spin_lock_irq(&conf->device_lock);
1311 if (bio->bi_phys_segments == 0)
1312 bio->bi_phys_segments = 2;
1313 else
1314 bio->bi_phys_segments++;
1315 spin_unlock_irq(&conf->device_lock);
191ea9b2 1316 }
4f024f37 1317 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1318
4e78064f 1319 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1320 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1321
1f68f0c4 1322 first_clone = 1;
1da177e4
LT
1323 for (i = 0; i < disks; i++) {
1324 struct bio *mbio;
1325 if (!r1_bio->bios[i])
1326 continue;
1327
a167f663 1328 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1329 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1330
1331 if (first_clone) {
1332 /* do behind I/O ?
1333 * Not if there are too many, or cannot
1334 * allocate memory, or a reader on WriteMostly
1335 * is waiting for behind writes to flush */
1336 if (bitmap &&
1337 (atomic_read(&bitmap->behind_writes)
1338 < mddev->bitmap_info.max_write_behind) &&
1339 !waitqueue_active(&bitmap->behind_wait))
1340 alloc_behind_pages(mbio, r1_bio);
1341
1342 bitmap_startwrite(bitmap, r1_bio->sector,
1343 r1_bio->sectors,
1344 test_bit(R1BIO_BehindIO,
1345 &r1_bio->state));
1346 first_clone = 0;
1347 }
2ca68f5e 1348 if (r1_bio->behind_bvecs) {
4b6d287f
N
1349 struct bio_vec *bvec;
1350 int j;
1351
cb34e057
KO
1352 /*
1353 * We trimmed the bio, so _all is legit
4b6d287f 1354 */
d74c6d51 1355 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1356 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1357 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1358 atomic_inc(&r1_bio->behind_remaining);
1359 }
1360
1f68f0c4
N
1361 r1_bio->bios[i] = mbio;
1362
4f024f37 1363 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1364 conf->mirrors[i].rdev->data_offset);
1365 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1366 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1367 mbio->bi_rw =
1368 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1369 mbio->bi_private = r1_bio;
1370
1da177e4 1371 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1372
1373 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1374 if (cb)
1375 plug = container_of(cb, struct raid1_plug_cb, cb);
1376 else
1377 plug = NULL;
4e78064f 1378 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1379 if (plug) {
1380 bio_list_add(&plug->pending, mbio);
1381 plug->pending_cnt++;
1382 } else {
1383 bio_list_add(&conf->pending_bio_list, mbio);
1384 conf->pending_count++;
1385 }
4e78064f 1386 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1387 if (!plug)
b357f04a 1388 md_wakeup_thread(mddev->thread);
1da177e4 1389 }
079fa166
N
1390 /* Mustn't call r1_bio_write_done before this next test,
1391 * as it could result in the bio being freed.
1392 */
aa8b57aa 1393 if (sectors_handled < bio_sectors(bio)) {
079fa166 1394 r1_bio_write_done(r1_bio);
1f68f0c4
N
1395 /* We need another r1_bio. It has already been counted
1396 * in bio->bi_phys_segments
1397 */
1398 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1399 r1_bio->master_bio = bio;
aa8b57aa 1400 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1401 r1_bio->state = 0;
1402 r1_bio->mddev = mddev;
4f024f37 1403 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1404 goto retry_write;
1405 }
1406
079fa166
N
1407 r1_bio_write_done(r1_bio);
1408
1409 /* In case raid1d snuck in to freeze_array */
1410 wake_up(&conf->wait_barrier);
1da177e4
LT
1411}
1412
849674e4 1413static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1414{
e8096360 1415 struct r1conf *conf = mddev->private;
1da177e4
LT
1416 int i;
1417
1418 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1419 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1420 rcu_read_lock();
1421 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1422 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1423 seq_printf(seq, "%s",
ddac7c7e
N
1424 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1425 }
1426 rcu_read_unlock();
1da177e4
LT
1427 seq_printf(seq, "]");
1428}
1429
849674e4 1430static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1431{
1432 char b[BDEVNAME_SIZE];
e8096360 1433 struct r1conf *conf = mddev->private;
423f04d6 1434 unsigned long flags;
1da177e4
LT
1435
1436 /*
1437 * If it is not operational, then we have already marked it as dead
1438 * else if it is the last working disks, ignore the error, let the
1439 * next level up know.
1440 * else mark the drive as failed
1441 */
b2d444d7 1442 if (test_bit(In_sync, &rdev->flags)
4044ba58 1443 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1444 /*
1445 * Don't fail the drive, act as though we were just a
4044ba58
N
1446 * normal single drive.
1447 * However don't try a recovery from this drive as
1448 * it is very likely to fail.
1da177e4 1449 */
5389042f 1450 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1451 return;
4044ba58 1452 }
de393cde 1453 set_bit(Blocked, &rdev->flags);
423f04d6 1454 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1455 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1456 mddev->degraded++;
dd00a99e 1457 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1458 } else
1459 set_bit(Faulty, &rdev->flags);
423f04d6 1460 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1461 /*
1462 * if recovery is running, make sure it aborts.
1463 */
1464 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
85ad1d13
GJ
1465 set_mask_bits(&mddev->flags, 0,
1466 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
067032bc
JP
1467 printk(KERN_ALERT
1468 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1469 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1470 mdname(mddev), bdevname(rdev->bdev, b),
1471 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1472}
1473
e8096360 1474static void print_conf(struct r1conf *conf)
1da177e4
LT
1475{
1476 int i;
1da177e4 1477
9dd1e2fa 1478 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1479 if (!conf) {
9dd1e2fa 1480 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1481 return;
1482 }
9dd1e2fa 1483 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1484 conf->raid_disks);
1485
ddac7c7e 1486 rcu_read_lock();
1da177e4
LT
1487 for (i = 0; i < conf->raid_disks; i++) {
1488 char b[BDEVNAME_SIZE];
3cb03002 1489 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1490 if (rdev)
9dd1e2fa 1491 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1492 i, !test_bit(In_sync, &rdev->flags),
1493 !test_bit(Faulty, &rdev->flags),
1494 bdevname(rdev->bdev,b));
1da177e4 1495 }
ddac7c7e 1496 rcu_read_unlock();
1da177e4
LT
1497}
1498
e8096360 1499static void close_sync(struct r1conf *conf)
1da177e4 1500{
79ef3a8a 1501 wait_barrier(conf, NULL);
1502 allow_barrier(conf, 0, 0);
1da177e4
LT
1503
1504 mempool_destroy(conf->r1buf_pool);
1505 conf->r1buf_pool = NULL;
79ef3a8a 1506
669cc7ba 1507 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1508 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1509 conf->start_next_window = MaxSector;
669cc7ba
N
1510 conf->current_window_requests +=
1511 conf->next_window_requests;
1512 conf->next_window_requests = 0;
1513 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1514}
1515
fd01b88c 1516static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1517{
1518 int i;
e8096360 1519 struct r1conf *conf = mddev->private;
6b965620
N
1520 int count = 0;
1521 unsigned long flags;
1da177e4
LT
1522
1523 /*
f72ffdd6 1524 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1525 * and mark them readable.
1526 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1527 * device_lock used to avoid races with raid1_end_read_request
1528 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1529 */
423f04d6 1530 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1531 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1532 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1533 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1534 if (repl
1aee41f6 1535 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1536 && repl->recovery_offset == MaxSector
1537 && !test_bit(Faulty, &repl->flags)
1538 && !test_and_set_bit(In_sync, &repl->flags)) {
1539 /* replacement has just become active */
1540 if (!rdev ||
1541 !test_and_clear_bit(In_sync, &rdev->flags))
1542 count++;
1543 if (rdev) {
1544 /* Replaced device not technically
1545 * faulty, but we need to be sure
1546 * it gets removed and never re-added
1547 */
1548 set_bit(Faulty, &rdev->flags);
1549 sysfs_notify_dirent_safe(
1550 rdev->sysfs_state);
1551 }
1552 }
ddac7c7e 1553 if (rdev
61e4947c 1554 && rdev->recovery_offset == MaxSector
ddac7c7e 1555 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1556 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1557 count++;
654e8b5a 1558 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1559 }
1560 }
6b965620
N
1561 mddev->degraded -= count;
1562 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1563
1564 print_conf(conf);
6b965620 1565 return count;
1da177e4
LT
1566}
1567
fd01b88c 1568static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1569{
e8096360 1570 struct r1conf *conf = mddev->private;
199050ea 1571 int err = -EEXIST;
41158c7e 1572 int mirror = 0;
0eaf822c 1573 struct raid1_info *p;
6c2fce2e 1574 int first = 0;
30194636 1575 int last = conf->raid_disks - 1;
1da177e4 1576
5389042f
N
1577 if (mddev->recovery_disabled == conf->recovery_disabled)
1578 return -EBUSY;
1579
1501efad
DW
1580 if (md_integrity_add_rdev(rdev, mddev))
1581 return -ENXIO;
1582
6c2fce2e
NB
1583 if (rdev->raid_disk >= 0)
1584 first = last = rdev->raid_disk;
1585
70bcecdb
GR
1586 /*
1587 * find the disk ... but prefer rdev->saved_raid_disk
1588 * if possible.
1589 */
1590 if (rdev->saved_raid_disk >= 0 &&
1591 rdev->saved_raid_disk >= first &&
1592 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1593 first = last = rdev->saved_raid_disk;
1594
7ef449d1
N
1595 for (mirror = first; mirror <= last; mirror++) {
1596 p = conf->mirrors+mirror;
1597 if (!p->rdev) {
1da177e4 1598
9092c02d
JB
1599 if (mddev->gendisk)
1600 disk_stack_limits(mddev->gendisk, rdev->bdev,
1601 rdev->data_offset << 9);
1da177e4
LT
1602
1603 p->head_position = 0;
1604 rdev->raid_disk = mirror;
199050ea 1605 err = 0;
6aea114a
N
1606 /* As all devices are equivalent, we don't need a full recovery
1607 * if this was recently any drive of the array
1608 */
1609 if (rdev->saved_raid_disk < 0)
41158c7e 1610 conf->fullsync = 1;
d6065f7b 1611 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1612 break;
1613 }
7ef449d1
N
1614 if (test_bit(WantReplacement, &p->rdev->flags) &&
1615 p[conf->raid_disks].rdev == NULL) {
1616 /* Add this device as a replacement */
1617 clear_bit(In_sync, &rdev->flags);
1618 set_bit(Replacement, &rdev->flags);
1619 rdev->raid_disk = mirror;
1620 err = 0;
1621 conf->fullsync = 1;
1622 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1623 break;
1624 }
1625 }
9092c02d 1626 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1627 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1628 print_conf(conf);
199050ea 1629 return err;
1da177e4
LT
1630}
1631
b8321b68 1632static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1633{
e8096360 1634 struct r1conf *conf = mddev->private;
1da177e4 1635 int err = 0;
b8321b68 1636 int number = rdev->raid_disk;
0eaf822c 1637 struct raid1_info *p = conf->mirrors + number;
1da177e4 1638
b014f14c
N
1639 if (rdev != p->rdev)
1640 p = conf->mirrors + conf->raid_disks + number;
1641
1da177e4 1642 print_conf(conf);
b8321b68 1643 if (rdev == p->rdev) {
b2d444d7 1644 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1645 atomic_read(&rdev->nr_pending)) {
1646 err = -EBUSY;
1647 goto abort;
1648 }
046abeed 1649 /* Only remove non-faulty devices if recovery
dfc70645
N
1650 * is not possible.
1651 */
1652 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1653 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1654 mddev->degraded < conf->raid_disks) {
1655 err = -EBUSY;
1656 goto abort;
1657 }
1da177e4 1658 p->rdev = NULL;
fbd568a3 1659 synchronize_rcu();
1da177e4
LT
1660 if (atomic_read(&rdev->nr_pending)) {
1661 /* lost the race, try later */
1662 err = -EBUSY;
1663 p->rdev = rdev;
ac5e7113 1664 goto abort;
8c7a2c2b
N
1665 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1666 /* We just removed a device that is being replaced.
1667 * Move down the replacement. We drain all IO before
1668 * doing this to avoid confusion.
1669 */
1670 struct md_rdev *repl =
1671 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1672 freeze_array(conf, 0);
8c7a2c2b
N
1673 clear_bit(Replacement, &repl->flags);
1674 p->rdev = repl;
1675 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1676 unfreeze_array(conf);
8c7a2c2b
N
1677 clear_bit(WantReplacement, &rdev->flags);
1678 } else
b014f14c 1679 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1680 err = md_integrity_register(mddev);
1da177e4
LT
1681 }
1682abort:
1683
1684 print_conf(conf);
1685 return err;
1686}
1687
4246a0b6 1688static void end_sync_read(struct bio *bio)
1da177e4 1689{
9f2c9d12 1690 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1691
0fc280f6 1692 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1693
1da177e4
LT
1694 /*
1695 * we have read a block, now it needs to be re-written,
1696 * or re-read if the read failed.
1697 * We don't do much here, just schedule handling by raid1d
1698 */
4246a0b6 1699 if (!bio->bi_error)
1da177e4 1700 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1701
1702 if (atomic_dec_and_test(&r1_bio->remaining))
1703 reschedule_retry(r1_bio);
1da177e4
LT
1704}
1705
4246a0b6 1706static void end_sync_write(struct bio *bio)
1da177e4 1707{
4246a0b6 1708 int uptodate = !bio->bi_error;
9f2c9d12 1709 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1710 struct mddev *mddev = r1_bio->mddev;
e8096360 1711 struct r1conf *conf = mddev->private;
1da177e4 1712 int mirror=0;
4367af55
N
1713 sector_t first_bad;
1714 int bad_sectors;
1da177e4 1715
ba3ae3be
NK
1716 mirror = find_bio_disk(r1_bio, bio);
1717
6b1117d5 1718 if (!uptodate) {
57dab0bd 1719 sector_t sync_blocks = 0;
6b1117d5
N
1720 sector_t s = r1_bio->sector;
1721 long sectors_to_go = r1_bio->sectors;
1722 /* make sure these bits doesn't get cleared. */
1723 do {
5e3db645 1724 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1725 &sync_blocks, 1);
1726 s += sync_blocks;
1727 sectors_to_go -= sync_blocks;
1728 } while (sectors_to_go > 0);
d8f05d29
N
1729 set_bit(WriteErrorSeen,
1730 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1731 if (!test_and_set_bit(WantReplacement,
1732 &conf->mirrors[mirror].rdev->flags))
1733 set_bit(MD_RECOVERY_NEEDED, &
1734 mddev->recovery);
d8f05d29 1735 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1736 } else if (is_badblock(conf->mirrors[mirror].rdev,
1737 r1_bio->sector,
1738 r1_bio->sectors,
3a9f28a5
N
1739 &first_bad, &bad_sectors) &&
1740 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1741 r1_bio->sector,
1742 r1_bio->sectors,
1743 &first_bad, &bad_sectors)
1744 )
4367af55 1745 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1746
1da177e4 1747 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1748 int s = r1_bio->sectors;
d8f05d29
N
1749 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1750 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1751 reschedule_retry(r1_bio);
1752 else {
1753 put_buf(r1_bio);
1754 md_done_sync(mddev, s, uptodate);
1755 }
1da177e4 1756 }
1da177e4
LT
1757}
1758
3cb03002 1759static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1760 int sectors, struct page *page, int rw)
1761{
1762 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1763 /* success */
1764 return 1;
19d67169 1765 if (rw == WRITE) {
d8f05d29 1766 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1767 if (!test_and_set_bit(WantReplacement,
1768 &rdev->flags))
1769 set_bit(MD_RECOVERY_NEEDED, &
1770 rdev->mddev->recovery);
1771 }
d8f05d29
N
1772 /* need to record an error - either for the block or the device */
1773 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1774 md_error(rdev->mddev, rdev);
1775 return 0;
1776}
1777
9f2c9d12 1778static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1779{
a68e5870
N
1780 /* Try some synchronous reads of other devices to get
1781 * good data, much like with normal read errors. Only
1782 * read into the pages we already have so we don't
1783 * need to re-issue the read request.
1784 * We don't need to freeze the array, because being in an
1785 * active sync request, there is no normal IO, and
1786 * no overlapping syncs.
06f60385
N
1787 * We don't need to check is_badblock() again as we
1788 * made sure that anything with a bad block in range
1789 * will have bi_end_io clear.
a68e5870 1790 */
fd01b88c 1791 struct mddev *mddev = r1_bio->mddev;
e8096360 1792 struct r1conf *conf = mddev->private;
a68e5870
N
1793 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1794 sector_t sect = r1_bio->sector;
1795 int sectors = r1_bio->sectors;
1796 int idx = 0;
1797
1798 while(sectors) {
1799 int s = sectors;
1800 int d = r1_bio->read_disk;
1801 int success = 0;
3cb03002 1802 struct md_rdev *rdev;
78d7f5f7 1803 int start;
a68e5870
N
1804
1805 if (s > (PAGE_SIZE>>9))
1806 s = PAGE_SIZE >> 9;
1807 do {
1808 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1809 /* No rcu protection needed here devices
1810 * can only be removed when no resync is
1811 * active, and resync is currently active
1812 */
1813 rdev = conf->mirrors[d].rdev;
9d3d8011 1814 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1815 bio->bi_io_vec[idx].bv_page,
1816 READ, false)) {
1817 success = 1;
1818 break;
1819 }
1820 }
1821 d++;
8f19ccb2 1822 if (d == conf->raid_disks * 2)
a68e5870
N
1823 d = 0;
1824 } while (!success && d != r1_bio->read_disk);
1825
78d7f5f7 1826 if (!success) {
a68e5870 1827 char b[BDEVNAME_SIZE];
3a9f28a5
N
1828 int abort = 0;
1829 /* Cannot read from anywhere, this block is lost.
1830 * Record a bad block on each device. If that doesn't
1831 * work just disable and interrupt the recovery.
1832 * Don't fail devices as that won't really help.
1833 */
a68e5870
N
1834 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1835 " for block %llu\n",
1836 mdname(mddev),
1837 bdevname(bio->bi_bdev, b),
1838 (unsigned long long)r1_bio->sector);
8f19ccb2 1839 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1840 rdev = conf->mirrors[d].rdev;
1841 if (!rdev || test_bit(Faulty, &rdev->flags))
1842 continue;
1843 if (!rdev_set_badblocks(rdev, sect, s, 0))
1844 abort = 1;
1845 }
1846 if (abort) {
d890fa2b
N
1847 conf->recovery_disabled =
1848 mddev->recovery_disabled;
3a9f28a5
N
1849 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1850 md_done_sync(mddev, r1_bio->sectors, 0);
1851 put_buf(r1_bio);
1852 return 0;
1853 }
1854 /* Try next page */
1855 sectors -= s;
1856 sect += s;
1857 idx++;
1858 continue;
d11c171e 1859 }
78d7f5f7
N
1860
1861 start = d;
1862 /* write it back and re-read */
1863 while (d != r1_bio->read_disk) {
1864 if (d == 0)
8f19ccb2 1865 d = conf->raid_disks * 2;
78d7f5f7
N
1866 d--;
1867 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1868 continue;
1869 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1870 if (r1_sync_page_io(rdev, sect, s,
1871 bio->bi_io_vec[idx].bv_page,
1872 WRITE) == 0) {
78d7f5f7
N
1873 r1_bio->bios[d]->bi_end_io = NULL;
1874 rdev_dec_pending(rdev, mddev);
9d3d8011 1875 }
78d7f5f7
N
1876 }
1877 d = start;
1878 while (d != r1_bio->read_disk) {
1879 if (d == 0)
8f19ccb2 1880 d = conf->raid_disks * 2;
78d7f5f7
N
1881 d--;
1882 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1883 continue;
1884 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1885 if (r1_sync_page_io(rdev, sect, s,
1886 bio->bi_io_vec[idx].bv_page,
1887 READ) != 0)
9d3d8011 1888 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1889 }
a68e5870
N
1890 sectors -= s;
1891 sect += s;
1892 idx ++;
1893 }
78d7f5f7 1894 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1895 bio->bi_error = 0;
a68e5870
N
1896 return 1;
1897}
1898
c95e6385 1899static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1900{
1901 /* We have read all readable devices. If we haven't
1902 * got the block, then there is no hope left.
1903 * If we have, then we want to do a comparison
1904 * and skip the write if everything is the same.
1905 * If any blocks failed to read, then we need to
1906 * attempt an over-write
1907 */
fd01b88c 1908 struct mddev *mddev = r1_bio->mddev;
e8096360 1909 struct r1conf *conf = mddev->private;
a68e5870
N
1910 int primary;
1911 int i;
f4380a91 1912 int vcnt;
a68e5870 1913
30bc9b53
N
1914 /* Fix variable parts of all bios */
1915 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1916 for (i = 0; i < conf->raid_disks * 2; i++) {
1917 int j;
1918 int size;
4246a0b6 1919 int error;
30bc9b53
N
1920 struct bio *b = r1_bio->bios[i];
1921 if (b->bi_end_io != end_sync_read)
1922 continue;
4246a0b6
CH
1923 /* fixup the bio for reuse, but preserve errno */
1924 error = b->bi_error;
30bc9b53 1925 bio_reset(b);
4246a0b6 1926 b->bi_error = error;
30bc9b53 1927 b->bi_vcnt = vcnt;
4f024f37
KO
1928 b->bi_iter.bi_size = r1_bio->sectors << 9;
1929 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1930 conf->mirrors[i].rdev->data_offset;
1931 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1932 b->bi_end_io = end_sync_read;
1933 b->bi_private = r1_bio;
1934
4f024f37 1935 size = b->bi_iter.bi_size;
30bc9b53
N
1936 for (j = 0; j < vcnt ; j++) {
1937 struct bio_vec *bi;
1938 bi = &b->bi_io_vec[j];
1939 bi->bv_offset = 0;
1940 if (size > PAGE_SIZE)
1941 bi->bv_len = PAGE_SIZE;
1942 else
1943 bi->bv_len = size;
1944 size -= PAGE_SIZE;
1945 }
1946 }
8f19ccb2 1947 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 1948 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 1949 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
1950 r1_bio->bios[primary]->bi_end_io = NULL;
1951 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1952 break;
1953 }
1954 r1_bio->read_disk = primary;
8f19ccb2 1955 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1956 int j;
78d7f5f7
N
1957 struct bio *pbio = r1_bio->bios[primary];
1958 struct bio *sbio = r1_bio->bios[i];
4246a0b6 1959 int error = sbio->bi_error;
a68e5870 1960
2aabaa65 1961 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 1962 continue;
4246a0b6
CH
1963 /* Now we can 'fixup' the error value */
1964 sbio->bi_error = 0;
78d7f5f7 1965
4246a0b6 1966 if (!error) {
78d7f5f7
N
1967 for (j = vcnt; j-- ; ) {
1968 struct page *p, *s;
1969 p = pbio->bi_io_vec[j].bv_page;
1970 s = sbio->bi_io_vec[j].bv_page;
1971 if (memcmp(page_address(p),
1972 page_address(s),
5020ad7d 1973 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1974 break;
69382e85 1975 }
78d7f5f7
N
1976 } else
1977 j = 0;
1978 if (j >= 0)
7f7583d4 1979 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 1980 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 1981 && !error)) {
78d7f5f7
N
1982 /* No need to write to this device. */
1983 sbio->bi_end_io = NULL;
1984 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1985 continue;
1986 }
d3b45c2a
KO
1987
1988 bio_copy_data(sbio, pbio);
78d7f5f7 1989 }
a68e5870
N
1990}
1991
9f2c9d12 1992static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1993{
e8096360 1994 struct r1conf *conf = mddev->private;
a68e5870 1995 int i;
8f19ccb2 1996 int disks = conf->raid_disks * 2;
a68e5870
N
1997 struct bio *bio, *wbio;
1998
1999 bio = r1_bio->bios[r1_bio->read_disk];
2000
a68e5870
N
2001 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2002 /* ouch - failed to read all of that. */
2003 if (!fix_sync_read_error(r1_bio))
2004 return;
7ca78d57
N
2005
2006 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2007 process_checks(r1_bio);
2008
d11c171e
N
2009 /*
2010 * schedule writes
2011 */
1da177e4
LT
2012 atomic_set(&r1_bio->remaining, 1);
2013 for (i = 0; i < disks ; i++) {
2014 wbio = r1_bio->bios[i];
3e198f78
N
2015 if (wbio->bi_end_io == NULL ||
2016 (wbio->bi_end_io == end_sync_read &&
2017 (i == r1_bio->read_disk ||
2018 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2019 continue;
2020
3e198f78
N
2021 wbio->bi_rw = WRITE;
2022 wbio->bi_end_io = end_sync_write;
1da177e4 2023 atomic_inc(&r1_bio->remaining);
aa8b57aa 2024 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2025
1da177e4
LT
2026 generic_make_request(wbio);
2027 }
2028
2029 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2030 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2031 int s = r1_bio->sectors;
2032 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2033 test_bit(R1BIO_WriteError, &r1_bio->state))
2034 reschedule_retry(r1_bio);
2035 else {
2036 put_buf(r1_bio);
2037 md_done_sync(mddev, s, 1);
2038 }
1da177e4
LT
2039 }
2040}
2041
2042/*
2043 * This is a kernel thread which:
2044 *
2045 * 1. Retries failed read operations on working mirrors.
2046 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2047 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2048 */
2049
e8096360 2050static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2051 sector_t sect, int sectors)
2052{
fd01b88c 2053 struct mddev *mddev = conf->mddev;
867868fb
N
2054 while(sectors) {
2055 int s = sectors;
2056 int d = read_disk;
2057 int success = 0;
2058 int start;
3cb03002 2059 struct md_rdev *rdev;
867868fb
N
2060
2061 if (s > (PAGE_SIZE>>9))
2062 s = PAGE_SIZE >> 9;
2063
2064 do {
2065 /* Note: no rcu protection needed here
2066 * as this is synchronous in the raid1d thread
2067 * which is the thread that might remove
2068 * a device. If raid1d ever becomes multi-threaded....
2069 */
d2eb35ac
N
2070 sector_t first_bad;
2071 int bad_sectors;
2072
867868fb
N
2073 rdev = conf->mirrors[d].rdev;
2074 if (rdev &&
da8840a7 2075 (test_bit(In_sync, &rdev->flags) ||
2076 (!test_bit(Faulty, &rdev->flags) &&
2077 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2078 is_badblock(rdev, sect, s,
2079 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2080 sync_page_io(rdev, sect, s<<9,
2081 conf->tmppage, READ, false))
867868fb
N
2082 success = 1;
2083 else {
2084 d++;
8f19ccb2 2085 if (d == conf->raid_disks * 2)
867868fb
N
2086 d = 0;
2087 }
2088 } while (!success && d != read_disk);
2089
2090 if (!success) {
d8f05d29 2091 /* Cannot read from anywhere - mark it bad */
3cb03002 2092 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2093 if (!rdev_set_badblocks(rdev, sect, s, 0))
2094 md_error(mddev, rdev);
867868fb
N
2095 break;
2096 }
2097 /* write it back and re-read */
2098 start = d;
2099 while (d != read_disk) {
2100 if (d==0)
8f19ccb2 2101 d = conf->raid_disks * 2;
867868fb
N
2102 d--;
2103 rdev = conf->mirrors[d].rdev;
2104 if (rdev &&
b8cb6b4c 2105 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2106 r1_sync_page_io(rdev, sect, s,
2107 conf->tmppage, WRITE);
867868fb
N
2108 }
2109 d = start;
2110 while (d != read_disk) {
2111 char b[BDEVNAME_SIZE];
2112 if (d==0)
8f19ccb2 2113 d = conf->raid_disks * 2;
867868fb
N
2114 d--;
2115 rdev = conf->mirrors[d].rdev;
2116 if (rdev &&
b8cb6b4c 2117 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2118 if (r1_sync_page_io(rdev, sect, s,
2119 conf->tmppage, READ)) {
867868fb
N
2120 atomic_add(s, &rdev->corrected_errors);
2121 printk(KERN_INFO
9dd1e2fa 2122 "md/raid1:%s: read error corrected "
867868fb
N
2123 "(%d sectors at %llu on %s)\n",
2124 mdname(mddev), s,
969b755a
RD
2125 (unsigned long long)(sect +
2126 rdev->data_offset),
867868fb
N
2127 bdevname(rdev->bdev, b));
2128 }
2129 }
2130 }
2131 sectors -= s;
2132 sect += s;
2133 }
2134}
2135
9f2c9d12 2136static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2137{
fd01b88c 2138 struct mddev *mddev = r1_bio->mddev;
e8096360 2139 struct r1conf *conf = mddev->private;
3cb03002 2140 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2141
2142 /* bio has the data to be written to device 'i' where
2143 * we just recently had a write error.
2144 * We repeatedly clone the bio and trim down to one block,
2145 * then try the write. Where the write fails we record
2146 * a bad block.
2147 * It is conceivable that the bio doesn't exactly align with
2148 * blocks. We must handle this somehow.
2149 *
2150 * We currently own a reference on the rdev.
2151 */
2152
2153 int block_sectors;
2154 sector_t sector;
2155 int sectors;
2156 int sect_to_write = r1_bio->sectors;
2157 int ok = 1;
2158
2159 if (rdev->badblocks.shift < 0)
2160 return 0;
2161
ab713cdc
ND
2162 block_sectors = roundup(1 << rdev->badblocks.shift,
2163 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2164 sector = r1_bio->sector;
2165 sectors = ((sector + block_sectors)
2166 & ~(sector_t)(block_sectors - 1))
2167 - sector;
2168
cd5ff9a1
N
2169 while (sect_to_write) {
2170 struct bio *wbio;
2171 if (sectors > sect_to_write)
2172 sectors = sect_to_write;
2173 /* Write at 'sector' for 'sectors'*/
2174
b783863f
KO
2175 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2176 unsigned vcnt = r1_bio->behind_page_count;
2177 struct bio_vec *vec = r1_bio->behind_bvecs;
2178
2179 while (!vec->bv_page) {
2180 vec++;
2181 vcnt--;
2182 }
2183
2184 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2185 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2186
2187 wbio->bi_vcnt = vcnt;
2188 } else {
2189 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2190 }
2191
cd5ff9a1 2192 wbio->bi_rw = WRITE;
4f024f37
KO
2193 wbio->bi_iter.bi_sector = r1_bio->sector;
2194 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2195
6678d83f 2196 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2197 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2198 wbio->bi_bdev = rdev->bdev;
203d27b0 2199 if (submit_bio_wait(WRITE, wbio) < 0)
cd5ff9a1
N
2200 /* failure! */
2201 ok = rdev_set_badblocks(rdev, sector,
2202 sectors, 0)
2203 && ok;
2204
2205 bio_put(wbio);
2206 sect_to_write -= sectors;
2207 sector += sectors;
2208 sectors = block_sectors;
2209 }
2210 return ok;
2211}
2212
e8096360 2213static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2214{
2215 int m;
2216 int s = r1_bio->sectors;
8f19ccb2 2217 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2218 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2219 struct bio *bio = r1_bio->bios[m];
2220 if (bio->bi_end_io == NULL)
2221 continue;
4246a0b6 2222 if (!bio->bi_error &&
62096bce 2223 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2224 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2225 }
4246a0b6 2226 if (bio->bi_error &&
62096bce
N
2227 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2228 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2229 md_error(conf->mddev, rdev);
2230 }
2231 }
2232 put_buf(r1_bio);
2233 md_done_sync(conf->mddev, s, 1);
2234}
2235
e8096360 2236static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2237{
2238 int m;
55ce74d4 2239 bool fail = false;
8f19ccb2 2240 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2241 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2242 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2243 rdev_clear_badblocks(rdev,
2244 r1_bio->sector,
c6563a8c 2245 r1_bio->sectors, 0);
62096bce
N
2246 rdev_dec_pending(rdev, conf->mddev);
2247 } else if (r1_bio->bios[m] != NULL) {
2248 /* This drive got a write error. We need to
2249 * narrow down and record precise write
2250 * errors.
2251 */
55ce74d4 2252 fail = true;
62096bce
N
2253 if (!narrow_write_error(r1_bio, m)) {
2254 md_error(conf->mddev,
2255 conf->mirrors[m].rdev);
2256 /* an I/O failed, we can't clear the bitmap */
2257 set_bit(R1BIO_Degraded, &r1_bio->state);
2258 }
2259 rdev_dec_pending(conf->mirrors[m].rdev,
2260 conf->mddev);
2261 }
55ce74d4
N
2262 if (fail) {
2263 spin_lock_irq(&conf->device_lock);
2264 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
ccfc7bf1 2265 conf->nr_queued++;
55ce74d4
N
2266 spin_unlock_irq(&conf->device_lock);
2267 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2268 } else {
2269 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2270 close_write(r1_bio);
55ce74d4 2271 raid_end_bio_io(r1_bio);
bd8688a1 2272 }
62096bce
N
2273}
2274
e8096360 2275static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2276{
2277 int disk;
2278 int max_sectors;
fd01b88c 2279 struct mddev *mddev = conf->mddev;
62096bce
N
2280 struct bio *bio;
2281 char b[BDEVNAME_SIZE];
3cb03002 2282 struct md_rdev *rdev;
62096bce
N
2283
2284 clear_bit(R1BIO_ReadError, &r1_bio->state);
2285 /* we got a read error. Maybe the drive is bad. Maybe just
2286 * the block and we can fix it.
2287 * We freeze all other IO, and try reading the block from
2288 * other devices. When we find one, we re-write
2289 * and check it that fixes the read error.
2290 * This is all done synchronously while the array is
2291 * frozen
2292 */
2293 if (mddev->ro == 0) {
e2d59925 2294 freeze_array(conf, 1);
62096bce
N
2295 fix_read_error(conf, r1_bio->read_disk,
2296 r1_bio->sector, r1_bio->sectors);
2297 unfreeze_array(conf);
2298 } else
2299 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2300 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2301
2302 bio = r1_bio->bios[r1_bio->read_disk];
2303 bdevname(bio->bi_bdev, b);
2304read_more:
2305 disk = read_balance(conf, r1_bio, &max_sectors);
2306 if (disk == -1) {
2307 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2308 " read error for block %llu\n",
2309 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2310 raid_end_bio_io(r1_bio);
2311 } else {
2312 const unsigned long do_sync
2313 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2314 if (bio) {
2315 r1_bio->bios[r1_bio->read_disk] =
2316 mddev->ro ? IO_BLOCKED : NULL;
2317 bio_put(bio);
2318 }
2319 r1_bio->read_disk = disk;
2320 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2321 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2322 max_sectors);
62096bce
N
2323 r1_bio->bios[r1_bio->read_disk] = bio;
2324 rdev = conf->mirrors[disk].rdev;
2325 printk_ratelimited(KERN_ERR
2326 "md/raid1:%s: redirecting sector %llu"
2327 " to other mirror: %s\n",
2328 mdname(mddev),
2329 (unsigned long long)r1_bio->sector,
2330 bdevname(rdev->bdev, b));
4f024f37 2331 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2332 bio->bi_bdev = rdev->bdev;
2333 bio->bi_end_io = raid1_end_read_request;
2334 bio->bi_rw = READ | do_sync;
2335 bio->bi_private = r1_bio;
2336 if (max_sectors < r1_bio->sectors) {
2337 /* Drat - have to split this up more */
2338 struct bio *mbio = r1_bio->master_bio;
2339 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2340 - mbio->bi_iter.bi_sector);
62096bce
N
2341 r1_bio->sectors = max_sectors;
2342 spin_lock_irq(&conf->device_lock);
2343 if (mbio->bi_phys_segments == 0)
2344 mbio->bi_phys_segments = 2;
2345 else
2346 mbio->bi_phys_segments++;
2347 spin_unlock_irq(&conf->device_lock);
2348 generic_make_request(bio);
2349 bio = NULL;
2350
2351 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2352
2353 r1_bio->master_bio = mbio;
aa8b57aa 2354 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2355 r1_bio->state = 0;
2356 set_bit(R1BIO_ReadError, &r1_bio->state);
2357 r1_bio->mddev = mddev;
4f024f37
KO
2358 r1_bio->sector = mbio->bi_iter.bi_sector +
2359 sectors_handled;
62096bce
N
2360
2361 goto read_more;
2362 } else
2363 generic_make_request(bio);
2364 }
2365}
2366
4ed8731d 2367static void raid1d(struct md_thread *thread)
1da177e4 2368{
4ed8731d 2369 struct mddev *mddev = thread->mddev;
9f2c9d12 2370 struct r1bio *r1_bio;
1da177e4 2371 unsigned long flags;
e8096360 2372 struct r1conf *conf = mddev->private;
1da177e4 2373 struct list_head *head = &conf->retry_list;
e1dfa0a2 2374 struct blk_plug plug;
1da177e4
LT
2375
2376 md_check_recovery(mddev);
e1dfa0a2 2377
55ce74d4
N
2378 if (!list_empty_careful(&conf->bio_end_io_list) &&
2379 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2380 LIST_HEAD(tmp);
2381 spin_lock_irqsave(&conf->device_lock, flags);
2382 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
ccfc7bf1
ND
2383 while (!list_empty(&conf->bio_end_io_list)) {
2384 list_move(conf->bio_end_io_list.prev, &tmp);
2385 conf->nr_queued--;
2386 }
55ce74d4
N
2387 }
2388 spin_unlock_irqrestore(&conf->device_lock, flags);
2389 while (!list_empty(&tmp)) {
a452744b
MP
2390 r1_bio = list_first_entry(&tmp, struct r1bio,
2391 retry_list);
55ce74d4 2392 list_del(&r1_bio->retry_list);
bd8688a1
N
2393 if (mddev->degraded)
2394 set_bit(R1BIO_Degraded, &r1_bio->state);
2395 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2396 close_write(r1_bio);
55ce74d4
N
2397 raid_end_bio_io(r1_bio);
2398 }
2399 }
2400
e1dfa0a2 2401 blk_start_plug(&plug);
1da177e4 2402 for (;;) {
191ea9b2 2403
0021b7bc 2404 flush_pending_writes(conf);
191ea9b2 2405
a35e63ef
N
2406 spin_lock_irqsave(&conf->device_lock, flags);
2407 if (list_empty(head)) {
2408 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2409 break;
a35e63ef 2410 }
9f2c9d12 2411 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2412 list_del(head->prev);
ddaf22ab 2413 conf->nr_queued--;
1da177e4
LT
2414 spin_unlock_irqrestore(&conf->device_lock, flags);
2415
2416 mddev = r1_bio->mddev;
070ec55d 2417 conf = mddev->private;
4367af55 2418 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2419 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2420 test_bit(R1BIO_WriteError, &r1_bio->state))
2421 handle_sync_write_finished(conf, r1_bio);
2422 else
4367af55 2423 sync_request_write(mddev, r1_bio);
cd5ff9a1 2424 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2425 test_bit(R1BIO_WriteError, &r1_bio->state))
2426 handle_write_finished(conf, r1_bio);
2427 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2428 handle_read_error(conf, r1_bio);
2429 else
d2eb35ac
N
2430 /* just a partial read to be scheduled from separate
2431 * context
2432 */
2433 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2434
1d9d5241 2435 cond_resched();
de393cde
N
2436 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2437 md_check_recovery(mddev);
1da177e4 2438 }
e1dfa0a2 2439 blk_finish_plug(&plug);
1da177e4
LT
2440}
2441
e8096360 2442static int init_resync(struct r1conf *conf)
1da177e4
LT
2443{
2444 int buffs;
2445
2446 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2447 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2448 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2449 conf->poolinfo);
2450 if (!conf->r1buf_pool)
2451 return -ENOMEM;
2452 conf->next_resync = 0;
2453 return 0;
2454}
2455
2456/*
2457 * perform a "sync" on one "block"
2458 *
2459 * We need to make sure that no normal I/O request - particularly write
2460 * requests - conflict with active sync requests.
2461 *
2462 * This is achieved by tracking pending requests and a 'barrier' concept
2463 * that can be installed to exclude normal IO requests.
2464 */
2465
849674e4
SL
2466static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2467 int *skipped)
1da177e4 2468{
e8096360 2469 struct r1conf *conf = mddev->private;
9f2c9d12 2470 struct r1bio *r1_bio;
1da177e4
LT
2471 struct bio *bio;
2472 sector_t max_sector, nr_sectors;
3e198f78 2473 int disk = -1;
1da177e4 2474 int i;
3e198f78
N
2475 int wonly = -1;
2476 int write_targets = 0, read_targets = 0;
57dab0bd 2477 sector_t sync_blocks;
e3b9703e 2478 int still_degraded = 0;
06f60385
N
2479 int good_sectors = RESYNC_SECTORS;
2480 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2481
2482 if (!conf->r1buf_pool)
2483 if (init_resync(conf))
57afd89f 2484 return 0;
1da177e4 2485
58c0fed4 2486 max_sector = mddev->dev_sectors;
1da177e4 2487 if (sector_nr >= max_sector) {
191ea9b2
N
2488 /* If we aborted, we need to abort the
2489 * sync on the 'current' bitmap chunk (there will
2490 * only be one in raid1 resync.
2491 * We can find the current addess in mddev->curr_resync
2492 */
6a806c51
N
2493 if (mddev->curr_resync < max_sector) /* aborted */
2494 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2495 &sync_blocks, 1);
6a806c51 2496 else /* completed sync */
191ea9b2 2497 conf->fullsync = 0;
6a806c51
N
2498
2499 bitmap_close_sync(mddev->bitmap);
1da177e4 2500 close_sync(conf);
c40f341f
GR
2501
2502 if (mddev_is_clustered(mddev)) {
2503 conf->cluster_sync_low = 0;
2504 conf->cluster_sync_high = 0;
c40f341f 2505 }
1da177e4
LT
2506 return 0;
2507 }
2508
07d84d10
N
2509 if (mddev->bitmap == NULL &&
2510 mddev->recovery_cp == MaxSector &&
6394cca5 2511 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2512 conf->fullsync == 0) {
2513 *skipped = 1;
2514 return max_sector - sector_nr;
2515 }
6394cca5
N
2516 /* before building a request, check if we can skip these blocks..
2517 * This call the bitmap_start_sync doesn't actually record anything
2518 */
e3b9703e 2519 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2520 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2521 /* We can skip this block, and probably several more */
2522 *skipped = 1;
2523 return sync_blocks;
2524 }
17999be4 2525
7ac50447
TM
2526 /*
2527 * If there is non-resync activity waiting for a turn, then let it
2528 * though before starting on this new sync request.
2529 */
2530 if (conf->nr_waiting)
2531 schedule_timeout_uninterruptible(1);
2532
c40f341f
GR
2533 /* we are incrementing sector_nr below. To be safe, we check against
2534 * sector_nr + two times RESYNC_SECTORS
2535 */
2536
2537 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2538 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2539 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2540
c2fd4c94 2541 raise_barrier(conf, sector_nr);
1da177e4 2542
3e198f78 2543 rcu_read_lock();
1da177e4 2544 /*
3e198f78
N
2545 * If we get a correctably read error during resync or recovery,
2546 * we might want to read from a different device. So we
2547 * flag all drives that could conceivably be read from for READ,
2548 * and any others (which will be non-In_sync devices) for WRITE.
2549 * If a read fails, we try reading from something else for which READ
2550 * is OK.
1da177e4 2551 */
1da177e4 2552
1da177e4
LT
2553 r1_bio->mddev = mddev;
2554 r1_bio->sector = sector_nr;
191ea9b2 2555 r1_bio->state = 0;
1da177e4 2556 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2557
8f19ccb2 2558 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2559 struct md_rdev *rdev;
1da177e4 2560 bio = r1_bio->bios[i];
2aabaa65 2561 bio_reset(bio);
1da177e4 2562
3e198f78
N
2563 rdev = rcu_dereference(conf->mirrors[i].rdev);
2564 if (rdev == NULL ||
06f60385 2565 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2566 if (i < conf->raid_disks)
2567 still_degraded = 1;
3e198f78 2568 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2569 bio->bi_rw = WRITE;
2570 bio->bi_end_io = end_sync_write;
2571 write_targets ++;
3e198f78
N
2572 } else {
2573 /* may need to read from here */
06f60385
N
2574 sector_t first_bad = MaxSector;
2575 int bad_sectors;
2576
2577 if (is_badblock(rdev, sector_nr, good_sectors,
2578 &first_bad, &bad_sectors)) {
2579 if (first_bad > sector_nr)
2580 good_sectors = first_bad - sector_nr;
2581 else {
2582 bad_sectors -= (sector_nr - first_bad);
2583 if (min_bad == 0 ||
2584 min_bad > bad_sectors)
2585 min_bad = bad_sectors;
2586 }
2587 }
2588 if (sector_nr < first_bad) {
2589 if (test_bit(WriteMostly, &rdev->flags)) {
2590 if (wonly < 0)
2591 wonly = i;
2592 } else {
2593 if (disk < 0)
2594 disk = i;
2595 }
2596 bio->bi_rw = READ;
2597 bio->bi_end_io = end_sync_read;
2598 read_targets++;
d57368af
AL
2599 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2600 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2601 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2602 /*
2603 * The device is suitable for reading (InSync),
2604 * but has bad block(s) here. Let's try to correct them,
2605 * if we are doing resync or repair. Otherwise, leave
2606 * this device alone for this sync request.
2607 */
2608 bio->bi_rw = WRITE;
2609 bio->bi_end_io = end_sync_write;
2610 write_targets++;
3e198f78 2611 }
3e198f78 2612 }
06f60385
N
2613 if (bio->bi_end_io) {
2614 atomic_inc(&rdev->nr_pending);
4f024f37 2615 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2616 bio->bi_bdev = rdev->bdev;
2617 bio->bi_private = r1_bio;
2618 }
1da177e4 2619 }
3e198f78
N
2620 rcu_read_unlock();
2621 if (disk < 0)
2622 disk = wonly;
2623 r1_bio->read_disk = disk;
191ea9b2 2624
06f60385
N
2625 if (read_targets == 0 && min_bad > 0) {
2626 /* These sectors are bad on all InSync devices, so we
2627 * need to mark them bad on all write targets
2628 */
2629 int ok = 1;
8f19ccb2 2630 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2631 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2632 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2633 ok = rdev_set_badblocks(rdev, sector_nr,
2634 min_bad, 0
2635 ) && ok;
2636 }
2637 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2638 *skipped = 1;
2639 put_buf(r1_bio);
2640
2641 if (!ok) {
2642 /* Cannot record the badblocks, so need to
2643 * abort the resync.
2644 * If there are multiple read targets, could just
2645 * fail the really bad ones ???
2646 */
2647 conf->recovery_disabled = mddev->recovery_disabled;
2648 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2649 return 0;
2650 } else
2651 return min_bad;
2652
2653 }
2654 if (min_bad > 0 && min_bad < good_sectors) {
2655 /* only resync enough to reach the next bad->good
2656 * transition */
2657 good_sectors = min_bad;
2658 }
2659
3e198f78
N
2660 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2661 /* extra read targets are also write targets */
2662 write_targets += read_targets-1;
2663
2664 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2665 /* There is nowhere to write, so all non-sync
2666 * drives must be failed - so we are finished
2667 */
b7219ccb
N
2668 sector_t rv;
2669 if (min_bad > 0)
2670 max_sector = sector_nr + min_bad;
2671 rv = max_sector - sector_nr;
57afd89f 2672 *skipped = 1;
1da177e4 2673 put_buf(r1_bio);
1da177e4
LT
2674 return rv;
2675 }
2676
c6207277
N
2677 if (max_sector > mddev->resync_max)
2678 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2679 if (max_sector > sector_nr + good_sectors)
2680 max_sector = sector_nr + good_sectors;
1da177e4 2681 nr_sectors = 0;
289e99e8 2682 sync_blocks = 0;
1da177e4
LT
2683 do {
2684 struct page *page;
2685 int len = PAGE_SIZE;
2686 if (sector_nr + (len>>9) > max_sector)
2687 len = (max_sector - sector_nr) << 9;
2688 if (len == 0)
2689 break;
6a806c51
N
2690 if (sync_blocks == 0) {
2691 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2692 &sync_blocks, still_degraded) &&
2693 !conf->fullsync &&
2694 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2695 break;
7571ae88 2696 if ((len >> 9) > sync_blocks)
6a806c51 2697 len = sync_blocks<<9;
ab7a30c7 2698 }
191ea9b2 2699
8f19ccb2 2700 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2701 bio = r1_bio->bios[i];
2702 if (bio->bi_end_io) {
d11c171e 2703 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2704 if (bio_add_page(bio, page, len, 0) == 0) {
2705 /* stop here */
d11c171e 2706 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2707 while (i > 0) {
2708 i--;
2709 bio = r1_bio->bios[i];
6a806c51
N
2710 if (bio->bi_end_io==NULL)
2711 continue;
1da177e4
LT
2712 /* remove last page from this bio */
2713 bio->bi_vcnt--;
4f024f37 2714 bio->bi_iter.bi_size -= len;
b7c44ed9 2715 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2716 }
2717 goto bio_full;
2718 }
2719 }
2720 }
2721 nr_sectors += len>>9;
2722 sector_nr += len>>9;
191ea9b2 2723 sync_blocks -= (len>>9);
1da177e4
LT
2724 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2725 bio_full:
1da177e4
LT
2726 r1_bio->sectors = nr_sectors;
2727
c40f341f
GR
2728 if (mddev_is_clustered(mddev) &&
2729 conf->cluster_sync_high < sector_nr + nr_sectors) {
2730 conf->cluster_sync_low = mddev->curr_resync_completed;
2731 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2732 /* Send resync message */
2733 md_cluster_ops->resync_info_update(mddev,
2734 conf->cluster_sync_low,
2735 conf->cluster_sync_high);
2736 }
2737
d11c171e
N
2738 /* For a user-requested sync, we read all readable devices and do a
2739 * compare
2740 */
2741 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2742 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2743 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2744 bio = r1_bio->bios[i];
2745 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2746 read_targets--;
ddac7c7e 2747 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2748 generic_make_request(bio);
2749 }
2750 }
2751 } else {
2752 atomic_set(&r1_bio->remaining, 1);
2753 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2754 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2755 generic_make_request(bio);
1da177e4 2756
d11c171e 2757 }
1da177e4
LT
2758 return nr_sectors;
2759}
2760
fd01b88c 2761static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2762{
2763 if (sectors)
2764 return sectors;
2765
2766 return mddev->dev_sectors;
2767}
2768
e8096360 2769static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2770{
e8096360 2771 struct r1conf *conf;
709ae487 2772 int i;
0eaf822c 2773 struct raid1_info *disk;
3cb03002 2774 struct md_rdev *rdev;
709ae487 2775 int err = -ENOMEM;
1da177e4 2776
e8096360 2777 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2778 if (!conf)
709ae487 2779 goto abort;
1da177e4 2780
0eaf822c 2781 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2782 * mddev->raid_disks * 2,
1da177e4
LT
2783 GFP_KERNEL);
2784 if (!conf->mirrors)
709ae487 2785 goto abort;
1da177e4 2786
ddaf22ab
N
2787 conf->tmppage = alloc_page(GFP_KERNEL);
2788 if (!conf->tmppage)
709ae487 2789 goto abort;
ddaf22ab 2790
709ae487 2791 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2792 if (!conf->poolinfo)
709ae487 2793 goto abort;
8f19ccb2 2794 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2795 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2796 r1bio_pool_free,
2797 conf->poolinfo);
2798 if (!conf->r1bio_pool)
709ae487
N
2799 goto abort;
2800
ed9bfdf1 2801 conf->poolinfo->mddev = mddev;
1da177e4 2802
c19d5798 2803 err = -EINVAL;
e7e72bf6 2804 spin_lock_init(&conf->device_lock);
dafb20fa 2805 rdev_for_each(rdev, mddev) {
aba336bd 2806 struct request_queue *q;
709ae487 2807 int disk_idx = rdev->raid_disk;
1da177e4
LT
2808 if (disk_idx >= mddev->raid_disks
2809 || disk_idx < 0)
2810 continue;
c19d5798 2811 if (test_bit(Replacement, &rdev->flags))
02b898f2 2812 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2813 else
2814 disk = conf->mirrors + disk_idx;
1da177e4 2815
c19d5798
N
2816 if (disk->rdev)
2817 goto abort;
1da177e4 2818 disk->rdev = rdev;
aba336bd 2819 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2820
2821 disk->head_position = 0;
12cee5a8 2822 disk->seq_start = MaxSector;
1da177e4
LT
2823 }
2824 conf->raid_disks = mddev->raid_disks;
2825 conf->mddev = mddev;
1da177e4 2826 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2827 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2828
2829 spin_lock_init(&conf->resync_lock);
17999be4 2830 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2831
191ea9b2 2832 bio_list_init(&conf->pending_bio_list);
34db0cd6 2833 conf->pending_count = 0;
d890fa2b 2834 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2835
79ef3a8a 2836 conf->start_next_window = MaxSector;
2837 conf->current_window_requests = conf->next_window_requests = 0;
2838
c19d5798 2839 err = -EIO;
8f19ccb2 2840 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2841
2842 disk = conf->mirrors + i;
2843
c19d5798
N
2844 if (i < conf->raid_disks &&
2845 disk[conf->raid_disks].rdev) {
2846 /* This slot has a replacement. */
2847 if (!disk->rdev) {
2848 /* No original, just make the replacement
2849 * a recovering spare
2850 */
2851 disk->rdev =
2852 disk[conf->raid_disks].rdev;
2853 disk[conf->raid_disks].rdev = NULL;
2854 } else if (!test_bit(In_sync, &disk->rdev->flags))
2855 /* Original is not in_sync - bad */
2856 goto abort;
2857 }
2858
5fd6c1dc
N
2859 if (!disk->rdev ||
2860 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2861 disk->head_position = 0;
4f0a5e01
JB
2862 if (disk->rdev &&
2863 (disk->rdev->saved_raid_disk < 0))
918f0238 2864 conf->fullsync = 1;
be4d3280 2865 }
1da177e4 2866 }
709ae487 2867
709ae487 2868 err = -ENOMEM;
0232605d 2869 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2870 if (!conf->thread) {
2871 printk(KERN_ERR
9dd1e2fa 2872 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2873 mdname(mddev));
2874 goto abort;
11ce99e6 2875 }
1da177e4 2876
709ae487
N
2877 return conf;
2878
2879 abort:
2880 if (conf) {
644df1a8 2881 mempool_destroy(conf->r1bio_pool);
709ae487
N
2882 kfree(conf->mirrors);
2883 safe_put_page(conf->tmppage);
2884 kfree(conf->poolinfo);
2885 kfree(conf);
2886 }
2887 return ERR_PTR(err);
2888}
2889
afa0f557 2890static void raid1_free(struct mddev *mddev, void *priv);
849674e4 2891static int raid1_run(struct mddev *mddev)
709ae487 2892{
e8096360 2893 struct r1conf *conf;
709ae487 2894 int i;
3cb03002 2895 struct md_rdev *rdev;
5220ea1e 2896 int ret;
2ff8cc2c 2897 bool discard_supported = false;
709ae487
N
2898
2899 if (mddev->level != 1) {
9dd1e2fa 2900 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2901 mdname(mddev), mddev->level);
2902 return -EIO;
2903 }
2904 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2905 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2906 mdname(mddev));
2907 return -EIO;
2908 }
1da177e4 2909 /*
709ae487
N
2910 * copy the already verified devices into our private RAID1
2911 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2912 * should be freed in raid1_free()]
1da177e4 2913 */
709ae487
N
2914 if (mddev->private == NULL)
2915 conf = setup_conf(mddev);
2916 else
2917 conf = mddev->private;
1da177e4 2918
709ae487
N
2919 if (IS_ERR(conf))
2920 return PTR_ERR(conf);
1da177e4 2921
c8dc9c65 2922 if (mddev->queue)
5026d7a9
PA
2923 blk_queue_max_write_same_sectors(mddev->queue, 0);
2924
dafb20fa 2925 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2926 if (!mddev->gendisk)
2927 continue;
709ae487
N
2928 disk_stack_limits(mddev->gendisk, rdev->bdev,
2929 rdev->data_offset << 9);
2ff8cc2c
SL
2930 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2931 discard_supported = true;
1da177e4 2932 }
191ea9b2 2933
709ae487
N
2934 mddev->degraded = 0;
2935 for (i=0; i < conf->raid_disks; i++)
2936 if (conf->mirrors[i].rdev == NULL ||
2937 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2938 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2939 mddev->degraded++;
2940
2941 if (conf->raid_disks - mddev->degraded == 1)
2942 mddev->recovery_cp = MaxSector;
2943
8c6ac868 2944 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2945 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2946 " -- starting background reconstruction\n",
2947 mdname(mddev));
f72ffdd6 2948 printk(KERN_INFO
9dd1e2fa 2949 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2950 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2951 mddev->raid_disks);
709ae487 2952
1da177e4
LT
2953 /*
2954 * Ok, everything is just fine now
2955 */
709ae487
N
2956 mddev->thread = conf->thread;
2957 conf->thread = NULL;
2958 mddev->private = conf;
2959
1f403624 2960 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2961
1ed7242e 2962 if (mddev->queue) {
2ff8cc2c
SL
2963 if (discard_supported)
2964 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2965 mddev->queue);
2966 else
2967 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2968 mddev->queue);
1ed7242e 2969 }
5220ea1e 2970
2971 ret = md_integrity_register(mddev);
5aa61f42
N
2972 if (ret) {
2973 md_unregister_thread(&mddev->thread);
afa0f557 2974 raid1_free(mddev, conf);
5aa61f42 2975 }
5220ea1e 2976 return ret;
1da177e4
LT
2977}
2978
afa0f557 2979static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2980{
afa0f557 2981 struct r1conf *conf = priv;
409c57f3 2982
644df1a8 2983 mempool_destroy(conf->r1bio_pool);
990a8baf 2984 kfree(conf->mirrors);
0fea7ed8 2985 safe_put_page(conf->tmppage);
990a8baf 2986 kfree(conf->poolinfo);
1da177e4 2987 kfree(conf);
1da177e4
LT
2988}
2989
fd01b88c 2990static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2991{
2992 /* no resync is happening, and there is enough space
2993 * on all devices, so we can resize.
2994 * We need to make sure resync covers any new space.
2995 * If the array is shrinking we should possibly wait until
2996 * any io in the removed space completes, but it hardly seems
2997 * worth it.
2998 */
a4a6125a
N
2999 sector_t newsize = raid1_size(mddev, sectors, 0);
3000 if (mddev->external_size &&
3001 mddev->array_sectors > newsize)
b522adcd 3002 return -EINVAL;
a4a6125a
N
3003 if (mddev->bitmap) {
3004 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3005 if (ret)
3006 return ret;
3007 }
3008 md_set_array_sectors(mddev, newsize);
f233ea5c 3009 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3010 revalidate_disk(mddev->gendisk);
b522adcd 3011 if (sectors > mddev->dev_sectors &&
b098636c 3012 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3013 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3014 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3015 }
b522adcd 3016 mddev->dev_sectors = sectors;
4b5c7ae8 3017 mddev->resync_max_sectors = sectors;
1da177e4
LT
3018 return 0;
3019}
3020
fd01b88c 3021static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3022{
3023 /* We need to:
3024 * 1/ resize the r1bio_pool
3025 * 2/ resize conf->mirrors
3026 *
3027 * We allocate a new r1bio_pool if we can.
3028 * Then raise a device barrier and wait until all IO stops.
3029 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3030 *
3031 * At the same time, we "pack" the devices so that all the missing
3032 * devices have the higher raid_disk numbers.
1da177e4
LT
3033 */
3034 mempool_t *newpool, *oldpool;
3035 struct pool_info *newpoolinfo;
0eaf822c 3036 struct raid1_info *newmirrors;
e8096360 3037 struct r1conf *conf = mddev->private;
63c70c4f 3038 int cnt, raid_disks;
c04be0aa 3039 unsigned long flags;
b5470dc5 3040 int d, d2, err;
1da177e4 3041
63c70c4f 3042 /* Cannot change chunk_size, layout, or level */
664e7c41 3043 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3044 mddev->layout != mddev->new_layout ||
3045 mddev->level != mddev->new_level) {
664e7c41 3046 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3047 mddev->new_layout = mddev->layout;
3048 mddev->new_level = mddev->level;
3049 return -EINVAL;
3050 }
3051
28c1b9fd
GR
3052 if (!mddev_is_clustered(mddev)) {
3053 err = md_allow_write(mddev);
3054 if (err)
3055 return err;
3056 }
2a2275d6 3057
63c70c4f
N
3058 raid_disks = mddev->raid_disks + mddev->delta_disks;
3059
6ea9c07c
N
3060 if (raid_disks < conf->raid_disks) {
3061 cnt=0;
3062 for (d= 0; d < conf->raid_disks; d++)
3063 if (conf->mirrors[d].rdev)
3064 cnt++;
3065 if (cnt > raid_disks)
1da177e4 3066 return -EBUSY;
6ea9c07c 3067 }
1da177e4
LT
3068
3069 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3070 if (!newpoolinfo)
3071 return -ENOMEM;
3072 newpoolinfo->mddev = mddev;
8f19ccb2 3073 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3074
3075 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3076 r1bio_pool_free, newpoolinfo);
3077 if (!newpool) {
3078 kfree(newpoolinfo);
3079 return -ENOMEM;
3080 }
0eaf822c 3081 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3082 GFP_KERNEL);
1da177e4
LT
3083 if (!newmirrors) {
3084 kfree(newpoolinfo);
3085 mempool_destroy(newpool);
3086 return -ENOMEM;
3087 }
1da177e4 3088
e2d59925 3089 freeze_array(conf, 0);
1da177e4
LT
3090
3091 /* ok, everything is stopped */
3092 oldpool = conf->r1bio_pool;
3093 conf->r1bio_pool = newpool;
6ea9c07c 3094
a88aa786 3095 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3096 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3097 if (rdev && rdev->raid_disk != d2) {
36fad858 3098 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3099 rdev->raid_disk = d2;
36fad858
NK
3100 sysfs_unlink_rdev(mddev, rdev);
3101 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3102 printk(KERN_WARNING
36fad858
NK
3103 "md/raid1:%s: cannot register rd%d\n",
3104 mdname(mddev), rdev->raid_disk);
6ea9c07c 3105 }
a88aa786
N
3106 if (rdev)
3107 newmirrors[d2++].rdev = rdev;
3108 }
1da177e4
LT
3109 kfree(conf->mirrors);
3110 conf->mirrors = newmirrors;
3111 kfree(conf->poolinfo);
3112 conf->poolinfo = newpoolinfo;
3113
c04be0aa 3114 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3115 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3116 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3117 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3118 mddev->delta_disks = 0;
1da177e4 3119
e2d59925 3120 unfreeze_array(conf);
1da177e4 3121
985ca973 3122 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3124 md_wakeup_thread(mddev->thread);
3125
3126 mempool_destroy(oldpool);
3127 return 0;
3128}
3129
fd01b88c 3130static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3131{
e8096360 3132 struct r1conf *conf = mddev->private;
36fa3063
N
3133
3134 switch(state) {
6eef4b21
N
3135 case 2: /* wake for suspend */
3136 wake_up(&conf->wait_barrier);
3137 break;
9e6603da 3138 case 1:
07169fd4 3139 freeze_array(conf, 0);
36fa3063 3140 break;
9e6603da 3141 case 0:
07169fd4 3142 unfreeze_array(conf);
36fa3063
N
3143 break;
3144 }
36fa3063
N
3145}
3146
fd01b88c 3147static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3148{
3149 /* raid1 can take over:
3150 * raid5 with 2 devices, any layout or chunk size
3151 */
3152 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3153 struct r1conf *conf;
709ae487
N
3154 mddev->new_level = 1;
3155 mddev->new_layout = 0;
3156 mddev->new_chunk_sectors = 0;
3157 conf = setup_conf(mddev);
3158 if (!IS_ERR(conf))
07169fd4 3159 /* Array must appear to be quiesced */
3160 conf->array_frozen = 1;
709ae487
N
3161 return conf;
3162 }
3163 return ERR_PTR(-EINVAL);
3164}
1da177e4 3165
84fc4b56 3166static struct md_personality raid1_personality =
1da177e4
LT
3167{
3168 .name = "raid1",
2604b703 3169 .level = 1,
1da177e4 3170 .owner = THIS_MODULE,
849674e4
SL
3171 .make_request = raid1_make_request,
3172 .run = raid1_run,
afa0f557 3173 .free = raid1_free,
849674e4
SL
3174 .status = raid1_status,
3175 .error_handler = raid1_error,
1da177e4
LT
3176 .hot_add_disk = raid1_add_disk,
3177 .hot_remove_disk= raid1_remove_disk,
3178 .spare_active = raid1_spare_active,
849674e4 3179 .sync_request = raid1_sync_request,
1da177e4 3180 .resize = raid1_resize,
80c3a6ce 3181 .size = raid1_size,
63c70c4f 3182 .check_reshape = raid1_reshape,
36fa3063 3183 .quiesce = raid1_quiesce,
709ae487 3184 .takeover = raid1_takeover,
5c675f83 3185 .congested = raid1_congested,
1da177e4
LT
3186};
3187
3188static int __init raid_init(void)
3189{
2604b703 3190 return register_md_personality(&raid1_personality);
1da177e4
LT
3191}
3192
3193static void raid_exit(void)
3194{
2604b703 3195 unregister_md_personality(&raid1_personality);
1da177e4
LT
3196}
3197
3198module_init(raid_init);
3199module_exit(raid_exit);
3200MODULE_LICENSE("GPL");
0efb9e61 3201MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3202MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3203MODULE_ALIAS("md-raid1");
2604b703 3204MODULE_ALIAS("md-level-1");
34db0cd6
N
3205
3206module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);