]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/md/raid10.c
Merge remote-tracking branch 'riscv/riscv-fix-32bit' into fixes
[mirror_ubuntu-jammy-kernel.git] / drivers / md / raid10.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
25985edc 9 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
10 */
11
5a0e3ad6 12#include <linux/slab.h>
25570727 13#include <linux/delay.h>
bff61975 14#include <linux/blkdev.h>
056075c7 15#include <linux/module.h>
bff61975 16#include <linux/seq_file.h>
8bda470e 17#include <linux/ratelimit.h>
3ea7daa5 18#include <linux/kthread.h>
afd75628 19#include <linux/raid/md_p.h>
109e3765 20#include <trace/events/block.h>
43b2e5d8 21#include "md.h"
ef740c37 22#include "raid10.h"
dab8b292 23#include "raid0.h"
935fe098 24#include "md-bitmap.h"
1da177e4
LT
25
26/*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
c93983bf 33 * far_offset (stored in bit 16 of layout )
475901af 34 * use_far_sets (stored in bit 17 of layout )
8bce6d35 35 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 36 *
475901af
JB
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
c93983bf
N
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
1da177e4
LT
65 */
66
e879a879
N
67static void allow_barrier(struct r10conf *conf);
68static void lower_barrier(struct r10conf *conf);
635f6416 69static int _enough(struct r10conf *conf, int previous, int ignore);
1919cbb2 70static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 74static void end_reshape_write(struct bio *bio);
3ea7daa5 75static void end_reshape(struct r10conf *conf);
0a27ec96 76
578b54ad
N
77#define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
fb0eb5df
ML
80#include "raid1-10.c"
81
f0250618
ML
82/*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87{
88 return get_resync_pages(bio)->raid_bio;
89}
90
dd0fc66f 91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 92{
e879a879 93 struct r10conf *conf = data;
c2968285 94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
1da177e4 95
69335ef3
N
96 /* allocate a r10bio with room for raid_disks entries in the
97 * bios array */
7eaceacc 98 return kzalloc(size, gfp_flags);
1da177e4
LT
99}
100
8db87912 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
0310fa21
N
102/* amount of memory to reserve for resync requests */
103#define RESYNC_WINDOW (1024*1024)
104/* maximum number of concurrent requests, memory permitting */
105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
4b242e97 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
8db87912 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4
LT
108
109/*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
dd0fc66f 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 117{
e879a879 118 struct r10conf *conf = data;
9f2c9d12 119 struct r10bio *r10_bio;
1da177e4 120 struct bio *bio;
f0250618
ML
121 int j;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
1da177e4
LT
124
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 126 if (!r10_bio)
1da177e4 127 return NULL;
1da177e4 128
3ea7daa5
N
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
131 nalloc = conf->copies; /* resync */
132 else
133 nalloc = 2; /* recovery */
134
f0250618
ML
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
137 nalloc_rp = nalloc;
138 else
139 nalloc_rp = nalloc * 2;
6da2ec56 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
f0250618
ML
141 if (!rps)
142 goto out_free_r10bio;
143
1da177e4
LT
144 /*
145 * Allocate bios.
146 */
147 for (j = nalloc ; j-- ; ) {
6746557f 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
149 if (!bio)
150 goto out_free_bio;
151 r10_bio->devs[j].bio = bio;
69335ef3
N
152 if (!conf->have_replacement)
153 continue;
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 if (!bio)
156 goto out_free_bio;
157 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
158 }
159 /*
160 * Allocate RESYNC_PAGES data pages and attach them
161 * where needed.
162 */
f0250618 163 for (j = 0; j < nalloc; j++) {
69335ef3 164 struct bio *rbio = r10_bio->devs[j].repl_bio;
f0250618
ML
165 struct resync_pages *rp, *rp_repl;
166
167 rp = &rps[j];
168 if (rbio)
169 rp_repl = &rps[nalloc + j];
170
1da177e4 171 bio = r10_bio->devs[j].bio;
f0250618
ML
172
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
1da177e4 176 goto out_free_pages;
f0250618
ML
177 } else {
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
180 }
1da177e4 181
f0250618
ML
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
184 if (rbio) {
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
1da177e4
LT
187 }
188 }
189
190 return r10_bio;
191
192out_free_pages:
f0250618 193 while (--j >= 0)
45422b70 194 resync_free_pages(&rps[j]);
f0250618 195
5fdd2cf8 196 j = 0;
1da177e4 197out_free_bio:
5fdd2cf8 198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
69335ef3
N
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
203 }
f0250618
ML
204 kfree(rps);
205out_free_r10bio:
c7afa803 206 rbio_pool_free(r10_bio, conf);
1da177e4
LT
207 return NULL;
208}
209
210static void r10buf_pool_free(void *__r10_bio, void *data)
211{
e879a879 212 struct r10conf *conf = data;
9f2c9d12 213 struct r10bio *r10bio = __r10_bio;
1da177e4 214 int j;
f0250618 215 struct resync_pages *rp = NULL;
1da177e4 216
f0250618 217 for (j = conf->copies; j--; ) {
1da177e4 218 struct bio *bio = r10bio->devs[j].bio;
f0250618 219
eb81b328
GJ
220 if (bio) {
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
223 bio_put(bio);
224 }
f0250618 225
69335ef3
N
226 bio = r10bio->devs[j].repl_bio;
227 if (bio)
228 bio_put(bio);
1da177e4 229 }
f0250618
ML
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
c7afa803 234 rbio_pool_free(r10bio, conf);
1da177e4
LT
235}
236
e879a879 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
238{
239 int i;
240
c2968285 241 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 242 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 243 if (!BIO_SPECIAL(*bio))
1da177e4
LT
244 bio_put(*bio);
245 *bio = NULL;
69335ef3
N
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
1da177e4
LT
250 }
251}
252
9f2c9d12 253static void free_r10bio(struct r10bio *r10_bio)
1da177e4 254{
e879a879 255 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 256
1da177e4 257 put_all_bios(conf, r10_bio);
afeee514 258 mempool_free(r10_bio, &conf->r10bio_pool);
1da177e4
LT
259}
260
9f2c9d12 261static void put_buf(struct r10bio *r10_bio)
1da177e4 262{
e879a879 263 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 264
afeee514 265 mempool_free(r10_bio, &conf->r10buf_pool);
1da177e4 266
0a27ec96 267 lower_barrier(conf);
1da177e4
LT
268}
269
9f2c9d12 270static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
271{
272 unsigned long flags;
fd01b88c 273 struct mddev *mddev = r10_bio->mddev;
e879a879 274 struct r10conf *conf = mddev->private;
1da177e4
LT
275
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 278 conf->nr_queued ++;
1da177e4
LT
279 spin_unlock_irqrestore(&conf->device_lock, flags);
280
388667be
AJ
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
283
1da177e4
LT
284 md_wakeup_thread(mddev->thread);
285}
286
287/*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
9f2c9d12 292static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
293{
294 struct bio *bio = r10_bio->master_bio;
e879a879 295 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 296
856e08e2 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4e4cbee9 298 bio->bi_status = BLK_STS_IOERR;
fd16f2e8 299
528bc2cf
GJ
300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301 bio_end_io_acct(bio, r10_bio->start_time);
fd16f2e8
N
302 bio_endio(bio);
303 /*
304 * Wake up any possible resync thread that waits for the device
305 * to go idle.
306 */
307 allow_barrier(conf);
308
1da177e4
LT
309 free_r10bio(r10_bio);
310}
311
312/*
313 * Update disk head position estimator based on IRQ completion info.
314 */
9f2c9d12 315static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 316{
e879a879 317 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
318
319 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320 r10_bio->devs[slot].addr + (r10_bio->sectors);
321}
322
778ca018
NK
323/*
324 * Find the disk number which triggered given bio
325 */
e879a879 326static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 327 struct bio *bio, int *slotp, int *replp)
778ca018
NK
328{
329 int slot;
69335ef3 330 int repl = 0;
778ca018 331
c2968285 332 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
778ca018
NK
333 if (r10_bio->devs[slot].bio == bio)
334 break;
69335ef3
N
335 if (r10_bio->devs[slot].repl_bio == bio) {
336 repl = 1;
337 break;
338 }
339 }
778ca018 340
778ca018
NK
341 update_head_pos(slot, r10_bio);
342
749c55e9
N
343 if (slotp)
344 *slotp = slot;
69335ef3
N
345 if (replp)
346 *replp = repl;
778ca018
NK
347 return r10_bio->devs[slot].devnum;
348}
349
4246a0b6 350static void raid10_end_read_request(struct bio *bio)
1da177e4 351{
4e4cbee9 352 int uptodate = !bio->bi_status;
9f2c9d12 353 struct r10bio *r10_bio = bio->bi_private;
a0e764c5 354 int slot;
abbf098e 355 struct md_rdev *rdev;
e879a879 356 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 357
1da177e4 358 slot = r10_bio->read_slot;
abbf098e 359 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
360 /*
361 * this branch is our 'one mirror IO has finished' event handler:
362 */
4443ae10
N
363 update_head_pos(slot, r10_bio);
364
365 if (uptodate) {
1da177e4
LT
366 /*
367 * Set R10BIO_Uptodate in our master bio, so that
368 * we will return a good error code to the higher
369 * levels even if IO on some other mirrored buffer fails.
370 *
371 * The 'master' represents the composite IO operation to
372 * user-side. So if something waits for IO, then it will
373 * wait for the 'master' bio.
374 */
375 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
376 } else {
377 /* If all other devices that store this block have
378 * failed, we want to return the error upwards rather
379 * than fail the last device. Here we redefine
380 * "uptodate" to mean "Don't want to retry"
381 */
635f6416
N
382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383 rdev->raid_disk))
fae8cc5e 384 uptodate = 1;
fae8cc5e
N
385 }
386 if (uptodate) {
1da177e4 387 raid_end_bio_io(r10_bio);
abbf098e 388 rdev_dec_pending(rdev, conf->mddev);
4443ae10 389 } else {
1da177e4 390 /*
7c4e06ff 391 * oops, read error - keep the refcount on the rdev
1da177e4
LT
392 */
393 char b[BDEVNAME_SIZE];
08464e09 394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
8bda470e 395 mdname(conf->mddev),
abbf098e 396 bdevname(rdev->bdev, b),
8bda470e 397 (unsigned long long)r10_bio->sector);
856e08e2 398 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
399 reschedule_retry(r10_bio);
400 }
1da177e4
LT
401}
402
9f2c9d12 403static void close_write(struct r10bio *r10_bio)
bd870a16
N
404{
405 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407 r10_bio->sectors,
408 !test_bit(R10BIO_Degraded, &r10_bio->state),
409 0);
bd870a16
N
410 md_write_end(r10_bio->mddev);
411}
412
9f2c9d12 413static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
414{
415 if (atomic_dec_and_test(&r10_bio->remaining)) {
416 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417 reschedule_retry(r10_bio);
418 else {
419 close_write(r10_bio);
420 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421 reschedule_retry(r10_bio);
422 else
423 raid_end_bio_io(r10_bio);
424 }
425 }
426}
427
4246a0b6 428static void raid10_end_write_request(struct bio *bio)
1da177e4 429{
9f2c9d12 430 struct r10bio *r10_bio = bio->bi_private;
778ca018 431 int dev;
749c55e9 432 int dec_rdev = 1;
e879a879 433 struct r10conf *conf = r10_bio->mddev->private;
475b0321 434 int slot, repl;
4ca40c2c 435 struct md_rdev *rdev = NULL;
1919cbb2 436 struct bio *to_put = NULL;
579ed34f
SL
437 bool discard_error;
438
4e4cbee9 439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 440
475b0321 441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 442
475b0321
N
443 if (repl)
444 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
445 if (!rdev) {
446 smp_rmb();
447 repl = 0;
475b0321 448 rdev = conf->mirrors[dev].rdev;
4ca40c2c 449 }
1da177e4
LT
450 /*
451 * this branch is our 'one mirror IO has finished' event handler:
452 */
4e4cbee9 453 if (bio->bi_status && !discard_error) {
475b0321
N
454 if (repl)
455 /* Never record new bad blocks to replacement,
456 * just fail it.
457 */
458 md_error(rdev->mddev, rdev);
459 else {
460 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 set_bit(MD_RECOVERY_NEEDED,
463 &rdev->mddev->recovery);
1919cbb2 464
475b0321 465 dec_rdev = 0;
1919cbb2
N
466 if (test_bit(FailFast, &rdev->flags) &&
467 (bio->bi_opf & MD_FAILFAST)) {
468 md_error(rdev->mddev, rdev);
7cee6d4e
YY
469 }
470
471 /*
472 * When the device is faulty, it is not necessary to
473 * handle write error.
474 * For failfast, this is the only remaining device,
475 * We need to retry the write without FailFast.
476 */
477 if (!test_bit(Faulty, &rdev->flags))
1919cbb2 478 set_bit(R10BIO_WriteError, &r10_bio->state);
7cee6d4e
YY
479 else {
480 r10_bio->devs[slot].bio = NULL;
481 to_put = bio;
482 dec_rdev = 1;
483 }
475b0321 484 }
749c55e9 485 } else {
1da177e4
LT
486 /*
487 * Set R10BIO_Uptodate in our master bio, so that
488 * we will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer fails.
490 *
491 * The 'master' represents the composite IO operation to
492 * user-side. So if something waits for IO, then it will
493 * wait for the 'master' bio.
494 */
749c55e9
N
495 sector_t first_bad;
496 int bad_sectors;
497
3056e3ae
AL
498 /*
499 * Do not set R10BIO_Uptodate if the current device is
500 * rebuilding or Faulty. This is because we cannot use
501 * such device for properly reading the data back (we could
502 * potentially use it, if the current write would have felt
503 * before rdev->recovery_offset, but for simplicity we don't
504 * check this here.
505 */
506 if (test_bit(In_sync, &rdev->flags) &&
507 !test_bit(Faulty, &rdev->flags))
508 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 509
749c55e9 510 /* Maybe we can clear some bad blocks. */
475b0321 511 if (is_badblock(rdev,
749c55e9
N
512 r10_bio->devs[slot].addr,
513 r10_bio->sectors,
579ed34f 514 &first_bad, &bad_sectors) && !discard_error) {
749c55e9 515 bio_put(bio);
475b0321
N
516 if (repl)
517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518 else
519 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
520 dec_rdev = 0;
521 set_bit(R10BIO_MadeGood, &r10_bio->state);
522 }
523 }
524
1da177e4
LT
525 /*
526 *
527 * Let's see if all mirrored write operations have finished
528 * already.
529 */
19d5f834 530 one_write_done(r10_bio);
749c55e9 531 if (dec_rdev)
884162df 532 rdev_dec_pending(rdev, conf->mddev);
1919cbb2
N
533 if (to_put)
534 bio_put(to_put);
1da177e4
LT
535}
536
1da177e4
LT
537/*
538 * RAID10 layout manager
25985edc 539 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
540 * parameters: near_copies and far_copies.
541 * near_copies * far_copies must be <= raid_disks.
542 * Normally one of these will be 1.
543 * If both are 1, we get raid0.
544 * If near_copies == raid_disks, we get raid1.
545 *
25985edc 546 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
547 * first chunk, followed by near_copies copies of the next chunk and
548 * so on.
549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
550 * as described above, we start again with a device offset of near_copies.
551 * So we effectively have another copy of the whole array further down all
552 * the drives, but with blocks on different drives.
553 * With this layout, and block is never stored twice on the one device.
554 *
555 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 556 * on each device that it is on.
1da177e4
LT
557 *
558 * raid10_find_virt does the reverse mapping, from a device and a
559 * sector offset to a virtual address
560 */
561
f8c9e74f 562static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
563{
564 int n,f;
565 sector_t sector;
566 sector_t chunk;
567 sector_t stripe;
568 int dev;
1da177e4 569 int slot = 0;
9a3152ab
JB
570 int last_far_set_start, last_far_set_size;
571
572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573 last_far_set_start *= geo->far_set_size;
574
575 last_far_set_size = geo->far_set_size;
576 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
577
578 /* now calculate first sector/dev */
5cf00fcd
N
579 chunk = r10bio->sector >> geo->chunk_shift;
580 sector = r10bio->sector & geo->chunk_mask;
1da177e4 581
5cf00fcd 582 chunk *= geo->near_copies;
1da177e4 583 stripe = chunk;
5cf00fcd
N
584 dev = sector_div(stripe, geo->raid_disks);
585 if (geo->far_offset)
586 stripe *= geo->far_copies;
1da177e4 587
5cf00fcd 588 sector += stripe << geo->chunk_shift;
1da177e4
LT
589
590 /* and calculate all the others */
5cf00fcd 591 for (n = 0; n < geo->near_copies; n++) {
1da177e4 592 int d = dev;
475901af 593 int set;
1da177e4 594 sector_t s = sector;
1da177e4 595 r10bio->devs[slot].devnum = d;
4c0ca26b 596 r10bio->devs[slot].addr = s;
1da177e4
LT
597 slot++;
598
5cf00fcd 599 for (f = 1; f < geo->far_copies; f++) {
475901af 600 set = d / geo->far_set_size;
5cf00fcd 601 d += geo->near_copies;
475901af 602
9a3152ab
JB
603 if ((geo->raid_disks % geo->far_set_size) &&
604 (d > last_far_set_start)) {
605 d -= last_far_set_start;
606 d %= last_far_set_size;
607 d += last_far_set_start;
608 } else {
609 d %= geo->far_set_size;
610 d += geo->far_set_size * set;
611 }
5cf00fcd 612 s += geo->stride;
1da177e4
LT
613 r10bio->devs[slot].devnum = d;
614 r10bio->devs[slot].addr = s;
615 slot++;
616 }
617 dev++;
5cf00fcd 618 if (dev >= geo->raid_disks) {
1da177e4 619 dev = 0;
5cf00fcd 620 sector += (geo->chunk_mask + 1);
1da177e4
LT
621 }
622 }
f8c9e74f
N
623}
624
625static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626{
627 struct geom *geo = &conf->geo;
628
629 if (conf->reshape_progress != MaxSector &&
630 ((r10bio->sector >= conf->reshape_progress) !=
631 conf->mddev->reshape_backwards)) {
632 set_bit(R10BIO_Previous, &r10bio->state);
633 geo = &conf->prev;
634 } else
635 clear_bit(R10BIO_Previous, &r10bio->state);
636
637 __raid10_find_phys(geo, r10bio);
1da177e4
LT
638}
639
e879a879 640static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
641{
642 sector_t offset, chunk, vchunk;
f8c9e74f
N
643 /* Never use conf->prev as this is only called during resync
644 * or recovery, so reshape isn't happening
645 */
5cf00fcd 646 struct geom *geo = &conf->geo;
475901af
JB
647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648 int far_set_size = geo->far_set_size;
9a3152ab
JB
649 int last_far_set_start;
650
651 if (geo->raid_disks % geo->far_set_size) {
652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653 last_far_set_start *= geo->far_set_size;
654
655 if (dev >= last_far_set_start) {
656 far_set_size = geo->far_set_size;
657 far_set_size += (geo->raid_disks % geo->far_set_size);
658 far_set_start = last_far_set_start;
659 }
660 }
1da177e4 661
5cf00fcd
N
662 offset = sector & geo->chunk_mask;
663 if (geo->far_offset) {
c93983bf 664 int fc;
5cf00fcd
N
665 chunk = sector >> geo->chunk_shift;
666 fc = sector_div(chunk, geo->far_copies);
667 dev -= fc * geo->near_copies;
475901af
JB
668 if (dev < far_set_start)
669 dev += far_set_size;
c93983bf 670 } else {
5cf00fcd
N
671 while (sector >= geo->stride) {
672 sector -= geo->stride;
475901af
JB
673 if (dev < (geo->near_copies + far_set_start))
674 dev += far_set_size - geo->near_copies;
c93983bf 675 else
5cf00fcd 676 dev -= geo->near_copies;
c93983bf 677 }
5cf00fcd 678 chunk = sector >> geo->chunk_shift;
c93983bf 679 }
5cf00fcd
N
680 vchunk = chunk * geo->raid_disks + dev;
681 sector_div(vchunk, geo->near_copies);
682 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
683}
684
1da177e4
LT
685/*
686 * This routine returns the disk from which the requested read should
687 * be done. There is a per-array 'next expected sequential IO' sector
688 * number - if this matches on the next IO then we use the last disk.
689 * There is also a per-disk 'last know head position' sector that is
690 * maintained from IRQ contexts, both the normal and the resync IO
691 * completion handlers update this position correctly. If there is no
692 * perfect sequential match then we pick the disk whose head is closest.
693 *
694 * If there are 2 mirrors in the same 2 devices, performance degrades
695 * because position is mirror, not device based.
696 *
697 * The rdev for the device selected will have nr_pending incremented.
698 */
699
700/*
701 * FIXME: possibly should rethink readbalancing and do it differently
702 * depending on near_copies / far_copies geometry.
703 */
96c3fd1f
N
704static struct md_rdev *read_balance(struct r10conf *conf,
705 struct r10bio *r10_bio,
706 int *max_sectors)
1da177e4 707{
af3a2cd6 708 const sector_t this_sector = r10_bio->sector;
56d99121 709 int disk, slot;
856e08e2
N
710 int sectors = r10_bio->sectors;
711 int best_good_sectors;
56d99121 712 sector_t new_distance, best_dist;
e9eeba28 713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
56d99121 714 int do_balance;
e9eeba28
GJ
715 int best_dist_slot, best_pending_slot;
716 bool has_nonrot_disk = false;
717 unsigned int min_pending;
5cf00fcd 718 struct geom *geo = &conf->geo;
1da177e4
LT
719
720 raid10_find_phys(conf, r10_bio);
721 rcu_read_lock();
e9eeba28
GJ
722 best_dist_slot = -1;
723 min_pending = UINT_MAX;
724 best_dist_rdev = NULL;
725 best_pending_rdev = NULL;
56d99121 726 best_dist = MaxSector;
856e08e2 727 best_good_sectors = 0;
56d99121 728 do_balance = 1;
8d3ca83d 729 clear_bit(R10BIO_FailFast, &r10_bio->state);
1da177e4
LT
730 /*
731 * Check if we can balance. We can balance on the whole
6cce3b23
N
732 * device if no resync is going on (recovery is ok), or below
733 * the resync window. We take the first readable disk when
734 * above the resync window.
1da177e4 735 */
d4098c72
GJ
736 if ((conf->mddev->recovery_cp < MaxSector
737 && (this_sector + sectors >= conf->next_resync)) ||
738 (mddev_is_clustered(conf->mddev) &&
739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740 this_sector + sectors)))
56d99121 741 do_balance = 0;
1da177e4 742
56d99121 743 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
744 sector_t first_bad;
745 int bad_sectors;
746 sector_t dev_sector;
e9eeba28
GJ
747 unsigned int pending;
748 bool nonrot;
856e08e2 749
56d99121
N
750 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751 continue;
1da177e4 752 disk = r10_bio->devs[slot].devnum;
abbf098e
N
753 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 757 if (rdev == NULL ||
8ae12666 758 test_bit(Faulty, &rdev->flags))
abbf098e
N
759 continue;
760 if (!test_bit(In_sync, &rdev->flags) &&
761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
762 continue;
763
856e08e2
N
764 dev_sector = r10_bio->devs[slot].addr;
765 if (is_badblock(rdev, dev_sector, sectors,
766 &first_bad, &bad_sectors)) {
767 if (best_dist < MaxSector)
768 /* Already have a better slot */
769 continue;
770 if (first_bad <= dev_sector) {
771 /* Cannot read here. If this is the
772 * 'primary' device, then we must not read
773 * beyond 'bad_sectors' from another device.
774 */
775 bad_sectors -= (dev_sector - first_bad);
776 if (!do_balance && sectors > bad_sectors)
777 sectors = bad_sectors;
778 if (best_good_sectors > sectors)
779 best_good_sectors = sectors;
780 } else {
781 sector_t good_sectors =
782 first_bad - dev_sector;
783 if (good_sectors > best_good_sectors) {
784 best_good_sectors = good_sectors;
e9eeba28
GJ
785 best_dist_slot = slot;
786 best_dist_rdev = rdev;
856e08e2
N
787 }
788 if (!do_balance)
789 /* Must read from here */
790 break;
791 }
792 continue;
793 } else
794 best_good_sectors = sectors;
795
56d99121
N
796 if (!do_balance)
797 break;
1da177e4 798
e9eeba28
GJ
799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800 has_nonrot_disk |= nonrot;
801 pending = atomic_read(&rdev->nr_pending);
802 if (min_pending > pending && nonrot) {
803 min_pending = pending;
804 best_pending_slot = slot;
805 best_pending_rdev = rdev;
806 }
807
808 if (best_dist_slot >= 0)
8d3ca83d
N
809 /* At least 2 disks to choose from so failfast is OK */
810 set_bit(R10BIO_FailFast, &r10_bio->state);
22dfdf52
N
811 /* This optimisation is debatable, and completely destroys
812 * sequential read speed for 'far copies' arrays. So only
813 * keep it for 'near' arrays, and review those later.
814 */
e9eeba28 815 if (geo->near_copies > 1 && !pending)
8d3ca83d 816 new_distance = 0;
8ed3a195
KS
817
818 /* for far > 1 always use the lowest address */
8d3ca83d 819 else if (geo->far_copies > 1)
56d99121 820 new_distance = r10_bio->devs[slot].addr;
8ed3a195 821 else
56d99121
N
822 new_distance = abs(r10_bio->devs[slot].addr -
823 conf->mirrors[disk].head_position);
e9eeba28 824
56d99121
N
825 if (new_distance < best_dist) {
826 best_dist = new_distance;
e9eeba28
GJ
827 best_dist_slot = slot;
828 best_dist_rdev = rdev;
1da177e4
LT
829 }
830 }
abbf098e 831 if (slot >= conf->copies) {
e9eeba28
GJ
832 if (has_nonrot_disk) {
833 slot = best_pending_slot;
834 rdev = best_pending_rdev;
835 } else {
836 slot = best_dist_slot;
837 rdev = best_dist_rdev;
838 }
abbf098e 839 }
1da177e4 840
56d99121 841 if (slot >= 0) {
56d99121 842 atomic_inc(&rdev->nr_pending);
56d99121
N
843 r10_bio->read_slot = slot;
844 } else
96c3fd1f 845 rdev = NULL;
1da177e4 846 rcu_read_unlock();
856e08e2 847 *max_sectors = best_good_sectors;
1da177e4 848
96c3fd1f 849 return rdev;
1da177e4
LT
850}
851
e879a879 852static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
853{
854 /* Any writes that have been queued but are awaiting
855 * bitmap updates get flushed here.
a35e63ef 856 */
a35e63ef
N
857 spin_lock_irq(&conf->device_lock);
858
859 if (conf->pending_bio_list.head) {
18022a1b 860 struct blk_plug plug;
a35e63ef 861 struct bio *bio;
18022a1b 862
a35e63ef 863 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 864 conf->pending_count = 0;
a35e63ef 865 spin_unlock_irq(&conf->device_lock);
474beb57
N
866
867 /*
868 * As this is called in a wait_event() loop (see freeze_array),
869 * current->state might be TASK_UNINTERRUPTIBLE which will
870 * cause a warning when we prepare to wait again. As it is
871 * rare that this path is taken, it is perfectly safe to force
872 * us to go around the wait_event() loop again, so the warning
873 * is a false-positive. Silence the warning by resetting
874 * thread state
875 */
876 __set_current_state(TASK_RUNNING);
877
18022a1b 878 blk_start_plug(&plug);
a35e63ef
N
879 /* flush any pending bitmap writes to disk
880 * before proceeding w/ I/O */
e64e4018 881 md_bitmap_unplug(conf->mddev->bitmap);
34db0cd6 882 wake_up(&conf->wait_barrier);
a35e63ef
N
883
884 while (bio) { /* submit pending writes */
885 struct bio *next = bio->bi_next;
309dca30 886 struct md_rdev *rdev = (void*)bio->bi_bdev;
a35e63ef 887 bio->bi_next = NULL;
74d46992 888 bio_set_dev(bio, rdev->bdev);
a9ae93c8 889 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 890 bio_io_error(bio);
a9ae93c8 891 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
309dca30 892 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
532a2a3f 893 /* Just ignore it */
4246a0b6 894 bio_endio(bio);
532a2a3f 895 else
ed00aabd 896 submit_bio_noacct(bio);
a35e63ef
N
897 bio = next;
898 }
18022a1b 899 blk_finish_plug(&plug);
a35e63ef
N
900 } else
901 spin_unlock_irq(&conf->device_lock);
a35e63ef 902}
7eaceacc 903
0a27ec96
N
904/* Barriers....
905 * Sometimes we need to suspend IO while we do something else,
906 * either some resync/recovery, or reconfigure the array.
907 * To do this we raise a 'barrier'.
908 * The 'barrier' is a counter that can be raised multiple times
909 * to count how many activities are happening which preclude
910 * normal IO.
911 * We can only raise the barrier if there is no pending IO.
912 * i.e. if nr_pending == 0.
913 * We choose only to raise the barrier if no-one is waiting for the
914 * barrier to go down. This means that as soon as an IO request
915 * is ready, no other operations which require a barrier will start
916 * until the IO request has had a chance.
917 *
918 * So: regular IO calls 'wait_barrier'. When that returns there
919 * is no backgroup IO happening, It must arrange to call
920 * allow_barrier when it has finished its IO.
921 * backgroup IO calls must call raise_barrier. Once that returns
922 * there is no normal IO happeing. It must arrange to call
923 * lower_barrier when the particular background IO completes.
1da177e4 924 */
1da177e4 925
e879a879 926static void raise_barrier(struct r10conf *conf, int force)
1da177e4 927{
6cce3b23 928 BUG_ON(force && !conf->barrier);
1da177e4 929 spin_lock_irq(&conf->resync_lock);
0a27ec96 930
6cce3b23
N
931 /* Wait until no block IO is waiting (unless 'force') */
932 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 933 conf->resync_lock);
0a27ec96
N
934
935 /* block any new IO from starting */
936 conf->barrier++;
937
c3b328ac 938 /* Now wait for all pending IO to complete */
0a27ec96 939 wait_event_lock_irq(conf->wait_barrier,
0e5313e2 940 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
eed8c02e 941 conf->resync_lock);
0a27ec96
N
942
943 spin_unlock_irq(&conf->resync_lock);
944}
945
e879a879 946static void lower_barrier(struct r10conf *conf)
0a27ec96
N
947{
948 unsigned long flags;
949 spin_lock_irqsave(&conf->resync_lock, flags);
950 conf->barrier--;
951 spin_unlock_irqrestore(&conf->resync_lock, flags);
952 wake_up(&conf->wait_barrier);
953}
954
e879a879 955static void wait_barrier(struct r10conf *conf)
0a27ec96
N
956{
957 spin_lock_irq(&conf->resync_lock);
958 if (conf->barrier) {
fe630de0 959 struct bio_list *bio_list = current->bio_list;
0a27ec96 960 conf->nr_waiting++;
d6b42dcb
N
961 /* Wait for the barrier to drop.
962 * However if there are already pending
963 * requests (preventing the barrier from
964 * rising completely), and the
965 * pre-process bio queue isn't empty,
966 * then don't wait, as we need to empty
967 * that queue to get the nr_pending
968 * count down.
969 */
578b54ad 970 raid10_log(conf->mddev, "wait barrier");
d6b42dcb
N
971 wait_event_lock_irq(conf->wait_barrier,
972 !conf->barrier ||
0e5313e2 973 (atomic_read(&conf->nr_pending) &&
fe630de0
VM
974 bio_list &&
975 (!bio_list_empty(&bio_list[0]) ||
976 !bio_list_empty(&bio_list[1]))) ||
977 /* move on if recovery thread is
978 * blocked by us
979 */
980 (conf->mddev->thread->tsk == current &&
981 test_bit(MD_RECOVERY_RUNNING,
982 &conf->mddev->recovery) &&
983 conf->nr_queued > 0),
eed8c02e 984 conf->resync_lock);
0a27ec96 985 conf->nr_waiting--;
0e5313e2
TM
986 if (!conf->nr_waiting)
987 wake_up(&conf->wait_barrier);
1da177e4 988 }
0e5313e2 989 atomic_inc(&conf->nr_pending);
1da177e4
LT
990 spin_unlock_irq(&conf->resync_lock);
991}
992
e879a879 993static void allow_barrier(struct r10conf *conf)
0a27ec96 994{
0e5313e2
TM
995 if ((atomic_dec_and_test(&conf->nr_pending)) ||
996 (conf->array_freeze_pending))
997 wake_up(&conf->wait_barrier);
0a27ec96
N
998}
999
e2d59925 1000static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1001{
1002 /* stop syncio and normal IO and wait for everything to
f188593e 1003 * go quiet.
4443ae10 1004 * We increment barrier and nr_waiting, and then
e2d59925 1005 * wait until nr_pending match nr_queued+extra
1c830532
N
1006 * This is called in the context of one normal IO request
1007 * that has failed. Thus any sync request that might be pending
1008 * will be blocked by nr_pending, and we need to wait for
1009 * pending IO requests to complete or be queued for re-try.
e2d59925 1010 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1011 * must match the number of pending IOs (nr_pending) before
1012 * we continue.
4443ae10
N
1013 */
1014 spin_lock_irq(&conf->resync_lock);
0e5313e2 1015 conf->array_freeze_pending++;
4443ae10
N
1016 conf->barrier++;
1017 conf->nr_waiting++;
eed8c02e 1018 wait_event_lock_irq_cmd(conf->wait_barrier,
0e5313e2 1019 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
eed8c02e
LC
1020 conf->resync_lock,
1021 flush_pending_writes(conf));
c3b328ac 1022
0e5313e2 1023 conf->array_freeze_pending--;
4443ae10
N
1024 spin_unlock_irq(&conf->resync_lock);
1025}
1026
e879a879 1027static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1028{
1029 /* reverse the effect of the freeze */
1030 spin_lock_irq(&conf->resync_lock);
1031 conf->barrier--;
1032 conf->nr_waiting--;
1033 wake_up(&conf->wait_barrier);
1034 spin_unlock_irq(&conf->resync_lock);
1035}
1036
f8c9e74f
N
1037static sector_t choose_data_offset(struct r10bio *r10_bio,
1038 struct md_rdev *rdev)
1039{
1040 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041 test_bit(R10BIO_Previous, &r10_bio->state))
1042 return rdev->data_offset;
1043 else
1044 return rdev->new_data_offset;
1045}
1046
57c67df4
N
1047struct raid10_plug_cb {
1048 struct blk_plug_cb cb;
1049 struct bio_list pending;
1050 int pending_cnt;
1051};
1052
1053static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054{
1055 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056 cb);
1057 struct mddev *mddev = plug->cb.data;
1058 struct r10conf *conf = mddev->private;
1059 struct bio *bio;
1060
874807a8 1061 if (from_schedule || current->bio_list) {
57c67df4
N
1062 spin_lock_irq(&conf->device_lock);
1063 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064 conf->pending_count += plug->pending_cnt;
1065 spin_unlock_irq(&conf->device_lock);
ee0b0244 1066 wake_up(&conf->wait_barrier);
57c67df4
N
1067 md_wakeup_thread(mddev->thread);
1068 kfree(plug);
1069 return;
1070 }
1071
1072 /* we aren't scheduling, so we can do the write-out directly. */
1073 bio = bio_list_get(&plug->pending);
e64e4018 1074 md_bitmap_unplug(mddev->bitmap);
57c67df4
N
1075 wake_up(&conf->wait_barrier);
1076
1077 while (bio) { /* submit pending writes */
1078 struct bio *next = bio->bi_next;
309dca30 1079 struct md_rdev *rdev = (void*)bio->bi_bdev;
57c67df4 1080 bio->bi_next = NULL;
74d46992 1081 bio_set_dev(bio, rdev->bdev);
a9ae93c8 1082 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 1083 bio_io_error(bio);
a9ae93c8 1084 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
309dca30 1085 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
32f9f570 1086 /* Just ignore it */
4246a0b6 1087 bio_endio(bio);
32f9f570 1088 else
ed00aabd 1089 submit_bio_noacct(bio);
57c67df4
N
1090 bio = next;
1091 }
1092 kfree(plug);
1093}
1094
caea3c47
GJ
1095/*
1096 * 1. Register the new request and wait if the reconstruction thread has put
1097 * up a bar for new requests. Continue immediately if no resync is active
1098 * currently.
1099 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1100 */
1101static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102 struct bio *bio, sector_t sectors)
1103{
1104 wait_barrier(conf);
1105 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106 bio->bi_iter.bi_sector < conf->reshape_progress &&
1107 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108 raid10_log(conf->mddev, "wait reshape");
1109 allow_barrier(conf);
1110 wait_event(conf->wait_barrier,
1111 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112 conf->reshape_progress >= bio->bi_iter.bi_sector +
1113 sectors);
1114 wait_barrier(conf);
1115 }
1116}
1117
bb5f1ed7
RL
1118static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119 struct r10bio *r10_bio)
1da177e4 1120{
e879a879 1121 struct r10conf *conf = mddev->private;
1da177e4 1122 struct bio *read_bio;
bb5f1ed7
RL
1123 const int op = bio_op(bio);
1124 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
bb5f1ed7 1125 int max_sectors;
bb5f1ed7 1126 struct md_rdev *rdev;
545250f2
N
1127 char b[BDEVNAME_SIZE];
1128 int slot = r10_bio->read_slot;
1129 struct md_rdev *err_rdev = NULL;
1130 gfp_t gfp = GFP_NOIO;
bb5f1ed7 1131
93decc56 1132 if (slot >= 0 && r10_bio->devs[slot].rdev) {
545250f2
N
1133 /*
1134 * This is an error retry, but we cannot
1135 * safely dereference the rdev in the r10_bio,
1136 * we must use the one in conf.
1137 * If it has already been disconnected (unlikely)
1138 * we lose the device name in error messages.
1139 */
1140 int disk;
1141 /*
1142 * As we are blocking raid10, it is a little safer to
1143 * use __GFP_HIGH.
1144 */
1145 gfp = GFP_NOIO | __GFP_HIGH;
1146
1147 rcu_read_lock();
1148 disk = r10_bio->devs[slot].devnum;
1149 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150 if (err_rdev)
1151 bdevname(err_rdev->bdev, b);
1152 else {
1153 strcpy(b, "???");
1154 /* This never gets dereferenced */
1155 err_rdev = r10_bio->devs[slot].rdev;
1156 }
1157 rcu_read_unlock();
1158 }
bb5f1ed7 1159
caea3c47 1160 regular_request_wait(mddev, conf, bio, r10_bio->sectors);
bb5f1ed7
RL
1161 rdev = read_balance(conf, r10_bio, &max_sectors);
1162 if (!rdev) {
545250f2
N
1163 if (err_rdev) {
1164 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165 mdname(mddev), b,
1166 (unsigned long long)r10_bio->sector);
1167 }
bb5f1ed7
RL
1168 raid_end_bio_io(r10_bio);
1169 return;
1170 }
545250f2
N
1171 if (err_rdev)
1172 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173 mdname(mddev),
1174 bdevname(rdev->bdev, b),
1175 (unsigned long long)r10_bio->sector);
fc9977dd
N
1176 if (max_sectors < bio_sectors(bio)) {
1177 struct bio *split = bio_split(bio, max_sectors,
afeee514 1178 gfp, &conf->bio_split);
fc9977dd 1179 bio_chain(split, bio);
e820d55c 1180 allow_barrier(conf);
ed00aabd 1181 submit_bio_noacct(bio);
e820d55c 1182 wait_barrier(conf);
fc9977dd
N
1183 bio = split;
1184 r10_bio->master_bio = bio;
1185 r10_bio->sectors = max_sectors;
1186 }
bb5f1ed7
RL
1187 slot = r10_bio->read_slot;
1188
528bc2cf
GJ
1189 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190 r10_bio->start_time = bio_start_io_acct(bio);
afeee514 1191 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
bb5f1ed7
RL
1192
1193 r10_bio->devs[slot].bio = read_bio;
1194 r10_bio->devs[slot].rdev = rdev;
1195
1196 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197 choose_data_offset(r10_bio, rdev);
74d46992 1198 bio_set_dev(read_bio, rdev->bdev);
bb5f1ed7
RL
1199 read_bio->bi_end_io = raid10_end_read_request;
1200 bio_set_op_attrs(read_bio, op, do_sync);
1201 if (test_bit(FailFast, &rdev->flags) &&
1202 test_bit(R10BIO_FailFast, &r10_bio->state))
1203 read_bio->bi_opf |= MD_FAILFAST;
1204 read_bio->bi_private = r10_bio;
1205
1206 if (mddev->gendisk)
1c02fca6 1207 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
bb5f1ed7 1208 r10_bio->sector);
ed00aabd 1209 submit_bio_noacct(read_bio);
bb5f1ed7
RL
1210 return;
1211}
1212
27f26a0f
GJ
1213static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214 struct bio *bio, bool replacement,
fc9977dd 1215 int n_copy)
bb5f1ed7 1216{
796a5cf0 1217 const int op = bio_op(bio);
1eff9d32
JA
1218 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
6cce3b23 1220 unsigned long flags;
57c67df4
N
1221 struct blk_plug_cb *cb;
1222 struct raid10_plug_cb *plug = NULL;
27f26a0f
GJ
1223 struct r10conf *conf = mddev->private;
1224 struct md_rdev *rdev;
1225 int devnum = r10_bio->devs[n_copy].devnum;
1226 struct bio *mbio;
1227
1228 if (replacement) {
1229 rdev = conf->mirrors[devnum].replacement;
1230 if (rdev == NULL) {
1231 /* Replacement just got moved to main 'rdev' */
1232 smp_mb();
1233 rdev = conf->mirrors[devnum].rdev;
1234 }
1235 } else
1236 rdev = conf->mirrors[devnum].rdev;
1237
afeee514 1238 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
27f26a0f
GJ
1239 if (replacement)
1240 r10_bio->devs[n_copy].repl_bio = mbio;
1241 else
1242 r10_bio->devs[n_copy].bio = mbio;
1243
1244 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245 choose_data_offset(r10_bio, rdev));
74d46992 1246 bio_set_dev(mbio, rdev->bdev);
27f26a0f
GJ
1247 mbio->bi_end_io = raid10_end_write_request;
1248 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249 if (!replacement && test_bit(FailFast,
1250 &conf->mirrors[devnum].rdev->flags)
1251 && enough(conf, devnum))
1252 mbio->bi_opf |= MD_FAILFAST;
1253 mbio->bi_private = r10_bio;
1254
1255 if (conf->mddev->gendisk)
1c02fca6 1256 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
27f26a0f
GJ
1257 r10_bio->sector);
1258 /* flush_pending_writes() needs access to the rdev so...*/
309dca30 1259 mbio->bi_bdev = (void *)rdev;
27f26a0f
GJ
1260
1261 atomic_inc(&r10_bio->remaining);
1262
1263 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264 if (cb)
1265 plug = container_of(cb, struct raid10_plug_cb, cb);
1266 else
1267 plug = NULL;
27f26a0f
GJ
1268 if (plug) {
1269 bio_list_add(&plug->pending, mbio);
1270 plug->pending_cnt++;
1271 } else {
23b245c0 1272 spin_lock_irqsave(&conf->device_lock, flags);
27f26a0f
GJ
1273 bio_list_add(&conf->pending_bio_list, mbio);
1274 conf->pending_count++;
23b245c0 1275 spin_unlock_irqrestore(&conf->device_lock, flags);
27f26a0f 1276 md_wakeup_thread(mddev->thread);
23b245c0 1277 }
27f26a0f
GJ
1278}
1279
f2e7e269
XN
1280static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281{
1282 int i;
1283 struct r10conf *conf = mddev->private;
1284 struct md_rdev *blocked_rdev;
1285
1286retry_wait:
1287 blocked_rdev = NULL;
1288 rcu_read_lock();
1289 for (i = 0; i < conf->copies; i++) {
1290 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291 struct md_rdev *rrdev = rcu_dereference(
1292 conf->mirrors[i].replacement);
1293 if (rdev == rrdev)
1294 rrdev = NULL;
1295 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296 atomic_inc(&rdev->nr_pending);
1297 blocked_rdev = rdev;
1298 break;
1299 }
1300 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301 atomic_inc(&rrdev->nr_pending);
1302 blocked_rdev = rrdev;
1303 break;
1304 }
1305
1306 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307 sector_t first_bad;
1308 sector_t dev_sector = r10_bio->devs[i].addr;
1309 int bad_sectors;
1310 int is_bad;
1311
1312 /*
1313 * Discard request doesn't care the write result
1314 * so it doesn't need to wait blocked disk here.
1315 */
1316 if (!r10_bio->sectors)
1317 continue;
1318
1319 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320 &first_bad, &bad_sectors);
1321 if (is_bad < 0) {
1322 /*
1323 * Mustn't write here until the bad block
1324 * is acknowledged
1325 */
1326 atomic_inc(&rdev->nr_pending);
1327 set_bit(BlockedBadBlocks, &rdev->flags);
1328 blocked_rdev = rdev;
1329 break;
1330 }
1331 }
1332 }
1333 rcu_read_unlock();
1334
1335 if (unlikely(blocked_rdev)) {
1336 /* Have to wait for this device to get unblocked, then retry */
1337 allow_barrier(conf);
1338 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339 __func__, blocked_rdev->raid_disk);
1340 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341 wait_barrier(conf);
1342 goto retry_wait;
1343 }
1344}
1345
27f26a0f
GJ
1346static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347 struct r10bio *r10_bio)
1348{
1349 struct r10conf *conf = mddev->private;
1350 int i;
bb5f1ed7 1351 sector_t sectors;
d4432c23 1352 int max_sectors;
1da177e4 1353
cb8a7a7e
GJ
1354 if ((mddev_is_clustered(mddev) &&
1355 md_cluster_ops->area_resyncing(mddev, WRITE,
1356 bio->bi_iter.bi_sector,
1357 bio_end_sector(bio)))) {
1358 DEFINE_WAIT(w);
1359 for (;;) {
1360 prepare_to_wait(&conf->wait_barrier,
1361 &w, TASK_IDLE);
1362 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364 break;
1365 schedule();
1366 }
1367 finish_wait(&conf->wait_barrier, &w);
1368 }
1369
fc9977dd 1370 sectors = r10_bio->sectors;
caea3c47 1371 regular_request_wait(mddev, conf, bio, sectors);
3ea7daa5 1372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3ea7daa5 1373 (mddev->reshape_backwards
4f024f37
KO
1374 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1378 /* Need to update reshape_position in metadata */
1379 mddev->reshape_position = conf->reshape_progress;
2953079c
SL
1380 set_mask_bits(&mddev->sb_flags, 0,
1381 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
3ea7daa5 1382 md_wakeup_thread(mddev->thread);
578b54ad 1383 raid10_log(conf->mddev, "wait reshape metadata");
3ea7daa5 1384 wait_event(mddev->sb_wait,
2953079c 1385 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
3ea7daa5
N
1386
1387 conf->reshape_safe = mddev->reshape_position;
1388 }
1389
34db0cd6
N
1390 if (conf->pending_count >= max_queued_requests) {
1391 md_wakeup_thread(mddev->thread);
578b54ad 1392 raid10_log(mddev, "wait queued");
34db0cd6
N
1393 wait_event(conf->wait_barrier,
1394 conf->pending_count < max_queued_requests);
1395 }
6bfe0b49 1396 /* first select target devices under rcu_lock and
1da177e4
LT
1397 * inc refcount on their rdev. Record them by setting
1398 * bios[x] to bio
d4432c23
N
1399 * If there are known/acknowledged bad blocks on any device
1400 * on which we have seen a write error, we want to avoid
1401 * writing to those blocks. This potentially requires several
1402 * writes to write around the bad blocks. Each set of writes
fd16f2e8 1403 * gets its own r10_bio with a set of bios attached.
1da177e4 1404 */
c3b328ac 1405
69335ef3 1406 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1407 raid10_find_phys(conf, r10_bio);
f2e7e269
XN
1408
1409 wait_blocked_dev(mddev, r10_bio);
1410
1da177e4 1411 rcu_read_lock();
d4432c23
N
1412 max_sectors = r10_bio->sectors;
1413
1da177e4
LT
1414 for (i = 0; i < conf->copies; i++) {
1415 int d = r10_bio->devs[i].devnum;
3cb03002 1416 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1417 struct md_rdev *rrdev = rcu_dereference(
1418 conf->mirrors[d].replacement);
4ca40c2c
N
1419 if (rdev == rrdev)
1420 rrdev = NULL;
8ae12666 1421 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1422 rdev = NULL;
8ae12666 1423 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1424 rrdev = NULL;
1425
d4432c23 1426 r10_bio->devs[i].bio = NULL;
475b0321 1427 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1428
1429 if (!rdev && !rrdev) {
6cce3b23 1430 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1431 continue;
1432 }
e7c0c3fa 1433 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1434 sector_t first_bad;
1435 sector_t dev_sector = r10_bio->devs[i].addr;
1436 int bad_sectors;
1437 int is_bad;
1438
bb5f1ed7 1439 is_bad = is_badblock(rdev, dev_sector, max_sectors,
d4432c23 1440 &first_bad, &bad_sectors);
d4432c23
N
1441 if (is_bad && first_bad <= dev_sector) {
1442 /* Cannot write here at all */
1443 bad_sectors -= (dev_sector - first_bad);
1444 if (bad_sectors < max_sectors)
1445 /* Mustn't write more than bad_sectors
1446 * to other devices yet
1447 */
1448 max_sectors = bad_sectors;
1449 /* We don't set R10BIO_Degraded as that
1450 * only applies if the disk is missing,
1451 * so it might be re-added, and we want to
1452 * know to recover this chunk.
1453 * In this case the device is here, and the
1454 * fact that this chunk is not in-sync is
1455 * recorded in the bad block log.
1456 */
1457 continue;
1458 }
1459 if (is_bad) {
1460 int good_sectors = first_bad - dev_sector;
1461 if (good_sectors < max_sectors)
1462 max_sectors = good_sectors;
1463 }
6cce3b23 1464 }
e7c0c3fa
N
1465 if (rdev) {
1466 r10_bio->devs[i].bio = bio;
1467 atomic_inc(&rdev->nr_pending);
1468 }
475b0321
N
1469 if (rrdev) {
1470 r10_bio->devs[i].repl_bio = bio;
1471 atomic_inc(&rrdev->nr_pending);
1472 }
1da177e4
LT
1473 }
1474 rcu_read_unlock();
1475
6b6c8110 1476 if (max_sectors < r10_bio->sectors)
d4432c23 1477 r10_bio->sectors = max_sectors;
fc9977dd
N
1478
1479 if (r10_bio->sectors < bio_sectors(bio)) {
1480 struct bio *split = bio_split(bio, r10_bio->sectors,
afeee514 1481 GFP_NOIO, &conf->bio_split);
fc9977dd 1482 bio_chain(split, bio);
e820d55c 1483 allow_barrier(conf);
ed00aabd 1484 submit_bio_noacct(bio);
e820d55c 1485 wait_barrier(conf);
fc9977dd
N
1486 bio = split;
1487 r10_bio->master_bio = bio;
d4432c23 1488 }
d4432c23 1489
528bc2cf
GJ
1490 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491 r10_bio->start_time = bio_start_io_acct(bio);
4e78064f 1492 atomic_set(&r10_bio->remaining, 1);
e64e4018 1493 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1494
1da177e4 1495 for (i = 0; i < conf->copies; i++) {
27f26a0f 1496 if (r10_bio->devs[i].bio)
fc9977dd 1497 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
27f26a0f 1498 if (r10_bio->devs[i].repl_bio)
fc9977dd 1499 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
d4432c23 1500 }
079fa166 1501 one_write_done(r10_bio);
20d0189b
KO
1502}
1503
fc9977dd 1504static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
bb5f1ed7
RL
1505{
1506 struct r10conf *conf = mddev->private;
1507 struct r10bio *r10_bio;
1508
afeee514 1509 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
bb5f1ed7
RL
1510
1511 r10_bio->master_bio = bio;
fc9977dd 1512 r10_bio->sectors = sectors;
bb5f1ed7
RL
1513
1514 r10_bio->mddev = mddev;
1515 r10_bio->sector = bio->bi_iter.bi_sector;
1516 r10_bio->state = 0;
93decc56 1517 r10_bio->read_slot = -1;
c2968285
XN
1518 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519 conf->geo.raid_disks);
bb5f1ed7
RL
1520
1521 if (bio_data_dir(bio) == READ)
1522 raid10_read_request(mddev, bio, r10_bio);
1523 else
1524 raid10_write_request(mddev, bio, r10_bio);
1525}
1526
254c271d
XN
1527static void raid_end_discard_bio(struct r10bio *r10bio)
1528{
1529 struct r10conf *conf = r10bio->mddev->private;
1530 struct r10bio *first_r10bio;
1531
1532 while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534 allow_barrier(conf);
1535
1536 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537 first_r10bio = (struct r10bio *)r10bio->master_bio;
1538 free_r10bio(r10bio);
1539 r10bio = first_r10bio;
1540 } else {
1541 md_write_end(r10bio->mddev);
1542 bio_endio(r10bio->master_bio);
1543 free_r10bio(r10bio);
1544 break;
1545 }
1546 }
1547}
1548
d30588b2
XN
1549static void raid10_end_discard_request(struct bio *bio)
1550{
1551 struct r10bio *r10_bio = bio->bi_private;
1552 struct r10conf *conf = r10_bio->mddev->private;
1553 struct md_rdev *rdev = NULL;
1554 int dev;
1555 int slot, repl;
1556
1557 /*
1558 * We don't care the return value of discard bio
1559 */
1560 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561 set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564 if (repl)
1565 rdev = conf->mirrors[dev].replacement;
1566 if (!rdev) {
1567 /*
1568 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569 * replacement before setting replacement to NULL. It can read
1570 * rdev first without barrier protect even replacment is NULL
1571 */
1572 smp_rmb();
1573 rdev = conf->mirrors[dev].rdev;
1574 }
1575
254c271d 1576 raid_end_discard_bio(r10_bio);
d30588b2
XN
1577 rdev_dec_pending(rdev, conf->mddev);
1578}
1579
1580/*
1581 * There are some limitations to handle discard bio
1582 * 1st, the discard size is bigger than stripe_size*2.
1583 * 2st, if the discard bio spans reshape progress, we use the old way to
1584 * handle discard bio
1585 */
1586static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587{
1588 struct r10conf *conf = mddev->private;
1589 struct geom *geo = &conf->geo;
254c271d
XN
1590 int far_copies = geo->far_copies;
1591 bool first_copy = true;
1592 struct r10bio *r10_bio, *first_r10bio;
d30588b2
XN
1593 struct bio *split;
1594 int disk;
1595 sector_t chunk;
1596 unsigned int stripe_size;
1597 unsigned int stripe_data_disks;
1598 sector_t split_size;
1599 sector_t bio_start, bio_end;
1600 sector_t first_stripe_index, last_stripe_index;
1601 sector_t start_disk_offset;
1602 unsigned int start_disk_index;
1603 sector_t end_disk_offset;
1604 unsigned int end_disk_index;
1605 unsigned int remainder;
1606
1607 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608 return -EAGAIN;
1609
1610 wait_barrier(conf);
1611
1612 /*
1613 * Check reshape again to avoid reshape happens after checking
1614 * MD_RECOVERY_RESHAPE and before wait_barrier
1615 */
1616 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617 goto out;
1618
1619 if (geo->near_copies)
1620 stripe_data_disks = geo->raid_disks / geo->near_copies +
1621 geo->raid_disks % geo->near_copies;
1622 else
1623 stripe_data_disks = geo->raid_disks;
1624
1625 stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627 bio_start = bio->bi_iter.bi_sector;
1628 bio_end = bio_end_sector(bio);
1629
1630 /*
1631 * Maybe one discard bio is smaller than strip size or across one
1632 * stripe and discard region is larger than one stripe size. For far
1633 * offset layout, if the discard region is not aligned with stripe
1634 * size, there is hole when we submit discard bio to member disk.
1635 * For simplicity, we only handle discard bio which discard region
1636 * is bigger than stripe_size * 2
1637 */
1638 if (bio_sectors(bio) < stripe_size*2)
1639 goto out;
1640
1641 /*
1642 * Keep bio aligned with strip size.
1643 */
1644 div_u64_rem(bio_start, stripe_size, &remainder);
1645 if (remainder) {
1646 split_size = stripe_size - remainder;
1647 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648 bio_chain(split, bio);
1649 allow_barrier(conf);
1650 /* Resend the fist split part */
1651 submit_bio_noacct(split);
1652 wait_barrier(conf);
1653 }
1654 div_u64_rem(bio_end, stripe_size, &remainder);
1655 if (remainder) {
1656 split_size = bio_sectors(bio) - remainder;
1657 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658 bio_chain(split, bio);
1659 allow_barrier(conf);
1660 /* Resend the second split part */
1661 submit_bio_noacct(bio);
1662 bio = split;
1663 wait_barrier(conf);
1664 }
1665
d30588b2
XN
1666 bio_start = bio->bi_iter.bi_sector;
1667 bio_end = bio_end_sector(bio);
1668
1669 /*
1670 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671 * One stripe contains the chunks from all member disk (one chunk from
1672 * one disk at the same HBA address). For layout detail, see 'man md 4'
1673 */
1674 chunk = bio_start >> geo->chunk_shift;
1675 chunk *= geo->near_copies;
1676 first_stripe_index = chunk;
1677 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678 if (geo->far_offset)
1679 first_stripe_index *= geo->far_copies;
1680 start_disk_offset = (bio_start & geo->chunk_mask) +
1681 (first_stripe_index << geo->chunk_shift);
1682
1683 chunk = bio_end >> geo->chunk_shift;
1684 chunk *= geo->near_copies;
1685 last_stripe_index = chunk;
1686 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687 if (geo->far_offset)
1688 last_stripe_index *= geo->far_copies;
1689 end_disk_offset = (bio_end & geo->chunk_mask) +
1690 (last_stripe_index << geo->chunk_shift);
1691
254c271d
XN
1692retry_discard:
1693 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694 r10_bio->mddev = mddev;
1695 r10_bio->state = 0;
1696 r10_bio->sectors = 0;
1697 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698 wait_blocked_dev(mddev, r10_bio);
1699
1700 /*
1701 * For far layout it needs more than one r10bio to cover all regions.
1702 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703 * to record the discard bio. Other r10bio->master_bio record the first
1704 * r10bio. The first r10bio only release after all other r10bios finish.
1705 * The discard bio returns only first r10bio finishes
1706 */
1707 if (first_copy) {
1708 r10_bio->master_bio = bio;
1709 set_bit(R10BIO_Discard, &r10_bio->state);
1710 first_copy = false;
1711 first_r10bio = r10_bio;
1712 } else
1713 r10_bio->master_bio = (struct bio *)first_r10bio;
1714
d30588b2
XN
1715 rcu_read_lock();
1716 for (disk = 0; disk < geo->raid_disks; disk++) {
1717 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1718 struct md_rdev *rrdev = rcu_dereference(
1719 conf->mirrors[disk].replacement);
1720
1721 r10_bio->devs[disk].bio = NULL;
1722 r10_bio->devs[disk].repl_bio = NULL;
1723
1724 if (rdev && (test_bit(Faulty, &rdev->flags)))
1725 rdev = NULL;
1726 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1727 rrdev = NULL;
1728 if (!rdev && !rrdev)
1729 continue;
1730
1731 if (rdev) {
1732 r10_bio->devs[disk].bio = bio;
1733 atomic_inc(&rdev->nr_pending);
1734 }
1735 if (rrdev) {
1736 r10_bio->devs[disk].repl_bio = bio;
1737 atomic_inc(&rrdev->nr_pending);
1738 }
1739 }
1740 rcu_read_unlock();
1741
1742 atomic_set(&r10_bio->remaining, 1);
1743 for (disk = 0; disk < geo->raid_disks; disk++) {
1744 sector_t dev_start, dev_end;
1745 struct bio *mbio, *rbio = NULL;
1746 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1747 struct md_rdev *rrdev = rcu_dereference(
1748 conf->mirrors[disk].replacement);
1749
1750 /*
1751 * Now start to calculate the start and end address for each disk.
1752 * The space between dev_start and dev_end is the discard region.
1753 *
1754 * For dev_start, it needs to consider three conditions:
1755 * 1st, the disk is before start_disk, you can imagine the disk in
1756 * the next stripe. So the dev_start is the start address of next
1757 * stripe.
1758 * 2st, the disk is after start_disk, it means the disk is at the
1759 * same stripe of first disk
1760 * 3st, the first disk itself, we can use start_disk_offset directly
1761 */
1762 if (disk < start_disk_index)
1763 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1764 else if (disk > start_disk_index)
1765 dev_start = first_stripe_index * mddev->chunk_sectors;
1766 else
1767 dev_start = start_disk_offset;
1768
1769 if (disk < end_disk_index)
1770 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1771 else if (disk > end_disk_index)
1772 dev_end = last_stripe_index * mddev->chunk_sectors;
1773 else
1774 dev_end = end_disk_offset;
1775
1776 /*
1777 * It only handles discard bio which size is >= stripe size, so
1778 * dev_end > dev_start all the time
1779 */
1780 if (r10_bio->devs[disk].bio) {
1781 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1782 mbio->bi_end_io = raid10_end_discard_request;
1783 mbio->bi_private = r10_bio;
1784 r10_bio->devs[disk].bio = mbio;
1785 r10_bio->devs[disk].devnum = disk;
1786 atomic_inc(&r10_bio->remaining);
1787 md_submit_discard_bio(mddev, rdev, mbio,
1788 dev_start + choose_data_offset(r10_bio, rdev),
1789 dev_end - dev_start);
1790 bio_endio(mbio);
1791 }
1792 if (r10_bio->devs[disk].repl_bio) {
1793 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1794 rbio->bi_end_io = raid10_end_discard_request;
1795 rbio->bi_private = r10_bio;
1796 r10_bio->devs[disk].repl_bio = rbio;
1797 r10_bio->devs[disk].devnum = disk;
1798 atomic_inc(&r10_bio->remaining);
1799 md_submit_discard_bio(mddev, rrdev, rbio,
1800 dev_start + choose_data_offset(r10_bio, rrdev),
1801 dev_end - dev_start);
1802 bio_endio(rbio);
1803 }
1804 }
1805
254c271d
XN
1806 if (!geo->far_offset && --far_copies) {
1807 first_stripe_index += geo->stride >> geo->chunk_shift;
1808 start_disk_offset += geo->stride;
1809 last_stripe_index += geo->stride >> geo->chunk_shift;
1810 end_disk_offset += geo->stride;
1811 atomic_inc(&first_r10bio->remaining);
1812 raid_end_discard_bio(r10_bio);
1813 wait_barrier(conf);
1814 goto retry_discard;
d30588b2
XN
1815 }
1816
254c271d
XN
1817 raid_end_discard_bio(r10_bio);
1818
d30588b2
XN
1819 return 0;
1820out:
1821 allow_barrier(conf);
1822 return -EAGAIN;
1823}
1824
cc27b0c7 1825static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1826{
1827 struct r10conf *conf = mddev->private;
1828 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1829 int chunk_sects = chunk_mask + 1;
fc9977dd 1830 int sectors = bio_sectors(bio);
20d0189b 1831
775d7831
DJ
1832 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1833 && md_flush_request(mddev, bio))
cc27b0c7 1834 return true;
20d0189b 1835
cc27b0c7
N
1836 if (!md_write_start(mddev, bio))
1837 return false;
1838
d30588b2
XN
1839 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1840 if (!raid10_handle_discard(mddev, bio))
1841 return true;
1842
fc9977dd
N
1843 /*
1844 * If this request crosses a chunk boundary, we need to split
1845 * it.
1846 */
1847 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1848 sectors > chunk_sects
1849 && (conf->geo.near_copies < conf->geo.raid_disks
1850 || conf->prev.near_copies <
1851 conf->prev.raid_disks)))
1852 sectors = chunk_sects -
1853 (bio->bi_iter.bi_sector &
1854 (chunk_sects - 1));
1855 __make_request(mddev, bio, sectors);
079fa166
N
1856
1857 /* In case raid10d snuck in to freeze_array */
1858 wake_up(&conf->wait_barrier);
cc27b0c7 1859 return true;
1da177e4
LT
1860}
1861
849674e4 1862static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1863{
e879a879 1864 struct r10conf *conf = mddev->private;
1da177e4
LT
1865 int i;
1866
5cf00fcd 1867 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1868 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1869 if (conf->geo.near_copies > 1)
1870 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1871 if (conf->geo.far_copies > 1) {
1872 if (conf->geo.far_offset)
1873 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1874 else
5cf00fcd 1875 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1876 if (conf->geo.far_set_size != conf->geo.raid_disks)
1877 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1878 }
5cf00fcd
N
1879 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1880 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1881 rcu_read_lock();
1882 for (i = 0; i < conf->geo.raid_disks; i++) {
1883 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1884 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1885 }
1886 rcu_read_unlock();
1da177e4
LT
1887 seq_printf(seq, "]");
1888}
1889
700c7213
N
1890/* check if there are enough drives for
1891 * every block to appear on atleast one.
1892 * Don't consider the device numbered 'ignore'
1893 * as we might be about to remove it.
1894 */
635f6416 1895static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1896{
1897 int first = 0;
725d6e57 1898 int has_enough = 0;
635f6416
N
1899 int disks, ncopies;
1900 if (previous) {
1901 disks = conf->prev.raid_disks;
1902 ncopies = conf->prev.near_copies;
1903 } else {
1904 disks = conf->geo.raid_disks;
1905 ncopies = conf->geo.near_copies;
1906 }
700c7213 1907
725d6e57 1908 rcu_read_lock();
700c7213
N
1909 do {
1910 int n = conf->copies;
1911 int cnt = 0;
80b48124 1912 int this = first;
700c7213 1913 while (n--) {
725d6e57
N
1914 struct md_rdev *rdev;
1915 if (this != ignore &&
1916 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1917 test_bit(In_sync, &rdev->flags))
700c7213 1918 cnt++;
635f6416 1919 this = (this+1) % disks;
700c7213
N
1920 }
1921 if (cnt == 0)
725d6e57 1922 goto out;
635f6416 1923 first = (first + ncopies) % disks;
700c7213 1924 } while (first != 0);
725d6e57
N
1925 has_enough = 1;
1926out:
1927 rcu_read_unlock();
1928 return has_enough;
700c7213
N
1929}
1930
f8c9e74f
N
1931static int enough(struct r10conf *conf, int ignore)
1932{
635f6416
N
1933 /* when calling 'enough', both 'prev' and 'geo' must
1934 * be stable.
1935 * This is ensured if ->reconfig_mutex or ->device_lock
1936 * is held.
1937 */
1938 return _enough(conf, 0, ignore) &&
1939 _enough(conf, 1, ignore);
f8c9e74f
N
1940}
1941
849674e4 1942static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1943{
1944 char b[BDEVNAME_SIZE];
e879a879 1945 struct r10conf *conf = mddev->private;
635f6416 1946 unsigned long flags;
1da177e4
LT
1947
1948 /*
1949 * If it is not operational, then we have already marked it as dead
9a567843
GJ
1950 * else if it is the last working disks with "fail_last_dev == false",
1951 * ignore the error, let the next level up know.
1da177e4
LT
1952 * else mark the drive as failed
1953 */
635f6416 1954 spin_lock_irqsave(&conf->device_lock, flags);
9a567843 1955 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
635f6416 1956 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1957 /*
1958 * Don't fail the drive, just return an IO error.
1da177e4 1959 */
635f6416 1960 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1961 return;
635f6416 1962 }
2446dba0 1963 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1964 mddev->degraded++;
2446dba0
N
1965 /*
1966 * If recovery is running, make sure it aborts.
1967 */
1968 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1969 set_bit(Blocked, &rdev->flags);
b2d444d7 1970 set_bit(Faulty, &rdev->flags);
2953079c
SL
1971 set_mask_bits(&mddev->sb_flags, 0,
1972 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
635f6416 1973 spin_unlock_irqrestore(&conf->device_lock, flags);
08464e09
N
1974 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1975 "md/raid10:%s: Operation continuing on %d devices.\n",
1976 mdname(mddev), bdevname(rdev->bdev, b),
1977 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1978}
1979
e879a879 1980static void print_conf(struct r10conf *conf)
1da177e4
LT
1981{
1982 int i;
4056ca51 1983 struct md_rdev *rdev;
1da177e4 1984
08464e09 1985 pr_debug("RAID10 conf printout:\n");
1da177e4 1986 if (!conf) {
08464e09 1987 pr_debug("(!conf)\n");
1da177e4
LT
1988 return;
1989 }
08464e09
N
1990 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1991 conf->geo.raid_disks);
1da177e4 1992
4056ca51
N
1993 /* This is only called with ->reconfix_mutex held, so
1994 * rcu protection of rdev is not needed */
5cf00fcd 1995 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1996 char b[BDEVNAME_SIZE];
4056ca51
N
1997 rdev = conf->mirrors[i].rdev;
1998 if (rdev)
08464e09
N
1999 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2000 i, !test_bit(In_sync, &rdev->flags),
2001 !test_bit(Faulty, &rdev->flags),
2002 bdevname(rdev->bdev,b));
1da177e4
LT
2003 }
2004}
2005
e879a879 2006static void close_sync(struct r10conf *conf)
1da177e4 2007{
0a27ec96
N
2008 wait_barrier(conf);
2009 allow_barrier(conf);
1da177e4 2010
afeee514 2011 mempool_exit(&conf->r10buf_pool);
1da177e4
LT
2012}
2013
fd01b88c 2014static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
2015{
2016 int i;
e879a879 2017 struct r10conf *conf = mddev->private;
dc280d98 2018 struct raid10_info *tmp;
6b965620
N
2019 int count = 0;
2020 unsigned long flags;
1da177e4
LT
2021
2022 /*
2023 * Find all non-in_sync disks within the RAID10 configuration
2024 * and mark them in_sync
2025 */
5cf00fcd 2026 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 2027 tmp = conf->mirrors + i;
4ca40c2c
N
2028 if (tmp->replacement
2029 && tmp->replacement->recovery_offset == MaxSector
2030 && !test_bit(Faulty, &tmp->replacement->flags)
2031 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2032 /* Replacement has just become active */
2033 if (!tmp->rdev
2034 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2035 count++;
2036 if (tmp->rdev) {
2037 /* Replaced device not technically faulty,
2038 * but we need to be sure it gets removed
2039 * and never re-added.
2040 */
2041 set_bit(Faulty, &tmp->rdev->flags);
2042 sysfs_notify_dirent_safe(
2043 tmp->rdev->sysfs_state);
2044 }
2045 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2046 } else if (tmp->rdev
61e4947c 2047 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
2048 && !test_bit(Faulty, &tmp->rdev->flags)
2049 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 2050 count++;
2863b9eb 2051 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
2052 }
2053 }
6b965620
N
2054 spin_lock_irqsave(&conf->device_lock, flags);
2055 mddev->degraded -= count;
2056 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
2057
2058 print_conf(conf);
6b965620 2059 return count;
1da177e4
LT
2060}
2061
fd01b88c 2062static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2063{
e879a879 2064 struct r10conf *conf = mddev->private;
199050ea 2065 int err = -EEXIST;
1da177e4 2066 int mirror;
6c2fce2e 2067 int first = 0;
5cf00fcd 2068 int last = conf->geo.raid_disks - 1;
1da177e4
LT
2069
2070 if (mddev->recovery_cp < MaxSector)
2071 /* only hot-add to in-sync arrays, as recovery is
2072 * very different from resync
2073 */
199050ea 2074 return -EBUSY;
635f6416 2075 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 2076 return -EINVAL;
1da177e4 2077
1501efad
DW
2078 if (md_integrity_add_rdev(rdev, mddev))
2079 return -ENXIO;
2080
a53a6c85 2081 if (rdev->raid_disk >= 0)
6c2fce2e 2082 first = last = rdev->raid_disk;
1da177e4 2083
2c4193df 2084 if (rdev->saved_raid_disk >= first &&
9e753ba9 2085 rdev->saved_raid_disk < conf->geo.raid_disks &&
6cce3b23
N
2086 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2087 mirror = rdev->saved_raid_disk;
2088 else
6c2fce2e 2089 mirror = first;
2bb77736 2090 for ( ; mirror <= last ; mirror++) {
dc280d98 2091 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
2092 if (p->recovery_disabled == mddev->recovery_disabled)
2093 continue;
b7044d41
N
2094 if (p->rdev) {
2095 if (!test_bit(WantReplacement, &p->rdev->flags) ||
2096 p->replacement != NULL)
2097 continue;
2098 clear_bit(In_sync, &rdev->flags);
2099 set_bit(Replacement, &rdev->flags);
2100 rdev->raid_disk = mirror;
2101 err = 0;
9092c02d
JB
2102 if (mddev->gendisk)
2103 disk_stack_limits(mddev->gendisk, rdev->bdev,
2104 rdev->data_offset << 9);
b7044d41
N
2105 conf->fullsync = 1;
2106 rcu_assign_pointer(p->replacement, rdev);
2107 break;
2108 }
1da177e4 2109
9092c02d
JB
2110 if (mddev->gendisk)
2111 disk_stack_limits(mddev->gendisk, rdev->bdev,
2112 rdev->data_offset << 9);
1da177e4 2113
2bb77736 2114 p->head_position = 0;
d890fa2b 2115 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
2116 rdev->raid_disk = mirror;
2117 err = 0;
2118 if (rdev->saved_raid_disk != mirror)
2119 conf->fullsync = 1;
2120 rcu_assign_pointer(p->rdev, rdev);
2121 break;
2122 }
ed30be07 2123 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 2124 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
532a2a3f 2125
1da177e4 2126 print_conf(conf);
199050ea 2127 return err;
1da177e4
LT
2128}
2129
b8321b68 2130static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2131{
e879a879 2132 struct r10conf *conf = mddev->private;
1da177e4 2133 int err = 0;
b8321b68 2134 int number = rdev->raid_disk;
c8ab903e 2135 struct md_rdev **rdevp;
dc280d98 2136 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
2137
2138 print_conf(conf);
c8ab903e
N
2139 if (rdev == p->rdev)
2140 rdevp = &p->rdev;
2141 else if (rdev == p->replacement)
2142 rdevp = &p->replacement;
2143 else
2144 return 0;
2145
2146 if (test_bit(In_sync, &rdev->flags) ||
2147 atomic_read(&rdev->nr_pending)) {
2148 err = -EBUSY;
2149 goto abort;
2150 }
d787be40 2151 /* Only remove non-faulty devices if recovery
c8ab903e
N
2152 * is not possible.
2153 */
2154 if (!test_bit(Faulty, &rdev->flags) &&
2155 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 2156 (!p->replacement || p->replacement == rdev) &&
63aced61 2157 number < conf->geo.raid_disks &&
c8ab903e
N
2158 enough(conf, -1)) {
2159 err = -EBUSY;
2160 goto abort;
1da177e4 2161 }
c8ab903e 2162 *rdevp = NULL;
d787be40
N
2163 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2164 synchronize_rcu();
2165 if (atomic_read(&rdev->nr_pending)) {
2166 /* lost the race, try later */
2167 err = -EBUSY;
2168 *rdevp = rdev;
2169 goto abort;
2170 }
2171 }
2172 if (p->replacement) {
4ca40c2c
N
2173 /* We must have just cleared 'rdev' */
2174 p->rdev = p->replacement;
2175 clear_bit(Replacement, &p->replacement->flags);
2176 smp_mb(); /* Make sure other CPUs may see both as identical
2177 * but will never see neither -- if they are careful.
2178 */
2179 p->replacement = NULL;
e5bc9c3c 2180 }
4ca40c2c 2181
e5bc9c3c 2182 clear_bit(WantReplacement, &rdev->flags);
c8ab903e
N
2183 err = md_integrity_register(mddev);
2184
1da177e4
LT
2185abort:
2186
2187 print_conf(conf);
2188 return err;
2189}
2190
81fa1520 2191static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1da177e4 2192{
e879a879 2193 struct r10conf *conf = r10_bio->mddev->private;
0eb3ff12 2194
4e4cbee9 2195 if (!bio->bi_status)
0eb3ff12 2196 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
2197 else
2198 /* The write handler will notice the lack of
2199 * R10BIO_Uptodate and record any errors etc
2200 */
4dbcdc75
N
2201 atomic_add(r10_bio->sectors,
2202 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
2203
2204 /* for reconstruct, we always reschedule after a read.
2205 * for resync, only after all reads
2206 */
73d5c38a 2207 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
2208 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2209 atomic_dec_and_test(&r10_bio->remaining)) {
2210 /* we have read all the blocks,
2211 * do the comparison in process context in raid10d
2212 */
2213 reschedule_retry(r10_bio);
2214 }
1da177e4
LT
2215}
2216
81fa1520
ML
2217static void end_sync_read(struct bio *bio)
2218{
f0250618 2219 struct r10bio *r10_bio = get_resync_r10bio(bio);
81fa1520
ML
2220 struct r10conf *conf = r10_bio->mddev->private;
2221 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2222
2223 __end_sync_read(r10_bio, bio, d);
2224}
2225
2226static void end_reshape_read(struct bio *bio)
2227{
f0250618 2228 /* reshape read bio isn't allocated from r10buf_pool */
81fa1520
ML
2229 struct r10bio *r10_bio = bio->bi_private;
2230
2231 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2232}
2233
9f2c9d12 2234static void end_sync_request(struct r10bio *r10_bio)
1da177e4 2235{
fd01b88c 2236 struct mddev *mddev = r10_bio->mddev;
dfc70645 2237
1da177e4
LT
2238 while (atomic_dec_and_test(&r10_bio->remaining)) {
2239 if (r10_bio->master_bio == NULL) {
2240 /* the primary of several recovery bios */
73d5c38a 2241 sector_t s = r10_bio->sectors;
1a0b7cd8
N
2242 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2243 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2244 reschedule_retry(r10_bio);
2245 else
2246 put_buf(r10_bio);
73d5c38a 2247 md_done_sync(mddev, s, 1);
1da177e4
LT
2248 break;
2249 } else {
9f2c9d12 2250 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
2251 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2252 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2253 reschedule_retry(r10_bio);
2254 else
2255 put_buf(r10_bio);
1da177e4
LT
2256 r10_bio = r10_bio2;
2257 }
2258 }
1da177e4
LT
2259}
2260
4246a0b6 2261static void end_sync_write(struct bio *bio)
5e570289 2262{
f0250618 2263 struct r10bio *r10_bio = get_resync_r10bio(bio);
fd01b88c 2264 struct mddev *mddev = r10_bio->mddev;
e879a879 2265 struct r10conf *conf = mddev->private;
5e570289
N
2266 int d;
2267 sector_t first_bad;
2268 int bad_sectors;
2269 int slot;
9ad1aefc 2270 int repl;
4ca40c2c 2271 struct md_rdev *rdev = NULL;
5e570289 2272
9ad1aefc
N
2273 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2274 if (repl)
2275 rdev = conf->mirrors[d].replacement;
547414d1 2276 else
9ad1aefc 2277 rdev = conf->mirrors[d].rdev;
5e570289 2278
4e4cbee9 2279 if (bio->bi_status) {
9ad1aefc
N
2280 if (repl)
2281 md_error(mddev, rdev);
2282 else {
2283 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2284 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2285 set_bit(MD_RECOVERY_NEEDED,
2286 &rdev->mddev->recovery);
9ad1aefc
N
2287 set_bit(R10BIO_WriteError, &r10_bio->state);
2288 }
2289 } else if (is_badblock(rdev,
5e570289
N
2290 r10_bio->devs[slot].addr,
2291 r10_bio->sectors,
2292 &first_bad, &bad_sectors))
2293 set_bit(R10BIO_MadeGood, &r10_bio->state);
2294
9ad1aefc 2295 rdev_dec_pending(rdev, mddev);
5e570289
N
2296
2297 end_sync_request(r10_bio);
2298}
2299
1da177e4
LT
2300/*
2301 * Note: sync and recover and handled very differently for raid10
2302 * This code is for resync.
2303 * For resync, we read through virtual addresses and read all blocks.
2304 * If there is any error, we schedule a write. The lowest numbered
2305 * drive is authoritative.
2306 * However requests come for physical address, so we need to map.
2307 * For every physical address there are raid_disks/copies virtual addresses,
2308 * which is always are least one, but is not necessarly an integer.
2309 * This means that a physical address can span multiple chunks, so we may
2310 * have to submit multiple io requests for a single sync request.
2311 */
2312/*
2313 * We check if all blocks are in-sync and only write to blocks that
2314 * aren't in sync
2315 */
9f2c9d12 2316static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2317{
e879a879 2318 struct r10conf *conf = mddev->private;
1da177e4
LT
2319 int i, first;
2320 struct bio *tbio, *fbio;
f4380a91 2321 int vcnt;
cdb76be3 2322 struct page **tpages, **fpages;
1da177e4
LT
2323
2324 atomic_set(&r10_bio->remaining, 1);
2325
2326 /* find the first device with a block */
2327 for (i=0; i<conf->copies; i++)
4e4cbee9 2328 if (!r10_bio->devs[i].bio->bi_status)
1da177e4
LT
2329 break;
2330
2331 if (i == conf->copies)
2332 goto done;
2333
2334 first = i;
2335 fbio = r10_bio->devs[i].bio;
cc578588
AP
2336 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2337 fbio->bi_iter.bi_idx = 0;
cdb76be3 2338 fpages = get_resync_pages(fbio)->pages;
1da177e4 2339
f4380a91 2340 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2341 /* now find blocks with errors */
0eb3ff12
N
2342 for (i=0 ; i < conf->copies ; i++) {
2343 int j, d;
8d3ca83d 2344 struct md_rdev *rdev;
f0250618 2345 struct resync_pages *rp;
1da177e4 2346
1da177e4 2347 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2348
2349 if (tbio->bi_end_io != end_sync_read)
2350 continue;
2351 if (i == first)
1da177e4 2352 continue;
cdb76be3
ML
2353
2354 tpages = get_resync_pages(tbio)->pages;
8d3ca83d
N
2355 d = r10_bio->devs[i].devnum;
2356 rdev = conf->mirrors[d].rdev;
4e4cbee9 2357 if (!r10_bio->devs[i].bio->bi_status) {
0eb3ff12
N
2358 /* We know that the bi_io_vec layout is the same for
2359 * both 'first' and 'i', so we just compare them.
2360 * All vec entries are PAGE_SIZE;
2361 */
7bb23c49
N
2362 int sectors = r10_bio->sectors;
2363 for (j = 0; j < vcnt; j++) {
2364 int len = PAGE_SIZE;
2365 if (sectors < (len / 512))
2366 len = sectors * 512;
cdb76be3
ML
2367 if (memcmp(page_address(fpages[j]),
2368 page_address(tpages[j]),
7bb23c49 2369 len))
0eb3ff12 2370 break;
7bb23c49
N
2371 sectors -= len/512;
2372 }
0eb3ff12
N
2373 if (j == vcnt)
2374 continue;
7f7583d4 2375 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2376 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2377 /* Don't fix anything. */
2378 continue;
8d3ca83d
N
2379 } else if (test_bit(FailFast, &rdev->flags)) {
2380 /* Just give up on this device */
2381 md_error(rdev->mddev, rdev);
2382 continue;
0eb3ff12 2383 }
f84ee364
N
2384 /* Ok, we need to write this bio, either to correct an
2385 * inconsistency or to correct an unreadable block.
1da177e4
LT
2386 * First we need to fixup bv_offset, bv_len and
2387 * bi_vecs, as the read request might have corrupted these
2388 */
f0250618 2389 rp = get_resync_pages(tbio);
8be185f2
KO
2390 bio_reset(tbio);
2391
fb0eb5df
ML
2392 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2393
f0250618
ML
2394 rp->raid_bio = r10_bio;
2395 tbio->bi_private = rp;
4f024f37 2396 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4 2397 tbio->bi_end_io = end_sync_write;
796a5cf0 2398 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1da177e4 2399
c31df25f
KO
2400 bio_copy_data(tbio, fbio);
2401
1da177e4
LT
2402 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2403 atomic_inc(&r10_bio->remaining);
aa8b57aa 2404 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2405
1919cbb2
N
2406 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2407 tbio->bi_opf |= MD_FAILFAST;
4f024f37 2408 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
74d46992 2409 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
ed00aabd 2410 submit_bio_noacct(tbio);
1da177e4
LT
2411 }
2412
9ad1aefc
N
2413 /* Now write out to any replacement devices
2414 * that are active
2415 */
2416 for (i = 0; i < conf->copies; i++) {
c31df25f 2417 int d;
9ad1aefc
N
2418
2419 tbio = r10_bio->devs[i].repl_bio;
2420 if (!tbio || !tbio->bi_end_io)
2421 continue;
2422 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2423 && r10_bio->devs[i].bio != fbio)
c31df25f 2424 bio_copy_data(tbio, fbio);
9ad1aefc
N
2425 d = r10_bio->devs[i].devnum;
2426 atomic_inc(&r10_bio->remaining);
2427 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2428 bio_sectors(tbio));
ed00aabd 2429 submit_bio_noacct(tbio);
9ad1aefc
N
2430 }
2431
1da177e4
LT
2432done:
2433 if (atomic_dec_and_test(&r10_bio->remaining)) {
2434 md_done_sync(mddev, r10_bio->sectors, 1);
2435 put_buf(r10_bio);
2436 }
2437}
2438
2439/*
2440 * Now for the recovery code.
2441 * Recovery happens across physical sectors.
2442 * We recover all non-is_sync drives by finding the virtual address of
2443 * each, and then choose a working drive that also has that virt address.
2444 * There is a separate r10_bio for each non-in_sync drive.
2445 * Only the first two slots are in use. The first for reading,
2446 * The second for writing.
2447 *
2448 */
9f2c9d12 2449static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2450{
2451 /* We got a read error during recovery.
2452 * We repeat the read in smaller page-sized sections.
2453 * If a read succeeds, write it to the new device or record
2454 * a bad block if we cannot.
2455 * If a read fails, record a bad block on both old and
2456 * new devices.
2457 */
fd01b88c 2458 struct mddev *mddev = r10_bio->mddev;
e879a879 2459 struct r10conf *conf = mddev->private;
5e570289
N
2460 struct bio *bio = r10_bio->devs[0].bio;
2461 sector_t sect = 0;
2462 int sectors = r10_bio->sectors;
2463 int idx = 0;
2464 int dr = r10_bio->devs[0].devnum;
2465 int dw = r10_bio->devs[1].devnum;
cdb76be3 2466 struct page **pages = get_resync_pages(bio)->pages;
5e570289
N
2467
2468 while (sectors) {
2469 int s = sectors;
3cb03002 2470 struct md_rdev *rdev;
5e570289
N
2471 sector_t addr;
2472 int ok;
2473
2474 if (s > (PAGE_SIZE>>9))
2475 s = PAGE_SIZE >> 9;
2476
2477 rdev = conf->mirrors[dr].rdev;
2478 addr = r10_bio->devs[0].addr + sect,
2479 ok = sync_page_io(rdev,
2480 addr,
2481 s << 9,
cdb76be3 2482 pages[idx],
796a5cf0 2483 REQ_OP_READ, 0, false);
5e570289
N
2484 if (ok) {
2485 rdev = conf->mirrors[dw].rdev;
2486 addr = r10_bio->devs[1].addr + sect;
2487 ok = sync_page_io(rdev,
2488 addr,
2489 s << 9,
cdb76be3 2490 pages[idx],
796a5cf0 2491 REQ_OP_WRITE, 0, false);
b7044d41 2492 if (!ok) {
5e570289 2493 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2494 if (!test_and_set_bit(WantReplacement,
2495 &rdev->flags))
2496 set_bit(MD_RECOVERY_NEEDED,
2497 &rdev->mddev->recovery);
2498 }
5e570289
N
2499 }
2500 if (!ok) {
2501 /* We don't worry if we cannot set a bad block -
2502 * it really is bad so there is no loss in not
2503 * recording it yet
2504 */
2505 rdev_set_badblocks(rdev, addr, s, 0);
2506
2507 if (rdev != conf->mirrors[dw].rdev) {
2508 /* need bad block on destination too */
3cb03002 2509 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2510 addr = r10_bio->devs[1].addr + sect;
2511 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2512 if (!ok) {
2513 /* just abort the recovery */
08464e09
N
2514 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2515 mdname(mddev));
5e570289
N
2516
2517 conf->mirrors[dw].recovery_disabled
2518 = mddev->recovery_disabled;
2519 set_bit(MD_RECOVERY_INTR,
2520 &mddev->recovery);
2521 break;
2522 }
2523 }
2524 }
2525
2526 sectors -= s;
2527 sect += s;
2528 idx++;
2529 }
2530}
1da177e4 2531
9f2c9d12 2532static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2533{
e879a879 2534 struct r10conf *conf = mddev->private;
c65060ad 2535 int d;
24afd80d 2536 struct bio *wbio, *wbio2;
1da177e4 2537
5e570289
N
2538 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2539 fix_recovery_read_error(r10_bio);
2540 end_sync_request(r10_bio);
2541 return;
2542 }
2543
c65060ad
NK
2544 /*
2545 * share the pages with the first bio
1da177e4
LT
2546 * and submit the write request
2547 */
1da177e4 2548 d = r10_bio->devs[1].devnum;
24afd80d
N
2549 wbio = r10_bio->devs[1].bio;
2550 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0 2551 /* Need to test wbio2->bi_end_io before we call
ed00aabd 2552 * submit_bio_noacct as if the former is NULL,
0eb25bb0
N
2553 * the latter is free to free wbio2.
2554 */
2555 if (wbio2 && !wbio2->bi_end_io)
2556 wbio2 = NULL;
24afd80d
N
2557 if (wbio->bi_end_io) {
2558 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2559 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
ed00aabd 2560 submit_bio_noacct(wbio);
24afd80d 2561 }
0eb25bb0 2562 if (wbio2) {
24afd80d
N
2563 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2564 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2565 bio_sectors(wbio2));
ed00aabd 2566 submit_bio_noacct(wbio2);
24afd80d 2567 }
1da177e4
LT
2568}
2569
1e50915f
RB
2570/*
2571 * Used by fix_read_error() to decay the per rdev read_errors.
2572 * We halve the read error count for every hour that has elapsed
2573 * since the last recorded read error.
2574 *
2575 */
fd01b88c 2576static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2577{
0e3ef49e 2578 long cur_time_mon;
1e50915f
RB
2579 unsigned long hours_since_last;
2580 unsigned int read_errors = atomic_read(&rdev->read_errors);
2581
0e3ef49e 2582 cur_time_mon = ktime_get_seconds();
1e50915f 2583
0e3ef49e 2584 if (rdev->last_read_error == 0) {
1e50915f
RB
2585 /* first time we've seen a read error */
2586 rdev->last_read_error = cur_time_mon;
2587 return;
2588 }
2589
0e3ef49e
AB
2590 hours_since_last = (long)(cur_time_mon -
2591 rdev->last_read_error) / 3600;
1e50915f
RB
2592
2593 rdev->last_read_error = cur_time_mon;
2594
2595 /*
2596 * if hours_since_last is > the number of bits in read_errors
2597 * just set read errors to 0. We do this to avoid
2598 * overflowing the shift of read_errors by hours_since_last.
2599 */
2600 if (hours_since_last >= 8 * sizeof(read_errors))
2601 atomic_set(&rdev->read_errors, 0);
2602 else
2603 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2604}
2605
3cb03002 2606static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2607 int sectors, struct page *page, int rw)
2608{
2609 sector_t first_bad;
2610 int bad_sectors;
2611
2612 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2613 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2614 return -1;
796a5cf0 2615 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
58c54fcc
N
2616 /* success */
2617 return 1;
b7044d41 2618 if (rw == WRITE) {
58c54fcc 2619 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2620 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2621 set_bit(MD_RECOVERY_NEEDED,
2622 &rdev->mddev->recovery);
2623 }
58c54fcc
N
2624 /* need to record an error - either for the block or the device */
2625 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2626 md_error(rdev->mddev, rdev);
2627 return 0;
2628}
2629
1da177e4
LT
2630/*
2631 * This is a kernel thread which:
2632 *
2633 * 1. Retries failed read operations on working mirrors.
2634 * 2. Updates the raid superblock when problems encounter.
6814d536 2635 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2636 */
2637
e879a879 2638static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2639{
2640 int sect = 0; /* Offset from r10_bio->sector */
2641 int sectors = r10_bio->sectors;
13db16d7 2642 struct md_rdev *rdev;
1e50915f 2643 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2644 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2645
7c4e06ff
N
2646 /* still own a reference to this rdev, so it cannot
2647 * have been cleared recently.
2648 */
2649 rdev = conf->mirrors[d].rdev;
1e50915f 2650
7c4e06ff
N
2651 if (test_bit(Faulty, &rdev->flags))
2652 /* drive has already been failed, just ignore any
2653 more fix_read_error() attempts */
2654 return;
1e50915f 2655
7c4e06ff
N
2656 check_decay_read_errors(mddev, rdev);
2657 atomic_inc(&rdev->read_errors);
2658 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2659 char b[BDEVNAME_SIZE];
2660 bdevname(rdev->bdev, b);
1e50915f 2661
08464e09
N
2662 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2663 mdname(mddev), b,
2664 atomic_read(&rdev->read_errors), max_read_errors);
2665 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2666 mdname(mddev), b);
d683c8e0 2667 md_error(mddev, rdev);
fae8cc5e 2668 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2669 return;
1e50915f 2670 }
1e50915f 2671
6814d536
N
2672 while(sectors) {
2673 int s = sectors;
2674 int sl = r10_bio->read_slot;
2675 int success = 0;
2676 int start;
2677
2678 if (s > (PAGE_SIZE>>9))
2679 s = PAGE_SIZE >> 9;
2680
2681 rcu_read_lock();
2682 do {
8dbed5ce
N
2683 sector_t first_bad;
2684 int bad_sectors;
2685
0544a21d 2686 d = r10_bio->devs[sl].devnum;
6814d536
N
2687 rdev = rcu_dereference(conf->mirrors[d].rdev);
2688 if (rdev &&
8dbed5ce 2689 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2690 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2691 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2692 &first_bad, &bad_sectors) == 0) {
6814d536
N
2693 atomic_inc(&rdev->nr_pending);
2694 rcu_read_unlock();
2b193363 2695 success = sync_page_io(rdev,
6814d536 2696 r10_bio->devs[sl].addr +
ccebd4c4 2697 sect,
6814d536 2698 s<<9,
796a5cf0
MC
2699 conf->tmppage,
2700 REQ_OP_READ, 0, false);
6814d536
N
2701 rdev_dec_pending(rdev, mddev);
2702 rcu_read_lock();
2703 if (success)
2704 break;
2705 }
2706 sl++;
2707 if (sl == conf->copies)
2708 sl = 0;
2709 } while (!success && sl != r10_bio->read_slot);
2710 rcu_read_unlock();
2711
2712 if (!success) {
58c54fcc
N
2713 /* Cannot read from anywhere, just mark the block
2714 * as bad on the first device to discourage future
2715 * reads.
2716 */
6814d536 2717 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2718 rdev = conf->mirrors[dn].rdev;
2719
2720 if (!rdev_set_badblocks(
2721 rdev,
2722 r10_bio->devs[r10_bio->read_slot].addr
2723 + sect,
fae8cc5e 2724 s, 0)) {
58c54fcc 2725 md_error(mddev, rdev);
fae8cc5e
N
2726 r10_bio->devs[r10_bio->read_slot].bio
2727 = IO_BLOCKED;
2728 }
6814d536
N
2729 break;
2730 }
2731
2732 start = sl;
2733 /* write it back and re-read */
2734 rcu_read_lock();
2735 while (sl != r10_bio->read_slot) {
67b8dc4b 2736 char b[BDEVNAME_SIZE];
0544a21d 2737
6814d536
N
2738 if (sl==0)
2739 sl = conf->copies;
2740 sl--;
2741 d = r10_bio->devs[sl].devnum;
2742 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2743 if (!rdev ||
f5b67ae8 2744 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2745 !test_bit(In_sync, &rdev->flags))
2746 continue;
2747
2748 atomic_inc(&rdev->nr_pending);
2749 rcu_read_unlock();
58c54fcc
N
2750 if (r10_sync_page_io(rdev,
2751 r10_bio->devs[sl].addr +
2752 sect,
055d3747 2753 s, conf->tmppage, WRITE)
1294b9c9
N
2754 == 0) {
2755 /* Well, this device is dead */
08464e09
N
2756 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2757 mdname(mddev), s,
2758 (unsigned long long)(
2759 sect +
2760 choose_data_offset(r10_bio,
2761 rdev)),
2762 bdevname(rdev->bdev, b));
2763 pr_notice("md/raid10:%s: %s: failing drive\n",
2764 mdname(mddev),
2765 bdevname(rdev->bdev, b));
6814d536 2766 }
1294b9c9
N
2767 rdev_dec_pending(rdev, mddev);
2768 rcu_read_lock();
6814d536
N
2769 }
2770 sl = start;
2771 while (sl != r10_bio->read_slot) {
1294b9c9 2772 char b[BDEVNAME_SIZE];
0544a21d 2773
6814d536
N
2774 if (sl==0)
2775 sl = conf->copies;
2776 sl--;
2777 d = r10_bio->devs[sl].devnum;
2778 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2779 if (!rdev ||
f5b67ae8 2780 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2781 !test_bit(In_sync, &rdev->flags))
2782 continue;
6814d536 2783
1294b9c9
N
2784 atomic_inc(&rdev->nr_pending);
2785 rcu_read_unlock();
58c54fcc
N
2786 switch (r10_sync_page_io(rdev,
2787 r10_bio->devs[sl].addr +
2788 sect,
055d3747 2789 s, conf->tmppage,
58c54fcc
N
2790 READ)) {
2791 case 0:
1294b9c9 2792 /* Well, this device is dead */
08464e09 2793 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
1294b9c9
N
2794 mdname(mddev), s,
2795 (unsigned long long)(
f8c9e74f
N
2796 sect +
2797 choose_data_offset(r10_bio, rdev)),
1294b9c9 2798 bdevname(rdev->bdev, b));
08464e09 2799 pr_notice("md/raid10:%s: %s: failing drive\n",
1294b9c9
N
2800 mdname(mddev),
2801 bdevname(rdev->bdev, b));
58c54fcc
N
2802 break;
2803 case 1:
08464e09 2804 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
1294b9c9
N
2805 mdname(mddev), s,
2806 (unsigned long long)(
f8c9e74f
N
2807 sect +
2808 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2809 bdevname(rdev->bdev, b));
2810 atomic_add(s, &rdev->corrected_errors);
6814d536 2811 }
1294b9c9
N
2812
2813 rdev_dec_pending(rdev, mddev);
2814 rcu_read_lock();
6814d536
N
2815 }
2816 rcu_read_unlock();
2817
2818 sectors -= s;
2819 sect += s;
2820 }
2821}
2822
9f2c9d12 2823static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2824{
2825 struct bio *bio = r10_bio->master_bio;
fd01b88c 2826 struct mddev *mddev = r10_bio->mddev;
e879a879 2827 struct r10conf *conf = mddev->private;
3cb03002 2828 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2829 /* bio has the data to be written to slot 'i' where
2830 * we just recently had a write error.
2831 * We repeatedly clone the bio and trim down to one block,
2832 * then try the write. Where the write fails we record
2833 * a bad block.
2834 * It is conceivable that the bio doesn't exactly align with
2835 * blocks. We must handle this.
2836 *
2837 * We currently own a reference to the rdev.
2838 */
2839
2840 int block_sectors;
2841 sector_t sector;
2842 int sectors;
2843 int sect_to_write = r10_bio->sectors;
2844 int ok = 1;
2845
2846 if (rdev->badblocks.shift < 0)
2847 return 0;
2848
f04ebb0b
N
2849 block_sectors = roundup(1 << rdev->badblocks.shift,
2850 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2851 sector = r10_bio->sector;
2852 sectors = ((r10_bio->sector + block_sectors)
2853 & ~(sector_t)(block_sectors - 1))
2854 - sector;
2855
2856 while (sect_to_write) {
2857 struct bio *wbio;
27028626 2858 sector_t wsector;
bd870a16
N
2859 if (sectors > sect_to_write)
2860 sectors = sect_to_write;
2861 /* Write at 'sector' for 'sectors' */
afeee514 2862 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
4f024f37 2863 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2864 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2865 wbio->bi_iter.bi_sector = wsector +
2866 choose_data_offset(r10_bio, rdev);
74d46992 2867 bio_set_dev(wbio, rdev->bdev);
796a5cf0 2868 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2869
2870 if (submit_bio_wait(wbio) < 0)
bd870a16 2871 /* Failure! */
27028626 2872 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2873 sectors, 0)
2874 && ok;
2875
2876 bio_put(wbio);
2877 sect_to_write -= sectors;
2878 sector += sectors;
2879 sectors = block_sectors;
2880 }
2881 return ok;
2882}
2883
9f2c9d12 2884static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2885{
2886 int slot = r10_bio->read_slot;
560f8e55 2887 struct bio *bio;
e879a879 2888 struct r10conf *conf = mddev->private;
abbf098e 2889 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2890
2891 /* we got a read error. Maybe the drive is bad. Maybe just
2892 * the block and we can fix it.
2893 * We freeze all other IO, and try reading the block from
2894 * other devices. When we find one, we re-write
2895 * and check it that fixes the read error.
2896 * This is all done synchronously while the array is
2897 * frozen.
2898 */
fae8cc5e 2899 bio = r10_bio->devs[slot].bio;
fae8cc5e
N
2900 bio_put(bio);
2901 r10_bio->devs[slot].bio = NULL;
2902
8d3ca83d
N
2903 if (mddev->ro)
2904 r10_bio->devs[slot].bio = IO_BLOCKED;
2905 else if (!test_bit(FailFast, &rdev->flags)) {
e2d59925 2906 freeze_array(conf, 1);
560f8e55
N
2907 fix_read_error(conf, mddev, r10_bio);
2908 unfreeze_array(conf);
fae8cc5e 2909 } else
8d3ca83d 2910 md_error(mddev, rdev);
fae8cc5e 2911
abbf098e 2912 rdev_dec_pending(rdev, mddev);
545250f2
N
2913 allow_barrier(conf);
2914 r10_bio->state = 0;
2915 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
560f8e55
N
2916}
2917
e879a879 2918static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2919{
2920 /* Some sort of write request has finished and it
2921 * succeeded in writing where we thought there was a
2922 * bad block. So forget the bad block.
1a0b7cd8
N
2923 * Or possibly if failed and we need to record
2924 * a bad block.
749c55e9
N
2925 */
2926 int m;
3cb03002 2927 struct md_rdev *rdev;
749c55e9
N
2928
2929 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2930 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2931 for (m = 0; m < conf->copies; m++) {
2932 int dev = r10_bio->devs[m].devnum;
2933 rdev = conf->mirrors[dev].rdev;
01a69cab
YY
2934 if (r10_bio->devs[m].bio == NULL ||
2935 r10_bio->devs[m].bio->bi_end_io == NULL)
1a0b7cd8 2936 continue;
4e4cbee9 2937 if (!r10_bio->devs[m].bio->bi_status) {
749c55e9
N
2938 rdev_clear_badblocks(
2939 rdev,
2940 r10_bio->devs[m].addr,
c6563a8c 2941 r10_bio->sectors, 0);
1a0b7cd8
N
2942 } else {
2943 if (!rdev_set_badblocks(
2944 rdev,
2945 r10_bio->devs[m].addr,
2946 r10_bio->sectors, 0))
2947 md_error(conf->mddev, rdev);
749c55e9 2948 }
9ad1aefc 2949 rdev = conf->mirrors[dev].replacement;
01a69cab
YY
2950 if (r10_bio->devs[m].repl_bio == NULL ||
2951 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
9ad1aefc 2952 continue;
4246a0b6 2953
4e4cbee9 2954 if (!r10_bio->devs[m].repl_bio->bi_status) {
9ad1aefc
N
2955 rdev_clear_badblocks(
2956 rdev,
2957 r10_bio->devs[m].addr,
c6563a8c 2958 r10_bio->sectors, 0);
9ad1aefc
N
2959 } else {
2960 if (!rdev_set_badblocks(
2961 rdev,
2962 r10_bio->devs[m].addr,
2963 r10_bio->sectors, 0))
2964 md_error(conf->mddev, rdev);
2965 }
1a0b7cd8 2966 }
749c55e9
N
2967 put_buf(r10_bio);
2968 } else {
95af587e 2969 bool fail = false;
bd870a16
N
2970 for (m = 0; m < conf->copies; m++) {
2971 int dev = r10_bio->devs[m].devnum;
2972 struct bio *bio = r10_bio->devs[m].bio;
2973 rdev = conf->mirrors[dev].rdev;
2974 if (bio == IO_MADE_GOOD) {
749c55e9
N
2975 rdev_clear_badblocks(
2976 rdev,
2977 r10_bio->devs[m].addr,
c6563a8c 2978 r10_bio->sectors, 0);
749c55e9 2979 rdev_dec_pending(rdev, conf->mddev);
4e4cbee9 2980 } else if (bio != NULL && bio->bi_status) {
95af587e 2981 fail = true;
bd870a16
N
2982 if (!narrow_write_error(r10_bio, m)) {
2983 md_error(conf->mddev, rdev);
2984 set_bit(R10BIO_Degraded,
2985 &r10_bio->state);
2986 }
2987 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2988 }
475b0321
N
2989 bio = r10_bio->devs[m].repl_bio;
2990 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2991 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2992 rdev_clear_badblocks(
2993 rdev,
2994 r10_bio->devs[m].addr,
c6563a8c 2995 r10_bio->sectors, 0);
475b0321
N
2996 rdev_dec_pending(rdev, conf->mddev);
2997 }
bd870a16 2998 }
95af587e
N
2999 if (fail) {
3000 spin_lock_irq(&conf->device_lock);
3001 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 3002 conf->nr_queued++;
95af587e 3003 spin_unlock_irq(&conf->device_lock);
cf25ae78
GJ
3004 /*
3005 * In case freeze_array() is waiting for condition
3006 * nr_pending == nr_queued + extra to be true.
3007 */
3008 wake_up(&conf->wait_barrier);
95af587e 3009 md_wakeup_thread(conf->mddev->thread);
c340702c
N
3010 } else {
3011 if (test_bit(R10BIO_WriteError,
3012 &r10_bio->state))
3013 close_write(r10_bio);
95af587e 3014 raid_end_bio_io(r10_bio);
c340702c 3015 }
749c55e9
N
3016 }
3017}
3018
4ed8731d 3019static void raid10d(struct md_thread *thread)
1da177e4 3020{
4ed8731d 3021 struct mddev *mddev = thread->mddev;
9f2c9d12 3022 struct r10bio *r10_bio;
1da177e4 3023 unsigned long flags;
e879a879 3024 struct r10conf *conf = mddev->private;
1da177e4 3025 struct list_head *head = &conf->retry_list;
e1dfa0a2 3026 struct blk_plug plug;
1da177e4
LT
3027
3028 md_check_recovery(mddev);
1da177e4 3029
95af587e 3030 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 3031 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
95af587e
N
3032 LIST_HEAD(tmp);
3033 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 3034 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
23ddba80
SL
3035 while (!list_empty(&conf->bio_end_io_list)) {
3036 list_move(conf->bio_end_io_list.prev, &tmp);
3037 conf->nr_queued--;
3038 }
95af587e
N
3039 }
3040 spin_unlock_irqrestore(&conf->device_lock, flags);
3041 while (!list_empty(&tmp)) {
a452744b
MP
3042 r10_bio = list_first_entry(&tmp, struct r10bio,
3043 retry_list);
95af587e 3044 list_del(&r10_bio->retry_list);
c340702c
N
3045 if (mddev->degraded)
3046 set_bit(R10BIO_Degraded, &r10_bio->state);
3047
3048 if (test_bit(R10BIO_WriteError,
3049 &r10_bio->state))
3050 close_write(r10_bio);
95af587e
N
3051 raid_end_bio_io(r10_bio);
3052 }
3053 }
3054
e1dfa0a2 3055 blk_start_plug(&plug);
1da177e4 3056 for (;;) {
6cce3b23 3057
0021b7bc 3058 flush_pending_writes(conf);
6cce3b23 3059
a35e63ef
N
3060 spin_lock_irqsave(&conf->device_lock, flags);
3061 if (list_empty(head)) {
3062 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3063 break;
a35e63ef 3064 }
9f2c9d12 3065 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 3066 list_del(head->prev);
4443ae10 3067 conf->nr_queued--;
1da177e4
LT
3068 spin_unlock_irqrestore(&conf->device_lock, flags);
3069
3070 mddev = r10_bio->mddev;
070ec55d 3071 conf = mddev->private;
bd870a16
N
3072 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3073 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 3074 handle_write_completed(conf, r10_bio);
3ea7daa5
N
3075 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3076 reshape_request_write(mddev, r10_bio);
749c55e9 3077 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 3078 sync_request_write(mddev, r10_bio);
7eaceacc 3079 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 3080 recovery_request_write(mddev, r10_bio);
856e08e2 3081 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 3082 handle_read_error(mddev, r10_bio);
fc9977dd
N
3083 else
3084 WARN_ON_ONCE(1);
560f8e55 3085
1d9d5241 3086 cond_resched();
2953079c 3087 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 3088 md_check_recovery(mddev);
1da177e4 3089 }
e1dfa0a2 3090 blk_finish_plug(&plug);
1da177e4
LT
3091}
3092
e879a879 3093static int init_resync(struct r10conf *conf)
1da177e4 3094{
afeee514 3095 int ret, buffs, i;
1da177e4
LT
3096
3097 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514 3098 BUG_ON(mempool_initialized(&conf->r10buf_pool));
69335ef3 3099 conf->have_replacement = 0;
5cf00fcd 3100 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
3101 if (conf->mirrors[i].replacement)
3102 conf->have_replacement = 1;
afeee514
KO
3103 ret = mempool_init(&conf->r10buf_pool, buffs,
3104 r10buf_pool_alloc, r10buf_pool_free, conf);
3105 if (ret)
3106 return ret;
1da177e4
LT
3107 conf->next_resync = 0;
3108 return 0;
3109}
3110
208410b5
SL
3111static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3112{
afeee514 3113 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
208410b5
SL
3114 struct rsync_pages *rp;
3115 struct bio *bio;
3116 int nalloc;
3117 int i;
3118
3119 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3120 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3121 nalloc = conf->copies; /* resync */
3122 else
3123 nalloc = 2; /* recovery */
3124
3125 for (i = 0; i < nalloc; i++) {
3126 bio = r10bio->devs[i].bio;
3127 rp = bio->bi_private;
3128 bio_reset(bio);
3129 bio->bi_private = rp;
3130 bio = r10bio->devs[i].repl_bio;
3131 if (bio) {
3132 rp = bio->bi_private;
3133 bio_reset(bio);
3134 bio->bi_private = rp;
3135 }
3136 }
3137 return r10bio;
3138}
3139
8db87912
GJ
3140/*
3141 * Set cluster_sync_high since we need other nodes to add the
3142 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3143 */
3144static void raid10_set_cluster_sync_high(struct r10conf *conf)
3145{
3146 sector_t window_size;
3147 int extra_chunk, chunks;
3148
3149 /*
3150 * First, here we define "stripe" as a unit which across
3151 * all member devices one time, so we get chunks by use
3152 * raid_disks / near_copies. Otherwise, if near_copies is
3153 * close to raid_disks, then resync window could increases
3154 * linearly with the increase of raid_disks, which means
3155 * we will suspend a really large IO window while it is not
3156 * necessary. If raid_disks is not divisible by near_copies,
3157 * an extra chunk is needed to ensure the whole "stripe" is
3158 * covered.
3159 */
3160
3161 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3162 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3163 extra_chunk = 0;
3164 else
3165 extra_chunk = 1;
3166 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3167
3168 /*
3169 * At least use a 32M window to align with raid1's resync window
3170 */
3171 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3172 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3173
3174 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3175}
3176
1da177e4
LT
3177/*
3178 * perform a "sync" on one "block"
3179 *
3180 * We need to make sure that no normal I/O request - particularly write
3181 * requests - conflict with active sync requests.
3182 *
3183 * This is achieved by tracking pending requests and a 'barrier' concept
3184 * that can be installed to exclude normal IO requests.
3185 *
3186 * Resync and recovery are handled very differently.
3187 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3188 *
3189 * For resync, we iterate over virtual addresses, read all copies,
3190 * and update if there are differences. If only one copy is live,
3191 * skip it.
3192 * For recovery, we iterate over physical addresses, read a good
3193 * value for each non-in_sync drive, and over-write.
3194 *
3195 * So, for recovery we may have several outstanding complex requests for a
3196 * given address, one for each out-of-sync device. We model this by allocating
3197 * a number of r10_bio structures, one for each out-of-sync device.
3198 * As we setup these structures, we collect all bio's together into a list
3199 * which we then process collectively to add pages, and then process again
ed00aabd 3200 * to pass to submit_bio_noacct.
1da177e4
LT
3201 *
3202 * The r10_bio structures are linked using a borrowed master_bio pointer.
3203 * This link is counted in ->remaining. When the r10_bio that points to NULL
3204 * has its remaining count decremented to 0, the whole complex operation
3205 * is complete.
3206 *
3207 */
3208
849674e4 3209static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 3210 int *skipped)
1da177e4 3211{
e879a879 3212 struct r10conf *conf = mddev->private;
9f2c9d12 3213 struct r10bio *r10_bio;
1da177e4
LT
3214 struct bio *biolist = NULL, *bio;
3215 sector_t max_sector, nr_sectors;
1da177e4 3216 int i;
6cce3b23 3217 int max_sync;
57dab0bd 3218 sector_t sync_blocks;
1da177e4
LT
3219 sector_t sectors_skipped = 0;
3220 int chunks_skipped = 0;
5cf00fcd 3221 sector_t chunk_mask = conf->geo.chunk_mask;
022e510f 3222 int page_idx = 0;
1da177e4 3223
afeee514 3224 if (!mempool_initialized(&conf->r10buf_pool))
1da177e4 3225 if (init_resync(conf))
57afd89f 3226 return 0;
1da177e4 3227
7e83ccbe
MW
3228 /*
3229 * Allow skipping a full rebuild for incremental assembly
3230 * of a clean array, like RAID1 does.
3231 */
3232 if (mddev->bitmap == NULL &&
3233 mddev->recovery_cp == MaxSector &&
13765120
N
3234 mddev->reshape_position == MaxSector &&
3235 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 3236 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 3237 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
3238 conf->fullsync == 0) {
3239 *skipped = 1;
13765120 3240 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
3241 }
3242
1da177e4 3243 skipped:
58c0fed4 3244 max_sector = mddev->dev_sectors;
3ea7daa5
N
3245 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3246 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
3247 max_sector = mddev->resync_max_sectors;
3248 if (sector_nr >= max_sector) {
8db87912
GJ
3249 conf->cluster_sync_low = 0;
3250 conf->cluster_sync_high = 0;
3251
6cce3b23
N
3252 /* If we aborted, we need to abort the
3253 * sync on the 'current' bitmap chucks (there can
3254 * be several when recovering multiple devices).
3255 * as we may have started syncing it but not finished.
3256 * We can find the current address in
3257 * mddev->curr_resync, but for recovery,
3258 * we need to convert that to several
3259 * virtual addresses.
3260 */
3ea7daa5
N
3261 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3262 end_reshape(conf);
b3968552 3263 close_sync(conf);
3ea7daa5
N
3264 return 0;
3265 }
3266
6cce3b23
N
3267 if (mddev->curr_resync < max_sector) { /* aborted */
3268 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
e64e4018
AS
3269 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3270 &sync_blocks, 1);
5cf00fcd 3271 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
3272 sector_t sect =
3273 raid10_find_virt(conf, mddev->curr_resync, i);
e64e4018
AS
3274 md_bitmap_end_sync(mddev->bitmap, sect,
3275 &sync_blocks, 1);
6cce3b23 3276 }
9ad1aefc
N
3277 } else {
3278 /* completed sync */
3279 if ((!mddev->bitmap || conf->fullsync)
3280 && conf->have_replacement
3281 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3282 /* Completed a full sync so the replacements
3283 * are now fully recovered.
3284 */
f90145f3
N
3285 rcu_read_lock();
3286 for (i = 0; i < conf->geo.raid_disks; i++) {
3287 struct md_rdev *rdev =
3288 rcu_dereference(conf->mirrors[i].replacement);
3289 if (rdev)
3290 rdev->recovery_offset = MaxSector;
3291 }
3292 rcu_read_unlock();
9ad1aefc 3293 }
6cce3b23 3294 conf->fullsync = 0;
9ad1aefc 3295 }
e64e4018 3296 md_bitmap_close_sync(mddev->bitmap);
1da177e4 3297 close_sync(conf);
57afd89f 3298 *skipped = 1;
1da177e4
LT
3299 return sectors_skipped;
3300 }
3ea7daa5
N
3301
3302 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3303 return reshape_request(mddev, sector_nr, skipped);
3304
5cf00fcd 3305 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3306 /* if there has been nothing to do on any drive,
3307 * then there is nothing to do at all..
3308 */
57afd89f
N
3309 *skipped = 1;
3310 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3311 }
3312
c6207277
N
3313 if (max_sector > mddev->resync_max)
3314 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3315
1da177e4
LT
3316 /* make sure whole request will fit in a chunk - if chunks
3317 * are meaningful
3318 */
5cf00fcd
N
3319 if (conf->geo.near_copies < conf->geo.raid_disks &&
3320 max_sector > (sector_nr | chunk_mask))
3321 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 3322
7ac50447
TM
3323 /*
3324 * If there is non-resync activity waiting for a turn, then let it
3325 * though before starting on this new sync request.
3326 */
3327 if (conf->nr_waiting)
3328 schedule_timeout_uninterruptible(1);
3329
1da177e4
LT
3330 /* Again, very different code for resync and recovery.
3331 * Both must result in an r10bio with a list of bios that
309dca30 3332 * have bi_end_io, bi_sector, bi_bdev set,
1da177e4
LT
3333 * and bi_private set to the r10bio.
3334 * For recovery, we may actually create several r10bios
3335 * with 2 bios in each, that correspond to the bios in the main one.
3336 * In this case, the subordinate r10bios link back through a
3337 * borrowed master_bio pointer, and the counter in the master
3338 * includes a ref from each subordinate.
3339 */
3340 /* First, we decide what to do and set ->bi_end_io
3341 * To end_sync_read if we want to read, and
3342 * end_sync_write if we will want to write.
3343 */
3344
6cce3b23 3345 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3346 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3347 /* recovery... the complicated one */
e875ecea 3348 int j;
1da177e4
LT
3349 r10_bio = NULL;
3350
5cf00fcd 3351 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3352 int still_degraded;
9f2c9d12 3353 struct r10bio *rb2;
ab9d47e9
N
3354 sector_t sect;
3355 int must_sync;
e875ecea 3356 int any_working;
ee37d731
AW
3357 int need_recover = 0;
3358 int need_replace = 0;
dc280d98 3359 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 3360 struct md_rdev *mrdev, *mreplace;
24afd80d 3361
f90145f3
N
3362 rcu_read_lock();
3363 mrdev = rcu_dereference(mirror->rdev);
3364 mreplace = rcu_dereference(mirror->replacement);
3365
ee37d731
AW
3366 if (mrdev != NULL &&
3367 !test_bit(Faulty, &mrdev->flags) &&
3368 !test_bit(In_sync, &mrdev->flags))
3369 need_recover = 1;
3370 if (mreplace != NULL &&
3371 !test_bit(Faulty, &mreplace->flags))
3372 need_replace = 1;
3373
3374 if (!need_recover && !need_replace) {
f90145f3 3375 rcu_read_unlock();
ab9d47e9 3376 continue;
f90145f3 3377 }
1da177e4 3378
ab9d47e9
N
3379 still_degraded = 0;
3380 /* want to reconstruct this device */
3381 rb2 = r10_bio;
3382 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3383 if (sect >= mddev->resync_max_sectors) {
3384 /* last stripe is not complete - don't
3385 * try to recover this sector.
3386 */
f90145f3 3387 rcu_read_unlock();
fc448a18
N
3388 continue;
3389 }
f5b67ae8
N
3390 if (mreplace && test_bit(Faulty, &mreplace->flags))
3391 mreplace = NULL;
24afd80d
N
3392 /* Unless we are doing a full sync, or a replacement
3393 * we only need to recover the block if it is set in
3394 * the bitmap
ab9d47e9 3395 */
e64e4018
AS
3396 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3397 &sync_blocks, 1);
ab9d47e9
N
3398 if (sync_blocks < max_sync)
3399 max_sync = sync_blocks;
3400 if (!must_sync &&
f90145f3 3401 mreplace == NULL &&
ab9d47e9
N
3402 !conf->fullsync) {
3403 /* yep, skip the sync_blocks here, but don't assume
3404 * that there will never be anything to do here
3405 */
3406 chunks_skipped = -1;
f90145f3 3407 rcu_read_unlock();
ab9d47e9
N
3408 continue;
3409 }
f90145f3
N
3410 atomic_inc(&mrdev->nr_pending);
3411 if (mreplace)
3412 atomic_inc(&mreplace->nr_pending);
3413 rcu_read_unlock();
6cce3b23 3414
208410b5 3415 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3416 r10_bio->state = 0;
ab9d47e9
N
3417 raise_barrier(conf, rb2 != NULL);
3418 atomic_set(&r10_bio->remaining, 0);
18055569 3419
ab9d47e9
N
3420 r10_bio->master_bio = (struct bio*)rb2;
3421 if (rb2)
3422 atomic_inc(&rb2->remaining);
3423 r10_bio->mddev = mddev;
3424 set_bit(R10BIO_IsRecover, &r10_bio->state);
3425 r10_bio->sector = sect;
1da177e4 3426
ab9d47e9
N
3427 raid10_find_phys(conf, r10_bio);
3428
3429 /* Need to check if the array will still be
3430 * degraded
3431 */
f90145f3
N
3432 rcu_read_lock();
3433 for (j = 0; j < conf->geo.raid_disks; j++) {
3434 struct md_rdev *rdev = rcu_dereference(
3435 conf->mirrors[j].rdev);
3436 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3437 still_degraded = 1;
87fc767b 3438 break;
1da177e4 3439 }
f90145f3 3440 }
ab9d47e9 3441
e64e4018
AS
3442 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3443 &sync_blocks, still_degraded);
ab9d47e9 3444
e875ecea 3445 any_working = 0;
ab9d47e9 3446 for (j=0; j<conf->copies;j++) {
e875ecea 3447 int k;
ab9d47e9 3448 int d = r10_bio->devs[j].devnum;
5e570289 3449 sector_t from_addr, to_addr;
f90145f3
N
3450 struct md_rdev *rdev =
3451 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3452 sector_t sector, first_bad;
3453 int bad_sectors;
f90145f3
N
3454 if (!rdev ||
3455 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3456 continue;
3457 /* This is where we read from */
e875ecea 3458 any_working = 1;
40c356ce
N
3459 sector = r10_bio->devs[j].addr;
3460
3461 if (is_badblock(rdev, sector, max_sync,
3462 &first_bad, &bad_sectors)) {
3463 if (first_bad > sector)
3464 max_sync = first_bad - sector;
3465 else {
3466 bad_sectors -= (sector
3467 - first_bad);
3468 if (max_sync > bad_sectors)
3469 max_sync = bad_sectors;
3470 continue;
3471 }
3472 }
ab9d47e9
N
3473 bio = r10_bio->devs[0].bio;
3474 bio->bi_next = biolist;
3475 biolist = bio;
ab9d47e9 3476 bio->bi_end_io = end_sync_read;
796a5cf0 3477 bio_set_op_attrs(bio, REQ_OP_READ, 0);
8d3ca83d
N
3478 if (test_bit(FailFast, &rdev->flags))
3479 bio->bi_opf |= MD_FAILFAST;
5e570289 3480 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3481 bio->bi_iter.bi_sector = from_addr +
3482 rdev->data_offset;
74d46992 3483 bio_set_dev(bio, rdev->bdev);
24afd80d
N
3484 atomic_inc(&rdev->nr_pending);
3485 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3486
3487 for (k=0; k<conf->copies; k++)
3488 if (r10_bio->devs[k].devnum == i)
3489 break;
3490 BUG_ON(k == conf->copies);
5e570289 3491 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3492 r10_bio->devs[0].devnum = d;
5e570289 3493 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3494 r10_bio->devs[1].devnum = i;
5e570289 3495 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3496
ee37d731 3497 if (need_recover) {
24afd80d
N
3498 bio = r10_bio->devs[1].bio;
3499 bio->bi_next = biolist;
3500 biolist = bio;
24afd80d 3501 bio->bi_end_io = end_sync_write;
796a5cf0 3502 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3503 bio->bi_iter.bi_sector = to_addr
f90145f3 3504 + mrdev->data_offset;
74d46992 3505 bio_set_dev(bio, mrdev->bdev);
24afd80d
N
3506 atomic_inc(&r10_bio->remaining);
3507 } else
3508 r10_bio->devs[1].bio->bi_end_io = NULL;
3509
3510 /* and maybe write to replacement */
3511 bio = r10_bio->devs[1].repl_bio;
3512 if (bio)
3513 bio->bi_end_io = NULL;
ee37d731 3514 /* Note: if need_replace, then bio
24afd80d
N
3515 * cannot be NULL as r10buf_pool_alloc will
3516 * have allocated it.
24afd80d 3517 */
ee37d731 3518 if (!need_replace)
24afd80d
N
3519 break;
3520 bio->bi_next = biolist;
3521 biolist = bio;
24afd80d 3522 bio->bi_end_io = end_sync_write;
796a5cf0 3523 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3524 bio->bi_iter.bi_sector = to_addr +
f90145f3 3525 mreplace->data_offset;
74d46992 3526 bio_set_dev(bio, mreplace->bdev);
24afd80d 3527 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3528 break;
3529 }
f90145f3 3530 rcu_read_unlock();
ab9d47e9 3531 if (j == conf->copies) {
e875ecea
N
3532 /* Cannot recover, so abort the recovery or
3533 * record a bad block */
e875ecea
N
3534 if (any_working) {
3535 /* problem is that there are bad blocks
3536 * on other device(s)
3537 */
3538 int k;
3539 for (k = 0; k < conf->copies; k++)
3540 if (r10_bio->devs[k].devnum == i)
3541 break;
24afd80d 3542 if (!test_bit(In_sync,
f90145f3 3543 &mrdev->flags)
24afd80d 3544 && !rdev_set_badblocks(
f90145f3 3545 mrdev,
24afd80d
N
3546 r10_bio->devs[k].addr,
3547 max_sync, 0))
3548 any_working = 0;
f90145f3 3549 if (mreplace &&
24afd80d 3550 !rdev_set_badblocks(
f90145f3 3551 mreplace,
e875ecea
N
3552 r10_bio->devs[k].addr,
3553 max_sync, 0))
3554 any_working = 0;
3555 }
3556 if (!any_working) {
3557 if (!test_and_set_bit(MD_RECOVERY_INTR,
3558 &mddev->recovery))
08464e09 3559 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
e875ecea 3560 mdname(mddev));
24afd80d 3561 mirror->recovery_disabled
e875ecea
N
3562 = mddev->recovery_disabled;
3563 }
e8b84915
N
3564 put_buf(r10_bio);
3565 if (rb2)
3566 atomic_dec(&rb2->remaining);
3567 r10_bio = rb2;
f90145f3
N
3568 rdev_dec_pending(mrdev, mddev);
3569 if (mreplace)
3570 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3571 break;
1da177e4 3572 }
f90145f3
N
3573 rdev_dec_pending(mrdev, mddev);
3574 if (mreplace)
3575 rdev_dec_pending(mreplace, mddev);
8d3ca83d
N
3576 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3577 /* Only want this if there is elsewhere to
3578 * read from. 'j' is currently the first
3579 * readable copy.
3580 */
3581 int targets = 1;
3582 for (; j < conf->copies; j++) {
3583 int d = r10_bio->devs[j].devnum;
3584 if (conf->mirrors[d].rdev &&
3585 test_bit(In_sync,
3586 &conf->mirrors[d].rdev->flags))
3587 targets++;
3588 }
3589 if (targets == 1)
3590 r10_bio->devs[0].bio->bi_opf
3591 &= ~MD_FAILFAST;
3592 }
ab9d47e9 3593 }
1da177e4
LT
3594 if (biolist == NULL) {
3595 while (r10_bio) {
9f2c9d12
N
3596 struct r10bio *rb2 = r10_bio;
3597 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3598 rb2->master_bio = NULL;
3599 put_buf(rb2);
3600 }
3601 goto giveup;
3602 }
3603 } else {
3604 /* resync. Schedule a read for every block at this virt offset */
3605 int count = 0;
6cce3b23 3606
8db87912
GJ
3607 /*
3608 * Since curr_resync_completed could probably not update in
3609 * time, and we will set cluster_sync_low based on it.
3610 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3611 * safety reason, which ensures curr_resync_completed is
3612 * updated in bitmap_cond_end_sync.
3613 */
e64e4018
AS
3614 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3615 mddev_is_clustered(mddev) &&
3616 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
78200d45 3617
e64e4018
AS
3618 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3619 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3620 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3621 &mddev->recovery)) {
6cce3b23
N
3622 /* We can skip this block */
3623 *skipped = 1;
3624 return sync_blocks + sectors_skipped;
3625 }
3626 if (sync_blocks < max_sync)
3627 max_sync = sync_blocks;
208410b5 3628 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3629 r10_bio->state = 0;
1da177e4 3630
1da177e4
LT
3631 r10_bio->mddev = mddev;
3632 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3633 raise_barrier(conf, 0);
3634 conf->next_resync = sector_nr;
1da177e4
LT
3635
3636 r10_bio->master_bio = NULL;
3637 r10_bio->sector = sector_nr;
3638 set_bit(R10BIO_IsSync, &r10_bio->state);
3639 raid10_find_phys(conf, r10_bio);
5cf00fcd 3640 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3641
5cf00fcd 3642 for (i = 0; i < conf->copies; i++) {
1da177e4 3643 int d = r10_bio->devs[i].devnum;
40c356ce
N
3644 sector_t first_bad, sector;
3645 int bad_sectors;
f90145f3 3646 struct md_rdev *rdev;
40c356ce 3647
9ad1aefc
N
3648 if (r10_bio->devs[i].repl_bio)
3649 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3650
1da177e4 3651 bio = r10_bio->devs[i].bio;
4e4cbee9 3652 bio->bi_status = BLK_STS_IOERR;
f90145f3
N
3653 rcu_read_lock();
3654 rdev = rcu_dereference(conf->mirrors[d].rdev);
3655 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3656 rcu_read_unlock();
1da177e4 3657 continue;
f90145f3 3658 }
40c356ce 3659 sector = r10_bio->devs[i].addr;
f90145f3 3660 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3661 &first_bad, &bad_sectors)) {
3662 if (first_bad > sector)
3663 max_sync = first_bad - sector;
3664 else {
3665 bad_sectors -= (sector - first_bad);
3666 if (max_sync > bad_sectors)
91502f09 3667 max_sync = bad_sectors;
f90145f3 3668 rcu_read_unlock();
40c356ce
N
3669 continue;
3670 }
3671 }
f90145f3 3672 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3673 atomic_inc(&r10_bio->remaining);
3674 bio->bi_next = biolist;
3675 biolist = bio;
1da177e4 3676 bio->bi_end_io = end_sync_read;
796a5cf0 3677 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1cdd1257 3678 if (test_bit(FailFast, &rdev->flags))
8d3ca83d 3679 bio->bi_opf |= MD_FAILFAST;
f90145f3 3680 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3681 bio_set_dev(bio, rdev->bdev);
1da177e4 3682 count++;
9ad1aefc 3683
f90145f3
N
3684 rdev = rcu_dereference(conf->mirrors[d].replacement);
3685 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3686 rcu_read_unlock();
9ad1aefc 3687 continue;
f90145f3
N
3688 }
3689 atomic_inc(&rdev->nr_pending);
9ad1aefc
N
3690
3691 /* Need to set up for writing to the replacement */
3692 bio = r10_bio->devs[i].repl_bio;
4e4cbee9 3693 bio->bi_status = BLK_STS_IOERR;
9ad1aefc
N
3694
3695 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3696 bio->bi_next = biolist;
3697 biolist = bio;
9ad1aefc 3698 bio->bi_end_io = end_sync_write;
796a5cf0 3699 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1cdd1257 3700 if (test_bit(FailFast, &rdev->flags))
1919cbb2 3701 bio->bi_opf |= MD_FAILFAST;
f90145f3 3702 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3703 bio_set_dev(bio, rdev->bdev);
9ad1aefc 3704 count++;
1cdd1257 3705 rcu_read_unlock();
1da177e4
LT
3706 }
3707
3708 if (count < 2) {
3709 for (i=0; i<conf->copies; i++) {
3710 int d = r10_bio->devs[i].devnum;
3711 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3712 rdev_dec_pending(conf->mirrors[d].rdev,
3713 mddev);
9ad1aefc
N
3714 if (r10_bio->devs[i].repl_bio &&
3715 r10_bio->devs[i].repl_bio->bi_end_io)
3716 rdev_dec_pending(
3717 conf->mirrors[d].replacement,
3718 mddev);
1da177e4
LT
3719 }
3720 put_buf(r10_bio);
3721 biolist = NULL;
3722 goto giveup;
3723 }
3724 }
3725
1da177e4 3726 nr_sectors = 0;
6cce3b23
N
3727 if (sector_nr + max_sync < max_sector)
3728 max_sector = sector_nr + max_sync;
1da177e4
LT
3729 do {
3730 struct page *page;
3731 int len = PAGE_SIZE;
1da177e4
LT
3732 if (sector_nr + (len>>9) > max_sector)
3733 len = (max_sector - sector_nr) << 9;
3734 if (len == 0)
3735 break;
3736 for (bio= biolist ; bio ; bio=bio->bi_next) {
f0250618 3737 struct resync_pages *rp = get_resync_pages(bio);
022e510f 3738 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
3739 /*
3740 * won't fail because the vec table is big enough
3741 * to hold all these pages
3742 */
3743 bio_add_page(bio, page, len, 0);
1da177e4
LT
3744 }
3745 nr_sectors += len>>9;
3746 sector_nr += len>>9;
022e510f 3747 } while (++page_idx < RESYNC_PAGES);
1da177e4
LT
3748 r10_bio->sectors = nr_sectors;
3749
8db87912
GJ
3750 if (mddev_is_clustered(mddev) &&
3751 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3752 /* It is resync not recovery */
3753 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3754 conf->cluster_sync_low = mddev->curr_resync_completed;
3755 raid10_set_cluster_sync_high(conf);
3756 /* Send resync message */
3757 md_cluster_ops->resync_info_update(mddev,
3758 conf->cluster_sync_low,
3759 conf->cluster_sync_high);
3760 }
3761 } else if (mddev_is_clustered(mddev)) {
3762 /* This is recovery not resync */
3763 sector_t sect_va1, sect_va2;
3764 bool broadcast_msg = false;
3765
3766 for (i = 0; i < conf->geo.raid_disks; i++) {
3767 /*
3768 * sector_nr is a device address for recovery, so we
3769 * need translate it to array address before compare
3770 * with cluster_sync_high.
3771 */
3772 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3773
3774 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3775 broadcast_msg = true;
3776 /*
3777 * curr_resync_completed is similar as
3778 * sector_nr, so make the translation too.
3779 */
3780 sect_va2 = raid10_find_virt(conf,
3781 mddev->curr_resync_completed, i);
3782
3783 if (conf->cluster_sync_low == 0 ||
3784 conf->cluster_sync_low > sect_va2)
3785 conf->cluster_sync_low = sect_va2;
3786 }
3787 }
3788 if (broadcast_msg) {
3789 raid10_set_cluster_sync_high(conf);
3790 md_cluster_ops->resync_info_update(mddev,
3791 conf->cluster_sync_low,
3792 conf->cluster_sync_high);
3793 }
3794 }
3795
1da177e4
LT
3796 while (biolist) {
3797 bio = biolist;
3798 biolist = biolist->bi_next;
3799
3800 bio->bi_next = NULL;
f0250618 3801 r10_bio = get_resync_r10bio(bio);
1da177e4
LT
3802 r10_bio->sectors = nr_sectors;
3803
3804 if (bio->bi_end_io == end_sync_read) {
74d46992 3805 md_sync_acct_bio(bio, nr_sectors);
4e4cbee9 3806 bio->bi_status = 0;
ed00aabd 3807 submit_bio_noacct(bio);
1da177e4
LT
3808 }
3809 }
3810
57afd89f
N
3811 if (sectors_skipped)
3812 /* pretend they weren't skipped, it makes
3813 * no important difference in this case
3814 */
3815 md_done_sync(mddev, sectors_skipped, 1);
3816
1da177e4
LT
3817 return sectors_skipped + nr_sectors;
3818 giveup:
3819 /* There is nowhere to write, so all non-sync
e875ecea
N
3820 * drives must be failed or in resync, all drives
3821 * have a bad block, so try the next chunk...
1da177e4 3822 */
09b4068a
N
3823 if (sector_nr + max_sync < max_sector)
3824 max_sector = sector_nr + max_sync;
3825
3826 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3827 chunks_skipped ++;
3828 sector_nr = max_sector;
1da177e4 3829 goto skipped;
1da177e4
LT
3830}
3831
80c3a6ce 3832static sector_t
fd01b88c 3833raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3834{
3835 sector_t size;
e879a879 3836 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3837
3838 if (!raid_disks)
3ea7daa5
N
3839 raid_disks = min(conf->geo.raid_disks,
3840 conf->prev.raid_disks);
80c3a6ce 3841 if (!sectors)
dab8b292 3842 sectors = conf->dev_sectors;
80c3a6ce 3843
5cf00fcd
N
3844 size = sectors >> conf->geo.chunk_shift;
3845 sector_div(size, conf->geo.far_copies);
80c3a6ce 3846 size = size * raid_disks;
5cf00fcd 3847 sector_div(size, conf->geo.near_copies);
80c3a6ce 3848
5cf00fcd 3849 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3850}
3851
6508fdbf
N
3852static void calc_sectors(struct r10conf *conf, sector_t size)
3853{
3854 /* Calculate the number of sectors-per-device that will
3855 * actually be used, and set conf->dev_sectors and
3856 * conf->stride
3857 */
3858
5cf00fcd
N
3859 size = size >> conf->geo.chunk_shift;
3860 sector_div(size, conf->geo.far_copies);
3861 size = size * conf->geo.raid_disks;
3862 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3863 /* 'size' is now the number of chunks in the array */
3864 /* calculate "used chunks per device" */
3865 size = size * conf->copies;
3866
3867 /* We need to round up when dividing by raid_disks to
3868 * get the stride size.
3869 */
5cf00fcd 3870 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3871
5cf00fcd 3872 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3873
5cf00fcd
N
3874 if (conf->geo.far_offset)
3875 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3876 else {
5cf00fcd
N
3877 sector_div(size, conf->geo.far_copies);
3878 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3879 }
3880}
dab8b292 3881
deb200d0
N
3882enum geo_type {geo_new, geo_old, geo_start};
3883static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3884{
3885 int nc, fc, fo;
3886 int layout, chunk, disks;
3887 switch (new) {
3888 case geo_old:
3889 layout = mddev->layout;
3890 chunk = mddev->chunk_sectors;
3891 disks = mddev->raid_disks - mddev->delta_disks;
3892 break;
3893 case geo_new:
3894 layout = mddev->new_layout;
3895 chunk = mddev->new_chunk_sectors;
3896 disks = mddev->raid_disks;
3897 break;
3898 default: /* avoid 'may be unused' warnings */
3899 case geo_start: /* new when starting reshape - raid_disks not
3900 * updated yet. */
3901 layout = mddev->new_layout;
3902 chunk = mddev->new_chunk_sectors;
3903 disks = mddev->raid_disks + mddev->delta_disks;
3904 break;
3905 }
8bce6d35 3906 if (layout >> 19)
deb200d0
N
3907 return -1;
3908 if (chunk < (PAGE_SIZE >> 9) ||
3909 !is_power_of_2(chunk))
3910 return -2;
3911 nc = layout & 255;
3912 fc = (layout >> 8) & 255;
3913 fo = layout & (1<<16);
3914 geo->raid_disks = disks;
3915 geo->near_copies = nc;
3916 geo->far_copies = fc;
3917 geo->far_offset = fo;
8bce6d35
N
3918 switch (layout >> 17) {
3919 case 0: /* original layout. simple but not always optimal */
3920 geo->far_set_size = disks;
3921 break;
3922 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3923 * actually using this, but leave code here just in case.*/
3924 geo->far_set_size = disks/fc;
3925 WARN(geo->far_set_size < fc,
3926 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3927 break;
3928 case 2: /* "improved" layout fixed to match documentation */
3929 geo->far_set_size = fc * nc;
3930 break;
3931 default: /* Not a valid layout */
3932 return -1;
3933 }
deb200d0
N
3934 geo->chunk_mask = chunk - 1;
3935 geo->chunk_shift = ffz(~chunk);
3936 return nc*fc;
3937}
3938
e879a879 3939static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3940{
e879a879 3941 struct r10conf *conf = NULL;
dab8b292 3942 int err = -EINVAL;
deb200d0
N
3943 struct geom geo;
3944 int copies;
3945
3946 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3947
deb200d0 3948 if (copies == -2) {
08464e09
N
3949 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3950 mdname(mddev), PAGE_SIZE);
dab8b292 3951 goto out;
1da177e4 3952 }
2604b703 3953
deb200d0 3954 if (copies < 2 || copies > mddev->raid_disks) {
08464e09
N
3955 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3956 mdname(mddev), mddev->new_layout);
1da177e4
LT
3957 goto out;
3958 }
dab8b292
TM
3959
3960 err = -ENOMEM;
e879a879 3961 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3962 if (!conf)
1da177e4 3963 goto out;
dab8b292 3964
3ea7daa5 3965 /* FIXME calc properly */
6396bb22
KC
3966 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3967 sizeof(struct raid10_info),
dab8b292
TM
3968 GFP_KERNEL);
3969 if (!conf->mirrors)
3970 goto out;
4443ae10
N
3971
3972 conf->tmppage = alloc_page(GFP_KERNEL);
3973 if (!conf->tmppage)
dab8b292
TM
3974 goto out;
3975
deb200d0
N
3976 conf->geo = geo;
3977 conf->copies = copies;
3f677f9c 3978 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
c7afa803 3979 rbio_pool_free, conf);
afeee514 3980 if (err)
dab8b292
TM
3981 goto out;
3982
afeee514
KO
3983 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3984 if (err)
fc9977dd
N
3985 goto out;
3986
6508fdbf 3987 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3988 if (mddev->reshape_position == MaxSector) {
3989 conf->prev = conf->geo;
3990 conf->reshape_progress = MaxSector;
3991 } else {
3992 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3993 err = -EINVAL;
3994 goto out;
3995 }
3996 conf->reshape_progress = mddev->reshape_position;
3997 if (conf->prev.far_offset)
3998 conf->prev.stride = 1 << conf->prev.chunk_shift;
3999 else
4000 /* far_copies must be 1 */
4001 conf->prev.stride = conf->dev_sectors;
4002 }
299b0685 4003 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 4004 spin_lock_init(&conf->device_lock);
dab8b292 4005 INIT_LIST_HEAD(&conf->retry_list);
95af587e 4006 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
4007
4008 spin_lock_init(&conf->resync_lock);
4009 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 4010 atomic_set(&conf->nr_pending, 0);
dab8b292 4011
afeee514 4012 err = -ENOMEM;
0232605d 4013 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
4014 if (!conf->thread)
4015 goto out;
4016
dab8b292
TM
4017 conf->mddev = mddev;
4018 return conf;
4019
4020 out:
dab8b292 4021 if (conf) {
afeee514 4022 mempool_exit(&conf->r10bio_pool);
dab8b292
TM
4023 kfree(conf->mirrors);
4024 safe_put_page(conf->tmppage);
afeee514 4025 bioset_exit(&conf->bio_split);
dab8b292
TM
4026 kfree(conf);
4027 }
4028 return ERR_PTR(err);
4029}
4030
16ef5101
CH
4031static void raid10_set_io_opt(struct r10conf *conf)
4032{
4033 int raid_disks = conf->geo.raid_disks;
4034
4035 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4036 raid_disks /= conf->geo.near_copies;
4037 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4038 raid_disks);
4039}
4040
849674e4 4041static int raid10_run(struct mddev *mddev)
dab8b292 4042{
e879a879 4043 struct r10conf *conf;
16ef5101 4044 int i, disk_idx;
dc280d98 4045 struct raid10_info *disk;
3cb03002 4046 struct md_rdev *rdev;
dab8b292 4047 sector_t size;
3ea7daa5
N
4048 sector_t min_offset_diff = 0;
4049 int first = 1;
532a2a3f 4050 bool discard_supported = false;
dab8b292 4051
a415c0f1
N
4052 if (mddev_init_writes_pending(mddev) < 0)
4053 return -ENOMEM;
4054
dab8b292
TM
4055 if (mddev->private == NULL) {
4056 conf = setup_conf(mddev);
4057 if (IS_ERR(conf))
4058 return PTR_ERR(conf);
4059 mddev->private = conf;
4060 }
4061 conf = mddev->private;
4062 if (!conf)
4063 goto out;
4064
8db87912
GJ
4065 if (mddev_is_clustered(conf->mddev)) {
4066 int fc, fo;
4067
4068 fc = (mddev->layout >> 8) & 255;
4069 fo = mddev->layout & (1<<16);
4070 if (fc > 1 || fo > 0) {
4071 pr_err("only near layout is supported by clustered"
4072 " raid10\n");
43a52123 4073 goto out_free_conf;
8db87912
GJ
4074 }
4075 }
4076
dab8b292
TM
4077 mddev->thread = conf->thread;
4078 conf->thread = NULL;
4079
cc4d1efd 4080 if (mddev->queue) {
532a2a3f 4081 blk_queue_max_discard_sectors(mddev->queue,
d30588b2 4082 UINT_MAX);
5026d7a9 4083 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 4084 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
16ef5101
CH
4085 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4086 raid10_set_io_opt(conf);
cc4d1efd 4087 }
8f6c2e4b 4088
dafb20fa 4089 rdev_for_each(rdev, mddev) {
3ea7daa5 4090 long long diff;
34b343cf 4091
1da177e4 4092 disk_idx = rdev->raid_disk;
f8c9e74f
N
4093 if (disk_idx < 0)
4094 continue;
4095 if (disk_idx >= conf->geo.raid_disks &&
4096 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
4097 continue;
4098 disk = conf->mirrors + disk_idx;
4099
56a2559b
N
4100 if (test_bit(Replacement, &rdev->flags)) {
4101 if (disk->replacement)
4102 goto out_free_conf;
4103 disk->replacement = rdev;
4104 } else {
4105 if (disk->rdev)
4106 goto out_free_conf;
4107 disk->rdev = rdev;
4108 }
3ea7daa5
N
4109 diff = (rdev->new_data_offset - rdev->data_offset);
4110 if (!mddev->reshape_backwards)
4111 diff = -diff;
4112 if (diff < 0)
4113 diff = 0;
4114 if (first || diff < min_offset_diff)
4115 min_offset_diff = diff;
56a2559b 4116
cc4d1efd
JB
4117 if (mddev->gendisk)
4118 disk_stack_limits(mddev->gendisk, rdev->bdev,
4119 rdev->data_offset << 9);
1da177e4
LT
4120
4121 disk->head_position = 0;
532a2a3f
SL
4122
4123 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4124 discard_supported = true;
6f287ca6 4125 first = 0;
1da177e4 4126 }
3ea7daa5 4127
ed30be07
JB
4128 if (mddev->queue) {
4129 if (discard_supported)
8b904b5b 4130 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
ed30be07
JB
4131 mddev->queue);
4132 else
8b904b5b 4133 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
ed30be07
JB
4134 mddev->queue);
4135 }
6d508242 4136 /* need to check that every block has at least one working mirror */
700c7213 4137 if (!enough(conf, -1)) {
08464e09 4138 pr_err("md/raid10:%s: not enough operational mirrors.\n",
6d508242 4139 mdname(mddev));
1da177e4
LT
4140 goto out_free_conf;
4141 }
4142
3ea7daa5
N
4143 if (conf->reshape_progress != MaxSector) {
4144 /* must ensure that shape change is supported */
4145 if (conf->geo.far_copies != 1 &&
4146 conf->geo.far_offset == 0)
4147 goto out_free_conf;
4148 if (conf->prev.far_copies != 1 &&
78eaa0d4 4149 conf->prev.far_offset == 0)
3ea7daa5
N
4150 goto out_free_conf;
4151 }
4152
1da177e4 4153 mddev->degraded = 0;
f8c9e74f
N
4154 for (i = 0;
4155 i < conf->geo.raid_disks
4156 || i < conf->prev.raid_disks;
4157 i++) {
1da177e4
LT
4158
4159 disk = conf->mirrors + i;
4160
56a2559b
N
4161 if (!disk->rdev && disk->replacement) {
4162 /* The replacement is all we have - use it */
4163 disk->rdev = disk->replacement;
4164 disk->replacement = NULL;
4165 clear_bit(Replacement, &disk->rdev->flags);
4166 }
4167
5fd6c1dc 4168 if (!disk->rdev ||
2e333e89 4169 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
4170 disk->head_position = 0;
4171 mddev->degraded++;
0b59bb64
N
4172 if (disk->rdev &&
4173 disk->rdev->saved_raid_disk < 0)
8c2e870a 4174 conf->fullsync = 1;
1da177e4 4175 }
bda31539
BC
4176
4177 if (disk->replacement &&
4178 !test_bit(In_sync, &disk->replacement->flags) &&
4179 disk->replacement->saved_raid_disk < 0) {
4180 conf->fullsync = 1;
4181 }
4182
d890fa2b 4183 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
4184 }
4185
8c6ac868 4186 if (mddev->recovery_cp != MaxSector)
08464e09
N
4187 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4188 mdname(mddev));
4189 pr_info("md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
4190 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4191 conf->geo.raid_disks);
1da177e4
LT
4192 /*
4193 * Ok, everything is just fine now
4194 */
dab8b292
TM
4195 mddev->dev_sectors = conf->dev_sectors;
4196 size = raid10_size(mddev, 0, 0);
4197 md_set_array_sectors(mddev, size);
4198 mddev->resync_max_sectors = size;
46533ff7 4199 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
1da177e4 4200
a91a2785
MP
4201 if (md_integrity_register(mddev))
4202 goto out_free_conf;
4203
3ea7daa5
N
4204 if (conf->reshape_progress != MaxSector) {
4205 unsigned long before_length, after_length;
4206
4207 before_length = ((1 << conf->prev.chunk_shift) *
4208 conf->prev.far_copies);
4209 after_length = ((1 << conf->geo.chunk_shift) *
4210 conf->geo.far_copies);
4211
4212 if (max(before_length, after_length) > min_offset_diff) {
4213 /* This cannot work */
08464e09 4214 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3ea7daa5
N
4215 goto out_free_conf;
4216 }
4217 conf->offset_diff = min_offset_diff;
4218
3ea7daa5
N
4219 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4220 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4221 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4222 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4223 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4224 "reshape");
e406f12d
AP
4225 if (!mddev->sync_thread)
4226 goto out_free_conf;
3ea7daa5
N
4227 }
4228
1da177e4
LT
4229 return 0;
4230
4231out_free_conf:
01f96c0a 4232 md_unregister_thread(&mddev->thread);
afeee514 4233 mempool_exit(&conf->r10bio_pool);
1345b1d8 4234 safe_put_page(conf->tmppage);
990a8baf 4235 kfree(conf->mirrors);
1da177e4
LT
4236 kfree(conf);
4237 mddev->private = NULL;
4238out:
4239 return -EIO;
4240}
4241
afa0f557 4242static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 4243{
afa0f557 4244 struct r10conf *conf = priv;
1da177e4 4245
afeee514 4246 mempool_exit(&conf->r10bio_pool);
0fea7ed8 4247 safe_put_page(conf->tmppage);
990a8baf 4248 kfree(conf->mirrors);
c4796e21
N
4249 kfree(conf->mirrors_old);
4250 kfree(conf->mirrors_new);
afeee514 4251 bioset_exit(&conf->bio_split);
1da177e4 4252 kfree(conf);
1da177e4
LT
4253}
4254
b03e0ccb 4255static void raid10_quiesce(struct mddev *mddev, int quiesce)
6cce3b23 4256{
e879a879 4257 struct r10conf *conf = mddev->private;
6cce3b23 4258
b03e0ccb 4259 if (quiesce)
6cce3b23 4260 raise_barrier(conf, 0);
b03e0ccb 4261 else
6cce3b23 4262 lower_barrier(conf);
6cce3b23 4263}
1da177e4 4264
006a09a0
N
4265static int raid10_resize(struct mddev *mddev, sector_t sectors)
4266{
4267 /* Resize of 'far' arrays is not supported.
4268 * For 'near' and 'offset' arrays we can set the
4269 * number of sectors used to be an appropriate multiple
4270 * of the chunk size.
4271 * For 'offset', this is far_copies*chunksize.
4272 * For 'near' the multiplier is the LCM of
4273 * near_copies and raid_disks.
4274 * So if far_copies > 1 && !far_offset, fail.
4275 * Else find LCM(raid_disks, near_copy)*far_copies and
4276 * multiply by chunk_size. Then round to this number.
4277 * This is mostly done by raid10_size()
4278 */
4279 struct r10conf *conf = mddev->private;
4280 sector_t oldsize, size;
4281
f8c9e74f
N
4282 if (mddev->reshape_position != MaxSector)
4283 return -EBUSY;
4284
5cf00fcd 4285 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
4286 return -EINVAL;
4287
4288 oldsize = raid10_size(mddev, 0, 0);
4289 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
4290 if (mddev->external_size &&
4291 mddev->array_sectors > size)
006a09a0 4292 return -EINVAL;
a4a6125a 4293 if (mddev->bitmap) {
e64e4018 4294 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
a4a6125a
N
4295 if (ret)
4296 return ret;
4297 }
4298 md_set_array_sectors(mddev, size);
006a09a0
N
4299 if (sectors > mddev->dev_sectors &&
4300 mddev->recovery_cp > oldsize) {
4301 mddev->recovery_cp = oldsize;
4302 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4303 }
6508fdbf
N
4304 calc_sectors(conf, sectors);
4305 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
4306 mddev->resync_max_sectors = size;
4307 return 0;
4308}
4309
53a6ab4d 4310static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 4311{
3cb03002 4312 struct md_rdev *rdev;
e879a879 4313 struct r10conf *conf;
dab8b292
TM
4314
4315 if (mddev->degraded > 0) {
08464e09
N
4316 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4317 mdname(mddev));
dab8b292
TM
4318 return ERR_PTR(-EINVAL);
4319 }
53a6ab4d 4320 sector_div(size, devs);
dab8b292 4321
dab8b292
TM
4322 /* Set new parameters */
4323 mddev->new_level = 10;
4324 /* new layout: far_copies = 1, near_copies = 2 */
4325 mddev->new_layout = (1<<8) + 2;
4326 mddev->new_chunk_sectors = mddev->chunk_sectors;
4327 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
4328 mddev->raid_disks *= 2;
4329 /* make sure it will be not marked as dirty */
4330 mddev->recovery_cp = MaxSector;
53a6ab4d 4331 mddev->dev_sectors = size;
dab8b292
TM
4332
4333 conf = setup_conf(mddev);
02214dc5 4334 if (!IS_ERR(conf)) {
dafb20fa 4335 rdev_for_each(rdev, mddev)
53a6ab4d 4336 if (rdev->raid_disk >= 0) {
e93f68a1 4337 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
4338 rdev->sectors = size;
4339 }
02214dc5
KW
4340 conf->barrier = 1;
4341 }
4342
dab8b292
TM
4343 return conf;
4344}
4345
fd01b88c 4346static void *raid10_takeover(struct mddev *mddev)
dab8b292 4347{
e373ab10 4348 struct r0conf *raid0_conf;
dab8b292
TM
4349
4350 /* raid10 can take over:
4351 * raid0 - providing it has only two drives
4352 */
4353 if (mddev->level == 0) {
4354 /* for raid0 takeover only one zone is supported */
e373ab10
N
4355 raid0_conf = mddev->private;
4356 if (raid0_conf->nr_strip_zones > 1) {
08464e09
N
4357 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4358 mdname(mddev));
dab8b292
TM
4359 return ERR_PTR(-EINVAL);
4360 }
53a6ab4d
N
4361 return raid10_takeover_raid0(mddev,
4362 raid0_conf->strip_zone->zone_end,
4363 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
4364 }
4365 return ERR_PTR(-EINVAL);
4366}
4367
3ea7daa5
N
4368static int raid10_check_reshape(struct mddev *mddev)
4369{
4370 /* Called when there is a request to change
4371 * - layout (to ->new_layout)
4372 * - chunk size (to ->new_chunk_sectors)
4373 * - raid_disks (by delta_disks)
4374 * or when trying to restart a reshape that was ongoing.
4375 *
4376 * We need to validate the request and possibly allocate
4377 * space if that might be an issue later.
4378 *
4379 * Currently we reject any reshape of a 'far' mode array,
4380 * allow chunk size to change if new is generally acceptable,
4381 * allow raid_disks to increase, and allow
4382 * a switch between 'near' mode and 'offset' mode.
4383 */
4384 struct r10conf *conf = mddev->private;
4385 struct geom geo;
4386
4387 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4388 return -EINVAL;
4389
4390 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4391 /* mustn't change number of copies */
4392 return -EINVAL;
4393 if (geo.far_copies > 1 && !geo.far_offset)
4394 /* Cannot switch to 'far' mode */
4395 return -EINVAL;
4396
4397 if (mddev->array_sectors & geo.chunk_mask)
4398 /* not factor of array size */
4399 return -EINVAL;
4400
3ea7daa5
N
4401 if (!enough(conf, -1))
4402 return -EINVAL;
4403
4404 kfree(conf->mirrors_new);
4405 conf->mirrors_new = NULL;
4406 if (mddev->delta_disks > 0) {
4407 /* allocate new 'mirrors' list */
6396bb22
KC
4408 conf->mirrors_new =
4409 kcalloc(mddev->raid_disks + mddev->delta_disks,
4410 sizeof(struct raid10_info),
4411 GFP_KERNEL);
3ea7daa5
N
4412 if (!conf->mirrors_new)
4413 return -ENOMEM;
4414 }
4415 return 0;
4416}
4417
4418/*
4419 * Need to check if array has failed when deciding whether to:
4420 * - start an array
4421 * - remove non-faulty devices
4422 * - add a spare
4423 * - allow a reshape
4424 * This determination is simple when no reshape is happening.
4425 * However if there is a reshape, we need to carefully check
4426 * both the before and after sections.
4427 * This is because some failed devices may only affect one
4428 * of the two sections, and some non-in_sync devices may
4429 * be insync in the section most affected by failed devices.
4430 */
4431static int calc_degraded(struct r10conf *conf)
4432{
4433 int degraded, degraded2;
4434 int i;
4435
4436 rcu_read_lock();
4437 degraded = 0;
4438 /* 'prev' section first */
4439 for (i = 0; i < conf->prev.raid_disks; i++) {
4440 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4441 if (!rdev || test_bit(Faulty, &rdev->flags))
4442 degraded++;
4443 else if (!test_bit(In_sync, &rdev->flags))
4444 /* When we can reduce the number of devices in
4445 * an array, this might not contribute to
4446 * 'degraded'. It does now.
4447 */
4448 degraded++;
4449 }
4450 rcu_read_unlock();
4451 if (conf->geo.raid_disks == conf->prev.raid_disks)
4452 return degraded;
4453 rcu_read_lock();
4454 degraded2 = 0;
4455 for (i = 0; i < conf->geo.raid_disks; i++) {
4456 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4457 if (!rdev || test_bit(Faulty, &rdev->flags))
4458 degraded2++;
4459 else if (!test_bit(In_sync, &rdev->flags)) {
4460 /* If reshape is increasing the number of devices,
4461 * this section has already been recovered, so
4462 * it doesn't contribute to degraded.
4463 * else it does.
4464 */
4465 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4466 degraded2++;
4467 }
4468 }
4469 rcu_read_unlock();
4470 if (degraded2 > degraded)
4471 return degraded2;
4472 return degraded;
4473}
4474
4475static int raid10_start_reshape(struct mddev *mddev)
4476{
4477 /* A 'reshape' has been requested. This commits
4478 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4479 * This also checks if there are enough spares and adds them
4480 * to the array.
4481 * We currently require enough spares to make the final
4482 * array non-degraded. We also require that the difference
4483 * between old and new data_offset - on each device - is
4484 * enough that we never risk over-writing.
4485 */
4486
4487 unsigned long before_length, after_length;
4488 sector_t min_offset_diff = 0;
4489 int first = 1;
4490 struct geom new;
4491 struct r10conf *conf = mddev->private;
4492 struct md_rdev *rdev;
4493 int spares = 0;
bb63a701 4494 int ret;
3ea7daa5
N
4495
4496 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4497 return -EBUSY;
4498
4499 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4500 return -EINVAL;
4501
4502 before_length = ((1 << conf->prev.chunk_shift) *
4503 conf->prev.far_copies);
4504 after_length = ((1 << conf->geo.chunk_shift) *
4505 conf->geo.far_copies);
4506
4507 rdev_for_each(rdev, mddev) {
4508 if (!test_bit(In_sync, &rdev->flags)
4509 && !test_bit(Faulty, &rdev->flags))
4510 spares++;
4511 if (rdev->raid_disk >= 0) {
4512 long long diff = (rdev->new_data_offset
4513 - rdev->data_offset);
4514 if (!mddev->reshape_backwards)
4515 diff = -diff;
4516 if (diff < 0)
4517 diff = 0;
4518 if (first || diff < min_offset_diff)
4519 min_offset_diff = diff;
b506335e 4520 first = 0;
3ea7daa5
N
4521 }
4522 }
4523
4524 if (max(before_length, after_length) > min_offset_diff)
4525 return -EINVAL;
4526
4527 if (spares < mddev->delta_disks)
4528 return -EINVAL;
4529
4530 conf->offset_diff = min_offset_diff;
4531 spin_lock_irq(&conf->device_lock);
4532 if (conf->mirrors_new) {
4533 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4534 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4535 smp_mb();
c4796e21 4536 kfree(conf->mirrors_old);
3ea7daa5
N
4537 conf->mirrors_old = conf->mirrors;
4538 conf->mirrors = conf->mirrors_new;
4539 conf->mirrors_new = NULL;
4540 }
4541 setup_geo(&conf->geo, mddev, geo_start);
4542 smp_mb();
4543 if (mddev->reshape_backwards) {
4544 sector_t size = raid10_size(mddev, 0, 0);
4545 if (size < mddev->array_sectors) {
4546 spin_unlock_irq(&conf->device_lock);
08464e09
N
4547 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4548 mdname(mddev));
3ea7daa5
N
4549 return -EINVAL;
4550 }
4551 mddev->resync_max_sectors = size;
4552 conf->reshape_progress = size;
4553 } else
4554 conf->reshape_progress = 0;
299b0685 4555 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4556 spin_unlock_irq(&conf->device_lock);
4557
bb63a701 4558 if (mddev->delta_disks && mddev->bitmap) {
afd75628
GJ
4559 struct mdp_superblock_1 *sb = NULL;
4560 sector_t oldsize, newsize;
4561
4562 oldsize = raid10_size(mddev, 0, 0);
4563 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4564
4565 if (!mddev_is_clustered(mddev)) {
4566 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4567 if (ret)
4568 goto abort;
4569 else
4570 goto out;
4571 }
4572
4573 rdev_for_each(rdev, mddev) {
4574 if (rdev->raid_disk > -1 &&
4575 !test_bit(Faulty, &rdev->flags))
4576 sb = page_address(rdev->sb_page);
4577 }
4578
4579 /*
4580 * some node is already performing reshape, and no need to
4581 * call md_bitmap_resize again since it should be called when
4582 * receiving BITMAP_RESIZE msg
4583 */
4584 if ((sb && (le32_to_cpu(sb->feature_map) &
4585 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4586 goto out;
4587
4588 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
bb63a701
N
4589 if (ret)
4590 goto abort;
afd75628
GJ
4591
4592 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4593 if (ret) {
4594 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4595 goto abort;
4596 }
bb63a701 4597 }
afd75628 4598out:
3ea7daa5
N
4599 if (mddev->delta_disks > 0) {
4600 rdev_for_each(rdev, mddev)
4601 if (rdev->raid_disk < 0 &&
4602 !test_bit(Faulty, &rdev->flags)) {
4603 if (raid10_add_disk(mddev, rdev) == 0) {
4604 if (rdev->raid_disk >=
4605 conf->prev.raid_disks)
4606 set_bit(In_sync, &rdev->flags);
4607 else
4608 rdev->recovery_offset = 0;
4609
38ffc01f
DLM
4610 /* Failure here is OK */
4611 sysfs_link_rdev(mddev, rdev);
3ea7daa5
N
4612 }
4613 } else if (rdev->raid_disk >= conf->prev.raid_disks
4614 && !test_bit(Faulty, &rdev->flags)) {
4615 /* This is a spare that was manually added */
4616 set_bit(In_sync, &rdev->flags);
4617 }
4618 }
4619 /* When a reshape changes the number of devices,
4620 * ->degraded is measured against the larger of the
4621 * pre and post numbers.
4622 */
4623 spin_lock_irq(&conf->device_lock);
4624 mddev->degraded = calc_degraded(conf);
4625 spin_unlock_irq(&conf->device_lock);
4626 mddev->raid_disks = conf->geo.raid_disks;
4627 mddev->reshape_position = conf->reshape_progress;
2953079c 4628 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5
N
4629
4630 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4631 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4632 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4633 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4634 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4635
4636 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4637 "reshape");
4638 if (!mddev->sync_thread) {
bb63a701
N
4639 ret = -EAGAIN;
4640 goto abort;
3ea7daa5
N
4641 }
4642 conf->reshape_checkpoint = jiffies;
4643 md_wakeup_thread(mddev->sync_thread);
4644 md_new_event(mddev);
4645 return 0;
bb63a701
N
4646
4647abort:
4648 mddev->recovery = 0;
4649 spin_lock_irq(&conf->device_lock);
4650 conf->geo = conf->prev;
4651 mddev->raid_disks = conf->geo.raid_disks;
4652 rdev_for_each(rdev, mddev)
4653 rdev->new_data_offset = rdev->data_offset;
4654 smp_wmb();
4655 conf->reshape_progress = MaxSector;
299b0685 4656 conf->reshape_safe = MaxSector;
bb63a701
N
4657 mddev->reshape_position = MaxSector;
4658 spin_unlock_irq(&conf->device_lock);
4659 return ret;
3ea7daa5
N
4660}
4661
4662/* Calculate the last device-address that could contain
4663 * any block from the chunk that includes the array-address 's'
4664 * and report the next address.
4665 * i.e. the address returned will be chunk-aligned and after
4666 * any data that is in the chunk containing 's'.
4667 */
4668static sector_t last_dev_address(sector_t s, struct geom *geo)
4669{
4670 s = (s | geo->chunk_mask) + 1;
4671 s >>= geo->chunk_shift;
4672 s *= geo->near_copies;
4673 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4674 s *= geo->far_copies;
4675 s <<= geo->chunk_shift;
4676 return s;
4677}
4678
4679/* Calculate the first device-address that could contain
4680 * any block from the chunk that includes the array-address 's'.
4681 * This too will be the start of a chunk
4682 */
4683static sector_t first_dev_address(sector_t s, struct geom *geo)
4684{
4685 s >>= geo->chunk_shift;
4686 s *= geo->near_copies;
4687 sector_div(s, geo->raid_disks);
4688 s *= geo->far_copies;
4689 s <<= geo->chunk_shift;
4690 return s;
4691}
4692
4693static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4694 int *skipped)
4695{
4696 /* We simply copy at most one chunk (smallest of old and new)
4697 * at a time, possibly less if that exceeds RESYNC_PAGES,
4698 * or we hit a bad block or something.
4699 * This might mean we pause for normal IO in the middle of
02ec5026 4700 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4701 * can record any location.
4702 *
4703 * If we will want to write to a location that isn't
4704 * yet recorded as 'safe' (i.e. in metadata on disk) then
4705 * we need to flush all reshape requests and update the metadata.
4706 *
4707 * When reshaping forwards (e.g. to more devices), we interpret
4708 * 'safe' as the earliest block which might not have been copied
4709 * down yet. We divide this by previous stripe size and multiply
4710 * by previous stripe length to get lowest device offset that we
4711 * cannot write to yet.
4712 * We interpret 'sector_nr' as an address that we want to write to.
4713 * From this we use last_device_address() to find where we might
4714 * write to, and first_device_address on the 'safe' position.
4715 * If this 'next' write position is after the 'safe' position,
4716 * we must update the metadata to increase the 'safe' position.
4717 *
4718 * When reshaping backwards, we round in the opposite direction
4719 * and perform the reverse test: next write position must not be
4720 * less than current safe position.
4721 *
4722 * In all this the minimum difference in data offsets
4723 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4724 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4725 *
4726 * We need to prepare all the bios here before we start any IO
4727 * to ensure the size we choose is acceptable to all devices.
4728 * The means one for each copy for write-out and an extra one for
4729 * read-in.
4730 * We store the read-in bio in ->master_bio and the others in
4731 * ->devs[x].bio and ->devs[x].repl_bio.
4732 */
4733 struct r10conf *conf = mddev->private;
4734 struct r10bio *r10_bio;
4735 sector_t next, safe, last;
4736 int max_sectors;
4737 int nr_sectors;
4738 int s;
4739 struct md_rdev *rdev;
4740 int need_flush = 0;
4741 struct bio *blist;
4742 struct bio *bio, *read_bio;
4743 int sectors_done = 0;
f0250618 4744 struct page **pages;
3ea7daa5
N
4745
4746 if (sector_nr == 0) {
4747 /* If restarting in the middle, skip the initial sectors */
4748 if (mddev->reshape_backwards &&
4749 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4750 sector_nr = (raid10_size(mddev, 0, 0)
4751 - conf->reshape_progress);
4752 } else if (!mddev->reshape_backwards &&
4753 conf->reshape_progress > 0)
4754 sector_nr = conf->reshape_progress;
4755 if (sector_nr) {
4756 mddev->curr_resync_completed = sector_nr;
e1a86dbb 4757 sysfs_notify_dirent_safe(mddev->sysfs_completed);
3ea7daa5
N
4758 *skipped = 1;
4759 return sector_nr;
4760 }
4761 }
4762
4763 /* We don't use sector_nr to track where we are up to
4764 * as that doesn't work well for ->reshape_backwards.
4765 * So just use ->reshape_progress.
4766 */
4767 if (mddev->reshape_backwards) {
4768 /* 'next' is the earliest device address that we might
4769 * write to for this chunk in the new layout
4770 */
4771 next = first_dev_address(conf->reshape_progress - 1,
4772 &conf->geo);
4773
4774 /* 'safe' is the last device address that we might read from
4775 * in the old layout after a restart
4776 */
4777 safe = last_dev_address(conf->reshape_safe - 1,
4778 &conf->prev);
4779
4780 if (next + conf->offset_diff < safe)
4781 need_flush = 1;
4782
4783 last = conf->reshape_progress - 1;
4784 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4785 & conf->prev.chunk_mask);
e287308b
ZL
4786 if (sector_nr + RESYNC_SECTORS < last)
4787 sector_nr = last + 1 - RESYNC_SECTORS;
3ea7daa5
N
4788 } else {
4789 /* 'next' is after the last device address that we
4790 * might write to for this chunk in the new layout
4791 */
4792 next = last_dev_address(conf->reshape_progress, &conf->geo);
4793
4794 /* 'safe' is the earliest device address that we might
4795 * read from in the old layout after a restart
4796 */
4797 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4798
4799 /* Need to update metadata if 'next' might be beyond 'safe'
4800 * as that would possibly corrupt data
4801 */
4802 if (next > safe + conf->offset_diff)
4803 need_flush = 1;
4804
4805 sector_nr = conf->reshape_progress;
4806 last = sector_nr | (conf->geo.chunk_mask
4807 & conf->prev.chunk_mask);
4808
e287308b
ZL
4809 if (sector_nr + RESYNC_SECTORS <= last)
4810 last = sector_nr + RESYNC_SECTORS - 1;
3ea7daa5
N
4811 }
4812
4813 if (need_flush ||
4814 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4815 /* Need to update reshape_position in metadata */
4816 wait_barrier(conf);
4817 mddev->reshape_position = conf->reshape_progress;
4818 if (mddev->reshape_backwards)
4819 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4820 - conf->reshape_progress;
4821 else
4822 mddev->curr_resync_completed = conf->reshape_progress;
4823 conf->reshape_checkpoint = jiffies;
2953079c 4824 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5 4825 md_wakeup_thread(mddev->thread);
2953079c 4826 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
4827 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4828 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4829 allow_barrier(conf);
4830 return sectors_done;
4831 }
3ea7daa5
N
4832 conf->reshape_safe = mddev->reshape_position;
4833 allow_barrier(conf);
4834 }
4835
1d0ffd26 4836 raise_barrier(conf, 0);
3ea7daa5
N
4837read_more:
4838 /* Now schedule reads for blocks from sector_nr to last */
208410b5 4839 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 4840 r10_bio->state = 0;
1d0ffd26 4841 raise_barrier(conf, 1);
3ea7daa5
N
4842 atomic_set(&r10_bio->remaining, 0);
4843 r10_bio->mddev = mddev;
4844 r10_bio->sector = sector_nr;
4845 set_bit(R10BIO_IsReshape, &r10_bio->state);
4846 r10_bio->sectors = last - sector_nr + 1;
4847 rdev = read_balance(conf, r10_bio, &max_sectors);
4848 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4849
4850 if (!rdev) {
4851 /* Cannot read from here, so need to record bad blocks
4852 * on all the target devices.
4853 */
4854 // FIXME
afeee514 4855 mempool_free(r10_bio, &conf->r10buf_pool);
3ea7daa5
N
4856 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4857 return sectors_done;
4858 }
4859
a78f18da 4860 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
3ea7daa5 4861
74d46992 4862 bio_set_dev(read_bio, rdev->bdev);
4f024f37 4863 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4864 + rdev->data_offset);
4865 read_bio->bi_private = r10_bio;
81fa1520 4866 read_bio->bi_end_io = end_reshape_read;
796a5cf0 4867 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
3ea7daa5
N
4868 r10_bio->master_bio = read_bio;
4869 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4870
7564beda
GJ
4871 /*
4872 * Broadcast RESYNC message to other nodes, so all nodes would not
4873 * write to the region to avoid conflict.
4874 */
4875 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4876 struct mdp_superblock_1 *sb = NULL;
4877 int sb_reshape_pos = 0;
4878
4879 conf->cluster_sync_low = sector_nr;
4880 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4881 sb = page_address(rdev->sb_page);
4882 if (sb) {
4883 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4884 /*
4885 * Set cluster_sync_low again if next address for array
4886 * reshape is less than cluster_sync_low. Since we can't
4887 * update cluster_sync_low until it has finished reshape.
4888 */
4889 if (sb_reshape_pos < conf->cluster_sync_low)
4890 conf->cluster_sync_low = sb_reshape_pos;
4891 }
4892
4893 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4894 conf->cluster_sync_high);
4895 }
4896
3ea7daa5
N
4897 /* Now find the locations in the new layout */
4898 __raid10_find_phys(&conf->geo, r10_bio);
4899
4900 blist = read_bio;
4901 read_bio->bi_next = NULL;
4902
d094d686 4903 rcu_read_lock();
3ea7daa5
N
4904 for (s = 0; s < conf->copies*2; s++) {
4905 struct bio *b;
4906 int d = r10_bio->devs[s/2].devnum;
4907 struct md_rdev *rdev2;
4908 if (s&1) {
d094d686 4909 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4910 b = r10_bio->devs[s/2].repl_bio;
4911 } else {
d094d686 4912 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4913 b = r10_bio->devs[s/2].bio;
4914 }
4915 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4916 continue;
8be185f2 4917
74d46992 4918 bio_set_dev(b, rdev2->bdev);
4f024f37
KO
4919 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4920 rdev2->new_data_offset;
3ea7daa5 4921 b->bi_end_io = end_reshape_write;
796a5cf0 4922 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
3ea7daa5 4923 b->bi_next = blist;
3ea7daa5
N
4924 blist = b;
4925 }
4926
4927 /* Now add as many pages as possible to all of these bios. */
4928
4929 nr_sectors = 0;
f0250618 4930 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4931 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
f0250618 4932 struct page *page = pages[s / (PAGE_SIZE >> 9)];
3ea7daa5
N
4933 int len = (max_sectors - s) << 9;
4934 if (len > PAGE_SIZE)
4935 len = PAGE_SIZE;
4936 for (bio = blist; bio ; bio = bio->bi_next) {
c85ba149
ML
4937 /*
4938 * won't fail because the vec table is big enough
4939 * to hold all these pages
4940 */
4941 bio_add_page(bio, page, len, 0);
3ea7daa5
N
4942 }
4943 sector_nr += len >> 9;
4944 nr_sectors += len >> 9;
4945 }
d094d686 4946 rcu_read_unlock();
3ea7daa5
N
4947 r10_bio->sectors = nr_sectors;
4948
4949 /* Now submit the read */
74d46992 4950 md_sync_acct_bio(read_bio, r10_bio->sectors);
3ea7daa5
N
4951 atomic_inc(&r10_bio->remaining);
4952 read_bio->bi_next = NULL;
ed00aabd 4953 submit_bio_noacct(read_bio);
3ea7daa5
N
4954 sectors_done += nr_sectors;
4955 if (sector_nr <= last)
4956 goto read_more;
4957
1d0ffd26
XN
4958 lower_barrier(conf);
4959
3ea7daa5
N
4960 /* Now that we have done the whole section we can
4961 * update reshape_progress
4962 */
4963 if (mddev->reshape_backwards)
4964 conf->reshape_progress -= sectors_done;
4965 else
4966 conf->reshape_progress += sectors_done;
4967
4968 return sectors_done;
4969}
4970
4971static void end_reshape_request(struct r10bio *r10_bio);
4972static int handle_reshape_read_error(struct mddev *mddev,
4973 struct r10bio *r10_bio);
4974static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4975{
4976 /* Reshape read completed. Hopefully we have a block
4977 * to write out.
4978 * If we got a read error then we do sync 1-page reads from
4979 * elsewhere until we find the data - or give up.
4980 */
4981 struct r10conf *conf = mddev->private;
4982 int s;
4983
4984 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4985 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4986 /* Reshape has been aborted */
4987 md_done_sync(mddev, r10_bio->sectors, 0);
4988 return;
4989 }
4990
4991 /* We definitely have the data in the pages, schedule the
4992 * writes.
4993 */
4994 atomic_set(&r10_bio->remaining, 1);
4995 for (s = 0; s < conf->copies*2; s++) {
4996 struct bio *b;
4997 int d = r10_bio->devs[s/2].devnum;
4998 struct md_rdev *rdev;
d094d686 4999 rcu_read_lock();
3ea7daa5 5000 if (s&1) {
d094d686 5001 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
5002 b = r10_bio->devs[s/2].repl_bio;
5003 } else {
d094d686 5004 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
5005 b = r10_bio->devs[s/2].bio;
5006 }
d094d686
N
5007 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5008 rcu_read_unlock();
3ea7daa5 5009 continue;
d094d686 5010 }
3ea7daa5 5011 atomic_inc(&rdev->nr_pending);
d094d686 5012 rcu_read_unlock();
74d46992 5013 md_sync_acct_bio(b, r10_bio->sectors);
3ea7daa5
N
5014 atomic_inc(&r10_bio->remaining);
5015 b->bi_next = NULL;
ed00aabd 5016 submit_bio_noacct(b);
3ea7daa5
N
5017 }
5018 end_reshape_request(r10_bio);
5019}
5020
5021static void end_reshape(struct r10conf *conf)
5022{
5023 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5024 return;
5025
5026 spin_lock_irq(&conf->device_lock);
5027 conf->prev = conf->geo;
5028 md_finish_reshape(conf->mddev);
5029 smp_wmb();
5030 conf->reshape_progress = MaxSector;
299b0685 5031 conf->reshape_safe = MaxSector;
3ea7daa5
N
5032 spin_unlock_irq(&conf->device_lock);
5033
c2e4cd57 5034 if (conf->mddev->queue)
16ef5101 5035 raid10_set_io_opt(conf);
3ea7daa5
N
5036 conf->fullsync = 0;
5037}
5038
7564beda
GJ
5039static void raid10_update_reshape_pos(struct mddev *mddev)
5040{
5041 struct r10conf *conf = mddev->private;
5ebaf80b 5042 sector_t lo, hi;
7564beda 5043
5ebaf80b
GJ
5044 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5045 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5046 || mddev->reshape_position == MaxSector)
5047 conf->reshape_progress = mddev->reshape_position;
5048 else
5049 WARN_ON_ONCE(1);
7564beda
GJ
5050}
5051
3ea7daa5
N
5052static int handle_reshape_read_error(struct mddev *mddev,
5053 struct r10bio *r10_bio)
5054{
5055 /* Use sync reads to get the blocks from somewhere else */
5056 int sectors = r10_bio->sectors;
3ea7daa5 5057 struct r10conf *conf = mddev->private;
584ed9fa 5058 struct r10bio *r10b;
3ea7daa5
N
5059 int slot = 0;
5060 int idx = 0;
2d06e3b7
ML
5061 struct page **pages;
5062
8cf05a78 5063 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
584ed9fa
MK
5064 if (!r10b) {
5065 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5066 return -ENOMEM;
5067 }
5068
2d06e3b7
ML
5069 /* reshape IOs share pages from .devs[0].bio */
5070 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 5071
e0ee7785
N
5072 r10b->sector = r10_bio->sector;
5073 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
5074
5075 while (sectors) {
5076 int s = sectors;
5077 int success = 0;
5078 int first_slot = slot;
5079
5080 if (s > (PAGE_SIZE >> 9))
5081 s = PAGE_SIZE >> 9;
5082
d094d686 5083 rcu_read_lock();
3ea7daa5 5084 while (!success) {
e0ee7785 5085 int d = r10b->devs[slot].devnum;
d094d686 5086 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
5087 sector_t addr;
5088 if (rdev == NULL ||
5089 test_bit(Faulty, &rdev->flags) ||
5090 !test_bit(In_sync, &rdev->flags))
5091 goto failed;
5092
e0ee7785 5093 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
5094 atomic_inc(&rdev->nr_pending);
5095 rcu_read_unlock();
3ea7daa5
N
5096 success = sync_page_io(rdev,
5097 addr,
5098 s << 9,
2d06e3b7 5099 pages[idx],
796a5cf0 5100 REQ_OP_READ, 0, false);
d094d686
N
5101 rdev_dec_pending(rdev, mddev);
5102 rcu_read_lock();
3ea7daa5
N
5103 if (success)
5104 break;
5105 failed:
5106 slot++;
5107 if (slot >= conf->copies)
5108 slot = 0;
5109 if (slot == first_slot)
5110 break;
5111 }
d094d686 5112 rcu_read_unlock();
3ea7daa5
N
5113 if (!success) {
5114 /* couldn't read this block, must give up */
5115 set_bit(MD_RECOVERY_INTR,
5116 &mddev->recovery);
584ed9fa 5117 kfree(r10b);
3ea7daa5
N
5118 return -EIO;
5119 }
5120 sectors -= s;
5121 idx++;
5122 }
584ed9fa 5123 kfree(r10b);
3ea7daa5
N
5124 return 0;
5125}
5126
4246a0b6 5127static void end_reshape_write(struct bio *bio)
3ea7daa5 5128{
f0250618 5129 struct r10bio *r10_bio = get_resync_r10bio(bio);
3ea7daa5
N
5130 struct mddev *mddev = r10_bio->mddev;
5131 struct r10conf *conf = mddev->private;
5132 int d;
5133 int slot;
5134 int repl;
5135 struct md_rdev *rdev = NULL;
5136
5137 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5138 if (repl)
5139 rdev = conf->mirrors[d].replacement;
5140 if (!rdev) {
5141 smp_mb();
5142 rdev = conf->mirrors[d].rdev;
5143 }
5144
4e4cbee9 5145 if (bio->bi_status) {
3ea7daa5
N
5146 /* FIXME should record badblock */
5147 md_error(mddev, rdev);
5148 }
5149
5150 rdev_dec_pending(rdev, mddev);
5151 end_reshape_request(r10_bio);
5152}
5153
5154static void end_reshape_request(struct r10bio *r10_bio)
5155{
5156 if (!atomic_dec_and_test(&r10_bio->remaining))
5157 return;
5158 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5159 bio_put(r10_bio->master_bio);
5160 put_buf(r10_bio);
5161}
5162
5163static void raid10_finish_reshape(struct mddev *mddev)
5164{
5165 struct r10conf *conf = mddev->private;
5166
5167 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5168 return;
5169
5170 if (mddev->delta_disks > 0) {
3ea7daa5
N
5171 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5172 mddev->recovery_cp = mddev->resync_max_sectors;
5173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5174 }
8876391e 5175 mddev->resync_max_sectors = mddev->array_sectors;
63aced61
N
5176 } else {
5177 int d;
d094d686 5178 rcu_read_lock();
63aced61
N
5179 for (d = conf->geo.raid_disks ;
5180 d < conf->geo.raid_disks - mddev->delta_disks;
5181 d++) {
d094d686 5182 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
5183 if (rdev)
5184 clear_bit(In_sync, &rdev->flags);
d094d686 5185 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
5186 if (rdev)
5187 clear_bit(In_sync, &rdev->flags);
5188 }
d094d686 5189 rcu_read_unlock();
3ea7daa5
N
5190 }
5191 mddev->layout = mddev->new_layout;
5192 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5193 mddev->reshape_position = MaxSector;
5194 mddev->delta_disks = 0;
5195 mddev->reshape_backwards = 0;
5196}
5197
84fc4b56 5198static struct md_personality raid10_personality =
1da177e4
LT
5199{
5200 .name = "raid10",
2604b703 5201 .level = 10,
1da177e4 5202 .owner = THIS_MODULE,
849674e4
SL
5203 .make_request = raid10_make_request,
5204 .run = raid10_run,
afa0f557 5205 .free = raid10_free,
849674e4
SL
5206 .status = raid10_status,
5207 .error_handler = raid10_error,
1da177e4
LT
5208 .hot_add_disk = raid10_add_disk,
5209 .hot_remove_disk= raid10_remove_disk,
5210 .spare_active = raid10_spare_active,
849674e4 5211 .sync_request = raid10_sync_request,
6cce3b23 5212 .quiesce = raid10_quiesce,
80c3a6ce 5213 .size = raid10_size,
006a09a0 5214 .resize = raid10_resize,
dab8b292 5215 .takeover = raid10_takeover,
3ea7daa5
N
5216 .check_reshape = raid10_check_reshape,
5217 .start_reshape = raid10_start_reshape,
5218 .finish_reshape = raid10_finish_reshape,
7564beda 5219 .update_reshape_pos = raid10_update_reshape_pos,
1da177e4
LT
5220};
5221
5222static int __init raid_init(void)
5223{
2604b703 5224 return register_md_personality(&raid10_personality);
1da177e4
LT
5225}
5226
5227static void raid_exit(void)
5228{
2604b703 5229 unregister_md_personality(&raid10_personality);
1da177e4
LT
5230}
5231
5232module_init(raid_init);
5233module_exit(raid_exit);
5234MODULE_LICENSE("GPL");
0efb9e61 5235MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 5236MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 5237MODULE_ALIAS("md-raid10");
2604b703 5238MODULE_ALIAS("md-level-10");
34db0cd6
N
5239
5240module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);