]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid10.c
cpu/hotplug: Mute hotplug lockdep during init
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
109e3765 28#include <trace/events/block.h>
43b2e5d8 29#include "md.h"
ef740c37 30#include "raid10.h"
dab8b292 31#include "raid0.h"
935fe098 32#include "md-bitmap.h"
1da177e4
LT
33
34/*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
c93983bf 41 * far_offset (stored in bit 16 of layout )
475901af 42 * use_far_sets (stored in bit 17 of layout )
8bce6d35 43 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 44 *
475901af
JB
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
c93983bf
N
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
1da177e4
LT
73 */
74
75/*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78#define NR_RAID10_BIOS 256
79
473e87ce
JB
80/* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85#define IO_BLOCKED ((struct bio *)1)
86/* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90#define IO_MADE_GOOD ((struct bio *)2)
91
92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94/* When there are this many requests queued to be written by
34db0cd6
N
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98static int max_queued_requests = 1024;
99
e879a879
N
100static void allow_barrier(struct r10conf *conf);
101static void lower_barrier(struct r10conf *conf);
635f6416 102static int _enough(struct r10conf *conf, int previous, int ignore);
1919cbb2 103static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 107static void end_reshape_write(struct bio *bio);
3ea7daa5 108static void end_reshape(struct r10conf *conf);
0a27ec96 109
578b54ad
N
110#define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
fb0eb5df
ML
113#include "raid1-10.c"
114
f0250618
ML
115/*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120{
121 return get_resync_pages(bio)->raid_bio;
122}
123
dd0fc66f 124static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 125{
e879a879 126 struct r10conf *conf = data;
9f2c9d12 127 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 128
69335ef3
N
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
7eaceacc 131 return kzalloc(size, gfp_flags);
1da177e4
LT
132}
133
134static void r10bio_pool_free(void *r10_bio, void *data)
135{
136 kfree(r10_bio);
137}
138
8db87912 139#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
0310fa21
N
140/* amount of memory to reserve for resync requests */
141#define RESYNC_WINDOW (1024*1024)
142/* maximum number of concurrent requests, memory permitting */
143#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
8db87912
GJ
144#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4
LT
146
147/*
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
152 *
153 */
dd0fc66f 154static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 155{
e879a879 156 struct r10conf *conf = data;
9f2c9d12 157 struct r10bio *r10_bio;
1da177e4 158 struct bio *bio;
f0250618
ML
159 int j;
160 int nalloc, nalloc_rp;
161 struct resync_pages *rps;
1da177e4
LT
162
163 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 164 if (!r10_bio)
1da177e4 165 return NULL;
1da177e4 166
3ea7daa5
N
167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
169 nalloc = conf->copies; /* resync */
170 else
171 nalloc = 2; /* recovery */
172
f0250618
ML
173 /* allocate once for all bios */
174 if (!conf->have_replacement)
175 nalloc_rp = nalloc;
176 else
177 nalloc_rp = nalloc * 2;
178 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179 if (!rps)
180 goto out_free_r10bio;
181
1da177e4
LT
182 /*
183 * Allocate bios.
184 */
185 for (j = nalloc ; j-- ; ) {
6746557f 186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
187 if (!bio)
188 goto out_free_bio;
189 r10_bio->devs[j].bio = bio;
69335ef3
N
190 if (!conf->have_replacement)
191 continue;
192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 if (!bio)
194 goto out_free_bio;
195 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
196 }
197 /*
198 * Allocate RESYNC_PAGES data pages and attach them
199 * where needed.
200 */
f0250618 201 for (j = 0; j < nalloc; j++) {
69335ef3 202 struct bio *rbio = r10_bio->devs[j].repl_bio;
f0250618
ML
203 struct resync_pages *rp, *rp_repl;
204
205 rp = &rps[j];
206 if (rbio)
207 rp_repl = &rps[nalloc + j];
208
1da177e4 209 bio = r10_bio->devs[j].bio;
f0250618
ML
210
211 if (!j || test_bit(MD_RECOVERY_SYNC,
212 &conf->mddev->recovery)) {
213 if (resync_alloc_pages(rp, gfp_flags))
1da177e4 214 goto out_free_pages;
f0250618
ML
215 } else {
216 memcpy(rp, &rps[0], sizeof(*rp));
217 resync_get_all_pages(rp);
218 }
1da177e4 219
f0250618
ML
220 rp->raid_bio = r10_bio;
221 bio->bi_private = rp;
222 if (rbio) {
223 memcpy(rp_repl, rp, sizeof(*rp));
224 rbio->bi_private = rp_repl;
1da177e4
LT
225 }
226 }
227
228 return r10_bio;
229
230out_free_pages:
f0250618
ML
231 while (--j >= 0)
232 resync_free_pages(&rps[j * 2]);
233
5fdd2cf8 234 j = 0;
1da177e4 235out_free_bio:
5fdd2cf8 236 for ( ; j < nalloc; j++) {
237 if (r10_bio->devs[j].bio)
238 bio_put(r10_bio->devs[j].bio);
69335ef3
N
239 if (r10_bio->devs[j].repl_bio)
240 bio_put(r10_bio->devs[j].repl_bio);
241 }
f0250618
ML
242 kfree(rps);
243out_free_r10bio:
1da177e4
LT
244 r10bio_pool_free(r10_bio, conf);
245 return NULL;
246}
247
248static void r10buf_pool_free(void *__r10_bio, void *data)
249{
e879a879 250 struct r10conf *conf = data;
9f2c9d12 251 struct r10bio *r10bio = __r10_bio;
1da177e4 252 int j;
f0250618 253 struct resync_pages *rp = NULL;
1da177e4 254
f0250618 255 for (j = conf->copies; j--; ) {
1da177e4 256 struct bio *bio = r10bio->devs[j].bio;
f0250618
ML
257
258 rp = get_resync_pages(bio);
259 resync_free_pages(rp);
260 bio_put(bio);
261
69335ef3
N
262 bio = r10bio->devs[j].repl_bio;
263 if (bio)
264 bio_put(bio);
1da177e4 265 }
f0250618
ML
266
267 /* resync pages array stored in the 1st bio's .bi_private */
268 kfree(rp);
269
1da177e4
LT
270 r10bio_pool_free(r10bio, conf);
271}
272
e879a879 273static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
274{
275 int i;
276
277 for (i = 0; i < conf->copies; i++) {
278 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 279 if (!BIO_SPECIAL(*bio))
1da177e4
LT
280 bio_put(*bio);
281 *bio = NULL;
69335ef3
N
282 bio = &r10_bio->devs[i].repl_bio;
283 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284 bio_put(*bio);
285 *bio = NULL;
1da177e4
LT
286 }
287}
288
9f2c9d12 289static void free_r10bio(struct r10bio *r10_bio)
1da177e4 290{
e879a879 291 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 292
1da177e4
LT
293 put_all_bios(conf, r10_bio);
294 mempool_free(r10_bio, conf->r10bio_pool);
295}
296
9f2c9d12 297static void put_buf(struct r10bio *r10_bio)
1da177e4 298{
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
300
301 mempool_free(r10_bio, conf->r10buf_pool);
302
0a27ec96 303 lower_barrier(conf);
1da177e4
LT
304}
305
9f2c9d12 306static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
307{
308 unsigned long flags;
fd01b88c 309 struct mddev *mddev = r10_bio->mddev;
e879a879 310 struct r10conf *conf = mddev->private;
1da177e4
LT
311
312 spin_lock_irqsave(&conf->device_lock, flags);
313 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 314 conf->nr_queued ++;
1da177e4
LT
315 spin_unlock_irqrestore(&conf->device_lock, flags);
316
388667be
AJ
317 /* wake up frozen array... */
318 wake_up(&conf->wait_barrier);
319
1da177e4
LT
320 md_wakeup_thread(mddev->thread);
321}
322
323/*
324 * raid_end_bio_io() is called when we have finished servicing a mirrored
325 * operation and are ready to return a success/failure code to the buffer
326 * cache layer.
327 */
9f2c9d12 328static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
329{
330 struct bio *bio = r10_bio->master_bio;
e879a879 331 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 332
856e08e2 333 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4e4cbee9 334 bio->bi_status = BLK_STS_IOERR;
fd16f2e8
N
335
336 bio_endio(bio);
337 /*
338 * Wake up any possible resync thread that waits for the device
339 * to go idle.
340 */
341 allow_barrier(conf);
342
1da177e4
LT
343 free_r10bio(r10_bio);
344}
345
346/*
347 * Update disk head position estimator based on IRQ completion info.
348 */
9f2c9d12 349static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 350{
e879a879 351 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
352
353 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354 r10_bio->devs[slot].addr + (r10_bio->sectors);
355}
356
778ca018
NK
357/*
358 * Find the disk number which triggered given bio
359 */
e879a879 360static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 361 struct bio *bio, int *slotp, int *replp)
778ca018
NK
362{
363 int slot;
69335ef3 364 int repl = 0;
778ca018 365
69335ef3 366 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
367 if (r10_bio->devs[slot].bio == bio)
368 break;
69335ef3
N
369 if (r10_bio->devs[slot].repl_bio == bio) {
370 repl = 1;
371 break;
372 }
373 }
778ca018
NK
374
375 BUG_ON(slot == conf->copies);
376 update_head_pos(slot, r10_bio);
377
749c55e9
N
378 if (slotp)
379 *slotp = slot;
69335ef3
N
380 if (replp)
381 *replp = repl;
778ca018
NK
382 return r10_bio->devs[slot].devnum;
383}
384
4246a0b6 385static void raid10_end_read_request(struct bio *bio)
1da177e4 386{
4e4cbee9 387 int uptodate = !bio->bi_status;
9f2c9d12 388 struct r10bio *r10_bio = bio->bi_private;
a0e764c5 389 int slot;
abbf098e 390 struct md_rdev *rdev;
e879a879 391 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 392
1da177e4 393 slot = r10_bio->read_slot;
abbf098e 394 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
395 /*
396 * this branch is our 'one mirror IO has finished' event handler:
397 */
4443ae10
N
398 update_head_pos(slot, r10_bio);
399
400 if (uptodate) {
1da177e4
LT
401 /*
402 * Set R10BIO_Uptodate in our master bio, so that
403 * we will return a good error code to the higher
404 * levels even if IO on some other mirrored buffer fails.
405 *
406 * The 'master' represents the composite IO operation to
407 * user-side. So if something waits for IO, then it will
408 * wait for the 'master' bio.
409 */
410 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
411 } else {
412 /* If all other devices that store this block have
413 * failed, we want to return the error upwards rather
414 * than fail the last device. Here we redefine
415 * "uptodate" to mean "Don't want to retry"
416 */
635f6416
N
417 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418 rdev->raid_disk))
fae8cc5e 419 uptodate = 1;
fae8cc5e
N
420 }
421 if (uptodate) {
1da177e4 422 raid_end_bio_io(r10_bio);
abbf098e 423 rdev_dec_pending(rdev, conf->mddev);
4443ae10 424 } else {
1da177e4 425 /*
7c4e06ff 426 * oops, read error - keep the refcount on the rdev
1da177e4
LT
427 */
428 char b[BDEVNAME_SIZE];
08464e09 429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
8bda470e 430 mdname(conf->mddev),
abbf098e 431 bdevname(rdev->bdev, b),
8bda470e 432 (unsigned long long)r10_bio->sector);
856e08e2 433 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
434 reschedule_retry(r10_bio);
435 }
1da177e4
LT
436}
437
9f2c9d12 438static void close_write(struct r10bio *r10_bio)
bd870a16
N
439{
440 /* clear the bitmap if all writes complete successfully */
441 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442 r10_bio->sectors,
443 !test_bit(R10BIO_Degraded, &r10_bio->state),
444 0);
445 md_write_end(r10_bio->mddev);
446}
447
9f2c9d12 448static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
449{
450 if (atomic_dec_and_test(&r10_bio->remaining)) {
451 if (test_bit(R10BIO_WriteError, &r10_bio->state))
452 reschedule_retry(r10_bio);
453 else {
454 close_write(r10_bio);
455 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456 reschedule_retry(r10_bio);
457 else
458 raid_end_bio_io(r10_bio);
459 }
460 }
461}
462
4246a0b6 463static void raid10_end_write_request(struct bio *bio)
1da177e4 464{
9f2c9d12 465 struct r10bio *r10_bio = bio->bi_private;
778ca018 466 int dev;
749c55e9 467 int dec_rdev = 1;
e879a879 468 struct r10conf *conf = r10_bio->mddev->private;
475b0321 469 int slot, repl;
4ca40c2c 470 struct md_rdev *rdev = NULL;
1919cbb2 471 struct bio *to_put = NULL;
579ed34f
SL
472 bool discard_error;
473
4e4cbee9 474 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 475
475b0321 476 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 477
475b0321
N
478 if (repl)
479 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
480 if (!rdev) {
481 smp_rmb();
482 repl = 0;
475b0321 483 rdev = conf->mirrors[dev].rdev;
4ca40c2c 484 }
1da177e4
LT
485 /*
486 * this branch is our 'one mirror IO has finished' event handler:
487 */
4e4cbee9 488 if (bio->bi_status && !discard_error) {
475b0321
N
489 if (repl)
490 /* Never record new bad blocks to replacement,
491 * just fail it.
492 */
493 md_error(rdev->mddev, rdev);
494 else {
495 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
496 if (!test_and_set_bit(WantReplacement, &rdev->flags))
497 set_bit(MD_RECOVERY_NEEDED,
498 &rdev->mddev->recovery);
1919cbb2 499
475b0321 500 dec_rdev = 0;
1919cbb2
N
501 if (test_bit(FailFast, &rdev->flags) &&
502 (bio->bi_opf & MD_FAILFAST)) {
503 md_error(rdev->mddev, rdev);
504 if (!test_bit(Faulty, &rdev->flags))
505 /* This is the only remaining device,
506 * We need to retry the write without
507 * FailFast
508 */
509 set_bit(R10BIO_WriteError, &r10_bio->state);
510 else {
511 r10_bio->devs[slot].bio = NULL;
512 to_put = bio;
513 dec_rdev = 1;
514 }
515 } else
516 set_bit(R10BIO_WriteError, &r10_bio->state);
475b0321 517 }
749c55e9 518 } else {
1da177e4
LT
519 /*
520 * Set R10BIO_Uptodate in our master bio, so that
521 * we will return a good error code for to the higher
522 * levels even if IO on some other mirrored buffer fails.
523 *
524 * The 'master' represents the composite IO operation to
525 * user-side. So if something waits for IO, then it will
526 * wait for the 'master' bio.
527 */
749c55e9
N
528 sector_t first_bad;
529 int bad_sectors;
530
3056e3ae
AL
531 /*
532 * Do not set R10BIO_Uptodate if the current device is
533 * rebuilding or Faulty. This is because we cannot use
534 * such device for properly reading the data back (we could
535 * potentially use it, if the current write would have felt
536 * before rdev->recovery_offset, but for simplicity we don't
537 * check this here.
538 */
539 if (test_bit(In_sync, &rdev->flags) &&
540 !test_bit(Faulty, &rdev->flags))
541 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 542
749c55e9 543 /* Maybe we can clear some bad blocks. */
475b0321 544 if (is_badblock(rdev,
749c55e9
N
545 r10_bio->devs[slot].addr,
546 r10_bio->sectors,
579ed34f 547 &first_bad, &bad_sectors) && !discard_error) {
749c55e9 548 bio_put(bio);
475b0321
N
549 if (repl)
550 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551 else
552 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
553 dec_rdev = 0;
554 set_bit(R10BIO_MadeGood, &r10_bio->state);
555 }
556 }
557
1da177e4
LT
558 /*
559 *
560 * Let's see if all mirrored write operations have finished
561 * already.
562 */
19d5f834 563 one_write_done(r10_bio);
749c55e9 564 if (dec_rdev)
884162df 565 rdev_dec_pending(rdev, conf->mddev);
1919cbb2
N
566 if (to_put)
567 bio_put(to_put);
1da177e4
LT
568}
569
1da177e4
LT
570/*
571 * RAID10 layout manager
25985edc 572 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
573 * parameters: near_copies and far_copies.
574 * near_copies * far_copies must be <= raid_disks.
575 * Normally one of these will be 1.
576 * If both are 1, we get raid0.
577 * If near_copies == raid_disks, we get raid1.
578 *
25985edc 579 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
580 * first chunk, followed by near_copies copies of the next chunk and
581 * so on.
582 * If far_copies > 1, then after 1/far_copies of the array has been assigned
583 * as described above, we start again with a device offset of near_copies.
584 * So we effectively have another copy of the whole array further down all
585 * the drives, but with blocks on different drives.
586 * With this layout, and block is never stored twice on the one device.
587 *
588 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 589 * on each device that it is on.
1da177e4
LT
590 *
591 * raid10_find_virt does the reverse mapping, from a device and a
592 * sector offset to a virtual address
593 */
594
f8c9e74f 595static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
596{
597 int n,f;
598 sector_t sector;
599 sector_t chunk;
600 sector_t stripe;
601 int dev;
1da177e4 602 int slot = 0;
9a3152ab
JB
603 int last_far_set_start, last_far_set_size;
604
605 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606 last_far_set_start *= geo->far_set_size;
607
608 last_far_set_size = geo->far_set_size;
609 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
610
611 /* now calculate first sector/dev */
5cf00fcd
N
612 chunk = r10bio->sector >> geo->chunk_shift;
613 sector = r10bio->sector & geo->chunk_mask;
1da177e4 614
5cf00fcd 615 chunk *= geo->near_copies;
1da177e4 616 stripe = chunk;
5cf00fcd
N
617 dev = sector_div(stripe, geo->raid_disks);
618 if (geo->far_offset)
619 stripe *= geo->far_copies;
1da177e4 620
5cf00fcd 621 sector += stripe << geo->chunk_shift;
1da177e4
LT
622
623 /* and calculate all the others */
5cf00fcd 624 for (n = 0; n < geo->near_copies; n++) {
1da177e4 625 int d = dev;
475901af 626 int set;
1da177e4 627 sector_t s = sector;
1da177e4 628 r10bio->devs[slot].devnum = d;
4c0ca26b 629 r10bio->devs[slot].addr = s;
1da177e4
LT
630 slot++;
631
5cf00fcd 632 for (f = 1; f < geo->far_copies; f++) {
475901af 633 set = d / geo->far_set_size;
5cf00fcd 634 d += geo->near_copies;
475901af 635
9a3152ab
JB
636 if ((geo->raid_disks % geo->far_set_size) &&
637 (d > last_far_set_start)) {
638 d -= last_far_set_start;
639 d %= last_far_set_size;
640 d += last_far_set_start;
641 } else {
642 d %= geo->far_set_size;
643 d += geo->far_set_size * set;
644 }
5cf00fcd 645 s += geo->stride;
1da177e4
LT
646 r10bio->devs[slot].devnum = d;
647 r10bio->devs[slot].addr = s;
648 slot++;
649 }
650 dev++;
5cf00fcd 651 if (dev >= geo->raid_disks) {
1da177e4 652 dev = 0;
5cf00fcd 653 sector += (geo->chunk_mask + 1);
1da177e4
LT
654 }
655 }
f8c9e74f
N
656}
657
658static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659{
660 struct geom *geo = &conf->geo;
661
662 if (conf->reshape_progress != MaxSector &&
663 ((r10bio->sector >= conf->reshape_progress) !=
664 conf->mddev->reshape_backwards)) {
665 set_bit(R10BIO_Previous, &r10bio->state);
666 geo = &conf->prev;
667 } else
668 clear_bit(R10BIO_Previous, &r10bio->state);
669
670 __raid10_find_phys(geo, r10bio);
1da177e4
LT
671}
672
e879a879 673static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
674{
675 sector_t offset, chunk, vchunk;
f8c9e74f
N
676 /* Never use conf->prev as this is only called during resync
677 * or recovery, so reshape isn't happening
678 */
5cf00fcd 679 struct geom *geo = &conf->geo;
475901af
JB
680 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681 int far_set_size = geo->far_set_size;
9a3152ab
JB
682 int last_far_set_start;
683
684 if (geo->raid_disks % geo->far_set_size) {
685 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686 last_far_set_start *= geo->far_set_size;
687
688 if (dev >= last_far_set_start) {
689 far_set_size = geo->far_set_size;
690 far_set_size += (geo->raid_disks % geo->far_set_size);
691 far_set_start = last_far_set_start;
692 }
693 }
1da177e4 694
5cf00fcd
N
695 offset = sector & geo->chunk_mask;
696 if (geo->far_offset) {
c93983bf 697 int fc;
5cf00fcd
N
698 chunk = sector >> geo->chunk_shift;
699 fc = sector_div(chunk, geo->far_copies);
700 dev -= fc * geo->near_copies;
475901af
JB
701 if (dev < far_set_start)
702 dev += far_set_size;
c93983bf 703 } else {
5cf00fcd
N
704 while (sector >= geo->stride) {
705 sector -= geo->stride;
475901af
JB
706 if (dev < (geo->near_copies + far_set_start))
707 dev += far_set_size - geo->near_copies;
c93983bf 708 else
5cf00fcd 709 dev -= geo->near_copies;
c93983bf 710 }
5cf00fcd 711 chunk = sector >> geo->chunk_shift;
c93983bf 712 }
5cf00fcd
N
713 vchunk = chunk * geo->raid_disks + dev;
714 sector_div(vchunk, geo->near_copies);
715 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
716}
717
1da177e4
LT
718/*
719 * This routine returns the disk from which the requested read should
720 * be done. There is a per-array 'next expected sequential IO' sector
721 * number - if this matches on the next IO then we use the last disk.
722 * There is also a per-disk 'last know head position' sector that is
723 * maintained from IRQ contexts, both the normal and the resync IO
724 * completion handlers update this position correctly. If there is no
725 * perfect sequential match then we pick the disk whose head is closest.
726 *
727 * If there are 2 mirrors in the same 2 devices, performance degrades
728 * because position is mirror, not device based.
729 *
730 * The rdev for the device selected will have nr_pending incremented.
731 */
732
733/*
734 * FIXME: possibly should rethink readbalancing and do it differently
735 * depending on near_copies / far_copies geometry.
736 */
96c3fd1f
N
737static struct md_rdev *read_balance(struct r10conf *conf,
738 struct r10bio *r10_bio,
739 int *max_sectors)
1da177e4 740{
af3a2cd6 741 const sector_t this_sector = r10_bio->sector;
56d99121 742 int disk, slot;
856e08e2
N
743 int sectors = r10_bio->sectors;
744 int best_good_sectors;
56d99121 745 sector_t new_distance, best_dist;
3bbae04b 746 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
747 int do_balance;
748 int best_slot;
5cf00fcd 749 struct geom *geo = &conf->geo;
1da177e4
LT
750
751 raid10_find_phys(conf, r10_bio);
752 rcu_read_lock();
56d99121 753 best_slot = -1;
abbf098e 754 best_rdev = NULL;
56d99121 755 best_dist = MaxSector;
856e08e2 756 best_good_sectors = 0;
56d99121 757 do_balance = 1;
8d3ca83d 758 clear_bit(R10BIO_FailFast, &r10_bio->state);
1da177e4
LT
759 /*
760 * Check if we can balance. We can balance on the whole
6cce3b23
N
761 * device if no resync is going on (recovery is ok), or below
762 * the resync window. We take the first readable disk when
763 * above the resync window.
1da177e4 764 */
d4098c72
GJ
765 if ((conf->mddev->recovery_cp < MaxSector
766 && (this_sector + sectors >= conf->next_resync)) ||
767 (mddev_is_clustered(conf->mddev) &&
768 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769 this_sector + sectors)))
56d99121 770 do_balance = 0;
1da177e4 771
56d99121 772 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
773 sector_t first_bad;
774 int bad_sectors;
775 sector_t dev_sector;
776
56d99121
N
777 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 continue;
1da177e4 779 disk = r10_bio->devs[slot].devnum;
abbf098e
N
780 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 784 if (rdev == NULL ||
8ae12666 785 test_bit(Faulty, &rdev->flags))
abbf098e
N
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
789 continue;
790
856e08e2
N
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
801 */
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
812 best_slot = slot;
abbf098e 813 best_rdev = rdev;
856e08e2
N
814 }
815 if (!do_balance)
816 /* Must read from here */
817 break;
818 }
819 continue;
820 } else
821 best_good_sectors = sectors;
822
56d99121
N
823 if (!do_balance)
824 break;
1da177e4 825
8d3ca83d
N
826 if (best_slot >= 0)
827 /* At least 2 disks to choose from so failfast is OK */
828 set_bit(R10BIO_FailFast, &r10_bio->state);
22dfdf52
N
829 /* This optimisation is debatable, and completely destroys
830 * sequential read speed for 'far copies' arrays. So only
831 * keep it for 'near' arrays, and review those later.
832 */
5cf00fcd 833 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
8d3ca83d 834 new_distance = 0;
8ed3a195
KS
835
836 /* for far > 1 always use the lowest address */
8d3ca83d 837 else if (geo->far_copies > 1)
56d99121 838 new_distance = r10_bio->devs[slot].addr;
8ed3a195 839 else
56d99121
N
840 new_distance = abs(r10_bio->devs[slot].addr -
841 conf->mirrors[disk].head_position);
842 if (new_distance < best_dist) {
843 best_dist = new_distance;
844 best_slot = slot;
abbf098e 845 best_rdev = rdev;
1da177e4
LT
846 }
847 }
abbf098e 848 if (slot >= conf->copies) {
56d99121 849 slot = best_slot;
abbf098e
N
850 rdev = best_rdev;
851 }
1da177e4 852
56d99121 853 if (slot >= 0) {
56d99121 854 atomic_inc(&rdev->nr_pending);
56d99121
N
855 r10_bio->read_slot = slot;
856 } else
96c3fd1f 857 rdev = NULL;
1da177e4 858 rcu_read_unlock();
856e08e2 859 *max_sectors = best_good_sectors;
1da177e4 860
96c3fd1f 861 return rdev;
1da177e4
LT
862}
863
5c675f83 864static int raid10_congested(struct mddev *mddev, int bits)
0d129228 865{
e879a879 866 struct r10conf *conf = mddev->private;
0d129228
N
867 int i, ret = 0;
868
4452226e 869 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
870 conf->pending_count >= max_queued_requests)
871 return 1;
872
0d129228 873 rcu_read_lock();
f8c9e74f
N
874 for (i = 0;
875 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876 && ret == 0;
877 i++) {
3cb03002 878 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 879 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 880 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 881
dc3b17cc 882 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228
N
883 }
884 }
885 rcu_read_unlock();
886 return ret;
887}
888
e879a879 889static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
890{
891 /* Any writes that have been queued but are awaiting
892 * bitmap updates get flushed here.
a35e63ef 893 */
a35e63ef
N
894 spin_lock_irq(&conf->device_lock);
895
896 if (conf->pending_bio_list.head) {
18022a1b 897 struct blk_plug plug;
a35e63ef 898 struct bio *bio;
18022a1b 899
a35e63ef 900 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 901 conf->pending_count = 0;
a35e63ef 902 spin_unlock_irq(&conf->device_lock);
18022a1b 903 blk_start_plug(&plug);
a35e63ef
N
904 /* flush any pending bitmap writes to disk
905 * before proceeding w/ I/O */
906 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 907 wake_up(&conf->wait_barrier);
a35e63ef
N
908
909 while (bio) { /* submit pending writes */
910 struct bio *next = bio->bi_next;
74d46992 911 struct md_rdev *rdev = (void*)bio->bi_disk;
a35e63ef 912 bio->bi_next = NULL;
74d46992 913 bio_set_dev(bio, rdev->bdev);
a9ae93c8 914 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 915 bio_io_error(bio);
a9ae93c8 916 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 917 !blk_queue_discard(bio->bi_disk->queue)))
532a2a3f 918 /* Just ignore it */
4246a0b6 919 bio_endio(bio);
532a2a3f
SL
920 else
921 generic_make_request(bio);
a35e63ef
N
922 bio = next;
923 }
18022a1b 924 blk_finish_plug(&plug);
a35e63ef
N
925 } else
926 spin_unlock_irq(&conf->device_lock);
a35e63ef 927}
7eaceacc 928
0a27ec96
N
929/* Barriers....
930 * Sometimes we need to suspend IO while we do something else,
931 * either some resync/recovery, or reconfigure the array.
932 * To do this we raise a 'barrier'.
933 * The 'barrier' is a counter that can be raised multiple times
934 * to count how many activities are happening which preclude
935 * normal IO.
936 * We can only raise the barrier if there is no pending IO.
937 * i.e. if nr_pending == 0.
938 * We choose only to raise the barrier if no-one is waiting for the
939 * barrier to go down. This means that as soon as an IO request
940 * is ready, no other operations which require a barrier will start
941 * until the IO request has had a chance.
942 *
943 * So: regular IO calls 'wait_barrier'. When that returns there
944 * is no backgroup IO happening, It must arrange to call
945 * allow_barrier when it has finished its IO.
946 * backgroup IO calls must call raise_barrier. Once that returns
947 * there is no normal IO happeing. It must arrange to call
948 * lower_barrier when the particular background IO completes.
1da177e4 949 */
1da177e4 950
e879a879 951static void raise_barrier(struct r10conf *conf, int force)
1da177e4 952{
6cce3b23 953 BUG_ON(force && !conf->barrier);
1da177e4 954 spin_lock_irq(&conf->resync_lock);
0a27ec96 955
6cce3b23
N
956 /* Wait until no block IO is waiting (unless 'force') */
957 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 958 conf->resync_lock);
0a27ec96
N
959
960 /* block any new IO from starting */
961 conf->barrier++;
962
c3b328ac 963 /* Now wait for all pending IO to complete */
0a27ec96 964 wait_event_lock_irq(conf->wait_barrier,
0e5313e2 965 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
eed8c02e 966 conf->resync_lock);
0a27ec96
N
967
968 spin_unlock_irq(&conf->resync_lock);
969}
970
e879a879 971static void lower_barrier(struct r10conf *conf)
0a27ec96
N
972{
973 unsigned long flags;
974 spin_lock_irqsave(&conf->resync_lock, flags);
975 conf->barrier--;
976 spin_unlock_irqrestore(&conf->resync_lock, flags);
977 wake_up(&conf->wait_barrier);
978}
979
e879a879 980static void wait_barrier(struct r10conf *conf)
0a27ec96
N
981{
982 spin_lock_irq(&conf->resync_lock);
983 if (conf->barrier) {
984 conf->nr_waiting++;
d6b42dcb
N
985 /* Wait for the barrier to drop.
986 * However if there are already pending
987 * requests (preventing the barrier from
988 * rising completely), and the
989 * pre-process bio queue isn't empty,
990 * then don't wait, as we need to empty
991 * that queue to get the nr_pending
992 * count down.
993 */
578b54ad 994 raid10_log(conf->mddev, "wait barrier");
d6b42dcb
N
995 wait_event_lock_irq(conf->wait_barrier,
996 !conf->barrier ||
0e5313e2 997 (atomic_read(&conf->nr_pending) &&
d6b42dcb 998 current->bio_list &&
f5fe1b51
N
999 (!bio_list_empty(&current->bio_list[0]) ||
1000 !bio_list_empty(&current->bio_list[1]))),
eed8c02e 1001 conf->resync_lock);
0a27ec96 1002 conf->nr_waiting--;
0e5313e2
TM
1003 if (!conf->nr_waiting)
1004 wake_up(&conf->wait_barrier);
1da177e4 1005 }
0e5313e2 1006 atomic_inc(&conf->nr_pending);
1da177e4
LT
1007 spin_unlock_irq(&conf->resync_lock);
1008}
1009
e879a879 1010static void allow_barrier(struct r10conf *conf)
0a27ec96 1011{
0e5313e2
TM
1012 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1013 (conf->array_freeze_pending))
1014 wake_up(&conf->wait_barrier);
0a27ec96
N
1015}
1016
e2d59925 1017static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1018{
1019 /* stop syncio and normal IO and wait for everything to
f188593e 1020 * go quiet.
4443ae10 1021 * We increment barrier and nr_waiting, and then
e2d59925 1022 * wait until nr_pending match nr_queued+extra
1c830532
N
1023 * This is called in the context of one normal IO request
1024 * that has failed. Thus any sync request that might be pending
1025 * will be blocked by nr_pending, and we need to wait for
1026 * pending IO requests to complete or be queued for re-try.
e2d59925 1027 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1028 * must match the number of pending IOs (nr_pending) before
1029 * we continue.
4443ae10
N
1030 */
1031 spin_lock_irq(&conf->resync_lock);
0e5313e2 1032 conf->array_freeze_pending++;
4443ae10
N
1033 conf->barrier++;
1034 conf->nr_waiting++;
eed8c02e 1035 wait_event_lock_irq_cmd(conf->wait_barrier,
0e5313e2 1036 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
eed8c02e
LC
1037 conf->resync_lock,
1038 flush_pending_writes(conf));
c3b328ac 1039
0e5313e2 1040 conf->array_freeze_pending--;
4443ae10
N
1041 spin_unlock_irq(&conf->resync_lock);
1042}
1043
e879a879 1044static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1045{
1046 /* reverse the effect of the freeze */
1047 spin_lock_irq(&conf->resync_lock);
1048 conf->barrier--;
1049 conf->nr_waiting--;
1050 wake_up(&conf->wait_barrier);
1051 spin_unlock_irq(&conf->resync_lock);
1052}
1053
f8c9e74f
N
1054static sector_t choose_data_offset(struct r10bio *r10_bio,
1055 struct md_rdev *rdev)
1056{
1057 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1058 test_bit(R10BIO_Previous, &r10_bio->state))
1059 return rdev->data_offset;
1060 else
1061 return rdev->new_data_offset;
1062}
1063
57c67df4
N
1064struct raid10_plug_cb {
1065 struct blk_plug_cb cb;
1066 struct bio_list pending;
1067 int pending_cnt;
1068};
1069
1070static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1071{
1072 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1073 cb);
1074 struct mddev *mddev = plug->cb.data;
1075 struct r10conf *conf = mddev->private;
1076 struct bio *bio;
1077
874807a8 1078 if (from_schedule || current->bio_list) {
57c67df4
N
1079 spin_lock_irq(&conf->device_lock);
1080 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1081 conf->pending_count += plug->pending_cnt;
1082 spin_unlock_irq(&conf->device_lock);
ee0b0244 1083 wake_up(&conf->wait_barrier);
57c67df4
N
1084 md_wakeup_thread(mddev->thread);
1085 kfree(plug);
1086 return;
1087 }
1088
1089 /* we aren't scheduling, so we can do the write-out directly. */
1090 bio = bio_list_get(&plug->pending);
1091 bitmap_unplug(mddev->bitmap);
1092 wake_up(&conf->wait_barrier);
1093
1094 while (bio) { /* submit pending writes */
1095 struct bio *next = bio->bi_next;
74d46992 1096 struct md_rdev *rdev = (void*)bio->bi_disk;
57c67df4 1097 bio->bi_next = NULL;
74d46992 1098 bio_set_dev(bio, rdev->bdev);
a9ae93c8 1099 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 1100 bio_io_error(bio);
a9ae93c8 1101 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 1102 !blk_queue_discard(bio->bi_disk->queue)))
32f9f570 1103 /* Just ignore it */
4246a0b6 1104 bio_endio(bio);
32f9f570
SL
1105 else
1106 generic_make_request(bio);
57c67df4
N
1107 bio = next;
1108 }
1109 kfree(plug);
1110}
1111
bb5f1ed7
RL
1112static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1113 struct r10bio *r10_bio)
1da177e4 1114{
e879a879 1115 struct r10conf *conf = mddev->private;
1da177e4 1116 struct bio *read_bio;
bb5f1ed7
RL
1117 const int op = bio_op(bio);
1118 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
bb5f1ed7
RL
1119 int max_sectors;
1120 sector_t sectors;
1121 struct md_rdev *rdev;
545250f2
N
1122 char b[BDEVNAME_SIZE];
1123 int slot = r10_bio->read_slot;
1124 struct md_rdev *err_rdev = NULL;
1125 gfp_t gfp = GFP_NOIO;
bb5f1ed7 1126
545250f2
N
1127 if (r10_bio->devs[slot].rdev) {
1128 /*
1129 * This is an error retry, but we cannot
1130 * safely dereference the rdev in the r10_bio,
1131 * we must use the one in conf.
1132 * If it has already been disconnected (unlikely)
1133 * we lose the device name in error messages.
1134 */
1135 int disk;
1136 /*
1137 * As we are blocking raid10, it is a little safer to
1138 * use __GFP_HIGH.
1139 */
1140 gfp = GFP_NOIO | __GFP_HIGH;
1141
1142 rcu_read_lock();
1143 disk = r10_bio->devs[slot].devnum;
1144 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1145 if (err_rdev)
1146 bdevname(err_rdev->bdev, b);
1147 else {
1148 strcpy(b, "???");
1149 /* This never gets dereferenced */
1150 err_rdev = r10_bio->devs[slot].rdev;
1151 }
1152 rcu_read_unlock();
1153 }
bb5f1ed7
RL
1154 /*
1155 * Register the new request and wait if the reconstruction
1156 * thread has put up a bar for new requests.
1157 * Continue immediately if no resync is active currently.
1158 */
1159 wait_barrier(conf);
1160
fc9977dd 1161 sectors = r10_bio->sectors;
bb5f1ed7
RL
1162 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1163 bio->bi_iter.bi_sector < conf->reshape_progress &&
1164 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1165 /*
1166 * IO spans the reshape position. Need to wait for reshape to
1167 * pass
1168 */
1169 raid10_log(conf->mddev, "wait reshape");
1170 allow_barrier(conf);
1171 wait_event(conf->wait_barrier,
1172 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1173 conf->reshape_progress >= bio->bi_iter.bi_sector +
1174 sectors);
1175 wait_barrier(conf);
1176 }
1177
bb5f1ed7
RL
1178 rdev = read_balance(conf, r10_bio, &max_sectors);
1179 if (!rdev) {
545250f2
N
1180 if (err_rdev) {
1181 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182 mdname(mddev), b,
1183 (unsigned long long)r10_bio->sector);
1184 }
bb5f1ed7
RL
1185 raid_end_bio_io(r10_bio);
1186 return;
1187 }
545250f2
N
1188 if (err_rdev)
1189 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1190 mdname(mddev),
1191 bdevname(rdev->bdev, b),
1192 (unsigned long long)r10_bio->sector);
fc9977dd
N
1193 if (max_sectors < bio_sectors(bio)) {
1194 struct bio *split = bio_split(bio, max_sectors,
545250f2 1195 gfp, conf->bio_split);
fc9977dd 1196 bio_chain(split, bio);
d7eed9cb 1197 allow_barrier(conf);
fc9977dd 1198 generic_make_request(bio);
d7eed9cb 1199 wait_barrier(conf);
fc9977dd
N
1200 bio = split;
1201 r10_bio->master_bio = bio;
1202 r10_bio->sectors = max_sectors;
1203 }
bb5f1ed7
RL
1204 slot = r10_bio->read_slot;
1205
545250f2 1206 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
bb5f1ed7
RL
1207
1208 r10_bio->devs[slot].bio = read_bio;
1209 r10_bio->devs[slot].rdev = rdev;
1210
1211 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212 choose_data_offset(r10_bio, rdev);
74d46992 1213 bio_set_dev(read_bio, rdev->bdev);
bb5f1ed7
RL
1214 read_bio->bi_end_io = raid10_end_read_request;
1215 bio_set_op_attrs(read_bio, op, do_sync);
1216 if (test_bit(FailFast, &rdev->flags) &&
1217 test_bit(R10BIO_FailFast, &r10_bio->state))
1218 read_bio->bi_opf |= MD_FAILFAST;
1219 read_bio->bi_private = r10_bio;
1220
1221 if (mddev->gendisk)
74d46992 1222 trace_block_bio_remap(read_bio->bi_disk->queue,
bb5f1ed7
RL
1223 read_bio, disk_devt(mddev->gendisk),
1224 r10_bio->sector);
fc9977dd 1225 generic_make_request(read_bio);
bb5f1ed7
RL
1226 return;
1227}
1228
27f26a0f
GJ
1229static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 struct bio *bio, bool replacement,
fc9977dd 1231 int n_copy)
bb5f1ed7 1232{
796a5cf0 1233 const int op = bio_op(bio);
1eff9d32
JA
1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
6cce3b23 1236 unsigned long flags;
57c67df4
N
1237 struct blk_plug_cb *cb;
1238 struct raid10_plug_cb *plug = NULL;
27f26a0f
GJ
1239 struct r10conf *conf = mddev->private;
1240 struct md_rdev *rdev;
1241 int devnum = r10_bio->devs[n_copy].devnum;
1242 struct bio *mbio;
1243
1244 if (replacement) {
1245 rdev = conf->mirrors[devnum].replacement;
1246 if (rdev == NULL) {
1247 /* Replacement just got moved to main 'rdev' */
1248 smp_mb();
1249 rdev = conf->mirrors[devnum].rdev;
1250 }
1251 } else
1252 rdev = conf->mirrors[devnum].rdev;
1253
1254 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
27f26a0f
GJ
1255 if (replacement)
1256 r10_bio->devs[n_copy].repl_bio = mbio;
1257 else
1258 r10_bio->devs[n_copy].bio = mbio;
1259
1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261 choose_data_offset(r10_bio, rdev));
74d46992 1262 bio_set_dev(mbio, rdev->bdev);
27f26a0f
GJ
1263 mbio->bi_end_io = raid10_end_write_request;
1264 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265 if (!replacement && test_bit(FailFast,
1266 &conf->mirrors[devnum].rdev->flags)
1267 && enough(conf, devnum))
1268 mbio->bi_opf |= MD_FAILFAST;
1269 mbio->bi_private = r10_bio;
1270
1271 if (conf->mddev->gendisk)
74d46992 1272 trace_block_bio_remap(mbio->bi_disk->queue,
27f26a0f
GJ
1273 mbio, disk_devt(conf->mddev->gendisk),
1274 r10_bio->sector);
1275 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1276 mbio->bi_disk = (void *)rdev;
27f26a0f
GJ
1277
1278 atomic_inc(&r10_bio->remaining);
1279
1280 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281 if (cb)
1282 plug = container_of(cb, struct raid10_plug_cb, cb);
1283 else
1284 plug = NULL;
27f26a0f
GJ
1285 if (plug) {
1286 bio_list_add(&plug->pending, mbio);
1287 plug->pending_cnt++;
1288 } else {
23b245c0 1289 spin_lock_irqsave(&conf->device_lock, flags);
27f26a0f
GJ
1290 bio_list_add(&conf->pending_bio_list, mbio);
1291 conf->pending_count++;
23b245c0 1292 spin_unlock_irqrestore(&conf->device_lock, flags);
27f26a0f 1293 md_wakeup_thread(mddev->thread);
23b245c0 1294 }
27f26a0f
GJ
1295}
1296
1297static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1298 struct r10bio *r10_bio)
1299{
1300 struct r10conf *conf = mddev->private;
1301 int i;
1302 struct md_rdev *blocked_rdev;
bb5f1ed7 1303 sector_t sectors;
d4432c23 1304 int max_sectors;
1da177e4 1305
cb8a7a7e
GJ
1306 if ((mddev_is_clustered(mddev) &&
1307 md_cluster_ops->area_resyncing(mddev, WRITE,
1308 bio->bi_iter.bi_sector,
1309 bio_end_sector(bio)))) {
1310 DEFINE_WAIT(w);
1311 for (;;) {
1312 prepare_to_wait(&conf->wait_barrier,
1313 &w, TASK_IDLE);
1314 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1315 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1316 break;
1317 schedule();
1318 }
1319 finish_wait(&conf->wait_barrier, &w);
1320 }
1321
cc13b1d1
N
1322 /*
1323 * Register the new request and wait if the reconstruction
1324 * thread has put up a bar for new requests.
1325 * Continue immediately if no resync is active currently.
1326 */
1327 wait_barrier(conf);
1328
fc9977dd 1329 sectors = r10_bio->sectors;
3ea7daa5 1330 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1331 bio->bi_iter.bi_sector < conf->reshape_progress &&
1332 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
bb5f1ed7
RL
1333 /*
1334 * IO spans the reshape position. Need to wait for reshape to
1335 * pass
3ea7daa5 1336 */
578b54ad 1337 raid10_log(conf->mddev, "wait reshape");
3ea7daa5
N
1338 allow_barrier(conf);
1339 wait_event(conf->wait_barrier,
4f024f37
KO
1340 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1341 conf->reshape_progress >= bio->bi_iter.bi_sector +
1342 sectors);
3ea7daa5
N
1343 wait_barrier(conf);
1344 }
bb5f1ed7 1345
3ea7daa5 1346 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3ea7daa5 1347 (mddev->reshape_backwards
4f024f37
KO
1348 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1349 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1350 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1351 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1352 /* Need to update reshape_position in metadata */
1353 mddev->reshape_position = conf->reshape_progress;
2953079c
SL
1354 set_mask_bits(&mddev->sb_flags, 0,
1355 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
3ea7daa5 1356 md_wakeup_thread(mddev->thread);
578b54ad 1357 raid10_log(conf->mddev, "wait reshape metadata");
3ea7daa5 1358 wait_event(mddev->sb_wait,
2953079c 1359 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
3ea7daa5
N
1360
1361 conf->reshape_safe = mddev->reshape_position;
1362 }
1363
34db0cd6
N
1364 if (conf->pending_count >= max_queued_requests) {
1365 md_wakeup_thread(mddev->thread);
578b54ad 1366 raid10_log(mddev, "wait queued");
34db0cd6
N
1367 wait_event(conf->wait_barrier,
1368 conf->pending_count < max_queued_requests);
1369 }
6bfe0b49 1370 /* first select target devices under rcu_lock and
1da177e4
LT
1371 * inc refcount on their rdev. Record them by setting
1372 * bios[x] to bio
d4432c23
N
1373 * If there are known/acknowledged bad blocks on any device
1374 * on which we have seen a write error, we want to avoid
1375 * writing to those blocks. This potentially requires several
1376 * writes to write around the bad blocks. Each set of writes
fd16f2e8 1377 * gets its own r10_bio with a set of bios attached.
1da177e4 1378 */
c3b328ac 1379
69335ef3 1380 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1381 raid10_find_phys(conf, r10_bio);
d4432c23 1382retry_write:
cb6969e8 1383 blocked_rdev = NULL;
1da177e4 1384 rcu_read_lock();
d4432c23
N
1385 max_sectors = r10_bio->sectors;
1386
1da177e4
LT
1387 for (i = 0; i < conf->copies; i++) {
1388 int d = r10_bio->devs[i].devnum;
3cb03002 1389 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1390 struct md_rdev *rrdev = rcu_dereference(
1391 conf->mirrors[d].replacement);
4ca40c2c
N
1392 if (rdev == rrdev)
1393 rrdev = NULL;
6bfe0b49
DW
1394 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1395 atomic_inc(&rdev->nr_pending);
1396 blocked_rdev = rdev;
1397 break;
1398 }
475b0321
N
1399 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1400 atomic_inc(&rrdev->nr_pending);
1401 blocked_rdev = rrdev;
1402 break;
1403 }
8ae12666 1404 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1405 rdev = NULL;
8ae12666 1406 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1407 rrdev = NULL;
1408
d4432c23 1409 r10_bio->devs[i].bio = NULL;
475b0321 1410 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1411
1412 if (!rdev && !rrdev) {
6cce3b23 1413 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1414 continue;
1415 }
e7c0c3fa 1416 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1417 sector_t first_bad;
1418 sector_t dev_sector = r10_bio->devs[i].addr;
1419 int bad_sectors;
1420 int is_bad;
1421
bb5f1ed7 1422 is_bad = is_badblock(rdev, dev_sector, max_sectors,
d4432c23
N
1423 &first_bad, &bad_sectors);
1424 if (is_bad < 0) {
1425 /* Mustn't write here until the bad block
1426 * is acknowledged
1427 */
1428 atomic_inc(&rdev->nr_pending);
1429 set_bit(BlockedBadBlocks, &rdev->flags);
1430 blocked_rdev = rdev;
1431 break;
1432 }
1433 if (is_bad && first_bad <= dev_sector) {
1434 /* Cannot write here at all */
1435 bad_sectors -= (dev_sector - first_bad);
1436 if (bad_sectors < max_sectors)
1437 /* Mustn't write more than bad_sectors
1438 * to other devices yet
1439 */
1440 max_sectors = bad_sectors;
1441 /* We don't set R10BIO_Degraded as that
1442 * only applies if the disk is missing,
1443 * so it might be re-added, and we want to
1444 * know to recover this chunk.
1445 * In this case the device is here, and the
1446 * fact that this chunk is not in-sync is
1447 * recorded in the bad block log.
1448 */
1449 continue;
1450 }
1451 if (is_bad) {
1452 int good_sectors = first_bad - dev_sector;
1453 if (good_sectors < max_sectors)
1454 max_sectors = good_sectors;
1455 }
6cce3b23 1456 }
e7c0c3fa
N
1457 if (rdev) {
1458 r10_bio->devs[i].bio = bio;
1459 atomic_inc(&rdev->nr_pending);
1460 }
475b0321
N
1461 if (rrdev) {
1462 r10_bio->devs[i].repl_bio = bio;
1463 atomic_inc(&rrdev->nr_pending);
1464 }
1da177e4
LT
1465 }
1466 rcu_read_unlock();
1467
6bfe0b49
DW
1468 if (unlikely(blocked_rdev)) {
1469 /* Have to wait for this device to get unblocked, then retry */
1470 int j;
1471 int d;
1472
475b0321 1473 for (j = 0; j < i; j++) {
6bfe0b49
DW
1474 if (r10_bio->devs[j].bio) {
1475 d = r10_bio->devs[j].devnum;
1476 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1477 }
475b0321 1478 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1479 struct md_rdev *rdev;
475b0321 1480 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1481 rdev = conf->mirrors[d].replacement;
1482 if (!rdev) {
1483 /* Race with remove_disk */
1484 smp_mb();
1485 rdev = conf->mirrors[d].rdev;
1486 }
1487 rdev_dec_pending(rdev, mddev);
475b0321
N
1488 }
1489 }
6bfe0b49 1490 allow_barrier(conf);
578b54ad 1491 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49
DW
1492 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1493 wait_barrier(conf);
1494 goto retry_write;
1495 }
1496
6b6c8110 1497 if (max_sectors < r10_bio->sectors)
d4432c23 1498 r10_bio->sectors = max_sectors;
fc9977dd
N
1499
1500 if (r10_bio->sectors < bio_sectors(bio)) {
1501 struct bio *split = bio_split(bio, r10_bio->sectors,
1502 GFP_NOIO, conf->bio_split);
1503 bio_chain(split, bio);
d7eed9cb 1504 allow_barrier(conf);
fc9977dd 1505 generic_make_request(bio);
d7eed9cb 1506 wait_barrier(conf);
fc9977dd
N
1507 bio = split;
1508 r10_bio->master_bio = bio;
d4432c23 1509 }
d4432c23 1510
4e78064f 1511 atomic_set(&r10_bio->remaining, 1);
d4432c23 1512 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1513
1da177e4 1514 for (i = 0; i < conf->copies; i++) {
27f26a0f 1515 if (r10_bio->devs[i].bio)
fc9977dd 1516 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
27f26a0f 1517 if (r10_bio->devs[i].repl_bio)
fc9977dd 1518 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
d4432c23 1519 }
079fa166 1520 one_write_done(r10_bio);
20d0189b
KO
1521}
1522
fc9977dd 1523static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
bb5f1ed7
RL
1524{
1525 struct r10conf *conf = mddev->private;
1526 struct r10bio *r10_bio;
1527
1528 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1529
1530 r10_bio->master_bio = bio;
fc9977dd 1531 r10_bio->sectors = sectors;
bb5f1ed7
RL
1532
1533 r10_bio->mddev = mddev;
1534 r10_bio->sector = bio->bi_iter.bi_sector;
1535 r10_bio->state = 0;
545250f2 1536 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
bb5f1ed7
RL
1537
1538 if (bio_data_dir(bio) == READ)
1539 raid10_read_request(mddev, bio, r10_bio);
1540 else
1541 raid10_write_request(mddev, bio, r10_bio);
1542}
1543
cc27b0c7 1544static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1545{
1546 struct r10conf *conf = mddev->private;
1547 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1548 int chunk_sects = chunk_mask + 1;
fc9977dd 1549 int sectors = bio_sectors(bio);
20d0189b 1550
1eff9d32 1551 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
20d0189b 1552 md_flush_request(mddev, bio);
cc27b0c7 1553 return true;
20d0189b
KO
1554 }
1555
cc27b0c7
N
1556 if (!md_write_start(mddev, bio))
1557 return false;
1558
fc9977dd
N
1559 /*
1560 * If this request crosses a chunk boundary, we need to split
1561 * it.
1562 */
1563 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1564 sectors > chunk_sects
1565 && (conf->geo.near_copies < conf->geo.raid_disks
1566 || conf->prev.near_copies <
1567 conf->prev.raid_disks)))
1568 sectors = chunk_sects -
1569 (bio->bi_iter.bi_sector &
1570 (chunk_sects - 1));
1571 __make_request(mddev, bio, sectors);
079fa166
N
1572
1573 /* In case raid10d snuck in to freeze_array */
1574 wake_up(&conf->wait_barrier);
cc27b0c7 1575 return true;
1da177e4
LT
1576}
1577
849674e4 1578static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1579{
e879a879 1580 struct r10conf *conf = mddev->private;
1da177e4
LT
1581 int i;
1582
5cf00fcd 1583 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1584 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1585 if (conf->geo.near_copies > 1)
1586 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1587 if (conf->geo.far_copies > 1) {
1588 if (conf->geo.far_offset)
1589 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1590 else
5cf00fcd 1591 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1592 if (conf->geo.far_set_size != conf->geo.raid_disks)
1593 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1594 }
5cf00fcd
N
1595 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1596 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1597 rcu_read_lock();
1598 for (i = 0; i < conf->geo.raid_disks; i++) {
1599 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1600 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1601 }
1602 rcu_read_unlock();
1da177e4
LT
1603 seq_printf(seq, "]");
1604}
1605
700c7213
N
1606/* check if there are enough drives for
1607 * every block to appear on atleast one.
1608 * Don't consider the device numbered 'ignore'
1609 * as we might be about to remove it.
1610 */
635f6416 1611static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1612{
1613 int first = 0;
725d6e57 1614 int has_enough = 0;
635f6416
N
1615 int disks, ncopies;
1616 if (previous) {
1617 disks = conf->prev.raid_disks;
1618 ncopies = conf->prev.near_copies;
1619 } else {
1620 disks = conf->geo.raid_disks;
1621 ncopies = conf->geo.near_copies;
1622 }
700c7213 1623
725d6e57 1624 rcu_read_lock();
700c7213
N
1625 do {
1626 int n = conf->copies;
1627 int cnt = 0;
80b48124 1628 int this = first;
700c7213 1629 while (n--) {
725d6e57
N
1630 struct md_rdev *rdev;
1631 if (this != ignore &&
1632 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1633 test_bit(In_sync, &rdev->flags))
700c7213 1634 cnt++;
635f6416 1635 this = (this+1) % disks;
700c7213
N
1636 }
1637 if (cnt == 0)
725d6e57 1638 goto out;
635f6416 1639 first = (first + ncopies) % disks;
700c7213 1640 } while (first != 0);
725d6e57
N
1641 has_enough = 1;
1642out:
1643 rcu_read_unlock();
1644 return has_enough;
700c7213
N
1645}
1646
f8c9e74f
N
1647static int enough(struct r10conf *conf, int ignore)
1648{
635f6416
N
1649 /* when calling 'enough', both 'prev' and 'geo' must
1650 * be stable.
1651 * This is ensured if ->reconfig_mutex or ->device_lock
1652 * is held.
1653 */
1654 return _enough(conf, 0, ignore) &&
1655 _enough(conf, 1, ignore);
f8c9e74f
N
1656}
1657
849674e4 1658static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1659{
1660 char b[BDEVNAME_SIZE];
e879a879 1661 struct r10conf *conf = mddev->private;
635f6416 1662 unsigned long flags;
1da177e4
LT
1663
1664 /*
1665 * If it is not operational, then we have already marked it as dead
1666 * else if it is the last working disks, ignore the error, let the
1667 * next level up know.
1668 * else mark the drive as failed
1669 */
635f6416 1670 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1671 if (test_bit(In_sync, &rdev->flags)
635f6416 1672 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1673 /*
1674 * Don't fail the drive, just return an IO error.
1da177e4 1675 */
635f6416 1676 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1677 return;
635f6416 1678 }
2446dba0 1679 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1680 mddev->degraded++;
2446dba0
N
1681 /*
1682 * If recovery is running, make sure it aborts.
1683 */
1684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1685 set_bit(Blocked, &rdev->flags);
b2d444d7 1686 set_bit(Faulty, &rdev->flags);
2953079c
SL
1687 set_mask_bits(&mddev->sb_flags, 0,
1688 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
635f6416 1689 spin_unlock_irqrestore(&conf->device_lock, flags);
08464e09
N
1690 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1691 "md/raid10:%s: Operation continuing on %d devices.\n",
1692 mdname(mddev), bdevname(rdev->bdev, b),
1693 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1694}
1695
e879a879 1696static void print_conf(struct r10conf *conf)
1da177e4
LT
1697{
1698 int i;
4056ca51 1699 struct md_rdev *rdev;
1da177e4 1700
08464e09 1701 pr_debug("RAID10 conf printout:\n");
1da177e4 1702 if (!conf) {
08464e09 1703 pr_debug("(!conf)\n");
1da177e4
LT
1704 return;
1705 }
08464e09
N
1706 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1707 conf->geo.raid_disks);
1da177e4 1708
4056ca51
N
1709 /* This is only called with ->reconfix_mutex held, so
1710 * rcu protection of rdev is not needed */
5cf00fcd 1711 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1712 char b[BDEVNAME_SIZE];
4056ca51
N
1713 rdev = conf->mirrors[i].rdev;
1714 if (rdev)
08464e09
N
1715 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1716 i, !test_bit(In_sync, &rdev->flags),
1717 !test_bit(Faulty, &rdev->flags),
1718 bdevname(rdev->bdev,b));
1da177e4
LT
1719 }
1720}
1721
e879a879 1722static void close_sync(struct r10conf *conf)
1da177e4 1723{
0a27ec96
N
1724 wait_barrier(conf);
1725 allow_barrier(conf);
1da177e4
LT
1726
1727 mempool_destroy(conf->r10buf_pool);
1728 conf->r10buf_pool = NULL;
1729}
1730
fd01b88c 1731static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1732{
1733 int i;
e879a879 1734 struct r10conf *conf = mddev->private;
dc280d98 1735 struct raid10_info *tmp;
6b965620
N
1736 int count = 0;
1737 unsigned long flags;
1da177e4
LT
1738
1739 /*
1740 * Find all non-in_sync disks within the RAID10 configuration
1741 * and mark them in_sync
1742 */
5cf00fcd 1743 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1744 tmp = conf->mirrors + i;
4ca40c2c
N
1745 if (tmp->replacement
1746 && tmp->replacement->recovery_offset == MaxSector
1747 && !test_bit(Faulty, &tmp->replacement->flags)
1748 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1749 /* Replacement has just become active */
1750 if (!tmp->rdev
1751 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1752 count++;
1753 if (tmp->rdev) {
1754 /* Replaced device not technically faulty,
1755 * but we need to be sure it gets removed
1756 * and never re-added.
1757 */
1758 set_bit(Faulty, &tmp->rdev->flags);
1759 sysfs_notify_dirent_safe(
1760 tmp->rdev->sysfs_state);
1761 }
1762 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1763 } else if (tmp->rdev
61e4947c 1764 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1765 && !test_bit(Faulty, &tmp->rdev->flags)
1766 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1767 count++;
2863b9eb 1768 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1769 }
1770 }
6b965620
N
1771 spin_lock_irqsave(&conf->device_lock, flags);
1772 mddev->degraded -= count;
1773 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1774
1775 print_conf(conf);
6b965620 1776 return count;
1da177e4
LT
1777}
1778
fd01b88c 1779static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1780{
e879a879 1781 struct r10conf *conf = mddev->private;
199050ea 1782 int err = -EEXIST;
1da177e4 1783 int mirror;
6c2fce2e 1784 int first = 0;
5cf00fcd 1785 int last = conf->geo.raid_disks - 1;
1da177e4
LT
1786
1787 if (mddev->recovery_cp < MaxSector)
1788 /* only hot-add to in-sync arrays, as recovery is
1789 * very different from resync
1790 */
199050ea 1791 return -EBUSY;
635f6416 1792 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1793 return -EINVAL;
1da177e4 1794
1501efad
DW
1795 if (md_integrity_add_rdev(rdev, mddev))
1796 return -ENXIO;
1797
a53a6c85 1798 if (rdev->raid_disk >= 0)
6c2fce2e 1799 first = last = rdev->raid_disk;
1da177e4 1800
2c4193df 1801 if (rdev->saved_raid_disk >= first &&
edf57bb0 1802 rdev->saved_raid_disk < conf->geo.raid_disks &&
6cce3b23
N
1803 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1804 mirror = rdev->saved_raid_disk;
1805 else
6c2fce2e 1806 mirror = first;
2bb77736 1807 for ( ; mirror <= last ; mirror++) {
dc280d98 1808 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1809 if (p->recovery_disabled == mddev->recovery_disabled)
1810 continue;
b7044d41
N
1811 if (p->rdev) {
1812 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1813 p->replacement != NULL)
1814 continue;
1815 clear_bit(In_sync, &rdev->flags);
1816 set_bit(Replacement, &rdev->flags);
1817 rdev->raid_disk = mirror;
1818 err = 0;
9092c02d
JB
1819 if (mddev->gendisk)
1820 disk_stack_limits(mddev->gendisk, rdev->bdev,
1821 rdev->data_offset << 9);
b7044d41
N
1822 conf->fullsync = 1;
1823 rcu_assign_pointer(p->replacement, rdev);
1824 break;
1825 }
1da177e4 1826
9092c02d
JB
1827 if (mddev->gendisk)
1828 disk_stack_limits(mddev->gendisk, rdev->bdev,
1829 rdev->data_offset << 9);
1da177e4 1830
2bb77736 1831 p->head_position = 0;
d890fa2b 1832 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1833 rdev->raid_disk = mirror;
1834 err = 0;
1835 if (rdev->saved_raid_disk != mirror)
1836 conf->fullsync = 1;
1837 rcu_assign_pointer(p->rdev, rdev);
1838 break;
1839 }
ed30be07 1840 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1841 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1842
1da177e4 1843 print_conf(conf);
199050ea 1844 return err;
1da177e4
LT
1845}
1846
b8321b68 1847static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1848{
e879a879 1849 struct r10conf *conf = mddev->private;
1da177e4 1850 int err = 0;
b8321b68 1851 int number = rdev->raid_disk;
c8ab903e 1852 struct md_rdev **rdevp;
dc280d98 1853 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1854
1855 print_conf(conf);
c8ab903e
N
1856 if (rdev == p->rdev)
1857 rdevp = &p->rdev;
1858 else if (rdev == p->replacement)
1859 rdevp = &p->replacement;
1860 else
1861 return 0;
1862
1863 if (test_bit(In_sync, &rdev->flags) ||
1864 atomic_read(&rdev->nr_pending)) {
1865 err = -EBUSY;
1866 goto abort;
1867 }
d787be40 1868 /* Only remove non-faulty devices if recovery
c8ab903e
N
1869 * is not possible.
1870 */
1871 if (!test_bit(Faulty, &rdev->flags) &&
1872 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1873 (!p->replacement || p->replacement == rdev) &&
63aced61 1874 number < conf->geo.raid_disks &&
c8ab903e
N
1875 enough(conf, -1)) {
1876 err = -EBUSY;
1877 goto abort;
1da177e4 1878 }
c8ab903e 1879 *rdevp = NULL;
d787be40
N
1880 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1881 synchronize_rcu();
1882 if (atomic_read(&rdev->nr_pending)) {
1883 /* lost the race, try later */
1884 err = -EBUSY;
1885 *rdevp = rdev;
1886 goto abort;
1887 }
1888 }
1889 if (p->replacement) {
4ca40c2c
N
1890 /* We must have just cleared 'rdev' */
1891 p->rdev = p->replacement;
1892 clear_bit(Replacement, &p->replacement->flags);
1893 smp_mb(); /* Make sure other CPUs may see both as identical
1894 * but will never see neither -- if they are careful.
1895 */
1896 p->replacement = NULL;
e5bc9c3c 1897 }
4ca40c2c 1898
e5bc9c3c 1899 clear_bit(WantReplacement, &rdev->flags);
c8ab903e
N
1900 err = md_integrity_register(mddev);
1901
1da177e4
LT
1902abort:
1903
1904 print_conf(conf);
1905 return err;
1906}
1907
81fa1520 1908static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1da177e4 1909{
e879a879 1910 struct r10conf *conf = r10_bio->mddev->private;
0eb3ff12 1911
4e4cbee9 1912 if (!bio->bi_status)
0eb3ff12 1913 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1914 else
1915 /* The write handler will notice the lack of
1916 * R10BIO_Uptodate and record any errors etc
1917 */
4dbcdc75
N
1918 atomic_add(r10_bio->sectors,
1919 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1920
1921 /* for reconstruct, we always reschedule after a read.
1922 * for resync, only after all reads
1923 */
73d5c38a 1924 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1925 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1926 atomic_dec_and_test(&r10_bio->remaining)) {
1927 /* we have read all the blocks,
1928 * do the comparison in process context in raid10d
1929 */
1930 reschedule_retry(r10_bio);
1931 }
1da177e4
LT
1932}
1933
81fa1520
ML
1934static void end_sync_read(struct bio *bio)
1935{
f0250618 1936 struct r10bio *r10_bio = get_resync_r10bio(bio);
81fa1520
ML
1937 struct r10conf *conf = r10_bio->mddev->private;
1938 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1939
1940 __end_sync_read(r10_bio, bio, d);
1941}
1942
1943static void end_reshape_read(struct bio *bio)
1944{
f0250618 1945 /* reshape read bio isn't allocated from r10buf_pool */
81fa1520
ML
1946 struct r10bio *r10_bio = bio->bi_private;
1947
1948 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1949}
1950
9f2c9d12 1951static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1952{
fd01b88c 1953 struct mddev *mddev = r10_bio->mddev;
dfc70645 1954
1da177e4
LT
1955 while (atomic_dec_and_test(&r10_bio->remaining)) {
1956 if (r10_bio->master_bio == NULL) {
1957 /* the primary of several recovery bios */
73d5c38a 1958 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1959 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1960 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1961 reschedule_retry(r10_bio);
1962 else
1963 put_buf(r10_bio);
73d5c38a 1964 md_done_sync(mddev, s, 1);
1da177e4
LT
1965 break;
1966 } else {
9f2c9d12 1967 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1968 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1969 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1970 reschedule_retry(r10_bio);
1971 else
1972 put_buf(r10_bio);
1da177e4
LT
1973 r10_bio = r10_bio2;
1974 }
1975 }
1da177e4
LT
1976}
1977
4246a0b6 1978static void end_sync_write(struct bio *bio)
5e570289 1979{
f0250618 1980 struct r10bio *r10_bio = get_resync_r10bio(bio);
fd01b88c 1981 struct mddev *mddev = r10_bio->mddev;
e879a879 1982 struct r10conf *conf = mddev->private;
5e570289
N
1983 int d;
1984 sector_t first_bad;
1985 int bad_sectors;
1986 int slot;
9ad1aefc 1987 int repl;
4ca40c2c 1988 struct md_rdev *rdev = NULL;
5e570289 1989
9ad1aefc
N
1990 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1991 if (repl)
1992 rdev = conf->mirrors[d].replacement;
547414d1 1993 else
9ad1aefc 1994 rdev = conf->mirrors[d].rdev;
5e570289 1995
4e4cbee9 1996 if (bio->bi_status) {
9ad1aefc
N
1997 if (repl)
1998 md_error(mddev, rdev);
1999 else {
2000 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2001 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2002 set_bit(MD_RECOVERY_NEEDED,
2003 &rdev->mddev->recovery);
9ad1aefc
N
2004 set_bit(R10BIO_WriteError, &r10_bio->state);
2005 }
2006 } else if (is_badblock(rdev,
5e570289
N
2007 r10_bio->devs[slot].addr,
2008 r10_bio->sectors,
2009 &first_bad, &bad_sectors))
2010 set_bit(R10BIO_MadeGood, &r10_bio->state);
2011
9ad1aefc 2012 rdev_dec_pending(rdev, mddev);
5e570289
N
2013
2014 end_sync_request(r10_bio);
2015}
2016
1da177e4
LT
2017/*
2018 * Note: sync and recover and handled very differently for raid10
2019 * This code is for resync.
2020 * For resync, we read through virtual addresses and read all blocks.
2021 * If there is any error, we schedule a write. The lowest numbered
2022 * drive is authoritative.
2023 * However requests come for physical address, so we need to map.
2024 * For every physical address there are raid_disks/copies virtual addresses,
2025 * which is always are least one, but is not necessarly an integer.
2026 * This means that a physical address can span multiple chunks, so we may
2027 * have to submit multiple io requests for a single sync request.
2028 */
2029/*
2030 * We check if all blocks are in-sync and only write to blocks that
2031 * aren't in sync
2032 */
9f2c9d12 2033static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2034{
e879a879 2035 struct r10conf *conf = mddev->private;
1da177e4
LT
2036 int i, first;
2037 struct bio *tbio, *fbio;
f4380a91 2038 int vcnt;
cdb76be3 2039 struct page **tpages, **fpages;
1da177e4
LT
2040
2041 atomic_set(&r10_bio->remaining, 1);
2042
2043 /* find the first device with a block */
2044 for (i=0; i<conf->copies; i++)
4e4cbee9 2045 if (!r10_bio->devs[i].bio->bi_status)
1da177e4
LT
2046 break;
2047
2048 if (i == conf->copies)
2049 goto done;
2050
2051 first = i;
2052 fbio = r10_bio->devs[i].bio;
cc578588
AP
2053 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2054 fbio->bi_iter.bi_idx = 0;
cdb76be3 2055 fpages = get_resync_pages(fbio)->pages;
1da177e4 2056
f4380a91 2057 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2058 /* now find blocks with errors */
0eb3ff12
N
2059 for (i=0 ; i < conf->copies ; i++) {
2060 int j, d;
8d3ca83d 2061 struct md_rdev *rdev;
f0250618 2062 struct resync_pages *rp;
1da177e4 2063
1da177e4 2064 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2065
2066 if (tbio->bi_end_io != end_sync_read)
2067 continue;
2068 if (i == first)
1da177e4 2069 continue;
cdb76be3
ML
2070
2071 tpages = get_resync_pages(tbio)->pages;
8d3ca83d
N
2072 d = r10_bio->devs[i].devnum;
2073 rdev = conf->mirrors[d].rdev;
4e4cbee9 2074 if (!r10_bio->devs[i].bio->bi_status) {
0eb3ff12
N
2075 /* We know that the bi_io_vec layout is the same for
2076 * both 'first' and 'i', so we just compare them.
2077 * All vec entries are PAGE_SIZE;
2078 */
7bb23c49
N
2079 int sectors = r10_bio->sectors;
2080 for (j = 0; j < vcnt; j++) {
2081 int len = PAGE_SIZE;
2082 if (sectors < (len / 512))
2083 len = sectors * 512;
cdb76be3
ML
2084 if (memcmp(page_address(fpages[j]),
2085 page_address(tpages[j]),
7bb23c49 2086 len))
0eb3ff12 2087 break;
7bb23c49
N
2088 sectors -= len/512;
2089 }
0eb3ff12
N
2090 if (j == vcnt)
2091 continue;
7f7583d4 2092 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2093 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2094 /* Don't fix anything. */
2095 continue;
8d3ca83d
N
2096 } else if (test_bit(FailFast, &rdev->flags)) {
2097 /* Just give up on this device */
2098 md_error(rdev->mddev, rdev);
2099 continue;
0eb3ff12 2100 }
f84ee364
N
2101 /* Ok, we need to write this bio, either to correct an
2102 * inconsistency or to correct an unreadable block.
1da177e4
LT
2103 * First we need to fixup bv_offset, bv_len and
2104 * bi_vecs, as the read request might have corrupted these
2105 */
f0250618 2106 rp = get_resync_pages(tbio);
8be185f2
KO
2107 bio_reset(tbio);
2108
fb0eb5df
ML
2109 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2110
f0250618
ML
2111 rp->raid_bio = r10_bio;
2112 tbio->bi_private = rp;
4f024f37 2113 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4 2114 tbio->bi_end_io = end_sync_write;
796a5cf0 2115 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1da177e4 2116
c31df25f
KO
2117 bio_copy_data(tbio, fbio);
2118
1da177e4
LT
2119 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2120 atomic_inc(&r10_bio->remaining);
aa8b57aa 2121 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2122
1919cbb2
N
2123 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2124 tbio->bi_opf |= MD_FAILFAST;
4f024f37 2125 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
74d46992 2126 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
1da177e4
LT
2127 generic_make_request(tbio);
2128 }
2129
9ad1aefc
N
2130 /* Now write out to any replacement devices
2131 * that are active
2132 */
2133 for (i = 0; i < conf->copies; i++) {
c31df25f 2134 int d;
9ad1aefc
N
2135
2136 tbio = r10_bio->devs[i].repl_bio;
2137 if (!tbio || !tbio->bi_end_io)
2138 continue;
2139 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2140 && r10_bio->devs[i].bio != fbio)
c31df25f 2141 bio_copy_data(tbio, fbio);
9ad1aefc
N
2142 d = r10_bio->devs[i].devnum;
2143 atomic_inc(&r10_bio->remaining);
2144 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2145 bio_sectors(tbio));
9ad1aefc
N
2146 generic_make_request(tbio);
2147 }
2148
1da177e4
LT
2149done:
2150 if (atomic_dec_and_test(&r10_bio->remaining)) {
2151 md_done_sync(mddev, r10_bio->sectors, 1);
2152 put_buf(r10_bio);
2153 }
2154}
2155
2156/*
2157 * Now for the recovery code.
2158 * Recovery happens across physical sectors.
2159 * We recover all non-is_sync drives by finding the virtual address of
2160 * each, and then choose a working drive that also has that virt address.
2161 * There is a separate r10_bio for each non-in_sync drive.
2162 * Only the first two slots are in use. The first for reading,
2163 * The second for writing.
2164 *
2165 */
9f2c9d12 2166static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2167{
2168 /* We got a read error during recovery.
2169 * We repeat the read in smaller page-sized sections.
2170 * If a read succeeds, write it to the new device or record
2171 * a bad block if we cannot.
2172 * If a read fails, record a bad block on both old and
2173 * new devices.
2174 */
fd01b88c 2175 struct mddev *mddev = r10_bio->mddev;
e879a879 2176 struct r10conf *conf = mddev->private;
5e570289
N
2177 struct bio *bio = r10_bio->devs[0].bio;
2178 sector_t sect = 0;
2179 int sectors = r10_bio->sectors;
2180 int idx = 0;
2181 int dr = r10_bio->devs[0].devnum;
2182 int dw = r10_bio->devs[1].devnum;
cdb76be3 2183 struct page **pages = get_resync_pages(bio)->pages;
5e570289
N
2184
2185 while (sectors) {
2186 int s = sectors;
3cb03002 2187 struct md_rdev *rdev;
5e570289
N
2188 sector_t addr;
2189 int ok;
2190
2191 if (s > (PAGE_SIZE>>9))
2192 s = PAGE_SIZE >> 9;
2193
2194 rdev = conf->mirrors[dr].rdev;
2195 addr = r10_bio->devs[0].addr + sect,
2196 ok = sync_page_io(rdev,
2197 addr,
2198 s << 9,
cdb76be3 2199 pages[idx],
796a5cf0 2200 REQ_OP_READ, 0, false);
5e570289
N
2201 if (ok) {
2202 rdev = conf->mirrors[dw].rdev;
2203 addr = r10_bio->devs[1].addr + sect;
2204 ok = sync_page_io(rdev,
2205 addr,
2206 s << 9,
cdb76be3 2207 pages[idx],
796a5cf0 2208 REQ_OP_WRITE, 0, false);
b7044d41 2209 if (!ok) {
5e570289 2210 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2211 if (!test_and_set_bit(WantReplacement,
2212 &rdev->flags))
2213 set_bit(MD_RECOVERY_NEEDED,
2214 &rdev->mddev->recovery);
2215 }
5e570289
N
2216 }
2217 if (!ok) {
2218 /* We don't worry if we cannot set a bad block -
2219 * it really is bad so there is no loss in not
2220 * recording it yet
2221 */
2222 rdev_set_badblocks(rdev, addr, s, 0);
2223
2224 if (rdev != conf->mirrors[dw].rdev) {
2225 /* need bad block on destination too */
3cb03002 2226 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2227 addr = r10_bio->devs[1].addr + sect;
2228 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2229 if (!ok) {
2230 /* just abort the recovery */
08464e09
N
2231 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2232 mdname(mddev));
5e570289
N
2233
2234 conf->mirrors[dw].recovery_disabled
2235 = mddev->recovery_disabled;
2236 set_bit(MD_RECOVERY_INTR,
2237 &mddev->recovery);
2238 break;
2239 }
2240 }
2241 }
2242
2243 sectors -= s;
2244 sect += s;
2245 idx++;
2246 }
2247}
1da177e4 2248
9f2c9d12 2249static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2250{
e879a879 2251 struct r10conf *conf = mddev->private;
c65060ad 2252 int d;
24afd80d 2253 struct bio *wbio, *wbio2;
1da177e4 2254
5e570289
N
2255 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2256 fix_recovery_read_error(r10_bio);
2257 end_sync_request(r10_bio);
2258 return;
2259 }
2260
c65060ad
NK
2261 /*
2262 * share the pages with the first bio
1da177e4
LT
2263 * and submit the write request
2264 */
1da177e4 2265 d = r10_bio->devs[1].devnum;
24afd80d
N
2266 wbio = r10_bio->devs[1].bio;
2267 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2268 /* Need to test wbio2->bi_end_io before we call
2269 * generic_make_request as if the former is NULL,
2270 * the latter is free to free wbio2.
2271 */
2272 if (wbio2 && !wbio2->bi_end_io)
2273 wbio2 = NULL;
24afd80d
N
2274 if (wbio->bi_end_io) {
2275 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2276 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2277 generic_make_request(wbio);
2278 }
0eb25bb0 2279 if (wbio2) {
24afd80d
N
2280 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2281 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2282 bio_sectors(wbio2));
24afd80d
N
2283 generic_make_request(wbio2);
2284 }
1da177e4
LT
2285}
2286
1e50915f
RB
2287/*
2288 * Used by fix_read_error() to decay the per rdev read_errors.
2289 * We halve the read error count for every hour that has elapsed
2290 * since the last recorded read error.
2291 *
2292 */
fd01b88c 2293static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2294{
0e3ef49e 2295 long cur_time_mon;
1e50915f
RB
2296 unsigned long hours_since_last;
2297 unsigned int read_errors = atomic_read(&rdev->read_errors);
2298
0e3ef49e 2299 cur_time_mon = ktime_get_seconds();
1e50915f 2300
0e3ef49e 2301 if (rdev->last_read_error == 0) {
1e50915f
RB
2302 /* first time we've seen a read error */
2303 rdev->last_read_error = cur_time_mon;
2304 return;
2305 }
2306
0e3ef49e
AB
2307 hours_since_last = (long)(cur_time_mon -
2308 rdev->last_read_error) / 3600;
1e50915f
RB
2309
2310 rdev->last_read_error = cur_time_mon;
2311
2312 /*
2313 * if hours_since_last is > the number of bits in read_errors
2314 * just set read errors to 0. We do this to avoid
2315 * overflowing the shift of read_errors by hours_since_last.
2316 */
2317 if (hours_since_last >= 8 * sizeof(read_errors))
2318 atomic_set(&rdev->read_errors, 0);
2319 else
2320 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2321}
2322
3cb03002 2323static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2324 int sectors, struct page *page, int rw)
2325{
2326 sector_t first_bad;
2327 int bad_sectors;
2328
2329 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2330 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2331 return -1;
796a5cf0 2332 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
58c54fcc
N
2333 /* success */
2334 return 1;
b7044d41 2335 if (rw == WRITE) {
58c54fcc 2336 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2337 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2338 set_bit(MD_RECOVERY_NEEDED,
2339 &rdev->mddev->recovery);
2340 }
58c54fcc
N
2341 /* need to record an error - either for the block or the device */
2342 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2343 md_error(rdev->mddev, rdev);
2344 return 0;
2345}
2346
1da177e4
LT
2347/*
2348 * This is a kernel thread which:
2349 *
2350 * 1. Retries failed read operations on working mirrors.
2351 * 2. Updates the raid superblock when problems encounter.
6814d536 2352 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2353 */
2354
e879a879 2355static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2356{
2357 int sect = 0; /* Offset from r10_bio->sector */
2358 int sectors = r10_bio->sectors;
3cb03002 2359 struct md_rdev*rdev;
1e50915f 2360 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2361 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2362
7c4e06ff
N
2363 /* still own a reference to this rdev, so it cannot
2364 * have been cleared recently.
2365 */
2366 rdev = conf->mirrors[d].rdev;
1e50915f 2367
7c4e06ff
N
2368 if (test_bit(Faulty, &rdev->flags))
2369 /* drive has already been failed, just ignore any
2370 more fix_read_error() attempts */
2371 return;
1e50915f 2372
7c4e06ff
N
2373 check_decay_read_errors(mddev, rdev);
2374 atomic_inc(&rdev->read_errors);
2375 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2376 char b[BDEVNAME_SIZE];
2377 bdevname(rdev->bdev, b);
1e50915f 2378
08464e09
N
2379 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2380 mdname(mddev), b,
2381 atomic_read(&rdev->read_errors), max_read_errors);
2382 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2383 mdname(mddev), b);
d683c8e0 2384 md_error(mddev, rdev);
fae8cc5e 2385 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2386 return;
1e50915f 2387 }
1e50915f 2388
6814d536
N
2389 while(sectors) {
2390 int s = sectors;
2391 int sl = r10_bio->read_slot;
2392 int success = 0;
2393 int start;
2394
2395 if (s > (PAGE_SIZE>>9))
2396 s = PAGE_SIZE >> 9;
2397
2398 rcu_read_lock();
2399 do {
8dbed5ce
N
2400 sector_t first_bad;
2401 int bad_sectors;
2402
0544a21d 2403 d = r10_bio->devs[sl].devnum;
6814d536
N
2404 rdev = rcu_dereference(conf->mirrors[d].rdev);
2405 if (rdev &&
8dbed5ce 2406 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2407 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2408 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2409 &first_bad, &bad_sectors) == 0) {
6814d536
N
2410 atomic_inc(&rdev->nr_pending);
2411 rcu_read_unlock();
2b193363 2412 success = sync_page_io(rdev,
6814d536 2413 r10_bio->devs[sl].addr +
ccebd4c4 2414 sect,
6814d536 2415 s<<9,
796a5cf0
MC
2416 conf->tmppage,
2417 REQ_OP_READ, 0, false);
6814d536
N
2418 rdev_dec_pending(rdev, mddev);
2419 rcu_read_lock();
2420 if (success)
2421 break;
2422 }
2423 sl++;
2424 if (sl == conf->copies)
2425 sl = 0;
2426 } while (!success && sl != r10_bio->read_slot);
2427 rcu_read_unlock();
2428
2429 if (!success) {
58c54fcc
N
2430 /* Cannot read from anywhere, just mark the block
2431 * as bad on the first device to discourage future
2432 * reads.
2433 */
6814d536 2434 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2435 rdev = conf->mirrors[dn].rdev;
2436
2437 if (!rdev_set_badblocks(
2438 rdev,
2439 r10_bio->devs[r10_bio->read_slot].addr
2440 + sect,
fae8cc5e 2441 s, 0)) {
58c54fcc 2442 md_error(mddev, rdev);
fae8cc5e
N
2443 r10_bio->devs[r10_bio->read_slot].bio
2444 = IO_BLOCKED;
2445 }
6814d536
N
2446 break;
2447 }
2448
2449 start = sl;
2450 /* write it back and re-read */
2451 rcu_read_lock();
2452 while (sl != r10_bio->read_slot) {
67b8dc4b 2453 char b[BDEVNAME_SIZE];
0544a21d 2454
6814d536
N
2455 if (sl==0)
2456 sl = conf->copies;
2457 sl--;
2458 d = r10_bio->devs[sl].devnum;
2459 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2460 if (!rdev ||
f5b67ae8 2461 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2462 !test_bit(In_sync, &rdev->flags))
2463 continue;
2464
2465 atomic_inc(&rdev->nr_pending);
2466 rcu_read_unlock();
58c54fcc
N
2467 if (r10_sync_page_io(rdev,
2468 r10_bio->devs[sl].addr +
2469 sect,
055d3747 2470 s, conf->tmppage, WRITE)
1294b9c9
N
2471 == 0) {
2472 /* Well, this device is dead */
08464e09
N
2473 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2474 mdname(mddev), s,
2475 (unsigned long long)(
2476 sect +
2477 choose_data_offset(r10_bio,
2478 rdev)),
2479 bdevname(rdev->bdev, b));
2480 pr_notice("md/raid10:%s: %s: failing drive\n",
2481 mdname(mddev),
2482 bdevname(rdev->bdev, b));
6814d536 2483 }
1294b9c9
N
2484 rdev_dec_pending(rdev, mddev);
2485 rcu_read_lock();
6814d536
N
2486 }
2487 sl = start;
2488 while (sl != r10_bio->read_slot) {
1294b9c9 2489 char b[BDEVNAME_SIZE];
0544a21d 2490
6814d536
N
2491 if (sl==0)
2492 sl = conf->copies;
2493 sl--;
2494 d = r10_bio->devs[sl].devnum;
2495 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2496 if (!rdev ||
f5b67ae8 2497 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2498 !test_bit(In_sync, &rdev->flags))
2499 continue;
6814d536 2500
1294b9c9
N
2501 atomic_inc(&rdev->nr_pending);
2502 rcu_read_unlock();
58c54fcc
N
2503 switch (r10_sync_page_io(rdev,
2504 r10_bio->devs[sl].addr +
2505 sect,
055d3747 2506 s, conf->tmppage,
58c54fcc
N
2507 READ)) {
2508 case 0:
1294b9c9 2509 /* Well, this device is dead */
08464e09 2510 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
1294b9c9
N
2511 mdname(mddev), s,
2512 (unsigned long long)(
f8c9e74f
N
2513 sect +
2514 choose_data_offset(r10_bio, rdev)),
1294b9c9 2515 bdevname(rdev->bdev, b));
08464e09 2516 pr_notice("md/raid10:%s: %s: failing drive\n",
1294b9c9
N
2517 mdname(mddev),
2518 bdevname(rdev->bdev, b));
58c54fcc
N
2519 break;
2520 case 1:
08464e09 2521 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
1294b9c9
N
2522 mdname(mddev), s,
2523 (unsigned long long)(
f8c9e74f
N
2524 sect +
2525 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2526 bdevname(rdev->bdev, b));
2527 atomic_add(s, &rdev->corrected_errors);
6814d536 2528 }
1294b9c9
N
2529
2530 rdev_dec_pending(rdev, mddev);
2531 rcu_read_lock();
6814d536
N
2532 }
2533 rcu_read_unlock();
2534
2535 sectors -= s;
2536 sect += s;
2537 }
2538}
2539
9f2c9d12 2540static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2541{
2542 struct bio *bio = r10_bio->master_bio;
fd01b88c 2543 struct mddev *mddev = r10_bio->mddev;
e879a879 2544 struct r10conf *conf = mddev->private;
3cb03002 2545 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2546 /* bio has the data to be written to slot 'i' where
2547 * we just recently had a write error.
2548 * We repeatedly clone the bio and trim down to one block,
2549 * then try the write. Where the write fails we record
2550 * a bad block.
2551 * It is conceivable that the bio doesn't exactly align with
2552 * blocks. We must handle this.
2553 *
2554 * We currently own a reference to the rdev.
2555 */
2556
2557 int block_sectors;
2558 sector_t sector;
2559 int sectors;
2560 int sect_to_write = r10_bio->sectors;
2561 int ok = 1;
2562
2563 if (rdev->badblocks.shift < 0)
2564 return 0;
2565
f04ebb0b
N
2566 block_sectors = roundup(1 << rdev->badblocks.shift,
2567 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2568 sector = r10_bio->sector;
2569 sectors = ((r10_bio->sector + block_sectors)
2570 & ~(sector_t)(block_sectors - 1))
2571 - sector;
2572
2573 while (sect_to_write) {
2574 struct bio *wbio;
27028626 2575 sector_t wsector;
bd870a16
N
2576 if (sectors > sect_to_write)
2577 sectors = sect_to_write;
2578 /* Write at 'sector' for 'sectors' */
d7a10308 2579 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
4f024f37 2580 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2581 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2582 wbio->bi_iter.bi_sector = wsector +
2583 choose_data_offset(r10_bio, rdev);
74d46992 2584 bio_set_dev(wbio, rdev->bdev);
796a5cf0 2585 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2586
2587 if (submit_bio_wait(wbio) < 0)
bd870a16 2588 /* Failure! */
27028626 2589 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2590 sectors, 0)
2591 && ok;
2592
2593 bio_put(wbio);
2594 sect_to_write -= sectors;
2595 sector += sectors;
2596 sectors = block_sectors;
2597 }
2598 return ok;
2599}
2600
9f2c9d12 2601static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2602{
2603 int slot = r10_bio->read_slot;
560f8e55 2604 struct bio *bio;
e879a879 2605 struct r10conf *conf = mddev->private;
abbf098e 2606 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2607
2608 /* we got a read error. Maybe the drive is bad. Maybe just
2609 * the block and we can fix it.
2610 * We freeze all other IO, and try reading the block from
2611 * other devices. When we find one, we re-write
2612 * and check it that fixes the read error.
2613 * This is all done synchronously while the array is
2614 * frozen.
2615 */
fae8cc5e 2616 bio = r10_bio->devs[slot].bio;
fae8cc5e
N
2617 bio_put(bio);
2618 r10_bio->devs[slot].bio = NULL;
2619
8d3ca83d
N
2620 if (mddev->ro)
2621 r10_bio->devs[slot].bio = IO_BLOCKED;
2622 else if (!test_bit(FailFast, &rdev->flags)) {
e2d59925 2623 freeze_array(conf, 1);
560f8e55
N
2624 fix_read_error(conf, mddev, r10_bio);
2625 unfreeze_array(conf);
fae8cc5e 2626 } else
8d3ca83d 2627 md_error(mddev, rdev);
fae8cc5e 2628
abbf098e 2629 rdev_dec_pending(rdev, mddev);
545250f2
N
2630 allow_barrier(conf);
2631 r10_bio->state = 0;
2632 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
560f8e55
N
2633}
2634
e879a879 2635static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2636{
2637 /* Some sort of write request has finished and it
2638 * succeeded in writing where we thought there was a
2639 * bad block. So forget the bad block.
1a0b7cd8
N
2640 * Or possibly if failed and we need to record
2641 * a bad block.
749c55e9
N
2642 */
2643 int m;
3cb03002 2644 struct md_rdev *rdev;
749c55e9
N
2645
2646 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2647 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2648 for (m = 0; m < conf->copies; m++) {
2649 int dev = r10_bio->devs[m].devnum;
2650 rdev = conf->mirrors[dev].rdev;
a2018905
YY
2651 if (r10_bio->devs[m].bio == NULL ||
2652 r10_bio->devs[m].bio->bi_end_io == NULL)
1a0b7cd8 2653 continue;
4e4cbee9 2654 if (!r10_bio->devs[m].bio->bi_status) {
749c55e9
N
2655 rdev_clear_badblocks(
2656 rdev,
2657 r10_bio->devs[m].addr,
c6563a8c 2658 r10_bio->sectors, 0);
1a0b7cd8
N
2659 } else {
2660 if (!rdev_set_badblocks(
2661 rdev,
2662 r10_bio->devs[m].addr,
2663 r10_bio->sectors, 0))
2664 md_error(conf->mddev, rdev);
749c55e9 2665 }
9ad1aefc 2666 rdev = conf->mirrors[dev].replacement;
a2018905
YY
2667 if (r10_bio->devs[m].repl_bio == NULL ||
2668 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
9ad1aefc 2669 continue;
4246a0b6 2670
4e4cbee9 2671 if (!r10_bio->devs[m].repl_bio->bi_status) {
9ad1aefc
N
2672 rdev_clear_badblocks(
2673 rdev,
2674 r10_bio->devs[m].addr,
c6563a8c 2675 r10_bio->sectors, 0);
9ad1aefc
N
2676 } else {
2677 if (!rdev_set_badblocks(
2678 rdev,
2679 r10_bio->devs[m].addr,
2680 r10_bio->sectors, 0))
2681 md_error(conf->mddev, rdev);
2682 }
1a0b7cd8 2683 }
749c55e9
N
2684 put_buf(r10_bio);
2685 } else {
95af587e 2686 bool fail = false;
bd870a16
N
2687 for (m = 0; m < conf->copies; m++) {
2688 int dev = r10_bio->devs[m].devnum;
2689 struct bio *bio = r10_bio->devs[m].bio;
2690 rdev = conf->mirrors[dev].rdev;
2691 if (bio == IO_MADE_GOOD) {
749c55e9
N
2692 rdev_clear_badblocks(
2693 rdev,
2694 r10_bio->devs[m].addr,
c6563a8c 2695 r10_bio->sectors, 0);
749c55e9 2696 rdev_dec_pending(rdev, conf->mddev);
4e4cbee9 2697 } else if (bio != NULL && bio->bi_status) {
95af587e 2698 fail = true;
bd870a16
N
2699 if (!narrow_write_error(r10_bio, m)) {
2700 md_error(conf->mddev, rdev);
2701 set_bit(R10BIO_Degraded,
2702 &r10_bio->state);
2703 }
2704 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2705 }
475b0321
N
2706 bio = r10_bio->devs[m].repl_bio;
2707 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2708 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2709 rdev_clear_badblocks(
2710 rdev,
2711 r10_bio->devs[m].addr,
c6563a8c 2712 r10_bio->sectors, 0);
475b0321
N
2713 rdev_dec_pending(rdev, conf->mddev);
2714 }
bd870a16 2715 }
95af587e
N
2716 if (fail) {
2717 spin_lock_irq(&conf->device_lock);
2718 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 2719 conf->nr_queued++;
95af587e 2720 spin_unlock_irq(&conf->device_lock);
cf25ae78
GJ
2721 /*
2722 * In case freeze_array() is waiting for condition
2723 * nr_pending == nr_queued + extra to be true.
2724 */
2725 wake_up(&conf->wait_barrier);
95af587e 2726 md_wakeup_thread(conf->mddev->thread);
c340702c
N
2727 } else {
2728 if (test_bit(R10BIO_WriteError,
2729 &r10_bio->state))
2730 close_write(r10_bio);
95af587e 2731 raid_end_bio_io(r10_bio);
c340702c 2732 }
749c55e9
N
2733 }
2734}
2735
4ed8731d 2736static void raid10d(struct md_thread *thread)
1da177e4 2737{
4ed8731d 2738 struct mddev *mddev = thread->mddev;
9f2c9d12 2739 struct r10bio *r10_bio;
1da177e4 2740 unsigned long flags;
e879a879 2741 struct r10conf *conf = mddev->private;
1da177e4 2742 struct list_head *head = &conf->retry_list;
e1dfa0a2 2743 struct blk_plug plug;
1da177e4
LT
2744
2745 md_check_recovery(mddev);
1da177e4 2746
95af587e 2747 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2748 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
95af587e
N
2749 LIST_HEAD(tmp);
2750 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 2751 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
23ddba80
SL
2752 while (!list_empty(&conf->bio_end_io_list)) {
2753 list_move(conf->bio_end_io_list.prev, &tmp);
2754 conf->nr_queued--;
2755 }
95af587e
N
2756 }
2757 spin_unlock_irqrestore(&conf->device_lock, flags);
2758 while (!list_empty(&tmp)) {
a452744b
MP
2759 r10_bio = list_first_entry(&tmp, struct r10bio,
2760 retry_list);
95af587e 2761 list_del(&r10_bio->retry_list);
c340702c
N
2762 if (mddev->degraded)
2763 set_bit(R10BIO_Degraded, &r10_bio->state);
2764
2765 if (test_bit(R10BIO_WriteError,
2766 &r10_bio->state))
2767 close_write(r10_bio);
95af587e
N
2768 raid_end_bio_io(r10_bio);
2769 }
2770 }
2771
e1dfa0a2 2772 blk_start_plug(&plug);
1da177e4 2773 for (;;) {
6cce3b23 2774
0021b7bc 2775 flush_pending_writes(conf);
6cce3b23 2776
a35e63ef
N
2777 spin_lock_irqsave(&conf->device_lock, flags);
2778 if (list_empty(head)) {
2779 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2780 break;
a35e63ef 2781 }
9f2c9d12 2782 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2783 list_del(head->prev);
4443ae10 2784 conf->nr_queued--;
1da177e4
LT
2785 spin_unlock_irqrestore(&conf->device_lock, flags);
2786
2787 mddev = r10_bio->mddev;
070ec55d 2788 conf = mddev->private;
bd870a16
N
2789 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2790 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2791 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2792 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2793 reshape_request_write(mddev, r10_bio);
749c55e9 2794 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2795 sync_request_write(mddev, r10_bio);
7eaceacc 2796 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2797 recovery_request_write(mddev, r10_bio);
856e08e2 2798 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2799 handle_read_error(mddev, r10_bio);
fc9977dd
N
2800 else
2801 WARN_ON_ONCE(1);
560f8e55 2802
1d9d5241 2803 cond_resched();
2953079c 2804 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2805 md_check_recovery(mddev);
1da177e4 2806 }
e1dfa0a2 2807 blk_finish_plug(&plug);
1da177e4
LT
2808}
2809
e879a879 2810static int init_resync(struct r10conf *conf)
1da177e4
LT
2811{
2812 int buffs;
69335ef3 2813 int i;
1da177e4
LT
2814
2815 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2816 BUG_ON(conf->r10buf_pool);
69335ef3 2817 conf->have_replacement = 0;
5cf00fcd 2818 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2819 if (conf->mirrors[i].replacement)
2820 conf->have_replacement = 1;
1da177e4
LT
2821 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2822 if (!conf->r10buf_pool)
2823 return -ENOMEM;
2824 conf->next_resync = 0;
2825 return 0;
2826}
2827
208410b5
SL
2828static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2829{
2830 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2831 struct rsync_pages *rp;
2832 struct bio *bio;
2833 int nalloc;
2834 int i;
2835
2836 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2837 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2838 nalloc = conf->copies; /* resync */
2839 else
2840 nalloc = 2; /* recovery */
2841
2842 for (i = 0; i < nalloc; i++) {
2843 bio = r10bio->devs[i].bio;
2844 rp = bio->bi_private;
2845 bio_reset(bio);
2846 bio->bi_private = rp;
2847 bio = r10bio->devs[i].repl_bio;
2848 if (bio) {
2849 rp = bio->bi_private;
2850 bio_reset(bio);
2851 bio->bi_private = rp;
2852 }
2853 }
2854 return r10bio;
2855}
2856
8db87912
GJ
2857/*
2858 * Set cluster_sync_high since we need other nodes to add the
2859 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2860 */
2861static void raid10_set_cluster_sync_high(struct r10conf *conf)
2862{
2863 sector_t window_size;
2864 int extra_chunk, chunks;
2865
2866 /*
2867 * First, here we define "stripe" as a unit which across
2868 * all member devices one time, so we get chunks by use
2869 * raid_disks / near_copies. Otherwise, if near_copies is
2870 * close to raid_disks, then resync window could increases
2871 * linearly with the increase of raid_disks, which means
2872 * we will suspend a really large IO window while it is not
2873 * necessary. If raid_disks is not divisible by near_copies,
2874 * an extra chunk is needed to ensure the whole "stripe" is
2875 * covered.
2876 */
2877
2878 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2879 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2880 extra_chunk = 0;
2881 else
2882 extra_chunk = 1;
2883 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2884
2885 /*
2886 * At least use a 32M window to align with raid1's resync window
2887 */
2888 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2889 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2890
2891 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2892}
2893
1da177e4
LT
2894/*
2895 * perform a "sync" on one "block"
2896 *
2897 * We need to make sure that no normal I/O request - particularly write
2898 * requests - conflict with active sync requests.
2899 *
2900 * This is achieved by tracking pending requests and a 'barrier' concept
2901 * that can be installed to exclude normal IO requests.
2902 *
2903 * Resync and recovery are handled very differently.
2904 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2905 *
2906 * For resync, we iterate over virtual addresses, read all copies,
2907 * and update if there are differences. If only one copy is live,
2908 * skip it.
2909 * For recovery, we iterate over physical addresses, read a good
2910 * value for each non-in_sync drive, and over-write.
2911 *
2912 * So, for recovery we may have several outstanding complex requests for a
2913 * given address, one for each out-of-sync device. We model this by allocating
2914 * a number of r10_bio structures, one for each out-of-sync device.
2915 * As we setup these structures, we collect all bio's together into a list
2916 * which we then process collectively to add pages, and then process again
2917 * to pass to generic_make_request.
2918 *
2919 * The r10_bio structures are linked using a borrowed master_bio pointer.
2920 * This link is counted in ->remaining. When the r10_bio that points to NULL
2921 * has its remaining count decremented to 0, the whole complex operation
2922 * is complete.
2923 *
2924 */
2925
849674e4 2926static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 2927 int *skipped)
1da177e4 2928{
e879a879 2929 struct r10conf *conf = mddev->private;
9f2c9d12 2930 struct r10bio *r10_bio;
1da177e4
LT
2931 struct bio *biolist = NULL, *bio;
2932 sector_t max_sector, nr_sectors;
1da177e4 2933 int i;
6cce3b23 2934 int max_sync;
57dab0bd 2935 sector_t sync_blocks;
1da177e4
LT
2936 sector_t sectors_skipped = 0;
2937 int chunks_skipped = 0;
5cf00fcd 2938 sector_t chunk_mask = conf->geo.chunk_mask;
022e510f 2939 int page_idx = 0;
1da177e4
LT
2940
2941 if (!conf->r10buf_pool)
2942 if (init_resync(conf))
57afd89f 2943 return 0;
1da177e4 2944
7e83ccbe
MW
2945 /*
2946 * Allow skipping a full rebuild for incremental assembly
2947 * of a clean array, like RAID1 does.
2948 */
2949 if (mddev->bitmap == NULL &&
2950 mddev->recovery_cp == MaxSector &&
13765120
N
2951 mddev->reshape_position == MaxSector &&
2952 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2953 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2954 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2955 conf->fullsync == 0) {
2956 *skipped = 1;
13765120 2957 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2958 }
2959
1da177e4 2960 skipped:
58c0fed4 2961 max_sector = mddev->dev_sectors;
3ea7daa5
N
2962 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2963 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2964 max_sector = mddev->resync_max_sectors;
2965 if (sector_nr >= max_sector) {
8db87912
GJ
2966 conf->cluster_sync_low = 0;
2967 conf->cluster_sync_high = 0;
2968
6cce3b23
N
2969 /* If we aborted, we need to abort the
2970 * sync on the 'current' bitmap chucks (there can
2971 * be several when recovering multiple devices).
2972 * as we may have started syncing it but not finished.
2973 * We can find the current address in
2974 * mddev->curr_resync, but for recovery,
2975 * we need to convert that to several
2976 * virtual addresses.
2977 */
3ea7daa5
N
2978 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2979 end_reshape(conf);
b3968552 2980 close_sync(conf);
3ea7daa5
N
2981 return 0;
2982 }
2983
6cce3b23
N
2984 if (mddev->curr_resync < max_sector) { /* aborted */
2985 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2986 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2987 &sync_blocks, 1);
5cf00fcd 2988 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2989 sector_t sect =
2990 raid10_find_virt(conf, mddev->curr_resync, i);
2991 bitmap_end_sync(mddev->bitmap, sect,
2992 &sync_blocks, 1);
2993 }
9ad1aefc
N
2994 } else {
2995 /* completed sync */
2996 if ((!mddev->bitmap || conf->fullsync)
2997 && conf->have_replacement
2998 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2999 /* Completed a full sync so the replacements
3000 * are now fully recovered.
3001 */
f90145f3
N
3002 rcu_read_lock();
3003 for (i = 0; i < conf->geo.raid_disks; i++) {
3004 struct md_rdev *rdev =
3005 rcu_dereference(conf->mirrors[i].replacement);
3006 if (rdev)
3007 rdev->recovery_offset = MaxSector;
3008 }
3009 rcu_read_unlock();
9ad1aefc 3010 }
6cce3b23 3011 conf->fullsync = 0;
9ad1aefc 3012 }
6cce3b23 3013 bitmap_close_sync(mddev->bitmap);
1da177e4 3014 close_sync(conf);
57afd89f 3015 *skipped = 1;
1da177e4
LT
3016 return sectors_skipped;
3017 }
3ea7daa5
N
3018
3019 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3020 return reshape_request(mddev, sector_nr, skipped);
3021
5cf00fcd 3022 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3023 /* if there has been nothing to do on any drive,
3024 * then there is nothing to do at all..
3025 */
57afd89f
N
3026 *skipped = 1;
3027 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3028 }
3029
c6207277
N
3030 if (max_sector > mddev->resync_max)
3031 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3032
1da177e4
LT
3033 /* make sure whole request will fit in a chunk - if chunks
3034 * are meaningful
3035 */
5cf00fcd
N
3036 if (conf->geo.near_copies < conf->geo.raid_disks &&
3037 max_sector > (sector_nr | chunk_mask))
3038 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 3039
7ac50447
TM
3040 /*
3041 * If there is non-resync activity waiting for a turn, then let it
3042 * though before starting on this new sync request.
3043 */
3044 if (conf->nr_waiting)
3045 schedule_timeout_uninterruptible(1);
3046
1da177e4
LT
3047 /* Again, very different code for resync and recovery.
3048 * Both must result in an r10bio with a list of bios that
74d46992 3049 * have bi_end_io, bi_sector, bi_disk set,
1da177e4
LT
3050 * and bi_private set to the r10bio.
3051 * For recovery, we may actually create several r10bios
3052 * with 2 bios in each, that correspond to the bios in the main one.
3053 * In this case, the subordinate r10bios link back through a
3054 * borrowed master_bio pointer, and the counter in the master
3055 * includes a ref from each subordinate.
3056 */
3057 /* First, we decide what to do and set ->bi_end_io
3058 * To end_sync_read if we want to read, and
3059 * end_sync_write if we will want to write.
3060 */
3061
6cce3b23 3062 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3063 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3064 /* recovery... the complicated one */
e875ecea 3065 int j;
1da177e4
LT
3066 r10_bio = NULL;
3067
5cf00fcd 3068 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3069 int still_degraded;
9f2c9d12 3070 struct r10bio *rb2;
ab9d47e9
N
3071 sector_t sect;
3072 int must_sync;
e875ecea 3073 int any_working;
dc280d98 3074 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 3075 struct md_rdev *mrdev, *mreplace;
24afd80d 3076
f90145f3
N
3077 rcu_read_lock();
3078 mrdev = rcu_dereference(mirror->rdev);
3079 mreplace = rcu_dereference(mirror->replacement);
3080
3081 if ((mrdev == NULL ||
f5b67ae8 3082 test_bit(Faulty, &mrdev->flags) ||
f90145f3
N
3083 test_bit(In_sync, &mrdev->flags)) &&
3084 (mreplace == NULL ||
3085 test_bit(Faulty, &mreplace->flags))) {
3086 rcu_read_unlock();
ab9d47e9 3087 continue;
f90145f3 3088 }
1da177e4 3089
ab9d47e9
N
3090 still_degraded = 0;
3091 /* want to reconstruct this device */
3092 rb2 = r10_bio;
3093 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3094 if (sect >= mddev->resync_max_sectors) {
3095 /* last stripe is not complete - don't
3096 * try to recover this sector.
3097 */
f90145f3 3098 rcu_read_unlock();
fc448a18
N
3099 continue;
3100 }
f5b67ae8
N
3101 if (mreplace && test_bit(Faulty, &mreplace->flags))
3102 mreplace = NULL;
24afd80d
N
3103 /* Unless we are doing a full sync, or a replacement
3104 * we only need to recover the block if it is set in
3105 * the bitmap
ab9d47e9
N
3106 */
3107 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3108 &sync_blocks, 1);
3109 if (sync_blocks < max_sync)
3110 max_sync = sync_blocks;
3111 if (!must_sync &&
f90145f3 3112 mreplace == NULL &&
ab9d47e9
N
3113 !conf->fullsync) {
3114 /* yep, skip the sync_blocks here, but don't assume
3115 * that there will never be anything to do here
3116 */
3117 chunks_skipped = -1;
f90145f3 3118 rcu_read_unlock();
ab9d47e9
N
3119 continue;
3120 }
f90145f3
N
3121 atomic_inc(&mrdev->nr_pending);
3122 if (mreplace)
3123 atomic_inc(&mreplace->nr_pending);
3124 rcu_read_unlock();
6cce3b23 3125
208410b5 3126 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3127 r10_bio->state = 0;
ab9d47e9
N
3128 raise_barrier(conf, rb2 != NULL);
3129 atomic_set(&r10_bio->remaining, 0);
18055569 3130
ab9d47e9
N
3131 r10_bio->master_bio = (struct bio*)rb2;
3132 if (rb2)
3133 atomic_inc(&rb2->remaining);
3134 r10_bio->mddev = mddev;
3135 set_bit(R10BIO_IsRecover, &r10_bio->state);
3136 r10_bio->sector = sect;
1da177e4 3137
ab9d47e9
N
3138 raid10_find_phys(conf, r10_bio);
3139
3140 /* Need to check if the array will still be
3141 * degraded
3142 */
f90145f3
N
3143 rcu_read_lock();
3144 for (j = 0; j < conf->geo.raid_disks; j++) {
3145 struct md_rdev *rdev = rcu_dereference(
3146 conf->mirrors[j].rdev);
3147 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3148 still_degraded = 1;
87fc767b 3149 break;
1da177e4 3150 }
f90145f3 3151 }
ab9d47e9
N
3152
3153 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3154 &sync_blocks, still_degraded);
3155
e875ecea 3156 any_working = 0;
ab9d47e9 3157 for (j=0; j<conf->copies;j++) {
e875ecea 3158 int k;
ab9d47e9 3159 int d = r10_bio->devs[j].devnum;
5e570289 3160 sector_t from_addr, to_addr;
f90145f3
N
3161 struct md_rdev *rdev =
3162 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3163 sector_t sector, first_bad;
3164 int bad_sectors;
f90145f3
N
3165 if (!rdev ||
3166 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3167 continue;
3168 /* This is where we read from */
e875ecea 3169 any_working = 1;
40c356ce
N
3170 sector = r10_bio->devs[j].addr;
3171
3172 if (is_badblock(rdev, sector, max_sync,
3173 &first_bad, &bad_sectors)) {
3174 if (first_bad > sector)
3175 max_sync = first_bad - sector;
3176 else {
3177 bad_sectors -= (sector
3178 - first_bad);
3179 if (max_sync > bad_sectors)
3180 max_sync = bad_sectors;
3181 continue;
3182 }
3183 }
ab9d47e9
N
3184 bio = r10_bio->devs[0].bio;
3185 bio->bi_next = biolist;
3186 biolist = bio;
ab9d47e9 3187 bio->bi_end_io = end_sync_read;
796a5cf0 3188 bio_set_op_attrs(bio, REQ_OP_READ, 0);
8d3ca83d
N
3189 if (test_bit(FailFast, &rdev->flags))
3190 bio->bi_opf |= MD_FAILFAST;
5e570289 3191 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3192 bio->bi_iter.bi_sector = from_addr +
3193 rdev->data_offset;
74d46992 3194 bio_set_dev(bio, rdev->bdev);
24afd80d
N
3195 atomic_inc(&rdev->nr_pending);
3196 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3197
3198 for (k=0; k<conf->copies; k++)
3199 if (r10_bio->devs[k].devnum == i)
3200 break;
3201 BUG_ON(k == conf->copies);
5e570289 3202 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3203 r10_bio->devs[0].devnum = d;
5e570289 3204 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3205 r10_bio->devs[1].devnum = i;
5e570289 3206 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3207
f90145f3 3208 if (!test_bit(In_sync, &mrdev->flags)) {
24afd80d
N
3209 bio = r10_bio->devs[1].bio;
3210 bio->bi_next = biolist;
3211 biolist = bio;
24afd80d 3212 bio->bi_end_io = end_sync_write;
796a5cf0 3213 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3214 bio->bi_iter.bi_sector = to_addr
f90145f3 3215 + mrdev->data_offset;
74d46992 3216 bio_set_dev(bio, mrdev->bdev);
24afd80d
N
3217 atomic_inc(&r10_bio->remaining);
3218 } else
3219 r10_bio->devs[1].bio->bi_end_io = NULL;
3220
3221 /* and maybe write to replacement */
3222 bio = r10_bio->devs[1].repl_bio;
3223 if (bio)
3224 bio->bi_end_io = NULL;
f90145f3 3225 /* Note: if mreplace != NULL, then bio
24afd80d
N
3226 * cannot be NULL as r10buf_pool_alloc will
3227 * have allocated it.
3228 * So the second test here is pointless.
3229 * But it keeps semantic-checkers happy, and
3230 * this comment keeps human reviewers
3231 * happy.
3232 */
f90145f3
N
3233 if (mreplace == NULL || bio == NULL ||
3234 test_bit(Faulty, &mreplace->flags))
24afd80d
N
3235 break;
3236 bio->bi_next = biolist;
3237 biolist = bio;
24afd80d 3238 bio->bi_end_io = end_sync_write;
796a5cf0 3239 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3240 bio->bi_iter.bi_sector = to_addr +
f90145f3 3241 mreplace->data_offset;
74d46992 3242 bio_set_dev(bio, mreplace->bdev);
24afd80d 3243 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3244 break;
3245 }
f90145f3 3246 rcu_read_unlock();
ab9d47e9 3247 if (j == conf->copies) {
e875ecea
N
3248 /* Cannot recover, so abort the recovery or
3249 * record a bad block */
e875ecea
N
3250 if (any_working) {
3251 /* problem is that there are bad blocks
3252 * on other device(s)
3253 */
3254 int k;
3255 for (k = 0; k < conf->copies; k++)
3256 if (r10_bio->devs[k].devnum == i)
3257 break;
24afd80d 3258 if (!test_bit(In_sync,
f90145f3 3259 &mrdev->flags)
24afd80d 3260 && !rdev_set_badblocks(
f90145f3 3261 mrdev,
24afd80d
N
3262 r10_bio->devs[k].addr,
3263 max_sync, 0))
3264 any_working = 0;
f90145f3 3265 if (mreplace &&
24afd80d 3266 !rdev_set_badblocks(
f90145f3 3267 mreplace,
e875ecea
N
3268 r10_bio->devs[k].addr,
3269 max_sync, 0))
3270 any_working = 0;
3271 }
3272 if (!any_working) {
3273 if (!test_and_set_bit(MD_RECOVERY_INTR,
3274 &mddev->recovery))
08464e09 3275 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
e875ecea 3276 mdname(mddev));
24afd80d 3277 mirror->recovery_disabled
e875ecea
N
3278 = mddev->recovery_disabled;
3279 }
e8b84915
N
3280 put_buf(r10_bio);
3281 if (rb2)
3282 atomic_dec(&rb2->remaining);
3283 r10_bio = rb2;
f90145f3
N
3284 rdev_dec_pending(mrdev, mddev);
3285 if (mreplace)
3286 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3287 break;
1da177e4 3288 }
f90145f3
N
3289 rdev_dec_pending(mrdev, mddev);
3290 if (mreplace)
3291 rdev_dec_pending(mreplace, mddev);
8d3ca83d
N
3292 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3293 /* Only want this if there is elsewhere to
3294 * read from. 'j' is currently the first
3295 * readable copy.
3296 */
3297 int targets = 1;
3298 for (; j < conf->copies; j++) {
3299 int d = r10_bio->devs[j].devnum;
3300 if (conf->mirrors[d].rdev &&
3301 test_bit(In_sync,
3302 &conf->mirrors[d].rdev->flags))
3303 targets++;
3304 }
3305 if (targets == 1)
3306 r10_bio->devs[0].bio->bi_opf
3307 &= ~MD_FAILFAST;
3308 }
ab9d47e9 3309 }
1da177e4
LT
3310 if (biolist == NULL) {
3311 while (r10_bio) {
9f2c9d12
N
3312 struct r10bio *rb2 = r10_bio;
3313 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3314 rb2->master_bio = NULL;
3315 put_buf(rb2);
3316 }
3317 goto giveup;
3318 }
3319 } else {
3320 /* resync. Schedule a read for every block at this virt offset */
3321 int count = 0;
6cce3b23 3322
8db87912
GJ
3323 /*
3324 * Since curr_resync_completed could probably not update in
3325 * time, and we will set cluster_sync_low based on it.
3326 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3327 * safety reason, which ensures curr_resync_completed is
3328 * updated in bitmap_cond_end_sync.
3329 */
3330 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3331 mddev_is_clustered(mddev) &&
3332 (sector_nr + 2 * RESYNC_SECTORS >
3333 conf->cluster_sync_high));
78200d45 3334
6cce3b23
N
3335 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3336 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3337 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3338 &mddev->recovery)) {
6cce3b23
N
3339 /* We can skip this block */
3340 *skipped = 1;
3341 return sync_blocks + sectors_skipped;
3342 }
3343 if (sync_blocks < max_sync)
3344 max_sync = sync_blocks;
208410b5 3345 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3346 r10_bio->state = 0;
1da177e4 3347
1da177e4
LT
3348 r10_bio->mddev = mddev;
3349 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3350 raise_barrier(conf, 0);
3351 conf->next_resync = sector_nr;
1da177e4
LT
3352
3353 r10_bio->master_bio = NULL;
3354 r10_bio->sector = sector_nr;
3355 set_bit(R10BIO_IsSync, &r10_bio->state);
3356 raid10_find_phys(conf, r10_bio);
5cf00fcd 3357 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3358
5cf00fcd 3359 for (i = 0; i < conf->copies; i++) {
1da177e4 3360 int d = r10_bio->devs[i].devnum;
40c356ce
N
3361 sector_t first_bad, sector;
3362 int bad_sectors;
f90145f3 3363 struct md_rdev *rdev;
40c356ce 3364
9ad1aefc
N
3365 if (r10_bio->devs[i].repl_bio)
3366 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3367
1da177e4 3368 bio = r10_bio->devs[i].bio;
4e4cbee9 3369 bio->bi_status = BLK_STS_IOERR;
f90145f3
N
3370 rcu_read_lock();
3371 rdev = rcu_dereference(conf->mirrors[d].rdev);
3372 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3373 rcu_read_unlock();
1da177e4 3374 continue;
f90145f3 3375 }
40c356ce 3376 sector = r10_bio->devs[i].addr;
f90145f3 3377 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3378 &first_bad, &bad_sectors)) {
3379 if (first_bad > sector)
3380 max_sync = first_bad - sector;
3381 else {
3382 bad_sectors -= (sector - first_bad);
3383 if (max_sync > bad_sectors)
91502f09 3384 max_sync = bad_sectors;
f90145f3 3385 rcu_read_unlock();
40c356ce
N
3386 continue;
3387 }
3388 }
f90145f3 3389 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3390 atomic_inc(&r10_bio->remaining);
3391 bio->bi_next = biolist;
3392 biolist = bio;
1da177e4 3393 bio->bi_end_io = end_sync_read;
796a5cf0 3394 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1cdd1257 3395 if (test_bit(FailFast, &rdev->flags))
8d3ca83d 3396 bio->bi_opf |= MD_FAILFAST;
f90145f3 3397 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3398 bio_set_dev(bio, rdev->bdev);
1da177e4 3399 count++;
9ad1aefc 3400
f90145f3
N
3401 rdev = rcu_dereference(conf->mirrors[d].replacement);
3402 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3403 rcu_read_unlock();
9ad1aefc 3404 continue;
f90145f3
N
3405 }
3406 atomic_inc(&rdev->nr_pending);
9ad1aefc
N
3407
3408 /* Need to set up for writing to the replacement */
3409 bio = r10_bio->devs[i].repl_bio;
4e4cbee9 3410 bio->bi_status = BLK_STS_IOERR;
9ad1aefc
N
3411
3412 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3413 bio->bi_next = biolist;
3414 biolist = bio;
9ad1aefc 3415 bio->bi_end_io = end_sync_write;
796a5cf0 3416 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1cdd1257 3417 if (test_bit(FailFast, &rdev->flags))
1919cbb2 3418 bio->bi_opf |= MD_FAILFAST;
f90145f3 3419 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3420 bio_set_dev(bio, rdev->bdev);
9ad1aefc 3421 count++;
1cdd1257 3422 rcu_read_unlock();
1da177e4
LT
3423 }
3424
3425 if (count < 2) {
3426 for (i=0; i<conf->copies; i++) {
3427 int d = r10_bio->devs[i].devnum;
3428 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3429 rdev_dec_pending(conf->mirrors[d].rdev,
3430 mddev);
9ad1aefc
N
3431 if (r10_bio->devs[i].repl_bio &&
3432 r10_bio->devs[i].repl_bio->bi_end_io)
3433 rdev_dec_pending(
3434 conf->mirrors[d].replacement,
3435 mddev);
1da177e4
LT
3436 }
3437 put_buf(r10_bio);
3438 biolist = NULL;
3439 goto giveup;
3440 }
3441 }
3442
1da177e4 3443 nr_sectors = 0;
6cce3b23
N
3444 if (sector_nr + max_sync < max_sector)
3445 max_sector = sector_nr + max_sync;
1da177e4
LT
3446 do {
3447 struct page *page;
3448 int len = PAGE_SIZE;
1da177e4
LT
3449 if (sector_nr + (len>>9) > max_sector)
3450 len = (max_sector - sector_nr) << 9;
3451 if (len == 0)
3452 break;
3453 for (bio= biolist ; bio ; bio=bio->bi_next) {
f0250618 3454 struct resync_pages *rp = get_resync_pages(bio);
022e510f 3455 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
3456 /*
3457 * won't fail because the vec table is big enough
3458 * to hold all these pages
3459 */
3460 bio_add_page(bio, page, len, 0);
1da177e4
LT
3461 }
3462 nr_sectors += len>>9;
3463 sector_nr += len>>9;
022e510f 3464 } while (++page_idx < RESYNC_PAGES);
1da177e4
LT
3465 r10_bio->sectors = nr_sectors;
3466
8db87912
GJ
3467 if (mddev_is_clustered(mddev) &&
3468 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3469 /* It is resync not recovery */
3470 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3471 conf->cluster_sync_low = mddev->curr_resync_completed;
3472 raid10_set_cluster_sync_high(conf);
3473 /* Send resync message */
3474 md_cluster_ops->resync_info_update(mddev,
3475 conf->cluster_sync_low,
3476 conf->cluster_sync_high);
3477 }
3478 } else if (mddev_is_clustered(mddev)) {
3479 /* This is recovery not resync */
3480 sector_t sect_va1, sect_va2;
3481 bool broadcast_msg = false;
3482
3483 for (i = 0; i < conf->geo.raid_disks; i++) {
3484 /*
3485 * sector_nr is a device address for recovery, so we
3486 * need translate it to array address before compare
3487 * with cluster_sync_high.
3488 */
3489 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3490
3491 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3492 broadcast_msg = true;
3493 /*
3494 * curr_resync_completed is similar as
3495 * sector_nr, so make the translation too.
3496 */
3497 sect_va2 = raid10_find_virt(conf,
3498 mddev->curr_resync_completed, i);
3499
3500 if (conf->cluster_sync_low == 0 ||
3501 conf->cluster_sync_low > sect_va2)
3502 conf->cluster_sync_low = sect_va2;
3503 }
3504 }
3505 if (broadcast_msg) {
3506 raid10_set_cluster_sync_high(conf);
3507 md_cluster_ops->resync_info_update(mddev,
3508 conf->cluster_sync_low,
3509 conf->cluster_sync_high);
3510 }
3511 }
3512
1da177e4
LT
3513 while (biolist) {
3514 bio = biolist;
3515 biolist = biolist->bi_next;
3516
3517 bio->bi_next = NULL;
f0250618 3518 r10_bio = get_resync_r10bio(bio);
1da177e4
LT
3519 r10_bio->sectors = nr_sectors;
3520
3521 if (bio->bi_end_io == end_sync_read) {
74d46992 3522 md_sync_acct_bio(bio, nr_sectors);
4e4cbee9 3523 bio->bi_status = 0;
1da177e4
LT
3524 generic_make_request(bio);
3525 }
3526 }
3527
57afd89f
N
3528 if (sectors_skipped)
3529 /* pretend they weren't skipped, it makes
3530 * no important difference in this case
3531 */
3532 md_done_sync(mddev, sectors_skipped, 1);
3533
1da177e4
LT
3534 return sectors_skipped + nr_sectors;
3535 giveup:
3536 /* There is nowhere to write, so all non-sync
e875ecea
N
3537 * drives must be failed or in resync, all drives
3538 * have a bad block, so try the next chunk...
1da177e4 3539 */
09b4068a
N
3540 if (sector_nr + max_sync < max_sector)
3541 max_sector = sector_nr + max_sync;
3542
3543 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3544 chunks_skipped ++;
3545 sector_nr = max_sector;
1da177e4 3546 goto skipped;
1da177e4
LT
3547}
3548
80c3a6ce 3549static sector_t
fd01b88c 3550raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3551{
3552 sector_t size;
e879a879 3553 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3554
3555 if (!raid_disks)
3ea7daa5
N
3556 raid_disks = min(conf->geo.raid_disks,
3557 conf->prev.raid_disks);
80c3a6ce 3558 if (!sectors)
dab8b292 3559 sectors = conf->dev_sectors;
80c3a6ce 3560
5cf00fcd
N
3561 size = sectors >> conf->geo.chunk_shift;
3562 sector_div(size, conf->geo.far_copies);
80c3a6ce 3563 size = size * raid_disks;
5cf00fcd 3564 sector_div(size, conf->geo.near_copies);
80c3a6ce 3565
5cf00fcd 3566 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3567}
3568
6508fdbf
N
3569static void calc_sectors(struct r10conf *conf, sector_t size)
3570{
3571 /* Calculate the number of sectors-per-device that will
3572 * actually be used, and set conf->dev_sectors and
3573 * conf->stride
3574 */
3575
5cf00fcd
N
3576 size = size >> conf->geo.chunk_shift;
3577 sector_div(size, conf->geo.far_copies);
3578 size = size * conf->geo.raid_disks;
3579 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3580 /* 'size' is now the number of chunks in the array */
3581 /* calculate "used chunks per device" */
3582 size = size * conf->copies;
3583
3584 /* We need to round up when dividing by raid_disks to
3585 * get the stride size.
3586 */
5cf00fcd 3587 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3588
5cf00fcd 3589 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3590
5cf00fcd
N
3591 if (conf->geo.far_offset)
3592 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3593 else {
5cf00fcd
N
3594 sector_div(size, conf->geo.far_copies);
3595 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3596 }
3597}
dab8b292 3598
deb200d0
N
3599enum geo_type {geo_new, geo_old, geo_start};
3600static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3601{
3602 int nc, fc, fo;
3603 int layout, chunk, disks;
3604 switch (new) {
3605 case geo_old:
3606 layout = mddev->layout;
3607 chunk = mddev->chunk_sectors;
3608 disks = mddev->raid_disks - mddev->delta_disks;
3609 break;
3610 case geo_new:
3611 layout = mddev->new_layout;
3612 chunk = mddev->new_chunk_sectors;
3613 disks = mddev->raid_disks;
3614 break;
3615 default: /* avoid 'may be unused' warnings */
3616 case geo_start: /* new when starting reshape - raid_disks not
3617 * updated yet. */
3618 layout = mddev->new_layout;
3619 chunk = mddev->new_chunk_sectors;
3620 disks = mddev->raid_disks + mddev->delta_disks;
3621 break;
3622 }
8bce6d35 3623 if (layout >> 19)
deb200d0
N
3624 return -1;
3625 if (chunk < (PAGE_SIZE >> 9) ||
3626 !is_power_of_2(chunk))
3627 return -2;
3628 nc = layout & 255;
3629 fc = (layout >> 8) & 255;
3630 fo = layout & (1<<16);
3631 geo->raid_disks = disks;
3632 geo->near_copies = nc;
3633 geo->far_copies = fc;
3634 geo->far_offset = fo;
8bce6d35
N
3635 switch (layout >> 17) {
3636 case 0: /* original layout. simple but not always optimal */
3637 geo->far_set_size = disks;
3638 break;
3639 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3640 * actually using this, but leave code here just in case.*/
3641 geo->far_set_size = disks/fc;
3642 WARN(geo->far_set_size < fc,
3643 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3644 break;
3645 case 2: /* "improved" layout fixed to match documentation */
3646 geo->far_set_size = fc * nc;
3647 break;
3648 default: /* Not a valid layout */
3649 return -1;
3650 }
deb200d0
N
3651 geo->chunk_mask = chunk - 1;
3652 geo->chunk_shift = ffz(~chunk);
3653 return nc*fc;
3654}
3655
e879a879 3656static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3657{
e879a879 3658 struct r10conf *conf = NULL;
dab8b292 3659 int err = -EINVAL;
deb200d0
N
3660 struct geom geo;
3661 int copies;
3662
3663 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3664
deb200d0 3665 if (copies == -2) {
08464e09
N
3666 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3667 mdname(mddev), PAGE_SIZE);
dab8b292 3668 goto out;
1da177e4 3669 }
2604b703 3670
deb200d0 3671 if (copies < 2 || copies > mddev->raid_disks) {
08464e09
N
3672 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3673 mdname(mddev), mddev->new_layout);
1da177e4
LT
3674 goto out;
3675 }
dab8b292
TM
3676
3677 err = -ENOMEM;
e879a879 3678 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3679 if (!conf)
1da177e4 3680 goto out;
dab8b292 3681
3ea7daa5 3682 /* FIXME calc properly */
dc280d98 3683 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3684 max(0,-mddev->delta_disks)),
dab8b292
TM
3685 GFP_KERNEL);
3686 if (!conf->mirrors)
3687 goto out;
4443ae10
N
3688
3689 conf->tmppage = alloc_page(GFP_KERNEL);
3690 if (!conf->tmppage)
dab8b292
TM
3691 goto out;
3692
deb200d0
N
3693 conf->geo = geo;
3694 conf->copies = copies;
dab8b292
TM
3695 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3696 r10bio_pool_free, conf);
3697 if (!conf->r10bio_pool)
3698 goto out;
3699
011067b0 3700 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
fc9977dd
N
3701 if (!conf->bio_split)
3702 goto out;
3703
6508fdbf 3704 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3705 if (mddev->reshape_position == MaxSector) {
3706 conf->prev = conf->geo;
3707 conf->reshape_progress = MaxSector;
3708 } else {
3709 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3710 err = -EINVAL;
3711 goto out;
3712 }
3713 conf->reshape_progress = mddev->reshape_position;
3714 if (conf->prev.far_offset)
3715 conf->prev.stride = 1 << conf->prev.chunk_shift;
3716 else
3717 /* far_copies must be 1 */
3718 conf->prev.stride = conf->dev_sectors;
3719 }
299b0685 3720 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 3721 spin_lock_init(&conf->device_lock);
dab8b292 3722 INIT_LIST_HEAD(&conf->retry_list);
95af587e 3723 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
3724
3725 spin_lock_init(&conf->resync_lock);
3726 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 3727 atomic_set(&conf->nr_pending, 0);
dab8b292 3728
0232605d 3729 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3730 if (!conf->thread)
3731 goto out;
3732
dab8b292
TM
3733 conf->mddev = mddev;
3734 return conf;
3735
3736 out:
dab8b292 3737 if (conf) {
644df1a8 3738 mempool_destroy(conf->r10bio_pool);
dab8b292
TM
3739 kfree(conf->mirrors);
3740 safe_put_page(conf->tmppage);
fc9977dd
N
3741 if (conf->bio_split)
3742 bioset_free(conf->bio_split);
dab8b292
TM
3743 kfree(conf);
3744 }
3745 return ERR_PTR(err);
3746}
3747
849674e4 3748static int raid10_run(struct mddev *mddev)
dab8b292 3749{
e879a879 3750 struct r10conf *conf;
dab8b292 3751 int i, disk_idx, chunk_size;
dc280d98 3752 struct raid10_info *disk;
3cb03002 3753 struct md_rdev *rdev;
dab8b292 3754 sector_t size;
3ea7daa5
N
3755 sector_t min_offset_diff = 0;
3756 int first = 1;
532a2a3f 3757 bool discard_supported = false;
dab8b292 3758
a415c0f1
N
3759 if (mddev_init_writes_pending(mddev) < 0)
3760 return -ENOMEM;
3761
dab8b292
TM
3762 if (mddev->private == NULL) {
3763 conf = setup_conf(mddev);
3764 if (IS_ERR(conf))
3765 return PTR_ERR(conf);
3766 mddev->private = conf;
3767 }
3768 conf = mddev->private;
3769 if (!conf)
3770 goto out;
3771
8db87912
GJ
3772 if (mddev_is_clustered(conf->mddev)) {
3773 int fc, fo;
3774
3775 fc = (mddev->layout >> 8) & 255;
3776 fo = mddev->layout & (1<<16);
3777 if (fc > 1 || fo > 0) {
3778 pr_err("only near layout is supported by clustered"
3779 " raid10\n");
3780 goto out;
3781 }
3782 }
3783
dab8b292
TM
3784 mddev->thread = conf->thread;
3785 conf->thread = NULL;
3786
8f6c2e4b 3787 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3788 if (mddev->queue) {
532a2a3f
SL
3789 blk_queue_max_discard_sectors(mddev->queue,
3790 mddev->chunk_sectors);
5026d7a9 3791 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 3792 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
cc4d1efd
JB
3793 blk_queue_io_min(mddev->queue, chunk_size);
3794 if (conf->geo.raid_disks % conf->geo.near_copies)
3795 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3796 else
3797 blk_queue_io_opt(mddev->queue, chunk_size *
3798 (conf->geo.raid_disks / conf->geo.near_copies));
3799 }
8f6c2e4b 3800
dafb20fa 3801 rdev_for_each(rdev, mddev) {
3ea7daa5 3802 long long diff;
34b343cf 3803
1da177e4 3804 disk_idx = rdev->raid_disk;
f8c9e74f
N
3805 if (disk_idx < 0)
3806 continue;
3807 if (disk_idx >= conf->geo.raid_disks &&
3808 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3809 continue;
3810 disk = conf->mirrors + disk_idx;
3811
56a2559b
N
3812 if (test_bit(Replacement, &rdev->flags)) {
3813 if (disk->replacement)
3814 goto out_free_conf;
3815 disk->replacement = rdev;
3816 } else {
3817 if (disk->rdev)
3818 goto out_free_conf;
3819 disk->rdev = rdev;
3820 }
3ea7daa5
N
3821 diff = (rdev->new_data_offset - rdev->data_offset);
3822 if (!mddev->reshape_backwards)
3823 diff = -diff;
3824 if (diff < 0)
3825 diff = 0;
3826 if (first || diff < min_offset_diff)
3827 min_offset_diff = diff;
56a2559b 3828
cc4d1efd
JB
3829 if (mddev->gendisk)
3830 disk_stack_limits(mddev->gendisk, rdev->bdev,
3831 rdev->data_offset << 9);
1da177e4
LT
3832
3833 disk->head_position = 0;
532a2a3f
SL
3834
3835 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3836 discard_supported = true;
6f287ca6 3837 first = 0;
1da177e4 3838 }
3ea7daa5 3839
ed30be07
JB
3840 if (mddev->queue) {
3841 if (discard_supported)
3842 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3843 mddev->queue);
3844 else
3845 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3846 mddev->queue);
3847 }
6d508242 3848 /* need to check that every block has at least one working mirror */
700c7213 3849 if (!enough(conf, -1)) {
08464e09 3850 pr_err("md/raid10:%s: not enough operational mirrors.\n",
6d508242 3851 mdname(mddev));
1da177e4
LT
3852 goto out_free_conf;
3853 }
3854
3ea7daa5
N
3855 if (conf->reshape_progress != MaxSector) {
3856 /* must ensure that shape change is supported */
3857 if (conf->geo.far_copies != 1 &&
3858 conf->geo.far_offset == 0)
3859 goto out_free_conf;
3860 if (conf->prev.far_copies != 1 &&
78eaa0d4 3861 conf->prev.far_offset == 0)
3ea7daa5
N
3862 goto out_free_conf;
3863 }
3864
1da177e4 3865 mddev->degraded = 0;
f8c9e74f
N
3866 for (i = 0;
3867 i < conf->geo.raid_disks
3868 || i < conf->prev.raid_disks;
3869 i++) {
1da177e4
LT
3870
3871 disk = conf->mirrors + i;
3872
56a2559b
N
3873 if (!disk->rdev && disk->replacement) {
3874 /* The replacement is all we have - use it */
3875 disk->rdev = disk->replacement;
3876 disk->replacement = NULL;
3877 clear_bit(Replacement, &disk->rdev->flags);
3878 }
3879
5fd6c1dc 3880 if (!disk->rdev ||
2e333e89 3881 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3882 disk->head_position = 0;
3883 mddev->degraded++;
0b59bb64
N
3884 if (disk->rdev &&
3885 disk->rdev->saved_raid_disk < 0)
8c2e870a 3886 conf->fullsync = 1;
1da177e4 3887 }
ff9533a5
BC
3888
3889 if (disk->replacement &&
3890 !test_bit(In_sync, &disk->replacement->flags) &&
3891 disk->replacement->saved_raid_disk < 0) {
3892 conf->fullsync = 1;
3893 }
3894
d890fa2b 3895 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3896 }
3897
8c6ac868 3898 if (mddev->recovery_cp != MaxSector)
08464e09
N
3899 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3900 mdname(mddev));
3901 pr_info("md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3902 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3903 conf->geo.raid_disks);
1da177e4
LT
3904 /*
3905 * Ok, everything is just fine now
3906 */
dab8b292
TM
3907 mddev->dev_sectors = conf->dev_sectors;
3908 size = raid10_size(mddev, 0, 0);
3909 md_set_array_sectors(mddev, size);
3910 mddev->resync_max_sectors = size;
46533ff7 3911 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
1da177e4 3912
cc4d1efd 3913 if (mddev->queue) {
5cf00fcd 3914 int stripe = conf->geo.raid_disks *
9d8f0363 3915 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3916
3917 /* Calculate max read-ahead size.
3918 * We need to readahead at least twice a whole stripe....
3919 * maybe...
3920 */
5cf00fcd 3921 stripe /= conf->geo.near_copies;
dc3b17cc
JK
3922 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3923 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
1da177e4
LT
3924 }
3925
a91a2785
MP
3926 if (md_integrity_register(mddev))
3927 goto out_free_conf;
3928
3ea7daa5
N
3929 if (conf->reshape_progress != MaxSector) {
3930 unsigned long before_length, after_length;
3931
3932 before_length = ((1 << conf->prev.chunk_shift) *
3933 conf->prev.far_copies);
3934 after_length = ((1 << conf->geo.chunk_shift) *
3935 conf->geo.far_copies);
3936
3937 if (max(before_length, after_length) > min_offset_diff) {
3938 /* This cannot work */
08464e09 3939 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3ea7daa5
N
3940 goto out_free_conf;
3941 }
3942 conf->offset_diff = min_offset_diff;
3943
3ea7daa5
N
3944 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3945 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3946 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3947 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3948 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3949 "reshape");
4b73eea6
AP
3950 if (!mddev->sync_thread)
3951 goto out_free_conf;
3ea7daa5
N
3952 }
3953
1da177e4
LT
3954 return 0;
3955
3956out_free_conf:
01f96c0a 3957 md_unregister_thread(&mddev->thread);
644df1a8 3958 mempool_destroy(conf->r10bio_pool);
1345b1d8 3959 safe_put_page(conf->tmppage);
990a8baf 3960 kfree(conf->mirrors);
1da177e4
LT
3961 kfree(conf);
3962 mddev->private = NULL;
3963out:
3964 return -EIO;
3965}
3966
afa0f557 3967static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 3968{
afa0f557 3969 struct r10conf *conf = priv;
1da177e4 3970
644df1a8 3971 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3972 safe_put_page(conf->tmppage);
990a8baf 3973 kfree(conf->mirrors);
c4796e21
N
3974 kfree(conf->mirrors_old);
3975 kfree(conf->mirrors_new);
fc9977dd
N
3976 if (conf->bio_split)
3977 bioset_free(conf->bio_split);
1da177e4 3978 kfree(conf);
1da177e4
LT
3979}
3980
b03e0ccb 3981static void raid10_quiesce(struct mddev *mddev, int quiesce)
6cce3b23 3982{
e879a879 3983 struct r10conf *conf = mddev->private;
6cce3b23 3984
b03e0ccb 3985 if (quiesce)
6cce3b23 3986 raise_barrier(conf, 0);
b03e0ccb 3987 else
6cce3b23 3988 lower_barrier(conf);
6cce3b23 3989}
1da177e4 3990
006a09a0
N
3991static int raid10_resize(struct mddev *mddev, sector_t sectors)
3992{
3993 /* Resize of 'far' arrays is not supported.
3994 * For 'near' and 'offset' arrays we can set the
3995 * number of sectors used to be an appropriate multiple
3996 * of the chunk size.
3997 * For 'offset', this is far_copies*chunksize.
3998 * For 'near' the multiplier is the LCM of
3999 * near_copies and raid_disks.
4000 * So if far_copies > 1 && !far_offset, fail.
4001 * Else find LCM(raid_disks, near_copy)*far_copies and
4002 * multiply by chunk_size. Then round to this number.
4003 * This is mostly done by raid10_size()
4004 */
4005 struct r10conf *conf = mddev->private;
4006 sector_t oldsize, size;
4007
f8c9e74f
N
4008 if (mddev->reshape_position != MaxSector)
4009 return -EBUSY;
4010
5cf00fcd 4011 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
4012 return -EINVAL;
4013
4014 oldsize = raid10_size(mddev, 0, 0);
4015 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
4016 if (mddev->external_size &&
4017 mddev->array_sectors > size)
006a09a0 4018 return -EINVAL;
a4a6125a
N
4019 if (mddev->bitmap) {
4020 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4021 if (ret)
4022 return ret;
4023 }
4024 md_set_array_sectors(mddev, size);
006a09a0
N
4025 if (sectors > mddev->dev_sectors &&
4026 mddev->recovery_cp > oldsize) {
4027 mddev->recovery_cp = oldsize;
4028 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4029 }
6508fdbf
N
4030 calc_sectors(conf, sectors);
4031 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
4032 mddev->resync_max_sectors = size;
4033 return 0;
4034}
4035
53a6ab4d 4036static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 4037{
3cb03002 4038 struct md_rdev *rdev;
e879a879 4039 struct r10conf *conf;
dab8b292
TM
4040
4041 if (mddev->degraded > 0) {
08464e09
N
4042 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4043 mdname(mddev));
dab8b292
TM
4044 return ERR_PTR(-EINVAL);
4045 }
53a6ab4d 4046 sector_div(size, devs);
dab8b292 4047
dab8b292
TM
4048 /* Set new parameters */
4049 mddev->new_level = 10;
4050 /* new layout: far_copies = 1, near_copies = 2 */
4051 mddev->new_layout = (1<<8) + 2;
4052 mddev->new_chunk_sectors = mddev->chunk_sectors;
4053 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
4054 mddev->raid_disks *= 2;
4055 /* make sure it will be not marked as dirty */
4056 mddev->recovery_cp = MaxSector;
53a6ab4d 4057 mddev->dev_sectors = size;
dab8b292
TM
4058
4059 conf = setup_conf(mddev);
02214dc5 4060 if (!IS_ERR(conf)) {
dafb20fa 4061 rdev_for_each(rdev, mddev)
53a6ab4d 4062 if (rdev->raid_disk >= 0) {
e93f68a1 4063 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
4064 rdev->sectors = size;
4065 }
02214dc5
KW
4066 conf->barrier = 1;
4067 }
4068
dab8b292
TM
4069 return conf;
4070}
4071
fd01b88c 4072static void *raid10_takeover(struct mddev *mddev)
dab8b292 4073{
e373ab10 4074 struct r0conf *raid0_conf;
dab8b292
TM
4075
4076 /* raid10 can take over:
4077 * raid0 - providing it has only two drives
4078 */
4079 if (mddev->level == 0) {
4080 /* for raid0 takeover only one zone is supported */
e373ab10
N
4081 raid0_conf = mddev->private;
4082 if (raid0_conf->nr_strip_zones > 1) {
08464e09
N
4083 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4084 mdname(mddev));
dab8b292
TM
4085 return ERR_PTR(-EINVAL);
4086 }
53a6ab4d
N
4087 return raid10_takeover_raid0(mddev,
4088 raid0_conf->strip_zone->zone_end,
4089 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
4090 }
4091 return ERR_PTR(-EINVAL);
4092}
4093
3ea7daa5
N
4094static int raid10_check_reshape(struct mddev *mddev)
4095{
4096 /* Called when there is a request to change
4097 * - layout (to ->new_layout)
4098 * - chunk size (to ->new_chunk_sectors)
4099 * - raid_disks (by delta_disks)
4100 * or when trying to restart a reshape that was ongoing.
4101 *
4102 * We need to validate the request and possibly allocate
4103 * space if that might be an issue later.
4104 *
4105 * Currently we reject any reshape of a 'far' mode array,
4106 * allow chunk size to change if new is generally acceptable,
4107 * allow raid_disks to increase, and allow
4108 * a switch between 'near' mode and 'offset' mode.
4109 */
4110 struct r10conf *conf = mddev->private;
4111 struct geom geo;
4112
4113 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4114 return -EINVAL;
4115
4116 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4117 /* mustn't change number of copies */
4118 return -EINVAL;
4119 if (geo.far_copies > 1 && !geo.far_offset)
4120 /* Cannot switch to 'far' mode */
4121 return -EINVAL;
4122
4123 if (mddev->array_sectors & geo.chunk_mask)
4124 /* not factor of array size */
4125 return -EINVAL;
4126
3ea7daa5
N
4127 if (!enough(conf, -1))
4128 return -EINVAL;
4129
4130 kfree(conf->mirrors_new);
4131 conf->mirrors_new = NULL;
4132 if (mddev->delta_disks > 0) {
4133 /* allocate new 'mirrors' list */
4134 conf->mirrors_new = kzalloc(
dc280d98 4135 sizeof(struct raid10_info)
3ea7daa5
N
4136 *(mddev->raid_disks +
4137 mddev->delta_disks),
4138 GFP_KERNEL);
4139 if (!conf->mirrors_new)
4140 return -ENOMEM;
4141 }
4142 return 0;
4143}
4144
4145/*
4146 * Need to check if array has failed when deciding whether to:
4147 * - start an array
4148 * - remove non-faulty devices
4149 * - add a spare
4150 * - allow a reshape
4151 * This determination is simple when no reshape is happening.
4152 * However if there is a reshape, we need to carefully check
4153 * both the before and after sections.
4154 * This is because some failed devices may only affect one
4155 * of the two sections, and some non-in_sync devices may
4156 * be insync in the section most affected by failed devices.
4157 */
4158static int calc_degraded(struct r10conf *conf)
4159{
4160 int degraded, degraded2;
4161 int i;
4162
4163 rcu_read_lock();
4164 degraded = 0;
4165 /* 'prev' section first */
4166 for (i = 0; i < conf->prev.raid_disks; i++) {
4167 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4168 if (!rdev || test_bit(Faulty, &rdev->flags))
4169 degraded++;
4170 else if (!test_bit(In_sync, &rdev->flags))
4171 /* When we can reduce the number of devices in
4172 * an array, this might not contribute to
4173 * 'degraded'. It does now.
4174 */
4175 degraded++;
4176 }
4177 rcu_read_unlock();
4178 if (conf->geo.raid_disks == conf->prev.raid_disks)
4179 return degraded;
4180 rcu_read_lock();
4181 degraded2 = 0;
4182 for (i = 0; i < conf->geo.raid_disks; i++) {
4183 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4184 if (!rdev || test_bit(Faulty, &rdev->flags))
4185 degraded2++;
4186 else if (!test_bit(In_sync, &rdev->flags)) {
4187 /* If reshape is increasing the number of devices,
4188 * this section has already been recovered, so
4189 * it doesn't contribute to degraded.
4190 * else it does.
4191 */
4192 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4193 degraded2++;
4194 }
4195 }
4196 rcu_read_unlock();
4197 if (degraded2 > degraded)
4198 return degraded2;
4199 return degraded;
4200}
4201
4202static int raid10_start_reshape(struct mddev *mddev)
4203{
4204 /* A 'reshape' has been requested. This commits
4205 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4206 * This also checks if there are enough spares and adds them
4207 * to the array.
4208 * We currently require enough spares to make the final
4209 * array non-degraded. We also require that the difference
4210 * between old and new data_offset - on each device - is
4211 * enough that we never risk over-writing.
4212 */
4213
4214 unsigned long before_length, after_length;
4215 sector_t min_offset_diff = 0;
4216 int first = 1;
4217 struct geom new;
4218 struct r10conf *conf = mddev->private;
4219 struct md_rdev *rdev;
4220 int spares = 0;
bb63a701 4221 int ret;
3ea7daa5
N
4222
4223 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4224 return -EBUSY;
4225
4226 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4227 return -EINVAL;
4228
4229 before_length = ((1 << conf->prev.chunk_shift) *
4230 conf->prev.far_copies);
4231 after_length = ((1 << conf->geo.chunk_shift) *
4232 conf->geo.far_copies);
4233
4234 rdev_for_each(rdev, mddev) {
4235 if (!test_bit(In_sync, &rdev->flags)
4236 && !test_bit(Faulty, &rdev->flags))
4237 spares++;
4238 if (rdev->raid_disk >= 0) {
4239 long long diff = (rdev->new_data_offset
4240 - rdev->data_offset);
4241 if (!mddev->reshape_backwards)
4242 diff = -diff;
4243 if (diff < 0)
4244 diff = 0;
4245 if (first || diff < min_offset_diff)
4246 min_offset_diff = diff;
b506335e 4247 first = 0;
3ea7daa5
N
4248 }
4249 }
4250
4251 if (max(before_length, after_length) > min_offset_diff)
4252 return -EINVAL;
4253
4254 if (spares < mddev->delta_disks)
4255 return -EINVAL;
4256
4257 conf->offset_diff = min_offset_diff;
4258 spin_lock_irq(&conf->device_lock);
4259 if (conf->mirrors_new) {
4260 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4261 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4262 smp_mb();
c4796e21 4263 kfree(conf->mirrors_old);
3ea7daa5
N
4264 conf->mirrors_old = conf->mirrors;
4265 conf->mirrors = conf->mirrors_new;
4266 conf->mirrors_new = NULL;
4267 }
4268 setup_geo(&conf->geo, mddev, geo_start);
4269 smp_mb();
4270 if (mddev->reshape_backwards) {
4271 sector_t size = raid10_size(mddev, 0, 0);
4272 if (size < mddev->array_sectors) {
4273 spin_unlock_irq(&conf->device_lock);
08464e09
N
4274 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4275 mdname(mddev));
3ea7daa5
N
4276 return -EINVAL;
4277 }
4278 mddev->resync_max_sectors = size;
4279 conf->reshape_progress = size;
4280 } else
4281 conf->reshape_progress = 0;
299b0685 4282 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4283 spin_unlock_irq(&conf->device_lock);
4284
bb63a701
N
4285 if (mddev->delta_disks && mddev->bitmap) {
4286 ret = bitmap_resize(mddev->bitmap,
4287 raid10_size(mddev, 0,
4288 conf->geo.raid_disks),
4289 0, 0);
4290 if (ret)
4291 goto abort;
4292 }
3ea7daa5
N
4293 if (mddev->delta_disks > 0) {
4294 rdev_for_each(rdev, mddev)
4295 if (rdev->raid_disk < 0 &&
4296 !test_bit(Faulty, &rdev->flags)) {
4297 if (raid10_add_disk(mddev, rdev) == 0) {
4298 if (rdev->raid_disk >=
4299 conf->prev.raid_disks)
4300 set_bit(In_sync, &rdev->flags);
4301 else
4302 rdev->recovery_offset = 0;
4303
4304 if (sysfs_link_rdev(mddev, rdev))
4305 /* Failure here is OK */;
4306 }
4307 } else if (rdev->raid_disk >= conf->prev.raid_disks
4308 && !test_bit(Faulty, &rdev->flags)) {
4309 /* This is a spare that was manually added */
4310 set_bit(In_sync, &rdev->flags);
4311 }
4312 }
4313 /* When a reshape changes the number of devices,
4314 * ->degraded is measured against the larger of the
4315 * pre and post numbers.
4316 */
4317 spin_lock_irq(&conf->device_lock);
4318 mddev->degraded = calc_degraded(conf);
4319 spin_unlock_irq(&conf->device_lock);
4320 mddev->raid_disks = conf->geo.raid_disks;
4321 mddev->reshape_position = conf->reshape_progress;
2953079c 4322 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5
N
4323
4324 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4325 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4326 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4327 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4328 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4329
4330 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4331 "reshape");
4332 if (!mddev->sync_thread) {
bb63a701
N
4333 ret = -EAGAIN;
4334 goto abort;
3ea7daa5
N
4335 }
4336 conf->reshape_checkpoint = jiffies;
4337 md_wakeup_thread(mddev->sync_thread);
4338 md_new_event(mddev);
4339 return 0;
bb63a701
N
4340
4341abort:
4342 mddev->recovery = 0;
4343 spin_lock_irq(&conf->device_lock);
4344 conf->geo = conf->prev;
4345 mddev->raid_disks = conf->geo.raid_disks;
4346 rdev_for_each(rdev, mddev)
4347 rdev->new_data_offset = rdev->data_offset;
4348 smp_wmb();
4349 conf->reshape_progress = MaxSector;
299b0685 4350 conf->reshape_safe = MaxSector;
bb63a701
N
4351 mddev->reshape_position = MaxSector;
4352 spin_unlock_irq(&conf->device_lock);
4353 return ret;
3ea7daa5
N
4354}
4355
4356/* Calculate the last device-address that could contain
4357 * any block from the chunk that includes the array-address 's'
4358 * and report the next address.
4359 * i.e. the address returned will be chunk-aligned and after
4360 * any data that is in the chunk containing 's'.
4361 */
4362static sector_t last_dev_address(sector_t s, struct geom *geo)
4363{
4364 s = (s | geo->chunk_mask) + 1;
4365 s >>= geo->chunk_shift;
4366 s *= geo->near_copies;
4367 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4368 s *= geo->far_copies;
4369 s <<= geo->chunk_shift;
4370 return s;
4371}
4372
4373/* Calculate the first device-address that could contain
4374 * any block from the chunk that includes the array-address 's'.
4375 * This too will be the start of a chunk
4376 */
4377static sector_t first_dev_address(sector_t s, struct geom *geo)
4378{
4379 s >>= geo->chunk_shift;
4380 s *= geo->near_copies;
4381 sector_div(s, geo->raid_disks);
4382 s *= geo->far_copies;
4383 s <<= geo->chunk_shift;
4384 return s;
4385}
4386
4387static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4388 int *skipped)
4389{
4390 /* We simply copy at most one chunk (smallest of old and new)
4391 * at a time, possibly less if that exceeds RESYNC_PAGES,
4392 * or we hit a bad block or something.
4393 * This might mean we pause for normal IO in the middle of
02ec5026 4394 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4395 * can record any location.
4396 *
4397 * If we will want to write to a location that isn't
4398 * yet recorded as 'safe' (i.e. in metadata on disk) then
4399 * we need to flush all reshape requests and update the metadata.
4400 *
4401 * When reshaping forwards (e.g. to more devices), we interpret
4402 * 'safe' as the earliest block which might not have been copied
4403 * down yet. We divide this by previous stripe size and multiply
4404 * by previous stripe length to get lowest device offset that we
4405 * cannot write to yet.
4406 * We interpret 'sector_nr' as an address that we want to write to.
4407 * From this we use last_device_address() to find where we might
4408 * write to, and first_device_address on the 'safe' position.
4409 * If this 'next' write position is after the 'safe' position,
4410 * we must update the metadata to increase the 'safe' position.
4411 *
4412 * When reshaping backwards, we round in the opposite direction
4413 * and perform the reverse test: next write position must not be
4414 * less than current safe position.
4415 *
4416 * In all this the minimum difference in data offsets
4417 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4418 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4419 *
4420 * We need to prepare all the bios here before we start any IO
4421 * to ensure the size we choose is acceptable to all devices.
4422 * The means one for each copy for write-out and an extra one for
4423 * read-in.
4424 * We store the read-in bio in ->master_bio and the others in
4425 * ->devs[x].bio and ->devs[x].repl_bio.
4426 */
4427 struct r10conf *conf = mddev->private;
4428 struct r10bio *r10_bio;
4429 sector_t next, safe, last;
4430 int max_sectors;
4431 int nr_sectors;
4432 int s;
4433 struct md_rdev *rdev;
4434 int need_flush = 0;
4435 struct bio *blist;
4436 struct bio *bio, *read_bio;
4437 int sectors_done = 0;
f0250618 4438 struct page **pages;
3ea7daa5
N
4439
4440 if (sector_nr == 0) {
4441 /* If restarting in the middle, skip the initial sectors */
4442 if (mddev->reshape_backwards &&
4443 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4444 sector_nr = (raid10_size(mddev, 0, 0)
4445 - conf->reshape_progress);
4446 } else if (!mddev->reshape_backwards &&
4447 conf->reshape_progress > 0)
4448 sector_nr = conf->reshape_progress;
4449 if (sector_nr) {
4450 mddev->curr_resync_completed = sector_nr;
4451 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4452 *skipped = 1;
4453 return sector_nr;
4454 }
4455 }
4456
4457 /* We don't use sector_nr to track where we are up to
4458 * as that doesn't work well for ->reshape_backwards.
4459 * So just use ->reshape_progress.
4460 */
4461 if (mddev->reshape_backwards) {
4462 /* 'next' is the earliest device address that we might
4463 * write to for this chunk in the new layout
4464 */
4465 next = first_dev_address(conf->reshape_progress - 1,
4466 &conf->geo);
4467
4468 /* 'safe' is the last device address that we might read from
4469 * in the old layout after a restart
4470 */
4471 safe = last_dev_address(conf->reshape_safe - 1,
4472 &conf->prev);
4473
4474 if (next + conf->offset_diff < safe)
4475 need_flush = 1;
4476
4477 last = conf->reshape_progress - 1;
4478 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4479 & conf->prev.chunk_mask);
4480 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4481 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4482 } else {
4483 /* 'next' is after the last device address that we
4484 * might write to for this chunk in the new layout
4485 */
4486 next = last_dev_address(conf->reshape_progress, &conf->geo);
4487
4488 /* 'safe' is the earliest device address that we might
4489 * read from in the old layout after a restart
4490 */
4491 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4492
4493 /* Need to update metadata if 'next' might be beyond 'safe'
4494 * as that would possibly corrupt data
4495 */
4496 if (next > safe + conf->offset_diff)
4497 need_flush = 1;
4498
4499 sector_nr = conf->reshape_progress;
4500 last = sector_nr | (conf->geo.chunk_mask
4501 & conf->prev.chunk_mask);
4502
4503 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4504 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4505 }
4506
4507 if (need_flush ||
4508 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4509 /* Need to update reshape_position in metadata */
4510 wait_barrier(conf);
4511 mddev->reshape_position = conf->reshape_progress;
4512 if (mddev->reshape_backwards)
4513 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4514 - conf->reshape_progress;
4515 else
4516 mddev->curr_resync_completed = conf->reshape_progress;
4517 conf->reshape_checkpoint = jiffies;
2953079c 4518 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5 4519 md_wakeup_thread(mddev->thread);
2953079c 4520 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
4521 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4522 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4523 allow_barrier(conf);
4524 return sectors_done;
4525 }
3ea7daa5
N
4526 conf->reshape_safe = mddev->reshape_position;
4527 allow_barrier(conf);
4528 }
4529
6333b13e 4530 raise_barrier(conf, 0);
3ea7daa5
N
4531read_more:
4532 /* Now schedule reads for blocks from sector_nr to last */
208410b5 4533 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 4534 r10_bio->state = 0;
6333b13e 4535 raise_barrier(conf, 1);
3ea7daa5
N
4536 atomic_set(&r10_bio->remaining, 0);
4537 r10_bio->mddev = mddev;
4538 r10_bio->sector = sector_nr;
4539 set_bit(R10BIO_IsReshape, &r10_bio->state);
4540 r10_bio->sectors = last - sector_nr + 1;
4541 rdev = read_balance(conf, r10_bio, &max_sectors);
4542 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4543
4544 if (!rdev) {
4545 /* Cannot read from here, so need to record bad blocks
4546 * on all the target devices.
4547 */
4548 // FIXME
e337aead 4549 mempool_free(r10_bio, conf->r10buf_pool);
3ea7daa5
N
4550 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4551 return sectors_done;
4552 }
4553
4554 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4555
74d46992 4556 bio_set_dev(read_bio, rdev->bdev);
4f024f37 4557 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4558 + rdev->data_offset);
4559 read_bio->bi_private = r10_bio;
81fa1520 4560 read_bio->bi_end_io = end_reshape_read;
796a5cf0 4561 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
ce0b0a46 4562 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4e4cbee9 4563 read_bio->bi_status = 0;
3ea7daa5 4564 read_bio->bi_vcnt = 0;
4f024f37 4565 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4566 r10_bio->master_bio = read_bio;
4567 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4568
4569 /* Now find the locations in the new layout */
4570 __raid10_find_phys(&conf->geo, r10_bio);
4571
4572 blist = read_bio;
4573 read_bio->bi_next = NULL;
4574
d094d686 4575 rcu_read_lock();
3ea7daa5
N
4576 for (s = 0; s < conf->copies*2; s++) {
4577 struct bio *b;
4578 int d = r10_bio->devs[s/2].devnum;
4579 struct md_rdev *rdev2;
4580 if (s&1) {
d094d686 4581 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4582 b = r10_bio->devs[s/2].repl_bio;
4583 } else {
d094d686 4584 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4585 b = r10_bio->devs[s/2].bio;
4586 }
4587 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4588 continue;
8be185f2 4589
74d46992 4590 bio_set_dev(b, rdev2->bdev);
4f024f37
KO
4591 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4592 rdev2->new_data_offset;
3ea7daa5 4593 b->bi_end_io = end_reshape_write;
796a5cf0 4594 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
3ea7daa5 4595 b->bi_next = blist;
3ea7daa5
N
4596 blist = b;
4597 }
4598
4599 /* Now add as many pages as possible to all of these bios. */
4600
4601 nr_sectors = 0;
f0250618 4602 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4603 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
f0250618 4604 struct page *page = pages[s / (PAGE_SIZE >> 9)];
3ea7daa5
N
4605 int len = (max_sectors - s) << 9;
4606 if (len > PAGE_SIZE)
4607 len = PAGE_SIZE;
4608 for (bio = blist; bio ; bio = bio->bi_next) {
c85ba149
ML
4609 /*
4610 * won't fail because the vec table is big enough
4611 * to hold all these pages
4612 */
4613 bio_add_page(bio, page, len, 0);
3ea7daa5
N
4614 }
4615 sector_nr += len >> 9;
4616 nr_sectors += len >> 9;
4617 }
d094d686 4618 rcu_read_unlock();
3ea7daa5
N
4619 r10_bio->sectors = nr_sectors;
4620
4621 /* Now submit the read */
74d46992 4622 md_sync_acct_bio(read_bio, r10_bio->sectors);
3ea7daa5
N
4623 atomic_inc(&r10_bio->remaining);
4624 read_bio->bi_next = NULL;
4625 generic_make_request(read_bio);
3ea7daa5
N
4626 sectors_done += nr_sectors;
4627 if (sector_nr <= last)
4628 goto read_more;
4629
6333b13e
XN
4630 lower_barrier(conf);
4631
3ea7daa5
N
4632 /* Now that we have done the whole section we can
4633 * update reshape_progress
4634 */
4635 if (mddev->reshape_backwards)
4636 conf->reshape_progress -= sectors_done;
4637 else
4638 conf->reshape_progress += sectors_done;
4639
4640 return sectors_done;
4641}
4642
4643static void end_reshape_request(struct r10bio *r10_bio);
4644static int handle_reshape_read_error(struct mddev *mddev,
4645 struct r10bio *r10_bio);
4646static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4647{
4648 /* Reshape read completed. Hopefully we have a block
4649 * to write out.
4650 * If we got a read error then we do sync 1-page reads from
4651 * elsewhere until we find the data - or give up.
4652 */
4653 struct r10conf *conf = mddev->private;
4654 int s;
4655
4656 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4657 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4658 /* Reshape has been aborted */
4659 md_done_sync(mddev, r10_bio->sectors, 0);
4660 return;
4661 }
4662
4663 /* We definitely have the data in the pages, schedule the
4664 * writes.
4665 */
4666 atomic_set(&r10_bio->remaining, 1);
4667 for (s = 0; s < conf->copies*2; s++) {
4668 struct bio *b;
4669 int d = r10_bio->devs[s/2].devnum;
4670 struct md_rdev *rdev;
d094d686 4671 rcu_read_lock();
3ea7daa5 4672 if (s&1) {
d094d686 4673 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4674 b = r10_bio->devs[s/2].repl_bio;
4675 } else {
d094d686 4676 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4677 b = r10_bio->devs[s/2].bio;
4678 }
d094d686
N
4679 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4680 rcu_read_unlock();
3ea7daa5 4681 continue;
d094d686 4682 }
3ea7daa5 4683 atomic_inc(&rdev->nr_pending);
d094d686 4684 rcu_read_unlock();
74d46992 4685 md_sync_acct_bio(b, r10_bio->sectors);
3ea7daa5
N
4686 atomic_inc(&r10_bio->remaining);
4687 b->bi_next = NULL;
4688 generic_make_request(b);
4689 }
4690 end_reshape_request(r10_bio);
4691}
4692
4693static void end_reshape(struct r10conf *conf)
4694{
4695 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4696 return;
4697
4698 spin_lock_irq(&conf->device_lock);
4699 conf->prev = conf->geo;
4700 md_finish_reshape(conf->mddev);
4701 smp_wmb();
4702 conf->reshape_progress = MaxSector;
299b0685 4703 conf->reshape_safe = MaxSector;
3ea7daa5
N
4704 spin_unlock_irq(&conf->device_lock);
4705
4706 /* read-ahead size must cover two whole stripes, which is
4707 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4708 */
4709 if (conf->mddev->queue) {
4710 int stripe = conf->geo.raid_disks *
4711 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4712 stripe /= conf->geo.near_copies;
dc3b17cc
JK
4713 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4714 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3ea7daa5
N
4715 }
4716 conf->fullsync = 0;
4717}
4718
3ea7daa5
N
4719static int handle_reshape_read_error(struct mddev *mddev,
4720 struct r10bio *r10_bio)
4721{
4722 /* Use sync reads to get the blocks from somewhere else */
4723 int sectors = r10_bio->sectors;
3ea7daa5 4724 struct r10conf *conf = mddev->private;
584ed9fa 4725 struct r10bio *r10b;
3ea7daa5
N
4726 int slot = 0;
4727 int idx = 0;
2d06e3b7
ML
4728 struct page **pages;
4729
584ed9fa
MK
4730 r10b = kmalloc(sizeof(*r10b) +
4731 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4732 if (!r10b) {
4733 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4734 return -ENOMEM;
4735 }
4736
2d06e3b7
ML
4737 /* reshape IOs share pages from .devs[0].bio */
4738 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4739
e0ee7785
N
4740 r10b->sector = r10_bio->sector;
4741 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4742
4743 while (sectors) {
4744 int s = sectors;
4745 int success = 0;
4746 int first_slot = slot;
4747
4748 if (s > (PAGE_SIZE >> 9))
4749 s = PAGE_SIZE >> 9;
4750
d094d686 4751 rcu_read_lock();
3ea7daa5 4752 while (!success) {
e0ee7785 4753 int d = r10b->devs[slot].devnum;
d094d686 4754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4755 sector_t addr;
4756 if (rdev == NULL ||
4757 test_bit(Faulty, &rdev->flags) ||
4758 !test_bit(In_sync, &rdev->flags))
4759 goto failed;
4760
e0ee7785 4761 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
4762 atomic_inc(&rdev->nr_pending);
4763 rcu_read_unlock();
3ea7daa5
N
4764 success = sync_page_io(rdev,
4765 addr,
4766 s << 9,
2d06e3b7 4767 pages[idx],
796a5cf0 4768 REQ_OP_READ, 0, false);
d094d686
N
4769 rdev_dec_pending(rdev, mddev);
4770 rcu_read_lock();
3ea7daa5
N
4771 if (success)
4772 break;
4773 failed:
4774 slot++;
4775 if (slot >= conf->copies)
4776 slot = 0;
4777 if (slot == first_slot)
4778 break;
4779 }
d094d686 4780 rcu_read_unlock();
3ea7daa5
N
4781 if (!success) {
4782 /* couldn't read this block, must give up */
4783 set_bit(MD_RECOVERY_INTR,
4784 &mddev->recovery);
584ed9fa 4785 kfree(r10b);
3ea7daa5
N
4786 return -EIO;
4787 }
4788 sectors -= s;
4789 idx++;
4790 }
584ed9fa 4791 kfree(r10b);
3ea7daa5
N
4792 return 0;
4793}
4794
4246a0b6 4795static void end_reshape_write(struct bio *bio)
3ea7daa5 4796{
f0250618 4797 struct r10bio *r10_bio = get_resync_r10bio(bio);
3ea7daa5
N
4798 struct mddev *mddev = r10_bio->mddev;
4799 struct r10conf *conf = mddev->private;
4800 int d;
4801 int slot;
4802 int repl;
4803 struct md_rdev *rdev = NULL;
4804
4805 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4806 if (repl)
4807 rdev = conf->mirrors[d].replacement;
4808 if (!rdev) {
4809 smp_mb();
4810 rdev = conf->mirrors[d].rdev;
4811 }
4812
4e4cbee9 4813 if (bio->bi_status) {
3ea7daa5
N
4814 /* FIXME should record badblock */
4815 md_error(mddev, rdev);
4816 }
4817
4818 rdev_dec_pending(rdev, mddev);
4819 end_reshape_request(r10_bio);
4820}
4821
4822static void end_reshape_request(struct r10bio *r10_bio)
4823{
4824 if (!atomic_dec_and_test(&r10_bio->remaining))
4825 return;
4826 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4827 bio_put(r10_bio->master_bio);
4828 put_buf(r10_bio);
4829}
4830
4831static void raid10_finish_reshape(struct mddev *mddev)
4832{
4833 struct r10conf *conf = mddev->private;
4834
4835 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4836 return;
4837
4838 if (mddev->delta_disks > 0) {
3ea7daa5
N
4839 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4840 mddev->recovery_cp = mddev->resync_max_sectors;
4841 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4842 }
e66db6f0 4843 mddev->resync_max_sectors = mddev->array_sectors;
63aced61
N
4844 } else {
4845 int d;
d094d686 4846 rcu_read_lock();
63aced61
N
4847 for (d = conf->geo.raid_disks ;
4848 d < conf->geo.raid_disks - mddev->delta_disks;
4849 d++) {
d094d686 4850 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
4851 if (rdev)
4852 clear_bit(In_sync, &rdev->flags);
d094d686 4853 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
4854 if (rdev)
4855 clear_bit(In_sync, &rdev->flags);
4856 }
d094d686 4857 rcu_read_unlock();
3ea7daa5
N
4858 }
4859 mddev->layout = mddev->new_layout;
4860 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4861 mddev->reshape_position = MaxSector;
4862 mddev->delta_disks = 0;
4863 mddev->reshape_backwards = 0;
4864}
4865
84fc4b56 4866static struct md_personality raid10_personality =
1da177e4
LT
4867{
4868 .name = "raid10",
2604b703 4869 .level = 10,
1da177e4 4870 .owner = THIS_MODULE,
849674e4
SL
4871 .make_request = raid10_make_request,
4872 .run = raid10_run,
afa0f557 4873 .free = raid10_free,
849674e4
SL
4874 .status = raid10_status,
4875 .error_handler = raid10_error,
1da177e4
LT
4876 .hot_add_disk = raid10_add_disk,
4877 .hot_remove_disk= raid10_remove_disk,
4878 .spare_active = raid10_spare_active,
849674e4 4879 .sync_request = raid10_sync_request,
6cce3b23 4880 .quiesce = raid10_quiesce,
80c3a6ce 4881 .size = raid10_size,
006a09a0 4882 .resize = raid10_resize,
dab8b292 4883 .takeover = raid10_takeover,
3ea7daa5
N
4884 .check_reshape = raid10_check_reshape,
4885 .start_reshape = raid10_start_reshape,
4886 .finish_reshape = raid10_finish_reshape,
5c675f83 4887 .congested = raid10_congested,
1da177e4
LT
4888};
4889
4890static int __init raid_init(void)
4891{
2604b703 4892 return register_md_personality(&raid10_personality);
1da177e4
LT
4893}
4894
4895static void raid_exit(void)
4896{
2604b703 4897 unregister_md_personality(&raid10_personality);
1da177e4
LT
4898}
4899
4900module_init(raid_init);
4901module_exit(raid_exit);
4902MODULE_LICENSE("GPL");
0efb9e61 4903MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4904MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4905MODULE_ALIAS("md-raid10");
2604b703 4906MODULE_ALIAS("md-level-10");
34db0cd6
N
4907
4908module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);