]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/raid10.c
[PATCH] md: fix minor error in raid10 read-balancing calculation.
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/raid/raid10.h>
22
23/*
24 * RAID10 provides a combination of RAID0 and RAID1 functionality.
25 * The layout of data is defined by
26 * chunk_size
27 * raid_disks
28 * near_copies (stored in low byte of layout)
29 * far_copies (stored in second byte of layout)
30 *
31 * The data to be stored is divided into chunks using chunksize.
32 * Each device is divided into far_copies sections.
33 * In each section, chunks are laid out in a style similar to raid0, but
34 * near_copies copies of each chunk is stored (each on a different drive).
35 * The starting device for each section is offset near_copies from the starting
36 * device of the previous section.
37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38 * drive.
39 * near_copies and far_copies must be at least one, and their product is at most
40 * raid_disks.
41 */
42
43/*
44 * Number of guaranteed r10bios in case of extreme VM load:
45 */
46#define NR_RAID10_BIOS 256
47
48static void unplug_slaves(mddev_t *mddev);
49
50static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
51{
52 conf_t *conf = data;
53 r10bio_t *r10_bio;
54 int size = offsetof(struct r10bio_s, devs[conf->copies]);
55
56 /* allocate a r10bio with room for raid_disks entries in the bios array */
57 r10_bio = kmalloc(size, gfp_flags);
58 if (r10_bio)
59 memset(r10_bio, 0, size);
60 else
61 unplug_slaves(conf->mddev);
62
63 return r10_bio;
64}
65
66static void r10bio_pool_free(void *r10_bio, void *data)
67{
68 kfree(r10_bio);
69}
70
71#define RESYNC_BLOCK_SIZE (64*1024)
72//#define RESYNC_BLOCK_SIZE PAGE_SIZE
73#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75#define RESYNC_WINDOW (2048*1024)
76
77/*
78 * When performing a resync, we need to read and compare, so
79 * we need as many pages are there are copies.
80 * When performing a recovery, we need 2 bios, one for read,
81 * one for write (we recover only one drive per r10buf)
82 *
83 */
84static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
85{
86 conf_t *conf = data;
87 struct page *page;
88 r10bio_t *r10_bio;
89 struct bio *bio;
90 int i, j;
91 int nalloc;
92
93 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94 if (!r10_bio) {
95 unplug_slaves(conf->mddev);
96 return NULL;
97 }
98
99 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100 nalloc = conf->copies; /* resync */
101 else
102 nalloc = 2; /* recovery */
103
104 /*
105 * Allocate bios.
106 */
107 for (j = nalloc ; j-- ; ) {
108 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r10_bio->devs[j].bio = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them
115 * where needed.
116 */
117 for (j = 0 ; j < nalloc; j++) {
118 bio = r10_bio->devs[j].bio;
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
123
124 bio->bi_io_vec[i].bv_page = page;
125 }
126 }
127
128 return r10_bio;
129
130out_free_pages:
131 for ( ; i > 0 ; i--)
132 __free_page(bio->bi_io_vec[i-1].bv_page);
133 while (j--)
134 for (i = 0; i < RESYNC_PAGES ; i++)
135 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136 j = -1;
137out_free_bio:
138 while ( ++j < nalloc )
139 bio_put(r10_bio->devs[j].bio);
140 r10bio_pool_free(r10_bio, conf);
141 return NULL;
142}
143
144static void r10buf_pool_free(void *__r10_bio, void *data)
145{
146 int i;
147 conf_t *conf = data;
148 r10bio_t *r10bio = __r10_bio;
149 int j;
150
151 for (j=0; j < conf->copies; j++) {
152 struct bio *bio = r10bio->devs[j].bio;
153 if (bio) {
154 for (i = 0; i < RESYNC_PAGES; i++) {
155 __free_page(bio->bi_io_vec[i].bv_page);
156 bio->bi_io_vec[i].bv_page = NULL;
157 }
158 bio_put(bio);
159 }
160 }
161 r10bio_pool_free(r10bio, conf);
162}
163
164static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165{
166 int i;
167
168 for (i = 0; i < conf->copies; i++) {
169 struct bio **bio = & r10_bio->devs[i].bio;
170 if (*bio)
171 bio_put(*bio);
172 *bio = NULL;
173 }
174}
175
176static inline void free_r10bio(r10bio_t *r10_bio)
177{
178 unsigned long flags;
179
180 conf_t *conf = mddev_to_conf(r10_bio->mddev);
181
182 /*
183 * Wake up any possible resync thread that waits for the device
184 * to go idle.
185 */
186 spin_lock_irqsave(&conf->resync_lock, flags);
187 if (!--conf->nr_pending) {
188 wake_up(&conf->wait_idle);
189 wake_up(&conf->wait_resume);
190 }
191 spin_unlock_irqrestore(&conf->resync_lock, flags);
192
193 put_all_bios(conf, r10_bio);
194 mempool_free(r10_bio, conf->r10bio_pool);
195}
196
197static inline void put_buf(r10bio_t *r10_bio)
198{
199 conf_t *conf = mddev_to_conf(r10_bio->mddev);
200 unsigned long flags;
201
202 mempool_free(r10_bio, conf->r10buf_pool);
203
204 spin_lock_irqsave(&conf->resync_lock, flags);
205 if (!conf->barrier)
206 BUG();
207 --conf->barrier;
208 wake_up(&conf->wait_resume);
209 wake_up(&conf->wait_idle);
210
211 if (!--conf->nr_pending) {
212 wake_up(&conf->wait_idle);
213 wake_up(&conf->wait_resume);
214 }
215 spin_unlock_irqrestore(&conf->resync_lock, flags);
216}
217
218static void reschedule_retry(r10bio_t *r10_bio)
219{
220 unsigned long flags;
221 mddev_t *mddev = r10_bio->mddev;
222 conf_t *conf = mddev_to_conf(mddev);
223
224 spin_lock_irqsave(&conf->device_lock, flags);
225 list_add(&r10_bio->retry_list, &conf->retry_list);
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
228 md_wakeup_thread(mddev->thread);
229}
230
231/*
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
235 */
236static void raid_end_bio_io(r10bio_t *r10_bio)
237{
238 struct bio *bio = r10_bio->master_bio;
239
240 bio_endio(bio, bio->bi_size,
241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 free_r10bio(r10_bio);
243}
244
245/*
246 * Update disk head position estimator based on IRQ completion info.
247 */
248static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249{
250 conf_t *conf = mddev_to_conf(r10_bio->mddev);
251
252 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 r10_bio->devs[slot].addr + (r10_bio->sectors);
254}
255
256static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257{
258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260 int slot, dev;
261 conf_t *conf = mddev_to_conf(r10_bio->mddev);
262
263 if (bio->bi_size)
264 return 1;
265
266 slot = r10_bio->read_slot;
267 dev = r10_bio->devs[slot].devnum;
268 /*
269 * this branch is our 'one mirror IO has finished' event handler:
270 */
271 if (!uptodate)
272 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273 else
274 /*
275 * Set R10BIO_Uptodate in our master bio, so that
276 * we will return a good error code to the higher
277 * levels even if IO on some other mirrored buffer fails.
278 *
279 * The 'master' represents the composite IO operation to
280 * user-side. So if something waits for IO, then it will
281 * wait for the 'master' bio.
282 */
283 set_bit(R10BIO_Uptodate, &r10_bio->state);
284
285 update_head_pos(slot, r10_bio);
286
287 /*
288 * we have only one bio on the read side
289 */
290 if (uptodate)
291 raid_end_bio_io(r10_bio);
292 else {
293 /*
294 * oops, read error:
295 */
296 char b[BDEVNAME_SIZE];
297 if (printk_ratelimit())
298 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300 reschedule_retry(r10_bio);
301 }
302
303 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304 return 0;
305}
306
307static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311 int slot, dev;
312 conf_t *conf = mddev_to_conf(r10_bio->mddev);
313
314 if (bio->bi_size)
315 return 1;
316
317 for (slot = 0; slot < conf->copies; slot++)
318 if (r10_bio->devs[slot].bio == bio)
319 break;
320 dev = r10_bio->devs[slot].devnum;
321
322 /*
323 * this branch is our 'one mirror IO has finished' event handler:
324 */
325 if (!uptodate)
326 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327 else
328 /*
329 * Set R10BIO_Uptodate in our master bio, so that
330 * we will return a good error code for to the higher
331 * levels even if IO on some other mirrored buffer fails.
332 *
333 * The 'master' represents the composite IO operation to
334 * user-side. So if something waits for IO, then it will
335 * wait for the 'master' bio.
336 */
337 set_bit(R10BIO_Uptodate, &r10_bio->state);
338
339 update_head_pos(slot, r10_bio);
340
341 /*
342 *
343 * Let's see if all mirrored write operations have finished
344 * already.
345 */
346 if (atomic_dec_and_test(&r10_bio->remaining)) {
347 md_write_end(r10_bio->mddev);
348 raid_end_bio_io(r10_bio);
349 }
350
351 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352 return 0;
353}
354
355
356/*
357 * RAID10 layout manager
358 * Aswell as the chunksize and raid_disks count, there are two
359 * parameters: near_copies and far_copies.
360 * near_copies * far_copies must be <= raid_disks.
361 * Normally one of these will be 1.
362 * If both are 1, we get raid0.
363 * If near_copies == raid_disks, we get raid1.
364 *
365 * Chunks are layed out in raid0 style with near_copies copies of the
366 * first chunk, followed by near_copies copies of the next chunk and
367 * so on.
368 * If far_copies > 1, then after 1/far_copies of the array has been assigned
369 * as described above, we start again with a device offset of near_copies.
370 * So we effectively have another copy of the whole array further down all
371 * the drives, but with blocks on different drives.
372 * With this layout, and block is never stored twice on the one device.
373 *
374 * raid10_find_phys finds the sector offset of a given virtual sector
375 * on each device that it is on. If a block isn't on a device,
376 * that entry in the array is set to MaxSector.
377 *
378 * raid10_find_virt does the reverse mapping, from a device and a
379 * sector offset to a virtual address
380 */
381
382static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383{
384 int n,f;
385 sector_t sector;
386 sector_t chunk;
387 sector_t stripe;
388 int dev;
389
390 int slot = 0;
391
392 /* now calculate first sector/dev */
393 chunk = r10bio->sector >> conf->chunk_shift;
394 sector = r10bio->sector & conf->chunk_mask;
395
396 chunk *= conf->near_copies;
397 stripe = chunk;
398 dev = sector_div(stripe, conf->raid_disks);
399
400 sector += stripe << conf->chunk_shift;
401
402 /* and calculate all the others */
403 for (n=0; n < conf->near_copies; n++) {
404 int d = dev;
405 sector_t s = sector;
406 r10bio->devs[slot].addr = sector;
407 r10bio->devs[slot].devnum = d;
408 slot++;
409
410 for (f = 1; f < conf->far_copies; f++) {
411 d += conf->near_copies;
412 if (d >= conf->raid_disks)
413 d -= conf->raid_disks;
414 s += conf->stride;
415 r10bio->devs[slot].devnum = d;
416 r10bio->devs[slot].addr = s;
417 slot++;
418 }
419 dev++;
420 if (dev >= conf->raid_disks) {
421 dev = 0;
422 sector += (conf->chunk_mask + 1);
423 }
424 }
425 BUG_ON(slot != conf->copies);
426}
427
428static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429{
430 sector_t offset, chunk, vchunk;
431
432 while (sector > conf->stride) {
433 sector -= conf->stride;
434 if (dev < conf->near_copies)
435 dev += conf->raid_disks - conf->near_copies;
436 else
437 dev -= conf->near_copies;
438 }
439
440 offset = sector & conf->chunk_mask;
441 chunk = sector >> conf->chunk_shift;
442 vchunk = chunk * conf->raid_disks + dev;
443 sector_div(vchunk, conf->near_copies);
444 return (vchunk << conf->chunk_shift) + offset;
445}
446
447/**
448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449 * @q: request queue
450 * @bio: the buffer head that's been built up so far
451 * @biovec: the request that could be merged to it.
452 *
453 * Return amount of bytes we can accept at this offset
454 * If near_copies == raid_disk, there are no striping issues,
455 * but in that case, the function isn't called at all.
456 */
457static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458 struct bio_vec *bio_vec)
459{
460 mddev_t *mddev = q->queuedata;
461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462 int max;
463 unsigned int chunk_sectors = mddev->chunk_size >> 9;
464 unsigned int bio_sectors = bio->bi_size >> 9;
465
466 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468 if (max <= bio_vec->bv_len && bio_sectors == 0)
469 return bio_vec->bv_len;
470 else
471 return max;
472}
473
474/*
475 * This routine returns the disk from which the requested read should
476 * be done. There is a per-array 'next expected sequential IO' sector
477 * number - if this matches on the next IO then we use the last disk.
478 * There is also a per-disk 'last know head position' sector that is
479 * maintained from IRQ contexts, both the normal and the resync IO
480 * completion handlers update this position correctly. If there is no
481 * perfect sequential match then we pick the disk whose head is closest.
482 *
483 * If there are 2 mirrors in the same 2 devices, performance degrades
484 * because position is mirror, not device based.
485 *
486 * The rdev for the device selected will have nr_pending incremented.
487 */
488
489/*
490 * FIXME: possibly should rethink readbalancing and do it differently
491 * depending on near_copies / far_copies geometry.
492 */
493static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494{
495 const unsigned long this_sector = r10_bio->sector;
496 int disk, slot, nslot;
497 const int sectors = r10_bio->sectors;
498 sector_t new_distance, current_distance;
499
500 raid10_find_phys(conf, r10_bio);
501 rcu_read_lock();
502 /*
503 * Check if we can balance. We can balance on the whole
504 * device if no resync is going on, or below the resync window.
505 * We take the first readable disk when above the resync window.
506 */
507 if (conf->mddev->recovery_cp < MaxSector
508 && (this_sector + sectors >= conf->next_resync)) {
509 /* make sure that disk is operational */
510 slot = 0;
511 disk = r10_bio->devs[slot].devnum;
512
513 while (!conf->mirrors[disk].rdev ||
514 !conf->mirrors[disk].rdev->in_sync) {
515 slot++;
516 if (slot == conf->copies) {
517 slot = 0;
518 disk = -1;
519 break;
520 }
521 disk = r10_bio->devs[slot].devnum;
522 }
523 goto rb_out;
524 }
525
526
527 /* make sure the disk is operational */
528 slot = 0;
529 disk = r10_bio->devs[slot].devnum;
530 while (!conf->mirrors[disk].rdev ||
531 !conf->mirrors[disk].rdev->in_sync) {
532 slot ++;
533 if (slot == conf->copies) {
534 disk = -1;
535 goto rb_out;
536 }
537 disk = r10_bio->devs[slot].devnum;
538 }
539
540
3ec67ac1
N
541 current_distance = abs(r10_bio->devs[slot].addr -
542 conf->mirrors[disk].head_position);
1da177e4
LT
543
544 /* Find the disk whose head is closest */
545
546 for (nslot = slot; nslot < conf->copies; nslot++) {
547 int ndisk = r10_bio->devs[nslot].devnum;
548
549
550 if (!conf->mirrors[ndisk].rdev ||
551 !conf->mirrors[ndisk].rdev->in_sync)
552 continue;
553
554 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
555 disk = ndisk;
556 slot = nslot;
557 break;
558 }
559 new_distance = abs(r10_bio->devs[nslot].addr -
560 conf->mirrors[ndisk].head_position);
561 if (new_distance < current_distance) {
562 current_distance = new_distance;
563 disk = ndisk;
564 slot = nslot;
565 }
566 }
567
568rb_out:
569 r10_bio->read_slot = slot;
570/* conf->next_seq_sect = this_sector + sectors;*/
571
572 if (disk >= 0 && conf->mirrors[disk].rdev)
573 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
574 rcu_read_unlock();
575
576 return disk;
577}
578
579static void unplug_slaves(mddev_t *mddev)
580{
581 conf_t *conf = mddev_to_conf(mddev);
582 int i;
583
584 rcu_read_lock();
585 for (i=0; i<mddev->raid_disks; i++) {
586 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
587 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
588 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
589
590 atomic_inc(&rdev->nr_pending);
591 rcu_read_unlock();
592
593 if (r_queue->unplug_fn)
594 r_queue->unplug_fn(r_queue);
595
596 rdev_dec_pending(rdev, mddev);
597 rcu_read_lock();
598 }
599 }
600 rcu_read_unlock();
601}
602
603static void raid10_unplug(request_queue_t *q)
604{
605 unplug_slaves(q->queuedata);
606}
607
608static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
609 sector_t *error_sector)
610{
611 mddev_t *mddev = q->queuedata;
612 conf_t *conf = mddev_to_conf(mddev);
613 int i, ret = 0;
614
615 rcu_read_lock();
616 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
617 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
618 if (rdev && !rdev->faulty) {
619 struct block_device *bdev = rdev->bdev;
620 request_queue_t *r_queue = bdev_get_queue(bdev);
621
622 if (!r_queue->issue_flush_fn)
623 ret = -EOPNOTSUPP;
624 else {
625 atomic_inc(&rdev->nr_pending);
626 rcu_read_unlock();
627 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
628 error_sector);
629 rdev_dec_pending(rdev, mddev);
630 rcu_read_lock();
631 }
632 }
633 }
634 rcu_read_unlock();
635 return ret;
636}
637
638/*
639 * Throttle resync depth, so that we can both get proper overlapping of
640 * requests, but are still able to handle normal requests quickly.
641 */
642#define RESYNC_DEPTH 32
643
644static void device_barrier(conf_t *conf, sector_t sect)
645{
646 spin_lock_irq(&conf->resync_lock);
647 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
648 conf->resync_lock, unplug_slaves(conf->mddev));
649
650 if (!conf->barrier++) {
651 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
652 conf->resync_lock, unplug_slaves(conf->mddev));
653 if (conf->nr_pending)
654 BUG();
655 }
656 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
657 conf->resync_lock, unplug_slaves(conf->mddev));
658 conf->next_resync = sect;
659 spin_unlock_irq(&conf->resync_lock);
660}
661
662static int make_request(request_queue_t *q, struct bio * bio)
663{
664 mddev_t *mddev = q->queuedata;
665 conf_t *conf = mddev_to_conf(mddev);
666 mirror_info_t *mirror;
667 r10bio_t *r10_bio;
668 struct bio *read_bio;
669 int i;
670 int chunk_sects = conf->chunk_mask + 1;
671
672 /* If this request crosses a chunk boundary, we need to
673 * split it. This will only happen for 1 PAGE (or less) requests.
674 */
675 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
676 > chunk_sects &&
677 conf->near_copies < conf->raid_disks)) {
678 struct bio_pair *bp;
679 /* Sanity check -- queue functions should prevent this happening */
680 if (bio->bi_vcnt != 1 ||
681 bio->bi_idx != 0)
682 goto bad_map;
683 /* This is a one page bio that upper layers
684 * refuse to split for us, so we need to split it.
685 */
686 bp = bio_split(bio, bio_split_pool,
687 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
688 if (make_request(q, &bp->bio1))
689 generic_make_request(&bp->bio1);
690 if (make_request(q, &bp->bio2))
691 generic_make_request(&bp->bio2);
692
693 bio_pair_release(bp);
694 return 0;
695 bad_map:
696 printk("raid10_make_request bug: can't convert block across chunks"
697 " or bigger than %dk %llu %d\n", chunk_sects/2,
698 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
699
700 bio_io_error(bio, bio->bi_size);
701 return 0;
702 }
703
3d310eb7 704 md_write_start(mddev, bio);
06d91a5f 705
1da177e4
LT
706 /*
707 * Register the new request and wait if the reconstruction
708 * thread has put up a bar for new requests.
709 * Continue immediately if no resync is active currently.
710 */
711 spin_lock_irq(&conf->resync_lock);
712 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
713 conf->nr_pending++;
714 spin_unlock_irq(&conf->resync_lock);
715
716 if (bio_data_dir(bio)==WRITE) {
717 disk_stat_inc(mddev->gendisk, writes);
718 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
719 } else {
720 disk_stat_inc(mddev->gendisk, reads);
721 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
722 }
723
724 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
725
726 r10_bio->master_bio = bio;
727 r10_bio->sectors = bio->bi_size >> 9;
728
729 r10_bio->mddev = mddev;
730 r10_bio->sector = bio->bi_sector;
731
732 if (bio_data_dir(bio) == READ) {
733 /*
734 * read balancing logic:
735 */
736 int disk = read_balance(conf, r10_bio);
737 int slot = r10_bio->read_slot;
738 if (disk < 0) {
739 raid_end_bio_io(r10_bio);
740 return 0;
741 }
742 mirror = conf->mirrors + disk;
743
744 read_bio = bio_clone(bio, GFP_NOIO);
745
746 r10_bio->devs[slot].bio = read_bio;
747
748 read_bio->bi_sector = r10_bio->devs[slot].addr +
749 mirror->rdev->data_offset;
750 read_bio->bi_bdev = mirror->rdev->bdev;
751 read_bio->bi_end_io = raid10_end_read_request;
752 read_bio->bi_rw = READ;
753 read_bio->bi_private = r10_bio;
754
755 generic_make_request(read_bio);
756 return 0;
757 }
758
759 /*
760 * WRITE:
761 */
762 /* first select target devices under spinlock and
763 * inc refcount on their rdev. Record them by setting
764 * bios[x] to bio
765 */
766 raid10_find_phys(conf, r10_bio);
767 rcu_read_lock();
768 for (i = 0; i < conf->copies; i++) {
769 int d = r10_bio->devs[i].devnum;
770 if (conf->mirrors[d].rdev &&
771 !conf->mirrors[d].rdev->faulty) {
772 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
773 r10_bio->devs[i].bio = bio;
774 } else
775 r10_bio->devs[i].bio = NULL;
776 }
777 rcu_read_unlock();
778
779 atomic_set(&r10_bio->remaining, 1);
06d91a5f 780
1da177e4
LT
781 for (i = 0; i < conf->copies; i++) {
782 struct bio *mbio;
783 int d = r10_bio->devs[i].devnum;
784 if (!r10_bio->devs[i].bio)
785 continue;
786
787 mbio = bio_clone(bio, GFP_NOIO);
788 r10_bio->devs[i].bio = mbio;
789
790 mbio->bi_sector = r10_bio->devs[i].addr+
791 conf->mirrors[d].rdev->data_offset;
792 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
793 mbio->bi_end_io = raid10_end_write_request;
794 mbio->bi_rw = WRITE;
795 mbio->bi_private = r10_bio;
796
797 atomic_inc(&r10_bio->remaining);
798 generic_make_request(mbio);
799 }
800
801 if (atomic_dec_and_test(&r10_bio->remaining)) {
802 md_write_end(mddev);
803 raid_end_bio_io(r10_bio);
804 }
805
806 return 0;
807}
808
809static void status(struct seq_file *seq, mddev_t *mddev)
810{
811 conf_t *conf = mddev_to_conf(mddev);
812 int i;
813
814 if (conf->near_copies < conf->raid_disks)
815 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
816 if (conf->near_copies > 1)
817 seq_printf(seq, " %d near-copies", conf->near_copies);
818 if (conf->far_copies > 1)
819 seq_printf(seq, " %d far-copies", conf->far_copies);
820
821 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
822 conf->working_disks);
823 for (i = 0; i < conf->raid_disks; i++)
824 seq_printf(seq, "%s",
825 conf->mirrors[i].rdev &&
826 conf->mirrors[i].rdev->in_sync ? "U" : "_");
827 seq_printf(seq, "]");
828}
829
830static void error(mddev_t *mddev, mdk_rdev_t *rdev)
831{
832 char b[BDEVNAME_SIZE];
833 conf_t *conf = mddev_to_conf(mddev);
834
835 /*
836 * If it is not operational, then we have already marked it as dead
837 * else if it is the last working disks, ignore the error, let the
838 * next level up know.
839 * else mark the drive as failed
840 */
841 if (rdev->in_sync
842 && conf->working_disks == 1)
843 /*
844 * Don't fail the drive, just return an IO error.
845 * The test should really be more sophisticated than
846 * "working_disks == 1", but it isn't critical, and
847 * can wait until we do more sophisticated "is the drive
848 * really dead" tests...
849 */
850 return;
851 if (rdev->in_sync) {
852 mddev->degraded++;
853 conf->working_disks--;
854 /*
855 * if recovery is running, make sure it aborts.
856 */
857 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
858 }
859 rdev->in_sync = 0;
860 rdev->faulty = 1;
861 mddev->sb_dirty = 1;
862 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
863 " Operation continuing on %d devices\n",
864 bdevname(rdev->bdev,b), conf->working_disks);
865}
866
867static void print_conf(conf_t *conf)
868{
869 int i;
870 mirror_info_t *tmp;
871
872 printk("RAID10 conf printout:\n");
873 if (!conf) {
874 printk("(!conf)\n");
875 return;
876 }
877 printk(" --- wd:%d rd:%d\n", conf->working_disks,
878 conf->raid_disks);
879
880 for (i = 0; i < conf->raid_disks; i++) {
881 char b[BDEVNAME_SIZE];
882 tmp = conf->mirrors + i;
883 if (tmp->rdev)
884 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
885 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
886 bdevname(tmp->rdev->bdev,b));
887 }
888}
889
890static void close_sync(conf_t *conf)
891{
892 spin_lock_irq(&conf->resync_lock);
893 wait_event_lock_irq(conf->wait_resume, !conf->barrier,
894 conf->resync_lock, unplug_slaves(conf->mddev));
895 spin_unlock_irq(&conf->resync_lock);
896
897 if (conf->barrier) BUG();
898 if (waitqueue_active(&conf->wait_idle)) BUG();
899
900 mempool_destroy(conf->r10buf_pool);
901 conf->r10buf_pool = NULL;
902}
903
904static int raid10_spare_active(mddev_t *mddev)
905{
906 int i;
907 conf_t *conf = mddev->private;
908 mirror_info_t *tmp;
909
910 /*
911 * Find all non-in_sync disks within the RAID10 configuration
912 * and mark them in_sync
913 */
914 for (i = 0; i < conf->raid_disks; i++) {
915 tmp = conf->mirrors + i;
916 if (tmp->rdev
917 && !tmp->rdev->faulty
918 && !tmp->rdev->in_sync) {
919 conf->working_disks++;
920 mddev->degraded--;
921 tmp->rdev->in_sync = 1;
922 }
923 }
924
925 print_conf(conf);
926 return 0;
927}
928
929
930static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
931{
932 conf_t *conf = mddev->private;
933 int found = 0;
934 int mirror;
935 mirror_info_t *p;
936
937 if (mddev->recovery_cp < MaxSector)
938 /* only hot-add to in-sync arrays, as recovery is
939 * very different from resync
940 */
941 return 0;
942
943 for (mirror=0; mirror < mddev->raid_disks; mirror++)
944 if ( !(p=conf->mirrors+mirror)->rdev) {
945
946 blk_queue_stack_limits(mddev->queue,
947 rdev->bdev->bd_disk->queue);
948 /* as we don't honour merge_bvec_fn, we must never risk
949 * violating it, so limit ->max_sector to one PAGE, as
950 * a one page request is never in violation.
951 */
952 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
953 mddev->queue->max_sectors > (PAGE_SIZE>>9))
954 mddev->queue->max_sectors = (PAGE_SIZE>>9);
955
956 p->head_position = 0;
957 rdev->raid_disk = mirror;
958 found = 1;
959 p->rdev = rdev;
960 break;
961 }
962
963 print_conf(conf);
964 return found;
965}
966
967static int raid10_remove_disk(mddev_t *mddev, int number)
968{
969 conf_t *conf = mddev->private;
970 int err = 0;
971 mdk_rdev_t *rdev;
972 mirror_info_t *p = conf->mirrors+ number;
973
974 print_conf(conf);
975 rdev = p->rdev;
976 if (rdev) {
977 if (rdev->in_sync ||
978 atomic_read(&rdev->nr_pending)) {
979 err = -EBUSY;
980 goto abort;
981 }
982 p->rdev = NULL;
fbd568a3 983 synchronize_rcu();
1da177e4
LT
984 if (atomic_read(&rdev->nr_pending)) {
985 /* lost the race, try later */
986 err = -EBUSY;
987 p->rdev = rdev;
988 }
989 }
990abort:
991
992 print_conf(conf);
993 return err;
994}
995
996
997static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
998{
999 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1000 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1001 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1002 int i,d;
1003
1004 if (bio->bi_size)
1005 return 1;
1006
1007 for (i=0; i<conf->copies; i++)
1008 if (r10_bio->devs[i].bio == bio)
1009 break;
1010 if (i == conf->copies)
1011 BUG();
1012 update_head_pos(i, r10_bio);
1013 d = r10_bio->devs[i].devnum;
1014 if (!uptodate)
1015 md_error(r10_bio->mddev,
1016 conf->mirrors[d].rdev);
1017
1018 /* for reconstruct, we always reschedule after a read.
1019 * for resync, only after all reads
1020 */
1021 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1022 atomic_dec_and_test(&r10_bio->remaining)) {
1023 /* we have read all the blocks,
1024 * do the comparison in process context in raid10d
1025 */
1026 reschedule_retry(r10_bio);
1027 }
1028 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1029 return 0;
1030}
1031
1032static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1033{
1034 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1035 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1036 mddev_t *mddev = r10_bio->mddev;
1037 conf_t *conf = mddev_to_conf(mddev);
1038 int i,d;
1039
1040 if (bio->bi_size)
1041 return 1;
1042
1043 for (i = 0; i < conf->copies; i++)
1044 if (r10_bio->devs[i].bio == bio)
1045 break;
1046 d = r10_bio->devs[i].devnum;
1047
1048 if (!uptodate)
1049 md_error(mddev, conf->mirrors[d].rdev);
1050 update_head_pos(i, r10_bio);
1051
1052 while (atomic_dec_and_test(&r10_bio->remaining)) {
1053 if (r10_bio->master_bio == NULL) {
1054 /* the primary of several recovery bios */
1055 md_done_sync(mddev, r10_bio->sectors, 1);
1056 put_buf(r10_bio);
1057 break;
1058 } else {
1059 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1060 put_buf(r10_bio);
1061 r10_bio = r10_bio2;
1062 }
1063 }
1064 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1065 return 0;
1066}
1067
1068/*
1069 * Note: sync and recover and handled very differently for raid10
1070 * This code is for resync.
1071 * For resync, we read through virtual addresses and read all blocks.
1072 * If there is any error, we schedule a write. The lowest numbered
1073 * drive is authoritative.
1074 * However requests come for physical address, so we need to map.
1075 * For every physical address there are raid_disks/copies virtual addresses,
1076 * which is always are least one, but is not necessarly an integer.
1077 * This means that a physical address can span multiple chunks, so we may
1078 * have to submit multiple io requests for a single sync request.
1079 */
1080/*
1081 * We check if all blocks are in-sync and only write to blocks that
1082 * aren't in sync
1083 */
1084static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1085{
1086 conf_t *conf = mddev_to_conf(mddev);
1087 int i, first;
1088 struct bio *tbio, *fbio;
1089
1090 atomic_set(&r10_bio->remaining, 1);
1091
1092 /* find the first device with a block */
1093 for (i=0; i<conf->copies; i++)
1094 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1095 break;
1096
1097 if (i == conf->copies)
1098 goto done;
1099
1100 first = i;
1101 fbio = r10_bio->devs[i].bio;
1102
1103 /* now find blocks with errors */
1104 for (i=first+1 ; i < conf->copies ; i++) {
1105 int vcnt, j, d;
1106
1107 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1108 continue;
1109 /* We know that the bi_io_vec layout is the same for
1110 * both 'first' and 'i', so we just compare them.
1111 * All vec entries are PAGE_SIZE;
1112 */
1113 tbio = r10_bio->devs[i].bio;
1114 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1115 for (j = 0; j < vcnt; j++)
1116 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1117 page_address(tbio->bi_io_vec[j].bv_page),
1118 PAGE_SIZE))
1119 break;
1120 if (j == vcnt)
1121 continue;
1122 /* Ok, we need to write this bio
1123 * First we need to fixup bv_offset, bv_len and
1124 * bi_vecs, as the read request might have corrupted these
1125 */
1126 tbio->bi_vcnt = vcnt;
1127 tbio->bi_size = r10_bio->sectors << 9;
1128 tbio->bi_idx = 0;
1129 tbio->bi_phys_segments = 0;
1130 tbio->bi_hw_segments = 0;
1131 tbio->bi_hw_front_size = 0;
1132 tbio->bi_hw_back_size = 0;
1133 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1134 tbio->bi_flags |= 1 << BIO_UPTODATE;
1135 tbio->bi_next = NULL;
1136 tbio->bi_rw = WRITE;
1137 tbio->bi_private = r10_bio;
1138 tbio->bi_sector = r10_bio->devs[i].addr;
1139
1140 for (j=0; j < vcnt ; j++) {
1141 tbio->bi_io_vec[j].bv_offset = 0;
1142 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1143
1144 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1145 page_address(fbio->bi_io_vec[j].bv_page),
1146 PAGE_SIZE);
1147 }
1148 tbio->bi_end_io = end_sync_write;
1149
1150 d = r10_bio->devs[i].devnum;
1151 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1152 atomic_inc(&r10_bio->remaining);
1153 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1154
1155 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1156 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1157 generic_make_request(tbio);
1158 }
1159
1160done:
1161 if (atomic_dec_and_test(&r10_bio->remaining)) {
1162 md_done_sync(mddev, r10_bio->sectors, 1);
1163 put_buf(r10_bio);
1164 }
1165}
1166
1167/*
1168 * Now for the recovery code.
1169 * Recovery happens across physical sectors.
1170 * We recover all non-is_sync drives by finding the virtual address of
1171 * each, and then choose a working drive that also has that virt address.
1172 * There is a separate r10_bio for each non-in_sync drive.
1173 * Only the first two slots are in use. The first for reading,
1174 * The second for writing.
1175 *
1176 */
1177
1178static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1179{
1180 conf_t *conf = mddev_to_conf(mddev);
1181 int i, d;
1182 struct bio *bio, *wbio;
1183
1184
1185 /* move the pages across to the second bio
1186 * and submit the write request
1187 */
1188 bio = r10_bio->devs[0].bio;
1189 wbio = r10_bio->devs[1].bio;
1190 for (i=0; i < wbio->bi_vcnt; i++) {
1191 struct page *p = bio->bi_io_vec[i].bv_page;
1192 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1193 wbio->bi_io_vec[i].bv_page = p;
1194 }
1195 d = r10_bio->devs[1].devnum;
1196
1197 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1198 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1199 generic_make_request(wbio);
1200}
1201
1202
1203/*
1204 * This is a kernel thread which:
1205 *
1206 * 1. Retries failed read operations on working mirrors.
1207 * 2. Updates the raid superblock when problems encounter.
1208 * 3. Performs writes following reads for array syncronising.
1209 */
1210
1211static void raid10d(mddev_t *mddev)
1212{
1213 r10bio_t *r10_bio;
1214 struct bio *bio;
1215 unsigned long flags;
1216 conf_t *conf = mddev_to_conf(mddev);
1217 struct list_head *head = &conf->retry_list;
1218 int unplug=0;
1219 mdk_rdev_t *rdev;
1220
1221 md_check_recovery(mddev);
1da177e4
LT
1222
1223 for (;;) {
1224 char b[BDEVNAME_SIZE];
1225 spin_lock_irqsave(&conf->device_lock, flags);
1226 if (list_empty(head))
1227 break;
1228 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1229 list_del(head->prev);
1230 spin_unlock_irqrestore(&conf->device_lock, flags);
1231
1232 mddev = r10_bio->mddev;
1233 conf = mddev_to_conf(mddev);
1234 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1235 sync_request_write(mddev, r10_bio);
1236 unplug = 1;
1237 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1238 recovery_request_write(mddev, r10_bio);
1239 unplug = 1;
1240 } else {
1241 int mirror;
1242 bio = r10_bio->devs[r10_bio->read_slot].bio;
1243 r10_bio->devs[r10_bio->read_slot].bio = NULL;
1244 bio_put(bio);
1245 mirror = read_balance(conf, r10_bio);
1246 if (mirror == -1) {
1247 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1248 " read error for block %llu\n",
1249 bdevname(bio->bi_bdev,b),
1250 (unsigned long long)r10_bio->sector);
1251 raid_end_bio_io(r10_bio);
1252 } else {
1253 rdev = conf->mirrors[mirror].rdev;
1254 if (printk_ratelimit())
1255 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1256 " another mirror\n",
1257 bdevname(rdev->bdev,b),
1258 (unsigned long long)r10_bio->sector);
1259 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1260 r10_bio->devs[r10_bio->read_slot].bio = bio;
1261 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1262 + rdev->data_offset;
1263 bio->bi_bdev = rdev->bdev;
1264 bio->bi_rw = READ;
1265 bio->bi_private = r10_bio;
1266 bio->bi_end_io = raid10_end_read_request;
1267 unplug = 1;
1268 generic_make_request(bio);
1269 }
1270 }
1271 }
1272 spin_unlock_irqrestore(&conf->device_lock, flags);
1273 if (unplug)
1274 unplug_slaves(mddev);
1275}
1276
1277
1278static int init_resync(conf_t *conf)
1279{
1280 int buffs;
1281
1282 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1283 if (conf->r10buf_pool)
1284 BUG();
1285 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1286 if (!conf->r10buf_pool)
1287 return -ENOMEM;
1288 conf->next_resync = 0;
1289 return 0;
1290}
1291
1292/*
1293 * perform a "sync" on one "block"
1294 *
1295 * We need to make sure that no normal I/O request - particularly write
1296 * requests - conflict with active sync requests.
1297 *
1298 * This is achieved by tracking pending requests and a 'barrier' concept
1299 * that can be installed to exclude normal IO requests.
1300 *
1301 * Resync and recovery are handled very differently.
1302 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1303 *
1304 * For resync, we iterate over virtual addresses, read all copies,
1305 * and update if there are differences. If only one copy is live,
1306 * skip it.
1307 * For recovery, we iterate over physical addresses, read a good
1308 * value for each non-in_sync drive, and over-write.
1309 *
1310 * So, for recovery we may have several outstanding complex requests for a
1311 * given address, one for each out-of-sync device. We model this by allocating
1312 * a number of r10_bio structures, one for each out-of-sync device.
1313 * As we setup these structures, we collect all bio's together into a list
1314 * which we then process collectively to add pages, and then process again
1315 * to pass to generic_make_request.
1316 *
1317 * The r10_bio structures are linked using a borrowed master_bio pointer.
1318 * This link is counted in ->remaining. When the r10_bio that points to NULL
1319 * has its remaining count decremented to 0, the whole complex operation
1320 * is complete.
1321 *
1322 */
1323
57afd89f 1324static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1325{
1326 conf_t *conf = mddev_to_conf(mddev);
1327 r10bio_t *r10_bio;
1328 struct bio *biolist = NULL, *bio;
1329 sector_t max_sector, nr_sectors;
1330 int disk;
1331 int i;
1332
1333 sector_t sectors_skipped = 0;
1334 int chunks_skipped = 0;
1335
1336 if (!conf->r10buf_pool)
1337 if (init_resync(conf))
57afd89f 1338 return 0;
1da177e4
LT
1339
1340 skipped:
1341 max_sector = mddev->size << 1;
1342 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1343 max_sector = mddev->resync_max_sectors;
1344 if (sector_nr >= max_sector) {
1345 close_sync(conf);
57afd89f 1346 *skipped = 1;
1da177e4
LT
1347 return sectors_skipped;
1348 }
1349 if (chunks_skipped >= conf->raid_disks) {
1350 /* if there has been nothing to do on any drive,
1351 * then there is nothing to do at all..
1352 */
57afd89f
N
1353 *skipped = 1;
1354 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1355 }
1356
1357 /* make sure whole request will fit in a chunk - if chunks
1358 * are meaningful
1359 */
1360 if (conf->near_copies < conf->raid_disks &&
1361 max_sector > (sector_nr | conf->chunk_mask))
1362 max_sector = (sector_nr | conf->chunk_mask) + 1;
1363 /*
1364 * If there is non-resync activity waiting for us then
1365 * put in a delay to throttle resync.
1366 */
1367 if (!go_faster && waitqueue_active(&conf->wait_resume))
1368 msleep_interruptible(1000);
1369 device_barrier(conf, sector_nr + RESYNC_SECTORS);
1370
1371 /* Again, very different code for resync and recovery.
1372 * Both must result in an r10bio with a list of bios that
1373 * have bi_end_io, bi_sector, bi_bdev set,
1374 * and bi_private set to the r10bio.
1375 * For recovery, we may actually create several r10bios
1376 * with 2 bios in each, that correspond to the bios in the main one.
1377 * In this case, the subordinate r10bios link back through a
1378 * borrowed master_bio pointer, and the counter in the master
1379 * includes a ref from each subordinate.
1380 */
1381 /* First, we decide what to do and set ->bi_end_io
1382 * To end_sync_read if we want to read, and
1383 * end_sync_write if we will want to write.
1384 */
1385
1386 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1387 /* recovery... the complicated one */
1388 int i, j, k;
1389 r10_bio = NULL;
1390
1391 for (i=0 ; i<conf->raid_disks; i++)
1392 if (conf->mirrors[i].rdev &&
1393 !conf->mirrors[i].rdev->in_sync) {
1394 /* want to reconstruct this device */
1395 r10bio_t *rb2 = r10_bio;
1396
1397 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1398 spin_lock_irq(&conf->resync_lock);
1399 conf->nr_pending++;
1400 if (rb2) conf->barrier++;
1401 spin_unlock_irq(&conf->resync_lock);
1402 atomic_set(&r10_bio->remaining, 0);
1403
1404 r10_bio->master_bio = (struct bio*)rb2;
1405 if (rb2)
1406 atomic_inc(&rb2->remaining);
1407 r10_bio->mddev = mddev;
1408 set_bit(R10BIO_IsRecover, &r10_bio->state);
1409 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1410 raid10_find_phys(conf, r10_bio);
1411 for (j=0; j<conf->copies;j++) {
1412 int d = r10_bio->devs[j].devnum;
1413 if (conf->mirrors[d].rdev &&
1414 conf->mirrors[d].rdev->in_sync) {
1415 /* This is where we read from */
1416 bio = r10_bio->devs[0].bio;
1417 bio->bi_next = biolist;
1418 biolist = bio;
1419 bio->bi_private = r10_bio;
1420 bio->bi_end_io = end_sync_read;
1421 bio->bi_rw = 0;
1422 bio->bi_sector = r10_bio->devs[j].addr +
1423 conf->mirrors[d].rdev->data_offset;
1424 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1425 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1426 atomic_inc(&r10_bio->remaining);
1427 /* and we write to 'i' */
1428
1429 for (k=0; k<conf->copies; k++)
1430 if (r10_bio->devs[k].devnum == i)
1431 break;
1432 bio = r10_bio->devs[1].bio;
1433 bio->bi_next = biolist;
1434 biolist = bio;
1435 bio->bi_private = r10_bio;
1436 bio->bi_end_io = end_sync_write;
1437 bio->bi_rw = 1;
1438 bio->bi_sector = r10_bio->devs[k].addr +
1439 conf->mirrors[i].rdev->data_offset;
1440 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1441
1442 r10_bio->devs[0].devnum = d;
1443 r10_bio->devs[1].devnum = i;
1444
1445 break;
1446 }
1447 }
1448 if (j == conf->copies) {
1449 BUG();
1450 }
1451 }
1452 if (biolist == NULL) {
1453 while (r10_bio) {
1454 r10bio_t *rb2 = r10_bio;
1455 r10_bio = (r10bio_t*) rb2->master_bio;
1456 rb2->master_bio = NULL;
1457 put_buf(rb2);
1458 }
1459 goto giveup;
1460 }
1461 } else {
1462 /* resync. Schedule a read for every block at this virt offset */
1463 int count = 0;
1464 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1465
1466 spin_lock_irq(&conf->resync_lock);
1467 conf->nr_pending++;
1468 spin_unlock_irq(&conf->resync_lock);
1469
1470 r10_bio->mddev = mddev;
1471 atomic_set(&r10_bio->remaining, 0);
1472
1473 r10_bio->master_bio = NULL;
1474 r10_bio->sector = sector_nr;
1475 set_bit(R10BIO_IsSync, &r10_bio->state);
1476 raid10_find_phys(conf, r10_bio);
1477 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1478
1479 for (i=0; i<conf->copies; i++) {
1480 int d = r10_bio->devs[i].devnum;
1481 bio = r10_bio->devs[i].bio;
1482 bio->bi_end_io = NULL;
1483 if (conf->mirrors[d].rdev == NULL ||
1484 conf->mirrors[d].rdev->faulty)
1485 continue;
1486 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1487 atomic_inc(&r10_bio->remaining);
1488 bio->bi_next = biolist;
1489 biolist = bio;
1490 bio->bi_private = r10_bio;
1491 bio->bi_end_io = end_sync_read;
1492 bio->bi_rw = 0;
1493 bio->bi_sector = r10_bio->devs[i].addr +
1494 conf->mirrors[d].rdev->data_offset;
1495 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1496 count++;
1497 }
1498
1499 if (count < 2) {
1500 for (i=0; i<conf->copies; i++) {
1501 int d = r10_bio->devs[i].devnum;
1502 if (r10_bio->devs[i].bio->bi_end_io)
1503 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1504 }
1505 put_buf(r10_bio);
1506 biolist = NULL;
1507 goto giveup;
1508 }
1509 }
1510
1511 for (bio = biolist; bio ; bio=bio->bi_next) {
1512
1513 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1514 if (bio->bi_end_io)
1515 bio->bi_flags |= 1 << BIO_UPTODATE;
1516 bio->bi_vcnt = 0;
1517 bio->bi_idx = 0;
1518 bio->bi_phys_segments = 0;
1519 bio->bi_hw_segments = 0;
1520 bio->bi_size = 0;
1521 }
1522
1523 nr_sectors = 0;
1524 do {
1525 struct page *page;
1526 int len = PAGE_SIZE;
1527 disk = 0;
1528 if (sector_nr + (len>>9) > max_sector)
1529 len = (max_sector - sector_nr) << 9;
1530 if (len == 0)
1531 break;
1532 for (bio= biolist ; bio ; bio=bio->bi_next) {
1533 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1534 if (bio_add_page(bio, page, len, 0) == 0) {
1535 /* stop here */
1536 struct bio *bio2;
1537 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1538 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1539 /* remove last page from this bio */
1540 bio2->bi_vcnt--;
1541 bio2->bi_size -= len;
1542 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1543 }
1544 goto bio_full;
1545 }
1546 disk = i;
1547 }
1548 nr_sectors += len>>9;
1549 sector_nr += len>>9;
1550 } while (biolist->bi_vcnt < RESYNC_PAGES);
1551 bio_full:
1552 r10_bio->sectors = nr_sectors;
1553
1554 while (biolist) {
1555 bio = biolist;
1556 biolist = biolist->bi_next;
1557
1558 bio->bi_next = NULL;
1559 r10_bio = bio->bi_private;
1560 r10_bio->sectors = nr_sectors;
1561
1562 if (bio->bi_end_io == end_sync_read) {
1563 md_sync_acct(bio->bi_bdev, nr_sectors);
1564 generic_make_request(bio);
1565 }
1566 }
1567
57afd89f
N
1568 if (sectors_skipped)
1569 /* pretend they weren't skipped, it makes
1570 * no important difference in this case
1571 */
1572 md_done_sync(mddev, sectors_skipped, 1);
1573
1da177e4
LT
1574 return sectors_skipped + nr_sectors;
1575 giveup:
1576 /* There is nowhere to write, so all non-sync
1577 * drives must be failed, so try the next chunk...
1578 */
1579 {
57afd89f 1580 sector_t sec = max_sector - sector_nr;
1da177e4
LT
1581 sectors_skipped += sec;
1582 chunks_skipped ++;
1583 sector_nr = max_sector;
1da177e4
LT
1584 goto skipped;
1585 }
1586}
1587
1588static int run(mddev_t *mddev)
1589{
1590 conf_t *conf;
1591 int i, disk_idx;
1592 mirror_info_t *disk;
1593 mdk_rdev_t *rdev;
1594 struct list_head *tmp;
1595 int nc, fc;
1596 sector_t stride, size;
1597
1598 if (mddev->level != 10) {
1599 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1600 mdname(mddev), mddev->level);
1601 goto out;
1602 }
1603 nc = mddev->layout & 255;
1604 fc = (mddev->layout >> 8) & 255;
1605 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1606 (mddev->layout >> 16)) {
1607 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1608 mdname(mddev), mddev->layout);
1609 goto out;
1610 }
1611 /*
1612 * copy the already verified devices into our private RAID10
1613 * bookkeeping area. [whatever we allocate in run(),
1614 * should be freed in stop()]
1615 */
1616 conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1617 mddev->private = conf;
1618 if (!conf) {
1619 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1620 mdname(mddev));
1621 goto out;
1622 }
1623 memset(conf, 0, sizeof(*conf));
1624 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1625 GFP_KERNEL);
1626 if (!conf->mirrors) {
1627 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1628 mdname(mddev));
1629 goto out_free_conf;
1630 }
1631 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1632
1633 conf->near_copies = nc;
1634 conf->far_copies = fc;
1635 conf->copies = nc*fc;
1636 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1637 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1638 stride = mddev->size >> (conf->chunk_shift-1);
1639 sector_div(stride, fc);
1640 conf->stride = stride << conf->chunk_shift;
1641
1642 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1643 r10bio_pool_free, conf);
1644 if (!conf->r10bio_pool) {
1645 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1646 mdname(mddev));
1647 goto out_free_conf;
1648 }
1da177e4
LT
1649
1650 ITERATE_RDEV(mddev, rdev, tmp) {
1651 disk_idx = rdev->raid_disk;
1652 if (disk_idx >= mddev->raid_disks
1653 || disk_idx < 0)
1654 continue;
1655 disk = conf->mirrors + disk_idx;
1656
1657 disk->rdev = rdev;
1658
1659 blk_queue_stack_limits(mddev->queue,
1660 rdev->bdev->bd_disk->queue);
1661 /* as we don't honour merge_bvec_fn, we must never risk
1662 * violating it, so limit ->max_sector to one PAGE, as
1663 * a one page request is never in violation.
1664 */
1665 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1666 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1667 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1668
1669 disk->head_position = 0;
1670 if (!rdev->faulty && rdev->in_sync)
1671 conf->working_disks++;
1672 }
1673 conf->raid_disks = mddev->raid_disks;
1674 conf->mddev = mddev;
1675 spin_lock_init(&conf->device_lock);
1676 INIT_LIST_HEAD(&conf->retry_list);
1677
1678 spin_lock_init(&conf->resync_lock);
1679 init_waitqueue_head(&conf->wait_idle);
1680 init_waitqueue_head(&conf->wait_resume);
1681
1682 if (!conf->working_disks) {
1683 printk(KERN_ERR "raid10: no operational mirrors for %s\n",
1684 mdname(mddev));
1685 goto out_free_conf;
1686 }
1687
1688 mddev->degraded = 0;
1689 for (i = 0; i < conf->raid_disks; i++) {
1690
1691 disk = conf->mirrors + i;
1692
1693 if (!disk->rdev) {
1694 disk->head_position = 0;
1695 mddev->degraded++;
1696 }
1697 }
1698
1699
1700 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1701 if (!mddev->thread) {
1702 printk(KERN_ERR
1703 "raid10: couldn't allocate thread for %s\n",
1704 mdname(mddev));
1705 goto out_free_conf;
1706 }
1707
1708 printk(KERN_INFO
1709 "raid10: raid set %s active with %d out of %d devices\n",
1710 mdname(mddev), mddev->raid_disks - mddev->degraded,
1711 mddev->raid_disks);
1712 /*
1713 * Ok, everything is just fine now
1714 */
1715 size = conf->stride * conf->raid_disks;
1716 sector_div(size, conf->near_copies);
1717 mddev->array_size = size/2;
1718 mddev->resync_max_sectors = size;
1719
7a5febe9
N
1720 mddev->queue->unplug_fn = raid10_unplug;
1721 mddev->queue->issue_flush_fn = raid10_issue_flush;
1722
1da177e4
LT
1723 /* Calculate max read-ahead size.
1724 * We need to readahead at least twice a whole stripe....
1725 * maybe...
1726 */
1727 {
1728 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1729 stripe /= conf->near_copies;
1730 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1731 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1732 }
1733
1734 if (conf->near_copies < mddev->raid_disks)
1735 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1736 return 0;
1737
1738out_free_conf:
1739 if (conf->r10bio_pool)
1740 mempool_destroy(conf->r10bio_pool);
990a8baf 1741 kfree(conf->mirrors);
1da177e4
LT
1742 kfree(conf);
1743 mddev->private = NULL;
1744out:
1745 return -EIO;
1746}
1747
1748static int stop(mddev_t *mddev)
1749{
1750 conf_t *conf = mddev_to_conf(mddev);
1751
1752 md_unregister_thread(mddev->thread);
1753 mddev->thread = NULL;
1754 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1755 if (conf->r10bio_pool)
1756 mempool_destroy(conf->r10bio_pool);
990a8baf 1757 kfree(conf->mirrors);
1da177e4
LT
1758 kfree(conf);
1759 mddev->private = NULL;
1760 return 0;
1761}
1762
1763
1764static mdk_personality_t raid10_personality =
1765{
1766 .name = "raid10",
1767 .owner = THIS_MODULE,
1768 .make_request = make_request,
1769 .run = run,
1770 .stop = stop,
1771 .status = status,
1772 .error_handler = error,
1773 .hot_add_disk = raid10_add_disk,
1774 .hot_remove_disk= raid10_remove_disk,
1775 .spare_active = raid10_spare_active,
1776 .sync_request = sync_request,
1777};
1778
1779static int __init raid_init(void)
1780{
1781 return register_md_personality(RAID10, &raid10_personality);
1782}
1783
1784static void raid_exit(void)
1785{
1786 unregister_md_personality(RAID10);
1787}
1788
1789module_init(raid_init);
1790module_exit(raid_exit);
1791MODULE_LICENSE("GPL");
1792MODULE_ALIAS("md-personality-9"); /* RAID10 */