]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid10.c
md: add missing sysfs_notify on array_state update
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
8bce6d35 42 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 43 *
475901af
JB
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
c93983bf
N
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
56 *
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
1da177e4
LT
72 */
73
74/*
75 * Number of guaranteed r10bios in case of extreme VM load:
76 */
77#define NR_RAID10_BIOS 256
78
473e87ce
JB
79/* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 */
84#define IO_BLOCKED ((struct bio *)1)
85/* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
88 */
89#define IO_MADE_GOOD ((struct bio *)2)
90
91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93/* When there are this many requests queued to be written by
34db0cd6
N
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
96 */
97static int max_queued_requests = 1024;
98
e879a879
N
99static void allow_barrier(struct r10conf *conf);
100static void lower_barrier(struct r10conf *conf);
635f6416 101static int _enough(struct r10conf *conf, int previous, int ignore);
3ea7daa5
N
102static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 105static void end_reshape_write(struct bio *bio);
3ea7daa5 106static void end_reshape(struct r10conf *conf);
0a27ec96 107
dd0fc66f 108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 109{
e879a879 110 struct r10conf *conf = data;
9f2c9d12 111 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 112
69335ef3
N
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
7eaceacc 115 return kzalloc(size, gfp_flags);
1da177e4
LT
116}
117
118static void r10bio_pool_free(void *r10_bio, void *data)
119{
120 kfree(r10_bio);
121}
122
0310fa21 123/* Maximum size of each resync request */
1da177e4 124#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 125#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
126/* amount of memory to reserve for resync requests */
127#define RESYNC_WINDOW (1024*1024)
128/* maximum number of concurrent requests, memory permitting */
129#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
130
131/*
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
136 *
137 */
dd0fc66f 138static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 139{
e879a879 140 struct r10conf *conf = data;
1da177e4 141 struct page *page;
9f2c9d12 142 struct r10bio *r10_bio;
1da177e4
LT
143 struct bio *bio;
144 int i, j;
145 int nalloc;
146
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 148 if (!r10_bio)
1da177e4 149 return NULL;
1da177e4 150
3ea7daa5
N
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
156
157 /*
158 * Allocate bios.
159 */
160 for (j = nalloc ; j-- ; ) {
6746557f 161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
69335ef3
N
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
175 */
176 for (j = 0 ; j < nalloc; j++) {
69335ef3 177 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
c65060ad
NK
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
1da177e4
LT
189 if (unlikely(!page))
190 goto out_free_pages;
191
192 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
195 }
196 }
197
198 return r10_bio;
199
200out_free_pages:
201 for ( ; i > 0 ; i--)
1345b1d8 202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 206 j = 0;
1da177e4 207out_free_bio:
5fdd2cf8 208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
69335ef3
N
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
213 }
1da177e4
LT
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
216}
217
218static void r10buf_pool_free(void *__r10_bio, void *data)
219{
220 int i;
e879a879 221 struct r10conf *conf = data;
9f2c9d12 222 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
223 int j;
224
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 229 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
230 bio->bi_io_vec[i].bv_page = NULL;
231 }
232 bio_put(bio);
233 }
69335ef3
N
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
1da177e4
LT
237 }
238 r10bio_pool_free(r10bio, conf);
239}
240
e879a879 241static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
242{
243 int i;
244
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 247 if (!BIO_SPECIAL(*bio))
1da177e4
LT
248 bio_put(*bio);
249 *bio = NULL;
69335ef3
N
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
1da177e4
LT
254 }
255}
256
9f2c9d12 257static void free_r10bio(struct r10bio *r10_bio)
1da177e4 258{
e879a879 259 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 260
1da177e4
LT
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
263}
264
9f2c9d12 265static void put_buf(struct r10bio *r10_bio)
1da177e4 266{
e879a879 267 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
268
269 mempool_free(r10_bio, conf->r10buf_pool);
270
0a27ec96 271 lower_barrier(conf);
1da177e4
LT
272}
273
9f2c9d12 274static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
275{
276 unsigned long flags;
fd01b88c 277 struct mddev *mddev = r10_bio->mddev;
e879a879 278 struct r10conf *conf = mddev->private;
1da177e4
LT
279
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 282 conf->nr_queued ++;
1da177e4
LT
283 spin_unlock_irqrestore(&conf->device_lock, flags);
284
388667be
AJ
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
287
1da177e4
LT
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
9f2c9d12 296static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
297{
298 struct bio *bio = r10_bio->master_bio;
856e08e2 299 int done;
e879a879 300 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 301
856e08e2
N
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4246a0b6 311 bio->bi_error = -EIO;
856e08e2 312 if (done) {
4246a0b6 313 bio_endio(bio);
856e08e2
N
314 /*
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
317 */
318 allow_barrier(conf);
319 }
1da177e4
LT
320 free_r10bio(r10_bio);
321}
322
323/*
324 * Update disk head position estimator based on IRQ completion info.
325 */
9f2c9d12 326static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 327{
e879a879 328 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
329
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
332}
333
778ca018
NK
334/*
335 * Find the disk number which triggered given bio
336 */
e879a879 337static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 338 struct bio *bio, int *slotp, int *replp)
778ca018
NK
339{
340 int slot;
69335ef3 341 int repl = 0;
778ca018 342
69335ef3 343 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
344 if (r10_bio->devs[slot].bio == bio)
345 break;
69335ef3
N
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
349 }
350 }
778ca018
NK
351
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
354
749c55e9
N
355 if (slotp)
356 *slotp = slot;
69335ef3
N
357 if (replp)
358 *replp = repl;
778ca018
NK
359 return r10_bio->devs[slot].devnum;
360}
361
4246a0b6 362static void raid10_end_read_request(struct bio *bio)
1da177e4 363{
4246a0b6 364 int uptodate = !bio->bi_error;
9f2c9d12 365 struct r10bio *r10_bio = bio->bi_private;
1da177e4 366 int slot, dev;
abbf098e 367 struct md_rdev *rdev;
e879a879 368 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 369
1da177e4
LT
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
635f6416
N
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
fae8cc5e 397 uptodate = 1;
fae8cc5e
N
398 }
399 if (uptodate) {
1da177e4 400 raid_end_bio_io(r10_bio);
abbf098e 401 rdev_dec_pending(rdev, conf->mddev);
4443ae10 402 } else {
1da177e4 403 /*
7c4e06ff 404 * oops, read error - keep the refcount on the rdev
1da177e4
LT
405 */
406 char b[BDEVNAME_SIZE];
8bda470e
CD
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
abbf098e 410 bdevname(rdev->bdev, b),
8bda470e 411 (unsigned long long)r10_bio->sector);
856e08e2 412 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
413 reschedule_retry(r10_bio);
414 }
1da177e4
LT
415}
416
9f2c9d12 417static void close_write(struct r10bio *r10_bio)
bd870a16
N
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
9f2c9d12 427static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
4246a0b6 442static void raid10_end_write_request(struct bio *bio)
1da177e4 443{
9f2c9d12 444 struct r10bio *r10_bio = bio->bi_private;
778ca018 445 int dev;
749c55e9 446 int dec_rdev = 1;
e879a879 447 struct r10conf *conf = r10_bio->mddev->private;
475b0321 448 int slot, repl;
4ca40c2c 449 struct md_rdev *rdev = NULL;
1da177e4 450
475b0321 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 452
475b0321
N
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
475b0321 458 rdev = conf->mirrors[dev].rdev;
4ca40c2c 459 }
1da177e4
LT
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
4246a0b6 463 if (bio->bi_error) {
475b0321
N
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
475b0321
N
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
749c55e9 477 } else {
1da177e4
LT
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
749c55e9
N
487 sector_t first_bad;
488 int bad_sectors;
489
3056e3ae
AL
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 501
749c55e9 502 /* Maybe we can clear some bad blocks. */
475b0321 503 if (is_badblock(rdev,
749c55e9
N
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
475b0321
N
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
1da177e4
LT
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
19d5f834 522 one_write_done(r10_bio);
749c55e9 523 if (dec_rdev)
884162df 524 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
525}
526
1da177e4
LT
527/*
528 * RAID10 layout manager
25985edc 529 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
25985edc 536 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 546 * on each device that it is on.
1da177e4
LT
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
f8c9e74f 552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
553{
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
1da177e4 559 int slot = 0;
9a3152ab
JB
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
567
568 /* now calculate first sector/dev */
5cf00fcd
N
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
1da177e4 571
5cf00fcd 572 chunk *= geo->near_copies;
1da177e4 573 stripe = chunk;
5cf00fcd
N
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
1da177e4 577
5cf00fcd 578 sector += stripe << geo->chunk_shift;
1da177e4
LT
579
580 /* and calculate all the others */
5cf00fcd 581 for (n = 0; n < geo->near_copies; n++) {
1da177e4 582 int d = dev;
475901af 583 int set;
1da177e4 584 sector_t s = sector;
1da177e4 585 r10bio->devs[slot].devnum = d;
4c0ca26b 586 r10bio->devs[slot].addr = s;
1da177e4
LT
587 slot++;
588
5cf00fcd 589 for (f = 1; f < geo->far_copies; f++) {
475901af 590 set = d / geo->far_set_size;
5cf00fcd 591 d += geo->near_copies;
475901af 592
9a3152ab
JB
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
5cf00fcd 602 s += geo->stride;
1da177e4
LT
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
5cf00fcd 608 if (dev >= geo->raid_disks) {
1da177e4 609 dev = 0;
5cf00fcd 610 sector += (geo->chunk_mask + 1);
1da177e4
LT
611 }
612 }
f8c9e74f
N
613}
614
615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616{
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
1da177e4
LT
628}
629
e879a879 630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
631{
632 sector_t offset, chunk, vchunk;
f8c9e74f
N
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
5cf00fcd 636 struct geom *geo = &conf->geo;
475901af
JB
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
9a3152ab
JB
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
1da177e4 651
5cf00fcd
N
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
c93983bf 654 int fc;
5cf00fcd
N
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
475901af
JB
658 if (dev < far_set_start)
659 dev += far_set_size;
c93983bf 660 } else {
5cf00fcd
N
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
475901af
JB
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
c93983bf 665 else
5cf00fcd 666 dev -= geo->near_copies;
c93983bf 667 }
5cf00fcd 668 chunk = sector >> geo->chunk_shift;
c93983bf 669 }
5cf00fcd
N
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
673}
674
1da177e4
LT
675/*
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
683 *
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
686 *
687 * The rdev for the device selected will have nr_pending incremented.
688 */
689
690/*
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
693 */
96c3fd1f
N
694static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
1da177e4 697{
af3a2cd6 698 const sector_t this_sector = r10_bio->sector;
56d99121 699 int disk, slot;
856e08e2
N
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
56d99121 702 sector_t new_distance, best_dist;
3bbae04b 703 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
704 int do_balance;
705 int best_slot;
5cf00fcd 706 struct geom *geo = &conf->geo;
1da177e4
LT
707
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
856e08e2 710 sectors = r10_bio->sectors;
56d99121 711 best_slot = -1;
abbf098e 712 best_rdev = NULL;
56d99121 713 best_dist = MaxSector;
856e08e2 714 best_good_sectors = 0;
56d99121 715 do_balance = 1;
1da177e4
LT
716 /*
717 * Check if we can balance. We can balance on the whole
6cce3b23
N
718 * device if no resync is going on (recovery is ok), or below
719 * the resync window. We take the first readable disk when
720 * above the resync window.
1da177e4
LT
721 */
722 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
723 && (this_sector + sectors >= conf->next_resync))
724 do_balance = 0;
1da177e4 725
56d99121 726 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
727 sector_t first_bad;
728 int bad_sectors;
729 sector_t dev_sector;
730
56d99121
N
731 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 continue;
1da177e4 733 disk = r10_bio->devs[slot].devnum;
abbf098e
N
734 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 738 if (rdev == NULL ||
8ae12666 739 test_bit(Faulty, &rdev->flags))
abbf098e
N
740 continue;
741 if (!test_bit(In_sync, &rdev->flags) &&
742 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
743 continue;
744
856e08e2
N
745 dev_sector = r10_bio->devs[slot].addr;
746 if (is_badblock(rdev, dev_sector, sectors,
747 &first_bad, &bad_sectors)) {
748 if (best_dist < MaxSector)
749 /* Already have a better slot */
750 continue;
751 if (first_bad <= dev_sector) {
752 /* Cannot read here. If this is the
753 * 'primary' device, then we must not read
754 * beyond 'bad_sectors' from another device.
755 */
756 bad_sectors -= (dev_sector - first_bad);
757 if (!do_balance && sectors > bad_sectors)
758 sectors = bad_sectors;
759 if (best_good_sectors > sectors)
760 best_good_sectors = sectors;
761 } else {
762 sector_t good_sectors =
763 first_bad - dev_sector;
764 if (good_sectors > best_good_sectors) {
765 best_good_sectors = good_sectors;
766 best_slot = slot;
abbf098e 767 best_rdev = rdev;
856e08e2
N
768 }
769 if (!do_balance)
770 /* Must read from here */
771 break;
772 }
773 continue;
774 } else
775 best_good_sectors = sectors;
776
56d99121
N
777 if (!do_balance)
778 break;
1da177e4 779
22dfdf52
N
780 /* This optimisation is debatable, and completely destroys
781 * sequential read speed for 'far copies' arrays. So only
782 * keep it for 'near' arrays, and review those later.
783 */
5cf00fcd 784 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 785 break;
8ed3a195
KS
786
787 /* for far > 1 always use the lowest address */
5cf00fcd 788 if (geo->far_copies > 1)
56d99121 789 new_distance = r10_bio->devs[slot].addr;
8ed3a195 790 else
56d99121
N
791 new_distance = abs(r10_bio->devs[slot].addr -
792 conf->mirrors[disk].head_position);
793 if (new_distance < best_dist) {
794 best_dist = new_distance;
795 best_slot = slot;
abbf098e 796 best_rdev = rdev;
1da177e4
LT
797 }
798 }
abbf098e 799 if (slot >= conf->copies) {
56d99121 800 slot = best_slot;
abbf098e
N
801 rdev = best_rdev;
802 }
1da177e4 803
56d99121 804 if (slot >= 0) {
56d99121 805 atomic_inc(&rdev->nr_pending);
56d99121
N
806 r10_bio->read_slot = slot;
807 } else
96c3fd1f 808 rdev = NULL;
1da177e4 809 rcu_read_unlock();
856e08e2 810 *max_sectors = best_good_sectors;
1da177e4 811
96c3fd1f 812 return rdev;
1da177e4
LT
813}
814
5c675f83 815static int raid10_congested(struct mddev *mddev, int bits)
0d129228 816{
e879a879 817 struct r10conf *conf = mddev->private;
0d129228
N
818 int i, ret = 0;
819
4452226e 820 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
821 conf->pending_count >= max_queued_requests)
822 return 1;
823
0d129228 824 rcu_read_lock();
f8c9e74f
N
825 for (i = 0;
826 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827 && ret == 0;
828 i++) {
3cb03002 829 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 830 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 831 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
832
833 ret |= bdi_congested(&q->backing_dev_info, bits);
834 }
835 }
836 rcu_read_unlock();
837 return ret;
838}
839
e879a879 840static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
841{
842 /* Any writes that have been queued but are awaiting
843 * bitmap updates get flushed here.
a35e63ef 844 */
a35e63ef
N
845 spin_lock_irq(&conf->device_lock);
846
847 if (conf->pending_bio_list.head) {
848 struct bio *bio;
849 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 850 conf->pending_count = 0;
a35e63ef
N
851 spin_unlock_irq(&conf->device_lock);
852 /* flush any pending bitmap writes to disk
853 * before proceeding w/ I/O */
854 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 855 wake_up(&conf->wait_barrier);
a35e63ef
N
856
857 while (bio) { /* submit pending writes */
858 struct bio *next = bio->bi_next;
859 bio->bi_next = NULL;
532a2a3f
SL
860 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
861 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862 /* Just ignore it */
4246a0b6 863 bio_endio(bio);
532a2a3f
SL
864 else
865 generic_make_request(bio);
a35e63ef
N
866 bio = next;
867 }
a35e63ef
N
868 } else
869 spin_unlock_irq(&conf->device_lock);
a35e63ef 870}
7eaceacc 871
0a27ec96
N
872/* Barriers....
873 * Sometimes we need to suspend IO while we do something else,
874 * either some resync/recovery, or reconfigure the array.
875 * To do this we raise a 'barrier'.
876 * The 'barrier' is a counter that can be raised multiple times
877 * to count how many activities are happening which preclude
878 * normal IO.
879 * We can only raise the barrier if there is no pending IO.
880 * i.e. if nr_pending == 0.
881 * We choose only to raise the barrier if no-one is waiting for the
882 * barrier to go down. This means that as soon as an IO request
883 * is ready, no other operations which require a barrier will start
884 * until the IO request has had a chance.
885 *
886 * So: regular IO calls 'wait_barrier'. When that returns there
887 * is no backgroup IO happening, It must arrange to call
888 * allow_barrier when it has finished its IO.
889 * backgroup IO calls must call raise_barrier. Once that returns
890 * there is no normal IO happeing. It must arrange to call
891 * lower_barrier when the particular background IO completes.
1da177e4 892 */
1da177e4 893
e879a879 894static void raise_barrier(struct r10conf *conf, int force)
1da177e4 895{
6cce3b23 896 BUG_ON(force && !conf->barrier);
1da177e4 897 spin_lock_irq(&conf->resync_lock);
0a27ec96 898
6cce3b23
N
899 /* Wait until no block IO is waiting (unless 'force') */
900 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 901 conf->resync_lock);
0a27ec96
N
902
903 /* block any new IO from starting */
904 conf->barrier++;
905
c3b328ac 906 /* Now wait for all pending IO to complete */
0a27ec96
N
907 wait_event_lock_irq(conf->wait_barrier,
908 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 909 conf->resync_lock);
0a27ec96
N
910
911 spin_unlock_irq(&conf->resync_lock);
912}
913
e879a879 914static void lower_barrier(struct r10conf *conf)
0a27ec96
N
915{
916 unsigned long flags;
917 spin_lock_irqsave(&conf->resync_lock, flags);
918 conf->barrier--;
919 spin_unlock_irqrestore(&conf->resync_lock, flags);
920 wake_up(&conf->wait_barrier);
921}
922
e879a879 923static void wait_barrier(struct r10conf *conf)
0a27ec96
N
924{
925 spin_lock_irq(&conf->resync_lock);
926 if (conf->barrier) {
927 conf->nr_waiting++;
d6b42dcb
N
928 /* Wait for the barrier to drop.
929 * However if there are already pending
930 * requests (preventing the barrier from
931 * rising completely), and the
932 * pre-process bio queue isn't empty,
933 * then don't wait, as we need to empty
934 * that queue to get the nr_pending
935 * count down.
936 */
937 wait_event_lock_irq(conf->wait_barrier,
938 !conf->barrier ||
939 (conf->nr_pending &&
940 current->bio_list &&
941 !bio_list_empty(current->bio_list)),
eed8c02e 942 conf->resync_lock);
0a27ec96 943 conf->nr_waiting--;
1da177e4 944 }
0a27ec96 945 conf->nr_pending++;
1da177e4
LT
946 spin_unlock_irq(&conf->resync_lock);
947}
948
e879a879 949static void allow_barrier(struct r10conf *conf)
0a27ec96
N
950{
951 unsigned long flags;
952 spin_lock_irqsave(&conf->resync_lock, flags);
953 conf->nr_pending--;
954 spin_unlock_irqrestore(&conf->resync_lock, flags);
955 wake_up(&conf->wait_barrier);
956}
957
e2d59925 958static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
959{
960 /* stop syncio and normal IO and wait for everything to
f188593e 961 * go quiet.
4443ae10 962 * We increment barrier and nr_waiting, and then
e2d59925 963 * wait until nr_pending match nr_queued+extra
1c830532
N
964 * This is called in the context of one normal IO request
965 * that has failed. Thus any sync request that might be pending
966 * will be blocked by nr_pending, and we need to wait for
967 * pending IO requests to complete or be queued for re-try.
e2d59925 968 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
969 * must match the number of pending IOs (nr_pending) before
970 * we continue.
4443ae10
N
971 */
972 spin_lock_irq(&conf->resync_lock);
973 conf->barrier++;
974 conf->nr_waiting++;
eed8c02e 975 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 976 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
977 conf->resync_lock,
978 flush_pending_writes(conf));
c3b328ac 979
4443ae10
N
980 spin_unlock_irq(&conf->resync_lock);
981}
982
e879a879 983static void unfreeze_array(struct r10conf *conf)
4443ae10
N
984{
985 /* reverse the effect of the freeze */
986 spin_lock_irq(&conf->resync_lock);
987 conf->barrier--;
988 conf->nr_waiting--;
989 wake_up(&conf->wait_barrier);
990 spin_unlock_irq(&conf->resync_lock);
991}
992
f8c9e74f
N
993static sector_t choose_data_offset(struct r10bio *r10_bio,
994 struct md_rdev *rdev)
995{
996 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
997 test_bit(R10BIO_Previous, &r10_bio->state))
998 return rdev->data_offset;
999 else
1000 return rdev->new_data_offset;
1001}
1002
57c67df4
N
1003struct raid10_plug_cb {
1004 struct blk_plug_cb cb;
1005 struct bio_list pending;
1006 int pending_cnt;
1007};
1008
1009static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1012 cb);
1013 struct mddev *mddev = plug->cb.data;
1014 struct r10conf *conf = mddev->private;
1015 struct bio *bio;
1016
874807a8 1017 if (from_schedule || current->bio_list) {
57c67df4
N
1018 spin_lock_irq(&conf->device_lock);
1019 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020 conf->pending_count += plug->pending_cnt;
1021 spin_unlock_irq(&conf->device_lock);
ee0b0244 1022 wake_up(&conf->wait_barrier);
57c67df4
N
1023 md_wakeup_thread(mddev->thread);
1024 kfree(plug);
1025 return;
1026 }
1027
1028 /* we aren't scheduling, so we can do the write-out directly. */
1029 bio = bio_list_get(&plug->pending);
1030 bitmap_unplug(mddev->bitmap);
1031 wake_up(&conf->wait_barrier);
1032
1033 while (bio) { /* submit pending writes */
1034 struct bio *next = bio->bi_next;
1035 bio->bi_next = NULL;
32f9f570
SL
1036 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038 /* Just ignore it */
4246a0b6 1039 bio_endio(bio);
32f9f570
SL
1040 else
1041 generic_make_request(bio);
57c67df4
N
1042 bio = next;
1043 }
1044 kfree(plug);
1045}
1046
20d0189b 1047static void __make_request(struct mddev *mddev, struct bio *bio)
1da177e4 1048{
e879a879 1049 struct r10conf *conf = mddev->private;
9f2c9d12 1050 struct r10bio *r10_bio;
1da177e4
LT
1051 struct bio *read_bio;
1052 int i;
a362357b 1053 const int rw = bio_data_dir(bio);
2c7d46ec 1054 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1055 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1056 const unsigned long do_discard = (bio->bi_rw
1057 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1058 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1059 unsigned long flags;
3cb03002 1060 struct md_rdev *blocked_rdev;
57c67df4
N
1061 struct blk_plug_cb *cb;
1062 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1063 int sectors_handled;
1064 int max_sectors;
3ea7daa5 1065 int sectors;
1da177e4 1066
cc13b1d1
N
1067 /*
1068 * Register the new request and wait if the reconstruction
1069 * thread has put up a bar for new requests.
1070 * Continue immediately if no resync is active currently.
1071 */
1072 wait_barrier(conf);
1073
aa8b57aa 1074 sectors = bio_sectors(bio);
3ea7daa5 1075 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1076 bio->bi_iter.bi_sector < conf->reshape_progress &&
1077 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
3ea7daa5
N
1078 /* IO spans the reshape position. Need to wait for
1079 * reshape to pass
1080 */
1081 allow_barrier(conf);
1082 wait_event(conf->wait_barrier,
4f024f37
KO
1083 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1084 conf->reshape_progress >= bio->bi_iter.bi_sector +
1085 sectors);
3ea7daa5
N
1086 wait_barrier(conf);
1087 }
1088 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1089 bio_data_dir(bio) == WRITE &&
1090 (mddev->reshape_backwards
4f024f37
KO
1091 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1092 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1093 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1094 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1095 /* Need to update reshape_position in metadata */
1096 mddev->reshape_position = conf->reshape_progress;
85ad1d13
GJ
1097 set_mask_bits(&mddev->flags, 0,
1098 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
3ea7daa5
N
1099 md_wakeup_thread(mddev->thread);
1100 wait_event(mddev->sb_wait,
1101 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1102
1103 conf->reshape_safe = mddev->reshape_position;
1104 }
1105
1da177e4
LT
1106 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1107
1108 r10_bio->master_bio = bio;
3ea7daa5 1109 r10_bio->sectors = sectors;
1da177e4
LT
1110
1111 r10_bio->mddev = mddev;
4f024f37 1112 r10_bio->sector = bio->bi_iter.bi_sector;
6cce3b23 1113 r10_bio->state = 0;
1da177e4 1114
856e08e2
N
1115 /* We might need to issue multiple reads to different
1116 * devices if there are bad blocks around, so we keep
1117 * track of the number of reads in bio->bi_phys_segments.
1118 * If this is 0, there is only one r10_bio and no locking
1119 * will be needed when the request completes. If it is
1120 * non-zero, then it is the number of not-completed requests.
1121 */
1122 bio->bi_phys_segments = 0;
b7c44ed9 1123 bio_clear_flag(bio, BIO_SEG_VALID);
856e08e2 1124
a362357b 1125 if (rw == READ) {
1da177e4
LT
1126 /*
1127 * read balancing logic:
1128 */
96c3fd1f 1129 struct md_rdev *rdev;
856e08e2
N
1130 int slot;
1131
1132read_again:
96c3fd1f
N
1133 rdev = read_balance(conf, r10_bio, &max_sectors);
1134 if (!rdev) {
1da177e4 1135 raid_end_bio_io(r10_bio);
5a7bbad2 1136 return;
1da177e4 1137 }
96c3fd1f 1138 slot = r10_bio->read_slot;
1da177e4 1139
a167f663 1140 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1141 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1142 max_sectors);
1da177e4
LT
1143
1144 r10_bio->devs[slot].bio = read_bio;
abbf098e 1145 r10_bio->devs[slot].rdev = rdev;
1da177e4 1146
4f024f37 1147 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1148 choose_data_offset(r10_bio, rdev);
96c3fd1f 1149 read_bio->bi_bdev = rdev->bdev;
1da177e4 1150 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1151 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1152 read_bio->bi_private = r10_bio;
1153
856e08e2
N
1154 if (max_sectors < r10_bio->sectors) {
1155 /* Could not read all from this device, so we will
1156 * need another r10_bio.
1157 */
b50c259e 1158 sectors_handled = (r10_bio->sector + max_sectors
4f024f37 1159 - bio->bi_iter.bi_sector);
856e08e2
N
1160 r10_bio->sectors = max_sectors;
1161 spin_lock_irq(&conf->device_lock);
1162 if (bio->bi_phys_segments == 0)
1163 bio->bi_phys_segments = 2;
1164 else
1165 bio->bi_phys_segments++;
b50c259e 1166 spin_unlock_irq(&conf->device_lock);
856e08e2
N
1167 /* Cannot call generic_make_request directly
1168 * as that will be queued in __generic_make_request
1169 * and subsequent mempool_alloc might block
1170 * waiting for it. so hand bio over to raid10d.
1171 */
1172 reschedule_retry(r10_bio);
1173
1174 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1175
1176 r10_bio->master_bio = bio;
aa8b57aa 1177 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1178 r10_bio->state = 0;
1179 r10_bio->mddev = mddev;
4f024f37
KO
1180 r10_bio->sector = bio->bi_iter.bi_sector +
1181 sectors_handled;
856e08e2
N
1182 goto read_again;
1183 } else
1184 generic_make_request(read_bio);
5a7bbad2 1185 return;
1da177e4
LT
1186 }
1187
1188 /*
1189 * WRITE:
1190 */
34db0cd6
N
1191 if (conf->pending_count >= max_queued_requests) {
1192 md_wakeup_thread(mddev->thread);
1193 wait_event(conf->wait_barrier,
1194 conf->pending_count < max_queued_requests);
1195 }
6bfe0b49 1196 /* first select target devices under rcu_lock and
1da177e4
LT
1197 * inc refcount on their rdev. Record them by setting
1198 * bios[x] to bio
d4432c23
N
1199 * If there are known/acknowledged bad blocks on any device
1200 * on which we have seen a write error, we want to avoid
1201 * writing to those blocks. This potentially requires several
1202 * writes to write around the bad blocks. Each set of writes
1203 * gets its own r10_bio with a set of bios attached. The number
1204 * of r10_bios is recored in bio->bi_phys_segments just as with
1205 * the read case.
1da177e4 1206 */
c3b328ac 1207
69335ef3 1208 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1209 raid10_find_phys(conf, r10_bio);
d4432c23 1210retry_write:
cb6969e8 1211 blocked_rdev = NULL;
1da177e4 1212 rcu_read_lock();
d4432c23
N
1213 max_sectors = r10_bio->sectors;
1214
1da177e4
LT
1215 for (i = 0; i < conf->copies; i++) {
1216 int d = r10_bio->devs[i].devnum;
3cb03002 1217 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1218 struct md_rdev *rrdev = rcu_dereference(
1219 conf->mirrors[d].replacement);
4ca40c2c
N
1220 if (rdev == rrdev)
1221 rrdev = NULL;
6bfe0b49
DW
1222 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1223 atomic_inc(&rdev->nr_pending);
1224 blocked_rdev = rdev;
1225 break;
1226 }
475b0321
N
1227 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1228 atomic_inc(&rrdev->nr_pending);
1229 blocked_rdev = rrdev;
1230 break;
1231 }
8ae12666 1232 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1233 rdev = NULL;
8ae12666 1234 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1235 rrdev = NULL;
1236
d4432c23 1237 r10_bio->devs[i].bio = NULL;
475b0321 1238 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1239
1240 if (!rdev && !rrdev) {
6cce3b23 1241 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1242 continue;
1243 }
e7c0c3fa 1244 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1245 sector_t first_bad;
1246 sector_t dev_sector = r10_bio->devs[i].addr;
1247 int bad_sectors;
1248 int is_bad;
1249
1250 is_bad = is_badblock(rdev, dev_sector,
1251 max_sectors,
1252 &first_bad, &bad_sectors);
1253 if (is_bad < 0) {
1254 /* Mustn't write here until the bad block
1255 * is acknowledged
1256 */
1257 atomic_inc(&rdev->nr_pending);
1258 set_bit(BlockedBadBlocks, &rdev->flags);
1259 blocked_rdev = rdev;
1260 break;
1261 }
1262 if (is_bad && first_bad <= dev_sector) {
1263 /* Cannot write here at all */
1264 bad_sectors -= (dev_sector - first_bad);
1265 if (bad_sectors < max_sectors)
1266 /* Mustn't write more than bad_sectors
1267 * to other devices yet
1268 */
1269 max_sectors = bad_sectors;
1270 /* We don't set R10BIO_Degraded as that
1271 * only applies if the disk is missing,
1272 * so it might be re-added, and we want to
1273 * know to recover this chunk.
1274 * In this case the device is here, and the
1275 * fact that this chunk is not in-sync is
1276 * recorded in the bad block log.
1277 */
1278 continue;
1279 }
1280 if (is_bad) {
1281 int good_sectors = first_bad - dev_sector;
1282 if (good_sectors < max_sectors)
1283 max_sectors = good_sectors;
1284 }
6cce3b23 1285 }
e7c0c3fa
N
1286 if (rdev) {
1287 r10_bio->devs[i].bio = bio;
1288 atomic_inc(&rdev->nr_pending);
1289 }
475b0321
N
1290 if (rrdev) {
1291 r10_bio->devs[i].repl_bio = bio;
1292 atomic_inc(&rrdev->nr_pending);
1293 }
1da177e4
LT
1294 }
1295 rcu_read_unlock();
1296
6bfe0b49
DW
1297 if (unlikely(blocked_rdev)) {
1298 /* Have to wait for this device to get unblocked, then retry */
1299 int j;
1300 int d;
1301
475b0321 1302 for (j = 0; j < i; j++) {
6bfe0b49
DW
1303 if (r10_bio->devs[j].bio) {
1304 d = r10_bio->devs[j].devnum;
1305 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1306 }
475b0321 1307 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1308 struct md_rdev *rdev;
475b0321 1309 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1310 rdev = conf->mirrors[d].replacement;
1311 if (!rdev) {
1312 /* Race with remove_disk */
1313 smp_mb();
1314 rdev = conf->mirrors[d].rdev;
1315 }
1316 rdev_dec_pending(rdev, mddev);
475b0321
N
1317 }
1318 }
6bfe0b49
DW
1319 allow_barrier(conf);
1320 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1321 wait_barrier(conf);
1322 goto retry_write;
1323 }
1324
d4432c23
N
1325 if (max_sectors < r10_bio->sectors) {
1326 /* We are splitting this into multiple parts, so
1327 * we need to prepare for allocating another r10_bio.
1328 */
1329 r10_bio->sectors = max_sectors;
1330 spin_lock_irq(&conf->device_lock);
1331 if (bio->bi_phys_segments == 0)
1332 bio->bi_phys_segments = 2;
1333 else
1334 bio->bi_phys_segments++;
1335 spin_unlock_irq(&conf->device_lock);
1336 }
4f024f37
KO
1337 sectors_handled = r10_bio->sector + max_sectors -
1338 bio->bi_iter.bi_sector;
d4432c23 1339
4e78064f 1340 atomic_set(&r10_bio->remaining, 1);
d4432c23 1341 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1342
1da177e4
LT
1343 for (i = 0; i < conf->copies; i++) {
1344 struct bio *mbio;
1345 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1346 if (r10_bio->devs[i].bio) {
1347 struct md_rdev *rdev = conf->mirrors[d].rdev;
1348 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1349 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1350 max_sectors);
e7c0c3fa
N
1351 r10_bio->devs[i].bio = mbio;
1352
4f024f37 1353 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
e7c0c3fa
N
1354 choose_data_offset(r10_bio,
1355 rdev));
1356 mbio->bi_bdev = rdev->bdev;
1357 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1358 mbio->bi_rw =
1359 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1360 mbio->bi_private = r10_bio;
1361
1362 atomic_inc(&r10_bio->remaining);
1363
1364 cb = blk_check_plugged(raid10_unplug, mddev,
1365 sizeof(*plug));
1366 if (cb)
1367 plug = container_of(cb, struct raid10_plug_cb,
1368 cb);
1369 else
1370 plug = NULL;
1371 spin_lock_irqsave(&conf->device_lock, flags);
1372 if (plug) {
1373 bio_list_add(&plug->pending, mbio);
1374 plug->pending_cnt++;
1375 } else {
1376 bio_list_add(&conf->pending_bio_list, mbio);
1377 conf->pending_count++;
1378 }
1379 spin_unlock_irqrestore(&conf->device_lock, flags);
1380 if (!plug)
1381 md_wakeup_thread(mddev->thread);
1382 }
57c67df4 1383
e7c0c3fa
N
1384 if (r10_bio->devs[i].repl_bio) {
1385 struct md_rdev *rdev = conf->mirrors[d].replacement;
1386 if (rdev == NULL) {
1387 /* Replacement just got moved to main 'rdev' */
1388 smp_mb();
1389 rdev = conf->mirrors[d].rdev;
1390 }
1391 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1392 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1393 max_sectors);
e7c0c3fa
N
1394 r10_bio->devs[i].repl_bio = mbio;
1395
4f024f37 1396 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
e7c0c3fa
N
1397 choose_data_offset(
1398 r10_bio, rdev));
1399 mbio->bi_bdev = rdev->bdev;
1400 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1401 mbio->bi_rw =
1402 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1403 mbio->bi_private = r10_bio;
1404
1405 atomic_inc(&r10_bio->remaining);
1406 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1407 bio_list_add(&conf->pending_bio_list, mbio);
1408 conf->pending_count++;
e7c0c3fa
N
1409 spin_unlock_irqrestore(&conf->device_lock, flags);
1410 if (!mddev_check_plugged(mddev))
1411 md_wakeup_thread(mddev->thread);
57c67df4 1412 }
1da177e4
LT
1413 }
1414
079fa166
N
1415 /* Don't remove the bias on 'remaining' (one_write_done) until
1416 * after checking if we need to go around again.
1417 */
a35e63ef 1418
aa8b57aa 1419 if (sectors_handled < bio_sectors(bio)) {
079fa166 1420 one_write_done(r10_bio);
5e570289 1421 /* We need another r10_bio. It has already been counted
d4432c23
N
1422 * in bio->bi_phys_segments.
1423 */
1424 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1425
1426 r10_bio->master_bio = bio;
aa8b57aa 1427 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1428
1429 r10_bio->mddev = mddev;
4f024f37 1430 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
d4432c23
N
1431 r10_bio->state = 0;
1432 goto retry_write;
1433 }
079fa166 1434 one_write_done(r10_bio);
20d0189b
KO
1435}
1436
849674e4 1437static void raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1438{
1439 struct r10conf *conf = mddev->private;
1440 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1441 int chunk_sects = chunk_mask + 1;
1442
1443 struct bio *split;
1444
1445 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1446 md_flush_request(mddev, bio);
1447 return;
1448 }
1449
1450 md_write_start(mddev, bio);
1451
20d0189b
KO
1452 do {
1453
1454 /*
1455 * If this request crosses a chunk boundary, we need to split
1456 * it.
1457 */
1458 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1459 bio_sectors(bio) > chunk_sects
1460 && (conf->geo.near_copies < conf->geo.raid_disks
1461 || conf->prev.near_copies <
1462 conf->prev.raid_disks))) {
1463 split = bio_split(bio, chunk_sects -
1464 (bio->bi_iter.bi_sector &
1465 (chunk_sects - 1)),
1466 GFP_NOIO, fs_bio_set);
1467 bio_chain(split, bio);
1468 } else {
1469 split = bio;
1470 }
1471
1472 __make_request(mddev, split);
1473 } while (split != bio);
079fa166
N
1474
1475 /* In case raid10d snuck in to freeze_array */
1476 wake_up(&conf->wait_barrier);
1da177e4
LT
1477}
1478
849674e4 1479static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1480{
e879a879 1481 struct r10conf *conf = mddev->private;
1da177e4
LT
1482 int i;
1483
5cf00fcd 1484 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1485 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1486 if (conf->geo.near_copies > 1)
1487 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1488 if (conf->geo.far_copies > 1) {
1489 if (conf->geo.far_offset)
1490 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1491 else
5cf00fcd 1492 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1493 if (conf->geo.far_set_size != conf->geo.raid_disks)
1494 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1495 }
5cf00fcd
N
1496 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1497 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1498 rcu_read_lock();
1499 for (i = 0; i < conf->geo.raid_disks; i++) {
1500 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1501 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1502 }
1503 rcu_read_unlock();
1da177e4
LT
1504 seq_printf(seq, "]");
1505}
1506
700c7213
N
1507/* check if there are enough drives for
1508 * every block to appear on atleast one.
1509 * Don't consider the device numbered 'ignore'
1510 * as we might be about to remove it.
1511 */
635f6416 1512static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1513{
1514 int first = 0;
725d6e57 1515 int has_enough = 0;
635f6416
N
1516 int disks, ncopies;
1517 if (previous) {
1518 disks = conf->prev.raid_disks;
1519 ncopies = conf->prev.near_copies;
1520 } else {
1521 disks = conf->geo.raid_disks;
1522 ncopies = conf->geo.near_copies;
1523 }
700c7213 1524
725d6e57 1525 rcu_read_lock();
700c7213
N
1526 do {
1527 int n = conf->copies;
1528 int cnt = 0;
80b48124 1529 int this = first;
700c7213 1530 while (n--) {
725d6e57
N
1531 struct md_rdev *rdev;
1532 if (this != ignore &&
1533 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1534 test_bit(In_sync, &rdev->flags))
700c7213 1535 cnt++;
635f6416 1536 this = (this+1) % disks;
700c7213
N
1537 }
1538 if (cnt == 0)
725d6e57 1539 goto out;
635f6416 1540 first = (first + ncopies) % disks;
700c7213 1541 } while (first != 0);
725d6e57
N
1542 has_enough = 1;
1543out:
1544 rcu_read_unlock();
1545 return has_enough;
700c7213
N
1546}
1547
f8c9e74f
N
1548static int enough(struct r10conf *conf, int ignore)
1549{
635f6416
N
1550 /* when calling 'enough', both 'prev' and 'geo' must
1551 * be stable.
1552 * This is ensured if ->reconfig_mutex or ->device_lock
1553 * is held.
1554 */
1555 return _enough(conf, 0, ignore) &&
1556 _enough(conf, 1, ignore);
f8c9e74f
N
1557}
1558
849674e4 1559static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1560{
1561 char b[BDEVNAME_SIZE];
e879a879 1562 struct r10conf *conf = mddev->private;
635f6416 1563 unsigned long flags;
1da177e4
LT
1564
1565 /*
1566 * If it is not operational, then we have already marked it as dead
1567 * else if it is the last working disks, ignore the error, let the
1568 * next level up know.
1569 * else mark the drive as failed
1570 */
635f6416 1571 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1572 if (test_bit(In_sync, &rdev->flags)
635f6416 1573 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1574 /*
1575 * Don't fail the drive, just return an IO error.
1da177e4 1576 */
635f6416 1577 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1578 return;
635f6416 1579 }
2446dba0 1580 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1581 mddev->degraded++;
2446dba0
N
1582 /*
1583 * If recovery is running, make sure it aborts.
1584 */
1585 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1586 set_bit(Blocked, &rdev->flags);
b2d444d7 1587 set_bit(Faulty, &rdev->flags);
85ad1d13
GJ
1588 set_mask_bits(&mddev->flags, 0,
1589 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
635f6416 1590 spin_unlock_irqrestore(&conf->device_lock, flags);
067032bc
JP
1591 printk(KERN_ALERT
1592 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1593 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1594 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1595 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1596}
1597
e879a879 1598static void print_conf(struct r10conf *conf)
1da177e4
LT
1599{
1600 int i;
4056ca51 1601 struct md_rdev *rdev;
1da177e4 1602
128595ed 1603 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1604 if (!conf) {
128595ed 1605 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1606 return;
1607 }
5cf00fcd
N
1608 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1609 conf->geo.raid_disks);
1da177e4 1610
4056ca51
N
1611 /* This is only called with ->reconfix_mutex held, so
1612 * rcu protection of rdev is not needed */
5cf00fcd 1613 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1614 char b[BDEVNAME_SIZE];
4056ca51
N
1615 rdev = conf->mirrors[i].rdev;
1616 if (rdev)
128595ed 1617 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
4056ca51
N
1618 i, !test_bit(In_sync, &rdev->flags),
1619 !test_bit(Faulty, &rdev->flags),
1620 bdevname(rdev->bdev,b));
1da177e4
LT
1621 }
1622}
1623
e879a879 1624static void close_sync(struct r10conf *conf)
1da177e4 1625{
0a27ec96
N
1626 wait_barrier(conf);
1627 allow_barrier(conf);
1da177e4
LT
1628
1629 mempool_destroy(conf->r10buf_pool);
1630 conf->r10buf_pool = NULL;
1631}
1632
fd01b88c 1633static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1634{
1635 int i;
e879a879 1636 struct r10conf *conf = mddev->private;
dc280d98 1637 struct raid10_info *tmp;
6b965620
N
1638 int count = 0;
1639 unsigned long flags;
1da177e4
LT
1640
1641 /*
1642 * Find all non-in_sync disks within the RAID10 configuration
1643 * and mark them in_sync
1644 */
5cf00fcd 1645 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1646 tmp = conf->mirrors + i;
4ca40c2c
N
1647 if (tmp->replacement
1648 && tmp->replacement->recovery_offset == MaxSector
1649 && !test_bit(Faulty, &tmp->replacement->flags)
1650 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1651 /* Replacement has just become active */
1652 if (!tmp->rdev
1653 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1654 count++;
1655 if (tmp->rdev) {
1656 /* Replaced device not technically faulty,
1657 * but we need to be sure it gets removed
1658 * and never re-added.
1659 */
1660 set_bit(Faulty, &tmp->rdev->flags);
1661 sysfs_notify_dirent_safe(
1662 tmp->rdev->sysfs_state);
1663 }
1664 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1665 } else if (tmp->rdev
61e4947c 1666 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1667 && !test_bit(Faulty, &tmp->rdev->flags)
1668 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1669 count++;
2863b9eb 1670 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1671 }
1672 }
6b965620
N
1673 spin_lock_irqsave(&conf->device_lock, flags);
1674 mddev->degraded -= count;
1675 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1676
1677 print_conf(conf);
6b965620 1678 return count;
1da177e4
LT
1679}
1680
fd01b88c 1681static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1682{
e879a879 1683 struct r10conf *conf = mddev->private;
199050ea 1684 int err = -EEXIST;
1da177e4 1685 int mirror;
6c2fce2e 1686 int first = 0;
5cf00fcd 1687 int last = conf->geo.raid_disks - 1;
1da177e4
LT
1688
1689 if (mddev->recovery_cp < MaxSector)
1690 /* only hot-add to in-sync arrays, as recovery is
1691 * very different from resync
1692 */
199050ea 1693 return -EBUSY;
635f6416 1694 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1695 return -EINVAL;
1da177e4 1696
1501efad
DW
1697 if (md_integrity_add_rdev(rdev, mddev))
1698 return -ENXIO;
1699
a53a6c85 1700 if (rdev->raid_disk >= 0)
6c2fce2e 1701 first = last = rdev->raid_disk;
1da177e4 1702
2c4193df 1703 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1704 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1705 mirror = rdev->saved_raid_disk;
1706 else
6c2fce2e 1707 mirror = first;
2bb77736 1708 for ( ; mirror <= last ; mirror++) {
dc280d98 1709 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1710 if (p->recovery_disabled == mddev->recovery_disabled)
1711 continue;
b7044d41
N
1712 if (p->rdev) {
1713 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1714 p->replacement != NULL)
1715 continue;
1716 clear_bit(In_sync, &rdev->flags);
1717 set_bit(Replacement, &rdev->flags);
1718 rdev->raid_disk = mirror;
1719 err = 0;
9092c02d
JB
1720 if (mddev->gendisk)
1721 disk_stack_limits(mddev->gendisk, rdev->bdev,
1722 rdev->data_offset << 9);
b7044d41
N
1723 conf->fullsync = 1;
1724 rcu_assign_pointer(p->replacement, rdev);
1725 break;
1726 }
1da177e4 1727
9092c02d
JB
1728 if (mddev->gendisk)
1729 disk_stack_limits(mddev->gendisk, rdev->bdev,
1730 rdev->data_offset << 9);
1da177e4 1731
2bb77736 1732 p->head_position = 0;
d890fa2b 1733 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1734 rdev->raid_disk = mirror;
1735 err = 0;
1736 if (rdev->saved_raid_disk != mirror)
1737 conf->fullsync = 1;
1738 rcu_assign_pointer(p->rdev, rdev);
1739 break;
1740 }
ed30be07 1741 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1742 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1743
1da177e4 1744 print_conf(conf);
199050ea 1745 return err;
1da177e4
LT
1746}
1747
b8321b68 1748static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1749{
e879a879 1750 struct r10conf *conf = mddev->private;
1da177e4 1751 int err = 0;
b8321b68 1752 int number = rdev->raid_disk;
c8ab903e 1753 struct md_rdev **rdevp;
dc280d98 1754 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1755
1756 print_conf(conf);
c8ab903e
N
1757 if (rdev == p->rdev)
1758 rdevp = &p->rdev;
1759 else if (rdev == p->replacement)
1760 rdevp = &p->replacement;
1761 else
1762 return 0;
1763
1764 if (test_bit(In_sync, &rdev->flags) ||
1765 atomic_read(&rdev->nr_pending)) {
1766 err = -EBUSY;
1767 goto abort;
1768 }
d787be40 1769 /* Only remove non-faulty devices if recovery
c8ab903e
N
1770 * is not possible.
1771 */
1772 if (!test_bit(Faulty, &rdev->flags) &&
1773 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1774 (!p->replacement || p->replacement == rdev) &&
63aced61 1775 number < conf->geo.raid_disks &&
c8ab903e
N
1776 enough(conf, -1)) {
1777 err = -EBUSY;
1778 goto abort;
1da177e4 1779 }
c8ab903e 1780 *rdevp = NULL;
d787be40
N
1781 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1782 synchronize_rcu();
1783 if (atomic_read(&rdev->nr_pending)) {
1784 /* lost the race, try later */
1785 err = -EBUSY;
1786 *rdevp = rdev;
1787 goto abort;
1788 }
1789 }
1790 if (p->replacement) {
4ca40c2c
N
1791 /* We must have just cleared 'rdev' */
1792 p->rdev = p->replacement;
1793 clear_bit(Replacement, &p->replacement->flags);
1794 smp_mb(); /* Make sure other CPUs may see both as identical
1795 * but will never see neither -- if they are careful.
1796 */
1797 p->replacement = NULL;
1798 clear_bit(WantReplacement, &rdev->flags);
1799 } else
1800 /* We might have just remove the Replacement as faulty
1801 * Clear the flag just in case
1802 */
1803 clear_bit(WantReplacement, &rdev->flags);
1804
c8ab903e
N
1805 err = md_integrity_register(mddev);
1806
1da177e4
LT
1807abort:
1808
1809 print_conf(conf);
1810 return err;
1811}
1812
4246a0b6 1813static void end_sync_read(struct bio *bio)
1da177e4 1814{
9f2c9d12 1815 struct r10bio *r10_bio = bio->bi_private;
e879a879 1816 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1817 int d;
1da177e4 1818
3ea7daa5
N
1819 if (bio == r10_bio->master_bio) {
1820 /* this is a reshape read */
1821 d = r10_bio->read_slot; /* really the read dev */
1822 } else
1823 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12 1824
4246a0b6 1825 if (!bio->bi_error)
0eb3ff12 1826 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1827 else
1828 /* The write handler will notice the lack of
1829 * R10BIO_Uptodate and record any errors etc
1830 */
4dbcdc75
N
1831 atomic_add(r10_bio->sectors,
1832 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1833
1834 /* for reconstruct, we always reschedule after a read.
1835 * for resync, only after all reads
1836 */
73d5c38a 1837 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1838 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1839 atomic_dec_and_test(&r10_bio->remaining)) {
1840 /* we have read all the blocks,
1841 * do the comparison in process context in raid10d
1842 */
1843 reschedule_retry(r10_bio);
1844 }
1da177e4
LT
1845}
1846
9f2c9d12 1847static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1848{
fd01b88c 1849 struct mddev *mddev = r10_bio->mddev;
dfc70645 1850
1da177e4
LT
1851 while (atomic_dec_and_test(&r10_bio->remaining)) {
1852 if (r10_bio->master_bio == NULL) {
1853 /* the primary of several recovery bios */
73d5c38a 1854 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1855 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1856 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1857 reschedule_retry(r10_bio);
1858 else
1859 put_buf(r10_bio);
73d5c38a 1860 md_done_sync(mddev, s, 1);
1da177e4
LT
1861 break;
1862 } else {
9f2c9d12 1863 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1864 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1865 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1866 reschedule_retry(r10_bio);
1867 else
1868 put_buf(r10_bio);
1da177e4
LT
1869 r10_bio = r10_bio2;
1870 }
1871 }
1da177e4
LT
1872}
1873
4246a0b6 1874static void end_sync_write(struct bio *bio)
5e570289 1875{
9f2c9d12 1876 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1877 struct mddev *mddev = r10_bio->mddev;
e879a879 1878 struct r10conf *conf = mddev->private;
5e570289
N
1879 int d;
1880 sector_t first_bad;
1881 int bad_sectors;
1882 int slot;
9ad1aefc 1883 int repl;
4ca40c2c 1884 struct md_rdev *rdev = NULL;
5e570289 1885
9ad1aefc
N
1886 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1887 if (repl)
1888 rdev = conf->mirrors[d].replacement;
547414d1 1889 else
9ad1aefc 1890 rdev = conf->mirrors[d].rdev;
5e570289 1891
4246a0b6 1892 if (bio->bi_error) {
9ad1aefc
N
1893 if (repl)
1894 md_error(mddev, rdev);
1895 else {
1896 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1897 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1898 set_bit(MD_RECOVERY_NEEDED,
1899 &rdev->mddev->recovery);
9ad1aefc
N
1900 set_bit(R10BIO_WriteError, &r10_bio->state);
1901 }
1902 } else if (is_badblock(rdev,
5e570289
N
1903 r10_bio->devs[slot].addr,
1904 r10_bio->sectors,
1905 &first_bad, &bad_sectors))
1906 set_bit(R10BIO_MadeGood, &r10_bio->state);
1907
9ad1aefc 1908 rdev_dec_pending(rdev, mddev);
5e570289
N
1909
1910 end_sync_request(r10_bio);
1911}
1912
1da177e4
LT
1913/*
1914 * Note: sync and recover and handled very differently for raid10
1915 * This code is for resync.
1916 * For resync, we read through virtual addresses and read all blocks.
1917 * If there is any error, we schedule a write. The lowest numbered
1918 * drive is authoritative.
1919 * However requests come for physical address, so we need to map.
1920 * For every physical address there are raid_disks/copies virtual addresses,
1921 * which is always are least one, but is not necessarly an integer.
1922 * This means that a physical address can span multiple chunks, so we may
1923 * have to submit multiple io requests for a single sync request.
1924 */
1925/*
1926 * We check if all blocks are in-sync and only write to blocks that
1927 * aren't in sync
1928 */
9f2c9d12 1929static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1930{
e879a879 1931 struct r10conf *conf = mddev->private;
1da177e4
LT
1932 int i, first;
1933 struct bio *tbio, *fbio;
f4380a91 1934 int vcnt;
1da177e4
LT
1935
1936 atomic_set(&r10_bio->remaining, 1);
1937
1938 /* find the first device with a block */
1939 for (i=0; i<conf->copies; i++)
4246a0b6 1940 if (!r10_bio->devs[i].bio->bi_error)
1da177e4
LT
1941 break;
1942
1943 if (i == conf->copies)
1944 goto done;
1945
1946 first = i;
1947 fbio = r10_bio->devs[i].bio;
cc578588
AP
1948 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1949 fbio->bi_iter.bi_idx = 0;
1da177e4 1950
f4380a91 1951 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1952 /* now find blocks with errors */
0eb3ff12
N
1953 for (i=0 ; i < conf->copies ; i++) {
1954 int j, d;
1da177e4 1955
1da177e4 1956 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1957
1958 if (tbio->bi_end_io != end_sync_read)
1959 continue;
1960 if (i == first)
1da177e4 1961 continue;
4246a0b6 1962 if (!r10_bio->devs[i].bio->bi_error) {
0eb3ff12
N
1963 /* We know that the bi_io_vec layout is the same for
1964 * both 'first' and 'i', so we just compare them.
1965 * All vec entries are PAGE_SIZE;
1966 */
7bb23c49
N
1967 int sectors = r10_bio->sectors;
1968 for (j = 0; j < vcnt; j++) {
1969 int len = PAGE_SIZE;
1970 if (sectors < (len / 512))
1971 len = sectors * 512;
0eb3ff12
N
1972 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1973 page_address(tbio->bi_io_vec[j].bv_page),
7bb23c49 1974 len))
0eb3ff12 1975 break;
7bb23c49
N
1976 sectors -= len/512;
1977 }
0eb3ff12
N
1978 if (j == vcnt)
1979 continue;
7f7583d4 1980 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
1981 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1982 /* Don't fix anything. */
1983 continue;
0eb3ff12 1984 }
f84ee364
N
1985 /* Ok, we need to write this bio, either to correct an
1986 * inconsistency or to correct an unreadable block.
1da177e4
LT
1987 * First we need to fixup bv_offset, bv_len and
1988 * bi_vecs, as the read request might have corrupted these
1989 */
8be185f2
KO
1990 bio_reset(tbio);
1991
1da177e4 1992 tbio->bi_vcnt = vcnt;
cc578588 1993 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1da177e4
LT
1994 tbio->bi_rw = WRITE;
1995 tbio->bi_private = r10_bio;
4f024f37 1996 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4
LT
1997 tbio->bi_end_io = end_sync_write;
1998
c31df25f
KO
1999 bio_copy_data(tbio, fbio);
2000
1da177e4
LT
2001 d = r10_bio->devs[i].devnum;
2002 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2003 atomic_inc(&r10_bio->remaining);
aa8b57aa 2004 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2005
4f024f37 2006 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
1da177e4
LT
2007 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2008 generic_make_request(tbio);
2009 }
2010
9ad1aefc
N
2011 /* Now write out to any replacement devices
2012 * that are active
2013 */
2014 for (i = 0; i < conf->copies; i++) {
c31df25f 2015 int d;
9ad1aefc
N
2016
2017 tbio = r10_bio->devs[i].repl_bio;
2018 if (!tbio || !tbio->bi_end_io)
2019 continue;
2020 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2021 && r10_bio->devs[i].bio != fbio)
c31df25f 2022 bio_copy_data(tbio, fbio);
9ad1aefc
N
2023 d = r10_bio->devs[i].devnum;
2024 atomic_inc(&r10_bio->remaining);
2025 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2026 bio_sectors(tbio));
9ad1aefc
N
2027 generic_make_request(tbio);
2028 }
2029
1da177e4
LT
2030done:
2031 if (atomic_dec_and_test(&r10_bio->remaining)) {
2032 md_done_sync(mddev, r10_bio->sectors, 1);
2033 put_buf(r10_bio);
2034 }
2035}
2036
2037/*
2038 * Now for the recovery code.
2039 * Recovery happens across physical sectors.
2040 * We recover all non-is_sync drives by finding the virtual address of
2041 * each, and then choose a working drive that also has that virt address.
2042 * There is a separate r10_bio for each non-in_sync drive.
2043 * Only the first two slots are in use. The first for reading,
2044 * The second for writing.
2045 *
2046 */
9f2c9d12 2047static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2048{
2049 /* We got a read error during recovery.
2050 * We repeat the read in smaller page-sized sections.
2051 * If a read succeeds, write it to the new device or record
2052 * a bad block if we cannot.
2053 * If a read fails, record a bad block on both old and
2054 * new devices.
2055 */
fd01b88c 2056 struct mddev *mddev = r10_bio->mddev;
e879a879 2057 struct r10conf *conf = mddev->private;
5e570289
N
2058 struct bio *bio = r10_bio->devs[0].bio;
2059 sector_t sect = 0;
2060 int sectors = r10_bio->sectors;
2061 int idx = 0;
2062 int dr = r10_bio->devs[0].devnum;
2063 int dw = r10_bio->devs[1].devnum;
2064
2065 while (sectors) {
2066 int s = sectors;
3cb03002 2067 struct md_rdev *rdev;
5e570289
N
2068 sector_t addr;
2069 int ok;
2070
2071 if (s > (PAGE_SIZE>>9))
2072 s = PAGE_SIZE >> 9;
2073
2074 rdev = conf->mirrors[dr].rdev;
2075 addr = r10_bio->devs[0].addr + sect,
2076 ok = sync_page_io(rdev,
2077 addr,
2078 s << 9,
2079 bio->bi_io_vec[idx].bv_page,
2080 READ, false);
2081 if (ok) {
2082 rdev = conf->mirrors[dw].rdev;
2083 addr = r10_bio->devs[1].addr + sect;
2084 ok = sync_page_io(rdev,
2085 addr,
2086 s << 9,
2087 bio->bi_io_vec[idx].bv_page,
2088 WRITE, false);
b7044d41 2089 if (!ok) {
5e570289 2090 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2091 if (!test_and_set_bit(WantReplacement,
2092 &rdev->flags))
2093 set_bit(MD_RECOVERY_NEEDED,
2094 &rdev->mddev->recovery);
2095 }
5e570289
N
2096 }
2097 if (!ok) {
2098 /* We don't worry if we cannot set a bad block -
2099 * it really is bad so there is no loss in not
2100 * recording it yet
2101 */
2102 rdev_set_badblocks(rdev, addr, s, 0);
2103
2104 if (rdev != conf->mirrors[dw].rdev) {
2105 /* need bad block on destination too */
3cb03002 2106 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2107 addr = r10_bio->devs[1].addr + sect;
2108 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2109 if (!ok) {
2110 /* just abort the recovery */
2111 printk(KERN_NOTICE
2112 "md/raid10:%s: recovery aborted"
2113 " due to read error\n",
2114 mdname(mddev));
2115
2116 conf->mirrors[dw].recovery_disabled
2117 = mddev->recovery_disabled;
2118 set_bit(MD_RECOVERY_INTR,
2119 &mddev->recovery);
2120 break;
2121 }
2122 }
2123 }
2124
2125 sectors -= s;
2126 sect += s;
2127 idx++;
2128 }
2129}
1da177e4 2130
9f2c9d12 2131static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2132{
e879a879 2133 struct r10conf *conf = mddev->private;
c65060ad 2134 int d;
24afd80d 2135 struct bio *wbio, *wbio2;
1da177e4 2136
5e570289
N
2137 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2138 fix_recovery_read_error(r10_bio);
2139 end_sync_request(r10_bio);
2140 return;
2141 }
2142
c65060ad
NK
2143 /*
2144 * share the pages with the first bio
1da177e4
LT
2145 * and submit the write request
2146 */
1da177e4 2147 d = r10_bio->devs[1].devnum;
24afd80d
N
2148 wbio = r10_bio->devs[1].bio;
2149 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2150 /* Need to test wbio2->bi_end_io before we call
2151 * generic_make_request as if the former is NULL,
2152 * the latter is free to free wbio2.
2153 */
2154 if (wbio2 && !wbio2->bi_end_io)
2155 wbio2 = NULL;
24afd80d
N
2156 if (wbio->bi_end_io) {
2157 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2158 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2159 generic_make_request(wbio);
2160 }
0eb25bb0 2161 if (wbio2) {
24afd80d
N
2162 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2163 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2164 bio_sectors(wbio2));
24afd80d
N
2165 generic_make_request(wbio2);
2166 }
1da177e4
LT
2167}
2168
1e50915f
RB
2169/*
2170 * Used by fix_read_error() to decay the per rdev read_errors.
2171 * We halve the read error count for every hour that has elapsed
2172 * since the last recorded read error.
2173 *
2174 */
fd01b88c 2175static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2176{
0e3ef49e 2177 long cur_time_mon;
1e50915f
RB
2178 unsigned long hours_since_last;
2179 unsigned int read_errors = atomic_read(&rdev->read_errors);
2180
0e3ef49e 2181 cur_time_mon = ktime_get_seconds();
1e50915f 2182
0e3ef49e 2183 if (rdev->last_read_error == 0) {
1e50915f
RB
2184 /* first time we've seen a read error */
2185 rdev->last_read_error = cur_time_mon;
2186 return;
2187 }
2188
0e3ef49e
AB
2189 hours_since_last = (long)(cur_time_mon -
2190 rdev->last_read_error) / 3600;
1e50915f
RB
2191
2192 rdev->last_read_error = cur_time_mon;
2193
2194 /*
2195 * if hours_since_last is > the number of bits in read_errors
2196 * just set read errors to 0. We do this to avoid
2197 * overflowing the shift of read_errors by hours_since_last.
2198 */
2199 if (hours_since_last >= 8 * sizeof(read_errors))
2200 atomic_set(&rdev->read_errors, 0);
2201 else
2202 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2203}
2204
3cb03002 2205static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2206 int sectors, struct page *page, int rw)
2207{
2208 sector_t first_bad;
2209 int bad_sectors;
2210
2211 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2212 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2213 return -1;
2214 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2215 /* success */
2216 return 1;
b7044d41 2217 if (rw == WRITE) {
58c54fcc 2218 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2219 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2220 set_bit(MD_RECOVERY_NEEDED,
2221 &rdev->mddev->recovery);
2222 }
58c54fcc
N
2223 /* need to record an error - either for the block or the device */
2224 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2225 md_error(rdev->mddev, rdev);
2226 return 0;
2227}
2228
1da177e4
LT
2229/*
2230 * This is a kernel thread which:
2231 *
2232 * 1. Retries failed read operations on working mirrors.
2233 * 2. Updates the raid superblock when problems encounter.
6814d536 2234 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2235 */
2236
e879a879 2237static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2238{
2239 int sect = 0; /* Offset from r10_bio->sector */
2240 int sectors = r10_bio->sectors;
3cb03002 2241 struct md_rdev*rdev;
1e50915f 2242 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2243 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2244
7c4e06ff
N
2245 /* still own a reference to this rdev, so it cannot
2246 * have been cleared recently.
2247 */
2248 rdev = conf->mirrors[d].rdev;
1e50915f 2249
7c4e06ff
N
2250 if (test_bit(Faulty, &rdev->flags))
2251 /* drive has already been failed, just ignore any
2252 more fix_read_error() attempts */
2253 return;
1e50915f 2254
7c4e06ff
N
2255 check_decay_read_errors(mddev, rdev);
2256 atomic_inc(&rdev->read_errors);
2257 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2258 char b[BDEVNAME_SIZE];
2259 bdevname(rdev->bdev, b);
1e50915f 2260
7c4e06ff
N
2261 printk(KERN_NOTICE
2262 "md/raid10:%s: %s: Raid device exceeded "
2263 "read_error threshold [cur %d:max %d]\n",
2264 mdname(mddev), b,
2265 atomic_read(&rdev->read_errors), max_read_errors);
2266 printk(KERN_NOTICE
2267 "md/raid10:%s: %s: Failing raid device\n",
2268 mdname(mddev), b);
d683c8e0 2269 md_error(mddev, rdev);
fae8cc5e 2270 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2271 return;
1e50915f 2272 }
1e50915f 2273
6814d536
N
2274 while(sectors) {
2275 int s = sectors;
2276 int sl = r10_bio->read_slot;
2277 int success = 0;
2278 int start;
2279
2280 if (s > (PAGE_SIZE>>9))
2281 s = PAGE_SIZE >> 9;
2282
2283 rcu_read_lock();
2284 do {
8dbed5ce
N
2285 sector_t first_bad;
2286 int bad_sectors;
2287
0544a21d 2288 d = r10_bio->devs[sl].devnum;
6814d536
N
2289 rdev = rcu_dereference(conf->mirrors[d].rdev);
2290 if (rdev &&
8dbed5ce 2291 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2292 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2293 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2294 &first_bad, &bad_sectors) == 0) {
6814d536
N
2295 atomic_inc(&rdev->nr_pending);
2296 rcu_read_unlock();
2b193363 2297 success = sync_page_io(rdev,
6814d536 2298 r10_bio->devs[sl].addr +
ccebd4c4 2299 sect,
6814d536 2300 s<<9,
ccebd4c4 2301 conf->tmppage, READ, false);
6814d536
N
2302 rdev_dec_pending(rdev, mddev);
2303 rcu_read_lock();
2304 if (success)
2305 break;
2306 }
2307 sl++;
2308 if (sl == conf->copies)
2309 sl = 0;
2310 } while (!success && sl != r10_bio->read_slot);
2311 rcu_read_unlock();
2312
2313 if (!success) {
58c54fcc
N
2314 /* Cannot read from anywhere, just mark the block
2315 * as bad on the first device to discourage future
2316 * reads.
2317 */
6814d536 2318 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2319 rdev = conf->mirrors[dn].rdev;
2320
2321 if (!rdev_set_badblocks(
2322 rdev,
2323 r10_bio->devs[r10_bio->read_slot].addr
2324 + sect,
fae8cc5e 2325 s, 0)) {
58c54fcc 2326 md_error(mddev, rdev);
fae8cc5e
N
2327 r10_bio->devs[r10_bio->read_slot].bio
2328 = IO_BLOCKED;
2329 }
6814d536
N
2330 break;
2331 }
2332
2333 start = sl;
2334 /* write it back and re-read */
2335 rcu_read_lock();
2336 while (sl != r10_bio->read_slot) {
67b8dc4b 2337 char b[BDEVNAME_SIZE];
0544a21d 2338
6814d536
N
2339 if (sl==0)
2340 sl = conf->copies;
2341 sl--;
2342 d = r10_bio->devs[sl].devnum;
2343 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2344 if (!rdev ||
f5b67ae8 2345 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2346 !test_bit(In_sync, &rdev->flags))
2347 continue;
2348
2349 atomic_inc(&rdev->nr_pending);
2350 rcu_read_unlock();
58c54fcc
N
2351 if (r10_sync_page_io(rdev,
2352 r10_bio->devs[sl].addr +
2353 sect,
055d3747 2354 s, conf->tmppage, WRITE)
1294b9c9
N
2355 == 0) {
2356 /* Well, this device is dead */
2357 printk(KERN_NOTICE
2358 "md/raid10:%s: read correction "
2359 "write failed"
2360 " (%d sectors at %llu on %s)\n",
2361 mdname(mddev), s,
2362 (unsigned long long)(
f8c9e74f
N
2363 sect +
2364 choose_data_offset(r10_bio,
2365 rdev)),
1294b9c9
N
2366 bdevname(rdev->bdev, b));
2367 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2368 "drive\n",
2369 mdname(mddev),
2370 bdevname(rdev->bdev, b));
6814d536 2371 }
1294b9c9
N
2372 rdev_dec_pending(rdev, mddev);
2373 rcu_read_lock();
6814d536
N
2374 }
2375 sl = start;
2376 while (sl != r10_bio->read_slot) {
1294b9c9 2377 char b[BDEVNAME_SIZE];
0544a21d 2378
6814d536
N
2379 if (sl==0)
2380 sl = conf->copies;
2381 sl--;
2382 d = r10_bio->devs[sl].devnum;
2383 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2384 if (!rdev ||
f5b67ae8 2385 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2386 !test_bit(In_sync, &rdev->flags))
2387 continue;
6814d536 2388
1294b9c9
N
2389 atomic_inc(&rdev->nr_pending);
2390 rcu_read_unlock();
58c54fcc
N
2391 switch (r10_sync_page_io(rdev,
2392 r10_bio->devs[sl].addr +
2393 sect,
055d3747 2394 s, conf->tmppage,
58c54fcc
N
2395 READ)) {
2396 case 0:
1294b9c9
N
2397 /* Well, this device is dead */
2398 printk(KERN_NOTICE
2399 "md/raid10:%s: unable to read back "
2400 "corrected sectors"
2401 " (%d sectors at %llu on %s)\n",
2402 mdname(mddev), s,
2403 (unsigned long long)(
f8c9e74f
N
2404 sect +
2405 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2406 bdevname(rdev->bdev, b));
2407 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2408 "drive\n",
2409 mdname(mddev),
2410 bdevname(rdev->bdev, b));
58c54fcc
N
2411 break;
2412 case 1:
1294b9c9
N
2413 printk(KERN_INFO
2414 "md/raid10:%s: read error corrected"
2415 " (%d sectors at %llu on %s)\n",
2416 mdname(mddev), s,
2417 (unsigned long long)(
f8c9e74f
N
2418 sect +
2419 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2420 bdevname(rdev->bdev, b));
2421 atomic_add(s, &rdev->corrected_errors);
6814d536 2422 }
1294b9c9
N
2423
2424 rdev_dec_pending(rdev, mddev);
2425 rcu_read_lock();
6814d536
N
2426 }
2427 rcu_read_unlock();
2428
2429 sectors -= s;
2430 sect += s;
2431 }
2432}
2433
9f2c9d12 2434static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2435{
2436 struct bio *bio = r10_bio->master_bio;
fd01b88c 2437 struct mddev *mddev = r10_bio->mddev;
e879a879 2438 struct r10conf *conf = mddev->private;
3cb03002 2439 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2440 /* bio has the data to be written to slot 'i' where
2441 * we just recently had a write error.
2442 * We repeatedly clone the bio and trim down to one block,
2443 * then try the write. Where the write fails we record
2444 * a bad block.
2445 * It is conceivable that the bio doesn't exactly align with
2446 * blocks. We must handle this.
2447 *
2448 * We currently own a reference to the rdev.
2449 */
2450
2451 int block_sectors;
2452 sector_t sector;
2453 int sectors;
2454 int sect_to_write = r10_bio->sectors;
2455 int ok = 1;
2456
2457 if (rdev->badblocks.shift < 0)
2458 return 0;
2459
f04ebb0b
N
2460 block_sectors = roundup(1 << rdev->badblocks.shift,
2461 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2462 sector = r10_bio->sector;
2463 sectors = ((r10_bio->sector + block_sectors)
2464 & ~(sector_t)(block_sectors - 1))
2465 - sector;
2466
2467 while (sect_to_write) {
2468 struct bio *wbio;
2469 if (sectors > sect_to_write)
2470 sectors = sect_to_write;
2471 /* Write at 'sector' for 'sectors' */
2472 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37
KO
2473 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2474 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2475 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2476 (sector - r10_bio->sector));
2477 wbio->bi_bdev = rdev->bdev;
681ab469 2478 if (submit_bio_wait(WRITE, wbio) < 0)
bd870a16
N
2479 /* Failure! */
2480 ok = rdev_set_badblocks(rdev, sector,
2481 sectors, 0)
2482 && ok;
2483
2484 bio_put(wbio);
2485 sect_to_write -= sectors;
2486 sector += sectors;
2487 sectors = block_sectors;
2488 }
2489 return ok;
2490}
2491
9f2c9d12 2492static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2493{
2494 int slot = r10_bio->read_slot;
560f8e55 2495 struct bio *bio;
e879a879 2496 struct r10conf *conf = mddev->private;
abbf098e 2497 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2498 char b[BDEVNAME_SIZE];
2499 unsigned long do_sync;
856e08e2 2500 int max_sectors;
560f8e55
N
2501
2502 /* we got a read error. Maybe the drive is bad. Maybe just
2503 * the block and we can fix it.
2504 * We freeze all other IO, and try reading the block from
2505 * other devices. When we find one, we re-write
2506 * and check it that fixes the read error.
2507 * This is all done synchronously while the array is
2508 * frozen.
2509 */
fae8cc5e
N
2510 bio = r10_bio->devs[slot].bio;
2511 bdevname(bio->bi_bdev, b);
2512 bio_put(bio);
2513 r10_bio->devs[slot].bio = NULL;
2514
560f8e55 2515 if (mddev->ro == 0) {
e2d59925 2516 freeze_array(conf, 1);
560f8e55
N
2517 fix_read_error(conf, mddev, r10_bio);
2518 unfreeze_array(conf);
fae8cc5e
N
2519 } else
2520 r10_bio->devs[slot].bio = IO_BLOCKED;
2521
abbf098e 2522 rdev_dec_pending(rdev, mddev);
560f8e55 2523
7399c31b 2524read_more:
96c3fd1f
N
2525 rdev = read_balance(conf, r10_bio, &max_sectors);
2526 if (rdev == NULL) {
560f8e55
N
2527 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2528 " read error for block %llu\n",
7399c31b 2529 mdname(mddev), b,
560f8e55
N
2530 (unsigned long long)r10_bio->sector);
2531 raid_end_bio_io(r10_bio);
560f8e55
N
2532 return;
2533 }
2534
2535 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2536 slot = r10_bio->read_slot;
560f8e55
N
2537 printk_ratelimited(
2538 KERN_ERR
055d3747 2539 "md/raid10:%s: %s: redirecting "
560f8e55
N
2540 "sector %llu to another mirror\n",
2541 mdname(mddev),
2542 bdevname(rdev->bdev, b),
2543 (unsigned long long)r10_bio->sector);
2544 bio = bio_clone_mddev(r10_bio->master_bio,
2545 GFP_NOIO, mddev);
4f024f37 2546 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
560f8e55 2547 r10_bio->devs[slot].bio = bio;
abbf098e 2548 r10_bio->devs[slot].rdev = rdev;
4f024f37 2549 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2550 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2551 bio->bi_bdev = rdev->bdev;
2552 bio->bi_rw = READ | do_sync;
2553 bio->bi_private = r10_bio;
2554 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2555 if (max_sectors < r10_bio->sectors) {
2556 /* Drat - have to split this up more */
2557 struct bio *mbio = r10_bio->master_bio;
2558 int sectors_handled =
2559 r10_bio->sector + max_sectors
4f024f37 2560 - mbio->bi_iter.bi_sector;
7399c31b
N
2561 r10_bio->sectors = max_sectors;
2562 spin_lock_irq(&conf->device_lock);
2563 if (mbio->bi_phys_segments == 0)
2564 mbio->bi_phys_segments = 2;
2565 else
2566 mbio->bi_phys_segments++;
2567 spin_unlock_irq(&conf->device_lock);
2568 generic_make_request(bio);
7399c31b
N
2569
2570 r10_bio = mempool_alloc(conf->r10bio_pool,
2571 GFP_NOIO);
2572 r10_bio->master_bio = mbio;
aa8b57aa 2573 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2574 r10_bio->state = 0;
2575 set_bit(R10BIO_ReadError,
2576 &r10_bio->state);
2577 r10_bio->mddev = mddev;
4f024f37 2578 r10_bio->sector = mbio->bi_iter.bi_sector
7399c31b
N
2579 + sectors_handled;
2580
2581 goto read_more;
2582 } else
2583 generic_make_request(bio);
560f8e55
N
2584}
2585
e879a879 2586static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2587{
2588 /* Some sort of write request has finished and it
2589 * succeeded in writing where we thought there was a
2590 * bad block. So forget the bad block.
1a0b7cd8
N
2591 * Or possibly if failed and we need to record
2592 * a bad block.
749c55e9
N
2593 */
2594 int m;
3cb03002 2595 struct md_rdev *rdev;
749c55e9
N
2596
2597 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2598 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2599 for (m = 0; m < conf->copies; m++) {
2600 int dev = r10_bio->devs[m].devnum;
2601 rdev = conf->mirrors[dev].rdev;
2602 if (r10_bio->devs[m].bio == NULL)
2603 continue;
4246a0b6 2604 if (!r10_bio->devs[m].bio->bi_error) {
749c55e9
N
2605 rdev_clear_badblocks(
2606 rdev,
2607 r10_bio->devs[m].addr,
c6563a8c 2608 r10_bio->sectors, 0);
1a0b7cd8
N
2609 } else {
2610 if (!rdev_set_badblocks(
2611 rdev,
2612 r10_bio->devs[m].addr,
2613 r10_bio->sectors, 0))
2614 md_error(conf->mddev, rdev);
749c55e9 2615 }
9ad1aefc
N
2616 rdev = conf->mirrors[dev].replacement;
2617 if (r10_bio->devs[m].repl_bio == NULL)
2618 continue;
4246a0b6
CH
2619
2620 if (!r10_bio->devs[m].repl_bio->bi_error) {
9ad1aefc
N
2621 rdev_clear_badblocks(
2622 rdev,
2623 r10_bio->devs[m].addr,
c6563a8c 2624 r10_bio->sectors, 0);
9ad1aefc
N
2625 } else {
2626 if (!rdev_set_badblocks(
2627 rdev,
2628 r10_bio->devs[m].addr,
2629 r10_bio->sectors, 0))
2630 md_error(conf->mddev, rdev);
2631 }
1a0b7cd8 2632 }
749c55e9
N
2633 put_buf(r10_bio);
2634 } else {
95af587e 2635 bool fail = false;
bd870a16
N
2636 for (m = 0; m < conf->copies; m++) {
2637 int dev = r10_bio->devs[m].devnum;
2638 struct bio *bio = r10_bio->devs[m].bio;
2639 rdev = conf->mirrors[dev].rdev;
2640 if (bio == IO_MADE_GOOD) {
749c55e9
N
2641 rdev_clear_badblocks(
2642 rdev,
2643 r10_bio->devs[m].addr,
c6563a8c 2644 r10_bio->sectors, 0);
749c55e9 2645 rdev_dec_pending(rdev, conf->mddev);
4246a0b6 2646 } else if (bio != NULL && bio->bi_error) {
95af587e 2647 fail = true;
bd870a16
N
2648 if (!narrow_write_error(r10_bio, m)) {
2649 md_error(conf->mddev, rdev);
2650 set_bit(R10BIO_Degraded,
2651 &r10_bio->state);
2652 }
2653 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2654 }
475b0321
N
2655 bio = r10_bio->devs[m].repl_bio;
2656 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2657 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2658 rdev_clear_badblocks(
2659 rdev,
2660 r10_bio->devs[m].addr,
c6563a8c 2661 r10_bio->sectors, 0);
475b0321
N
2662 rdev_dec_pending(rdev, conf->mddev);
2663 }
bd870a16 2664 }
95af587e
N
2665 if (fail) {
2666 spin_lock_irq(&conf->device_lock);
2667 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 2668 conf->nr_queued++;
95af587e
N
2669 spin_unlock_irq(&conf->device_lock);
2670 md_wakeup_thread(conf->mddev->thread);
c340702c
N
2671 } else {
2672 if (test_bit(R10BIO_WriteError,
2673 &r10_bio->state))
2674 close_write(r10_bio);
95af587e 2675 raid_end_bio_io(r10_bio);
c340702c 2676 }
749c55e9
N
2677 }
2678}
2679
4ed8731d 2680static void raid10d(struct md_thread *thread)
1da177e4 2681{
4ed8731d 2682 struct mddev *mddev = thread->mddev;
9f2c9d12 2683 struct r10bio *r10_bio;
1da177e4 2684 unsigned long flags;
e879a879 2685 struct r10conf *conf = mddev->private;
1da177e4 2686 struct list_head *head = &conf->retry_list;
e1dfa0a2 2687 struct blk_plug plug;
1da177e4
LT
2688
2689 md_check_recovery(mddev);
1da177e4 2690
95af587e
N
2691 if (!list_empty_careful(&conf->bio_end_io_list) &&
2692 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2693 LIST_HEAD(tmp);
2694 spin_lock_irqsave(&conf->device_lock, flags);
2695 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
23ddba80
SL
2696 while (!list_empty(&conf->bio_end_io_list)) {
2697 list_move(conf->bio_end_io_list.prev, &tmp);
2698 conf->nr_queued--;
2699 }
95af587e
N
2700 }
2701 spin_unlock_irqrestore(&conf->device_lock, flags);
2702 while (!list_empty(&tmp)) {
a452744b
MP
2703 r10_bio = list_first_entry(&tmp, struct r10bio,
2704 retry_list);
95af587e 2705 list_del(&r10_bio->retry_list);
c340702c
N
2706 if (mddev->degraded)
2707 set_bit(R10BIO_Degraded, &r10_bio->state);
2708
2709 if (test_bit(R10BIO_WriteError,
2710 &r10_bio->state))
2711 close_write(r10_bio);
95af587e
N
2712 raid_end_bio_io(r10_bio);
2713 }
2714 }
2715
e1dfa0a2 2716 blk_start_plug(&plug);
1da177e4 2717 for (;;) {
6cce3b23 2718
0021b7bc 2719 flush_pending_writes(conf);
6cce3b23 2720
a35e63ef
N
2721 spin_lock_irqsave(&conf->device_lock, flags);
2722 if (list_empty(head)) {
2723 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2724 break;
a35e63ef 2725 }
9f2c9d12 2726 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2727 list_del(head->prev);
4443ae10 2728 conf->nr_queued--;
1da177e4
LT
2729 spin_unlock_irqrestore(&conf->device_lock, flags);
2730
2731 mddev = r10_bio->mddev;
070ec55d 2732 conf = mddev->private;
bd870a16
N
2733 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2734 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2735 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2736 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2737 reshape_request_write(mddev, r10_bio);
749c55e9 2738 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2739 sync_request_write(mddev, r10_bio);
7eaceacc 2740 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2741 recovery_request_write(mddev, r10_bio);
856e08e2 2742 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2743 handle_read_error(mddev, r10_bio);
856e08e2
N
2744 else {
2745 /* just a partial read to be scheduled from a
2746 * separate context
2747 */
2748 int slot = r10_bio->read_slot;
2749 generic_make_request(r10_bio->devs[slot].bio);
2750 }
560f8e55 2751
1d9d5241 2752 cond_resched();
de393cde
N
2753 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2754 md_check_recovery(mddev);
1da177e4 2755 }
e1dfa0a2 2756 blk_finish_plug(&plug);
1da177e4
LT
2757}
2758
e879a879 2759static int init_resync(struct r10conf *conf)
1da177e4
LT
2760{
2761 int buffs;
69335ef3 2762 int i;
1da177e4
LT
2763
2764 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2765 BUG_ON(conf->r10buf_pool);
69335ef3 2766 conf->have_replacement = 0;
5cf00fcd 2767 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2768 if (conf->mirrors[i].replacement)
2769 conf->have_replacement = 1;
1da177e4
LT
2770 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2771 if (!conf->r10buf_pool)
2772 return -ENOMEM;
2773 conf->next_resync = 0;
2774 return 0;
2775}
2776
2777/*
2778 * perform a "sync" on one "block"
2779 *
2780 * We need to make sure that no normal I/O request - particularly write
2781 * requests - conflict with active sync requests.
2782 *
2783 * This is achieved by tracking pending requests and a 'barrier' concept
2784 * that can be installed to exclude normal IO requests.
2785 *
2786 * Resync and recovery are handled very differently.
2787 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2788 *
2789 * For resync, we iterate over virtual addresses, read all copies,
2790 * and update if there are differences. If only one copy is live,
2791 * skip it.
2792 * For recovery, we iterate over physical addresses, read a good
2793 * value for each non-in_sync drive, and over-write.
2794 *
2795 * So, for recovery we may have several outstanding complex requests for a
2796 * given address, one for each out-of-sync device. We model this by allocating
2797 * a number of r10_bio structures, one for each out-of-sync device.
2798 * As we setup these structures, we collect all bio's together into a list
2799 * which we then process collectively to add pages, and then process again
2800 * to pass to generic_make_request.
2801 *
2802 * The r10_bio structures are linked using a borrowed master_bio pointer.
2803 * This link is counted in ->remaining. When the r10_bio that points to NULL
2804 * has its remaining count decremented to 0, the whole complex operation
2805 * is complete.
2806 *
2807 */
2808
849674e4 2809static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 2810 int *skipped)
1da177e4 2811{
e879a879 2812 struct r10conf *conf = mddev->private;
9f2c9d12 2813 struct r10bio *r10_bio;
1da177e4
LT
2814 struct bio *biolist = NULL, *bio;
2815 sector_t max_sector, nr_sectors;
1da177e4 2816 int i;
6cce3b23 2817 int max_sync;
57dab0bd 2818 sector_t sync_blocks;
1da177e4
LT
2819 sector_t sectors_skipped = 0;
2820 int chunks_skipped = 0;
5cf00fcd 2821 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2822
2823 if (!conf->r10buf_pool)
2824 if (init_resync(conf))
57afd89f 2825 return 0;
1da177e4 2826
7e83ccbe
MW
2827 /*
2828 * Allow skipping a full rebuild for incremental assembly
2829 * of a clean array, like RAID1 does.
2830 */
2831 if (mddev->bitmap == NULL &&
2832 mddev->recovery_cp == MaxSector &&
13765120
N
2833 mddev->reshape_position == MaxSector &&
2834 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2835 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2836 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2837 conf->fullsync == 0) {
2838 *skipped = 1;
13765120 2839 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2840 }
2841
1da177e4 2842 skipped:
58c0fed4 2843 max_sector = mddev->dev_sectors;
3ea7daa5
N
2844 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2845 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2846 max_sector = mddev->resync_max_sectors;
2847 if (sector_nr >= max_sector) {
6cce3b23
N
2848 /* If we aborted, we need to abort the
2849 * sync on the 'current' bitmap chucks (there can
2850 * be several when recovering multiple devices).
2851 * as we may have started syncing it but not finished.
2852 * We can find the current address in
2853 * mddev->curr_resync, but for recovery,
2854 * we need to convert that to several
2855 * virtual addresses.
2856 */
3ea7daa5
N
2857 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2858 end_reshape(conf);
b3968552 2859 close_sync(conf);
3ea7daa5
N
2860 return 0;
2861 }
2862
6cce3b23
N
2863 if (mddev->curr_resync < max_sector) { /* aborted */
2864 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2865 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2866 &sync_blocks, 1);
5cf00fcd 2867 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2868 sector_t sect =
2869 raid10_find_virt(conf, mddev->curr_resync, i);
2870 bitmap_end_sync(mddev->bitmap, sect,
2871 &sync_blocks, 1);
2872 }
9ad1aefc
N
2873 } else {
2874 /* completed sync */
2875 if ((!mddev->bitmap || conf->fullsync)
2876 && conf->have_replacement
2877 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2878 /* Completed a full sync so the replacements
2879 * are now fully recovered.
2880 */
f90145f3
N
2881 rcu_read_lock();
2882 for (i = 0; i < conf->geo.raid_disks; i++) {
2883 struct md_rdev *rdev =
2884 rcu_dereference(conf->mirrors[i].replacement);
2885 if (rdev)
2886 rdev->recovery_offset = MaxSector;
2887 }
2888 rcu_read_unlock();
9ad1aefc 2889 }
6cce3b23 2890 conf->fullsync = 0;
9ad1aefc 2891 }
6cce3b23 2892 bitmap_close_sync(mddev->bitmap);
1da177e4 2893 close_sync(conf);
57afd89f 2894 *skipped = 1;
1da177e4
LT
2895 return sectors_skipped;
2896 }
3ea7daa5
N
2897
2898 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2899 return reshape_request(mddev, sector_nr, skipped);
2900
5cf00fcd 2901 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2902 /* if there has been nothing to do on any drive,
2903 * then there is nothing to do at all..
2904 */
57afd89f
N
2905 *skipped = 1;
2906 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2907 }
2908
c6207277
N
2909 if (max_sector > mddev->resync_max)
2910 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2911
1da177e4
LT
2912 /* make sure whole request will fit in a chunk - if chunks
2913 * are meaningful
2914 */
5cf00fcd
N
2915 if (conf->geo.near_copies < conf->geo.raid_disks &&
2916 max_sector > (sector_nr | chunk_mask))
2917 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 2918
7ac50447
TM
2919 /*
2920 * If there is non-resync activity waiting for a turn, then let it
2921 * though before starting on this new sync request.
2922 */
2923 if (conf->nr_waiting)
2924 schedule_timeout_uninterruptible(1);
2925
1da177e4
LT
2926 /* Again, very different code for resync and recovery.
2927 * Both must result in an r10bio with a list of bios that
2928 * have bi_end_io, bi_sector, bi_bdev set,
2929 * and bi_private set to the r10bio.
2930 * For recovery, we may actually create several r10bios
2931 * with 2 bios in each, that correspond to the bios in the main one.
2932 * In this case, the subordinate r10bios link back through a
2933 * borrowed master_bio pointer, and the counter in the master
2934 * includes a ref from each subordinate.
2935 */
2936 /* First, we decide what to do and set ->bi_end_io
2937 * To end_sync_read if we want to read, and
2938 * end_sync_write if we will want to write.
2939 */
2940
6cce3b23 2941 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2942 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2943 /* recovery... the complicated one */
e875ecea 2944 int j;
1da177e4
LT
2945 r10_bio = NULL;
2946
5cf00fcd 2947 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2948 int still_degraded;
9f2c9d12 2949 struct r10bio *rb2;
ab9d47e9
N
2950 sector_t sect;
2951 int must_sync;
e875ecea 2952 int any_working;
dc280d98 2953 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 2954 struct md_rdev *mrdev, *mreplace;
24afd80d 2955
f90145f3
N
2956 rcu_read_lock();
2957 mrdev = rcu_dereference(mirror->rdev);
2958 mreplace = rcu_dereference(mirror->replacement);
2959
2960 if ((mrdev == NULL ||
f5b67ae8 2961 test_bit(Faulty, &mrdev->flags) ||
f90145f3
N
2962 test_bit(In_sync, &mrdev->flags)) &&
2963 (mreplace == NULL ||
2964 test_bit(Faulty, &mreplace->flags))) {
2965 rcu_read_unlock();
ab9d47e9 2966 continue;
f90145f3 2967 }
1da177e4 2968
ab9d47e9
N
2969 still_degraded = 0;
2970 /* want to reconstruct this device */
2971 rb2 = r10_bio;
2972 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
2973 if (sect >= mddev->resync_max_sectors) {
2974 /* last stripe is not complete - don't
2975 * try to recover this sector.
2976 */
f90145f3 2977 rcu_read_unlock();
fc448a18
N
2978 continue;
2979 }
f5b67ae8
N
2980 if (mreplace && test_bit(Faulty, &mreplace->flags))
2981 mreplace = NULL;
24afd80d
N
2982 /* Unless we are doing a full sync, or a replacement
2983 * we only need to recover the block if it is set in
2984 * the bitmap
ab9d47e9
N
2985 */
2986 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2987 &sync_blocks, 1);
2988 if (sync_blocks < max_sync)
2989 max_sync = sync_blocks;
2990 if (!must_sync &&
f90145f3 2991 mreplace == NULL &&
ab9d47e9
N
2992 !conf->fullsync) {
2993 /* yep, skip the sync_blocks here, but don't assume
2994 * that there will never be anything to do here
2995 */
2996 chunks_skipped = -1;
f90145f3 2997 rcu_read_unlock();
ab9d47e9
N
2998 continue;
2999 }
f90145f3
N
3000 atomic_inc(&mrdev->nr_pending);
3001 if (mreplace)
3002 atomic_inc(&mreplace->nr_pending);
3003 rcu_read_unlock();
6cce3b23 3004
ab9d47e9 3005 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 3006 r10_bio->state = 0;
ab9d47e9
N
3007 raise_barrier(conf, rb2 != NULL);
3008 atomic_set(&r10_bio->remaining, 0);
18055569 3009
ab9d47e9
N
3010 r10_bio->master_bio = (struct bio*)rb2;
3011 if (rb2)
3012 atomic_inc(&rb2->remaining);
3013 r10_bio->mddev = mddev;
3014 set_bit(R10BIO_IsRecover, &r10_bio->state);
3015 r10_bio->sector = sect;
1da177e4 3016
ab9d47e9
N
3017 raid10_find_phys(conf, r10_bio);
3018
3019 /* Need to check if the array will still be
3020 * degraded
3021 */
f90145f3
N
3022 rcu_read_lock();
3023 for (j = 0; j < conf->geo.raid_disks; j++) {
3024 struct md_rdev *rdev = rcu_dereference(
3025 conf->mirrors[j].rdev);
3026 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3027 still_degraded = 1;
87fc767b 3028 break;
1da177e4 3029 }
f90145f3 3030 }
ab9d47e9
N
3031
3032 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3033 &sync_blocks, still_degraded);
3034
e875ecea 3035 any_working = 0;
ab9d47e9 3036 for (j=0; j<conf->copies;j++) {
e875ecea 3037 int k;
ab9d47e9 3038 int d = r10_bio->devs[j].devnum;
5e570289 3039 sector_t from_addr, to_addr;
f90145f3
N
3040 struct md_rdev *rdev =
3041 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3042 sector_t sector, first_bad;
3043 int bad_sectors;
f90145f3
N
3044 if (!rdev ||
3045 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3046 continue;
3047 /* This is where we read from */
e875ecea 3048 any_working = 1;
40c356ce
N
3049 sector = r10_bio->devs[j].addr;
3050
3051 if (is_badblock(rdev, sector, max_sync,
3052 &first_bad, &bad_sectors)) {
3053 if (first_bad > sector)
3054 max_sync = first_bad - sector;
3055 else {
3056 bad_sectors -= (sector
3057 - first_bad);
3058 if (max_sync > bad_sectors)
3059 max_sync = bad_sectors;
3060 continue;
3061 }
3062 }
ab9d47e9 3063 bio = r10_bio->devs[0].bio;
8be185f2 3064 bio_reset(bio);
ab9d47e9
N
3065 bio->bi_next = biolist;
3066 biolist = bio;
3067 bio->bi_private = r10_bio;
3068 bio->bi_end_io = end_sync_read;
3069 bio->bi_rw = READ;
5e570289 3070 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3071 bio->bi_iter.bi_sector = from_addr +
3072 rdev->data_offset;
24afd80d
N
3073 bio->bi_bdev = rdev->bdev;
3074 atomic_inc(&rdev->nr_pending);
3075 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3076
3077 for (k=0; k<conf->copies; k++)
3078 if (r10_bio->devs[k].devnum == i)
3079 break;
3080 BUG_ON(k == conf->copies);
5e570289 3081 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3082 r10_bio->devs[0].devnum = d;
5e570289 3083 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3084 r10_bio->devs[1].devnum = i;
5e570289 3085 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3086
f90145f3 3087 if (!test_bit(In_sync, &mrdev->flags)) {
24afd80d 3088 bio = r10_bio->devs[1].bio;
8be185f2 3089 bio_reset(bio);
24afd80d
N
3090 bio->bi_next = biolist;
3091 biolist = bio;
3092 bio->bi_private = r10_bio;
3093 bio->bi_end_io = end_sync_write;
3094 bio->bi_rw = WRITE;
4f024f37 3095 bio->bi_iter.bi_sector = to_addr
f90145f3
N
3096 + mrdev->data_offset;
3097 bio->bi_bdev = mrdev->bdev;
24afd80d
N
3098 atomic_inc(&r10_bio->remaining);
3099 } else
3100 r10_bio->devs[1].bio->bi_end_io = NULL;
3101
3102 /* and maybe write to replacement */
3103 bio = r10_bio->devs[1].repl_bio;
3104 if (bio)
3105 bio->bi_end_io = NULL;
f90145f3 3106 /* Note: if mreplace != NULL, then bio
24afd80d
N
3107 * cannot be NULL as r10buf_pool_alloc will
3108 * have allocated it.
3109 * So the second test here is pointless.
3110 * But it keeps semantic-checkers happy, and
3111 * this comment keeps human reviewers
3112 * happy.
3113 */
f90145f3
N
3114 if (mreplace == NULL || bio == NULL ||
3115 test_bit(Faulty, &mreplace->flags))
24afd80d 3116 break;
8be185f2 3117 bio_reset(bio);
24afd80d
N
3118 bio->bi_next = biolist;
3119 biolist = bio;
3120 bio->bi_private = r10_bio;
3121 bio->bi_end_io = end_sync_write;
3122 bio->bi_rw = WRITE;
4f024f37 3123 bio->bi_iter.bi_sector = to_addr +
f90145f3
N
3124 mreplace->data_offset;
3125 bio->bi_bdev = mreplace->bdev;
24afd80d 3126 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3127 break;
3128 }
f90145f3 3129 rcu_read_unlock();
ab9d47e9 3130 if (j == conf->copies) {
e875ecea
N
3131 /* Cannot recover, so abort the recovery or
3132 * record a bad block */
e875ecea
N
3133 if (any_working) {
3134 /* problem is that there are bad blocks
3135 * on other device(s)
3136 */
3137 int k;
3138 for (k = 0; k < conf->copies; k++)
3139 if (r10_bio->devs[k].devnum == i)
3140 break;
24afd80d 3141 if (!test_bit(In_sync,
f90145f3 3142 &mrdev->flags)
24afd80d 3143 && !rdev_set_badblocks(
f90145f3 3144 mrdev,
24afd80d
N
3145 r10_bio->devs[k].addr,
3146 max_sync, 0))
3147 any_working = 0;
f90145f3 3148 if (mreplace &&
24afd80d 3149 !rdev_set_badblocks(
f90145f3 3150 mreplace,
e875ecea
N
3151 r10_bio->devs[k].addr,
3152 max_sync, 0))
3153 any_working = 0;
3154 }
3155 if (!any_working) {
3156 if (!test_and_set_bit(MD_RECOVERY_INTR,
3157 &mddev->recovery))
3158 printk(KERN_INFO "md/raid10:%s: insufficient "
3159 "working devices for recovery.\n",
3160 mdname(mddev));
24afd80d 3161 mirror->recovery_disabled
e875ecea
N
3162 = mddev->recovery_disabled;
3163 }
e8b84915
N
3164 put_buf(r10_bio);
3165 if (rb2)
3166 atomic_dec(&rb2->remaining);
3167 r10_bio = rb2;
f90145f3
N
3168 rdev_dec_pending(mrdev, mddev);
3169 if (mreplace)
3170 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3171 break;
1da177e4 3172 }
f90145f3
N
3173 rdev_dec_pending(mrdev, mddev);
3174 if (mreplace)
3175 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3176 }
1da177e4
LT
3177 if (biolist == NULL) {
3178 while (r10_bio) {
9f2c9d12
N
3179 struct r10bio *rb2 = r10_bio;
3180 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3181 rb2->master_bio = NULL;
3182 put_buf(rb2);
3183 }
3184 goto giveup;
3185 }
3186 } else {
3187 /* resync. Schedule a read for every block at this virt offset */
3188 int count = 0;
6cce3b23 3189
c40f341f 3190 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
78200d45 3191
6cce3b23
N
3192 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3193 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3194 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3195 &mddev->recovery)) {
6cce3b23
N
3196 /* We can skip this block */
3197 *skipped = 1;
3198 return sync_blocks + sectors_skipped;
3199 }
3200 if (sync_blocks < max_sync)
3201 max_sync = sync_blocks;
1da177e4 3202 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 3203 r10_bio->state = 0;
1da177e4 3204
1da177e4
LT
3205 r10_bio->mddev = mddev;
3206 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3207 raise_barrier(conf, 0);
3208 conf->next_resync = sector_nr;
1da177e4
LT
3209
3210 r10_bio->master_bio = NULL;
3211 r10_bio->sector = sector_nr;
3212 set_bit(R10BIO_IsSync, &r10_bio->state);
3213 raid10_find_phys(conf, r10_bio);
5cf00fcd 3214 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3215
5cf00fcd 3216 for (i = 0; i < conf->copies; i++) {
1da177e4 3217 int d = r10_bio->devs[i].devnum;
40c356ce
N
3218 sector_t first_bad, sector;
3219 int bad_sectors;
f90145f3 3220 struct md_rdev *rdev;
40c356ce 3221
9ad1aefc
N
3222 if (r10_bio->devs[i].repl_bio)
3223 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3224
1da177e4 3225 bio = r10_bio->devs[i].bio;
8be185f2 3226 bio_reset(bio);
4246a0b6 3227 bio->bi_error = -EIO;
f90145f3
N
3228 rcu_read_lock();
3229 rdev = rcu_dereference(conf->mirrors[d].rdev);
3230 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3231 rcu_read_unlock();
1da177e4 3232 continue;
f90145f3 3233 }
40c356ce 3234 sector = r10_bio->devs[i].addr;
f90145f3 3235 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3236 &first_bad, &bad_sectors)) {
3237 if (first_bad > sector)
3238 max_sync = first_bad - sector;
3239 else {
3240 bad_sectors -= (sector - first_bad);
3241 if (max_sync > bad_sectors)
91502f09 3242 max_sync = bad_sectors;
f90145f3 3243 rcu_read_unlock();
40c356ce
N
3244 continue;
3245 }
3246 }
f90145f3 3247 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3248 atomic_inc(&r10_bio->remaining);
3249 bio->bi_next = biolist;
3250 biolist = bio;
3251 bio->bi_private = r10_bio;
3252 bio->bi_end_io = end_sync_read;
802ba064 3253 bio->bi_rw = READ;
f90145f3
N
3254 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3255 bio->bi_bdev = rdev->bdev;
1da177e4 3256 count++;
9ad1aefc 3257
f90145f3
N
3258 rdev = rcu_dereference(conf->mirrors[d].replacement);
3259 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3260 rcu_read_unlock();
9ad1aefc 3261 continue;
f90145f3
N
3262 }
3263 atomic_inc(&rdev->nr_pending);
3264 rcu_read_unlock();
9ad1aefc
N
3265
3266 /* Need to set up for writing to the replacement */
3267 bio = r10_bio->devs[i].repl_bio;
8be185f2 3268 bio_reset(bio);
4246a0b6 3269 bio->bi_error = -EIO;
9ad1aefc
N
3270
3271 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3272 bio->bi_next = biolist;
3273 biolist = bio;
3274 bio->bi_private = r10_bio;
3275 bio->bi_end_io = end_sync_write;
3276 bio->bi_rw = WRITE;
f90145f3
N
3277 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3278 bio->bi_bdev = rdev->bdev;
9ad1aefc 3279 count++;
1da177e4
LT
3280 }
3281
3282 if (count < 2) {
3283 for (i=0; i<conf->copies; i++) {
3284 int d = r10_bio->devs[i].devnum;
3285 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3286 rdev_dec_pending(conf->mirrors[d].rdev,
3287 mddev);
9ad1aefc
N
3288 if (r10_bio->devs[i].repl_bio &&
3289 r10_bio->devs[i].repl_bio->bi_end_io)
3290 rdev_dec_pending(
3291 conf->mirrors[d].replacement,
3292 mddev);
1da177e4
LT
3293 }
3294 put_buf(r10_bio);
3295 biolist = NULL;
3296 goto giveup;
3297 }
3298 }
3299
1da177e4 3300 nr_sectors = 0;
6cce3b23
N
3301 if (sector_nr + max_sync < max_sector)
3302 max_sector = sector_nr + max_sync;
1da177e4
LT
3303 do {
3304 struct page *page;
3305 int len = PAGE_SIZE;
1da177e4
LT
3306 if (sector_nr + (len>>9) > max_sector)
3307 len = (max_sector - sector_nr) << 9;
3308 if (len == 0)
3309 break;
3310 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3311 struct bio *bio2;
1da177e4 3312 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3313 if (bio_add_page(bio, page, len, 0))
3314 continue;
3315
3316 /* stop here */
3317 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3318 for (bio2 = biolist;
3319 bio2 && bio2 != bio;
3320 bio2 = bio2->bi_next) {
3321 /* remove last page from this bio */
3322 bio2->bi_vcnt--;
4f024f37 3323 bio2->bi_iter.bi_size -= len;
b7c44ed9 3324 bio_clear_flag(bio2, BIO_SEG_VALID);
1da177e4 3325 }
ab9d47e9 3326 goto bio_full;
1da177e4
LT
3327 }
3328 nr_sectors += len>>9;
3329 sector_nr += len>>9;
3330 } while (biolist->bi_vcnt < RESYNC_PAGES);
3331 bio_full:
3332 r10_bio->sectors = nr_sectors;
3333
3334 while (biolist) {
3335 bio = biolist;
3336 biolist = biolist->bi_next;
3337
3338 bio->bi_next = NULL;
3339 r10_bio = bio->bi_private;
3340 r10_bio->sectors = nr_sectors;
3341
3342 if (bio->bi_end_io == end_sync_read) {
3343 md_sync_acct(bio->bi_bdev, nr_sectors);
4246a0b6 3344 bio->bi_error = 0;
1da177e4
LT
3345 generic_make_request(bio);
3346 }
3347 }
3348
57afd89f
N
3349 if (sectors_skipped)
3350 /* pretend they weren't skipped, it makes
3351 * no important difference in this case
3352 */
3353 md_done_sync(mddev, sectors_skipped, 1);
3354
1da177e4
LT
3355 return sectors_skipped + nr_sectors;
3356 giveup:
3357 /* There is nowhere to write, so all non-sync
e875ecea
N
3358 * drives must be failed or in resync, all drives
3359 * have a bad block, so try the next chunk...
1da177e4 3360 */
09b4068a
N
3361 if (sector_nr + max_sync < max_sector)
3362 max_sector = sector_nr + max_sync;
3363
3364 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3365 chunks_skipped ++;
3366 sector_nr = max_sector;
1da177e4 3367 goto skipped;
1da177e4
LT
3368}
3369
80c3a6ce 3370static sector_t
fd01b88c 3371raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3372{
3373 sector_t size;
e879a879 3374 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3375
3376 if (!raid_disks)
3ea7daa5
N
3377 raid_disks = min(conf->geo.raid_disks,
3378 conf->prev.raid_disks);
80c3a6ce 3379 if (!sectors)
dab8b292 3380 sectors = conf->dev_sectors;
80c3a6ce 3381
5cf00fcd
N
3382 size = sectors >> conf->geo.chunk_shift;
3383 sector_div(size, conf->geo.far_copies);
80c3a6ce 3384 size = size * raid_disks;
5cf00fcd 3385 sector_div(size, conf->geo.near_copies);
80c3a6ce 3386
5cf00fcd 3387 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3388}
3389
6508fdbf
N
3390static void calc_sectors(struct r10conf *conf, sector_t size)
3391{
3392 /* Calculate the number of sectors-per-device that will
3393 * actually be used, and set conf->dev_sectors and
3394 * conf->stride
3395 */
3396
5cf00fcd
N
3397 size = size >> conf->geo.chunk_shift;
3398 sector_div(size, conf->geo.far_copies);
3399 size = size * conf->geo.raid_disks;
3400 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3401 /* 'size' is now the number of chunks in the array */
3402 /* calculate "used chunks per device" */
3403 size = size * conf->copies;
3404
3405 /* We need to round up when dividing by raid_disks to
3406 * get the stride size.
3407 */
5cf00fcd 3408 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3409
5cf00fcd 3410 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3411
5cf00fcd
N
3412 if (conf->geo.far_offset)
3413 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3414 else {
5cf00fcd
N
3415 sector_div(size, conf->geo.far_copies);
3416 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3417 }
3418}
dab8b292 3419
deb200d0
N
3420enum geo_type {geo_new, geo_old, geo_start};
3421static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3422{
3423 int nc, fc, fo;
3424 int layout, chunk, disks;
3425 switch (new) {
3426 case geo_old:
3427 layout = mddev->layout;
3428 chunk = mddev->chunk_sectors;
3429 disks = mddev->raid_disks - mddev->delta_disks;
3430 break;
3431 case geo_new:
3432 layout = mddev->new_layout;
3433 chunk = mddev->new_chunk_sectors;
3434 disks = mddev->raid_disks;
3435 break;
3436 default: /* avoid 'may be unused' warnings */
3437 case geo_start: /* new when starting reshape - raid_disks not
3438 * updated yet. */
3439 layout = mddev->new_layout;
3440 chunk = mddev->new_chunk_sectors;
3441 disks = mddev->raid_disks + mddev->delta_disks;
3442 break;
3443 }
8bce6d35 3444 if (layout >> 19)
deb200d0
N
3445 return -1;
3446 if (chunk < (PAGE_SIZE >> 9) ||
3447 !is_power_of_2(chunk))
3448 return -2;
3449 nc = layout & 255;
3450 fc = (layout >> 8) & 255;
3451 fo = layout & (1<<16);
3452 geo->raid_disks = disks;
3453 geo->near_copies = nc;
3454 geo->far_copies = fc;
3455 geo->far_offset = fo;
8bce6d35
N
3456 switch (layout >> 17) {
3457 case 0: /* original layout. simple but not always optimal */
3458 geo->far_set_size = disks;
3459 break;
3460 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3461 * actually using this, but leave code here just in case.*/
3462 geo->far_set_size = disks/fc;
3463 WARN(geo->far_set_size < fc,
3464 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3465 break;
3466 case 2: /* "improved" layout fixed to match documentation */
3467 geo->far_set_size = fc * nc;
3468 break;
3469 default: /* Not a valid layout */
3470 return -1;
3471 }
deb200d0
N
3472 geo->chunk_mask = chunk - 1;
3473 geo->chunk_shift = ffz(~chunk);
3474 return nc*fc;
3475}
3476
e879a879 3477static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3478{
e879a879 3479 struct r10conf *conf = NULL;
dab8b292 3480 int err = -EINVAL;
deb200d0
N
3481 struct geom geo;
3482 int copies;
3483
3484 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3485
deb200d0 3486 if (copies == -2) {
128595ed
N
3487 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3488 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3489 mdname(mddev), PAGE_SIZE);
dab8b292 3490 goto out;
1da177e4 3491 }
2604b703 3492
deb200d0 3493 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3494 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3495 mdname(mddev), mddev->new_layout);
1da177e4
LT
3496 goto out;
3497 }
dab8b292
TM
3498
3499 err = -ENOMEM;
e879a879 3500 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3501 if (!conf)
1da177e4 3502 goto out;
dab8b292 3503
3ea7daa5 3504 /* FIXME calc properly */
dc280d98 3505 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3506 max(0,-mddev->delta_disks)),
dab8b292
TM
3507 GFP_KERNEL);
3508 if (!conf->mirrors)
3509 goto out;
4443ae10
N
3510
3511 conf->tmppage = alloc_page(GFP_KERNEL);
3512 if (!conf->tmppage)
dab8b292
TM
3513 goto out;
3514
deb200d0
N
3515 conf->geo = geo;
3516 conf->copies = copies;
dab8b292
TM
3517 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3518 r10bio_pool_free, conf);
3519 if (!conf->r10bio_pool)
3520 goto out;
3521
6508fdbf 3522 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3523 if (mddev->reshape_position == MaxSector) {
3524 conf->prev = conf->geo;
3525 conf->reshape_progress = MaxSector;
3526 } else {
3527 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3528 err = -EINVAL;
3529 goto out;
3530 }
3531 conf->reshape_progress = mddev->reshape_position;
3532 if (conf->prev.far_offset)
3533 conf->prev.stride = 1 << conf->prev.chunk_shift;
3534 else
3535 /* far_copies must be 1 */
3536 conf->prev.stride = conf->dev_sectors;
3537 }
299b0685 3538 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 3539 spin_lock_init(&conf->device_lock);
dab8b292 3540 INIT_LIST_HEAD(&conf->retry_list);
95af587e 3541 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
3542
3543 spin_lock_init(&conf->resync_lock);
3544 init_waitqueue_head(&conf->wait_barrier);
3545
0232605d 3546 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3547 if (!conf->thread)
3548 goto out;
3549
dab8b292
TM
3550 conf->mddev = mddev;
3551 return conf;
3552
3553 out:
3ea7daa5
N
3554 if (err == -ENOMEM)
3555 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3556 mdname(mddev));
dab8b292 3557 if (conf) {
644df1a8 3558 mempool_destroy(conf->r10bio_pool);
dab8b292
TM
3559 kfree(conf->mirrors);
3560 safe_put_page(conf->tmppage);
3561 kfree(conf);
3562 }
3563 return ERR_PTR(err);
3564}
3565
849674e4 3566static int raid10_run(struct mddev *mddev)
dab8b292 3567{
e879a879 3568 struct r10conf *conf;
dab8b292 3569 int i, disk_idx, chunk_size;
dc280d98 3570 struct raid10_info *disk;
3cb03002 3571 struct md_rdev *rdev;
dab8b292 3572 sector_t size;
3ea7daa5
N
3573 sector_t min_offset_diff = 0;
3574 int first = 1;
532a2a3f 3575 bool discard_supported = false;
dab8b292
TM
3576
3577 if (mddev->private == NULL) {
3578 conf = setup_conf(mddev);
3579 if (IS_ERR(conf))
3580 return PTR_ERR(conf);
3581 mddev->private = conf;
3582 }
3583 conf = mddev->private;
3584 if (!conf)
3585 goto out;
3586
dab8b292
TM
3587 mddev->thread = conf->thread;
3588 conf->thread = NULL;
3589
8f6c2e4b 3590 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3591 if (mddev->queue) {
532a2a3f
SL
3592 blk_queue_max_discard_sectors(mddev->queue,
3593 mddev->chunk_sectors);
5026d7a9 3594 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3595 blk_queue_io_min(mddev->queue, chunk_size);
3596 if (conf->geo.raid_disks % conf->geo.near_copies)
3597 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3598 else
3599 blk_queue_io_opt(mddev->queue, chunk_size *
3600 (conf->geo.raid_disks / conf->geo.near_copies));
3601 }
8f6c2e4b 3602
dafb20fa 3603 rdev_for_each(rdev, mddev) {
3ea7daa5 3604 long long diff;
aba336bd 3605 struct request_queue *q;
34b343cf 3606
1da177e4 3607 disk_idx = rdev->raid_disk;
f8c9e74f
N
3608 if (disk_idx < 0)
3609 continue;
3610 if (disk_idx >= conf->geo.raid_disks &&
3611 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3612 continue;
3613 disk = conf->mirrors + disk_idx;
3614
56a2559b
N
3615 if (test_bit(Replacement, &rdev->flags)) {
3616 if (disk->replacement)
3617 goto out_free_conf;
3618 disk->replacement = rdev;
3619 } else {
3620 if (disk->rdev)
3621 goto out_free_conf;
3622 disk->rdev = rdev;
3623 }
aba336bd 3624 q = bdev_get_queue(rdev->bdev);
3ea7daa5
N
3625 diff = (rdev->new_data_offset - rdev->data_offset);
3626 if (!mddev->reshape_backwards)
3627 diff = -diff;
3628 if (diff < 0)
3629 diff = 0;
3630 if (first || diff < min_offset_diff)
3631 min_offset_diff = diff;
56a2559b 3632
cc4d1efd
JB
3633 if (mddev->gendisk)
3634 disk_stack_limits(mddev->gendisk, rdev->bdev,
3635 rdev->data_offset << 9);
1da177e4
LT
3636
3637 disk->head_position = 0;
532a2a3f
SL
3638
3639 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3640 discard_supported = true;
1da177e4 3641 }
3ea7daa5 3642
ed30be07
JB
3643 if (mddev->queue) {
3644 if (discard_supported)
3645 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3646 mddev->queue);
3647 else
3648 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3649 mddev->queue);
3650 }
6d508242 3651 /* need to check that every block has at least one working mirror */
700c7213 3652 if (!enough(conf, -1)) {
128595ed 3653 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3654 mdname(mddev));
1da177e4
LT
3655 goto out_free_conf;
3656 }
3657
3ea7daa5
N
3658 if (conf->reshape_progress != MaxSector) {
3659 /* must ensure that shape change is supported */
3660 if (conf->geo.far_copies != 1 &&
3661 conf->geo.far_offset == 0)
3662 goto out_free_conf;
3663 if (conf->prev.far_copies != 1 &&
78eaa0d4 3664 conf->prev.far_offset == 0)
3ea7daa5
N
3665 goto out_free_conf;
3666 }
3667
1da177e4 3668 mddev->degraded = 0;
f8c9e74f
N
3669 for (i = 0;
3670 i < conf->geo.raid_disks
3671 || i < conf->prev.raid_disks;
3672 i++) {
1da177e4
LT
3673
3674 disk = conf->mirrors + i;
3675
56a2559b
N
3676 if (!disk->rdev && disk->replacement) {
3677 /* The replacement is all we have - use it */
3678 disk->rdev = disk->replacement;
3679 disk->replacement = NULL;
3680 clear_bit(Replacement, &disk->rdev->flags);
3681 }
3682
5fd6c1dc 3683 if (!disk->rdev ||
2e333e89 3684 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3685 disk->head_position = 0;
3686 mddev->degraded++;
0b59bb64
N
3687 if (disk->rdev &&
3688 disk->rdev->saved_raid_disk < 0)
8c2e870a 3689 conf->fullsync = 1;
1da177e4 3690 }
d890fa2b 3691 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3692 }
3693
8c6ac868 3694 if (mddev->recovery_cp != MaxSector)
128595ed 3695 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3696 " -- starting background reconstruction\n",
3697 mdname(mddev));
1da177e4 3698 printk(KERN_INFO
128595ed 3699 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3700 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3701 conf->geo.raid_disks);
1da177e4
LT
3702 /*
3703 * Ok, everything is just fine now
3704 */
dab8b292
TM
3705 mddev->dev_sectors = conf->dev_sectors;
3706 size = raid10_size(mddev, 0, 0);
3707 md_set_array_sectors(mddev, size);
3708 mddev->resync_max_sectors = size;
1da177e4 3709
cc4d1efd 3710 if (mddev->queue) {
5cf00fcd 3711 int stripe = conf->geo.raid_disks *
9d8f0363 3712 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3713
3714 /* Calculate max read-ahead size.
3715 * We need to readahead at least twice a whole stripe....
3716 * maybe...
3717 */
5cf00fcd 3718 stripe /= conf->geo.near_copies;
3ea7daa5
N
3719 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3720 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1da177e4
LT
3721 }
3722
a91a2785
MP
3723 if (md_integrity_register(mddev))
3724 goto out_free_conf;
3725
3ea7daa5
N
3726 if (conf->reshape_progress != MaxSector) {
3727 unsigned long before_length, after_length;
3728
3729 before_length = ((1 << conf->prev.chunk_shift) *
3730 conf->prev.far_copies);
3731 after_length = ((1 << conf->geo.chunk_shift) *
3732 conf->geo.far_copies);
3733
3734 if (max(before_length, after_length) > min_offset_diff) {
3735 /* This cannot work */
3736 printk("md/raid10: offset difference not enough to continue reshape\n");
3737 goto out_free_conf;
3738 }
3739 conf->offset_diff = min_offset_diff;
3740
3ea7daa5
N
3741 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3742 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3743 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3744 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3745 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3746 "reshape");
3747 }
3748
1da177e4
LT
3749 return 0;
3750
3751out_free_conf:
01f96c0a 3752 md_unregister_thread(&mddev->thread);
644df1a8 3753 mempool_destroy(conf->r10bio_pool);
1345b1d8 3754 safe_put_page(conf->tmppage);
990a8baf 3755 kfree(conf->mirrors);
1da177e4
LT
3756 kfree(conf);
3757 mddev->private = NULL;
3758out:
3759 return -EIO;
3760}
3761
afa0f557 3762static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 3763{
afa0f557 3764 struct r10conf *conf = priv;
1da177e4 3765
644df1a8 3766 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3767 safe_put_page(conf->tmppage);
990a8baf 3768 kfree(conf->mirrors);
c4796e21
N
3769 kfree(conf->mirrors_old);
3770 kfree(conf->mirrors_new);
1da177e4 3771 kfree(conf);
1da177e4
LT
3772}
3773
fd01b88c 3774static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3775{
e879a879 3776 struct r10conf *conf = mddev->private;
6cce3b23
N
3777
3778 switch(state) {
3779 case 1:
3780 raise_barrier(conf, 0);
3781 break;
3782 case 0:
3783 lower_barrier(conf);
3784 break;
3785 }
6cce3b23 3786}
1da177e4 3787
006a09a0
N
3788static int raid10_resize(struct mddev *mddev, sector_t sectors)
3789{
3790 /* Resize of 'far' arrays is not supported.
3791 * For 'near' and 'offset' arrays we can set the
3792 * number of sectors used to be an appropriate multiple
3793 * of the chunk size.
3794 * For 'offset', this is far_copies*chunksize.
3795 * For 'near' the multiplier is the LCM of
3796 * near_copies and raid_disks.
3797 * So if far_copies > 1 && !far_offset, fail.
3798 * Else find LCM(raid_disks, near_copy)*far_copies and
3799 * multiply by chunk_size. Then round to this number.
3800 * This is mostly done by raid10_size()
3801 */
3802 struct r10conf *conf = mddev->private;
3803 sector_t oldsize, size;
3804
f8c9e74f
N
3805 if (mddev->reshape_position != MaxSector)
3806 return -EBUSY;
3807
5cf00fcd 3808 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3809 return -EINVAL;
3810
3811 oldsize = raid10_size(mddev, 0, 0);
3812 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3813 if (mddev->external_size &&
3814 mddev->array_sectors > size)
006a09a0 3815 return -EINVAL;
a4a6125a
N
3816 if (mddev->bitmap) {
3817 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3818 if (ret)
3819 return ret;
3820 }
3821 md_set_array_sectors(mddev, size);
859644f0
HM
3822 if (mddev->queue) {
3823 set_capacity(mddev->gendisk, mddev->array_sectors);
3824 revalidate_disk(mddev->gendisk);
3825 }
006a09a0
N
3826 if (sectors > mddev->dev_sectors &&
3827 mddev->recovery_cp > oldsize) {
3828 mddev->recovery_cp = oldsize;
3829 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3830 }
6508fdbf
N
3831 calc_sectors(conf, sectors);
3832 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3833 mddev->resync_max_sectors = size;
3834 return 0;
3835}
3836
53a6ab4d 3837static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 3838{
3cb03002 3839 struct md_rdev *rdev;
e879a879 3840 struct r10conf *conf;
dab8b292
TM
3841
3842 if (mddev->degraded > 0) {
128595ed
N
3843 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3844 mdname(mddev));
dab8b292
TM
3845 return ERR_PTR(-EINVAL);
3846 }
53a6ab4d 3847 sector_div(size, devs);
dab8b292 3848
dab8b292
TM
3849 /* Set new parameters */
3850 mddev->new_level = 10;
3851 /* new layout: far_copies = 1, near_copies = 2 */
3852 mddev->new_layout = (1<<8) + 2;
3853 mddev->new_chunk_sectors = mddev->chunk_sectors;
3854 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3855 mddev->raid_disks *= 2;
3856 /* make sure it will be not marked as dirty */
3857 mddev->recovery_cp = MaxSector;
53a6ab4d 3858 mddev->dev_sectors = size;
dab8b292
TM
3859
3860 conf = setup_conf(mddev);
02214dc5 3861 if (!IS_ERR(conf)) {
dafb20fa 3862 rdev_for_each(rdev, mddev)
53a6ab4d 3863 if (rdev->raid_disk >= 0) {
e93f68a1 3864 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
3865 rdev->sectors = size;
3866 }
02214dc5
KW
3867 conf->barrier = 1;
3868 }
3869
dab8b292
TM
3870 return conf;
3871}
3872
fd01b88c 3873static void *raid10_takeover(struct mddev *mddev)
dab8b292 3874{
e373ab10 3875 struct r0conf *raid0_conf;
dab8b292
TM
3876
3877 /* raid10 can take over:
3878 * raid0 - providing it has only two drives
3879 */
3880 if (mddev->level == 0) {
3881 /* for raid0 takeover only one zone is supported */
e373ab10
N
3882 raid0_conf = mddev->private;
3883 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3884 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3885 " with more than one zone.\n",
3886 mdname(mddev));
dab8b292
TM
3887 return ERR_PTR(-EINVAL);
3888 }
53a6ab4d
N
3889 return raid10_takeover_raid0(mddev,
3890 raid0_conf->strip_zone->zone_end,
3891 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
3892 }
3893 return ERR_PTR(-EINVAL);
3894}
3895
3ea7daa5
N
3896static int raid10_check_reshape(struct mddev *mddev)
3897{
3898 /* Called when there is a request to change
3899 * - layout (to ->new_layout)
3900 * - chunk size (to ->new_chunk_sectors)
3901 * - raid_disks (by delta_disks)
3902 * or when trying to restart a reshape that was ongoing.
3903 *
3904 * We need to validate the request and possibly allocate
3905 * space if that might be an issue later.
3906 *
3907 * Currently we reject any reshape of a 'far' mode array,
3908 * allow chunk size to change if new is generally acceptable,
3909 * allow raid_disks to increase, and allow
3910 * a switch between 'near' mode and 'offset' mode.
3911 */
3912 struct r10conf *conf = mddev->private;
3913 struct geom geo;
3914
3915 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3916 return -EINVAL;
3917
3918 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3919 /* mustn't change number of copies */
3920 return -EINVAL;
3921 if (geo.far_copies > 1 && !geo.far_offset)
3922 /* Cannot switch to 'far' mode */
3923 return -EINVAL;
3924
3925 if (mddev->array_sectors & geo.chunk_mask)
3926 /* not factor of array size */
3927 return -EINVAL;
3928
3ea7daa5
N
3929 if (!enough(conf, -1))
3930 return -EINVAL;
3931
3932 kfree(conf->mirrors_new);
3933 conf->mirrors_new = NULL;
3934 if (mddev->delta_disks > 0) {
3935 /* allocate new 'mirrors' list */
3936 conf->mirrors_new = kzalloc(
dc280d98 3937 sizeof(struct raid10_info)
3ea7daa5
N
3938 *(mddev->raid_disks +
3939 mddev->delta_disks),
3940 GFP_KERNEL);
3941 if (!conf->mirrors_new)
3942 return -ENOMEM;
3943 }
3944 return 0;
3945}
3946
3947/*
3948 * Need to check if array has failed when deciding whether to:
3949 * - start an array
3950 * - remove non-faulty devices
3951 * - add a spare
3952 * - allow a reshape
3953 * This determination is simple when no reshape is happening.
3954 * However if there is a reshape, we need to carefully check
3955 * both the before and after sections.
3956 * This is because some failed devices may only affect one
3957 * of the two sections, and some non-in_sync devices may
3958 * be insync in the section most affected by failed devices.
3959 */
3960static int calc_degraded(struct r10conf *conf)
3961{
3962 int degraded, degraded2;
3963 int i;
3964
3965 rcu_read_lock();
3966 degraded = 0;
3967 /* 'prev' section first */
3968 for (i = 0; i < conf->prev.raid_disks; i++) {
3969 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3970 if (!rdev || test_bit(Faulty, &rdev->flags))
3971 degraded++;
3972 else if (!test_bit(In_sync, &rdev->flags))
3973 /* When we can reduce the number of devices in
3974 * an array, this might not contribute to
3975 * 'degraded'. It does now.
3976 */
3977 degraded++;
3978 }
3979 rcu_read_unlock();
3980 if (conf->geo.raid_disks == conf->prev.raid_disks)
3981 return degraded;
3982 rcu_read_lock();
3983 degraded2 = 0;
3984 for (i = 0; i < conf->geo.raid_disks; i++) {
3985 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3986 if (!rdev || test_bit(Faulty, &rdev->flags))
3987 degraded2++;
3988 else if (!test_bit(In_sync, &rdev->flags)) {
3989 /* If reshape is increasing the number of devices,
3990 * this section has already been recovered, so
3991 * it doesn't contribute to degraded.
3992 * else it does.
3993 */
3994 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3995 degraded2++;
3996 }
3997 }
3998 rcu_read_unlock();
3999 if (degraded2 > degraded)
4000 return degraded2;
4001 return degraded;
4002}
4003
4004static int raid10_start_reshape(struct mddev *mddev)
4005{
4006 /* A 'reshape' has been requested. This commits
4007 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4008 * This also checks if there are enough spares and adds them
4009 * to the array.
4010 * We currently require enough spares to make the final
4011 * array non-degraded. We also require that the difference
4012 * between old and new data_offset - on each device - is
4013 * enough that we never risk over-writing.
4014 */
4015
4016 unsigned long before_length, after_length;
4017 sector_t min_offset_diff = 0;
4018 int first = 1;
4019 struct geom new;
4020 struct r10conf *conf = mddev->private;
4021 struct md_rdev *rdev;
4022 int spares = 0;
bb63a701 4023 int ret;
3ea7daa5
N
4024
4025 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4026 return -EBUSY;
4027
4028 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4029 return -EINVAL;
4030
4031 before_length = ((1 << conf->prev.chunk_shift) *
4032 conf->prev.far_copies);
4033 after_length = ((1 << conf->geo.chunk_shift) *
4034 conf->geo.far_copies);
4035
4036 rdev_for_each(rdev, mddev) {
4037 if (!test_bit(In_sync, &rdev->flags)
4038 && !test_bit(Faulty, &rdev->flags))
4039 spares++;
4040 if (rdev->raid_disk >= 0) {
4041 long long diff = (rdev->new_data_offset
4042 - rdev->data_offset);
4043 if (!mddev->reshape_backwards)
4044 diff = -diff;
4045 if (diff < 0)
4046 diff = 0;
4047 if (first || diff < min_offset_diff)
4048 min_offset_diff = diff;
4049 }
4050 }
4051
4052 if (max(before_length, after_length) > min_offset_diff)
4053 return -EINVAL;
4054
4055 if (spares < mddev->delta_disks)
4056 return -EINVAL;
4057
4058 conf->offset_diff = min_offset_diff;
4059 spin_lock_irq(&conf->device_lock);
4060 if (conf->mirrors_new) {
4061 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4062 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4063 smp_mb();
c4796e21 4064 kfree(conf->mirrors_old);
3ea7daa5
N
4065 conf->mirrors_old = conf->mirrors;
4066 conf->mirrors = conf->mirrors_new;
4067 conf->mirrors_new = NULL;
4068 }
4069 setup_geo(&conf->geo, mddev, geo_start);
4070 smp_mb();
4071 if (mddev->reshape_backwards) {
4072 sector_t size = raid10_size(mddev, 0, 0);
4073 if (size < mddev->array_sectors) {
4074 spin_unlock_irq(&conf->device_lock);
4075 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4076 mdname(mddev));
4077 return -EINVAL;
4078 }
4079 mddev->resync_max_sectors = size;
4080 conf->reshape_progress = size;
4081 } else
4082 conf->reshape_progress = 0;
299b0685 4083 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4084 spin_unlock_irq(&conf->device_lock);
4085
bb63a701
N
4086 if (mddev->delta_disks && mddev->bitmap) {
4087 ret = bitmap_resize(mddev->bitmap,
4088 raid10_size(mddev, 0,
4089 conf->geo.raid_disks),
4090 0, 0);
4091 if (ret)
4092 goto abort;
4093 }
3ea7daa5
N
4094 if (mddev->delta_disks > 0) {
4095 rdev_for_each(rdev, mddev)
4096 if (rdev->raid_disk < 0 &&
4097 !test_bit(Faulty, &rdev->flags)) {
4098 if (raid10_add_disk(mddev, rdev) == 0) {
4099 if (rdev->raid_disk >=
4100 conf->prev.raid_disks)
4101 set_bit(In_sync, &rdev->flags);
4102 else
4103 rdev->recovery_offset = 0;
4104
4105 if (sysfs_link_rdev(mddev, rdev))
4106 /* Failure here is OK */;
4107 }
4108 } else if (rdev->raid_disk >= conf->prev.raid_disks
4109 && !test_bit(Faulty, &rdev->flags)) {
4110 /* This is a spare that was manually added */
4111 set_bit(In_sync, &rdev->flags);
4112 }
4113 }
4114 /* When a reshape changes the number of devices,
4115 * ->degraded is measured against the larger of the
4116 * pre and post numbers.
4117 */
4118 spin_lock_irq(&conf->device_lock);
4119 mddev->degraded = calc_degraded(conf);
4120 spin_unlock_irq(&conf->device_lock);
4121 mddev->raid_disks = conf->geo.raid_disks;
4122 mddev->reshape_position = conf->reshape_progress;
4123 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4124
4125 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4126 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4127 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4128 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4129 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4130
4131 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4132 "reshape");
4133 if (!mddev->sync_thread) {
bb63a701
N
4134 ret = -EAGAIN;
4135 goto abort;
3ea7daa5
N
4136 }
4137 conf->reshape_checkpoint = jiffies;
4138 md_wakeup_thread(mddev->sync_thread);
4139 md_new_event(mddev);
4140 return 0;
bb63a701
N
4141
4142abort:
4143 mddev->recovery = 0;
4144 spin_lock_irq(&conf->device_lock);
4145 conf->geo = conf->prev;
4146 mddev->raid_disks = conf->geo.raid_disks;
4147 rdev_for_each(rdev, mddev)
4148 rdev->new_data_offset = rdev->data_offset;
4149 smp_wmb();
4150 conf->reshape_progress = MaxSector;
299b0685 4151 conf->reshape_safe = MaxSector;
bb63a701
N
4152 mddev->reshape_position = MaxSector;
4153 spin_unlock_irq(&conf->device_lock);
4154 return ret;
3ea7daa5
N
4155}
4156
4157/* Calculate the last device-address that could contain
4158 * any block from the chunk that includes the array-address 's'
4159 * and report the next address.
4160 * i.e. the address returned will be chunk-aligned and after
4161 * any data that is in the chunk containing 's'.
4162 */
4163static sector_t last_dev_address(sector_t s, struct geom *geo)
4164{
4165 s = (s | geo->chunk_mask) + 1;
4166 s >>= geo->chunk_shift;
4167 s *= geo->near_copies;
4168 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4169 s *= geo->far_copies;
4170 s <<= geo->chunk_shift;
4171 return s;
4172}
4173
4174/* Calculate the first device-address that could contain
4175 * any block from the chunk that includes the array-address 's'.
4176 * This too will be the start of a chunk
4177 */
4178static sector_t first_dev_address(sector_t s, struct geom *geo)
4179{
4180 s >>= geo->chunk_shift;
4181 s *= geo->near_copies;
4182 sector_div(s, geo->raid_disks);
4183 s *= geo->far_copies;
4184 s <<= geo->chunk_shift;
4185 return s;
4186}
4187
4188static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4189 int *skipped)
4190{
4191 /* We simply copy at most one chunk (smallest of old and new)
4192 * at a time, possibly less if that exceeds RESYNC_PAGES,
4193 * or we hit a bad block or something.
4194 * This might mean we pause for normal IO in the middle of
02ec5026 4195 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4196 * can record any location.
4197 *
4198 * If we will want to write to a location that isn't
4199 * yet recorded as 'safe' (i.e. in metadata on disk) then
4200 * we need to flush all reshape requests and update the metadata.
4201 *
4202 * When reshaping forwards (e.g. to more devices), we interpret
4203 * 'safe' as the earliest block which might not have been copied
4204 * down yet. We divide this by previous stripe size and multiply
4205 * by previous stripe length to get lowest device offset that we
4206 * cannot write to yet.
4207 * We interpret 'sector_nr' as an address that we want to write to.
4208 * From this we use last_device_address() to find where we might
4209 * write to, and first_device_address on the 'safe' position.
4210 * If this 'next' write position is after the 'safe' position,
4211 * we must update the metadata to increase the 'safe' position.
4212 *
4213 * When reshaping backwards, we round in the opposite direction
4214 * and perform the reverse test: next write position must not be
4215 * less than current safe position.
4216 *
4217 * In all this the minimum difference in data offsets
4218 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4219 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4220 *
4221 * We need to prepare all the bios here before we start any IO
4222 * to ensure the size we choose is acceptable to all devices.
4223 * The means one for each copy for write-out and an extra one for
4224 * read-in.
4225 * We store the read-in bio in ->master_bio and the others in
4226 * ->devs[x].bio and ->devs[x].repl_bio.
4227 */
4228 struct r10conf *conf = mddev->private;
4229 struct r10bio *r10_bio;
4230 sector_t next, safe, last;
4231 int max_sectors;
4232 int nr_sectors;
4233 int s;
4234 struct md_rdev *rdev;
4235 int need_flush = 0;
4236 struct bio *blist;
4237 struct bio *bio, *read_bio;
4238 int sectors_done = 0;
4239
4240 if (sector_nr == 0) {
4241 /* If restarting in the middle, skip the initial sectors */
4242 if (mddev->reshape_backwards &&
4243 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4244 sector_nr = (raid10_size(mddev, 0, 0)
4245 - conf->reshape_progress);
4246 } else if (!mddev->reshape_backwards &&
4247 conf->reshape_progress > 0)
4248 sector_nr = conf->reshape_progress;
4249 if (sector_nr) {
4250 mddev->curr_resync_completed = sector_nr;
4251 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4252 *skipped = 1;
4253 return sector_nr;
4254 }
4255 }
4256
4257 /* We don't use sector_nr to track where we are up to
4258 * as that doesn't work well for ->reshape_backwards.
4259 * So just use ->reshape_progress.
4260 */
4261 if (mddev->reshape_backwards) {
4262 /* 'next' is the earliest device address that we might
4263 * write to for this chunk in the new layout
4264 */
4265 next = first_dev_address(conf->reshape_progress - 1,
4266 &conf->geo);
4267
4268 /* 'safe' is the last device address that we might read from
4269 * in the old layout after a restart
4270 */
4271 safe = last_dev_address(conf->reshape_safe - 1,
4272 &conf->prev);
4273
4274 if (next + conf->offset_diff < safe)
4275 need_flush = 1;
4276
4277 last = conf->reshape_progress - 1;
4278 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4279 & conf->prev.chunk_mask);
4280 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4281 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4282 } else {
4283 /* 'next' is after the last device address that we
4284 * might write to for this chunk in the new layout
4285 */
4286 next = last_dev_address(conf->reshape_progress, &conf->geo);
4287
4288 /* 'safe' is the earliest device address that we might
4289 * read from in the old layout after a restart
4290 */
4291 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4292
4293 /* Need to update metadata if 'next' might be beyond 'safe'
4294 * as that would possibly corrupt data
4295 */
4296 if (next > safe + conf->offset_diff)
4297 need_flush = 1;
4298
4299 sector_nr = conf->reshape_progress;
4300 last = sector_nr | (conf->geo.chunk_mask
4301 & conf->prev.chunk_mask);
4302
4303 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4304 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4305 }
4306
4307 if (need_flush ||
4308 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4309 /* Need to update reshape_position in metadata */
4310 wait_barrier(conf);
4311 mddev->reshape_position = conf->reshape_progress;
4312 if (mddev->reshape_backwards)
4313 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4314 - conf->reshape_progress;
4315 else
4316 mddev->curr_resync_completed = conf->reshape_progress;
4317 conf->reshape_checkpoint = jiffies;
4318 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4319 md_wakeup_thread(mddev->thread);
4320 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
4321 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4322 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4323 allow_barrier(conf);
4324 return sectors_done;
4325 }
3ea7daa5
N
4326 conf->reshape_safe = mddev->reshape_position;
4327 allow_barrier(conf);
4328 }
4329
4330read_more:
4331 /* Now schedule reads for blocks from sector_nr to last */
4332 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 4333 r10_bio->state = 0;
3ea7daa5
N
4334 raise_barrier(conf, sectors_done != 0);
4335 atomic_set(&r10_bio->remaining, 0);
4336 r10_bio->mddev = mddev;
4337 r10_bio->sector = sector_nr;
4338 set_bit(R10BIO_IsReshape, &r10_bio->state);
4339 r10_bio->sectors = last - sector_nr + 1;
4340 rdev = read_balance(conf, r10_bio, &max_sectors);
4341 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4342
4343 if (!rdev) {
4344 /* Cannot read from here, so need to record bad blocks
4345 * on all the target devices.
4346 */
4347 // FIXME
e337aead 4348 mempool_free(r10_bio, conf->r10buf_pool);
3ea7daa5
N
4349 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4350 return sectors_done;
4351 }
4352
4353 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4354
4355 read_bio->bi_bdev = rdev->bdev;
4f024f37 4356 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4357 + rdev->data_offset);
4358 read_bio->bi_private = r10_bio;
4359 read_bio->bi_end_io = end_sync_read;
4360 read_bio->bi_rw = READ;
ce0b0a46 4361 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4246a0b6 4362 read_bio->bi_error = 0;
3ea7daa5 4363 read_bio->bi_vcnt = 0;
4f024f37 4364 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4365 r10_bio->master_bio = read_bio;
4366 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4367
4368 /* Now find the locations in the new layout */
4369 __raid10_find_phys(&conf->geo, r10_bio);
4370
4371 blist = read_bio;
4372 read_bio->bi_next = NULL;
4373
d094d686 4374 rcu_read_lock();
3ea7daa5
N
4375 for (s = 0; s < conf->copies*2; s++) {
4376 struct bio *b;
4377 int d = r10_bio->devs[s/2].devnum;
4378 struct md_rdev *rdev2;
4379 if (s&1) {
d094d686 4380 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4381 b = r10_bio->devs[s/2].repl_bio;
4382 } else {
d094d686 4383 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4384 b = r10_bio->devs[s/2].bio;
4385 }
4386 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4387 continue;
8be185f2
KO
4388
4389 bio_reset(b);
3ea7daa5 4390 b->bi_bdev = rdev2->bdev;
4f024f37
KO
4391 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4392 rdev2->new_data_offset;
3ea7daa5
N
4393 b->bi_private = r10_bio;
4394 b->bi_end_io = end_reshape_write;
4395 b->bi_rw = WRITE;
3ea7daa5 4396 b->bi_next = blist;
3ea7daa5
N
4397 blist = b;
4398 }
4399
4400 /* Now add as many pages as possible to all of these bios. */
4401
4402 nr_sectors = 0;
4403 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4404 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4405 int len = (max_sectors - s) << 9;
4406 if (len > PAGE_SIZE)
4407 len = PAGE_SIZE;
4408 for (bio = blist; bio ; bio = bio->bi_next) {
4409 struct bio *bio2;
4410 if (bio_add_page(bio, page, len, 0))
4411 continue;
4412
4413 /* Didn't fit, must stop */
4414 for (bio2 = blist;
4415 bio2 && bio2 != bio;
4416 bio2 = bio2->bi_next) {
4417 /* Remove last page from this bio */
4418 bio2->bi_vcnt--;
4f024f37 4419 bio2->bi_iter.bi_size -= len;
b7c44ed9 4420 bio_clear_flag(bio2, BIO_SEG_VALID);
3ea7daa5
N
4421 }
4422 goto bio_full;
4423 }
4424 sector_nr += len >> 9;
4425 nr_sectors += len >> 9;
4426 }
4427bio_full:
d094d686 4428 rcu_read_unlock();
3ea7daa5
N
4429 r10_bio->sectors = nr_sectors;
4430
4431 /* Now submit the read */
4432 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4433 atomic_inc(&r10_bio->remaining);
4434 read_bio->bi_next = NULL;
4435 generic_make_request(read_bio);
4436 sector_nr += nr_sectors;
4437 sectors_done += nr_sectors;
4438 if (sector_nr <= last)
4439 goto read_more;
4440
4441 /* Now that we have done the whole section we can
4442 * update reshape_progress
4443 */
4444 if (mddev->reshape_backwards)
4445 conf->reshape_progress -= sectors_done;
4446 else
4447 conf->reshape_progress += sectors_done;
4448
4449 return sectors_done;
4450}
4451
4452static void end_reshape_request(struct r10bio *r10_bio);
4453static int handle_reshape_read_error(struct mddev *mddev,
4454 struct r10bio *r10_bio);
4455static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4456{
4457 /* Reshape read completed. Hopefully we have a block
4458 * to write out.
4459 * If we got a read error then we do sync 1-page reads from
4460 * elsewhere until we find the data - or give up.
4461 */
4462 struct r10conf *conf = mddev->private;
4463 int s;
4464
4465 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4466 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4467 /* Reshape has been aborted */
4468 md_done_sync(mddev, r10_bio->sectors, 0);
4469 return;
4470 }
4471
4472 /* We definitely have the data in the pages, schedule the
4473 * writes.
4474 */
4475 atomic_set(&r10_bio->remaining, 1);
4476 for (s = 0; s < conf->copies*2; s++) {
4477 struct bio *b;
4478 int d = r10_bio->devs[s/2].devnum;
4479 struct md_rdev *rdev;
d094d686 4480 rcu_read_lock();
3ea7daa5 4481 if (s&1) {
d094d686 4482 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4483 b = r10_bio->devs[s/2].repl_bio;
4484 } else {
d094d686 4485 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4486 b = r10_bio->devs[s/2].bio;
4487 }
d094d686
N
4488 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4489 rcu_read_unlock();
3ea7daa5 4490 continue;
d094d686 4491 }
3ea7daa5 4492 atomic_inc(&rdev->nr_pending);
d094d686 4493 rcu_read_unlock();
3ea7daa5
N
4494 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4495 atomic_inc(&r10_bio->remaining);
4496 b->bi_next = NULL;
4497 generic_make_request(b);
4498 }
4499 end_reshape_request(r10_bio);
4500}
4501
4502static void end_reshape(struct r10conf *conf)
4503{
4504 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4505 return;
4506
4507 spin_lock_irq(&conf->device_lock);
4508 conf->prev = conf->geo;
4509 md_finish_reshape(conf->mddev);
4510 smp_wmb();
4511 conf->reshape_progress = MaxSector;
299b0685 4512 conf->reshape_safe = MaxSector;
3ea7daa5
N
4513 spin_unlock_irq(&conf->device_lock);
4514
4515 /* read-ahead size must cover two whole stripes, which is
4516 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4517 */
4518 if (conf->mddev->queue) {
4519 int stripe = conf->geo.raid_disks *
4520 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4521 stripe /= conf->geo.near_copies;
4522 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4523 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4524 }
4525 conf->fullsync = 0;
4526}
4527
3ea7daa5
N
4528static int handle_reshape_read_error(struct mddev *mddev,
4529 struct r10bio *r10_bio)
4530{
4531 /* Use sync reads to get the blocks from somewhere else */
4532 int sectors = r10_bio->sectors;
3ea7daa5 4533 struct r10conf *conf = mddev->private;
e0ee7785
N
4534 struct {
4535 struct r10bio r10_bio;
4536 struct r10dev devs[conf->copies];
4537 } on_stack;
4538 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4539 int slot = 0;
4540 int idx = 0;
4541 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4542
e0ee7785
N
4543 r10b->sector = r10_bio->sector;
4544 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4545
4546 while (sectors) {
4547 int s = sectors;
4548 int success = 0;
4549 int first_slot = slot;
4550
4551 if (s > (PAGE_SIZE >> 9))
4552 s = PAGE_SIZE >> 9;
4553
d094d686 4554 rcu_read_lock();
3ea7daa5 4555 while (!success) {
e0ee7785 4556 int d = r10b->devs[slot].devnum;
d094d686 4557 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4558 sector_t addr;
4559 if (rdev == NULL ||
4560 test_bit(Faulty, &rdev->flags) ||
4561 !test_bit(In_sync, &rdev->flags))
4562 goto failed;
4563
e0ee7785 4564 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
4565 atomic_inc(&rdev->nr_pending);
4566 rcu_read_unlock();
3ea7daa5
N
4567 success = sync_page_io(rdev,
4568 addr,
4569 s << 9,
4570 bvec[idx].bv_page,
4571 READ, false);
d094d686
N
4572 rdev_dec_pending(rdev, mddev);
4573 rcu_read_lock();
3ea7daa5
N
4574 if (success)
4575 break;
4576 failed:
4577 slot++;
4578 if (slot >= conf->copies)
4579 slot = 0;
4580 if (slot == first_slot)
4581 break;
4582 }
d094d686 4583 rcu_read_unlock();
3ea7daa5
N
4584 if (!success) {
4585 /* couldn't read this block, must give up */
4586 set_bit(MD_RECOVERY_INTR,
4587 &mddev->recovery);
4588 return -EIO;
4589 }
4590 sectors -= s;
4591 idx++;
4592 }
4593 return 0;
4594}
4595
4246a0b6 4596static void end_reshape_write(struct bio *bio)
3ea7daa5 4597{
3ea7daa5
N
4598 struct r10bio *r10_bio = bio->bi_private;
4599 struct mddev *mddev = r10_bio->mddev;
4600 struct r10conf *conf = mddev->private;
4601 int d;
4602 int slot;
4603 int repl;
4604 struct md_rdev *rdev = NULL;
4605
4606 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4607 if (repl)
4608 rdev = conf->mirrors[d].replacement;
4609 if (!rdev) {
4610 smp_mb();
4611 rdev = conf->mirrors[d].rdev;
4612 }
4613
4246a0b6 4614 if (bio->bi_error) {
3ea7daa5
N
4615 /* FIXME should record badblock */
4616 md_error(mddev, rdev);
4617 }
4618
4619 rdev_dec_pending(rdev, mddev);
4620 end_reshape_request(r10_bio);
4621}
4622
4623static void end_reshape_request(struct r10bio *r10_bio)
4624{
4625 if (!atomic_dec_and_test(&r10_bio->remaining))
4626 return;
4627 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4628 bio_put(r10_bio->master_bio);
4629 put_buf(r10_bio);
4630}
4631
4632static void raid10_finish_reshape(struct mddev *mddev)
4633{
4634 struct r10conf *conf = mddev->private;
4635
4636 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4637 return;
4638
4639 if (mddev->delta_disks > 0) {
4640 sector_t size = raid10_size(mddev, 0, 0);
4641 md_set_array_sectors(mddev, size);
4642 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4643 mddev->recovery_cp = mddev->resync_max_sectors;
4644 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4645 }
4646 mddev->resync_max_sectors = size;
859644f0
HM
4647 if (mddev->queue) {
4648 set_capacity(mddev->gendisk, mddev->array_sectors);
4649 revalidate_disk(mddev->gendisk);
4650 }
63aced61
N
4651 } else {
4652 int d;
d094d686 4653 rcu_read_lock();
63aced61
N
4654 for (d = conf->geo.raid_disks ;
4655 d < conf->geo.raid_disks - mddev->delta_disks;
4656 d++) {
d094d686 4657 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
4658 if (rdev)
4659 clear_bit(In_sync, &rdev->flags);
d094d686 4660 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
4661 if (rdev)
4662 clear_bit(In_sync, &rdev->flags);
4663 }
d094d686 4664 rcu_read_unlock();
3ea7daa5
N
4665 }
4666 mddev->layout = mddev->new_layout;
4667 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4668 mddev->reshape_position = MaxSector;
4669 mddev->delta_disks = 0;
4670 mddev->reshape_backwards = 0;
4671}
4672
84fc4b56 4673static struct md_personality raid10_personality =
1da177e4
LT
4674{
4675 .name = "raid10",
2604b703 4676 .level = 10,
1da177e4 4677 .owner = THIS_MODULE,
849674e4
SL
4678 .make_request = raid10_make_request,
4679 .run = raid10_run,
afa0f557 4680 .free = raid10_free,
849674e4
SL
4681 .status = raid10_status,
4682 .error_handler = raid10_error,
1da177e4
LT
4683 .hot_add_disk = raid10_add_disk,
4684 .hot_remove_disk= raid10_remove_disk,
4685 .spare_active = raid10_spare_active,
849674e4 4686 .sync_request = raid10_sync_request,
6cce3b23 4687 .quiesce = raid10_quiesce,
80c3a6ce 4688 .size = raid10_size,
006a09a0 4689 .resize = raid10_resize,
dab8b292 4690 .takeover = raid10_takeover,
3ea7daa5
N
4691 .check_reshape = raid10_check_reshape,
4692 .start_reshape = raid10_start_reshape,
4693 .finish_reshape = raid10_finish_reshape,
5c675f83 4694 .congested = raid10_congested,
1da177e4
LT
4695};
4696
4697static int __init raid_init(void)
4698{
2604b703 4699 return register_md_personality(&raid10_personality);
1da177e4
LT
4700}
4701
4702static void raid_exit(void)
4703{
2604b703 4704 unregister_md_personality(&raid10_personality);
1da177e4
LT
4705}
4706
4707module_init(raid_init);
4708module_exit(raid_exit);
4709MODULE_LICENSE("GPL");
0efb9e61 4710MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4711MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4712MODULE_ALIAS("md-raid10");
2604b703 4713MODULE_ALIAS("md-level-10");
34db0cd6
N
4714
4715module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);