]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid10.c
md/raid10: submit IO from originating thread instead of md thread.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
1da177e4
LT
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
c93983bf 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
c93983bf
N
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
1da177e4
LT
56 */
57
58/*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61#define NR_RAID10_BIOS 256
62
473e87ce
JB
63/* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68#define IO_BLOCKED ((struct bio *)1)
69/* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73#define IO_MADE_GOOD ((struct bio *)2)
74
75#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77/* When there are this many requests queued to be written by
34db0cd6
N
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81static int max_queued_requests = 1024;
82
e879a879
N
83static void allow_barrier(struct r10conf *conf);
84static void lower_barrier(struct r10conf *conf);
fae8cc5e 85static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
86static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 int *skipped);
88static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89static void end_reshape_write(struct bio *bio, int error);
90static void end_reshape(struct r10conf *conf);
0a27ec96 91
dd0fc66f 92static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 93{
e879a879 94 struct r10conf *conf = data;
9f2c9d12 95 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 96
69335ef3
N
97 /* allocate a r10bio with room for raid_disks entries in the
98 * bios array */
7eaceacc 99 return kzalloc(size, gfp_flags);
1da177e4
LT
100}
101
102static void r10bio_pool_free(void *r10_bio, void *data)
103{
104 kfree(r10_bio);
105}
106
0310fa21 107/* Maximum size of each resync request */
1da177e4 108#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 109#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
110/* amount of memory to reserve for resync requests */
111#define RESYNC_WINDOW (1024*1024)
112/* maximum number of concurrent requests, memory permitting */
113#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
114
115/*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
dd0fc66f 122static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 123{
e879a879 124 struct r10conf *conf = data;
1da177e4 125 struct page *page;
9f2c9d12 126 struct r10bio *r10_bio;
1da177e4
LT
127 struct bio *bio;
128 int i, j;
129 int nalloc;
130
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 132 if (!r10_bio)
1da177e4 133 return NULL;
1da177e4 134
3ea7daa5
N
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
137 nalloc = conf->copies; /* resync */
138 else
139 nalloc = 2; /* recovery */
140
141 /*
142 * Allocate bios.
143 */
144 for (j = nalloc ; j-- ; ) {
6746557f 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
146 if (!bio)
147 goto out_free_bio;
148 r10_bio->devs[j].bio = bio;
69335ef3
N
149 if (!conf->have_replacement)
150 continue;
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them
158 * where needed.
159 */
160 for (j = 0 ; j < nalloc; j++) {
69335ef3 161 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
167 * and reshape */
c65060ad
NK
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
170 get_page(page);
171 } else
172 page = alloc_page(gfp_flags);
1da177e4
LT
173 if (unlikely(!page))
174 goto out_free_pages;
175
176 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
177 if (rbio)
178 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
179 }
180 }
181
182 return r10_bio;
183
184out_free_pages:
185 for ( ; i > 0 ; i--)
1345b1d8 186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
187 while (j--)
188 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 190 j = 0;
1da177e4 191out_free_bio:
5fdd2cf8 192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
69335ef3
N
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
197 }
1da177e4
LT
198 r10bio_pool_free(r10_bio, conf);
199 return NULL;
200}
201
202static void r10buf_pool_free(void *__r10_bio, void *data)
203{
204 int i;
e879a879 205 struct r10conf *conf = data;
9f2c9d12 206 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
207 int j;
208
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
211 if (bio) {
212 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 213 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
214 bio->bi_io_vec[i].bv_page = NULL;
215 }
216 bio_put(bio);
217 }
69335ef3
N
218 bio = r10bio->devs[j].repl_bio;
219 if (bio)
220 bio_put(bio);
1da177e4
LT
221 }
222 r10bio_pool_free(r10bio, conf);
223}
224
e879a879 225static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
226{
227 int i;
228
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 231 if (!BIO_SPECIAL(*bio))
1da177e4
LT
232 bio_put(*bio);
233 *bio = NULL;
69335ef3
N
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 bio_put(*bio);
237 *bio = NULL;
1da177e4
LT
238 }
239}
240
9f2c9d12 241static void free_r10bio(struct r10bio *r10_bio)
1da177e4 242{
e879a879 243 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 244
1da177e4
LT
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
247}
248
9f2c9d12 249static void put_buf(struct r10bio *r10_bio)
1da177e4 250{
e879a879 251 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
252
253 mempool_free(r10_bio, conf->r10buf_pool);
254
0a27ec96 255 lower_barrier(conf);
1da177e4
LT
256}
257
9f2c9d12 258static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
259{
260 unsigned long flags;
fd01b88c 261 struct mddev *mddev = r10_bio->mddev;
e879a879 262 struct r10conf *conf = mddev->private;
1da177e4
LT
263
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 266 conf->nr_queued ++;
1da177e4
LT
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268
388667be
AJ
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
271
1da177e4
LT
272 md_wakeup_thread(mddev->thread);
273}
274
275/*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
9f2c9d12 280static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
281{
282 struct bio *bio = r10_bio->master_bio;
856e08e2 283 int done;
e879a879 284 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 285
856e08e2
N
286 if (bio->bi_phys_segments) {
287 unsigned long flags;
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
292 } else
293 done = 1;
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 if (done) {
297 bio_endio(bio, 0);
298 /*
299 * Wake up any possible resync thread that waits for the device
300 * to go idle.
301 */
302 allow_barrier(conf);
303 }
1da177e4
LT
304 free_r10bio(r10_bio);
305}
306
307/*
308 * Update disk head position estimator based on IRQ completion info.
309 */
9f2c9d12 310static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 311{
e879a879 312 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
313
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
316}
317
778ca018
NK
318/*
319 * Find the disk number which triggered given bio
320 */
e879a879 321static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 322 struct bio *bio, int *slotp, int *replp)
778ca018
NK
323{
324 int slot;
69335ef3 325 int repl = 0;
778ca018 326
69335ef3 327 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
328 if (r10_bio->devs[slot].bio == bio)
329 break;
69335ef3
N
330 if (r10_bio->devs[slot].repl_bio == bio) {
331 repl = 1;
332 break;
333 }
334 }
778ca018
NK
335
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
338
749c55e9
N
339 if (slotp)
340 *slotp = slot;
69335ef3
N
341 if (replp)
342 *replp = repl;
778ca018
NK
343 return r10_bio->devs[slot].devnum;
344}
345
6712ecf8 346static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
347{
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 349 struct r10bio *r10_bio = bio->bi_private;
1da177e4 350 int slot, dev;
abbf098e 351 struct md_rdev *rdev;
e879a879 352 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 353
1da177e4
LT
354
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
abbf098e 357 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
358 /*
359 * this branch is our 'one mirror IO has finished' event handler:
360 */
4443ae10
N
361 update_head_pos(slot, r10_bio);
362
363 if (uptodate) {
1da177e4
LT
364 /*
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
368 *
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
372 */
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
374 } else {
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
379 */
380 unsigned long flags;
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
383 uptodate = 1;
384 spin_unlock_irqrestore(&conf->device_lock, flags);
385 }
386 if (uptodate) {
1da177e4 387 raid_end_bio_io(r10_bio);
abbf098e 388 rdev_dec_pending(rdev, conf->mddev);
4443ae10 389 } else {
1da177e4 390 /*
7c4e06ff 391 * oops, read error - keep the refcount on the rdev
1da177e4
LT
392 */
393 char b[BDEVNAME_SIZE];
8bda470e
CD
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
396 mdname(conf->mddev),
abbf098e 397 bdevname(rdev->bdev, b),
8bda470e 398 (unsigned long long)r10_bio->sector);
856e08e2 399 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
400 reschedule_retry(r10_bio);
401 }
1da177e4
LT
402}
403
9f2c9d12 404static void close_write(struct r10bio *r10_bio)
bd870a16
N
405{
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 r10_bio->sectors,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 0);
411 md_write_end(r10_bio->mddev);
412}
413
9f2c9d12 414static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
415{
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
419 else {
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
423 else
424 raid_end_bio_io(r10_bio);
425 }
426 }
427}
428
6712ecf8 429static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
430{
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 432 struct r10bio *r10_bio = bio->bi_private;
778ca018 433 int dev;
749c55e9 434 int dec_rdev = 1;
e879a879 435 struct r10conf *conf = r10_bio->mddev->private;
475b0321 436 int slot, repl;
4ca40c2c 437 struct md_rdev *rdev = NULL;
1da177e4 438
475b0321 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 440
475b0321
N
441 if (repl)
442 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
443 if (!rdev) {
444 smp_rmb();
445 repl = 0;
475b0321 446 rdev = conf->mirrors[dev].rdev;
4ca40c2c 447 }
1da177e4
LT
448 /*
449 * this branch is our 'one mirror IO has finished' event handler:
450 */
6cce3b23 451 if (!uptodate) {
475b0321
N
452 if (repl)
453 /* Never record new bad blocks to replacement,
454 * just fail it.
455 */
456 md_error(rdev->mddev, rdev);
457 else {
458 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
475b0321
N
462 set_bit(R10BIO_WriteError, &r10_bio->state);
463 dec_rdev = 0;
464 }
749c55e9 465 } else {
1da177e4
LT
466 /*
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
470 *
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
474 */
749c55e9
N
475 sector_t first_bad;
476 int bad_sectors;
477
1da177e4
LT
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
749c55e9 480 /* Maybe we can clear some bad blocks. */
475b0321 481 if (is_badblock(rdev,
749c55e9
N
482 r10_bio->devs[slot].addr,
483 r10_bio->sectors,
484 &first_bad, &bad_sectors)) {
485 bio_put(bio);
475b0321
N
486 if (repl)
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 else
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
490 dec_rdev = 0;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
492 }
493 }
494
1da177e4
LT
495 /*
496 *
497 * Let's see if all mirrored write operations have finished
498 * already.
499 */
19d5f834 500 one_write_done(r10_bio);
749c55e9
N
501 if (dec_rdev)
502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
503}
504
1da177e4
LT
505/*
506 * RAID10 layout manager
25985edc 507 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
25985edc 514 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 524 * on each device that it is on.
1da177e4
LT
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
f8c9e74f 530static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
531{
532 int n,f;
533 sector_t sector;
534 sector_t chunk;
535 sector_t stripe;
536 int dev;
1da177e4
LT
537 int slot = 0;
538
539 /* now calculate first sector/dev */
5cf00fcd
N
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
1da177e4 542
5cf00fcd 543 chunk *= geo->near_copies;
1da177e4 544 stripe = chunk;
5cf00fcd
N
545 dev = sector_div(stripe, geo->raid_disks);
546 if (geo->far_offset)
547 stripe *= geo->far_copies;
1da177e4 548
5cf00fcd 549 sector += stripe << geo->chunk_shift;
1da177e4
LT
550
551 /* and calculate all the others */
5cf00fcd 552 for (n = 0; n < geo->near_copies; n++) {
1da177e4
LT
553 int d = dev;
554 sector_t s = sector;
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
557 slot++;
558
5cf00fcd
N
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
563 s += geo->stride;
1da177e4
LT
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
566 slot++;
567 }
568 dev++;
5cf00fcd 569 if (dev >= geo->raid_disks) {
1da177e4 570 dev = 0;
5cf00fcd 571 sector += (geo->chunk_mask + 1);
1da177e4
LT
572 }
573 }
f8c9e74f
N
574}
575
576static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577{
578 struct geom *geo = &conf->geo;
579
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
584 geo = &conf->prev;
585 } else
586 clear_bit(R10BIO_Previous, &r10bio->state);
587
588 __raid10_find_phys(geo, r10bio);
1da177e4
LT
589}
590
e879a879 591static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
592{
593 sector_t offset, chunk, vchunk;
f8c9e74f
N
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
596 */
5cf00fcd 597 struct geom *geo = &conf->geo;
1da177e4 598
5cf00fcd
N
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
c93983bf 601 int fc;
5cf00fcd
N
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
c93983bf 605 if (dev < 0)
5cf00fcd 606 dev += geo->raid_disks;
c93983bf 607 } else {
5cf00fcd
N
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
c93983bf 612 else
5cf00fcd 613 dev -= geo->near_copies;
c93983bf 614 }
5cf00fcd 615 chunk = sector >> geo->chunk_shift;
c93983bf 616 }
5cf00fcd
N
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
620}
621
622/**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
cc371e66 625 * @bvm: properties of new bio
1da177e4
LT
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
050b6615
N
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 631 */
cc371e66
AK
632static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
1da177e4 635{
fd01b88c 636 struct mddev *mddev = q->queuedata;
050b6615 637 struct r10conf *conf = mddev->private;
cc371e66 638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 639 int max;
3ea7daa5 640 unsigned int chunk_sectors;
cc371e66 641 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 642 struct geom *geo = &conf->geo;
1da177e4 643
3ea7daa5 644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
648 geo = &conf->prev;
649
5cf00fcd 650 if (geo->near_copies < geo->raid_disks) {
050b6615
N
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
653 if (max < 0)
654 /* bio_add cannot handle a negative return */
655 max = 0;
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
658 } else
659 max = biovec->bv_len;
660
661 if (mddev->merge_check_needed) {
e0ee7785
N
662 struct {
663 struct r10bio r10_bio;
664 struct r10dev devs[conf->copies];
665 } on_stack;
666 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 667 int s;
f8c9e74f
N
668 if (conf->reshape_progress != MaxSector) {
669 /* Cannot give any guidance during reshape */
670 if (max <= biovec->bv_len && bio_sectors == 0)
671 return biovec->bv_len;
672 return 0;
673 }
e0ee7785
N
674 r10_bio->sector = sector;
675 raid10_find_phys(conf, r10_bio);
050b6615
N
676 rcu_read_lock();
677 for (s = 0; s < conf->copies; s++) {
e0ee7785 678 int disk = r10_bio->devs[s].devnum;
050b6615
N
679 struct md_rdev *rdev = rcu_dereference(
680 conf->mirrors[disk].rdev);
681 if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 struct request_queue *q =
683 bdev_get_queue(rdev->bdev);
684 if (q->merge_bvec_fn) {
e0ee7785 685 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
686 + rdev->data_offset;
687 bvm->bi_bdev = rdev->bdev;
688 max = min(max, q->merge_bvec_fn(
689 q, bvm, biovec));
690 }
691 }
692 rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 struct request_queue *q =
695 bdev_get_queue(rdev->bdev);
696 if (q->merge_bvec_fn) {
e0ee7785 697 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
698 + rdev->data_offset;
699 bvm->bi_bdev = rdev->bdev;
700 max = min(max, q->merge_bvec_fn(
701 q, bvm, biovec));
702 }
703 }
704 }
705 rcu_read_unlock();
706 }
707 return max;
1da177e4
LT
708}
709
710/*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725/*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
96c3fd1f
N
729static struct md_rdev *read_balance(struct r10conf *conf,
730 struct r10bio *r10_bio,
731 int *max_sectors)
1da177e4 732{
af3a2cd6 733 const sector_t this_sector = r10_bio->sector;
56d99121 734 int disk, slot;
856e08e2
N
735 int sectors = r10_bio->sectors;
736 int best_good_sectors;
56d99121 737 sector_t new_distance, best_dist;
3bbae04b 738 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
739 int do_balance;
740 int best_slot;
5cf00fcd 741 struct geom *geo = &conf->geo;
1da177e4
LT
742
743 raid10_find_phys(conf, r10_bio);
744 rcu_read_lock();
56d99121 745retry:
856e08e2 746 sectors = r10_bio->sectors;
56d99121 747 best_slot = -1;
abbf098e 748 best_rdev = NULL;
56d99121 749 best_dist = MaxSector;
856e08e2 750 best_good_sectors = 0;
56d99121 751 do_balance = 1;
1da177e4
LT
752 /*
753 * Check if we can balance. We can balance on the whole
6cce3b23
N
754 * device if no resync is going on (recovery is ok), or below
755 * the resync window. We take the first readable disk when
756 * above the resync window.
1da177e4
LT
757 */
758 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
759 && (this_sector + sectors >= conf->next_resync))
760 do_balance = 0;
1da177e4 761
56d99121 762 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
763 sector_t first_bad;
764 int bad_sectors;
765 sector_t dev_sector;
766
56d99121
N
767 if (r10_bio->devs[slot].bio == IO_BLOCKED)
768 continue;
1da177e4 769 disk = r10_bio->devs[slot].devnum;
abbf098e
N
770 rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 772 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
775 if (rdev == NULL ||
776 test_bit(Faulty, &rdev->flags) ||
777 test_bit(Unmerged, &rdev->flags))
abbf098e
N
778 continue;
779 if (!test_bit(In_sync, &rdev->flags) &&
780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
781 continue;
782
856e08e2
N
783 dev_sector = r10_bio->devs[slot].addr;
784 if (is_badblock(rdev, dev_sector, sectors,
785 &first_bad, &bad_sectors)) {
786 if (best_dist < MaxSector)
787 /* Already have a better slot */
788 continue;
789 if (first_bad <= dev_sector) {
790 /* Cannot read here. If this is the
791 * 'primary' device, then we must not read
792 * beyond 'bad_sectors' from another device.
793 */
794 bad_sectors -= (dev_sector - first_bad);
795 if (!do_balance && sectors > bad_sectors)
796 sectors = bad_sectors;
797 if (best_good_sectors > sectors)
798 best_good_sectors = sectors;
799 } else {
800 sector_t good_sectors =
801 first_bad - dev_sector;
802 if (good_sectors > best_good_sectors) {
803 best_good_sectors = good_sectors;
804 best_slot = slot;
abbf098e 805 best_rdev = rdev;
856e08e2
N
806 }
807 if (!do_balance)
808 /* Must read from here */
809 break;
810 }
811 continue;
812 } else
813 best_good_sectors = sectors;
814
56d99121
N
815 if (!do_balance)
816 break;
1da177e4 817
22dfdf52
N
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
821 */
5cf00fcd 822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 823 break;
8ed3a195
KS
824
825 /* for far > 1 always use the lowest address */
5cf00fcd 826 if (geo->far_copies > 1)
56d99121 827 new_distance = r10_bio->devs[slot].addr;
8ed3a195 828 else
56d99121
N
829 new_distance = abs(r10_bio->devs[slot].addr -
830 conf->mirrors[disk].head_position);
831 if (new_distance < best_dist) {
832 best_dist = new_distance;
833 best_slot = slot;
abbf098e 834 best_rdev = rdev;
1da177e4
LT
835 }
836 }
abbf098e 837 if (slot >= conf->copies) {
56d99121 838 slot = best_slot;
abbf098e
N
839 rdev = best_rdev;
840 }
1da177e4 841
56d99121 842 if (slot >= 0) {
56d99121
N
843 atomic_inc(&rdev->nr_pending);
844 if (test_bit(Faulty, &rdev->flags)) {
845 /* Cannot risk returning a device that failed
846 * before we inc'ed nr_pending
847 */
848 rdev_dec_pending(rdev, conf->mddev);
849 goto retry;
850 }
851 r10_bio->read_slot = slot;
852 } else
96c3fd1f 853 rdev = NULL;
1da177e4 854 rcu_read_unlock();
856e08e2 855 *max_sectors = best_good_sectors;
1da177e4 856
96c3fd1f 857 return rdev;
1da177e4
LT
858}
859
cc4d1efd 860int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 861{
e879a879 862 struct r10conf *conf = mddev->private;
0d129228
N
863 int i, ret = 0;
864
34db0cd6
N
865 if ((bits & (1 << BDI_async_congested)) &&
866 conf->pending_count >= max_queued_requests)
867 return 1;
868
0d129228 869 rcu_read_lock();
f8c9e74f
N
870 for (i = 0;
871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 && ret == 0;
873 i++) {
3cb03002 874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 875 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 876 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
877
878 ret |= bdi_congested(&q->backing_dev_info, bits);
879 }
880 }
881 rcu_read_unlock();
882 return ret;
883}
cc4d1efd
JB
884EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886static int raid10_congested(void *data, int bits)
887{
888 struct mddev *mddev = data;
889
890 return mddev_congested(mddev, bits) ||
891 md_raid10_congested(mddev, bits);
892}
0d129228 893
e879a879 894static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
895{
896 /* Any writes that have been queued but are awaiting
897 * bitmap updates get flushed here.
a35e63ef 898 */
a35e63ef
N
899 spin_lock_irq(&conf->device_lock);
900
901 if (conf->pending_bio_list.head) {
902 struct bio *bio;
903 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 904 conf->pending_count = 0;
a35e63ef
N
905 spin_unlock_irq(&conf->device_lock);
906 /* flush any pending bitmap writes to disk
907 * before proceeding w/ I/O */
908 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 909 wake_up(&conf->wait_barrier);
a35e63ef
N
910
911 while (bio) { /* submit pending writes */
912 struct bio *next = bio->bi_next;
913 bio->bi_next = NULL;
532a2a3f
SL
914 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
916 /* Just ignore it */
917 bio_endio(bio, 0);
918 else
919 generic_make_request(bio);
a35e63ef
N
920 bio = next;
921 }
a35e63ef
N
922 } else
923 spin_unlock_irq(&conf->device_lock);
a35e63ef 924}
7eaceacc 925
0a27ec96
N
926/* Barriers....
927 * Sometimes we need to suspend IO while we do something else,
928 * either some resync/recovery, or reconfigure the array.
929 * To do this we raise a 'barrier'.
930 * The 'barrier' is a counter that can be raised multiple times
931 * to count how many activities are happening which preclude
932 * normal IO.
933 * We can only raise the barrier if there is no pending IO.
934 * i.e. if nr_pending == 0.
935 * We choose only to raise the barrier if no-one is waiting for the
936 * barrier to go down. This means that as soon as an IO request
937 * is ready, no other operations which require a barrier will start
938 * until the IO request has had a chance.
939 *
940 * So: regular IO calls 'wait_barrier'. When that returns there
941 * is no backgroup IO happening, It must arrange to call
942 * allow_barrier when it has finished its IO.
943 * backgroup IO calls must call raise_barrier. Once that returns
944 * there is no normal IO happeing. It must arrange to call
945 * lower_barrier when the particular background IO completes.
1da177e4 946 */
1da177e4 947
e879a879 948static void raise_barrier(struct r10conf *conf, int force)
1da177e4 949{
6cce3b23 950 BUG_ON(force && !conf->barrier);
1da177e4 951 spin_lock_irq(&conf->resync_lock);
0a27ec96 952
6cce3b23
N
953 /* Wait until no block IO is waiting (unless 'force') */
954 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 955 conf->resync_lock, );
0a27ec96
N
956
957 /* block any new IO from starting */
958 conf->barrier++;
959
c3b328ac 960 /* Now wait for all pending IO to complete */
0a27ec96
N
961 wait_event_lock_irq(conf->wait_barrier,
962 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 963 conf->resync_lock, );
0a27ec96
N
964
965 spin_unlock_irq(&conf->resync_lock);
966}
967
e879a879 968static void lower_barrier(struct r10conf *conf)
0a27ec96
N
969{
970 unsigned long flags;
971 spin_lock_irqsave(&conf->resync_lock, flags);
972 conf->barrier--;
973 spin_unlock_irqrestore(&conf->resync_lock, flags);
974 wake_up(&conf->wait_barrier);
975}
976
e879a879 977static void wait_barrier(struct r10conf *conf)
0a27ec96
N
978{
979 spin_lock_irq(&conf->resync_lock);
980 if (conf->barrier) {
981 conf->nr_waiting++;
d6b42dcb
N
982 /* Wait for the barrier to drop.
983 * However if there are already pending
984 * requests (preventing the barrier from
985 * rising completely), and the
986 * pre-process bio queue isn't empty,
987 * then don't wait, as we need to empty
988 * that queue to get the nr_pending
989 * count down.
990 */
991 wait_event_lock_irq(conf->wait_barrier,
992 !conf->barrier ||
993 (conf->nr_pending &&
994 current->bio_list &&
995 !bio_list_empty(current->bio_list)),
0a27ec96 996 conf->resync_lock,
d6b42dcb 997 );
0a27ec96 998 conf->nr_waiting--;
1da177e4 999 }
0a27ec96 1000 conf->nr_pending++;
1da177e4
LT
1001 spin_unlock_irq(&conf->resync_lock);
1002}
1003
e879a879 1004static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1005{
1006 unsigned long flags;
1007 spin_lock_irqsave(&conf->resync_lock, flags);
1008 conf->nr_pending--;
1009 spin_unlock_irqrestore(&conf->resync_lock, flags);
1010 wake_up(&conf->wait_barrier);
1011}
1012
e879a879 1013static void freeze_array(struct r10conf *conf)
4443ae10
N
1014{
1015 /* stop syncio and normal IO and wait for everything to
f188593e 1016 * go quiet.
4443ae10 1017 * We increment barrier and nr_waiting, and then
1c830532
N
1018 * wait until nr_pending match nr_queued+1
1019 * This is called in the context of one normal IO request
1020 * that has failed. Thus any sync request that might be pending
1021 * will be blocked by nr_pending, and we need to wait for
1022 * pending IO requests to complete or be queued for re-try.
1023 * Thus the number queued (nr_queued) plus this request (1)
1024 * must match the number of pending IOs (nr_pending) before
1025 * we continue.
4443ae10
N
1026 */
1027 spin_lock_irq(&conf->resync_lock);
1028 conf->barrier++;
1029 conf->nr_waiting++;
1030 wait_event_lock_irq(conf->wait_barrier,
1c830532 1031 conf->nr_pending == conf->nr_queued+1,
4443ae10 1032 conf->resync_lock,
c3b328ac
N
1033 flush_pending_writes(conf));
1034
4443ae10
N
1035 spin_unlock_irq(&conf->resync_lock);
1036}
1037
e879a879 1038static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1039{
1040 /* reverse the effect of the freeze */
1041 spin_lock_irq(&conf->resync_lock);
1042 conf->barrier--;
1043 conf->nr_waiting--;
1044 wake_up(&conf->wait_barrier);
1045 spin_unlock_irq(&conf->resync_lock);
1046}
1047
f8c9e74f
N
1048static sector_t choose_data_offset(struct r10bio *r10_bio,
1049 struct md_rdev *rdev)
1050{
1051 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1052 test_bit(R10BIO_Previous, &r10_bio->state))
1053 return rdev->data_offset;
1054 else
1055 return rdev->new_data_offset;
1056}
1057
57c67df4
N
1058struct raid10_plug_cb {
1059 struct blk_plug_cb cb;
1060 struct bio_list pending;
1061 int pending_cnt;
1062};
1063
1064static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1065{
1066 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1067 cb);
1068 struct mddev *mddev = plug->cb.data;
1069 struct r10conf *conf = mddev->private;
1070 struct bio *bio;
1071
1072 if (from_schedule) {
1073 spin_lock_irq(&conf->device_lock);
1074 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1075 conf->pending_count += plug->pending_cnt;
1076 spin_unlock_irq(&conf->device_lock);
1077 md_wakeup_thread(mddev->thread);
1078 kfree(plug);
1079 return;
1080 }
1081
1082 /* we aren't scheduling, so we can do the write-out directly. */
1083 bio = bio_list_get(&plug->pending);
1084 bitmap_unplug(mddev->bitmap);
1085 wake_up(&conf->wait_barrier);
1086
1087 while (bio) { /* submit pending writes */
1088 struct bio *next = bio->bi_next;
1089 bio->bi_next = NULL;
1090 generic_make_request(bio);
1091 bio = next;
1092 }
1093 kfree(plug);
1094}
1095
b4fdcb02 1096static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1097{
e879a879 1098 struct r10conf *conf = mddev->private;
9f2c9d12 1099 struct r10bio *r10_bio;
1da177e4
LT
1100 struct bio *read_bio;
1101 int i;
f8c9e74f 1102 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1103 int chunk_sects = chunk_mask + 1;
a362357b 1104 const int rw = bio_data_dir(bio);
2c7d46ec 1105 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1106 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1107 const unsigned long do_discard = (bio->bi_rw
1108 & (REQ_DISCARD | REQ_SECURE));
6cce3b23 1109 unsigned long flags;
3cb03002 1110 struct md_rdev *blocked_rdev;
57c67df4
N
1111 struct blk_plug_cb *cb;
1112 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1113 int sectors_handled;
1114 int max_sectors;
3ea7daa5 1115 int sectors;
1da177e4 1116
e9c7469b
TH
1117 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1118 md_flush_request(mddev, bio);
5a7bbad2 1119 return;
e5dcdd80
N
1120 }
1121
1da177e4
LT
1122 /* If this request crosses a chunk boundary, we need to
1123 * split it. This will only happen for 1 PAGE (or less) requests.
1124 */
5cf00fcd
N
1125 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1126 > chunk_sects
f8c9e74f
N
1127 && (conf->geo.near_copies < conf->geo.raid_disks
1128 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1129 struct bio_pair *bp;
1130 /* Sanity check -- queue functions should prevent this happening */
532a2a3f 1131 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1da177e4
LT
1132 bio->bi_idx != 0)
1133 goto bad_map;
1134 /* This is a one page bio that upper layers
1135 * refuse to split for us, so we need to split it.
1136 */
6feef531 1137 bp = bio_split(bio,
1da177e4 1138 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1139
1140 /* Each of these 'make_request' calls will call 'wait_barrier'.
1141 * If the first succeeds but the second blocks due to the resync
1142 * thread raising the barrier, we will deadlock because the
1143 * IO to the underlying device will be queued in generic_make_request
1144 * and will never complete, so will never reduce nr_pending.
1145 * So increment nr_waiting here so no new raise_barriers will
1146 * succeed, and so the second wait_barrier cannot block.
1147 */
1148 spin_lock_irq(&conf->resync_lock);
1149 conf->nr_waiting++;
1150 spin_unlock_irq(&conf->resync_lock);
1151
5a7bbad2
CH
1152 make_request(mddev, &bp->bio1);
1153 make_request(mddev, &bp->bio2);
1da177e4 1154
51e9ac77
N
1155 spin_lock_irq(&conf->resync_lock);
1156 conf->nr_waiting--;
1157 wake_up(&conf->wait_barrier);
1158 spin_unlock_irq(&conf->resync_lock);
1159
1da177e4 1160 bio_pair_release(bp);
5a7bbad2 1161 return;
1da177e4 1162 bad_map:
128595ed
N
1163 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1164 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
1165 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1166
6712ecf8 1167 bio_io_error(bio);
5a7bbad2 1168 return;
1da177e4
LT
1169 }
1170
3d310eb7 1171 md_write_start(mddev, bio);
06d91a5f 1172
1da177e4
LT
1173 /*
1174 * Register the new request and wait if the reconstruction
1175 * thread has put up a bar for new requests.
1176 * Continue immediately if no resync is active currently.
1177 */
0a27ec96 1178 wait_barrier(conf);
1da177e4 1179
3ea7daa5
N
1180 sectors = bio->bi_size >> 9;
1181 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1182 bio->bi_sector < conf->reshape_progress &&
1183 bio->bi_sector + sectors > conf->reshape_progress) {
1184 /* IO spans the reshape position. Need to wait for
1185 * reshape to pass
1186 */
1187 allow_barrier(conf);
1188 wait_event(conf->wait_barrier,
1189 conf->reshape_progress <= bio->bi_sector ||
1190 conf->reshape_progress >= bio->bi_sector + sectors);
1191 wait_barrier(conf);
1192 }
1193 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1194 bio_data_dir(bio) == WRITE &&
1195 (mddev->reshape_backwards
1196 ? (bio->bi_sector < conf->reshape_safe &&
1197 bio->bi_sector + sectors > conf->reshape_progress)
1198 : (bio->bi_sector + sectors > conf->reshape_safe &&
1199 bio->bi_sector < conf->reshape_progress))) {
1200 /* Need to update reshape_position in metadata */
1201 mddev->reshape_position = conf->reshape_progress;
1202 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1203 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1204 md_wakeup_thread(mddev->thread);
1205 wait_event(mddev->sb_wait,
1206 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1207
1208 conf->reshape_safe = mddev->reshape_position;
1209 }
1210
1da177e4
LT
1211 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1212
1213 r10_bio->master_bio = bio;
3ea7daa5 1214 r10_bio->sectors = sectors;
1da177e4
LT
1215
1216 r10_bio->mddev = mddev;
1217 r10_bio->sector = bio->bi_sector;
6cce3b23 1218 r10_bio->state = 0;
1da177e4 1219
856e08e2
N
1220 /* We might need to issue multiple reads to different
1221 * devices if there are bad blocks around, so we keep
1222 * track of the number of reads in bio->bi_phys_segments.
1223 * If this is 0, there is only one r10_bio and no locking
1224 * will be needed when the request completes. If it is
1225 * non-zero, then it is the number of not-completed requests.
1226 */
1227 bio->bi_phys_segments = 0;
1228 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1229
a362357b 1230 if (rw == READ) {
1da177e4
LT
1231 /*
1232 * read balancing logic:
1233 */
96c3fd1f 1234 struct md_rdev *rdev;
856e08e2
N
1235 int slot;
1236
1237read_again:
96c3fd1f
N
1238 rdev = read_balance(conf, r10_bio, &max_sectors);
1239 if (!rdev) {
1da177e4 1240 raid_end_bio_io(r10_bio);
5a7bbad2 1241 return;
1da177e4 1242 }
96c3fd1f 1243 slot = r10_bio->read_slot;
1da177e4 1244
a167f663 1245 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1246 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1247 max_sectors);
1da177e4
LT
1248
1249 r10_bio->devs[slot].bio = read_bio;
abbf098e 1250 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1251
1252 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1253 choose_data_offset(r10_bio, rdev);
96c3fd1f 1254 read_bio->bi_bdev = rdev->bdev;
1da177e4 1255 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1256 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1257 read_bio->bi_private = r10_bio;
1258
856e08e2
N
1259 if (max_sectors < r10_bio->sectors) {
1260 /* Could not read all from this device, so we will
1261 * need another r10_bio.
1262 */
856e08e2
N
1263 sectors_handled = (r10_bio->sectors + max_sectors
1264 - bio->bi_sector);
1265 r10_bio->sectors = max_sectors;
1266 spin_lock_irq(&conf->device_lock);
1267 if (bio->bi_phys_segments == 0)
1268 bio->bi_phys_segments = 2;
1269 else
1270 bio->bi_phys_segments++;
1271 spin_unlock(&conf->device_lock);
1272 /* Cannot call generic_make_request directly
1273 * as that will be queued in __generic_make_request
1274 * and subsequent mempool_alloc might block
1275 * waiting for it. so hand bio over to raid10d.
1276 */
1277 reschedule_retry(r10_bio);
1278
1279 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1280
1281 r10_bio->master_bio = bio;
1282 r10_bio->sectors = ((bio->bi_size >> 9)
1283 - sectors_handled);
1284 r10_bio->state = 0;
1285 r10_bio->mddev = mddev;
1286 r10_bio->sector = bio->bi_sector + sectors_handled;
1287 goto read_again;
1288 } else
1289 generic_make_request(read_bio);
5a7bbad2 1290 return;
1da177e4
LT
1291 }
1292
1293 /*
1294 * WRITE:
1295 */
34db0cd6
N
1296 if (conf->pending_count >= max_queued_requests) {
1297 md_wakeup_thread(mddev->thread);
1298 wait_event(conf->wait_barrier,
1299 conf->pending_count < max_queued_requests);
1300 }
6bfe0b49 1301 /* first select target devices under rcu_lock and
1da177e4
LT
1302 * inc refcount on their rdev. Record them by setting
1303 * bios[x] to bio
d4432c23
N
1304 * If there are known/acknowledged bad blocks on any device
1305 * on which we have seen a write error, we want to avoid
1306 * writing to those blocks. This potentially requires several
1307 * writes to write around the bad blocks. Each set of writes
1308 * gets its own r10_bio with a set of bios attached. The number
1309 * of r10_bios is recored in bio->bi_phys_segments just as with
1310 * the read case.
1da177e4 1311 */
c3b328ac 1312
69335ef3 1313 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1314 raid10_find_phys(conf, r10_bio);
d4432c23 1315retry_write:
cb6969e8 1316 blocked_rdev = NULL;
1da177e4 1317 rcu_read_lock();
d4432c23
N
1318 max_sectors = r10_bio->sectors;
1319
1da177e4
LT
1320 for (i = 0; i < conf->copies; i++) {
1321 int d = r10_bio->devs[i].devnum;
3cb03002 1322 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1323 struct md_rdev *rrdev = rcu_dereference(
1324 conf->mirrors[d].replacement);
4ca40c2c
N
1325 if (rdev == rrdev)
1326 rrdev = NULL;
6bfe0b49
DW
1327 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1328 atomic_inc(&rdev->nr_pending);
1329 blocked_rdev = rdev;
1330 break;
1331 }
475b0321
N
1332 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1333 atomic_inc(&rrdev->nr_pending);
1334 blocked_rdev = rrdev;
1335 break;
1336 }
050b6615
N
1337 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1338 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1339 rrdev = NULL;
1340
d4432c23 1341 r10_bio->devs[i].bio = NULL;
475b0321 1342 r10_bio->devs[i].repl_bio = NULL;
050b6615
N
1343 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1344 test_bit(Unmerged, &rdev->flags)) {
6cce3b23 1345 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1346 continue;
1347 }
1348 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1349 sector_t first_bad;
1350 sector_t dev_sector = r10_bio->devs[i].addr;
1351 int bad_sectors;
1352 int is_bad;
1353
1354 is_bad = is_badblock(rdev, dev_sector,
1355 max_sectors,
1356 &first_bad, &bad_sectors);
1357 if (is_bad < 0) {
1358 /* Mustn't write here until the bad block
1359 * is acknowledged
1360 */
1361 atomic_inc(&rdev->nr_pending);
1362 set_bit(BlockedBadBlocks, &rdev->flags);
1363 blocked_rdev = rdev;
1364 break;
1365 }
1366 if (is_bad && first_bad <= dev_sector) {
1367 /* Cannot write here at all */
1368 bad_sectors -= (dev_sector - first_bad);
1369 if (bad_sectors < max_sectors)
1370 /* Mustn't write more than bad_sectors
1371 * to other devices yet
1372 */
1373 max_sectors = bad_sectors;
1374 /* We don't set R10BIO_Degraded as that
1375 * only applies if the disk is missing,
1376 * so it might be re-added, and we want to
1377 * know to recover this chunk.
1378 * In this case the device is here, and the
1379 * fact that this chunk is not in-sync is
1380 * recorded in the bad block log.
1381 */
1382 continue;
1383 }
1384 if (is_bad) {
1385 int good_sectors = first_bad - dev_sector;
1386 if (good_sectors < max_sectors)
1387 max_sectors = good_sectors;
1388 }
6cce3b23 1389 }
d4432c23
N
1390 r10_bio->devs[i].bio = bio;
1391 atomic_inc(&rdev->nr_pending);
475b0321
N
1392 if (rrdev) {
1393 r10_bio->devs[i].repl_bio = bio;
1394 atomic_inc(&rrdev->nr_pending);
1395 }
1da177e4
LT
1396 }
1397 rcu_read_unlock();
1398
6bfe0b49
DW
1399 if (unlikely(blocked_rdev)) {
1400 /* Have to wait for this device to get unblocked, then retry */
1401 int j;
1402 int d;
1403
475b0321 1404 for (j = 0; j < i; j++) {
6bfe0b49
DW
1405 if (r10_bio->devs[j].bio) {
1406 d = r10_bio->devs[j].devnum;
1407 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1408 }
475b0321 1409 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1410 struct md_rdev *rdev;
475b0321 1411 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1412 rdev = conf->mirrors[d].replacement;
1413 if (!rdev) {
1414 /* Race with remove_disk */
1415 smp_mb();
1416 rdev = conf->mirrors[d].rdev;
1417 }
1418 rdev_dec_pending(rdev, mddev);
475b0321
N
1419 }
1420 }
6bfe0b49
DW
1421 allow_barrier(conf);
1422 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1423 wait_barrier(conf);
1424 goto retry_write;
1425 }
1426
d4432c23
N
1427 if (max_sectors < r10_bio->sectors) {
1428 /* We are splitting this into multiple parts, so
1429 * we need to prepare for allocating another r10_bio.
1430 */
1431 r10_bio->sectors = max_sectors;
1432 spin_lock_irq(&conf->device_lock);
1433 if (bio->bi_phys_segments == 0)
1434 bio->bi_phys_segments = 2;
1435 else
1436 bio->bi_phys_segments++;
1437 spin_unlock_irq(&conf->device_lock);
1438 }
1439 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1440
4e78064f 1441 atomic_set(&r10_bio->remaining, 1);
d4432c23 1442 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1443
1da177e4
LT
1444 for (i = 0; i < conf->copies; i++) {
1445 struct bio *mbio;
1446 int d = r10_bio->devs[i].devnum;
1447 if (!r10_bio->devs[i].bio)
1448 continue;
1449
a167f663 1450 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1451 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1452 max_sectors);
1da177e4
LT
1453 r10_bio->devs[i].bio = mbio;
1454
d4432c23 1455 mbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f
N
1456 choose_data_offset(r10_bio,
1457 conf->mirrors[d].rdev));
1da177e4
LT
1458 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1459 mbio->bi_end_io = raid10_end_write_request;
532a2a3f 1460 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1da177e4
LT
1461 mbio->bi_private = r10_bio;
1462
1463 atomic_inc(&r10_bio->remaining);
57c67df4
N
1464
1465 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1466 if (cb)
1467 plug = container_of(cb, struct raid10_plug_cb, cb);
1468 else
1469 plug = NULL;
4e78064f 1470 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1471 if (plug) {
1472 bio_list_add(&plug->pending, mbio);
1473 plug->pending_cnt++;
1474 } else {
1475 bio_list_add(&conf->pending_bio_list, mbio);
1476 conf->pending_count++;
1477 }
4e78064f 1478 spin_unlock_irqrestore(&conf->device_lock, flags);
57c67df4 1479 if (!plug)
b357f04a 1480 md_wakeup_thread(mddev->thread);
475b0321
N
1481
1482 if (!r10_bio->devs[i].repl_bio)
1483 continue;
1484
1485 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1486 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1487 max_sectors);
1488 r10_bio->devs[i].repl_bio = mbio;
1489
4ca40c2c
N
1490 /* We are actively writing to the original device
1491 * so it cannot disappear, so the replacement cannot
1492 * become NULL here
1493 */
f8c9e74f
N
1494 mbio->bi_sector = (r10_bio->devs[i].addr +
1495 choose_data_offset(
1496 r10_bio,
1497 conf->mirrors[d].replacement));
475b0321
N
1498 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1499 mbio->bi_end_io = raid10_end_write_request;
532a2a3f 1500 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
475b0321
N
1501 mbio->bi_private = r10_bio;
1502
1503 atomic_inc(&r10_bio->remaining);
1504 spin_lock_irqsave(&conf->device_lock, flags);
1505 bio_list_add(&conf->pending_bio_list, mbio);
1506 conf->pending_count++;
1507 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a
N
1508 if (!mddev_check_plugged(mddev))
1509 md_wakeup_thread(mddev->thread);
1da177e4
LT
1510 }
1511
079fa166
N
1512 /* Don't remove the bias on 'remaining' (one_write_done) until
1513 * after checking if we need to go around again.
1514 */
a35e63ef 1515
d4432c23 1516 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1517 one_write_done(r10_bio);
5e570289 1518 /* We need another r10_bio. It has already been counted
d4432c23
N
1519 * in bio->bi_phys_segments.
1520 */
1521 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1522
1523 r10_bio->master_bio = bio;
1524 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1525
1526 r10_bio->mddev = mddev;
1527 r10_bio->sector = bio->bi_sector + sectors_handled;
1528 r10_bio->state = 0;
1529 goto retry_write;
1530 }
079fa166
N
1531 one_write_done(r10_bio);
1532
1533 /* In case raid10d snuck in to freeze_array */
1534 wake_up(&conf->wait_barrier);
1da177e4
LT
1535}
1536
fd01b88c 1537static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1538{
e879a879 1539 struct r10conf *conf = mddev->private;
1da177e4
LT
1540 int i;
1541
5cf00fcd 1542 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1543 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1544 if (conf->geo.near_copies > 1)
1545 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546 if (conf->geo.far_copies > 1) {
1547 if (conf->geo.far_offset)
1548 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1549 else
5cf00fcd 1550 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1551 }
5cf00fcd
N
1552 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1553 conf->geo.raid_disks - mddev->degraded);
1554 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1555 seq_printf(seq, "%s",
1556 conf->mirrors[i].rdev &&
b2d444d7 1557 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1558 seq_printf(seq, "]");
1559}
1560
700c7213
N
1561/* check if there are enough drives for
1562 * every block to appear on atleast one.
1563 * Don't consider the device numbered 'ignore'
1564 * as we might be about to remove it.
1565 */
f8c9e74f 1566static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1567{
1568 int first = 0;
1569
1570 do {
1571 int n = conf->copies;
1572 int cnt = 0;
1573 while (n--) {
1574 if (conf->mirrors[first].rdev &&
1575 first != ignore)
1576 cnt++;
f8c9e74f 1577 first = (first+1) % geo->raid_disks;
700c7213
N
1578 }
1579 if (cnt == 0)
1580 return 0;
1581 } while (first != 0);
1582 return 1;
1583}
1584
f8c9e74f
N
1585static int enough(struct r10conf *conf, int ignore)
1586{
1587 return _enough(conf, &conf->geo, ignore) &&
1588 _enough(conf, &conf->prev, ignore);
1589}
1590
fd01b88c 1591static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1592{
1593 char b[BDEVNAME_SIZE];
e879a879 1594 struct r10conf *conf = mddev->private;
1da177e4
LT
1595
1596 /*
1597 * If it is not operational, then we have already marked it as dead
1598 * else if it is the last working disks, ignore the error, let the
1599 * next level up know.
1600 * else mark the drive as failed
1601 */
b2d444d7 1602 if (test_bit(In_sync, &rdev->flags)
700c7213 1603 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1604 /*
1605 * Don't fail the drive, just return an IO error.
1da177e4
LT
1606 */
1607 return;
c04be0aa
N
1608 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1609 unsigned long flags;
1610 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1611 mddev->degraded++;
c04be0aa 1612 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1613 /*
1614 * if recovery is running, make sure it aborts.
1615 */
dfc70645 1616 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1617 }
de393cde 1618 set_bit(Blocked, &rdev->flags);
b2d444d7 1619 set_bit(Faulty, &rdev->flags);
850b2b42 1620 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1621 printk(KERN_ALERT
1622 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1623 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1624 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1625 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1626}
1627
e879a879 1628static void print_conf(struct r10conf *conf)
1da177e4
LT
1629{
1630 int i;
dc280d98 1631 struct raid10_info *tmp;
1da177e4 1632
128595ed 1633 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1634 if (!conf) {
128595ed 1635 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1636 return;
1637 }
5cf00fcd
N
1638 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1639 conf->geo.raid_disks);
1da177e4 1640
5cf00fcd 1641 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1642 char b[BDEVNAME_SIZE];
1643 tmp = conf->mirrors + i;
1644 if (tmp->rdev)
128595ed 1645 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1646 i, !test_bit(In_sync, &tmp->rdev->flags),
1647 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1648 bdevname(tmp->rdev->bdev,b));
1649 }
1650}
1651
e879a879 1652static void close_sync(struct r10conf *conf)
1da177e4 1653{
0a27ec96
N
1654 wait_barrier(conf);
1655 allow_barrier(conf);
1da177e4
LT
1656
1657 mempool_destroy(conf->r10buf_pool);
1658 conf->r10buf_pool = NULL;
1659}
1660
fd01b88c 1661static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1662{
1663 int i;
e879a879 1664 struct r10conf *conf = mddev->private;
dc280d98 1665 struct raid10_info *tmp;
6b965620
N
1666 int count = 0;
1667 unsigned long flags;
1da177e4
LT
1668
1669 /*
1670 * Find all non-in_sync disks within the RAID10 configuration
1671 * and mark them in_sync
1672 */
5cf00fcd 1673 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1674 tmp = conf->mirrors + i;
4ca40c2c
N
1675 if (tmp->replacement
1676 && tmp->replacement->recovery_offset == MaxSector
1677 && !test_bit(Faulty, &tmp->replacement->flags)
1678 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1679 /* Replacement has just become active */
1680 if (!tmp->rdev
1681 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1682 count++;
1683 if (tmp->rdev) {
1684 /* Replaced device not technically faulty,
1685 * but we need to be sure it gets removed
1686 * and never re-added.
1687 */
1688 set_bit(Faulty, &tmp->rdev->flags);
1689 sysfs_notify_dirent_safe(
1690 tmp->rdev->sysfs_state);
1691 }
1692 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1693 } else if (tmp->rdev
1694 && !test_bit(Faulty, &tmp->rdev->flags)
1695 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1696 count++;
e6ffbcb6 1697 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1698 }
1699 }
6b965620
N
1700 spin_lock_irqsave(&conf->device_lock, flags);
1701 mddev->degraded -= count;
1702 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1703
1704 print_conf(conf);
6b965620 1705 return count;
1da177e4
LT
1706}
1707
1708
fd01b88c 1709static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1710{
e879a879 1711 struct r10conf *conf = mddev->private;
199050ea 1712 int err = -EEXIST;
1da177e4 1713 int mirror;
6c2fce2e 1714 int first = 0;
5cf00fcd 1715 int last = conf->geo.raid_disks - 1;
050b6615 1716 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1717
1718 if (mddev->recovery_cp < MaxSector)
1719 /* only hot-add to in-sync arrays, as recovery is
1720 * very different from resync
1721 */
199050ea 1722 return -EBUSY;
f8c9e74f 1723 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1724 return -EINVAL;
1da177e4 1725
a53a6c85 1726 if (rdev->raid_disk >= 0)
6c2fce2e 1727 first = last = rdev->raid_disk;
1da177e4 1728
050b6615
N
1729 if (q->merge_bvec_fn) {
1730 set_bit(Unmerged, &rdev->flags);
1731 mddev->merge_check_needed = 1;
1732 }
1733
2c4193df 1734 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1735 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1736 mirror = rdev->saved_raid_disk;
1737 else
6c2fce2e 1738 mirror = first;
2bb77736 1739 for ( ; mirror <= last ; mirror++) {
dc280d98 1740 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1741 if (p->recovery_disabled == mddev->recovery_disabled)
1742 continue;
b7044d41
N
1743 if (p->rdev) {
1744 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1745 p->replacement != NULL)
1746 continue;
1747 clear_bit(In_sync, &rdev->flags);
1748 set_bit(Replacement, &rdev->flags);
1749 rdev->raid_disk = mirror;
1750 err = 0;
1751 disk_stack_limits(mddev->gendisk, rdev->bdev,
1752 rdev->data_offset << 9);
b7044d41
N
1753 conf->fullsync = 1;
1754 rcu_assign_pointer(p->replacement, rdev);
1755 break;
1756 }
1da177e4 1757
2bb77736
N
1758 disk_stack_limits(mddev->gendisk, rdev->bdev,
1759 rdev->data_offset << 9);
1da177e4 1760
2bb77736 1761 p->head_position = 0;
d890fa2b 1762 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1763 rdev->raid_disk = mirror;
1764 err = 0;
1765 if (rdev->saved_raid_disk != mirror)
1766 conf->fullsync = 1;
1767 rcu_assign_pointer(p->rdev, rdev);
1768 break;
1769 }
050b6615
N
1770 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1771 /* Some requests might not have seen this new
1772 * merge_bvec_fn. We must wait for them to complete
1773 * before merging the device fully.
1774 * First we make sure any code which has tested
1775 * our function has submitted the request, then
1776 * we wait for all outstanding requests to complete.
1777 */
1778 synchronize_sched();
1779 raise_barrier(conf, 0);
1780 lower_barrier(conf);
1781 clear_bit(Unmerged, &rdev->flags);
1782 }
ac5e7113 1783 md_integrity_add_rdev(rdev, mddev);
532a2a3f
SL
1784 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1785 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1786
1da177e4 1787 print_conf(conf);
199050ea 1788 return err;
1da177e4
LT
1789}
1790
b8321b68 1791static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1792{
e879a879 1793 struct r10conf *conf = mddev->private;
1da177e4 1794 int err = 0;
b8321b68 1795 int number = rdev->raid_disk;
c8ab903e 1796 struct md_rdev **rdevp;
dc280d98 1797 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1798
1799 print_conf(conf);
c8ab903e
N
1800 if (rdev == p->rdev)
1801 rdevp = &p->rdev;
1802 else if (rdev == p->replacement)
1803 rdevp = &p->replacement;
1804 else
1805 return 0;
1806
1807 if (test_bit(In_sync, &rdev->flags) ||
1808 atomic_read(&rdev->nr_pending)) {
1809 err = -EBUSY;
1810 goto abort;
1811 }
1812 /* Only remove faulty devices if recovery
1813 * is not possible.
1814 */
1815 if (!test_bit(Faulty, &rdev->flags) &&
1816 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1817 (!p->replacement || p->replacement == rdev) &&
63aced61 1818 number < conf->geo.raid_disks &&
c8ab903e
N
1819 enough(conf, -1)) {
1820 err = -EBUSY;
1821 goto abort;
1da177e4 1822 }
c8ab903e
N
1823 *rdevp = NULL;
1824 synchronize_rcu();
1825 if (atomic_read(&rdev->nr_pending)) {
1826 /* lost the race, try later */
1827 err = -EBUSY;
1828 *rdevp = rdev;
1829 goto abort;
4ca40c2c
N
1830 } else if (p->replacement) {
1831 /* We must have just cleared 'rdev' */
1832 p->rdev = p->replacement;
1833 clear_bit(Replacement, &p->replacement->flags);
1834 smp_mb(); /* Make sure other CPUs may see both as identical
1835 * but will never see neither -- if they are careful.
1836 */
1837 p->replacement = NULL;
1838 clear_bit(WantReplacement, &rdev->flags);
1839 } else
1840 /* We might have just remove the Replacement as faulty
1841 * Clear the flag just in case
1842 */
1843 clear_bit(WantReplacement, &rdev->flags);
1844
c8ab903e
N
1845 err = md_integrity_register(mddev);
1846
1da177e4
LT
1847abort:
1848
1849 print_conf(conf);
1850 return err;
1851}
1852
1853
6712ecf8 1854static void end_sync_read(struct bio *bio, int error)
1da177e4 1855{
9f2c9d12 1856 struct r10bio *r10_bio = bio->bi_private;
e879a879 1857 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1858 int d;
1da177e4 1859
3ea7daa5
N
1860 if (bio == r10_bio->master_bio) {
1861 /* this is a reshape read */
1862 d = r10_bio->read_slot; /* really the read dev */
1863 } else
1864 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1865
1866 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1867 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1868 else
1869 /* The write handler will notice the lack of
1870 * R10BIO_Uptodate and record any errors etc
1871 */
4dbcdc75
N
1872 atomic_add(r10_bio->sectors,
1873 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1874
1875 /* for reconstruct, we always reschedule after a read.
1876 * for resync, only after all reads
1877 */
73d5c38a 1878 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1879 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1880 atomic_dec_and_test(&r10_bio->remaining)) {
1881 /* we have read all the blocks,
1882 * do the comparison in process context in raid10d
1883 */
1884 reschedule_retry(r10_bio);
1885 }
1da177e4
LT
1886}
1887
9f2c9d12 1888static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1889{
fd01b88c 1890 struct mddev *mddev = r10_bio->mddev;
dfc70645 1891
1da177e4
LT
1892 while (atomic_dec_and_test(&r10_bio->remaining)) {
1893 if (r10_bio->master_bio == NULL) {
1894 /* the primary of several recovery bios */
73d5c38a 1895 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1896 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1897 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1898 reschedule_retry(r10_bio);
1899 else
1900 put_buf(r10_bio);
73d5c38a 1901 md_done_sync(mddev, s, 1);
1da177e4
LT
1902 break;
1903 } else {
9f2c9d12 1904 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1905 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1906 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1907 reschedule_retry(r10_bio);
1908 else
1909 put_buf(r10_bio);
1da177e4
LT
1910 r10_bio = r10_bio2;
1911 }
1912 }
1da177e4
LT
1913}
1914
5e570289
N
1915static void end_sync_write(struct bio *bio, int error)
1916{
1917 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1918 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1919 struct mddev *mddev = r10_bio->mddev;
e879a879 1920 struct r10conf *conf = mddev->private;
5e570289
N
1921 int d;
1922 sector_t first_bad;
1923 int bad_sectors;
1924 int slot;
9ad1aefc 1925 int repl;
4ca40c2c 1926 struct md_rdev *rdev = NULL;
5e570289 1927
9ad1aefc
N
1928 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1929 if (repl)
1930 rdev = conf->mirrors[d].replacement;
547414d1 1931 else
9ad1aefc 1932 rdev = conf->mirrors[d].rdev;
5e570289
N
1933
1934 if (!uptodate) {
9ad1aefc
N
1935 if (repl)
1936 md_error(mddev, rdev);
1937 else {
1938 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1939 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1940 set_bit(MD_RECOVERY_NEEDED,
1941 &rdev->mddev->recovery);
9ad1aefc
N
1942 set_bit(R10BIO_WriteError, &r10_bio->state);
1943 }
1944 } else if (is_badblock(rdev,
5e570289
N
1945 r10_bio->devs[slot].addr,
1946 r10_bio->sectors,
1947 &first_bad, &bad_sectors))
1948 set_bit(R10BIO_MadeGood, &r10_bio->state);
1949
9ad1aefc 1950 rdev_dec_pending(rdev, mddev);
5e570289
N
1951
1952 end_sync_request(r10_bio);
1953}
1954
1da177e4
LT
1955/*
1956 * Note: sync and recover and handled very differently for raid10
1957 * This code is for resync.
1958 * For resync, we read through virtual addresses and read all blocks.
1959 * If there is any error, we schedule a write. The lowest numbered
1960 * drive is authoritative.
1961 * However requests come for physical address, so we need to map.
1962 * For every physical address there are raid_disks/copies virtual addresses,
1963 * which is always are least one, but is not necessarly an integer.
1964 * This means that a physical address can span multiple chunks, so we may
1965 * have to submit multiple io requests for a single sync request.
1966 */
1967/*
1968 * We check if all blocks are in-sync and only write to blocks that
1969 * aren't in sync
1970 */
9f2c9d12 1971static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1972{
e879a879 1973 struct r10conf *conf = mddev->private;
1da177e4
LT
1974 int i, first;
1975 struct bio *tbio, *fbio;
f4380a91 1976 int vcnt;
1da177e4
LT
1977
1978 atomic_set(&r10_bio->remaining, 1);
1979
1980 /* find the first device with a block */
1981 for (i=0; i<conf->copies; i++)
1982 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1983 break;
1984
1985 if (i == conf->copies)
1986 goto done;
1987
1988 first = i;
1989 fbio = r10_bio->devs[i].bio;
1990
f4380a91 1991 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1992 /* now find blocks with errors */
0eb3ff12
N
1993 for (i=0 ; i < conf->copies ; i++) {
1994 int j, d;
1da177e4 1995
1da177e4 1996 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1997
1998 if (tbio->bi_end_io != end_sync_read)
1999 continue;
2000 if (i == first)
1da177e4 2001 continue;
0eb3ff12
N
2002 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2003 /* We know that the bi_io_vec layout is the same for
2004 * both 'first' and 'i', so we just compare them.
2005 * All vec entries are PAGE_SIZE;
2006 */
2007 for (j = 0; j < vcnt; j++)
2008 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2009 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 2010 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
2011 break;
2012 if (j == vcnt)
2013 continue;
2014 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
2015 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2016 /* Don't fix anything. */
2017 continue;
0eb3ff12 2018 }
f84ee364
N
2019 /* Ok, we need to write this bio, either to correct an
2020 * inconsistency or to correct an unreadable block.
1da177e4
LT
2021 * First we need to fixup bv_offset, bv_len and
2022 * bi_vecs, as the read request might have corrupted these
2023 */
2024 tbio->bi_vcnt = vcnt;
2025 tbio->bi_size = r10_bio->sectors << 9;
2026 tbio->bi_idx = 0;
2027 tbio->bi_phys_segments = 0;
1da177e4
LT
2028 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2029 tbio->bi_flags |= 1 << BIO_UPTODATE;
2030 tbio->bi_next = NULL;
2031 tbio->bi_rw = WRITE;
2032 tbio->bi_private = r10_bio;
2033 tbio->bi_sector = r10_bio->devs[i].addr;
2034
2035 for (j=0; j < vcnt ; j++) {
2036 tbio->bi_io_vec[j].bv_offset = 0;
2037 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2038
2039 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2040 page_address(fbio->bi_io_vec[j].bv_page),
2041 PAGE_SIZE);
2042 }
2043 tbio->bi_end_io = end_sync_write;
2044
2045 d = r10_bio->devs[i].devnum;
2046 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2047 atomic_inc(&r10_bio->remaining);
2048 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2049
2050 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2051 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2052 generic_make_request(tbio);
2053 }
2054
9ad1aefc
N
2055 /* Now write out to any replacement devices
2056 * that are active
2057 */
2058 for (i = 0; i < conf->copies; i++) {
2059 int j, d;
9ad1aefc
N
2060
2061 tbio = r10_bio->devs[i].repl_bio;
2062 if (!tbio || !tbio->bi_end_io)
2063 continue;
2064 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2065 && r10_bio->devs[i].bio != fbio)
2066 for (j = 0; j < vcnt; j++)
2067 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2068 page_address(fbio->bi_io_vec[j].bv_page),
2069 PAGE_SIZE);
2070 d = r10_bio->devs[i].devnum;
2071 atomic_inc(&r10_bio->remaining);
2072 md_sync_acct(conf->mirrors[d].replacement->bdev,
2073 tbio->bi_size >> 9);
2074 generic_make_request(tbio);
2075 }
2076
1da177e4
LT
2077done:
2078 if (atomic_dec_and_test(&r10_bio->remaining)) {
2079 md_done_sync(mddev, r10_bio->sectors, 1);
2080 put_buf(r10_bio);
2081 }
2082}
2083
2084/*
2085 * Now for the recovery code.
2086 * Recovery happens across physical sectors.
2087 * We recover all non-is_sync drives by finding the virtual address of
2088 * each, and then choose a working drive that also has that virt address.
2089 * There is a separate r10_bio for each non-in_sync drive.
2090 * Only the first two slots are in use. The first for reading,
2091 * The second for writing.
2092 *
2093 */
9f2c9d12 2094static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2095{
2096 /* We got a read error during recovery.
2097 * We repeat the read in smaller page-sized sections.
2098 * If a read succeeds, write it to the new device or record
2099 * a bad block if we cannot.
2100 * If a read fails, record a bad block on both old and
2101 * new devices.
2102 */
fd01b88c 2103 struct mddev *mddev = r10_bio->mddev;
e879a879 2104 struct r10conf *conf = mddev->private;
5e570289
N
2105 struct bio *bio = r10_bio->devs[0].bio;
2106 sector_t sect = 0;
2107 int sectors = r10_bio->sectors;
2108 int idx = 0;
2109 int dr = r10_bio->devs[0].devnum;
2110 int dw = r10_bio->devs[1].devnum;
2111
2112 while (sectors) {
2113 int s = sectors;
3cb03002 2114 struct md_rdev *rdev;
5e570289
N
2115 sector_t addr;
2116 int ok;
2117
2118 if (s > (PAGE_SIZE>>9))
2119 s = PAGE_SIZE >> 9;
2120
2121 rdev = conf->mirrors[dr].rdev;
2122 addr = r10_bio->devs[0].addr + sect,
2123 ok = sync_page_io(rdev,
2124 addr,
2125 s << 9,
2126 bio->bi_io_vec[idx].bv_page,
2127 READ, false);
2128 if (ok) {
2129 rdev = conf->mirrors[dw].rdev;
2130 addr = r10_bio->devs[1].addr + sect;
2131 ok = sync_page_io(rdev,
2132 addr,
2133 s << 9,
2134 bio->bi_io_vec[idx].bv_page,
2135 WRITE, false);
b7044d41 2136 if (!ok) {
5e570289 2137 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2138 if (!test_and_set_bit(WantReplacement,
2139 &rdev->flags))
2140 set_bit(MD_RECOVERY_NEEDED,
2141 &rdev->mddev->recovery);
2142 }
5e570289
N
2143 }
2144 if (!ok) {
2145 /* We don't worry if we cannot set a bad block -
2146 * it really is bad so there is no loss in not
2147 * recording it yet
2148 */
2149 rdev_set_badblocks(rdev, addr, s, 0);
2150
2151 if (rdev != conf->mirrors[dw].rdev) {
2152 /* need bad block on destination too */
3cb03002 2153 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2154 addr = r10_bio->devs[1].addr + sect;
2155 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2156 if (!ok) {
2157 /* just abort the recovery */
2158 printk(KERN_NOTICE
2159 "md/raid10:%s: recovery aborted"
2160 " due to read error\n",
2161 mdname(mddev));
2162
2163 conf->mirrors[dw].recovery_disabled
2164 = mddev->recovery_disabled;
2165 set_bit(MD_RECOVERY_INTR,
2166 &mddev->recovery);
2167 break;
2168 }
2169 }
2170 }
2171
2172 sectors -= s;
2173 sect += s;
2174 idx++;
2175 }
2176}
1da177e4 2177
9f2c9d12 2178static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2179{
e879a879 2180 struct r10conf *conf = mddev->private;
c65060ad 2181 int d;
24afd80d 2182 struct bio *wbio, *wbio2;
1da177e4 2183
5e570289
N
2184 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2185 fix_recovery_read_error(r10_bio);
2186 end_sync_request(r10_bio);
2187 return;
2188 }
2189
c65060ad
NK
2190 /*
2191 * share the pages with the first bio
1da177e4
LT
2192 * and submit the write request
2193 */
1da177e4 2194 d = r10_bio->devs[1].devnum;
24afd80d
N
2195 wbio = r10_bio->devs[1].bio;
2196 wbio2 = r10_bio->devs[1].repl_bio;
2197 if (wbio->bi_end_io) {
2198 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2199 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2200 generic_make_request(wbio);
2201 }
2202 if (wbio2 && wbio2->bi_end_io) {
2203 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2204 md_sync_acct(conf->mirrors[d].replacement->bdev,
2205 wbio2->bi_size >> 9);
2206 generic_make_request(wbio2);
2207 }
1da177e4
LT
2208}
2209
2210
1e50915f
RB
2211/*
2212 * Used by fix_read_error() to decay the per rdev read_errors.
2213 * We halve the read error count for every hour that has elapsed
2214 * since the last recorded read error.
2215 *
2216 */
fd01b88c 2217static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2218{
2219 struct timespec cur_time_mon;
2220 unsigned long hours_since_last;
2221 unsigned int read_errors = atomic_read(&rdev->read_errors);
2222
2223 ktime_get_ts(&cur_time_mon);
2224
2225 if (rdev->last_read_error.tv_sec == 0 &&
2226 rdev->last_read_error.tv_nsec == 0) {
2227 /* first time we've seen a read error */
2228 rdev->last_read_error = cur_time_mon;
2229 return;
2230 }
2231
2232 hours_since_last = (cur_time_mon.tv_sec -
2233 rdev->last_read_error.tv_sec) / 3600;
2234
2235 rdev->last_read_error = cur_time_mon;
2236
2237 /*
2238 * if hours_since_last is > the number of bits in read_errors
2239 * just set read errors to 0. We do this to avoid
2240 * overflowing the shift of read_errors by hours_since_last.
2241 */
2242 if (hours_since_last >= 8 * sizeof(read_errors))
2243 atomic_set(&rdev->read_errors, 0);
2244 else
2245 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2246}
2247
3cb03002 2248static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2249 int sectors, struct page *page, int rw)
2250{
2251 sector_t first_bad;
2252 int bad_sectors;
2253
2254 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2255 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2256 return -1;
2257 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2258 /* success */
2259 return 1;
b7044d41 2260 if (rw == WRITE) {
58c54fcc 2261 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2262 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2263 set_bit(MD_RECOVERY_NEEDED,
2264 &rdev->mddev->recovery);
2265 }
58c54fcc
N
2266 /* need to record an error - either for the block or the device */
2267 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2268 md_error(rdev->mddev, rdev);
2269 return 0;
2270}
2271
1da177e4
LT
2272/*
2273 * This is a kernel thread which:
2274 *
2275 * 1. Retries failed read operations on working mirrors.
2276 * 2. Updates the raid superblock when problems encounter.
6814d536 2277 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2278 */
2279
e879a879 2280static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2281{
2282 int sect = 0; /* Offset from r10_bio->sector */
2283 int sectors = r10_bio->sectors;
3cb03002 2284 struct md_rdev*rdev;
1e50915f 2285 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2286 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2287
7c4e06ff
N
2288 /* still own a reference to this rdev, so it cannot
2289 * have been cleared recently.
2290 */
2291 rdev = conf->mirrors[d].rdev;
1e50915f 2292
7c4e06ff
N
2293 if (test_bit(Faulty, &rdev->flags))
2294 /* drive has already been failed, just ignore any
2295 more fix_read_error() attempts */
2296 return;
1e50915f 2297
7c4e06ff
N
2298 check_decay_read_errors(mddev, rdev);
2299 atomic_inc(&rdev->read_errors);
2300 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2301 char b[BDEVNAME_SIZE];
2302 bdevname(rdev->bdev, b);
1e50915f 2303
7c4e06ff
N
2304 printk(KERN_NOTICE
2305 "md/raid10:%s: %s: Raid device exceeded "
2306 "read_error threshold [cur %d:max %d]\n",
2307 mdname(mddev), b,
2308 atomic_read(&rdev->read_errors), max_read_errors);
2309 printk(KERN_NOTICE
2310 "md/raid10:%s: %s: Failing raid device\n",
2311 mdname(mddev), b);
2312 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2313 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2314 return;
1e50915f 2315 }
1e50915f 2316
6814d536
N
2317 while(sectors) {
2318 int s = sectors;
2319 int sl = r10_bio->read_slot;
2320 int success = 0;
2321 int start;
2322
2323 if (s > (PAGE_SIZE>>9))
2324 s = PAGE_SIZE >> 9;
2325
2326 rcu_read_lock();
2327 do {
8dbed5ce
N
2328 sector_t first_bad;
2329 int bad_sectors;
2330
0544a21d 2331 d = r10_bio->devs[sl].devnum;
6814d536
N
2332 rdev = rcu_dereference(conf->mirrors[d].rdev);
2333 if (rdev &&
050b6615 2334 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2335 test_bit(In_sync, &rdev->flags) &&
2336 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2337 &first_bad, &bad_sectors) == 0) {
6814d536
N
2338 atomic_inc(&rdev->nr_pending);
2339 rcu_read_unlock();
2b193363 2340 success = sync_page_io(rdev,
6814d536 2341 r10_bio->devs[sl].addr +
ccebd4c4 2342 sect,
6814d536 2343 s<<9,
ccebd4c4 2344 conf->tmppage, READ, false);
6814d536
N
2345 rdev_dec_pending(rdev, mddev);
2346 rcu_read_lock();
2347 if (success)
2348 break;
2349 }
2350 sl++;
2351 if (sl == conf->copies)
2352 sl = 0;
2353 } while (!success && sl != r10_bio->read_slot);
2354 rcu_read_unlock();
2355
2356 if (!success) {
58c54fcc
N
2357 /* Cannot read from anywhere, just mark the block
2358 * as bad on the first device to discourage future
2359 * reads.
2360 */
6814d536 2361 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2362 rdev = conf->mirrors[dn].rdev;
2363
2364 if (!rdev_set_badblocks(
2365 rdev,
2366 r10_bio->devs[r10_bio->read_slot].addr
2367 + sect,
fae8cc5e 2368 s, 0)) {
58c54fcc 2369 md_error(mddev, rdev);
fae8cc5e
N
2370 r10_bio->devs[r10_bio->read_slot].bio
2371 = IO_BLOCKED;
2372 }
6814d536
N
2373 break;
2374 }
2375
2376 start = sl;
2377 /* write it back and re-read */
2378 rcu_read_lock();
2379 while (sl != r10_bio->read_slot) {
67b8dc4b 2380 char b[BDEVNAME_SIZE];
0544a21d 2381
6814d536
N
2382 if (sl==0)
2383 sl = conf->copies;
2384 sl--;
2385 d = r10_bio->devs[sl].devnum;
2386 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2387 if (!rdev ||
050b6615 2388 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2389 !test_bit(In_sync, &rdev->flags))
2390 continue;
2391
2392 atomic_inc(&rdev->nr_pending);
2393 rcu_read_unlock();
58c54fcc
N
2394 if (r10_sync_page_io(rdev,
2395 r10_bio->devs[sl].addr +
2396 sect,
055d3747 2397 s, conf->tmppage, WRITE)
1294b9c9
N
2398 == 0) {
2399 /* Well, this device is dead */
2400 printk(KERN_NOTICE
2401 "md/raid10:%s: read correction "
2402 "write failed"
2403 " (%d sectors at %llu on %s)\n",
2404 mdname(mddev), s,
2405 (unsigned long long)(
f8c9e74f
N
2406 sect +
2407 choose_data_offset(r10_bio,
2408 rdev)),
1294b9c9
N
2409 bdevname(rdev->bdev, b));
2410 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2411 "drive\n",
2412 mdname(mddev),
2413 bdevname(rdev->bdev, b));
6814d536 2414 }
1294b9c9
N
2415 rdev_dec_pending(rdev, mddev);
2416 rcu_read_lock();
6814d536
N
2417 }
2418 sl = start;
2419 while (sl != r10_bio->read_slot) {
1294b9c9 2420 char b[BDEVNAME_SIZE];
0544a21d 2421
6814d536
N
2422 if (sl==0)
2423 sl = conf->copies;
2424 sl--;
2425 d = r10_bio->devs[sl].devnum;
2426 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2427 if (!rdev ||
2428 !test_bit(In_sync, &rdev->flags))
2429 continue;
6814d536 2430
1294b9c9
N
2431 atomic_inc(&rdev->nr_pending);
2432 rcu_read_unlock();
58c54fcc
N
2433 switch (r10_sync_page_io(rdev,
2434 r10_bio->devs[sl].addr +
2435 sect,
055d3747 2436 s, conf->tmppage,
58c54fcc
N
2437 READ)) {
2438 case 0:
1294b9c9
N
2439 /* Well, this device is dead */
2440 printk(KERN_NOTICE
2441 "md/raid10:%s: unable to read back "
2442 "corrected sectors"
2443 " (%d sectors at %llu on %s)\n",
2444 mdname(mddev), s,
2445 (unsigned long long)(
f8c9e74f
N
2446 sect +
2447 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2448 bdevname(rdev->bdev, b));
2449 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2450 "drive\n",
2451 mdname(mddev),
2452 bdevname(rdev->bdev, b));
58c54fcc
N
2453 break;
2454 case 1:
1294b9c9
N
2455 printk(KERN_INFO
2456 "md/raid10:%s: read error corrected"
2457 " (%d sectors at %llu on %s)\n",
2458 mdname(mddev), s,
2459 (unsigned long long)(
f8c9e74f
N
2460 sect +
2461 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2462 bdevname(rdev->bdev, b));
2463 atomic_add(s, &rdev->corrected_errors);
6814d536 2464 }
1294b9c9
N
2465
2466 rdev_dec_pending(rdev, mddev);
2467 rcu_read_lock();
6814d536
N
2468 }
2469 rcu_read_unlock();
2470
2471 sectors -= s;
2472 sect += s;
2473 }
2474}
2475
bd870a16
N
2476static void bi_complete(struct bio *bio, int error)
2477{
2478 complete((struct completion *)bio->bi_private);
2479}
2480
2481static int submit_bio_wait(int rw, struct bio *bio)
2482{
2483 struct completion event;
2484 rw |= REQ_SYNC;
2485
2486 init_completion(&event);
2487 bio->bi_private = &event;
2488 bio->bi_end_io = bi_complete;
2489 submit_bio(rw, bio);
2490 wait_for_completion(&event);
2491
2492 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2493}
2494
9f2c9d12 2495static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2496{
2497 struct bio *bio = r10_bio->master_bio;
fd01b88c 2498 struct mddev *mddev = r10_bio->mddev;
e879a879 2499 struct r10conf *conf = mddev->private;
3cb03002 2500 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2501 /* bio has the data to be written to slot 'i' where
2502 * we just recently had a write error.
2503 * We repeatedly clone the bio and trim down to one block,
2504 * then try the write. Where the write fails we record
2505 * a bad block.
2506 * It is conceivable that the bio doesn't exactly align with
2507 * blocks. We must handle this.
2508 *
2509 * We currently own a reference to the rdev.
2510 */
2511
2512 int block_sectors;
2513 sector_t sector;
2514 int sectors;
2515 int sect_to_write = r10_bio->sectors;
2516 int ok = 1;
2517
2518 if (rdev->badblocks.shift < 0)
2519 return 0;
2520
2521 block_sectors = 1 << rdev->badblocks.shift;
2522 sector = r10_bio->sector;
2523 sectors = ((r10_bio->sector + block_sectors)
2524 & ~(sector_t)(block_sectors - 1))
2525 - sector;
2526
2527 while (sect_to_write) {
2528 struct bio *wbio;
2529 if (sectors > sect_to_write)
2530 sectors = sect_to_write;
2531 /* Write at 'sector' for 'sectors' */
2532 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2533 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2534 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2535 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2536 (sector - r10_bio->sector));
2537 wbio->bi_bdev = rdev->bdev;
2538 if (submit_bio_wait(WRITE, wbio) == 0)
2539 /* Failure! */
2540 ok = rdev_set_badblocks(rdev, sector,
2541 sectors, 0)
2542 && ok;
2543
2544 bio_put(wbio);
2545 sect_to_write -= sectors;
2546 sector += sectors;
2547 sectors = block_sectors;
2548 }
2549 return ok;
2550}
2551
9f2c9d12 2552static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2553{
2554 int slot = r10_bio->read_slot;
560f8e55 2555 struct bio *bio;
e879a879 2556 struct r10conf *conf = mddev->private;
abbf098e 2557 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2558 char b[BDEVNAME_SIZE];
2559 unsigned long do_sync;
856e08e2 2560 int max_sectors;
560f8e55
N
2561
2562 /* we got a read error. Maybe the drive is bad. Maybe just
2563 * the block and we can fix it.
2564 * We freeze all other IO, and try reading the block from
2565 * other devices. When we find one, we re-write
2566 * and check it that fixes the read error.
2567 * This is all done synchronously while the array is
2568 * frozen.
2569 */
fae8cc5e
N
2570 bio = r10_bio->devs[slot].bio;
2571 bdevname(bio->bi_bdev, b);
2572 bio_put(bio);
2573 r10_bio->devs[slot].bio = NULL;
2574
560f8e55
N
2575 if (mddev->ro == 0) {
2576 freeze_array(conf);
2577 fix_read_error(conf, mddev, r10_bio);
2578 unfreeze_array(conf);
fae8cc5e
N
2579 } else
2580 r10_bio->devs[slot].bio = IO_BLOCKED;
2581
abbf098e 2582 rdev_dec_pending(rdev, mddev);
560f8e55 2583
7399c31b 2584read_more:
96c3fd1f
N
2585 rdev = read_balance(conf, r10_bio, &max_sectors);
2586 if (rdev == NULL) {
560f8e55
N
2587 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2588 " read error for block %llu\n",
7399c31b 2589 mdname(mddev), b,
560f8e55
N
2590 (unsigned long long)r10_bio->sector);
2591 raid_end_bio_io(r10_bio);
560f8e55
N
2592 return;
2593 }
2594
2595 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2596 slot = r10_bio->read_slot;
560f8e55
N
2597 printk_ratelimited(
2598 KERN_ERR
055d3747 2599 "md/raid10:%s: %s: redirecting "
560f8e55
N
2600 "sector %llu to another mirror\n",
2601 mdname(mddev),
2602 bdevname(rdev->bdev, b),
2603 (unsigned long long)r10_bio->sector);
2604 bio = bio_clone_mddev(r10_bio->master_bio,
2605 GFP_NOIO, mddev);
7399c31b
N
2606 md_trim_bio(bio,
2607 r10_bio->sector - bio->bi_sector,
2608 max_sectors);
560f8e55 2609 r10_bio->devs[slot].bio = bio;
abbf098e 2610 r10_bio->devs[slot].rdev = rdev;
560f8e55 2611 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2612 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2613 bio->bi_bdev = rdev->bdev;
2614 bio->bi_rw = READ | do_sync;
2615 bio->bi_private = r10_bio;
2616 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2617 if (max_sectors < r10_bio->sectors) {
2618 /* Drat - have to split this up more */
2619 struct bio *mbio = r10_bio->master_bio;
2620 int sectors_handled =
2621 r10_bio->sector + max_sectors
2622 - mbio->bi_sector;
2623 r10_bio->sectors = max_sectors;
2624 spin_lock_irq(&conf->device_lock);
2625 if (mbio->bi_phys_segments == 0)
2626 mbio->bi_phys_segments = 2;
2627 else
2628 mbio->bi_phys_segments++;
2629 spin_unlock_irq(&conf->device_lock);
2630 generic_make_request(bio);
7399c31b
N
2631
2632 r10_bio = mempool_alloc(conf->r10bio_pool,
2633 GFP_NOIO);
2634 r10_bio->master_bio = mbio;
2635 r10_bio->sectors = (mbio->bi_size >> 9)
2636 - sectors_handled;
2637 r10_bio->state = 0;
2638 set_bit(R10BIO_ReadError,
2639 &r10_bio->state);
2640 r10_bio->mddev = mddev;
2641 r10_bio->sector = mbio->bi_sector
2642 + sectors_handled;
2643
2644 goto read_more;
2645 } else
2646 generic_make_request(bio);
560f8e55
N
2647}
2648
e879a879 2649static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2650{
2651 /* Some sort of write request has finished and it
2652 * succeeded in writing where we thought there was a
2653 * bad block. So forget the bad block.
1a0b7cd8
N
2654 * Or possibly if failed and we need to record
2655 * a bad block.
749c55e9
N
2656 */
2657 int m;
3cb03002 2658 struct md_rdev *rdev;
749c55e9
N
2659
2660 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2661 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2662 for (m = 0; m < conf->copies; m++) {
2663 int dev = r10_bio->devs[m].devnum;
2664 rdev = conf->mirrors[dev].rdev;
2665 if (r10_bio->devs[m].bio == NULL)
2666 continue;
2667 if (test_bit(BIO_UPTODATE,
749c55e9 2668 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2669 rdev_clear_badblocks(
2670 rdev,
2671 r10_bio->devs[m].addr,
c6563a8c 2672 r10_bio->sectors, 0);
1a0b7cd8
N
2673 } else {
2674 if (!rdev_set_badblocks(
2675 rdev,
2676 r10_bio->devs[m].addr,
2677 r10_bio->sectors, 0))
2678 md_error(conf->mddev, rdev);
749c55e9 2679 }
9ad1aefc
N
2680 rdev = conf->mirrors[dev].replacement;
2681 if (r10_bio->devs[m].repl_bio == NULL)
2682 continue;
2683 if (test_bit(BIO_UPTODATE,
2684 &r10_bio->devs[m].repl_bio->bi_flags)) {
2685 rdev_clear_badblocks(
2686 rdev,
2687 r10_bio->devs[m].addr,
c6563a8c 2688 r10_bio->sectors, 0);
9ad1aefc
N
2689 } else {
2690 if (!rdev_set_badblocks(
2691 rdev,
2692 r10_bio->devs[m].addr,
2693 r10_bio->sectors, 0))
2694 md_error(conf->mddev, rdev);
2695 }
1a0b7cd8 2696 }
749c55e9
N
2697 put_buf(r10_bio);
2698 } else {
bd870a16
N
2699 for (m = 0; m < conf->copies; m++) {
2700 int dev = r10_bio->devs[m].devnum;
2701 struct bio *bio = r10_bio->devs[m].bio;
2702 rdev = conf->mirrors[dev].rdev;
2703 if (bio == IO_MADE_GOOD) {
749c55e9
N
2704 rdev_clear_badblocks(
2705 rdev,
2706 r10_bio->devs[m].addr,
c6563a8c 2707 r10_bio->sectors, 0);
749c55e9 2708 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2709 } else if (bio != NULL &&
2710 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2711 if (!narrow_write_error(r10_bio, m)) {
2712 md_error(conf->mddev, rdev);
2713 set_bit(R10BIO_Degraded,
2714 &r10_bio->state);
2715 }
2716 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2717 }
475b0321
N
2718 bio = r10_bio->devs[m].repl_bio;
2719 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2720 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2721 rdev_clear_badblocks(
2722 rdev,
2723 r10_bio->devs[m].addr,
c6563a8c 2724 r10_bio->sectors, 0);
475b0321
N
2725 rdev_dec_pending(rdev, conf->mddev);
2726 }
bd870a16
N
2727 }
2728 if (test_bit(R10BIO_WriteError,
2729 &r10_bio->state))
2730 close_write(r10_bio);
749c55e9
N
2731 raid_end_bio_io(r10_bio);
2732 }
2733}
2734
fd01b88c 2735static void raid10d(struct mddev *mddev)
1da177e4 2736{
9f2c9d12 2737 struct r10bio *r10_bio;
1da177e4 2738 unsigned long flags;
e879a879 2739 struct r10conf *conf = mddev->private;
1da177e4 2740 struct list_head *head = &conf->retry_list;
e1dfa0a2 2741 struct blk_plug plug;
1da177e4
LT
2742
2743 md_check_recovery(mddev);
1da177e4 2744
e1dfa0a2 2745 blk_start_plug(&plug);
1da177e4 2746 for (;;) {
6cce3b23 2747
0021b7bc 2748 flush_pending_writes(conf);
6cce3b23 2749
a35e63ef
N
2750 spin_lock_irqsave(&conf->device_lock, flags);
2751 if (list_empty(head)) {
2752 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2753 break;
a35e63ef 2754 }
9f2c9d12 2755 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2756 list_del(head->prev);
4443ae10 2757 conf->nr_queued--;
1da177e4
LT
2758 spin_unlock_irqrestore(&conf->device_lock, flags);
2759
2760 mddev = r10_bio->mddev;
070ec55d 2761 conf = mddev->private;
bd870a16
N
2762 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2763 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2764 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2765 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2766 reshape_request_write(mddev, r10_bio);
749c55e9 2767 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2768 sync_request_write(mddev, r10_bio);
7eaceacc 2769 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2770 recovery_request_write(mddev, r10_bio);
856e08e2 2771 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2772 handle_read_error(mddev, r10_bio);
856e08e2
N
2773 else {
2774 /* just a partial read to be scheduled from a
2775 * separate context
2776 */
2777 int slot = r10_bio->read_slot;
2778 generic_make_request(r10_bio->devs[slot].bio);
2779 }
560f8e55 2780
1d9d5241 2781 cond_resched();
de393cde
N
2782 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2783 md_check_recovery(mddev);
1da177e4 2784 }
e1dfa0a2 2785 blk_finish_plug(&plug);
1da177e4
LT
2786}
2787
2788
e879a879 2789static int init_resync(struct r10conf *conf)
1da177e4
LT
2790{
2791 int buffs;
69335ef3 2792 int i;
1da177e4
LT
2793
2794 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2795 BUG_ON(conf->r10buf_pool);
69335ef3 2796 conf->have_replacement = 0;
5cf00fcd 2797 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2798 if (conf->mirrors[i].replacement)
2799 conf->have_replacement = 1;
1da177e4
LT
2800 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2801 if (!conf->r10buf_pool)
2802 return -ENOMEM;
2803 conf->next_resync = 0;
2804 return 0;
2805}
2806
2807/*
2808 * perform a "sync" on one "block"
2809 *
2810 * We need to make sure that no normal I/O request - particularly write
2811 * requests - conflict with active sync requests.
2812 *
2813 * This is achieved by tracking pending requests and a 'barrier' concept
2814 * that can be installed to exclude normal IO requests.
2815 *
2816 * Resync and recovery are handled very differently.
2817 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2818 *
2819 * For resync, we iterate over virtual addresses, read all copies,
2820 * and update if there are differences. If only one copy is live,
2821 * skip it.
2822 * For recovery, we iterate over physical addresses, read a good
2823 * value for each non-in_sync drive, and over-write.
2824 *
2825 * So, for recovery we may have several outstanding complex requests for a
2826 * given address, one for each out-of-sync device. We model this by allocating
2827 * a number of r10_bio structures, one for each out-of-sync device.
2828 * As we setup these structures, we collect all bio's together into a list
2829 * which we then process collectively to add pages, and then process again
2830 * to pass to generic_make_request.
2831 *
2832 * The r10_bio structures are linked using a borrowed master_bio pointer.
2833 * This link is counted in ->remaining. When the r10_bio that points to NULL
2834 * has its remaining count decremented to 0, the whole complex operation
2835 * is complete.
2836 *
2837 */
2838
fd01b88c 2839static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2840 int *skipped, int go_faster)
1da177e4 2841{
e879a879 2842 struct r10conf *conf = mddev->private;
9f2c9d12 2843 struct r10bio *r10_bio;
1da177e4
LT
2844 struct bio *biolist = NULL, *bio;
2845 sector_t max_sector, nr_sectors;
1da177e4 2846 int i;
6cce3b23 2847 int max_sync;
57dab0bd 2848 sector_t sync_blocks;
1da177e4
LT
2849 sector_t sectors_skipped = 0;
2850 int chunks_skipped = 0;
5cf00fcd 2851 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2852
2853 if (!conf->r10buf_pool)
2854 if (init_resync(conf))
57afd89f 2855 return 0;
1da177e4
LT
2856
2857 skipped:
58c0fed4 2858 max_sector = mddev->dev_sectors;
3ea7daa5
N
2859 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2860 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2861 max_sector = mddev->resync_max_sectors;
2862 if (sector_nr >= max_sector) {
6cce3b23
N
2863 /* If we aborted, we need to abort the
2864 * sync on the 'current' bitmap chucks (there can
2865 * be several when recovering multiple devices).
2866 * as we may have started syncing it but not finished.
2867 * We can find the current address in
2868 * mddev->curr_resync, but for recovery,
2869 * we need to convert that to several
2870 * virtual addresses.
2871 */
3ea7daa5
N
2872 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2873 end_reshape(conf);
2874 return 0;
2875 }
2876
6cce3b23
N
2877 if (mddev->curr_resync < max_sector) { /* aborted */
2878 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2879 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2880 &sync_blocks, 1);
5cf00fcd 2881 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2882 sector_t sect =
2883 raid10_find_virt(conf, mddev->curr_resync, i);
2884 bitmap_end_sync(mddev->bitmap, sect,
2885 &sync_blocks, 1);
2886 }
9ad1aefc
N
2887 } else {
2888 /* completed sync */
2889 if ((!mddev->bitmap || conf->fullsync)
2890 && conf->have_replacement
2891 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2892 /* Completed a full sync so the replacements
2893 * are now fully recovered.
2894 */
5cf00fcd 2895 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2896 if (conf->mirrors[i].replacement)
2897 conf->mirrors[i].replacement
2898 ->recovery_offset
2899 = MaxSector;
2900 }
6cce3b23 2901 conf->fullsync = 0;
9ad1aefc 2902 }
6cce3b23 2903 bitmap_close_sync(mddev->bitmap);
1da177e4 2904 close_sync(conf);
57afd89f 2905 *skipped = 1;
1da177e4
LT
2906 return sectors_skipped;
2907 }
3ea7daa5
N
2908
2909 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2910 return reshape_request(mddev, sector_nr, skipped);
2911
5cf00fcd 2912 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2913 /* if there has been nothing to do on any drive,
2914 * then there is nothing to do at all..
2915 */
57afd89f
N
2916 *skipped = 1;
2917 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2918 }
2919
c6207277
N
2920 if (max_sector > mddev->resync_max)
2921 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2922
1da177e4
LT
2923 /* make sure whole request will fit in a chunk - if chunks
2924 * are meaningful
2925 */
5cf00fcd
N
2926 if (conf->geo.near_copies < conf->geo.raid_disks &&
2927 max_sector > (sector_nr | chunk_mask))
2928 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2929 /*
2930 * If there is non-resync activity waiting for us then
2931 * put in a delay to throttle resync.
2932 */
0a27ec96 2933 if (!go_faster && conf->nr_waiting)
1da177e4 2934 msleep_interruptible(1000);
1da177e4
LT
2935
2936 /* Again, very different code for resync and recovery.
2937 * Both must result in an r10bio with a list of bios that
2938 * have bi_end_io, bi_sector, bi_bdev set,
2939 * and bi_private set to the r10bio.
2940 * For recovery, we may actually create several r10bios
2941 * with 2 bios in each, that correspond to the bios in the main one.
2942 * In this case, the subordinate r10bios link back through a
2943 * borrowed master_bio pointer, and the counter in the master
2944 * includes a ref from each subordinate.
2945 */
2946 /* First, we decide what to do and set ->bi_end_io
2947 * To end_sync_read if we want to read, and
2948 * end_sync_write if we will want to write.
2949 */
2950
6cce3b23 2951 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2952 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2953 /* recovery... the complicated one */
e875ecea 2954 int j;
1da177e4
LT
2955 r10_bio = NULL;
2956
5cf00fcd 2957 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2958 int still_degraded;
9f2c9d12 2959 struct r10bio *rb2;
ab9d47e9
N
2960 sector_t sect;
2961 int must_sync;
e875ecea 2962 int any_working;
dc280d98 2963 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
2964
2965 if ((mirror->rdev == NULL ||
2966 test_bit(In_sync, &mirror->rdev->flags))
2967 &&
2968 (mirror->replacement == NULL ||
2969 test_bit(Faulty,
2970 &mirror->replacement->flags)))
ab9d47e9 2971 continue;
1da177e4 2972
ab9d47e9
N
2973 still_degraded = 0;
2974 /* want to reconstruct this device */
2975 rb2 = r10_bio;
2976 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
2977 if (sect >= mddev->resync_max_sectors) {
2978 /* last stripe is not complete - don't
2979 * try to recover this sector.
2980 */
2981 continue;
2982 }
24afd80d
N
2983 /* Unless we are doing a full sync, or a replacement
2984 * we only need to recover the block if it is set in
2985 * the bitmap
ab9d47e9
N
2986 */
2987 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2988 &sync_blocks, 1);
2989 if (sync_blocks < max_sync)
2990 max_sync = sync_blocks;
2991 if (!must_sync &&
24afd80d 2992 mirror->replacement == NULL &&
ab9d47e9
N
2993 !conf->fullsync) {
2994 /* yep, skip the sync_blocks here, but don't assume
2995 * that there will never be anything to do here
2996 */
2997 chunks_skipped = -1;
2998 continue;
2999 }
6cce3b23 3000
ab9d47e9
N
3001 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3002 raise_barrier(conf, rb2 != NULL);
3003 atomic_set(&r10_bio->remaining, 0);
18055569 3004
ab9d47e9
N
3005 r10_bio->master_bio = (struct bio*)rb2;
3006 if (rb2)
3007 atomic_inc(&rb2->remaining);
3008 r10_bio->mddev = mddev;
3009 set_bit(R10BIO_IsRecover, &r10_bio->state);
3010 r10_bio->sector = sect;
1da177e4 3011
ab9d47e9
N
3012 raid10_find_phys(conf, r10_bio);
3013
3014 /* Need to check if the array will still be
3015 * degraded
3016 */
5cf00fcd 3017 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3018 if (conf->mirrors[j].rdev == NULL ||
3019 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3020 still_degraded = 1;
87fc767b 3021 break;
1da177e4 3022 }
ab9d47e9
N
3023
3024 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3025 &sync_blocks, still_degraded);
3026
e875ecea 3027 any_working = 0;
ab9d47e9 3028 for (j=0; j<conf->copies;j++) {
e875ecea 3029 int k;
ab9d47e9 3030 int d = r10_bio->devs[j].devnum;
5e570289 3031 sector_t from_addr, to_addr;
3cb03002 3032 struct md_rdev *rdev;
40c356ce
N
3033 sector_t sector, first_bad;
3034 int bad_sectors;
ab9d47e9
N
3035 if (!conf->mirrors[d].rdev ||
3036 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3037 continue;
3038 /* This is where we read from */
e875ecea 3039 any_working = 1;
40c356ce
N
3040 rdev = conf->mirrors[d].rdev;
3041 sector = r10_bio->devs[j].addr;
3042
3043 if (is_badblock(rdev, sector, max_sync,
3044 &first_bad, &bad_sectors)) {
3045 if (first_bad > sector)
3046 max_sync = first_bad - sector;
3047 else {
3048 bad_sectors -= (sector
3049 - first_bad);
3050 if (max_sync > bad_sectors)
3051 max_sync = bad_sectors;
3052 continue;
3053 }
3054 }
ab9d47e9
N
3055 bio = r10_bio->devs[0].bio;
3056 bio->bi_next = biolist;
3057 biolist = bio;
3058 bio->bi_private = r10_bio;
3059 bio->bi_end_io = end_sync_read;
3060 bio->bi_rw = READ;
5e570289 3061 from_addr = r10_bio->devs[j].addr;
24afd80d
N
3062 bio->bi_sector = from_addr + rdev->data_offset;
3063 bio->bi_bdev = rdev->bdev;
3064 atomic_inc(&rdev->nr_pending);
3065 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3066
3067 for (k=0; k<conf->copies; k++)
3068 if (r10_bio->devs[k].devnum == i)
3069 break;
3070 BUG_ON(k == conf->copies);
5e570289 3071 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3072 r10_bio->devs[0].devnum = d;
5e570289 3073 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3074 r10_bio->devs[1].devnum = i;
5e570289 3075 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3076
24afd80d
N
3077 rdev = mirror->rdev;
3078 if (!test_bit(In_sync, &rdev->flags)) {
3079 bio = r10_bio->devs[1].bio;
3080 bio->bi_next = biolist;
3081 biolist = bio;
3082 bio->bi_private = r10_bio;
3083 bio->bi_end_io = end_sync_write;
3084 bio->bi_rw = WRITE;
3085 bio->bi_sector = to_addr
3086 + rdev->data_offset;
3087 bio->bi_bdev = rdev->bdev;
3088 atomic_inc(&r10_bio->remaining);
3089 } else
3090 r10_bio->devs[1].bio->bi_end_io = NULL;
3091
3092 /* and maybe write to replacement */
3093 bio = r10_bio->devs[1].repl_bio;
3094 if (bio)
3095 bio->bi_end_io = NULL;
3096 rdev = mirror->replacement;
3097 /* Note: if rdev != NULL, then bio
3098 * cannot be NULL as r10buf_pool_alloc will
3099 * have allocated it.
3100 * So the second test here is pointless.
3101 * But it keeps semantic-checkers happy, and
3102 * this comment keeps human reviewers
3103 * happy.
3104 */
3105 if (rdev == NULL || bio == NULL ||
3106 test_bit(Faulty, &rdev->flags))
3107 break;
3108 bio->bi_next = biolist;
3109 biolist = bio;
3110 bio->bi_private = r10_bio;
3111 bio->bi_end_io = end_sync_write;
3112 bio->bi_rw = WRITE;
3113 bio->bi_sector = to_addr + rdev->data_offset;
3114 bio->bi_bdev = rdev->bdev;
3115 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3116 break;
3117 }
3118 if (j == conf->copies) {
e875ecea
N
3119 /* Cannot recover, so abort the recovery or
3120 * record a bad block */
ab9d47e9
N
3121 put_buf(r10_bio);
3122 if (rb2)
3123 atomic_dec(&rb2->remaining);
3124 r10_bio = rb2;
e875ecea
N
3125 if (any_working) {
3126 /* problem is that there are bad blocks
3127 * on other device(s)
3128 */
3129 int k;
3130 for (k = 0; k < conf->copies; k++)
3131 if (r10_bio->devs[k].devnum == i)
3132 break;
24afd80d
N
3133 if (!test_bit(In_sync,
3134 &mirror->rdev->flags)
3135 && !rdev_set_badblocks(
3136 mirror->rdev,
3137 r10_bio->devs[k].addr,
3138 max_sync, 0))
3139 any_working = 0;
3140 if (mirror->replacement &&
3141 !rdev_set_badblocks(
3142 mirror->replacement,
e875ecea
N
3143 r10_bio->devs[k].addr,
3144 max_sync, 0))
3145 any_working = 0;
3146 }
3147 if (!any_working) {
3148 if (!test_and_set_bit(MD_RECOVERY_INTR,
3149 &mddev->recovery))
3150 printk(KERN_INFO "md/raid10:%s: insufficient "
3151 "working devices for recovery.\n",
3152 mdname(mddev));
24afd80d 3153 mirror->recovery_disabled
e875ecea
N
3154 = mddev->recovery_disabled;
3155 }
ab9d47e9 3156 break;
1da177e4 3157 }
ab9d47e9 3158 }
1da177e4
LT
3159 if (biolist == NULL) {
3160 while (r10_bio) {
9f2c9d12
N
3161 struct r10bio *rb2 = r10_bio;
3162 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3163 rb2->master_bio = NULL;
3164 put_buf(rb2);
3165 }
3166 goto giveup;
3167 }
3168 } else {
3169 /* resync. Schedule a read for every block at this virt offset */
3170 int count = 0;
6cce3b23 3171
78200d45
N
3172 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3173
6cce3b23
N
3174 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3175 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3176 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3177 &mddev->recovery)) {
6cce3b23
N
3178 /* We can skip this block */
3179 *skipped = 1;
3180 return sync_blocks + sectors_skipped;
3181 }
3182 if (sync_blocks < max_sync)
3183 max_sync = sync_blocks;
1da177e4
LT
3184 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3185
1da177e4
LT
3186 r10_bio->mddev = mddev;
3187 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3188 raise_barrier(conf, 0);
3189 conf->next_resync = sector_nr;
1da177e4
LT
3190
3191 r10_bio->master_bio = NULL;
3192 r10_bio->sector = sector_nr;
3193 set_bit(R10BIO_IsSync, &r10_bio->state);
3194 raid10_find_phys(conf, r10_bio);
5cf00fcd 3195 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3196
5cf00fcd 3197 for (i = 0; i < conf->copies; i++) {
1da177e4 3198 int d = r10_bio->devs[i].devnum;
40c356ce
N
3199 sector_t first_bad, sector;
3200 int bad_sectors;
3201
9ad1aefc
N
3202 if (r10_bio->devs[i].repl_bio)
3203 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3204
1da177e4
LT
3205 bio = r10_bio->devs[i].bio;
3206 bio->bi_end_io = NULL;
af03b8e4 3207 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3208 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3209 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3210 continue;
40c356ce
N
3211 sector = r10_bio->devs[i].addr;
3212 if (is_badblock(conf->mirrors[d].rdev,
3213 sector, max_sync,
3214 &first_bad, &bad_sectors)) {
3215 if (first_bad > sector)
3216 max_sync = first_bad - sector;
3217 else {
3218 bad_sectors -= (sector - first_bad);
3219 if (max_sync > bad_sectors)
3220 max_sync = max_sync;
3221 continue;
3222 }
3223 }
1da177e4
LT
3224 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3225 atomic_inc(&r10_bio->remaining);
3226 bio->bi_next = biolist;
3227 biolist = bio;
3228 bio->bi_private = r10_bio;
3229 bio->bi_end_io = end_sync_read;
802ba064 3230 bio->bi_rw = READ;
40c356ce 3231 bio->bi_sector = sector +
1da177e4
LT
3232 conf->mirrors[d].rdev->data_offset;
3233 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3234 count++;
9ad1aefc
N
3235
3236 if (conf->mirrors[d].replacement == NULL ||
3237 test_bit(Faulty,
3238 &conf->mirrors[d].replacement->flags))
3239 continue;
3240
3241 /* Need to set up for writing to the replacement */
3242 bio = r10_bio->devs[i].repl_bio;
3243 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3244
3245 sector = r10_bio->devs[i].addr;
3246 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3247 bio->bi_next = biolist;
3248 biolist = bio;
3249 bio->bi_private = r10_bio;
3250 bio->bi_end_io = end_sync_write;
3251 bio->bi_rw = WRITE;
3252 bio->bi_sector = sector +
3253 conf->mirrors[d].replacement->data_offset;
3254 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3255 count++;
1da177e4
LT
3256 }
3257
3258 if (count < 2) {
3259 for (i=0; i<conf->copies; i++) {
3260 int d = r10_bio->devs[i].devnum;
3261 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3262 rdev_dec_pending(conf->mirrors[d].rdev,
3263 mddev);
9ad1aefc
N
3264 if (r10_bio->devs[i].repl_bio &&
3265 r10_bio->devs[i].repl_bio->bi_end_io)
3266 rdev_dec_pending(
3267 conf->mirrors[d].replacement,
3268 mddev);
1da177e4
LT
3269 }
3270 put_buf(r10_bio);
3271 biolist = NULL;
3272 goto giveup;
3273 }
3274 }
3275
3276 for (bio = biolist; bio ; bio=bio->bi_next) {
3277
3278 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3279 if (bio->bi_end_io)
3280 bio->bi_flags |= 1 << BIO_UPTODATE;
3281 bio->bi_vcnt = 0;
3282 bio->bi_idx = 0;
3283 bio->bi_phys_segments = 0;
1da177e4
LT
3284 bio->bi_size = 0;
3285 }
3286
3287 nr_sectors = 0;
6cce3b23
N
3288 if (sector_nr + max_sync < max_sector)
3289 max_sector = sector_nr + max_sync;
1da177e4
LT
3290 do {
3291 struct page *page;
3292 int len = PAGE_SIZE;
1da177e4
LT
3293 if (sector_nr + (len>>9) > max_sector)
3294 len = (max_sector - sector_nr) << 9;
3295 if (len == 0)
3296 break;
3297 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3298 struct bio *bio2;
1da177e4 3299 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3300 if (bio_add_page(bio, page, len, 0))
3301 continue;
3302
3303 /* stop here */
3304 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3305 for (bio2 = biolist;
3306 bio2 && bio2 != bio;
3307 bio2 = bio2->bi_next) {
3308 /* remove last page from this bio */
3309 bio2->bi_vcnt--;
3310 bio2->bi_size -= len;
3311 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3312 }
ab9d47e9 3313 goto bio_full;
1da177e4
LT
3314 }
3315 nr_sectors += len>>9;
3316 sector_nr += len>>9;
3317 } while (biolist->bi_vcnt < RESYNC_PAGES);
3318 bio_full:
3319 r10_bio->sectors = nr_sectors;
3320
3321 while (biolist) {
3322 bio = biolist;
3323 biolist = biolist->bi_next;
3324
3325 bio->bi_next = NULL;
3326 r10_bio = bio->bi_private;
3327 r10_bio->sectors = nr_sectors;
3328
3329 if (bio->bi_end_io == end_sync_read) {
3330 md_sync_acct(bio->bi_bdev, nr_sectors);
3331 generic_make_request(bio);
3332 }
3333 }
3334
57afd89f
N
3335 if (sectors_skipped)
3336 /* pretend they weren't skipped, it makes
3337 * no important difference in this case
3338 */
3339 md_done_sync(mddev, sectors_skipped, 1);
3340
1da177e4
LT
3341 return sectors_skipped + nr_sectors;
3342 giveup:
3343 /* There is nowhere to write, so all non-sync
e875ecea
N
3344 * drives must be failed or in resync, all drives
3345 * have a bad block, so try the next chunk...
1da177e4 3346 */
09b4068a
N
3347 if (sector_nr + max_sync < max_sector)
3348 max_sector = sector_nr + max_sync;
3349
3350 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3351 chunks_skipped ++;
3352 sector_nr = max_sector;
1da177e4 3353 goto skipped;
1da177e4
LT
3354}
3355
80c3a6ce 3356static sector_t
fd01b88c 3357raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3358{
3359 sector_t size;
e879a879 3360 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3361
3362 if (!raid_disks)
3ea7daa5
N
3363 raid_disks = min(conf->geo.raid_disks,
3364 conf->prev.raid_disks);
80c3a6ce 3365 if (!sectors)
dab8b292 3366 sectors = conf->dev_sectors;
80c3a6ce 3367
5cf00fcd
N
3368 size = sectors >> conf->geo.chunk_shift;
3369 sector_div(size, conf->geo.far_copies);
80c3a6ce 3370 size = size * raid_disks;
5cf00fcd 3371 sector_div(size, conf->geo.near_copies);
80c3a6ce 3372
5cf00fcd 3373 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3374}
3375
6508fdbf
N
3376static void calc_sectors(struct r10conf *conf, sector_t size)
3377{
3378 /* Calculate the number of sectors-per-device that will
3379 * actually be used, and set conf->dev_sectors and
3380 * conf->stride
3381 */
3382
5cf00fcd
N
3383 size = size >> conf->geo.chunk_shift;
3384 sector_div(size, conf->geo.far_copies);
3385 size = size * conf->geo.raid_disks;
3386 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3387 /* 'size' is now the number of chunks in the array */
3388 /* calculate "used chunks per device" */
3389 size = size * conf->copies;
3390
3391 /* We need to round up when dividing by raid_disks to
3392 * get the stride size.
3393 */
5cf00fcd 3394 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3395
5cf00fcd 3396 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3397
5cf00fcd
N
3398 if (conf->geo.far_offset)
3399 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3400 else {
5cf00fcd
N
3401 sector_div(size, conf->geo.far_copies);
3402 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3403 }
3404}
dab8b292 3405
deb200d0
N
3406enum geo_type {geo_new, geo_old, geo_start};
3407static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3408{
3409 int nc, fc, fo;
3410 int layout, chunk, disks;
3411 switch (new) {
3412 case geo_old:
3413 layout = mddev->layout;
3414 chunk = mddev->chunk_sectors;
3415 disks = mddev->raid_disks - mddev->delta_disks;
3416 break;
3417 case geo_new:
3418 layout = mddev->new_layout;
3419 chunk = mddev->new_chunk_sectors;
3420 disks = mddev->raid_disks;
3421 break;
3422 default: /* avoid 'may be unused' warnings */
3423 case geo_start: /* new when starting reshape - raid_disks not
3424 * updated yet. */
3425 layout = mddev->new_layout;
3426 chunk = mddev->new_chunk_sectors;
3427 disks = mddev->raid_disks + mddev->delta_disks;
3428 break;
3429 }
3430 if (layout >> 17)
3431 return -1;
3432 if (chunk < (PAGE_SIZE >> 9) ||
3433 !is_power_of_2(chunk))
3434 return -2;
3435 nc = layout & 255;
3436 fc = (layout >> 8) & 255;
3437 fo = layout & (1<<16);
3438 geo->raid_disks = disks;
3439 geo->near_copies = nc;
3440 geo->far_copies = fc;
3441 geo->far_offset = fo;
3442 geo->chunk_mask = chunk - 1;
3443 geo->chunk_shift = ffz(~chunk);
3444 return nc*fc;
3445}
3446
e879a879 3447static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3448{
e879a879 3449 struct r10conf *conf = NULL;
dab8b292 3450 int err = -EINVAL;
deb200d0
N
3451 struct geom geo;
3452 int copies;
3453
3454 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3455
deb200d0 3456 if (copies == -2) {
128595ed
N
3457 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3458 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3459 mdname(mddev), PAGE_SIZE);
dab8b292 3460 goto out;
1da177e4 3461 }
2604b703 3462
deb200d0 3463 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3464 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3465 mdname(mddev), mddev->new_layout);
1da177e4
LT
3466 goto out;
3467 }
dab8b292
TM
3468
3469 err = -ENOMEM;
e879a879 3470 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3471 if (!conf)
1da177e4 3472 goto out;
dab8b292 3473
3ea7daa5 3474 /* FIXME calc properly */
dc280d98 3475 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3ea7daa5 3476 max(0,mddev->delta_disks)),
dab8b292
TM
3477 GFP_KERNEL);
3478 if (!conf->mirrors)
3479 goto out;
4443ae10
N
3480
3481 conf->tmppage = alloc_page(GFP_KERNEL);
3482 if (!conf->tmppage)
dab8b292
TM
3483 goto out;
3484
deb200d0
N
3485 conf->geo = geo;
3486 conf->copies = copies;
dab8b292
TM
3487 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3488 r10bio_pool_free, conf);
3489 if (!conf->r10bio_pool)
3490 goto out;
3491
6508fdbf 3492 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3493 if (mddev->reshape_position == MaxSector) {
3494 conf->prev = conf->geo;
3495 conf->reshape_progress = MaxSector;
3496 } else {
3497 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3498 err = -EINVAL;
3499 goto out;
3500 }
3501 conf->reshape_progress = mddev->reshape_position;
3502 if (conf->prev.far_offset)
3503 conf->prev.stride = 1 << conf->prev.chunk_shift;
3504 else
3505 /* far_copies must be 1 */
3506 conf->prev.stride = conf->dev_sectors;
3507 }
e7e72bf6 3508 spin_lock_init(&conf->device_lock);
dab8b292
TM
3509 INIT_LIST_HEAD(&conf->retry_list);
3510
3511 spin_lock_init(&conf->resync_lock);
3512 init_waitqueue_head(&conf->wait_barrier);
3513
0232605d 3514 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3515 if (!conf->thread)
3516 goto out;
3517
dab8b292
TM
3518 conf->mddev = mddev;
3519 return conf;
3520
3521 out:
3ea7daa5
N
3522 if (err == -ENOMEM)
3523 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3524 mdname(mddev));
dab8b292
TM
3525 if (conf) {
3526 if (conf->r10bio_pool)
3527 mempool_destroy(conf->r10bio_pool);
3528 kfree(conf->mirrors);
3529 safe_put_page(conf->tmppage);
3530 kfree(conf);
3531 }
3532 return ERR_PTR(err);
3533}
3534
fd01b88c 3535static int run(struct mddev *mddev)
dab8b292 3536{
e879a879 3537 struct r10conf *conf;
dab8b292 3538 int i, disk_idx, chunk_size;
dc280d98 3539 struct raid10_info *disk;
3cb03002 3540 struct md_rdev *rdev;
dab8b292 3541 sector_t size;
3ea7daa5
N
3542 sector_t min_offset_diff = 0;
3543 int first = 1;
532a2a3f 3544 bool discard_supported = false;
dab8b292
TM
3545
3546 if (mddev->private == NULL) {
3547 conf = setup_conf(mddev);
3548 if (IS_ERR(conf))
3549 return PTR_ERR(conf);
3550 mddev->private = conf;
3551 }
3552 conf = mddev->private;
3553 if (!conf)
3554 goto out;
3555
dab8b292
TM
3556 mddev->thread = conf->thread;
3557 conf->thread = NULL;
3558
8f6c2e4b 3559 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3560 if (mddev->queue) {
532a2a3f
SL
3561 blk_queue_max_discard_sectors(mddev->queue,
3562 mddev->chunk_sectors);
cc4d1efd
JB
3563 blk_queue_io_min(mddev->queue, chunk_size);
3564 if (conf->geo.raid_disks % conf->geo.near_copies)
3565 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3566 else
3567 blk_queue_io_opt(mddev->queue, chunk_size *
3568 (conf->geo.raid_disks / conf->geo.near_copies));
3569 }
8f6c2e4b 3570
dafb20fa 3571 rdev_for_each(rdev, mddev) {
3ea7daa5 3572 long long diff;
aba336bd 3573 struct request_queue *q;
34b343cf 3574
1da177e4 3575 disk_idx = rdev->raid_disk;
f8c9e74f
N
3576 if (disk_idx < 0)
3577 continue;
3578 if (disk_idx >= conf->geo.raid_disks &&
3579 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3580 continue;
3581 disk = conf->mirrors + disk_idx;
3582
56a2559b
N
3583 if (test_bit(Replacement, &rdev->flags)) {
3584 if (disk->replacement)
3585 goto out_free_conf;
3586 disk->replacement = rdev;
3587 } else {
3588 if (disk->rdev)
3589 goto out_free_conf;
3590 disk->rdev = rdev;
3591 }
aba336bd
N
3592 q = bdev_get_queue(rdev->bdev);
3593 if (q->merge_bvec_fn)
3594 mddev->merge_check_needed = 1;
3ea7daa5
N
3595 diff = (rdev->new_data_offset - rdev->data_offset);
3596 if (!mddev->reshape_backwards)
3597 diff = -diff;
3598 if (diff < 0)
3599 diff = 0;
3600 if (first || diff < min_offset_diff)
3601 min_offset_diff = diff;
56a2559b 3602
cc4d1efd
JB
3603 if (mddev->gendisk)
3604 disk_stack_limits(mddev->gendisk, rdev->bdev,
3605 rdev->data_offset << 9);
1da177e4
LT
3606
3607 disk->head_position = 0;
532a2a3f
SL
3608
3609 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3610 discard_supported = true;
1da177e4 3611 }
3ea7daa5 3612
532a2a3f
SL
3613 if (discard_supported)
3614 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
3615 else
3616 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
3617
6d508242 3618 /* need to check that every block has at least one working mirror */
700c7213 3619 if (!enough(conf, -1)) {
128595ed 3620 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3621 mdname(mddev));
1da177e4
LT
3622 goto out_free_conf;
3623 }
3624
3ea7daa5
N
3625 if (conf->reshape_progress != MaxSector) {
3626 /* must ensure that shape change is supported */
3627 if (conf->geo.far_copies != 1 &&
3628 conf->geo.far_offset == 0)
3629 goto out_free_conf;
3630 if (conf->prev.far_copies != 1 &&
3631 conf->geo.far_offset == 0)
3632 goto out_free_conf;
3633 }
3634
1da177e4 3635 mddev->degraded = 0;
f8c9e74f
N
3636 for (i = 0;
3637 i < conf->geo.raid_disks
3638 || i < conf->prev.raid_disks;
3639 i++) {
1da177e4
LT
3640
3641 disk = conf->mirrors + i;
3642
56a2559b
N
3643 if (!disk->rdev && disk->replacement) {
3644 /* The replacement is all we have - use it */
3645 disk->rdev = disk->replacement;
3646 disk->replacement = NULL;
3647 clear_bit(Replacement, &disk->rdev->flags);
3648 }
3649
5fd6c1dc 3650 if (!disk->rdev ||
2e333e89 3651 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3652 disk->head_position = 0;
3653 mddev->degraded++;
8c2e870a
NB
3654 if (disk->rdev)
3655 conf->fullsync = 1;
1da177e4 3656 }
d890fa2b 3657 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3658 }
3659
8c6ac868 3660 if (mddev->recovery_cp != MaxSector)
128595ed 3661 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3662 " -- starting background reconstruction\n",
3663 mdname(mddev));
1da177e4 3664 printk(KERN_INFO
128595ed 3665 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3666 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3667 conf->geo.raid_disks);
1da177e4
LT
3668 /*
3669 * Ok, everything is just fine now
3670 */
dab8b292
TM
3671 mddev->dev_sectors = conf->dev_sectors;
3672 size = raid10_size(mddev, 0, 0);
3673 md_set_array_sectors(mddev, size);
3674 mddev->resync_max_sectors = size;
1da177e4 3675
cc4d1efd 3676 if (mddev->queue) {
5cf00fcd 3677 int stripe = conf->geo.raid_disks *
9d8f0363 3678 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3679 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3680 mddev->queue->backing_dev_info.congested_data = mddev;
3681
3682 /* Calculate max read-ahead size.
3683 * We need to readahead at least twice a whole stripe....
3684 * maybe...
3685 */
5cf00fcd 3686 stripe /= conf->geo.near_copies;
3ea7daa5
N
3687 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3688 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3689 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3690 }
3691
a91a2785
MP
3692
3693 if (md_integrity_register(mddev))
3694 goto out_free_conf;
3695
3ea7daa5
N
3696 if (conf->reshape_progress != MaxSector) {
3697 unsigned long before_length, after_length;
3698
3699 before_length = ((1 << conf->prev.chunk_shift) *
3700 conf->prev.far_copies);
3701 after_length = ((1 << conf->geo.chunk_shift) *
3702 conf->geo.far_copies);
3703
3704 if (max(before_length, after_length) > min_offset_diff) {
3705 /* This cannot work */
3706 printk("md/raid10: offset difference not enough to continue reshape\n");
3707 goto out_free_conf;
3708 }
3709 conf->offset_diff = min_offset_diff;
3710
3711 conf->reshape_safe = conf->reshape_progress;
3712 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3713 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3714 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3715 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3716 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3717 "reshape");
3718 }
3719
1da177e4
LT
3720 return 0;
3721
3722out_free_conf:
01f96c0a 3723 md_unregister_thread(&mddev->thread);
1da177e4
LT
3724 if (conf->r10bio_pool)
3725 mempool_destroy(conf->r10bio_pool);
1345b1d8 3726 safe_put_page(conf->tmppage);
990a8baf 3727 kfree(conf->mirrors);
1da177e4
LT
3728 kfree(conf);
3729 mddev->private = NULL;
3730out:
3731 return -EIO;
3732}
3733
fd01b88c 3734static int stop(struct mddev *mddev)
1da177e4 3735{
e879a879 3736 struct r10conf *conf = mddev->private;
1da177e4 3737
409c57f3
N
3738 raise_barrier(conf, 0);
3739 lower_barrier(conf);
3740
01f96c0a 3741 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3742 if (mddev->queue)
3743 /* the unplug fn references 'conf'*/
3744 blk_sync_queue(mddev->queue);
3745
1da177e4
LT
3746 if (conf->r10bio_pool)
3747 mempool_destroy(conf->r10bio_pool);
990a8baf 3748 kfree(conf->mirrors);
1da177e4
LT
3749 kfree(conf);
3750 mddev->private = NULL;
3751 return 0;
3752}
3753
fd01b88c 3754static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3755{
e879a879 3756 struct r10conf *conf = mddev->private;
6cce3b23
N
3757
3758 switch(state) {
3759 case 1:
3760 raise_barrier(conf, 0);
3761 break;
3762 case 0:
3763 lower_barrier(conf);
3764 break;
3765 }
6cce3b23 3766}
1da177e4 3767
006a09a0
N
3768static int raid10_resize(struct mddev *mddev, sector_t sectors)
3769{
3770 /* Resize of 'far' arrays is not supported.
3771 * For 'near' and 'offset' arrays we can set the
3772 * number of sectors used to be an appropriate multiple
3773 * of the chunk size.
3774 * For 'offset', this is far_copies*chunksize.
3775 * For 'near' the multiplier is the LCM of
3776 * near_copies and raid_disks.
3777 * So if far_copies > 1 && !far_offset, fail.
3778 * Else find LCM(raid_disks, near_copy)*far_copies and
3779 * multiply by chunk_size. Then round to this number.
3780 * This is mostly done by raid10_size()
3781 */
3782 struct r10conf *conf = mddev->private;
3783 sector_t oldsize, size;
3784
f8c9e74f
N
3785 if (mddev->reshape_position != MaxSector)
3786 return -EBUSY;
3787
5cf00fcd 3788 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3789 return -EINVAL;
3790
3791 oldsize = raid10_size(mddev, 0, 0);
3792 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3793 if (mddev->external_size &&
3794 mddev->array_sectors > size)
006a09a0 3795 return -EINVAL;
a4a6125a
N
3796 if (mddev->bitmap) {
3797 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3798 if (ret)
3799 return ret;
3800 }
3801 md_set_array_sectors(mddev, size);
006a09a0
N
3802 set_capacity(mddev->gendisk, mddev->array_sectors);
3803 revalidate_disk(mddev->gendisk);
3804 if (sectors > mddev->dev_sectors &&
3805 mddev->recovery_cp > oldsize) {
3806 mddev->recovery_cp = oldsize;
3807 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3808 }
6508fdbf
N
3809 calc_sectors(conf, sectors);
3810 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3811 mddev->resync_max_sectors = size;
3812 return 0;
3813}
3814
fd01b88c 3815static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3816{
3cb03002 3817 struct md_rdev *rdev;
e879a879 3818 struct r10conf *conf;
dab8b292
TM
3819
3820 if (mddev->degraded > 0) {
128595ed
N
3821 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3822 mdname(mddev));
dab8b292
TM
3823 return ERR_PTR(-EINVAL);
3824 }
3825
dab8b292
TM
3826 /* Set new parameters */
3827 mddev->new_level = 10;
3828 /* new layout: far_copies = 1, near_copies = 2 */
3829 mddev->new_layout = (1<<8) + 2;
3830 mddev->new_chunk_sectors = mddev->chunk_sectors;
3831 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3832 mddev->raid_disks *= 2;
3833 /* make sure it will be not marked as dirty */
3834 mddev->recovery_cp = MaxSector;
3835
3836 conf = setup_conf(mddev);
02214dc5 3837 if (!IS_ERR(conf)) {
dafb20fa 3838 rdev_for_each(rdev, mddev)
e93f68a1
N
3839 if (rdev->raid_disk >= 0)
3840 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3841 conf->barrier = 1;
3842 }
3843
dab8b292
TM
3844 return conf;
3845}
3846
fd01b88c 3847static void *raid10_takeover(struct mddev *mddev)
dab8b292 3848{
e373ab10 3849 struct r0conf *raid0_conf;
dab8b292
TM
3850
3851 /* raid10 can take over:
3852 * raid0 - providing it has only two drives
3853 */
3854 if (mddev->level == 0) {
3855 /* for raid0 takeover only one zone is supported */
e373ab10
N
3856 raid0_conf = mddev->private;
3857 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3858 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3859 " with more than one zone.\n",
3860 mdname(mddev));
dab8b292
TM
3861 return ERR_PTR(-EINVAL);
3862 }
3863 return raid10_takeover_raid0(mddev);
3864 }
3865 return ERR_PTR(-EINVAL);
3866}
3867
3ea7daa5
N
3868static int raid10_check_reshape(struct mddev *mddev)
3869{
3870 /* Called when there is a request to change
3871 * - layout (to ->new_layout)
3872 * - chunk size (to ->new_chunk_sectors)
3873 * - raid_disks (by delta_disks)
3874 * or when trying to restart a reshape that was ongoing.
3875 *
3876 * We need to validate the request and possibly allocate
3877 * space if that might be an issue later.
3878 *
3879 * Currently we reject any reshape of a 'far' mode array,
3880 * allow chunk size to change if new is generally acceptable,
3881 * allow raid_disks to increase, and allow
3882 * a switch between 'near' mode and 'offset' mode.
3883 */
3884 struct r10conf *conf = mddev->private;
3885 struct geom geo;
3886
3887 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3888 return -EINVAL;
3889
3890 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3891 /* mustn't change number of copies */
3892 return -EINVAL;
3893 if (geo.far_copies > 1 && !geo.far_offset)
3894 /* Cannot switch to 'far' mode */
3895 return -EINVAL;
3896
3897 if (mddev->array_sectors & geo.chunk_mask)
3898 /* not factor of array size */
3899 return -EINVAL;
3900
3ea7daa5
N
3901 if (!enough(conf, -1))
3902 return -EINVAL;
3903
3904 kfree(conf->mirrors_new);
3905 conf->mirrors_new = NULL;
3906 if (mddev->delta_disks > 0) {
3907 /* allocate new 'mirrors' list */
3908 conf->mirrors_new = kzalloc(
dc280d98 3909 sizeof(struct raid10_info)
3ea7daa5
N
3910 *(mddev->raid_disks +
3911 mddev->delta_disks),
3912 GFP_KERNEL);
3913 if (!conf->mirrors_new)
3914 return -ENOMEM;
3915 }
3916 return 0;
3917}
3918
3919/*
3920 * Need to check if array has failed when deciding whether to:
3921 * - start an array
3922 * - remove non-faulty devices
3923 * - add a spare
3924 * - allow a reshape
3925 * This determination is simple when no reshape is happening.
3926 * However if there is a reshape, we need to carefully check
3927 * both the before and after sections.
3928 * This is because some failed devices may only affect one
3929 * of the two sections, and some non-in_sync devices may
3930 * be insync in the section most affected by failed devices.
3931 */
3932static int calc_degraded(struct r10conf *conf)
3933{
3934 int degraded, degraded2;
3935 int i;
3936
3937 rcu_read_lock();
3938 degraded = 0;
3939 /* 'prev' section first */
3940 for (i = 0; i < conf->prev.raid_disks; i++) {
3941 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3942 if (!rdev || test_bit(Faulty, &rdev->flags))
3943 degraded++;
3944 else if (!test_bit(In_sync, &rdev->flags))
3945 /* When we can reduce the number of devices in
3946 * an array, this might not contribute to
3947 * 'degraded'. It does now.
3948 */
3949 degraded++;
3950 }
3951 rcu_read_unlock();
3952 if (conf->geo.raid_disks == conf->prev.raid_disks)
3953 return degraded;
3954 rcu_read_lock();
3955 degraded2 = 0;
3956 for (i = 0; i < conf->geo.raid_disks; i++) {
3957 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3958 if (!rdev || test_bit(Faulty, &rdev->flags))
3959 degraded2++;
3960 else if (!test_bit(In_sync, &rdev->flags)) {
3961 /* If reshape is increasing the number of devices,
3962 * this section has already been recovered, so
3963 * it doesn't contribute to degraded.
3964 * else it does.
3965 */
3966 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3967 degraded2++;
3968 }
3969 }
3970 rcu_read_unlock();
3971 if (degraded2 > degraded)
3972 return degraded2;
3973 return degraded;
3974}
3975
3976static int raid10_start_reshape(struct mddev *mddev)
3977{
3978 /* A 'reshape' has been requested. This commits
3979 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3980 * This also checks if there are enough spares and adds them
3981 * to the array.
3982 * We currently require enough spares to make the final
3983 * array non-degraded. We also require that the difference
3984 * between old and new data_offset - on each device - is
3985 * enough that we never risk over-writing.
3986 */
3987
3988 unsigned long before_length, after_length;
3989 sector_t min_offset_diff = 0;
3990 int first = 1;
3991 struct geom new;
3992 struct r10conf *conf = mddev->private;
3993 struct md_rdev *rdev;
3994 int spares = 0;
bb63a701 3995 int ret;
3ea7daa5
N
3996
3997 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3998 return -EBUSY;
3999
4000 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4001 return -EINVAL;
4002
4003 before_length = ((1 << conf->prev.chunk_shift) *
4004 conf->prev.far_copies);
4005 after_length = ((1 << conf->geo.chunk_shift) *
4006 conf->geo.far_copies);
4007
4008 rdev_for_each(rdev, mddev) {
4009 if (!test_bit(In_sync, &rdev->flags)
4010 && !test_bit(Faulty, &rdev->flags))
4011 spares++;
4012 if (rdev->raid_disk >= 0) {
4013 long long diff = (rdev->new_data_offset
4014 - rdev->data_offset);
4015 if (!mddev->reshape_backwards)
4016 diff = -diff;
4017 if (diff < 0)
4018 diff = 0;
4019 if (first || diff < min_offset_diff)
4020 min_offset_diff = diff;
4021 }
4022 }
4023
4024 if (max(before_length, after_length) > min_offset_diff)
4025 return -EINVAL;
4026
4027 if (spares < mddev->delta_disks)
4028 return -EINVAL;
4029
4030 conf->offset_diff = min_offset_diff;
4031 spin_lock_irq(&conf->device_lock);
4032 if (conf->mirrors_new) {
4033 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4034 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
4035 smp_mb();
4036 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4037 conf->mirrors_old = conf->mirrors;
4038 conf->mirrors = conf->mirrors_new;
4039 conf->mirrors_new = NULL;
4040 }
4041 setup_geo(&conf->geo, mddev, geo_start);
4042 smp_mb();
4043 if (mddev->reshape_backwards) {
4044 sector_t size = raid10_size(mddev, 0, 0);
4045 if (size < mddev->array_sectors) {
4046 spin_unlock_irq(&conf->device_lock);
4047 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4048 mdname(mddev));
4049 return -EINVAL;
4050 }
4051 mddev->resync_max_sectors = size;
4052 conf->reshape_progress = size;
4053 } else
4054 conf->reshape_progress = 0;
4055 spin_unlock_irq(&conf->device_lock);
4056
bb63a701
N
4057 if (mddev->delta_disks && mddev->bitmap) {
4058 ret = bitmap_resize(mddev->bitmap,
4059 raid10_size(mddev, 0,
4060 conf->geo.raid_disks),
4061 0, 0);
4062 if (ret)
4063 goto abort;
4064 }
3ea7daa5
N
4065 if (mddev->delta_disks > 0) {
4066 rdev_for_each(rdev, mddev)
4067 if (rdev->raid_disk < 0 &&
4068 !test_bit(Faulty, &rdev->flags)) {
4069 if (raid10_add_disk(mddev, rdev) == 0) {
4070 if (rdev->raid_disk >=
4071 conf->prev.raid_disks)
4072 set_bit(In_sync, &rdev->flags);
4073 else
4074 rdev->recovery_offset = 0;
4075
4076 if (sysfs_link_rdev(mddev, rdev))
4077 /* Failure here is OK */;
4078 }
4079 } else if (rdev->raid_disk >= conf->prev.raid_disks
4080 && !test_bit(Faulty, &rdev->flags)) {
4081 /* This is a spare that was manually added */
4082 set_bit(In_sync, &rdev->flags);
4083 }
4084 }
4085 /* When a reshape changes the number of devices,
4086 * ->degraded is measured against the larger of the
4087 * pre and post numbers.
4088 */
4089 spin_lock_irq(&conf->device_lock);
4090 mddev->degraded = calc_degraded(conf);
4091 spin_unlock_irq(&conf->device_lock);
4092 mddev->raid_disks = conf->geo.raid_disks;
4093 mddev->reshape_position = conf->reshape_progress;
4094 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4095
4096 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4097 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4098 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4099 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4100
4101 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4102 "reshape");
4103 if (!mddev->sync_thread) {
bb63a701
N
4104 ret = -EAGAIN;
4105 goto abort;
3ea7daa5
N
4106 }
4107 conf->reshape_checkpoint = jiffies;
4108 md_wakeup_thread(mddev->sync_thread);
4109 md_new_event(mddev);
4110 return 0;
bb63a701
N
4111
4112abort:
4113 mddev->recovery = 0;
4114 spin_lock_irq(&conf->device_lock);
4115 conf->geo = conf->prev;
4116 mddev->raid_disks = conf->geo.raid_disks;
4117 rdev_for_each(rdev, mddev)
4118 rdev->new_data_offset = rdev->data_offset;
4119 smp_wmb();
4120 conf->reshape_progress = MaxSector;
4121 mddev->reshape_position = MaxSector;
4122 spin_unlock_irq(&conf->device_lock);
4123 return ret;
3ea7daa5
N
4124}
4125
4126/* Calculate the last device-address that could contain
4127 * any block from the chunk that includes the array-address 's'
4128 * and report the next address.
4129 * i.e. the address returned will be chunk-aligned and after
4130 * any data that is in the chunk containing 's'.
4131 */
4132static sector_t last_dev_address(sector_t s, struct geom *geo)
4133{
4134 s = (s | geo->chunk_mask) + 1;
4135 s >>= geo->chunk_shift;
4136 s *= geo->near_copies;
4137 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4138 s *= geo->far_copies;
4139 s <<= geo->chunk_shift;
4140 return s;
4141}
4142
4143/* Calculate the first device-address that could contain
4144 * any block from the chunk that includes the array-address 's'.
4145 * This too will be the start of a chunk
4146 */
4147static sector_t first_dev_address(sector_t s, struct geom *geo)
4148{
4149 s >>= geo->chunk_shift;
4150 s *= geo->near_copies;
4151 sector_div(s, geo->raid_disks);
4152 s *= geo->far_copies;
4153 s <<= geo->chunk_shift;
4154 return s;
4155}
4156
4157static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4158 int *skipped)
4159{
4160 /* We simply copy at most one chunk (smallest of old and new)
4161 * at a time, possibly less if that exceeds RESYNC_PAGES,
4162 * or we hit a bad block or something.
4163 * This might mean we pause for normal IO in the middle of
4164 * a chunk, but that is not a problem was mddev->reshape_position
4165 * can record any location.
4166 *
4167 * If we will want to write to a location that isn't
4168 * yet recorded as 'safe' (i.e. in metadata on disk) then
4169 * we need to flush all reshape requests and update the metadata.
4170 *
4171 * When reshaping forwards (e.g. to more devices), we interpret
4172 * 'safe' as the earliest block which might not have been copied
4173 * down yet. We divide this by previous stripe size and multiply
4174 * by previous stripe length to get lowest device offset that we
4175 * cannot write to yet.
4176 * We interpret 'sector_nr' as an address that we want to write to.
4177 * From this we use last_device_address() to find where we might
4178 * write to, and first_device_address on the 'safe' position.
4179 * If this 'next' write position is after the 'safe' position,
4180 * we must update the metadata to increase the 'safe' position.
4181 *
4182 * When reshaping backwards, we round in the opposite direction
4183 * and perform the reverse test: next write position must not be
4184 * less than current safe position.
4185 *
4186 * In all this the minimum difference in data offsets
4187 * (conf->offset_diff - always positive) allows a bit of slack,
4188 * so next can be after 'safe', but not by more than offset_disk
4189 *
4190 * We need to prepare all the bios here before we start any IO
4191 * to ensure the size we choose is acceptable to all devices.
4192 * The means one for each copy for write-out and an extra one for
4193 * read-in.
4194 * We store the read-in bio in ->master_bio and the others in
4195 * ->devs[x].bio and ->devs[x].repl_bio.
4196 */
4197 struct r10conf *conf = mddev->private;
4198 struct r10bio *r10_bio;
4199 sector_t next, safe, last;
4200 int max_sectors;
4201 int nr_sectors;
4202 int s;
4203 struct md_rdev *rdev;
4204 int need_flush = 0;
4205 struct bio *blist;
4206 struct bio *bio, *read_bio;
4207 int sectors_done = 0;
4208
4209 if (sector_nr == 0) {
4210 /* If restarting in the middle, skip the initial sectors */
4211 if (mddev->reshape_backwards &&
4212 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4213 sector_nr = (raid10_size(mddev, 0, 0)
4214 - conf->reshape_progress);
4215 } else if (!mddev->reshape_backwards &&
4216 conf->reshape_progress > 0)
4217 sector_nr = conf->reshape_progress;
4218 if (sector_nr) {
4219 mddev->curr_resync_completed = sector_nr;
4220 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4221 *skipped = 1;
4222 return sector_nr;
4223 }
4224 }
4225
4226 /* We don't use sector_nr to track where we are up to
4227 * as that doesn't work well for ->reshape_backwards.
4228 * So just use ->reshape_progress.
4229 */
4230 if (mddev->reshape_backwards) {
4231 /* 'next' is the earliest device address that we might
4232 * write to for this chunk in the new layout
4233 */
4234 next = first_dev_address(conf->reshape_progress - 1,
4235 &conf->geo);
4236
4237 /* 'safe' is the last device address that we might read from
4238 * in the old layout after a restart
4239 */
4240 safe = last_dev_address(conf->reshape_safe - 1,
4241 &conf->prev);
4242
4243 if (next + conf->offset_diff < safe)
4244 need_flush = 1;
4245
4246 last = conf->reshape_progress - 1;
4247 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4248 & conf->prev.chunk_mask);
4249 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4250 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4251 } else {
4252 /* 'next' is after the last device address that we
4253 * might write to for this chunk in the new layout
4254 */
4255 next = last_dev_address(conf->reshape_progress, &conf->geo);
4256
4257 /* 'safe' is the earliest device address that we might
4258 * read from in the old layout after a restart
4259 */
4260 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4261
4262 /* Need to update metadata if 'next' might be beyond 'safe'
4263 * as that would possibly corrupt data
4264 */
4265 if (next > safe + conf->offset_diff)
4266 need_flush = 1;
4267
4268 sector_nr = conf->reshape_progress;
4269 last = sector_nr | (conf->geo.chunk_mask
4270 & conf->prev.chunk_mask);
4271
4272 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4273 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4274 }
4275
4276 if (need_flush ||
4277 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4278 /* Need to update reshape_position in metadata */
4279 wait_barrier(conf);
4280 mddev->reshape_position = conf->reshape_progress;
4281 if (mddev->reshape_backwards)
4282 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4283 - conf->reshape_progress;
4284 else
4285 mddev->curr_resync_completed = conf->reshape_progress;
4286 conf->reshape_checkpoint = jiffies;
4287 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4288 md_wakeup_thread(mddev->thread);
4289 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4290 kthread_should_stop());
4291 conf->reshape_safe = mddev->reshape_position;
4292 allow_barrier(conf);
4293 }
4294
4295read_more:
4296 /* Now schedule reads for blocks from sector_nr to last */
4297 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4298 raise_barrier(conf, sectors_done != 0);
4299 atomic_set(&r10_bio->remaining, 0);
4300 r10_bio->mddev = mddev;
4301 r10_bio->sector = sector_nr;
4302 set_bit(R10BIO_IsReshape, &r10_bio->state);
4303 r10_bio->sectors = last - sector_nr + 1;
4304 rdev = read_balance(conf, r10_bio, &max_sectors);
4305 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4306
4307 if (!rdev) {
4308 /* Cannot read from here, so need to record bad blocks
4309 * on all the target devices.
4310 */
4311 // FIXME
4312 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4313 return sectors_done;
4314 }
4315
4316 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4317
4318 read_bio->bi_bdev = rdev->bdev;
4319 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4320 + rdev->data_offset);
4321 read_bio->bi_private = r10_bio;
4322 read_bio->bi_end_io = end_sync_read;
4323 read_bio->bi_rw = READ;
4324 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4325 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4326 read_bio->bi_vcnt = 0;
4327 read_bio->bi_idx = 0;
4328 read_bio->bi_size = 0;
4329 r10_bio->master_bio = read_bio;
4330 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4331
4332 /* Now find the locations in the new layout */
4333 __raid10_find_phys(&conf->geo, r10_bio);
4334
4335 blist = read_bio;
4336 read_bio->bi_next = NULL;
4337
4338 for (s = 0; s < conf->copies*2; s++) {
4339 struct bio *b;
4340 int d = r10_bio->devs[s/2].devnum;
4341 struct md_rdev *rdev2;
4342 if (s&1) {
4343 rdev2 = conf->mirrors[d].replacement;
4344 b = r10_bio->devs[s/2].repl_bio;
4345 } else {
4346 rdev2 = conf->mirrors[d].rdev;
4347 b = r10_bio->devs[s/2].bio;
4348 }
4349 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4350 continue;
4351 b->bi_bdev = rdev2->bdev;
4352 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4353 b->bi_private = r10_bio;
4354 b->bi_end_io = end_reshape_write;
4355 b->bi_rw = WRITE;
4356 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4357 b->bi_flags |= 1 << BIO_UPTODATE;
4358 b->bi_next = blist;
4359 b->bi_vcnt = 0;
4360 b->bi_idx = 0;
4361 b->bi_size = 0;
4362 blist = b;
4363 }
4364
4365 /* Now add as many pages as possible to all of these bios. */
4366
4367 nr_sectors = 0;
4368 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4369 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4370 int len = (max_sectors - s) << 9;
4371 if (len > PAGE_SIZE)
4372 len = PAGE_SIZE;
4373 for (bio = blist; bio ; bio = bio->bi_next) {
4374 struct bio *bio2;
4375 if (bio_add_page(bio, page, len, 0))
4376 continue;
4377
4378 /* Didn't fit, must stop */
4379 for (bio2 = blist;
4380 bio2 && bio2 != bio;
4381 bio2 = bio2->bi_next) {
4382 /* Remove last page from this bio */
4383 bio2->bi_vcnt--;
4384 bio2->bi_size -= len;
4385 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4386 }
4387 goto bio_full;
4388 }
4389 sector_nr += len >> 9;
4390 nr_sectors += len >> 9;
4391 }
4392bio_full:
4393 r10_bio->sectors = nr_sectors;
4394
4395 /* Now submit the read */
4396 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4397 atomic_inc(&r10_bio->remaining);
4398 read_bio->bi_next = NULL;
4399 generic_make_request(read_bio);
4400 sector_nr += nr_sectors;
4401 sectors_done += nr_sectors;
4402 if (sector_nr <= last)
4403 goto read_more;
4404
4405 /* Now that we have done the whole section we can
4406 * update reshape_progress
4407 */
4408 if (mddev->reshape_backwards)
4409 conf->reshape_progress -= sectors_done;
4410 else
4411 conf->reshape_progress += sectors_done;
4412
4413 return sectors_done;
4414}
4415
4416static void end_reshape_request(struct r10bio *r10_bio);
4417static int handle_reshape_read_error(struct mddev *mddev,
4418 struct r10bio *r10_bio);
4419static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4420{
4421 /* Reshape read completed. Hopefully we have a block
4422 * to write out.
4423 * If we got a read error then we do sync 1-page reads from
4424 * elsewhere until we find the data - or give up.
4425 */
4426 struct r10conf *conf = mddev->private;
4427 int s;
4428
4429 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4430 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4431 /* Reshape has been aborted */
4432 md_done_sync(mddev, r10_bio->sectors, 0);
4433 return;
4434 }
4435
4436 /* We definitely have the data in the pages, schedule the
4437 * writes.
4438 */
4439 atomic_set(&r10_bio->remaining, 1);
4440 for (s = 0; s < conf->copies*2; s++) {
4441 struct bio *b;
4442 int d = r10_bio->devs[s/2].devnum;
4443 struct md_rdev *rdev;
4444 if (s&1) {
4445 rdev = conf->mirrors[d].replacement;
4446 b = r10_bio->devs[s/2].repl_bio;
4447 } else {
4448 rdev = conf->mirrors[d].rdev;
4449 b = r10_bio->devs[s/2].bio;
4450 }
4451 if (!rdev || test_bit(Faulty, &rdev->flags))
4452 continue;
4453 atomic_inc(&rdev->nr_pending);
4454 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4455 atomic_inc(&r10_bio->remaining);
4456 b->bi_next = NULL;
4457 generic_make_request(b);
4458 }
4459 end_reshape_request(r10_bio);
4460}
4461
4462static void end_reshape(struct r10conf *conf)
4463{
4464 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4465 return;
4466
4467 spin_lock_irq(&conf->device_lock);
4468 conf->prev = conf->geo;
4469 md_finish_reshape(conf->mddev);
4470 smp_wmb();
4471 conf->reshape_progress = MaxSector;
4472 spin_unlock_irq(&conf->device_lock);
4473
4474 /* read-ahead size must cover two whole stripes, which is
4475 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4476 */
4477 if (conf->mddev->queue) {
4478 int stripe = conf->geo.raid_disks *
4479 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4480 stripe /= conf->geo.near_copies;
4481 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4482 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4483 }
4484 conf->fullsync = 0;
4485}
4486
4487
4488static int handle_reshape_read_error(struct mddev *mddev,
4489 struct r10bio *r10_bio)
4490{
4491 /* Use sync reads to get the blocks from somewhere else */
4492 int sectors = r10_bio->sectors;
3ea7daa5 4493 struct r10conf *conf = mddev->private;
e0ee7785
N
4494 struct {
4495 struct r10bio r10_bio;
4496 struct r10dev devs[conf->copies];
4497 } on_stack;
4498 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4499 int slot = 0;
4500 int idx = 0;
4501 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4502
e0ee7785
N
4503 r10b->sector = r10_bio->sector;
4504 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4505
4506 while (sectors) {
4507 int s = sectors;
4508 int success = 0;
4509 int first_slot = slot;
4510
4511 if (s > (PAGE_SIZE >> 9))
4512 s = PAGE_SIZE >> 9;
4513
4514 while (!success) {
e0ee7785 4515 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4516 struct md_rdev *rdev = conf->mirrors[d].rdev;
4517 sector_t addr;
4518 if (rdev == NULL ||
4519 test_bit(Faulty, &rdev->flags) ||
4520 !test_bit(In_sync, &rdev->flags))
4521 goto failed;
4522
e0ee7785 4523 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4524 success = sync_page_io(rdev,
4525 addr,
4526 s << 9,
4527 bvec[idx].bv_page,
4528 READ, false);
4529 if (success)
4530 break;
4531 failed:
4532 slot++;
4533 if (slot >= conf->copies)
4534 slot = 0;
4535 if (slot == first_slot)
4536 break;
4537 }
4538 if (!success) {
4539 /* couldn't read this block, must give up */
4540 set_bit(MD_RECOVERY_INTR,
4541 &mddev->recovery);
4542 return -EIO;
4543 }
4544 sectors -= s;
4545 idx++;
4546 }
4547 return 0;
4548}
4549
4550static void end_reshape_write(struct bio *bio, int error)
4551{
4552 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4553 struct r10bio *r10_bio = bio->bi_private;
4554 struct mddev *mddev = r10_bio->mddev;
4555 struct r10conf *conf = mddev->private;
4556 int d;
4557 int slot;
4558 int repl;
4559 struct md_rdev *rdev = NULL;
4560
4561 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4562 if (repl)
4563 rdev = conf->mirrors[d].replacement;
4564 if (!rdev) {
4565 smp_mb();
4566 rdev = conf->mirrors[d].rdev;
4567 }
4568
4569 if (!uptodate) {
4570 /* FIXME should record badblock */
4571 md_error(mddev, rdev);
4572 }
4573
4574 rdev_dec_pending(rdev, mddev);
4575 end_reshape_request(r10_bio);
4576}
4577
4578static void end_reshape_request(struct r10bio *r10_bio)
4579{
4580 if (!atomic_dec_and_test(&r10_bio->remaining))
4581 return;
4582 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4583 bio_put(r10_bio->master_bio);
4584 put_buf(r10_bio);
4585}
4586
4587static void raid10_finish_reshape(struct mddev *mddev)
4588{
4589 struct r10conf *conf = mddev->private;
4590
4591 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4592 return;
4593
4594 if (mddev->delta_disks > 0) {
4595 sector_t size = raid10_size(mddev, 0, 0);
4596 md_set_array_sectors(mddev, size);
4597 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4598 mddev->recovery_cp = mddev->resync_max_sectors;
4599 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4600 }
4601 mddev->resync_max_sectors = size;
4602 set_capacity(mddev->gendisk, mddev->array_sectors);
4603 revalidate_disk(mddev->gendisk);
63aced61
N
4604 } else {
4605 int d;
4606 for (d = conf->geo.raid_disks ;
4607 d < conf->geo.raid_disks - mddev->delta_disks;
4608 d++) {
4609 struct md_rdev *rdev = conf->mirrors[d].rdev;
4610 if (rdev)
4611 clear_bit(In_sync, &rdev->flags);
4612 rdev = conf->mirrors[d].replacement;
4613 if (rdev)
4614 clear_bit(In_sync, &rdev->flags);
4615 }
3ea7daa5
N
4616 }
4617 mddev->layout = mddev->new_layout;
4618 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4619 mddev->reshape_position = MaxSector;
4620 mddev->delta_disks = 0;
4621 mddev->reshape_backwards = 0;
4622}
4623
84fc4b56 4624static struct md_personality raid10_personality =
1da177e4
LT
4625{
4626 .name = "raid10",
2604b703 4627 .level = 10,
1da177e4
LT
4628 .owner = THIS_MODULE,
4629 .make_request = make_request,
4630 .run = run,
4631 .stop = stop,
4632 .status = status,
4633 .error_handler = error,
4634 .hot_add_disk = raid10_add_disk,
4635 .hot_remove_disk= raid10_remove_disk,
4636 .spare_active = raid10_spare_active,
4637 .sync_request = sync_request,
6cce3b23 4638 .quiesce = raid10_quiesce,
80c3a6ce 4639 .size = raid10_size,
006a09a0 4640 .resize = raid10_resize,
dab8b292 4641 .takeover = raid10_takeover,
3ea7daa5
N
4642 .check_reshape = raid10_check_reshape,
4643 .start_reshape = raid10_start_reshape,
4644 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4645};
4646
4647static int __init raid_init(void)
4648{
2604b703 4649 return register_md_personality(&raid10_personality);
1da177e4
LT
4650}
4651
4652static void raid_exit(void)
4653{
2604b703 4654 unregister_md_personality(&raid10_personality);
1da177e4
LT
4655}
4656
4657module_init(raid_init);
4658module_exit(raid_exit);
4659MODULE_LICENSE("GPL");
0efb9e61 4660MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4661MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4662MODULE_ALIAS("md-raid10");
2604b703 4663MODULE_ALIAS("md-level-10");
34db0cd6
N
4664
4665module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);