]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid10.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
8bce6d35 42 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 43 *
475901af
JB
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
c93983bf
N
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
56 *
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
1da177e4
LT
72 */
73
74/*
75 * Number of guaranteed r10bios in case of extreme VM load:
76 */
77#define NR_RAID10_BIOS 256
78
473e87ce
JB
79/* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 */
84#define IO_BLOCKED ((struct bio *)1)
85/* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
88 */
89#define IO_MADE_GOOD ((struct bio *)2)
90
91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93/* When there are this many requests queued to be written by
34db0cd6
N
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
96 */
97static int max_queued_requests = 1024;
98
e879a879
N
99static void allow_barrier(struct r10conf *conf);
100static void lower_barrier(struct r10conf *conf);
635f6416 101static int _enough(struct r10conf *conf, int previous, int ignore);
3ea7daa5
N
102static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 105static void end_reshape_write(struct bio *bio);
3ea7daa5 106static void end_reshape(struct r10conf *conf);
0a27ec96 107
dd0fc66f 108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 109{
e879a879 110 struct r10conf *conf = data;
9f2c9d12 111 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 112
69335ef3
N
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
7eaceacc 115 return kzalloc(size, gfp_flags);
1da177e4
LT
116}
117
118static void r10bio_pool_free(void *r10_bio, void *data)
119{
120 kfree(r10_bio);
121}
122
0310fa21 123/* Maximum size of each resync request */
1da177e4 124#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 125#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
126/* amount of memory to reserve for resync requests */
127#define RESYNC_WINDOW (1024*1024)
128/* maximum number of concurrent requests, memory permitting */
129#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
130
131/*
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
136 *
137 */
dd0fc66f 138static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 139{
e879a879 140 struct r10conf *conf = data;
1da177e4 141 struct page *page;
9f2c9d12 142 struct r10bio *r10_bio;
1da177e4
LT
143 struct bio *bio;
144 int i, j;
145 int nalloc;
146
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 148 if (!r10_bio)
1da177e4 149 return NULL;
1da177e4 150
3ea7daa5
N
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
156
157 /*
158 * Allocate bios.
159 */
160 for (j = nalloc ; j-- ; ) {
6746557f 161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
69335ef3
N
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
175 */
176 for (j = 0 ; j < nalloc; j++) {
69335ef3 177 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
c65060ad
NK
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
1da177e4
LT
189 if (unlikely(!page))
190 goto out_free_pages;
191
192 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
195 }
196 }
197
198 return r10_bio;
199
200out_free_pages:
201 for ( ; i > 0 ; i--)
1345b1d8 202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 206 j = 0;
1da177e4 207out_free_bio:
5fdd2cf8 208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
69335ef3
N
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
213 }
1da177e4
LT
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
216}
217
218static void r10buf_pool_free(void *__r10_bio, void *data)
219{
220 int i;
e879a879 221 struct r10conf *conf = data;
9f2c9d12 222 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
223 int j;
224
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 229 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
230 bio->bi_io_vec[i].bv_page = NULL;
231 }
232 bio_put(bio);
233 }
69335ef3
N
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
1da177e4
LT
237 }
238 r10bio_pool_free(r10bio, conf);
239}
240
e879a879 241static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
242{
243 int i;
244
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 247 if (!BIO_SPECIAL(*bio))
1da177e4
LT
248 bio_put(*bio);
249 *bio = NULL;
69335ef3
N
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
1da177e4
LT
254 }
255}
256
9f2c9d12 257static void free_r10bio(struct r10bio *r10_bio)
1da177e4 258{
e879a879 259 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 260
1da177e4
LT
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
263}
264
9f2c9d12 265static void put_buf(struct r10bio *r10_bio)
1da177e4 266{
e879a879 267 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
268
269 mempool_free(r10_bio, conf->r10buf_pool);
270
0a27ec96 271 lower_barrier(conf);
1da177e4
LT
272}
273
9f2c9d12 274static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
275{
276 unsigned long flags;
fd01b88c 277 struct mddev *mddev = r10_bio->mddev;
e879a879 278 struct r10conf *conf = mddev->private;
1da177e4
LT
279
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 282 conf->nr_queued ++;
1da177e4
LT
283 spin_unlock_irqrestore(&conf->device_lock, flags);
284
388667be
AJ
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
287
1da177e4
LT
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
9f2c9d12 296static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
297{
298 struct bio *bio = r10_bio->master_bio;
856e08e2 299 int done;
e879a879 300 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 301
856e08e2
N
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4246a0b6 311 bio->bi_error = -EIO;
856e08e2 312 if (done) {
4246a0b6 313 bio_endio(bio);
856e08e2
N
314 /*
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
317 */
318 allow_barrier(conf);
319 }
1da177e4
LT
320 free_r10bio(r10_bio);
321}
322
323/*
324 * Update disk head position estimator based on IRQ completion info.
325 */
9f2c9d12 326static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 327{
e879a879 328 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
329
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
332}
333
778ca018
NK
334/*
335 * Find the disk number which triggered given bio
336 */
e879a879 337static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 338 struct bio *bio, int *slotp, int *replp)
778ca018
NK
339{
340 int slot;
69335ef3 341 int repl = 0;
778ca018 342
69335ef3 343 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
344 if (r10_bio->devs[slot].bio == bio)
345 break;
69335ef3
N
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
349 }
350 }
778ca018
NK
351
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
354
749c55e9
N
355 if (slotp)
356 *slotp = slot;
69335ef3
N
357 if (replp)
358 *replp = repl;
778ca018
NK
359 return r10_bio->devs[slot].devnum;
360}
361
4246a0b6 362static void raid10_end_read_request(struct bio *bio)
1da177e4 363{
4246a0b6 364 int uptodate = !bio->bi_error;
9f2c9d12 365 struct r10bio *r10_bio = bio->bi_private;
1da177e4 366 int slot, dev;
abbf098e 367 struct md_rdev *rdev;
e879a879 368 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 369
1da177e4
LT
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
635f6416
N
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
fae8cc5e 397 uptodate = 1;
fae8cc5e
N
398 }
399 if (uptodate) {
1da177e4 400 raid_end_bio_io(r10_bio);
abbf098e 401 rdev_dec_pending(rdev, conf->mddev);
4443ae10 402 } else {
1da177e4 403 /*
7c4e06ff 404 * oops, read error - keep the refcount on the rdev
1da177e4
LT
405 */
406 char b[BDEVNAME_SIZE];
8bda470e
CD
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
abbf098e 410 bdevname(rdev->bdev, b),
8bda470e 411 (unsigned long long)r10_bio->sector);
856e08e2 412 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
413 reschedule_retry(r10_bio);
414 }
1da177e4
LT
415}
416
9f2c9d12 417static void close_write(struct r10bio *r10_bio)
bd870a16
N
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
9f2c9d12 427static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
4246a0b6 442static void raid10_end_write_request(struct bio *bio)
1da177e4 443{
9f2c9d12 444 struct r10bio *r10_bio = bio->bi_private;
778ca018 445 int dev;
749c55e9 446 int dec_rdev = 1;
e879a879 447 struct r10conf *conf = r10_bio->mddev->private;
475b0321 448 int slot, repl;
4ca40c2c 449 struct md_rdev *rdev = NULL;
1da177e4 450
475b0321 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 452
475b0321
N
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
475b0321 458 rdev = conf->mirrors[dev].rdev;
4ca40c2c 459 }
1da177e4
LT
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
4246a0b6 463 if (bio->bi_error) {
475b0321
N
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
475b0321
N
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
749c55e9 477 } else {
1da177e4
LT
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
749c55e9
N
487 sector_t first_bad;
488 int bad_sectors;
489
3056e3ae
AL
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 501
749c55e9 502 /* Maybe we can clear some bad blocks. */
475b0321 503 if (is_badblock(rdev,
749c55e9
N
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
475b0321
N
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
1da177e4
LT
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
19d5f834 522 one_write_done(r10_bio);
749c55e9 523 if (dec_rdev)
884162df 524 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
525}
526
1da177e4
LT
527/*
528 * RAID10 layout manager
25985edc 529 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
25985edc 536 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 546 * on each device that it is on.
1da177e4
LT
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
f8c9e74f 552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
553{
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
1da177e4 559 int slot = 0;
9a3152ab
JB
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
567
568 /* now calculate first sector/dev */
5cf00fcd
N
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
1da177e4 571
5cf00fcd 572 chunk *= geo->near_copies;
1da177e4 573 stripe = chunk;
5cf00fcd
N
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
1da177e4 577
5cf00fcd 578 sector += stripe << geo->chunk_shift;
1da177e4
LT
579
580 /* and calculate all the others */
5cf00fcd 581 for (n = 0; n < geo->near_copies; n++) {
1da177e4 582 int d = dev;
475901af 583 int set;
1da177e4 584 sector_t s = sector;
1da177e4 585 r10bio->devs[slot].devnum = d;
4c0ca26b 586 r10bio->devs[slot].addr = s;
1da177e4
LT
587 slot++;
588
5cf00fcd 589 for (f = 1; f < geo->far_copies; f++) {
475901af 590 set = d / geo->far_set_size;
5cf00fcd 591 d += geo->near_copies;
475901af 592
9a3152ab
JB
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
5cf00fcd 602 s += geo->stride;
1da177e4
LT
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
5cf00fcd 608 if (dev >= geo->raid_disks) {
1da177e4 609 dev = 0;
5cf00fcd 610 sector += (geo->chunk_mask + 1);
1da177e4
LT
611 }
612 }
f8c9e74f
N
613}
614
615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616{
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
1da177e4
LT
628}
629
e879a879 630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
631{
632 sector_t offset, chunk, vchunk;
f8c9e74f
N
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
5cf00fcd 636 struct geom *geo = &conf->geo;
475901af
JB
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
9a3152ab
JB
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
1da177e4 651
5cf00fcd
N
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
c93983bf 654 int fc;
5cf00fcd
N
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
475901af
JB
658 if (dev < far_set_start)
659 dev += far_set_size;
c93983bf 660 } else {
5cf00fcd
N
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
475901af
JB
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
c93983bf 665 else
5cf00fcd 666 dev -= geo->near_copies;
c93983bf 667 }
5cf00fcd 668 chunk = sector >> geo->chunk_shift;
c93983bf 669 }
5cf00fcd
N
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
673}
674
1da177e4
LT
675/*
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
683 *
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
686 *
687 * The rdev for the device selected will have nr_pending incremented.
688 */
689
690/*
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
693 */
96c3fd1f
N
694static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
1da177e4 697{
af3a2cd6 698 const sector_t this_sector = r10_bio->sector;
56d99121 699 int disk, slot;
856e08e2
N
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
56d99121 702 sector_t new_distance, best_dist;
3bbae04b 703 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
704 int do_balance;
705 int best_slot;
5cf00fcd 706 struct geom *geo = &conf->geo;
1da177e4
LT
707
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
856e08e2 710 sectors = r10_bio->sectors;
56d99121 711 best_slot = -1;
abbf098e 712 best_rdev = NULL;
56d99121 713 best_dist = MaxSector;
856e08e2 714 best_good_sectors = 0;
56d99121 715 do_balance = 1;
1da177e4
LT
716 /*
717 * Check if we can balance. We can balance on the whole
6cce3b23
N
718 * device if no resync is going on (recovery is ok), or below
719 * the resync window. We take the first readable disk when
720 * above the resync window.
1da177e4
LT
721 */
722 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
723 && (this_sector + sectors >= conf->next_resync))
724 do_balance = 0;
1da177e4 725
56d99121 726 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
727 sector_t first_bad;
728 int bad_sectors;
729 sector_t dev_sector;
730
56d99121
N
731 if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 continue;
1da177e4 733 disk = r10_bio->devs[slot].devnum;
abbf098e
N
734 rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 738 if (rdev == NULL ||
8ae12666 739 test_bit(Faulty, &rdev->flags))
abbf098e
N
740 continue;
741 if (!test_bit(In_sync, &rdev->flags) &&
742 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
743 continue;
744
856e08e2
N
745 dev_sector = r10_bio->devs[slot].addr;
746 if (is_badblock(rdev, dev_sector, sectors,
747 &first_bad, &bad_sectors)) {
748 if (best_dist < MaxSector)
749 /* Already have a better slot */
750 continue;
751 if (first_bad <= dev_sector) {
752 /* Cannot read here. If this is the
753 * 'primary' device, then we must not read
754 * beyond 'bad_sectors' from another device.
755 */
756 bad_sectors -= (dev_sector - first_bad);
757 if (!do_balance && sectors > bad_sectors)
758 sectors = bad_sectors;
759 if (best_good_sectors > sectors)
760 best_good_sectors = sectors;
761 } else {
762 sector_t good_sectors =
763 first_bad - dev_sector;
764 if (good_sectors > best_good_sectors) {
765 best_good_sectors = good_sectors;
766 best_slot = slot;
abbf098e 767 best_rdev = rdev;
856e08e2
N
768 }
769 if (!do_balance)
770 /* Must read from here */
771 break;
772 }
773 continue;
774 } else
775 best_good_sectors = sectors;
776
56d99121
N
777 if (!do_balance)
778 break;
1da177e4 779
22dfdf52
N
780 /* This optimisation is debatable, and completely destroys
781 * sequential read speed for 'far copies' arrays. So only
782 * keep it for 'near' arrays, and review those later.
783 */
5cf00fcd 784 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 785 break;
8ed3a195
KS
786
787 /* for far > 1 always use the lowest address */
5cf00fcd 788 if (geo->far_copies > 1)
56d99121 789 new_distance = r10_bio->devs[slot].addr;
8ed3a195 790 else
56d99121
N
791 new_distance = abs(r10_bio->devs[slot].addr -
792 conf->mirrors[disk].head_position);
793 if (new_distance < best_dist) {
794 best_dist = new_distance;
795 best_slot = slot;
abbf098e 796 best_rdev = rdev;
1da177e4
LT
797 }
798 }
abbf098e 799 if (slot >= conf->copies) {
56d99121 800 slot = best_slot;
abbf098e
N
801 rdev = best_rdev;
802 }
1da177e4 803
56d99121 804 if (slot >= 0) {
56d99121 805 atomic_inc(&rdev->nr_pending);
56d99121
N
806 r10_bio->read_slot = slot;
807 } else
96c3fd1f 808 rdev = NULL;
1da177e4 809 rcu_read_unlock();
856e08e2 810 *max_sectors = best_good_sectors;
1da177e4 811
96c3fd1f 812 return rdev;
1da177e4
LT
813}
814
5c675f83 815static int raid10_congested(struct mddev *mddev, int bits)
0d129228 816{
e879a879 817 struct r10conf *conf = mddev->private;
0d129228
N
818 int i, ret = 0;
819
4452226e 820 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
821 conf->pending_count >= max_queued_requests)
822 return 1;
823
0d129228 824 rcu_read_lock();
f8c9e74f
N
825 for (i = 0;
826 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827 && ret == 0;
828 i++) {
3cb03002 829 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 830 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 831 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
832
833 ret |= bdi_congested(&q->backing_dev_info, bits);
834 }
835 }
836 rcu_read_unlock();
837 return ret;
838}
839
e879a879 840static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
841{
842 /* Any writes that have been queued but are awaiting
843 * bitmap updates get flushed here.
a35e63ef 844 */
a35e63ef
N
845 spin_lock_irq(&conf->device_lock);
846
847 if (conf->pending_bio_list.head) {
848 struct bio *bio;
849 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 850 conf->pending_count = 0;
a35e63ef
N
851 spin_unlock_irq(&conf->device_lock);
852 /* flush any pending bitmap writes to disk
853 * before proceeding w/ I/O */
854 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 855 wake_up(&conf->wait_barrier);
a35e63ef
N
856
857 while (bio) { /* submit pending writes */
858 struct bio *next = bio->bi_next;
859 bio->bi_next = NULL;
796a5cf0 860 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
532a2a3f
SL
861 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862 /* Just ignore it */
4246a0b6 863 bio_endio(bio);
532a2a3f
SL
864 else
865 generic_make_request(bio);
a35e63ef
N
866 bio = next;
867 }
a35e63ef
N
868 } else
869 spin_unlock_irq(&conf->device_lock);
a35e63ef 870}
7eaceacc 871
0a27ec96
N
872/* Barriers....
873 * Sometimes we need to suspend IO while we do something else,
874 * either some resync/recovery, or reconfigure the array.
875 * To do this we raise a 'barrier'.
876 * The 'barrier' is a counter that can be raised multiple times
877 * to count how many activities are happening which preclude
878 * normal IO.
879 * We can only raise the barrier if there is no pending IO.
880 * i.e. if nr_pending == 0.
881 * We choose only to raise the barrier if no-one is waiting for the
882 * barrier to go down. This means that as soon as an IO request
883 * is ready, no other operations which require a barrier will start
884 * until the IO request has had a chance.
885 *
886 * So: regular IO calls 'wait_barrier'. When that returns there
887 * is no backgroup IO happening, It must arrange to call
888 * allow_barrier when it has finished its IO.
889 * backgroup IO calls must call raise_barrier. Once that returns
890 * there is no normal IO happeing. It must arrange to call
891 * lower_barrier when the particular background IO completes.
1da177e4 892 */
1da177e4 893
e879a879 894static void raise_barrier(struct r10conf *conf, int force)
1da177e4 895{
6cce3b23 896 BUG_ON(force && !conf->barrier);
1da177e4 897 spin_lock_irq(&conf->resync_lock);
0a27ec96 898
6cce3b23
N
899 /* Wait until no block IO is waiting (unless 'force') */
900 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 901 conf->resync_lock);
0a27ec96
N
902
903 /* block any new IO from starting */
904 conf->barrier++;
905
c3b328ac 906 /* Now wait for all pending IO to complete */
0a27ec96 907 wait_event_lock_irq(conf->wait_barrier,
0e5313e2 908 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
eed8c02e 909 conf->resync_lock);
0a27ec96
N
910
911 spin_unlock_irq(&conf->resync_lock);
912}
913
e879a879 914static void lower_barrier(struct r10conf *conf)
0a27ec96
N
915{
916 unsigned long flags;
917 spin_lock_irqsave(&conf->resync_lock, flags);
918 conf->barrier--;
919 spin_unlock_irqrestore(&conf->resync_lock, flags);
920 wake_up(&conf->wait_barrier);
921}
922
e879a879 923static void wait_barrier(struct r10conf *conf)
0a27ec96
N
924{
925 spin_lock_irq(&conf->resync_lock);
926 if (conf->barrier) {
927 conf->nr_waiting++;
d6b42dcb
N
928 /* Wait for the barrier to drop.
929 * However if there are already pending
930 * requests (preventing the barrier from
931 * rising completely), and the
932 * pre-process bio queue isn't empty,
933 * then don't wait, as we need to empty
934 * that queue to get the nr_pending
935 * count down.
936 */
937 wait_event_lock_irq(conf->wait_barrier,
938 !conf->barrier ||
0e5313e2 939 (atomic_read(&conf->nr_pending) &&
d6b42dcb
N
940 current->bio_list &&
941 !bio_list_empty(current->bio_list)),
eed8c02e 942 conf->resync_lock);
0a27ec96 943 conf->nr_waiting--;
0e5313e2
TM
944 if (!conf->nr_waiting)
945 wake_up(&conf->wait_barrier);
1da177e4 946 }
0e5313e2 947 atomic_inc(&conf->nr_pending);
1da177e4
LT
948 spin_unlock_irq(&conf->resync_lock);
949}
950
e879a879 951static void allow_barrier(struct r10conf *conf)
0a27ec96 952{
0e5313e2
TM
953 if ((atomic_dec_and_test(&conf->nr_pending)) ||
954 (conf->array_freeze_pending))
955 wake_up(&conf->wait_barrier);
0a27ec96
N
956}
957
e2d59925 958static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
959{
960 /* stop syncio and normal IO and wait for everything to
f188593e 961 * go quiet.
4443ae10 962 * We increment barrier and nr_waiting, and then
e2d59925 963 * wait until nr_pending match nr_queued+extra
1c830532
N
964 * This is called in the context of one normal IO request
965 * that has failed. Thus any sync request that might be pending
966 * will be blocked by nr_pending, and we need to wait for
967 * pending IO requests to complete or be queued for re-try.
e2d59925 968 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
969 * must match the number of pending IOs (nr_pending) before
970 * we continue.
4443ae10
N
971 */
972 spin_lock_irq(&conf->resync_lock);
0e5313e2 973 conf->array_freeze_pending++;
4443ae10
N
974 conf->barrier++;
975 conf->nr_waiting++;
eed8c02e 976 wait_event_lock_irq_cmd(conf->wait_barrier,
0e5313e2 977 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
eed8c02e
LC
978 conf->resync_lock,
979 flush_pending_writes(conf));
c3b328ac 980
0e5313e2 981 conf->array_freeze_pending--;
4443ae10
N
982 spin_unlock_irq(&conf->resync_lock);
983}
984
e879a879 985static void unfreeze_array(struct r10conf *conf)
4443ae10
N
986{
987 /* reverse the effect of the freeze */
988 spin_lock_irq(&conf->resync_lock);
989 conf->barrier--;
990 conf->nr_waiting--;
991 wake_up(&conf->wait_barrier);
992 spin_unlock_irq(&conf->resync_lock);
993}
994
f8c9e74f
N
995static sector_t choose_data_offset(struct r10bio *r10_bio,
996 struct md_rdev *rdev)
997{
998 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
999 test_bit(R10BIO_Previous, &r10_bio->state))
1000 return rdev->data_offset;
1001 else
1002 return rdev->new_data_offset;
1003}
1004
57c67df4
N
1005struct raid10_plug_cb {
1006 struct blk_plug_cb cb;
1007 struct bio_list pending;
1008 int pending_cnt;
1009};
1010
1011static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1012{
1013 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1014 cb);
1015 struct mddev *mddev = plug->cb.data;
1016 struct r10conf *conf = mddev->private;
1017 struct bio *bio;
1018
874807a8 1019 if (from_schedule || current->bio_list) {
57c67df4
N
1020 spin_lock_irq(&conf->device_lock);
1021 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1022 conf->pending_count += plug->pending_cnt;
1023 spin_unlock_irq(&conf->device_lock);
ee0b0244 1024 wake_up(&conf->wait_barrier);
57c67df4
N
1025 md_wakeup_thread(mddev->thread);
1026 kfree(plug);
1027 return;
1028 }
1029
1030 /* we aren't scheduling, so we can do the write-out directly. */
1031 bio = bio_list_get(&plug->pending);
1032 bitmap_unplug(mddev->bitmap);
1033 wake_up(&conf->wait_barrier);
1034
1035 while (bio) { /* submit pending writes */
1036 struct bio *next = bio->bi_next;
1037 bio->bi_next = NULL;
796a5cf0 1038 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
32f9f570
SL
1039 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1040 /* Just ignore it */
4246a0b6 1041 bio_endio(bio);
32f9f570
SL
1042 else
1043 generic_make_request(bio);
57c67df4
N
1044 bio = next;
1045 }
1046 kfree(plug);
1047}
1048
20d0189b 1049static void __make_request(struct mddev *mddev, struct bio *bio)
1da177e4 1050{
e879a879 1051 struct r10conf *conf = mddev->private;
9f2c9d12 1052 struct r10bio *r10_bio;
1da177e4
LT
1053 struct bio *read_bio;
1054 int i;
796a5cf0 1055 const int op = bio_op(bio);
a362357b 1056 const int rw = bio_data_dir(bio);
1eff9d32
JA
1057 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1058 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
6cce3b23 1059 unsigned long flags;
3cb03002 1060 struct md_rdev *blocked_rdev;
57c67df4
N
1061 struct blk_plug_cb *cb;
1062 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1063 int sectors_handled;
1064 int max_sectors;
3ea7daa5 1065 int sectors;
1da177e4 1066
9b622e2b
TM
1067 md_write_start(mddev, bio);
1068
cc13b1d1
N
1069 /*
1070 * Register the new request and wait if the reconstruction
1071 * thread has put up a bar for new requests.
1072 * Continue immediately if no resync is active currently.
1073 */
1074 wait_barrier(conf);
1075
aa8b57aa 1076 sectors = bio_sectors(bio);
3ea7daa5 1077 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1078 bio->bi_iter.bi_sector < conf->reshape_progress &&
1079 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
3ea7daa5
N
1080 /* IO spans the reshape position. Need to wait for
1081 * reshape to pass
1082 */
1083 allow_barrier(conf);
1084 wait_event(conf->wait_barrier,
4f024f37
KO
1085 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1086 conf->reshape_progress >= bio->bi_iter.bi_sector +
1087 sectors);
3ea7daa5
N
1088 wait_barrier(conf);
1089 }
1090 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1091 bio_data_dir(bio) == WRITE &&
1092 (mddev->reshape_backwards
4f024f37
KO
1093 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1094 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1095 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1096 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1097 /* Need to update reshape_position in metadata */
1098 mddev->reshape_position = conf->reshape_progress;
85ad1d13
GJ
1099 set_mask_bits(&mddev->flags, 0,
1100 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
3ea7daa5
N
1101 md_wakeup_thread(mddev->thread);
1102 wait_event(mddev->sb_wait,
1103 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1104
1105 conf->reshape_safe = mddev->reshape_position;
1106 }
1107
1da177e4
LT
1108 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1109
1110 r10_bio->master_bio = bio;
3ea7daa5 1111 r10_bio->sectors = sectors;
1da177e4
LT
1112
1113 r10_bio->mddev = mddev;
4f024f37 1114 r10_bio->sector = bio->bi_iter.bi_sector;
6cce3b23 1115 r10_bio->state = 0;
1da177e4 1116
856e08e2
N
1117 /* We might need to issue multiple reads to different
1118 * devices if there are bad blocks around, so we keep
1119 * track of the number of reads in bio->bi_phys_segments.
1120 * If this is 0, there is only one r10_bio and no locking
1121 * will be needed when the request completes. If it is
1122 * non-zero, then it is the number of not-completed requests.
1123 */
1124 bio->bi_phys_segments = 0;
b7c44ed9 1125 bio_clear_flag(bio, BIO_SEG_VALID);
856e08e2 1126
a362357b 1127 if (rw == READ) {
1da177e4
LT
1128 /*
1129 * read balancing logic:
1130 */
96c3fd1f 1131 struct md_rdev *rdev;
856e08e2
N
1132 int slot;
1133
1134read_again:
96c3fd1f
N
1135 rdev = read_balance(conf, r10_bio, &max_sectors);
1136 if (!rdev) {
1da177e4 1137 raid_end_bio_io(r10_bio);
5a7bbad2 1138 return;
1da177e4 1139 }
96c3fd1f 1140 slot = r10_bio->read_slot;
1da177e4 1141
a167f663 1142 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1143 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1144 max_sectors);
1da177e4
LT
1145
1146 r10_bio->devs[slot].bio = read_bio;
abbf098e 1147 r10_bio->devs[slot].rdev = rdev;
1da177e4 1148
4f024f37 1149 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1150 choose_data_offset(r10_bio, rdev);
96c3fd1f 1151 read_bio->bi_bdev = rdev->bdev;
1da177e4 1152 read_bio->bi_end_io = raid10_end_read_request;
796a5cf0 1153 bio_set_op_attrs(read_bio, op, do_sync);
1da177e4
LT
1154 read_bio->bi_private = r10_bio;
1155
856e08e2
N
1156 if (max_sectors < r10_bio->sectors) {
1157 /* Could not read all from this device, so we will
1158 * need another r10_bio.
1159 */
b50c259e 1160 sectors_handled = (r10_bio->sector + max_sectors
4f024f37 1161 - bio->bi_iter.bi_sector);
856e08e2
N
1162 r10_bio->sectors = max_sectors;
1163 spin_lock_irq(&conf->device_lock);
1164 if (bio->bi_phys_segments == 0)
1165 bio->bi_phys_segments = 2;
1166 else
1167 bio->bi_phys_segments++;
b50c259e 1168 spin_unlock_irq(&conf->device_lock);
856e08e2
N
1169 /* Cannot call generic_make_request directly
1170 * as that will be queued in __generic_make_request
1171 * and subsequent mempool_alloc might block
1172 * waiting for it. so hand bio over to raid10d.
1173 */
1174 reschedule_retry(r10_bio);
1175
1176 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1177
1178 r10_bio->master_bio = bio;
aa8b57aa 1179 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1180 r10_bio->state = 0;
1181 r10_bio->mddev = mddev;
4f024f37
KO
1182 r10_bio->sector = bio->bi_iter.bi_sector +
1183 sectors_handled;
856e08e2
N
1184 goto read_again;
1185 } else
1186 generic_make_request(read_bio);
5a7bbad2 1187 return;
1da177e4
LT
1188 }
1189
1190 /*
1191 * WRITE:
1192 */
34db0cd6
N
1193 if (conf->pending_count >= max_queued_requests) {
1194 md_wakeup_thread(mddev->thread);
1195 wait_event(conf->wait_barrier,
1196 conf->pending_count < max_queued_requests);
1197 }
6bfe0b49 1198 /* first select target devices under rcu_lock and
1da177e4
LT
1199 * inc refcount on their rdev. Record them by setting
1200 * bios[x] to bio
d4432c23
N
1201 * If there are known/acknowledged bad blocks on any device
1202 * on which we have seen a write error, we want to avoid
1203 * writing to those blocks. This potentially requires several
1204 * writes to write around the bad blocks. Each set of writes
1205 * gets its own r10_bio with a set of bios attached. The number
1206 * of r10_bios is recored in bio->bi_phys_segments just as with
1207 * the read case.
1da177e4 1208 */
c3b328ac 1209
69335ef3 1210 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1211 raid10_find_phys(conf, r10_bio);
d4432c23 1212retry_write:
cb6969e8 1213 blocked_rdev = NULL;
1da177e4 1214 rcu_read_lock();
d4432c23
N
1215 max_sectors = r10_bio->sectors;
1216
1da177e4
LT
1217 for (i = 0; i < conf->copies; i++) {
1218 int d = r10_bio->devs[i].devnum;
3cb03002 1219 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1220 struct md_rdev *rrdev = rcu_dereference(
1221 conf->mirrors[d].replacement);
4ca40c2c
N
1222 if (rdev == rrdev)
1223 rrdev = NULL;
6bfe0b49
DW
1224 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1225 atomic_inc(&rdev->nr_pending);
1226 blocked_rdev = rdev;
1227 break;
1228 }
475b0321
N
1229 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1230 atomic_inc(&rrdev->nr_pending);
1231 blocked_rdev = rrdev;
1232 break;
1233 }
8ae12666 1234 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1235 rdev = NULL;
8ae12666 1236 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1237 rrdev = NULL;
1238
d4432c23 1239 r10_bio->devs[i].bio = NULL;
475b0321 1240 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1241
1242 if (!rdev && !rrdev) {
6cce3b23 1243 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1244 continue;
1245 }
e7c0c3fa 1246 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1247 sector_t first_bad;
1248 sector_t dev_sector = r10_bio->devs[i].addr;
1249 int bad_sectors;
1250 int is_bad;
1251
1252 is_bad = is_badblock(rdev, dev_sector,
1253 max_sectors,
1254 &first_bad, &bad_sectors);
1255 if (is_bad < 0) {
1256 /* Mustn't write here until the bad block
1257 * is acknowledged
1258 */
1259 atomic_inc(&rdev->nr_pending);
1260 set_bit(BlockedBadBlocks, &rdev->flags);
1261 blocked_rdev = rdev;
1262 break;
1263 }
1264 if (is_bad && first_bad <= dev_sector) {
1265 /* Cannot write here at all */
1266 bad_sectors -= (dev_sector - first_bad);
1267 if (bad_sectors < max_sectors)
1268 /* Mustn't write more than bad_sectors
1269 * to other devices yet
1270 */
1271 max_sectors = bad_sectors;
1272 /* We don't set R10BIO_Degraded as that
1273 * only applies if the disk is missing,
1274 * so it might be re-added, and we want to
1275 * know to recover this chunk.
1276 * In this case the device is here, and the
1277 * fact that this chunk is not in-sync is
1278 * recorded in the bad block log.
1279 */
1280 continue;
1281 }
1282 if (is_bad) {
1283 int good_sectors = first_bad - dev_sector;
1284 if (good_sectors < max_sectors)
1285 max_sectors = good_sectors;
1286 }
6cce3b23 1287 }
e7c0c3fa
N
1288 if (rdev) {
1289 r10_bio->devs[i].bio = bio;
1290 atomic_inc(&rdev->nr_pending);
1291 }
475b0321
N
1292 if (rrdev) {
1293 r10_bio->devs[i].repl_bio = bio;
1294 atomic_inc(&rrdev->nr_pending);
1295 }
1da177e4
LT
1296 }
1297 rcu_read_unlock();
1298
6bfe0b49
DW
1299 if (unlikely(blocked_rdev)) {
1300 /* Have to wait for this device to get unblocked, then retry */
1301 int j;
1302 int d;
1303
475b0321 1304 for (j = 0; j < i; j++) {
6bfe0b49
DW
1305 if (r10_bio->devs[j].bio) {
1306 d = r10_bio->devs[j].devnum;
1307 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1308 }
475b0321 1309 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1310 struct md_rdev *rdev;
475b0321 1311 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1312 rdev = conf->mirrors[d].replacement;
1313 if (!rdev) {
1314 /* Race with remove_disk */
1315 smp_mb();
1316 rdev = conf->mirrors[d].rdev;
1317 }
1318 rdev_dec_pending(rdev, mddev);
475b0321
N
1319 }
1320 }
6bfe0b49
DW
1321 allow_barrier(conf);
1322 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1323 wait_barrier(conf);
1324 goto retry_write;
1325 }
1326
d4432c23
N
1327 if (max_sectors < r10_bio->sectors) {
1328 /* We are splitting this into multiple parts, so
1329 * we need to prepare for allocating another r10_bio.
1330 */
1331 r10_bio->sectors = max_sectors;
1332 spin_lock_irq(&conf->device_lock);
1333 if (bio->bi_phys_segments == 0)
1334 bio->bi_phys_segments = 2;
1335 else
1336 bio->bi_phys_segments++;
1337 spin_unlock_irq(&conf->device_lock);
1338 }
4f024f37
KO
1339 sectors_handled = r10_bio->sector + max_sectors -
1340 bio->bi_iter.bi_sector;
d4432c23 1341
4e78064f 1342 atomic_set(&r10_bio->remaining, 1);
d4432c23 1343 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1344
1da177e4
LT
1345 for (i = 0; i < conf->copies; i++) {
1346 struct bio *mbio;
1347 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1348 if (r10_bio->devs[i].bio) {
1349 struct md_rdev *rdev = conf->mirrors[d].rdev;
1350 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1351 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1352 max_sectors);
e7c0c3fa
N
1353 r10_bio->devs[i].bio = mbio;
1354
4f024f37 1355 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
e7c0c3fa
N
1356 choose_data_offset(r10_bio,
1357 rdev));
1358 mbio->bi_bdev = rdev->bdev;
1359 mbio->bi_end_io = raid10_end_write_request;
288dab8a 1360 bio_set_op_attrs(mbio, op, do_sync | do_fua);
e7c0c3fa
N
1361 mbio->bi_private = r10_bio;
1362
1363 atomic_inc(&r10_bio->remaining);
1364
1365 cb = blk_check_plugged(raid10_unplug, mddev,
1366 sizeof(*plug));
1367 if (cb)
1368 plug = container_of(cb, struct raid10_plug_cb,
1369 cb);
1370 else
1371 plug = NULL;
1372 spin_lock_irqsave(&conf->device_lock, flags);
1373 if (plug) {
1374 bio_list_add(&plug->pending, mbio);
1375 plug->pending_cnt++;
1376 } else {
1377 bio_list_add(&conf->pending_bio_list, mbio);
1378 conf->pending_count++;
1379 }
1380 spin_unlock_irqrestore(&conf->device_lock, flags);
1381 if (!plug)
1382 md_wakeup_thread(mddev->thread);
1383 }
57c67df4 1384
e7c0c3fa
N
1385 if (r10_bio->devs[i].repl_bio) {
1386 struct md_rdev *rdev = conf->mirrors[d].replacement;
1387 if (rdev == NULL) {
1388 /* Replacement just got moved to main 'rdev' */
1389 smp_mb();
1390 rdev = conf->mirrors[d].rdev;
1391 }
1392 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1393 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1394 max_sectors);
e7c0c3fa
N
1395 r10_bio->devs[i].repl_bio = mbio;
1396
4f024f37 1397 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
e7c0c3fa
N
1398 choose_data_offset(
1399 r10_bio, rdev));
1400 mbio->bi_bdev = rdev->bdev;
1401 mbio->bi_end_io = raid10_end_write_request;
288dab8a 1402 bio_set_op_attrs(mbio, op, do_sync | do_fua);
e7c0c3fa
N
1403 mbio->bi_private = r10_bio;
1404
1405 atomic_inc(&r10_bio->remaining);
1406 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1407 bio_list_add(&conf->pending_bio_list, mbio);
1408 conf->pending_count++;
e7c0c3fa
N
1409 spin_unlock_irqrestore(&conf->device_lock, flags);
1410 if (!mddev_check_plugged(mddev))
1411 md_wakeup_thread(mddev->thread);
57c67df4 1412 }
1da177e4
LT
1413 }
1414
079fa166
N
1415 /* Don't remove the bias on 'remaining' (one_write_done) until
1416 * after checking if we need to go around again.
1417 */
a35e63ef 1418
aa8b57aa 1419 if (sectors_handled < bio_sectors(bio)) {
079fa166 1420 one_write_done(r10_bio);
5e570289 1421 /* We need another r10_bio. It has already been counted
d4432c23
N
1422 * in bio->bi_phys_segments.
1423 */
1424 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1425
1426 r10_bio->master_bio = bio;
aa8b57aa 1427 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1428
1429 r10_bio->mddev = mddev;
4f024f37 1430 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
d4432c23
N
1431 r10_bio->state = 0;
1432 goto retry_write;
1433 }
079fa166 1434 one_write_done(r10_bio);
20d0189b
KO
1435}
1436
849674e4 1437static void raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1438{
1439 struct r10conf *conf = mddev->private;
1440 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1441 int chunk_sects = chunk_mask + 1;
1442
1443 struct bio *split;
1444
1eff9d32 1445 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
20d0189b
KO
1446 md_flush_request(mddev, bio);
1447 return;
1448 }
1449
20d0189b
KO
1450 do {
1451
1452 /*
1453 * If this request crosses a chunk boundary, we need to split
1454 * it.
1455 */
1456 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1457 bio_sectors(bio) > chunk_sects
1458 && (conf->geo.near_copies < conf->geo.raid_disks
1459 || conf->prev.near_copies <
1460 conf->prev.raid_disks))) {
1461 split = bio_split(bio, chunk_sects -
1462 (bio->bi_iter.bi_sector &
1463 (chunk_sects - 1)),
1464 GFP_NOIO, fs_bio_set);
1465 bio_chain(split, bio);
1466 } else {
1467 split = bio;
1468 }
1469
1470 __make_request(mddev, split);
1471 } while (split != bio);
079fa166
N
1472
1473 /* In case raid10d snuck in to freeze_array */
1474 wake_up(&conf->wait_barrier);
1da177e4
LT
1475}
1476
849674e4 1477static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1478{
e879a879 1479 struct r10conf *conf = mddev->private;
1da177e4
LT
1480 int i;
1481
5cf00fcd 1482 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1483 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1484 if (conf->geo.near_copies > 1)
1485 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1486 if (conf->geo.far_copies > 1) {
1487 if (conf->geo.far_offset)
1488 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1489 else
5cf00fcd 1490 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1491 if (conf->geo.far_set_size != conf->geo.raid_disks)
1492 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1493 }
5cf00fcd
N
1494 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1496 rcu_read_lock();
1497 for (i = 0; i < conf->geo.raid_disks; i++) {
1498 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1499 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1500 }
1501 rcu_read_unlock();
1da177e4
LT
1502 seq_printf(seq, "]");
1503}
1504
700c7213
N
1505/* check if there are enough drives for
1506 * every block to appear on atleast one.
1507 * Don't consider the device numbered 'ignore'
1508 * as we might be about to remove it.
1509 */
635f6416 1510static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1511{
1512 int first = 0;
725d6e57 1513 int has_enough = 0;
635f6416
N
1514 int disks, ncopies;
1515 if (previous) {
1516 disks = conf->prev.raid_disks;
1517 ncopies = conf->prev.near_copies;
1518 } else {
1519 disks = conf->geo.raid_disks;
1520 ncopies = conf->geo.near_copies;
1521 }
700c7213 1522
725d6e57 1523 rcu_read_lock();
700c7213
N
1524 do {
1525 int n = conf->copies;
1526 int cnt = 0;
80b48124 1527 int this = first;
700c7213 1528 while (n--) {
725d6e57
N
1529 struct md_rdev *rdev;
1530 if (this != ignore &&
1531 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1532 test_bit(In_sync, &rdev->flags))
700c7213 1533 cnt++;
635f6416 1534 this = (this+1) % disks;
700c7213
N
1535 }
1536 if (cnt == 0)
725d6e57 1537 goto out;
635f6416 1538 first = (first + ncopies) % disks;
700c7213 1539 } while (first != 0);
725d6e57
N
1540 has_enough = 1;
1541out:
1542 rcu_read_unlock();
1543 return has_enough;
700c7213
N
1544}
1545
f8c9e74f
N
1546static int enough(struct r10conf *conf, int ignore)
1547{
635f6416
N
1548 /* when calling 'enough', both 'prev' and 'geo' must
1549 * be stable.
1550 * This is ensured if ->reconfig_mutex or ->device_lock
1551 * is held.
1552 */
1553 return _enough(conf, 0, ignore) &&
1554 _enough(conf, 1, ignore);
f8c9e74f
N
1555}
1556
849674e4 1557static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1558{
1559 char b[BDEVNAME_SIZE];
e879a879 1560 struct r10conf *conf = mddev->private;
635f6416 1561 unsigned long flags;
1da177e4
LT
1562
1563 /*
1564 * If it is not operational, then we have already marked it as dead
1565 * else if it is the last working disks, ignore the error, let the
1566 * next level up know.
1567 * else mark the drive as failed
1568 */
635f6416 1569 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1570 if (test_bit(In_sync, &rdev->flags)
635f6416 1571 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1572 /*
1573 * Don't fail the drive, just return an IO error.
1da177e4 1574 */
635f6416 1575 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1576 return;
635f6416 1577 }
2446dba0 1578 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1579 mddev->degraded++;
2446dba0
N
1580 /*
1581 * If recovery is running, make sure it aborts.
1582 */
1583 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1584 set_bit(Blocked, &rdev->flags);
b2d444d7 1585 set_bit(Faulty, &rdev->flags);
85ad1d13
GJ
1586 set_mask_bits(&mddev->flags, 0,
1587 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
635f6416 1588 spin_unlock_irqrestore(&conf->device_lock, flags);
067032bc
JP
1589 printk(KERN_ALERT
1590 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1591 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1592 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1593 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1594}
1595
e879a879 1596static void print_conf(struct r10conf *conf)
1da177e4
LT
1597{
1598 int i;
4056ca51 1599 struct md_rdev *rdev;
1da177e4 1600
128595ed 1601 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1602 if (!conf) {
128595ed 1603 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1604 return;
1605 }
5cf00fcd
N
1606 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1607 conf->geo.raid_disks);
1da177e4 1608
4056ca51
N
1609 /* This is only called with ->reconfix_mutex held, so
1610 * rcu protection of rdev is not needed */
5cf00fcd 1611 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1612 char b[BDEVNAME_SIZE];
4056ca51
N
1613 rdev = conf->mirrors[i].rdev;
1614 if (rdev)
128595ed 1615 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
4056ca51
N
1616 i, !test_bit(In_sync, &rdev->flags),
1617 !test_bit(Faulty, &rdev->flags),
1618 bdevname(rdev->bdev,b));
1da177e4
LT
1619 }
1620}
1621
e879a879 1622static void close_sync(struct r10conf *conf)
1da177e4 1623{
0a27ec96
N
1624 wait_barrier(conf);
1625 allow_barrier(conf);
1da177e4
LT
1626
1627 mempool_destroy(conf->r10buf_pool);
1628 conf->r10buf_pool = NULL;
1629}
1630
fd01b88c 1631static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1632{
1633 int i;
e879a879 1634 struct r10conf *conf = mddev->private;
dc280d98 1635 struct raid10_info *tmp;
6b965620
N
1636 int count = 0;
1637 unsigned long flags;
1da177e4
LT
1638
1639 /*
1640 * Find all non-in_sync disks within the RAID10 configuration
1641 * and mark them in_sync
1642 */
5cf00fcd 1643 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1644 tmp = conf->mirrors + i;
4ca40c2c
N
1645 if (tmp->replacement
1646 && tmp->replacement->recovery_offset == MaxSector
1647 && !test_bit(Faulty, &tmp->replacement->flags)
1648 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1649 /* Replacement has just become active */
1650 if (!tmp->rdev
1651 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1652 count++;
1653 if (tmp->rdev) {
1654 /* Replaced device not technically faulty,
1655 * but we need to be sure it gets removed
1656 * and never re-added.
1657 */
1658 set_bit(Faulty, &tmp->rdev->flags);
1659 sysfs_notify_dirent_safe(
1660 tmp->rdev->sysfs_state);
1661 }
1662 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1663 } else if (tmp->rdev
61e4947c 1664 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1665 && !test_bit(Faulty, &tmp->rdev->flags)
1666 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1667 count++;
2863b9eb 1668 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1669 }
1670 }
6b965620
N
1671 spin_lock_irqsave(&conf->device_lock, flags);
1672 mddev->degraded -= count;
1673 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1674
1675 print_conf(conf);
6b965620 1676 return count;
1da177e4
LT
1677}
1678
fd01b88c 1679static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1680{
e879a879 1681 struct r10conf *conf = mddev->private;
199050ea 1682 int err = -EEXIST;
1da177e4 1683 int mirror;
6c2fce2e 1684 int first = 0;
5cf00fcd 1685 int last = conf->geo.raid_disks - 1;
1da177e4
LT
1686
1687 if (mddev->recovery_cp < MaxSector)
1688 /* only hot-add to in-sync arrays, as recovery is
1689 * very different from resync
1690 */
199050ea 1691 return -EBUSY;
635f6416 1692 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1693 return -EINVAL;
1da177e4 1694
1501efad
DW
1695 if (md_integrity_add_rdev(rdev, mddev))
1696 return -ENXIO;
1697
a53a6c85 1698 if (rdev->raid_disk >= 0)
6c2fce2e 1699 first = last = rdev->raid_disk;
1da177e4 1700
2c4193df 1701 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1702 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703 mirror = rdev->saved_raid_disk;
1704 else
6c2fce2e 1705 mirror = first;
2bb77736 1706 for ( ; mirror <= last ; mirror++) {
dc280d98 1707 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1708 if (p->recovery_disabled == mddev->recovery_disabled)
1709 continue;
b7044d41
N
1710 if (p->rdev) {
1711 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712 p->replacement != NULL)
1713 continue;
1714 clear_bit(In_sync, &rdev->flags);
1715 set_bit(Replacement, &rdev->flags);
1716 rdev->raid_disk = mirror;
1717 err = 0;
9092c02d
JB
1718 if (mddev->gendisk)
1719 disk_stack_limits(mddev->gendisk, rdev->bdev,
1720 rdev->data_offset << 9);
b7044d41
N
1721 conf->fullsync = 1;
1722 rcu_assign_pointer(p->replacement, rdev);
1723 break;
1724 }
1da177e4 1725
9092c02d
JB
1726 if (mddev->gendisk)
1727 disk_stack_limits(mddev->gendisk, rdev->bdev,
1728 rdev->data_offset << 9);
1da177e4 1729
2bb77736 1730 p->head_position = 0;
d890fa2b 1731 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1732 rdev->raid_disk = mirror;
1733 err = 0;
1734 if (rdev->saved_raid_disk != mirror)
1735 conf->fullsync = 1;
1736 rcu_assign_pointer(p->rdev, rdev);
1737 break;
1738 }
ed30be07 1739 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1740 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1741
1da177e4 1742 print_conf(conf);
199050ea 1743 return err;
1da177e4
LT
1744}
1745
b8321b68 1746static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1747{
e879a879 1748 struct r10conf *conf = mddev->private;
1da177e4 1749 int err = 0;
b8321b68 1750 int number = rdev->raid_disk;
c8ab903e 1751 struct md_rdev **rdevp;
dc280d98 1752 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1753
1754 print_conf(conf);
c8ab903e
N
1755 if (rdev == p->rdev)
1756 rdevp = &p->rdev;
1757 else if (rdev == p->replacement)
1758 rdevp = &p->replacement;
1759 else
1760 return 0;
1761
1762 if (test_bit(In_sync, &rdev->flags) ||
1763 atomic_read(&rdev->nr_pending)) {
1764 err = -EBUSY;
1765 goto abort;
1766 }
d787be40 1767 /* Only remove non-faulty devices if recovery
c8ab903e
N
1768 * is not possible.
1769 */
1770 if (!test_bit(Faulty, &rdev->flags) &&
1771 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1772 (!p->replacement || p->replacement == rdev) &&
63aced61 1773 number < conf->geo.raid_disks &&
c8ab903e
N
1774 enough(conf, -1)) {
1775 err = -EBUSY;
1776 goto abort;
1da177e4 1777 }
c8ab903e 1778 *rdevp = NULL;
d787be40
N
1779 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1780 synchronize_rcu();
1781 if (atomic_read(&rdev->nr_pending)) {
1782 /* lost the race, try later */
1783 err = -EBUSY;
1784 *rdevp = rdev;
1785 goto abort;
1786 }
1787 }
1788 if (p->replacement) {
4ca40c2c
N
1789 /* We must have just cleared 'rdev' */
1790 p->rdev = p->replacement;
1791 clear_bit(Replacement, &p->replacement->flags);
1792 smp_mb(); /* Make sure other CPUs may see both as identical
1793 * but will never see neither -- if they are careful.
1794 */
1795 p->replacement = NULL;
1796 clear_bit(WantReplacement, &rdev->flags);
1797 } else
1798 /* We might have just remove the Replacement as faulty
1799 * Clear the flag just in case
1800 */
1801 clear_bit(WantReplacement, &rdev->flags);
1802
c8ab903e
N
1803 err = md_integrity_register(mddev);
1804
1da177e4
LT
1805abort:
1806
1807 print_conf(conf);
1808 return err;
1809}
1810
4246a0b6 1811static void end_sync_read(struct bio *bio)
1da177e4 1812{
9f2c9d12 1813 struct r10bio *r10_bio = bio->bi_private;
e879a879 1814 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1815 int d;
1da177e4 1816
3ea7daa5
N
1817 if (bio == r10_bio->master_bio) {
1818 /* this is a reshape read */
1819 d = r10_bio->read_slot; /* really the read dev */
1820 } else
1821 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12 1822
4246a0b6 1823 if (!bio->bi_error)
0eb3ff12 1824 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1825 else
1826 /* The write handler will notice the lack of
1827 * R10BIO_Uptodate and record any errors etc
1828 */
4dbcdc75
N
1829 atomic_add(r10_bio->sectors,
1830 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1831
1832 /* for reconstruct, we always reschedule after a read.
1833 * for resync, only after all reads
1834 */
73d5c38a 1835 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1836 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1837 atomic_dec_and_test(&r10_bio->remaining)) {
1838 /* we have read all the blocks,
1839 * do the comparison in process context in raid10d
1840 */
1841 reschedule_retry(r10_bio);
1842 }
1da177e4
LT
1843}
1844
9f2c9d12 1845static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1846{
fd01b88c 1847 struct mddev *mddev = r10_bio->mddev;
dfc70645 1848
1da177e4
LT
1849 while (atomic_dec_and_test(&r10_bio->remaining)) {
1850 if (r10_bio->master_bio == NULL) {
1851 /* the primary of several recovery bios */
73d5c38a 1852 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1853 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1854 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1855 reschedule_retry(r10_bio);
1856 else
1857 put_buf(r10_bio);
73d5c38a 1858 md_done_sync(mddev, s, 1);
1da177e4
LT
1859 break;
1860 } else {
9f2c9d12 1861 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1862 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1863 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1864 reschedule_retry(r10_bio);
1865 else
1866 put_buf(r10_bio);
1da177e4
LT
1867 r10_bio = r10_bio2;
1868 }
1869 }
1da177e4
LT
1870}
1871
4246a0b6 1872static void end_sync_write(struct bio *bio)
5e570289 1873{
9f2c9d12 1874 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1875 struct mddev *mddev = r10_bio->mddev;
e879a879 1876 struct r10conf *conf = mddev->private;
5e570289
N
1877 int d;
1878 sector_t first_bad;
1879 int bad_sectors;
1880 int slot;
9ad1aefc 1881 int repl;
4ca40c2c 1882 struct md_rdev *rdev = NULL;
5e570289 1883
9ad1aefc
N
1884 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1885 if (repl)
1886 rdev = conf->mirrors[d].replacement;
547414d1 1887 else
9ad1aefc 1888 rdev = conf->mirrors[d].rdev;
5e570289 1889
4246a0b6 1890 if (bio->bi_error) {
9ad1aefc
N
1891 if (repl)
1892 md_error(mddev, rdev);
1893 else {
1894 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1895 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896 set_bit(MD_RECOVERY_NEEDED,
1897 &rdev->mddev->recovery);
9ad1aefc
N
1898 set_bit(R10BIO_WriteError, &r10_bio->state);
1899 }
1900 } else if (is_badblock(rdev,
5e570289
N
1901 r10_bio->devs[slot].addr,
1902 r10_bio->sectors,
1903 &first_bad, &bad_sectors))
1904 set_bit(R10BIO_MadeGood, &r10_bio->state);
1905
9ad1aefc 1906 rdev_dec_pending(rdev, mddev);
5e570289
N
1907
1908 end_sync_request(r10_bio);
1909}
1910
1da177e4
LT
1911/*
1912 * Note: sync and recover and handled very differently for raid10
1913 * This code is for resync.
1914 * For resync, we read through virtual addresses and read all blocks.
1915 * If there is any error, we schedule a write. The lowest numbered
1916 * drive is authoritative.
1917 * However requests come for physical address, so we need to map.
1918 * For every physical address there are raid_disks/copies virtual addresses,
1919 * which is always are least one, but is not necessarly an integer.
1920 * This means that a physical address can span multiple chunks, so we may
1921 * have to submit multiple io requests for a single sync request.
1922 */
1923/*
1924 * We check if all blocks are in-sync and only write to blocks that
1925 * aren't in sync
1926 */
9f2c9d12 1927static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1928{
e879a879 1929 struct r10conf *conf = mddev->private;
1da177e4
LT
1930 int i, first;
1931 struct bio *tbio, *fbio;
f4380a91 1932 int vcnt;
1da177e4
LT
1933
1934 atomic_set(&r10_bio->remaining, 1);
1935
1936 /* find the first device with a block */
1937 for (i=0; i<conf->copies; i++)
4246a0b6 1938 if (!r10_bio->devs[i].bio->bi_error)
1da177e4
LT
1939 break;
1940
1941 if (i == conf->copies)
1942 goto done;
1943
1944 first = i;
1945 fbio = r10_bio->devs[i].bio;
cc578588
AP
1946 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1947 fbio->bi_iter.bi_idx = 0;
1da177e4 1948
f4380a91 1949 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1950 /* now find blocks with errors */
0eb3ff12
N
1951 for (i=0 ; i < conf->copies ; i++) {
1952 int j, d;
1da177e4 1953
1da177e4 1954 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1955
1956 if (tbio->bi_end_io != end_sync_read)
1957 continue;
1958 if (i == first)
1da177e4 1959 continue;
4246a0b6 1960 if (!r10_bio->devs[i].bio->bi_error) {
0eb3ff12
N
1961 /* We know that the bi_io_vec layout is the same for
1962 * both 'first' and 'i', so we just compare them.
1963 * All vec entries are PAGE_SIZE;
1964 */
7bb23c49
N
1965 int sectors = r10_bio->sectors;
1966 for (j = 0; j < vcnt; j++) {
1967 int len = PAGE_SIZE;
1968 if (sectors < (len / 512))
1969 len = sectors * 512;
0eb3ff12
N
1970 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1971 page_address(tbio->bi_io_vec[j].bv_page),
7bb23c49 1972 len))
0eb3ff12 1973 break;
7bb23c49
N
1974 sectors -= len/512;
1975 }
0eb3ff12
N
1976 if (j == vcnt)
1977 continue;
7f7583d4 1978 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
1979 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1980 /* Don't fix anything. */
1981 continue;
0eb3ff12 1982 }
f84ee364
N
1983 /* Ok, we need to write this bio, either to correct an
1984 * inconsistency or to correct an unreadable block.
1da177e4
LT
1985 * First we need to fixup bv_offset, bv_len and
1986 * bi_vecs, as the read request might have corrupted these
1987 */
8be185f2
KO
1988 bio_reset(tbio);
1989
1da177e4 1990 tbio->bi_vcnt = vcnt;
cc578588 1991 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1da177e4 1992 tbio->bi_private = r10_bio;
4f024f37 1993 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4 1994 tbio->bi_end_io = end_sync_write;
796a5cf0 1995 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1da177e4 1996
c31df25f
KO
1997 bio_copy_data(tbio, fbio);
1998
1da177e4
LT
1999 d = r10_bio->devs[i].devnum;
2000 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2001 atomic_inc(&r10_bio->remaining);
aa8b57aa 2002 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2003
4f024f37 2004 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
1da177e4
LT
2005 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2006 generic_make_request(tbio);
2007 }
2008
9ad1aefc
N
2009 /* Now write out to any replacement devices
2010 * that are active
2011 */
2012 for (i = 0; i < conf->copies; i++) {
c31df25f 2013 int d;
9ad1aefc
N
2014
2015 tbio = r10_bio->devs[i].repl_bio;
2016 if (!tbio || !tbio->bi_end_io)
2017 continue;
2018 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2019 && r10_bio->devs[i].bio != fbio)
c31df25f 2020 bio_copy_data(tbio, fbio);
9ad1aefc
N
2021 d = r10_bio->devs[i].devnum;
2022 atomic_inc(&r10_bio->remaining);
2023 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2024 bio_sectors(tbio));
9ad1aefc
N
2025 generic_make_request(tbio);
2026 }
2027
1da177e4
LT
2028done:
2029 if (atomic_dec_and_test(&r10_bio->remaining)) {
2030 md_done_sync(mddev, r10_bio->sectors, 1);
2031 put_buf(r10_bio);
2032 }
2033}
2034
2035/*
2036 * Now for the recovery code.
2037 * Recovery happens across physical sectors.
2038 * We recover all non-is_sync drives by finding the virtual address of
2039 * each, and then choose a working drive that also has that virt address.
2040 * There is a separate r10_bio for each non-in_sync drive.
2041 * Only the first two slots are in use. The first for reading,
2042 * The second for writing.
2043 *
2044 */
9f2c9d12 2045static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2046{
2047 /* We got a read error during recovery.
2048 * We repeat the read in smaller page-sized sections.
2049 * If a read succeeds, write it to the new device or record
2050 * a bad block if we cannot.
2051 * If a read fails, record a bad block on both old and
2052 * new devices.
2053 */
fd01b88c 2054 struct mddev *mddev = r10_bio->mddev;
e879a879 2055 struct r10conf *conf = mddev->private;
5e570289
N
2056 struct bio *bio = r10_bio->devs[0].bio;
2057 sector_t sect = 0;
2058 int sectors = r10_bio->sectors;
2059 int idx = 0;
2060 int dr = r10_bio->devs[0].devnum;
2061 int dw = r10_bio->devs[1].devnum;
2062
2063 while (sectors) {
2064 int s = sectors;
3cb03002 2065 struct md_rdev *rdev;
5e570289
N
2066 sector_t addr;
2067 int ok;
2068
2069 if (s > (PAGE_SIZE>>9))
2070 s = PAGE_SIZE >> 9;
2071
2072 rdev = conf->mirrors[dr].rdev;
2073 addr = r10_bio->devs[0].addr + sect,
2074 ok = sync_page_io(rdev,
2075 addr,
2076 s << 9,
2077 bio->bi_io_vec[idx].bv_page,
796a5cf0 2078 REQ_OP_READ, 0, false);
5e570289
N
2079 if (ok) {
2080 rdev = conf->mirrors[dw].rdev;
2081 addr = r10_bio->devs[1].addr + sect;
2082 ok = sync_page_io(rdev,
2083 addr,
2084 s << 9,
2085 bio->bi_io_vec[idx].bv_page,
796a5cf0 2086 REQ_OP_WRITE, 0, false);
b7044d41 2087 if (!ok) {
5e570289 2088 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2089 if (!test_and_set_bit(WantReplacement,
2090 &rdev->flags))
2091 set_bit(MD_RECOVERY_NEEDED,
2092 &rdev->mddev->recovery);
2093 }
5e570289
N
2094 }
2095 if (!ok) {
2096 /* We don't worry if we cannot set a bad block -
2097 * it really is bad so there is no loss in not
2098 * recording it yet
2099 */
2100 rdev_set_badblocks(rdev, addr, s, 0);
2101
2102 if (rdev != conf->mirrors[dw].rdev) {
2103 /* need bad block on destination too */
3cb03002 2104 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2105 addr = r10_bio->devs[1].addr + sect;
2106 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2107 if (!ok) {
2108 /* just abort the recovery */
2109 printk(KERN_NOTICE
2110 "md/raid10:%s: recovery aborted"
2111 " due to read error\n",
2112 mdname(mddev));
2113
2114 conf->mirrors[dw].recovery_disabled
2115 = mddev->recovery_disabled;
2116 set_bit(MD_RECOVERY_INTR,
2117 &mddev->recovery);
2118 break;
2119 }
2120 }
2121 }
2122
2123 sectors -= s;
2124 sect += s;
2125 idx++;
2126 }
2127}
1da177e4 2128
9f2c9d12 2129static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2130{
e879a879 2131 struct r10conf *conf = mddev->private;
c65060ad 2132 int d;
24afd80d 2133 struct bio *wbio, *wbio2;
1da177e4 2134
5e570289
N
2135 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2136 fix_recovery_read_error(r10_bio);
2137 end_sync_request(r10_bio);
2138 return;
2139 }
2140
c65060ad
NK
2141 /*
2142 * share the pages with the first bio
1da177e4
LT
2143 * and submit the write request
2144 */
1da177e4 2145 d = r10_bio->devs[1].devnum;
24afd80d
N
2146 wbio = r10_bio->devs[1].bio;
2147 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2148 /* Need to test wbio2->bi_end_io before we call
2149 * generic_make_request as if the former is NULL,
2150 * the latter is free to free wbio2.
2151 */
2152 if (wbio2 && !wbio2->bi_end_io)
2153 wbio2 = NULL;
24afd80d
N
2154 if (wbio->bi_end_io) {
2155 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2156 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2157 generic_make_request(wbio);
2158 }
0eb25bb0 2159 if (wbio2) {
24afd80d
N
2160 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2161 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2162 bio_sectors(wbio2));
24afd80d
N
2163 generic_make_request(wbio2);
2164 }
1da177e4
LT
2165}
2166
1e50915f
RB
2167/*
2168 * Used by fix_read_error() to decay the per rdev read_errors.
2169 * We halve the read error count for every hour that has elapsed
2170 * since the last recorded read error.
2171 *
2172 */
fd01b88c 2173static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2174{
0e3ef49e 2175 long cur_time_mon;
1e50915f
RB
2176 unsigned long hours_since_last;
2177 unsigned int read_errors = atomic_read(&rdev->read_errors);
2178
0e3ef49e 2179 cur_time_mon = ktime_get_seconds();
1e50915f 2180
0e3ef49e 2181 if (rdev->last_read_error == 0) {
1e50915f
RB
2182 /* first time we've seen a read error */
2183 rdev->last_read_error = cur_time_mon;
2184 return;
2185 }
2186
0e3ef49e
AB
2187 hours_since_last = (long)(cur_time_mon -
2188 rdev->last_read_error) / 3600;
1e50915f
RB
2189
2190 rdev->last_read_error = cur_time_mon;
2191
2192 /*
2193 * if hours_since_last is > the number of bits in read_errors
2194 * just set read errors to 0. We do this to avoid
2195 * overflowing the shift of read_errors by hours_since_last.
2196 */
2197 if (hours_since_last >= 8 * sizeof(read_errors))
2198 atomic_set(&rdev->read_errors, 0);
2199 else
2200 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201}
2202
3cb03002 2203static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2204 int sectors, struct page *page, int rw)
2205{
2206 sector_t first_bad;
2207 int bad_sectors;
2208
2209 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211 return -1;
796a5cf0 2212 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
58c54fcc
N
2213 /* success */
2214 return 1;
b7044d41 2215 if (rw == WRITE) {
58c54fcc 2216 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2217 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218 set_bit(MD_RECOVERY_NEEDED,
2219 &rdev->mddev->recovery);
2220 }
58c54fcc
N
2221 /* need to record an error - either for the block or the device */
2222 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223 md_error(rdev->mddev, rdev);
2224 return 0;
2225}
2226
1da177e4
LT
2227/*
2228 * This is a kernel thread which:
2229 *
2230 * 1. Retries failed read operations on working mirrors.
2231 * 2. Updates the raid superblock when problems encounter.
6814d536 2232 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2233 */
2234
e879a879 2235static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2236{
2237 int sect = 0; /* Offset from r10_bio->sector */
2238 int sectors = r10_bio->sectors;
3cb03002 2239 struct md_rdev*rdev;
1e50915f 2240 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2241 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2242
7c4e06ff
N
2243 /* still own a reference to this rdev, so it cannot
2244 * have been cleared recently.
2245 */
2246 rdev = conf->mirrors[d].rdev;
1e50915f 2247
7c4e06ff
N
2248 if (test_bit(Faulty, &rdev->flags))
2249 /* drive has already been failed, just ignore any
2250 more fix_read_error() attempts */
2251 return;
1e50915f 2252
7c4e06ff
N
2253 check_decay_read_errors(mddev, rdev);
2254 atomic_inc(&rdev->read_errors);
2255 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256 char b[BDEVNAME_SIZE];
2257 bdevname(rdev->bdev, b);
1e50915f 2258
7c4e06ff
N
2259 printk(KERN_NOTICE
2260 "md/raid10:%s: %s: Raid device exceeded "
2261 "read_error threshold [cur %d:max %d]\n",
2262 mdname(mddev), b,
2263 atomic_read(&rdev->read_errors), max_read_errors);
2264 printk(KERN_NOTICE
2265 "md/raid10:%s: %s: Failing raid device\n",
2266 mdname(mddev), b);
d683c8e0 2267 md_error(mddev, rdev);
fae8cc5e 2268 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2269 return;
1e50915f 2270 }
1e50915f 2271
6814d536
N
2272 while(sectors) {
2273 int s = sectors;
2274 int sl = r10_bio->read_slot;
2275 int success = 0;
2276 int start;
2277
2278 if (s > (PAGE_SIZE>>9))
2279 s = PAGE_SIZE >> 9;
2280
2281 rcu_read_lock();
2282 do {
8dbed5ce
N
2283 sector_t first_bad;
2284 int bad_sectors;
2285
0544a21d 2286 d = r10_bio->devs[sl].devnum;
6814d536
N
2287 rdev = rcu_dereference(conf->mirrors[d].rdev);
2288 if (rdev &&
8dbed5ce 2289 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2290 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2291 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2292 &first_bad, &bad_sectors) == 0) {
6814d536
N
2293 atomic_inc(&rdev->nr_pending);
2294 rcu_read_unlock();
2b193363 2295 success = sync_page_io(rdev,
6814d536 2296 r10_bio->devs[sl].addr +
ccebd4c4 2297 sect,
6814d536 2298 s<<9,
796a5cf0
MC
2299 conf->tmppage,
2300 REQ_OP_READ, 0, false);
6814d536
N
2301 rdev_dec_pending(rdev, mddev);
2302 rcu_read_lock();
2303 if (success)
2304 break;
2305 }
2306 sl++;
2307 if (sl == conf->copies)
2308 sl = 0;
2309 } while (!success && sl != r10_bio->read_slot);
2310 rcu_read_unlock();
2311
2312 if (!success) {
58c54fcc
N
2313 /* Cannot read from anywhere, just mark the block
2314 * as bad on the first device to discourage future
2315 * reads.
2316 */
6814d536 2317 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2318 rdev = conf->mirrors[dn].rdev;
2319
2320 if (!rdev_set_badblocks(
2321 rdev,
2322 r10_bio->devs[r10_bio->read_slot].addr
2323 + sect,
fae8cc5e 2324 s, 0)) {
58c54fcc 2325 md_error(mddev, rdev);
fae8cc5e
N
2326 r10_bio->devs[r10_bio->read_slot].bio
2327 = IO_BLOCKED;
2328 }
6814d536
N
2329 break;
2330 }
2331
2332 start = sl;
2333 /* write it back and re-read */
2334 rcu_read_lock();
2335 while (sl != r10_bio->read_slot) {
67b8dc4b 2336 char b[BDEVNAME_SIZE];
0544a21d 2337
6814d536
N
2338 if (sl==0)
2339 sl = conf->copies;
2340 sl--;
2341 d = r10_bio->devs[sl].devnum;
2342 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2343 if (!rdev ||
f5b67ae8 2344 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2345 !test_bit(In_sync, &rdev->flags))
2346 continue;
2347
2348 atomic_inc(&rdev->nr_pending);
2349 rcu_read_unlock();
58c54fcc
N
2350 if (r10_sync_page_io(rdev,
2351 r10_bio->devs[sl].addr +
2352 sect,
055d3747 2353 s, conf->tmppage, WRITE)
1294b9c9
N
2354 == 0) {
2355 /* Well, this device is dead */
2356 printk(KERN_NOTICE
2357 "md/raid10:%s: read correction "
2358 "write failed"
2359 " (%d sectors at %llu on %s)\n",
2360 mdname(mddev), s,
2361 (unsigned long long)(
f8c9e74f
N
2362 sect +
2363 choose_data_offset(r10_bio,
2364 rdev)),
1294b9c9
N
2365 bdevname(rdev->bdev, b));
2366 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2367 "drive\n",
2368 mdname(mddev),
2369 bdevname(rdev->bdev, b));
6814d536 2370 }
1294b9c9
N
2371 rdev_dec_pending(rdev, mddev);
2372 rcu_read_lock();
6814d536
N
2373 }
2374 sl = start;
2375 while (sl != r10_bio->read_slot) {
1294b9c9 2376 char b[BDEVNAME_SIZE];
0544a21d 2377
6814d536
N
2378 if (sl==0)
2379 sl = conf->copies;
2380 sl--;
2381 d = r10_bio->devs[sl].devnum;
2382 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2383 if (!rdev ||
f5b67ae8 2384 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2385 !test_bit(In_sync, &rdev->flags))
2386 continue;
6814d536 2387
1294b9c9
N
2388 atomic_inc(&rdev->nr_pending);
2389 rcu_read_unlock();
58c54fcc
N
2390 switch (r10_sync_page_io(rdev,
2391 r10_bio->devs[sl].addr +
2392 sect,
055d3747 2393 s, conf->tmppage,
58c54fcc
N
2394 READ)) {
2395 case 0:
1294b9c9
N
2396 /* Well, this device is dead */
2397 printk(KERN_NOTICE
2398 "md/raid10:%s: unable to read back "
2399 "corrected sectors"
2400 " (%d sectors at %llu on %s)\n",
2401 mdname(mddev), s,
2402 (unsigned long long)(
f8c9e74f
N
2403 sect +
2404 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2405 bdevname(rdev->bdev, b));
2406 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407 "drive\n",
2408 mdname(mddev),
2409 bdevname(rdev->bdev, b));
58c54fcc
N
2410 break;
2411 case 1:
1294b9c9
N
2412 printk(KERN_INFO
2413 "md/raid10:%s: read error corrected"
2414 " (%d sectors at %llu on %s)\n",
2415 mdname(mddev), s,
2416 (unsigned long long)(
f8c9e74f
N
2417 sect +
2418 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2419 bdevname(rdev->bdev, b));
2420 atomic_add(s, &rdev->corrected_errors);
6814d536 2421 }
1294b9c9
N
2422
2423 rdev_dec_pending(rdev, mddev);
2424 rcu_read_lock();
6814d536
N
2425 }
2426 rcu_read_unlock();
2427
2428 sectors -= s;
2429 sect += s;
2430 }
2431}
2432
9f2c9d12 2433static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2434{
2435 struct bio *bio = r10_bio->master_bio;
fd01b88c 2436 struct mddev *mddev = r10_bio->mddev;
e879a879 2437 struct r10conf *conf = mddev->private;
3cb03002 2438 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2439 /* bio has the data to be written to slot 'i' where
2440 * we just recently had a write error.
2441 * We repeatedly clone the bio and trim down to one block,
2442 * then try the write. Where the write fails we record
2443 * a bad block.
2444 * It is conceivable that the bio doesn't exactly align with
2445 * blocks. We must handle this.
2446 *
2447 * We currently own a reference to the rdev.
2448 */
2449
2450 int block_sectors;
2451 sector_t sector;
2452 int sectors;
2453 int sect_to_write = r10_bio->sectors;
2454 int ok = 1;
2455
2456 if (rdev->badblocks.shift < 0)
2457 return 0;
2458
f04ebb0b
N
2459 block_sectors = roundup(1 << rdev->badblocks.shift,
2460 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2461 sector = r10_bio->sector;
2462 sectors = ((r10_bio->sector + block_sectors)
2463 & ~(sector_t)(block_sectors - 1))
2464 - sector;
2465
2466 while (sect_to_write) {
2467 struct bio *wbio;
27028626 2468 sector_t wsector;
bd870a16
N
2469 if (sectors > sect_to_write)
2470 sectors = sect_to_write;
2471 /* Write at 'sector' for 'sectors' */
2472 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 2473 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2474 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2475 wbio->bi_iter.bi_sector = wsector +
2476 choose_data_offset(r10_bio, rdev);
bd870a16 2477 wbio->bi_bdev = rdev->bdev;
796a5cf0 2478 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2479
2480 if (submit_bio_wait(wbio) < 0)
bd870a16 2481 /* Failure! */
27028626 2482 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2483 sectors, 0)
2484 && ok;
2485
2486 bio_put(wbio);
2487 sect_to_write -= sectors;
2488 sector += sectors;
2489 sectors = block_sectors;
2490 }
2491 return ok;
2492}
2493
9f2c9d12 2494static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2495{
2496 int slot = r10_bio->read_slot;
560f8e55 2497 struct bio *bio;
e879a879 2498 struct r10conf *conf = mddev->private;
abbf098e 2499 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2500 char b[BDEVNAME_SIZE];
2501 unsigned long do_sync;
856e08e2 2502 int max_sectors;
560f8e55
N
2503
2504 /* we got a read error. Maybe the drive is bad. Maybe just
2505 * the block and we can fix it.
2506 * We freeze all other IO, and try reading the block from
2507 * other devices. When we find one, we re-write
2508 * and check it that fixes the read error.
2509 * This is all done synchronously while the array is
2510 * frozen.
2511 */
fae8cc5e
N
2512 bio = r10_bio->devs[slot].bio;
2513 bdevname(bio->bi_bdev, b);
2514 bio_put(bio);
2515 r10_bio->devs[slot].bio = NULL;
2516
560f8e55 2517 if (mddev->ro == 0) {
e2d59925 2518 freeze_array(conf, 1);
560f8e55
N
2519 fix_read_error(conf, mddev, r10_bio);
2520 unfreeze_array(conf);
fae8cc5e
N
2521 } else
2522 r10_bio->devs[slot].bio = IO_BLOCKED;
2523
abbf098e 2524 rdev_dec_pending(rdev, mddev);
560f8e55 2525
7399c31b 2526read_more:
96c3fd1f
N
2527 rdev = read_balance(conf, r10_bio, &max_sectors);
2528 if (rdev == NULL) {
560f8e55
N
2529 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2530 " read error for block %llu\n",
7399c31b 2531 mdname(mddev), b,
560f8e55
N
2532 (unsigned long long)r10_bio->sector);
2533 raid_end_bio_io(r10_bio);
560f8e55
N
2534 return;
2535 }
2536
1eff9d32 2537 do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
560f8e55 2538 slot = r10_bio->read_slot;
560f8e55
N
2539 printk_ratelimited(
2540 KERN_ERR
055d3747 2541 "md/raid10:%s: %s: redirecting "
560f8e55
N
2542 "sector %llu to another mirror\n",
2543 mdname(mddev),
2544 bdevname(rdev->bdev, b),
2545 (unsigned long long)r10_bio->sector);
2546 bio = bio_clone_mddev(r10_bio->master_bio,
2547 GFP_NOIO, mddev);
4f024f37 2548 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
560f8e55 2549 r10_bio->devs[slot].bio = bio;
abbf098e 2550 r10_bio->devs[slot].rdev = rdev;
4f024f37 2551 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2552 + choose_data_offset(r10_bio, rdev);
560f8e55 2553 bio->bi_bdev = rdev->bdev;
796a5cf0 2554 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
560f8e55
N
2555 bio->bi_private = r10_bio;
2556 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2557 if (max_sectors < r10_bio->sectors) {
2558 /* Drat - have to split this up more */
2559 struct bio *mbio = r10_bio->master_bio;
2560 int sectors_handled =
2561 r10_bio->sector + max_sectors
4f024f37 2562 - mbio->bi_iter.bi_sector;
7399c31b
N
2563 r10_bio->sectors = max_sectors;
2564 spin_lock_irq(&conf->device_lock);
2565 if (mbio->bi_phys_segments == 0)
2566 mbio->bi_phys_segments = 2;
2567 else
2568 mbio->bi_phys_segments++;
2569 spin_unlock_irq(&conf->device_lock);
2570 generic_make_request(bio);
7399c31b
N
2571
2572 r10_bio = mempool_alloc(conf->r10bio_pool,
2573 GFP_NOIO);
2574 r10_bio->master_bio = mbio;
aa8b57aa 2575 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2576 r10_bio->state = 0;
2577 set_bit(R10BIO_ReadError,
2578 &r10_bio->state);
2579 r10_bio->mddev = mddev;
4f024f37 2580 r10_bio->sector = mbio->bi_iter.bi_sector
7399c31b
N
2581 + sectors_handled;
2582
2583 goto read_more;
2584 } else
2585 generic_make_request(bio);
560f8e55
N
2586}
2587
e879a879 2588static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2589{
2590 /* Some sort of write request has finished and it
2591 * succeeded in writing where we thought there was a
2592 * bad block. So forget the bad block.
1a0b7cd8
N
2593 * Or possibly if failed and we need to record
2594 * a bad block.
749c55e9
N
2595 */
2596 int m;
3cb03002 2597 struct md_rdev *rdev;
749c55e9
N
2598
2599 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2600 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2601 for (m = 0; m < conf->copies; m++) {
2602 int dev = r10_bio->devs[m].devnum;
2603 rdev = conf->mirrors[dev].rdev;
2604 if (r10_bio->devs[m].bio == NULL)
2605 continue;
4246a0b6 2606 if (!r10_bio->devs[m].bio->bi_error) {
749c55e9
N
2607 rdev_clear_badblocks(
2608 rdev,
2609 r10_bio->devs[m].addr,
c6563a8c 2610 r10_bio->sectors, 0);
1a0b7cd8
N
2611 } else {
2612 if (!rdev_set_badblocks(
2613 rdev,
2614 r10_bio->devs[m].addr,
2615 r10_bio->sectors, 0))
2616 md_error(conf->mddev, rdev);
749c55e9 2617 }
9ad1aefc
N
2618 rdev = conf->mirrors[dev].replacement;
2619 if (r10_bio->devs[m].repl_bio == NULL)
2620 continue;
4246a0b6
CH
2621
2622 if (!r10_bio->devs[m].repl_bio->bi_error) {
9ad1aefc
N
2623 rdev_clear_badblocks(
2624 rdev,
2625 r10_bio->devs[m].addr,
c6563a8c 2626 r10_bio->sectors, 0);
9ad1aefc
N
2627 } else {
2628 if (!rdev_set_badblocks(
2629 rdev,
2630 r10_bio->devs[m].addr,
2631 r10_bio->sectors, 0))
2632 md_error(conf->mddev, rdev);
2633 }
1a0b7cd8 2634 }
749c55e9
N
2635 put_buf(r10_bio);
2636 } else {
95af587e 2637 bool fail = false;
bd870a16
N
2638 for (m = 0; m < conf->copies; m++) {
2639 int dev = r10_bio->devs[m].devnum;
2640 struct bio *bio = r10_bio->devs[m].bio;
2641 rdev = conf->mirrors[dev].rdev;
2642 if (bio == IO_MADE_GOOD) {
749c55e9
N
2643 rdev_clear_badblocks(
2644 rdev,
2645 r10_bio->devs[m].addr,
c6563a8c 2646 r10_bio->sectors, 0);
749c55e9 2647 rdev_dec_pending(rdev, conf->mddev);
4246a0b6 2648 } else if (bio != NULL && bio->bi_error) {
95af587e 2649 fail = true;
bd870a16
N
2650 if (!narrow_write_error(r10_bio, m)) {
2651 md_error(conf->mddev, rdev);
2652 set_bit(R10BIO_Degraded,
2653 &r10_bio->state);
2654 }
2655 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2656 }
475b0321
N
2657 bio = r10_bio->devs[m].repl_bio;
2658 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2659 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2660 rdev_clear_badblocks(
2661 rdev,
2662 r10_bio->devs[m].addr,
c6563a8c 2663 r10_bio->sectors, 0);
475b0321
N
2664 rdev_dec_pending(rdev, conf->mddev);
2665 }
bd870a16 2666 }
95af587e
N
2667 if (fail) {
2668 spin_lock_irq(&conf->device_lock);
2669 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 2670 conf->nr_queued++;
95af587e
N
2671 spin_unlock_irq(&conf->device_lock);
2672 md_wakeup_thread(conf->mddev->thread);
c340702c
N
2673 } else {
2674 if (test_bit(R10BIO_WriteError,
2675 &r10_bio->state))
2676 close_write(r10_bio);
95af587e 2677 raid_end_bio_io(r10_bio);
c340702c 2678 }
749c55e9
N
2679 }
2680}
2681
4ed8731d 2682static void raid10d(struct md_thread *thread)
1da177e4 2683{
4ed8731d 2684 struct mddev *mddev = thread->mddev;
9f2c9d12 2685 struct r10bio *r10_bio;
1da177e4 2686 unsigned long flags;
e879a879 2687 struct r10conf *conf = mddev->private;
1da177e4 2688 struct list_head *head = &conf->retry_list;
e1dfa0a2 2689 struct blk_plug plug;
1da177e4
LT
2690
2691 md_check_recovery(mddev);
1da177e4 2692
95af587e
N
2693 if (!list_empty_careful(&conf->bio_end_io_list) &&
2694 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2695 LIST_HEAD(tmp);
2696 spin_lock_irqsave(&conf->device_lock, flags);
2697 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
23ddba80
SL
2698 while (!list_empty(&conf->bio_end_io_list)) {
2699 list_move(conf->bio_end_io_list.prev, &tmp);
2700 conf->nr_queued--;
2701 }
95af587e
N
2702 }
2703 spin_unlock_irqrestore(&conf->device_lock, flags);
2704 while (!list_empty(&tmp)) {
a452744b
MP
2705 r10_bio = list_first_entry(&tmp, struct r10bio,
2706 retry_list);
95af587e 2707 list_del(&r10_bio->retry_list);
c340702c
N
2708 if (mddev->degraded)
2709 set_bit(R10BIO_Degraded, &r10_bio->state);
2710
2711 if (test_bit(R10BIO_WriteError,
2712 &r10_bio->state))
2713 close_write(r10_bio);
95af587e
N
2714 raid_end_bio_io(r10_bio);
2715 }
2716 }
2717
e1dfa0a2 2718 blk_start_plug(&plug);
1da177e4 2719 for (;;) {
6cce3b23 2720
0021b7bc 2721 flush_pending_writes(conf);
6cce3b23 2722
a35e63ef
N
2723 spin_lock_irqsave(&conf->device_lock, flags);
2724 if (list_empty(head)) {
2725 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2726 break;
a35e63ef 2727 }
9f2c9d12 2728 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2729 list_del(head->prev);
4443ae10 2730 conf->nr_queued--;
1da177e4
LT
2731 spin_unlock_irqrestore(&conf->device_lock, flags);
2732
2733 mddev = r10_bio->mddev;
070ec55d 2734 conf = mddev->private;
bd870a16
N
2735 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2736 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2737 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2738 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2739 reshape_request_write(mddev, r10_bio);
749c55e9 2740 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2741 sync_request_write(mddev, r10_bio);
7eaceacc 2742 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2743 recovery_request_write(mddev, r10_bio);
856e08e2 2744 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2745 handle_read_error(mddev, r10_bio);
856e08e2
N
2746 else {
2747 /* just a partial read to be scheduled from a
2748 * separate context
2749 */
2750 int slot = r10_bio->read_slot;
2751 generic_make_request(r10_bio->devs[slot].bio);
2752 }
560f8e55 2753
1d9d5241 2754 cond_resched();
de393cde
N
2755 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2756 md_check_recovery(mddev);
1da177e4 2757 }
e1dfa0a2 2758 blk_finish_plug(&plug);
1da177e4
LT
2759}
2760
e879a879 2761static int init_resync(struct r10conf *conf)
1da177e4
LT
2762{
2763 int buffs;
69335ef3 2764 int i;
1da177e4
LT
2765
2766 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2767 BUG_ON(conf->r10buf_pool);
69335ef3 2768 conf->have_replacement = 0;
5cf00fcd 2769 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2770 if (conf->mirrors[i].replacement)
2771 conf->have_replacement = 1;
1da177e4
LT
2772 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2773 if (!conf->r10buf_pool)
2774 return -ENOMEM;
2775 conf->next_resync = 0;
2776 return 0;
2777}
2778
2779/*
2780 * perform a "sync" on one "block"
2781 *
2782 * We need to make sure that no normal I/O request - particularly write
2783 * requests - conflict with active sync requests.
2784 *
2785 * This is achieved by tracking pending requests and a 'barrier' concept
2786 * that can be installed to exclude normal IO requests.
2787 *
2788 * Resync and recovery are handled very differently.
2789 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2790 *
2791 * For resync, we iterate over virtual addresses, read all copies,
2792 * and update if there are differences. If only one copy is live,
2793 * skip it.
2794 * For recovery, we iterate over physical addresses, read a good
2795 * value for each non-in_sync drive, and over-write.
2796 *
2797 * So, for recovery we may have several outstanding complex requests for a
2798 * given address, one for each out-of-sync device. We model this by allocating
2799 * a number of r10_bio structures, one for each out-of-sync device.
2800 * As we setup these structures, we collect all bio's together into a list
2801 * which we then process collectively to add pages, and then process again
2802 * to pass to generic_make_request.
2803 *
2804 * The r10_bio structures are linked using a borrowed master_bio pointer.
2805 * This link is counted in ->remaining. When the r10_bio that points to NULL
2806 * has its remaining count decremented to 0, the whole complex operation
2807 * is complete.
2808 *
2809 */
2810
849674e4 2811static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 2812 int *skipped)
1da177e4 2813{
e879a879 2814 struct r10conf *conf = mddev->private;
9f2c9d12 2815 struct r10bio *r10_bio;
1da177e4
LT
2816 struct bio *biolist = NULL, *bio;
2817 sector_t max_sector, nr_sectors;
1da177e4 2818 int i;
6cce3b23 2819 int max_sync;
57dab0bd 2820 sector_t sync_blocks;
1da177e4
LT
2821 sector_t sectors_skipped = 0;
2822 int chunks_skipped = 0;
5cf00fcd 2823 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2824
2825 if (!conf->r10buf_pool)
2826 if (init_resync(conf))
57afd89f 2827 return 0;
1da177e4 2828
7e83ccbe
MW
2829 /*
2830 * Allow skipping a full rebuild for incremental assembly
2831 * of a clean array, like RAID1 does.
2832 */
2833 if (mddev->bitmap == NULL &&
2834 mddev->recovery_cp == MaxSector &&
13765120
N
2835 mddev->reshape_position == MaxSector &&
2836 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2837 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2838 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2839 conf->fullsync == 0) {
2840 *skipped = 1;
13765120 2841 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2842 }
2843
1da177e4 2844 skipped:
58c0fed4 2845 max_sector = mddev->dev_sectors;
3ea7daa5
N
2846 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2847 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2848 max_sector = mddev->resync_max_sectors;
2849 if (sector_nr >= max_sector) {
6cce3b23
N
2850 /* If we aborted, we need to abort the
2851 * sync on the 'current' bitmap chucks (there can
2852 * be several when recovering multiple devices).
2853 * as we may have started syncing it but not finished.
2854 * We can find the current address in
2855 * mddev->curr_resync, but for recovery,
2856 * we need to convert that to several
2857 * virtual addresses.
2858 */
3ea7daa5
N
2859 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2860 end_reshape(conf);
b3968552 2861 close_sync(conf);
3ea7daa5
N
2862 return 0;
2863 }
2864
6cce3b23
N
2865 if (mddev->curr_resync < max_sector) { /* aborted */
2866 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2867 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2868 &sync_blocks, 1);
5cf00fcd 2869 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2870 sector_t sect =
2871 raid10_find_virt(conf, mddev->curr_resync, i);
2872 bitmap_end_sync(mddev->bitmap, sect,
2873 &sync_blocks, 1);
2874 }
9ad1aefc
N
2875 } else {
2876 /* completed sync */
2877 if ((!mddev->bitmap || conf->fullsync)
2878 && conf->have_replacement
2879 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2880 /* Completed a full sync so the replacements
2881 * are now fully recovered.
2882 */
f90145f3
N
2883 rcu_read_lock();
2884 for (i = 0; i < conf->geo.raid_disks; i++) {
2885 struct md_rdev *rdev =
2886 rcu_dereference(conf->mirrors[i].replacement);
2887 if (rdev)
2888 rdev->recovery_offset = MaxSector;
2889 }
2890 rcu_read_unlock();
9ad1aefc 2891 }
6cce3b23 2892 conf->fullsync = 0;
9ad1aefc 2893 }
6cce3b23 2894 bitmap_close_sync(mddev->bitmap);
1da177e4 2895 close_sync(conf);
57afd89f 2896 *skipped = 1;
1da177e4
LT
2897 return sectors_skipped;
2898 }
3ea7daa5
N
2899
2900 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2901 return reshape_request(mddev, sector_nr, skipped);
2902
5cf00fcd 2903 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2904 /* if there has been nothing to do on any drive,
2905 * then there is nothing to do at all..
2906 */
57afd89f
N
2907 *skipped = 1;
2908 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2909 }
2910
c6207277
N
2911 if (max_sector > mddev->resync_max)
2912 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2913
1da177e4
LT
2914 /* make sure whole request will fit in a chunk - if chunks
2915 * are meaningful
2916 */
5cf00fcd
N
2917 if (conf->geo.near_copies < conf->geo.raid_disks &&
2918 max_sector > (sector_nr | chunk_mask))
2919 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 2920
7ac50447
TM
2921 /*
2922 * If there is non-resync activity waiting for a turn, then let it
2923 * though before starting on this new sync request.
2924 */
2925 if (conf->nr_waiting)
2926 schedule_timeout_uninterruptible(1);
2927
1da177e4
LT
2928 /* Again, very different code for resync and recovery.
2929 * Both must result in an r10bio with a list of bios that
2930 * have bi_end_io, bi_sector, bi_bdev set,
2931 * and bi_private set to the r10bio.
2932 * For recovery, we may actually create several r10bios
2933 * with 2 bios in each, that correspond to the bios in the main one.
2934 * In this case, the subordinate r10bios link back through a
2935 * borrowed master_bio pointer, and the counter in the master
2936 * includes a ref from each subordinate.
2937 */
2938 /* First, we decide what to do and set ->bi_end_io
2939 * To end_sync_read if we want to read, and
2940 * end_sync_write if we will want to write.
2941 */
2942
6cce3b23 2943 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2944 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2945 /* recovery... the complicated one */
e875ecea 2946 int j;
1da177e4
LT
2947 r10_bio = NULL;
2948
5cf00fcd 2949 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2950 int still_degraded;
9f2c9d12 2951 struct r10bio *rb2;
ab9d47e9
N
2952 sector_t sect;
2953 int must_sync;
e875ecea 2954 int any_working;
dc280d98 2955 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 2956 struct md_rdev *mrdev, *mreplace;
24afd80d 2957
f90145f3
N
2958 rcu_read_lock();
2959 mrdev = rcu_dereference(mirror->rdev);
2960 mreplace = rcu_dereference(mirror->replacement);
2961
2962 if ((mrdev == NULL ||
f5b67ae8 2963 test_bit(Faulty, &mrdev->flags) ||
f90145f3
N
2964 test_bit(In_sync, &mrdev->flags)) &&
2965 (mreplace == NULL ||
2966 test_bit(Faulty, &mreplace->flags))) {
2967 rcu_read_unlock();
ab9d47e9 2968 continue;
f90145f3 2969 }
1da177e4 2970
ab9d47e9
N
2971 still_degraded = 0;
2972 /* want to reconstruct this device */
2973 rb2 = r10_bio;
2974 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
2975 if (sect >= mddev->resync_max_sectors) {
2976 /* last stripe is not complete - don't
2977 * try to recover this sector.
2978 */
f90145f3 2979 rcu_read_unlock();
fc448a18
N
2980 continue;
2981 }
f5b67ae8
N
2982 if (mreplace && test_bit(Faulty, &mreplace->flags))
2983 mreplace = NULL;
24afd80d
N
2984 /* Unless we are doing a full sync, or a replacement
2985 * we only need to recover the block if it is set in
2986 * the bitmap
ab9d47e9
N
2987 */
2988 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2989 &sync_blocks, 1);
2990 if (sync_blocks < max_sync)
2991 max_sync = sync_blocks;
2992 if (!must_sync &&
f90145f3 2993 mreplace == NULL &&
ab9d47e9
N
2994 !conf->fullsync) {
2995 /* yep, skip the sync_blocks here, but don't assume
2996 * that there will never be anything to do here
2997 */
2998 chunks_skipped = -1;
f90145f3 2999 rcu_read_unlock();
ab9d47e9
N
3000 continue;
3001 }
f90145f3
N
3002 atomic_inc(&mrdev->nr_pending);
3003 if (mreplace)
3004 atomic_inc(&mreplace->nr_pending);
3005 rcu_read_unlock();
6cce3b23 3006
ab9d47e9 3007 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 3008 r10_bio->state = 0;
ab9d47e9
N
3009 raise_barrier(conf, rb2 != NULL);
3010 atomic_set(&r10_bio->remaining, 0);
18055569 3011
ab9d47e9
N
3012 r10_bio->master_bio = (struct bio*)rb2;
3013 if (rb2)
3014 atomic_inc(&rb2->remaining);
3015 r10_bio->mddev = mddev;
3016 set_bit(R10BIO_IsRecover, &r10_bio->state);
3017 r10_bio->sector = sect;
1da177e4 3018
ab9d47e9
N
3019 raid10_find_phys(conf, r10_bio);
3020
3021 /* Need to check if the array will still be
3022 * degraded
3023 */
f90145f3
N
3024 rcu_read_lock();
3025 for (j = 0; j < conf->geo.raid_disks; j++) {
3026 struct md_rdev *rdev = rcu_dereference(
3027 conf->mirrors[j].rdev);
3028 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3029 still_degraded = 1;
87fc767b 3030 break;
1da177e4 3031 }
f90145f3 3032 }
ab9d47e9
N
3033
3034 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035 &sync_blocks, still_degraded);
3036
e875ecea 3037 any_working = 0;
ab9d47e9 3038 for (j=0; j<conf->copies;j++) {
e875ecea 3039 int k;
ab9d47e9 3040 int d = r10_bio->devs[j].devnum;
5e570289 3041 sector_t from_addr, to_addr;
f90145f3
N
3042 struct md_rdev *rdev =
3043 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3044 sector_t sector, first_bad;
3045 int bad_sectors;
f90145f3
N
3046 if (!rdev ||
3047 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3048 continue;
3049 /* This is where we read from */
e875ecea 3050 any_working = 1;
40c356ce
N
3051 sector = r10_bio->devs[j].addr;
3052
3053 if (is_badblock(rdev, sector, max_sync,
3054 &first_bad, &bad_sectors)) {
3055 if (first_bad > sector)
3056 max_sync = first_bad - sector;
3057 else {
3058 bad_sectors -= (sector
3059 - first_bad);
3060 if (max_sync > bad_sectors)
3061 max_sync = bad_sectors;
3062 continue;
3063 }
3064 }
ab9d47e9 3065 bio = r10_bio->devs[0].bio;
8be185f2 3066 bio_reset(bio);
ab9d47e9
N
3067 bio->bi_next = biolist;
3068 biolist = bio;
3069 bio->bi_private = r10_bio;
3070 bio->bi_end_io = end_sync_read;
796a5cf0 3071 bio_set_op_attrs(bio, REQ_OP_READ, 0);
5e570289 3072 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3073 bio->bi_iter.bi_sector = from_addr +
3074 rdev->data_offset;
24afd80d
N
3075 bio->bi_bdev = rdev->bdev;
3076 atomic_inc(&rdev->nr_pending);
3077 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3078
3079 for (k=0; k<conf->copies; k++)
3080 if (r10_bio->devs[k].devnum == i)
3081 break;
3082 BUG_ON(k == conf->copies);
5e570289 3083 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3084 r10_bio->devs[0].devnum = d;
5e570289 3085 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3086 r10_bio->devs[1].devnum = i;
5e570289 3087 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3088
f90145f3 3089 if (!test_bit(In_sync, &mrdev->flags)) {
24afd80d 3090 bio = r10_bio->devs[1].bio;
8be185f2 3091 bio_reset(bio);
24afd80d
N
3092 bio->bi_next = biolist;
3093 biolist = bio;
3094 bio->bi_private = r10_bio;
3095 bio->bi_end_io = end_sync_write;
796a5cf0 3096 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3097 bio->bi_iter.bi_sector = to_addr
f90145f3
N
3098 + mrdev->data_offset;
3099 bio->bi_bdev = mrdev->bdev;
24afd80d
N
3100 atomic_inc(&r10_bio->remaining);
3101 } else
3102 r10_bio->devs[1].bio->bi_end_io = NULL;
3103
3104 /* and maybe write to replacement */
3105 bio = r10_bio->devs[1].repl_bio;
3106 if (bio)
3107 bio->bi_end_io = NULL;
f90145f3 3108 /* Note: if mreplace != NULL, then bio
24afd80d
N
3109 * cannot be NULL as r10buf_pool_alloc will
3110 * have allocated it.
3111 * So the second test here is pointless.
3112 * But it keeps semantic-checkers happy, and
3113 * this comment keeps human reviewers
3114 * happy.
3115 */
f90145f3
N
3116 if (mreplace == NULL || bio == NULL ||
3117 test_bit(Faulty, &mreplace->flags))
24afd80d 3118 break;
8be185f2 3119 bio_reset(bio);
24afd80d
N
3120 bio->bi_next = biolist;
3121 biolist = bio;
3122 bio->bi_private = r10_bio;
3123 bio->bi_end_io = end_sync_write;
796a5cf0 3124 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3125 bio->bi_iter.bi_sector = to_addr +
f90145f3
N
3126 mreplace->data_offset;
3127 bio->bi_bdev = mreplace->bdev;
24afd80d 3128 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3129 break;
3130 }
f90145f3 3131 rcu_read_unlock();
ab9d47e9 3132 if (j == conf->copies) {
e875ecea
N
3133 /* Cannot recover, so abort the recovery or
3134 * record a bad block */
e875ecea
N
3135 if (any_working) {
3136 /* problem is that there are bad blocks
3137 * on other device(s)
3138 */
3139 int k;
3140 for (k = 0; k < conf->copies; k++)
3141 if (r10_bio->devs[k].devnum == i)
3142 break;
24afd80d 3143 if (!test_bit(In_sync,
f90145f3 3144 &mrdev->flags)
24afd80d 3145 && !rdev_set_badblocks(
f90145f3 3146 mrdev,
24afd80d
N
3147 r10_bio->devs[k].addr,
3148 max_sync, 0))
3149 any_working = 0;
f90145f3 3150 if (mreplace &&
24afd80d 3151 !rdev_set_badblocks(
f90145f3 3152 mreplace,
e875ecea
N
3153 r10_bio->devs[k].addr,
3154 max_sync, 0))
3155 any_working = 0;
3156 }
3157 if (!any_working) {
3158 if (!test_and_set_bit(MD_RECOVERY_INTR,
3159 &mddev->recovery))
3160 printk(KERN_INFO "md/raid10:%s: insufficient "
3161 "working devices for recovery.\n",
3162 mdname(mddev));
24afd80d 3163 mirror->recovery_disabled
e875ecea
N
3164 = mddev->recovery_disabled;
3165 }
e8b84915
N
3166 put_buf(r10_bio);
3167 if (rb2)
3168 atomic_dec(&rb2->remaining);
3169 r10_bio = rb2;
f90145f3
N
3170 rdev_dec_pending(mrdev, mddev);
3171 if (mreplace)
3172 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3173 break;
1da177e4 3174 }
f90145f3
N
3175 rdev_dec_pending(mrdev, mddev);
3176 if (mreplace)
3177 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3178 }
1da177e4
LT
3179 if (biolist == NULL) {
3180 while (r10_bio) {
9f2c9d12
N
3181 struct r10bio *rb2 = r10_bio;
3182 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3183 rb2->master_bio = NULL;
3184 put_buf(rb2);
3185 }
3186 goto giveup;
3187 }
3188 } else {
3189 /* resync. Schedule a read for every block at this virt offset */
3190 int count = 0;
6cce3b23 3191
c40f341f 3192 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
78200d45 3193
6cce3b23
N
3194 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3195 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3196 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3197 &mddev->recovery)) {
6cce3b23
N
3198 /* We can skip this block */
3199 *skipped = 1;
3200 return sync_blocks + sectors_skipped;
3201 }
3202 if (sync_blocks < max_sync)
3203 max_sync = sync_blocks;
1da177e4 3204 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 3205 r10_bio->state = 0;
1da177e4 3206
1da177e4
LT
3207 r10_bio->mddev = mddev;
3208 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3209 raise_barrier(conf, 0);
3210 conf->next_resync = sector_nr;
1da177e4
LT
3211
3212 r10_bio->master_bio = NULL;
3213 r10_bio->sector = sector_nr;
3214 set_bit(R10BIO_IsSync, &r10_bio->state);
3215 raid10_find_phys(conf, r10_bio);
5cf00fcd 3216 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3217
5cf00fcd 3218 for (i = 0; i < conf->copies; i++) {
1da177e4 3219 int d = r10_bio->devs[i].devnum;
40c356ce
N
3220 sector_t first_bad, sector;
3221 int bad_sectors;
f90145f3 3222 struct md_rdev *rdev;
40c356ce 3223
9ad1aefc
N
3224 if (r10_bio->devs[i].repl_bio)
3225 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3226
1da177e4 3227 bio = r10_bio->devs[i].bio;
8be185f2 3228 bio_reset(bio);
4246a0b6 3229 bio->bi_error = -EIO;
f90145f3
N
3230 rcu_read_lock();
3231 rdev = rcu_dereference(conf->mirrors[d].rdev);
3232 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3233 rcu_read_unlock();
1da177e4 3234 continue;
f90145f3 3235 }
40c356ce 3236 sector = r10_bio->devs[i].addr;
f90145f3 3237 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3238 &first_bad, &bad_sectors)) {
3239 if (first_bad > sector)
3240 max_sync = first_bad - sector;
3241 else {
3242 bad_sectors -= (sector - first_bad);
3243 if (max_sync > bad_sectors)
91502f09 3244 max_sync = bad_sectors;
f90145f3 3245 rcu_read_unlock();
40c356ce
N
3246 continue;
3247 }
3248 }
f90145f3 3249 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3250 atomic_inc(&r10_bio->remaining);
3251 bio->bi_next = biolist;
3252 biolist = bio;
3253 bio->bi_private = r10_bio;
3254 bio->bi_end_io = end_sync_read;
796a5cf0 3255 bio_set_op_attrs(bio, REQ_OP_READ, 0);
f90145f3
N
3256 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3257 bio->bi_bdev = rdev->bdev;
1da177e4 3258 count++;
9ad1aefc 3259
f90145f3
N
3260 rdev = rcu_dereference(conf->mirrors[d].replacement);
3261 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3262 rcu_read_unlock();
9ad1aefc 3263 continue;
f90145f3
N
3264 }
3265 atomic_inc(&rdev->nr_pending);
3266 rcu_read_unlock();
9ad1aefc
N
3267
3268 /* Need to set up for writing to the replacement */
3269 bio = r10_bio->devs[i].repl_bio;
8be185f2 3270 bio_reset(bio);
4246a0b6 3271 bio->bi_error = -EIO;
9ad1aefc
N
3272
3273 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3274 bio->bi_next = biolist;
3275 biolist = bio;
3276 bio->bi_private = r10_bio;
3277 bio->bi_end_io = end_sync_write;
796a5cf0 3278 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
f90145f3
N
3279 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3280 bio->bi_bdev = rdev->bdev;
9ad1aefc 3281 count++;
1da177e4
LT
3282 }
3283
3284 if (count < 2) {
3285 for (i=0; i<conf->copies; i++) {
3286 int d = r10_bio->devs[i].devnum;
3287 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3288 rdev_dec_pending(conf->mirrors[d].rdev,
3289 mddev);
9ad1aefc
N
3290 if (r10_bio->devs[i].repl_bio &&
3291 r10_bio->devs[i].repl_bio->bi_end_io)
3292 rdev_dec_pending(
3293 conf->mirrors[d].replacement,
3294 mddev);
1da177e4
LT
3295 }
3296 put_buf(r10_bio);
3297 biolist = NULL;
3298 goto giveup;
3299 }
3300 }
3301
1da177e4 3302 nr_sectors = 0;
6cce3b23
N
3303 if (sector_nr + max_sync < max_sector)
3304 max_sector = sector_nr + max_sync;
1da177e4
LT
3305 do {
3306 struct page *page;
3307 int len = PAGE_SIZE;
1da177e4
LT
3308 if (sector_nr + (len>>9) > max_sector)
3309 len = (max_sector - sector_nr) << 9;
3310 if (len == 0)
3311 break;
3312 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3313 struct bio *bio2;
1da177e4 3314 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3315 if (bio_add_page(bio, page, len, 0))
3316 continue;
3317
3318 /* stop here */
3319 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3320 for (bio2 = biolist;
3321 bio2 && bio2 != bio;
3322 bio2 = bio2->bi_next) {
3323 /* remove last page from this bio */
3324 bio2->bi_vcnt--;
4f024f37 3325 bio2->bi_iter.bi_size -= len;
b7c44ed9 3326 bio_clear_flag(bio2, BIO_SEG_VALID);
1da177e4 3327 }
ab9d47e9 3328 goto bio_full;
1da177e4
LT
3329 }
3330 nr_sectors += len>>9;
3331 sector_nr += len>>9;
3332 } while (biolist->bi_vcnt < RESYNC_PAGES);
3333 bio_full:
3334 r10_bio->sectors = nr_sectors;
3335
3336 while (biolist) {
3337 bio = biolist;
3338 biolist = biolist->bi_next;
3339
3340 bio->bi_next = NULL;
3341 r10_bio = bio->bi_private;
3342 r10_bio->sectors = nr_sectors;
3343
3344 if (bio->bi_end_io == end_sync_read) {
3345 md_sync_acct(bio->bi_bdev, nr_sectors);
4246a0b6 3346 bio->bi_error = 0;
1da177e4
LT
3347 generic_make_request(bio);
3348 }
3349 }
3350
57afd89f
N
3351 if (sectors_skipped)
3352 /* pretend they weren't skipped, it makes
3353 * no important difference in this case
3354 */
3355 md_done_sync(mddev, sectors_skipped, 1);
3356
1da177e4
LT
3357 return sectors_skipped + nr_sectors;
3358 giveup:
3359 /* There is nowhere to write, so all non-sync
e875ecea
N
3360 * drives must be failed or in resync, all drives
3361 * have a bad block, so try the next chunk...
1da177e4 3362 */
09b4068a
N
3363 if (sector_nr + max_sync < max_sector)
3364 max_sector = sector_nr + max_sync;
3365
3366 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3367 chunks_skipped ++;
3368 sector_nr = max_sector;
1da177e4 3369 goto skipped;
1da177e4
LT
3370}
3371
80c3a6ce 3372static sector_t
fd01b88c 3373raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3374{
3375 sector_t size;
e879a879 3376 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3377
3378 if (!raid_disks)
3ea7daa5
N
3379 raid_disks = min(conf->geo.raid_disks,
3380 conf->prev.raid_disks);
80c3a6ce 3381 if (!sectors)
dab8b292 3382 sectors = conf->dev_sectors;
80c3a6ce 3383
5cf00fcd
N
3384 size = sectors >> conf->geo.chunk_shift;
3385 sector_div(size, conf->geo.far_copies);
80c3a6ce 3386 size = size * raid_disks;
5cf00fcd 3387 sector_div(size, conf->geo.near_copies);
80c3a6ce 3388
5cf00fcd 3389 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3390}
3391
6508fdbf
N
3392static void calc_sectors(struct r10conf *conf, sector_t size)
3393{
3394 /* Calculate the number of sectors-per-device that will
3395 * actually be used, and set conf->dev_sectors and
3396 * conf->stride
3397 */
3398
5cf00fcd
N
3399 size = size >> conf->geo.chunk_shift;
3400 sector_div(size, conf->geo.far_copies);
3401 size = size * conf->geo.raid_disks;
3402 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3403 /* 'size' is now the number of chunks in the array */
3404 /* calculate "used chunks per device" */
3405 size = size * conf->copies;
3406
3407 /* We need to round up when dividing by raid_disks to
3408 * get the stride size.
3409 */
5cf00fcd 3410 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3411
5cf00fcd 3412 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3413
5cf00fcd
N
3414 if (conf->geo.far_offset)
3415 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3416 else {
5cf00fcd
N
3417 sector_div(size, conf->geo.far_copies);
3418 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3419 }
3420}
dab8b292 3421
deb200d0
N
3422enum geo_type {geo_new, geo_old, geo_start};
3423static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3424{
3425 int nc, fc, fo;
3426 int layout, chunk, disks;
3427 switch (new) {
3428 case geo_old:
3429 layout = mddev->layout;
3430 chunk = mddev->chunk_sectors;
3431 disks = mddev->raid_disks - mddev->delta_disks;
3432 break;
3433 case geo_new:
3434 layout = mddev->new_layout;
3435 chunk = mddev->new_chunk_sectors;
3436 disks = mddev->raid_disks;
3437 break;
3438 default: /* avoid 'may be unused' warnings */
3439 case geo_start: /* new when starting reshape - raid_disks not
3440 * updated yet. */
3441 layout = mddev->new_layout;
3442 chunk = mddev->new_chunk_sectors;
3443 disks = mddev->raid_disks + mddev->delta_disks;
3444 break;
3445 }
8bce6d35 3446 if (layout >> 19)
deb200d0
N
3447 return -1;
3448 if (chunk < (PAGE_SIZE >> 9) ||
3449 !is_power_of_2(chunk))
3450 return -2;
3451 nc = layout & 255;
3452 fc = (layout >> 8) & 255;
3453 fo = layout & (1<<16);
3454 geo->raid_disks = disks;
3455 geo->near_copies = nc;
3456 geo->far_copies = fc;
3457 geo->far_offset = fo;
8bce6d35
N
3458 switch (layout >> 17) {
3459 case 0: /* original layout. simple but not always optimal */
3460 geo->far_set_size = disks;
3461 break;
3462 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3463 * actually using this, but leave code here just in case.*/
3464 geo->far_set_size = disks/fc;
3465 WARN(geo->far_set_size < fc,
3466 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3467 break;
3468 case 2: /* "improved" layout fixed to match documentation */
3469 geo->far_set_size = fc * nc;
3470 break;
3471 default: /* Not a valid layout */
3472 return -1;
3473 }
deb200d0
N
3474 geo->chunk_mask = chunk - 1;
3475 geo->chunk_shift = ffz(~chunk);
3476 return nc*fc;
3477}
3478
e879a879 3479static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3480{
e879a879 3481 struct r10conf *conf = NULL;
dab8b292 3482 int err = -EINVAL;
deb200d0
N
3483 struct geom geo;
3484 int copies;
3485
3486 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3487
deb200d0 3488 if (copies == -2) {
128595ed
N
3489 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3490 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3491 mdname(mddev), PAGE_SIZE);
dab8b292 3492 goto out;
1da177e4 3493 }
2604b703 3494
deb200d0 3495 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3496 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3497 mdname(mddev), mddev->new_layout);
1da177e4
LT
3498 goto out;
3499 }
dab8b292
TM
3500
3501 err = -ENOMEM;
e879a879 3502 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3503 if (!conf)
1da177e4 3504 goto out;
dab8b292 3505
3ea7daa5 3506 /* FIXME calc properly */
dc280d98 3507 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3508 max(0,-mddev->delta_disks)),
dab8b292
TM
3509 GFP_KERNEL);
3510 if (!conf->mirrors)
3511 goto out;
4443ae10
N
3512
3513 conf->tmppage = alloc_page(GFP_KERNEL);
3514 if (!conf->tmppage)
dab8b292
TM
3515 goto out;
3516
deb200d0
N
3517 conf->geo = geo;
3518 conf->copies = copies;
dab8b292
TM
3519 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3520 r10bio_pool_free, conf);
3521 if (!conf->r10bio_pool)
3522 goto out;
3523
6508fdbf 3524 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3525 if (mddev->reshape_position == MaxSector) {
3526 conf->prev = conf->geo;
3527 conf->reshape_progress = MaxSector;
3528 } else {
3529 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3530 err = -EINVAL;
3531 goto out;
3532 }
3533 conf->reshape_progress = mddev->reshape_position;
3534 if (conf->prev.far_offset)
3535 conf->prev.stride = 1 << conf->prev.chunk_shift;
3536 else
3537 /* far_copies must be 1 */
3538 conf->prev.stride = conf->dev_sectors;
3539 }
299b0685 3540 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 3541 spin_lock_init(&conf->device_lock);
dab8b292 3542 INIT_LIST_HEAD(&conf->retry_list);
95af587e 3543 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
3544
3545 spin_lock_init(&conf->resync_lock);
3546 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 3547 atomic_set(&conf->nr_pending, 0);
dab8b292 3548
0232605d 3549 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3550 if (!conf->thread)
3551 goto out;
3552
dab8b292
TM
3553 conf->mddev = mddev;
3554 return conf;
3555
3556 out:
3ea7daa5
N
3557 if (err == -ENOMEM)
3558 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3559 mdname(mddev));
dab8b292 3560 if (conf) {
644df1a8 3561 mempool_destroy(conf->r10bio_pool);
dab8b292
TM
3562 kfree(conf->mirrors);
3563 safe_put_page(conf->tmppage);
3564 kfree(conf);
3565 }
3566 return ERR_PTR(err);
3567}
3568
849674e4 3569static int raid10_run(struct mddev *mddev)
dab8b292 3570{
e879a879 3571 struct r10conf *conf;
dab8b292 3572 int i, disk_idx, chunk_size;
dc280d98 3573 struct raid10_info *disk;
3cb03002 3574 struct md_rdev *rdev;
dab8b292 3575 sector_t size;
3ea7daa5
N
3576 sector_t min_offset_diff = 0;
3577 int first = 1;
532a2a3f 3578 bool discard_supported = false;
dab8b292
TM
3579
3580 if (mddev->private == NULL) {
3581 conf = setup_conf(mddev);
3582 if (IS_ERR(conf))
3583 return PTR_ERR(conf);
3584 mddev->private = conf;
3585 }
3586 conf = mddev->private;
3587 if (!conf)
3588 goto out;
3589
dab8b292
TM
3590 mddev->thread = conf->thread;
3591 conf->thread = NULL;
3592
8f6c2e4b 3593 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3594 if (mddev->queue) {
532a2a3f
SL
3595 blk_queue_max_discard_sectors(mddev->queue,
3596 mddev->chunk_sectors);
5026d7a9 3597 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3598 blk_queue_io_min(mddev->queue, chunk_size);
3599 if (conf->geo.raid_disks % conf->geo.near_copies)
3600 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3601 else
3602 blk_queue_io_opt(mddev->queue, chunk_size *
3603 (conf->geo.raid_disks / conf->geo.near_copies));
3604 }
8f6c2e4b 3605
dafb20fa 3606 rdev_for_each(rdev, mddev) {
3ea7daa5 3607 long long diff;
aba336bd 3608 struct request_queue *q;
34b343cf 3609
1da177e4 3610 disk_idx = rdev->raid_disk;
f8c9e74f
N
3611 if (disk_idx < 0)
3612 continue;
3613 if (disk_idx >= conf->geo.raid_disks &&
3614 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3615 continue;
3616 disk = conf->mirrors + disk_idx;
3617
56a2559b
N
3618 if (test_bit(Replacement, &rdev->flags)) {
3619 if (disk->replacement)
3620 goto out_free_conf;
3621 disk->replacement = rdev;
3622 } else {
3623 if (disk->rdev)
3624 goto out_free_conf;
3625 disk->rdev = rdev;
3626 }
aba336bd 3627 q = bdev_get_queue(rdev->bdev);
3ea7daa5
N
3628 diff = (rdev->new_data_offset - rdev->data_offset);
3629 if (!mddev->reshape_backwards)
3630 diff = -diff;
3631 if (diff < 0)
3632 diff = 0;
3633 if (first || diff < min_offset_diff)
3634 min_offset_diff = diff;
56a2559b 3635
cc4d1efd
JB
3636 if (mddev->gendisk)
3637 disk_stack_limits(mddev->gendisk, rdev->bdev,
3638 rdev->data_offset << 9);
1da177e4
LT
3639
3640 disk->head_position = 0;
532a2a3f
SL
3641
3642 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3643 discard_supported = true;
1da177e4 3644 }
3ea7daa5 3645
ed30be07
JB
3646 if (mddev->queue) {
3647 if (discard_supported)
3648 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3649 mddev->queue);
3650 else
3651 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3652 mddev->queue);
3653 }
6d508242 3654 /* need to check that every block has at least one working mirror */
700c7213 3655 if (!enough(conf, -1)) {
128595ed 3656 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3657 mdname(mddev));
1da177e4
LT
3658 goto out_free_conf;
3659 }
3660
3ea7daa5
N
3661 if (conf->reshape_progress != MaxSector) {
3662 /* must ensure that shape change is supported */
3663 if (conf->geo.far_copies != 1 &&
3664 conf->geo.far_offset == 0)
3665 goto out_free_conf;
3666 if (conf->prev.far_copies != 1 &&
78eaa0d4 3667 conf->prev.far_offset == 0)
3ea7daa5
N
3668 goto out_free_conf;
3669 }
3670
1da177e4 3671 mddev->degraded = 0;
f8c9e74f
N
3672 for (i = 0;
3673 i < conf->geo.raid_disks
3674 || i < conf->prev.raid_disks;
3675 i++) {
1da177e4
LT
3676
3677 disk = conf->mirrors + i;
3678
56a2559b
N
3679 if (!disk->rdev && disk->replacement) {
3680 /* The replacement is all we have - use it */
3681 disk->rdev = disk->replacement;
3682 disk->replacement = NULL;
3683 clear_bit(Replacement, &disk->rdev->flags);
3684 }
3685
5fd6c1dc 3686 if (!disk->rdev ||
2e333e89 3687 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3688 disk->head_position = 0;
3689 mddev->degraded++;
0b59bb64
N
3690 if (disk->rdev &&
3691 disk->rdev->saved_raid_disk < 0)
8c2e870a 3692 conf->fullsync = 1;
1da177e4 3693 }
d890fa2b 3694 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3695 }
3696
8c6ac868 3697 if (mddev->recovery_cp != MaxSector)
128595ed 3698 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3699 " -- starting background reconstruction\n",
3700 mdname(mddev));
1da177e4 3701 printk(KERN_INFO
128595ed 3702 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3703 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3704 conf->geo.raid_disks);
1da177e4
LT
3705 /*
3706 * Ok, everything is just fine now
3707 */
dab8b292
TM
3708 mddev->dev_sectors = conf->dev_sectors;
3709 size = raid10_size(mddev, 0, 0);
3710 md_set_array_sectors(mddev, size);
3711 mddev->resync_max_sectors = size;
1da177e4 3712
cc4d1efd 3713 if (mddev->queue) {
5cf00fcd 3714 int stripe = conf->geo.raid_disks *
9d8f0363 3715 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3716
3717 /* Calculate max read-ahead size.
3718 * We need to readahead at least twice a whole stripe....
3719 * maybe...
3720 */
5cf00fcd 3721 stripe /= conf->geo.near_copies;
3ea7daa5
N
3722 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3723 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1da177e4
LT
3724 }
3725
a91a2785
MP
3726 if (md_integrity_register(mddev))
3727 goto out_free_conf;
3728
3ea7daa5
N
3729 if (conf->reshape_progress != MaxSector) {
3730 unsigned long before_length, after_length;
3731
3732 before_length = ((1 << conf->prev.chunk_shift) *
3733 conf->prev.far_copies);
3734 after_length = ((1 << conf->geo.chunk_shift) *
3735 conf->geo.far_copies);
3736
3737 if (max(before_length, after_length) > min_offset_diff) {
3738 /* This cannot work */
3739 printk("md/raid10: offset difference not enough to continue reshape\n");
3740 goto out_free_conf;
3741 }
3742 conf->offset_diff = min_offset_diff;
3743
3ea7daa5
N
3744 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3745 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3746 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3747 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3748 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3749 "reshape");
3750 }
3751
1da177e4
LT
3752 return 0;
3753
3754out_free_conf:
01f96c0a 3755 md_unregister_thread(&mddev->thread);
644df1a8 3756 mempool_destroy(conf->r10bio_pool);
1345b1d8 3757 safe_put_page(conf->tmppage);
990a8baf 3758 kfree(conf->mirrors);
1da177e4
LT
3759 kfree(conf);
3760 mddev->private = NULL;
3761out:
3762 return -EIO;
3763}
3764
afa0f557 3765static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 3766{
afa0f557 3767 struct r10conf *conf = priv;
1da177e4 3768
644df1a8 3769 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3770 safe_put_page(conf->tmppage);
990a8baf 3771 kfree(conf->mirrors);
c4796e21
N
3772 kfree(conf->mirrors_old);
3773 kfree(conf->mirrors_new);
1da177e4 3774 kfree(conf);
1da177e4
LT
3775}
3776
fd01b88c 3777static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3778{
e879a879 3779 struct r10conf *conf = mddev->private;
6cce3b23
N
3780
3781 switch(state) {
3782 case 1:
3783 raise_barrier(conf, 0);
3784 break;
3785 case 0:
3786 lower_barrier(conf);
3787 break;
3788 }
6cce3b23 3789}
1da177e4 3790
006a09a0
N
3791static int raid10_resize(struct mddev *mddev, sector_t sectors)
3792{
3793 /* Resize of 'far' arrays is not supported.
3794 * For 'near' and 'offset' arrays we can set the
3795 * number of sectors used to be an appropriate multiple
3796 * of the chunk size.
3797 * For 'offset', this is far_copies*chunksize.
3798 * For 'near' the multiplier is the LCM of
3799 * near_copies and raid_disks.
3800 * So if far_copies > 1 && !far_offset, fail.
3801 * Else find LCM(raid_disks, near_copy)*far_copies and
3802 * multiply by chunk_size. Then round to this number.
3803 * This is mostly done by raid10_size()
3804 */
3805 struct r10conf *conf = mddev->private;
3806 sector_t oldsize, size;
3807
f8c9e74f
N
3808 if (mddev->reshape_position != MaxSector)
3809 return -EBUSY;
3810
5cf00fcd 3811 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3812 return -EINVAL;
3813
3814 oldsize = raid10_size(mddev, 0, 0);
3815 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3816 if (mddev->external_size &&
3817 mddev->array_sectors > size)
006a09a0 3818 return -EINVAL;
a4a6125a
N
3819 if (mddev->bitmap) {
3820 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3821 if (ret)
3822 return ret;
3823 }
3824 md_set_array_sectors(mddev, size);
859644f0
HM
3825 if (mddev->queue) {
3826 set_capacity(mddev->gendisk, mddev->array_sectors);
3827 revalidate_disk(mddev->gendisk);
3828 }
006a09a0
N
3829 if (sectors > mddev->dev_sectors &&
3830 mddev->recovery_cp > oldsize) {
3831 mddev->recovery_cp = oldsize;
3832 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3833 }
6508fdbf
N
3834 calc_sectors(conf, sectors);
3835 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3836 mddev->resync_max_sectors = size;
3837 return 0;
3838}
3839
53a6ab4d 3840static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 3841{
3cb03002 3842 struct md_rdev *rdev;
e879a879 3843 struct r10conf *conf;
dab8b292
TM
3844
3845 if (mddev->degraded > 0) {
128595ed
N
3846 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3847 mdname(mddev));
dab8b292
TM
3848 return ERR_PTR(-EINVAL);
3849 }
53a6ab4d 3850 sector_div(size, devs);
dab8b292 3851
dab8b292
TM
3852 /* Set new parameters */
3853 mddev->new_level = 10;
3854 /* new layout: far_copies = 1, near_copies = 2 */
3855 mddev->new_layout = (1<<8) + 2;
3856 mddev->new_chunk_sectors = mddev->chunk_sectors;
3857 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3858 mddev->raid_disks *= 2;
3859 /* make sure it will be not marked as dirty */
3860 mddev->recovery_cp = MaxSector;
53a6ab4d 3861 mddev->dev_sectors = size;
dab8b292
TM
3862
3863 conf = setup_conf(mddev);
02214dc5 3864 if (!IS_ERR(conf)) {
dafb20fa 3865 rdev_for_each(rdev, mddev)
53a6ab4d 3866 if (rdev->raid_disk >= 0) {
e93f68a1 3867 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
3868 rdev->sectors = size;
3869 }
02214dc5
KW
3870 conf->barrier = 1;
3871 }
3872
dab8b292
TM
3873 return conf;
3874}
3875
fd01b88c 3876static void *raid10_takeover(struct mddev *mddev)
dab8b292 3877{
e373ab10 3878 struct r0conf *raid0_conf;
dab8b292
TM
3879
3880 /* raid10 can take over:
3881 * raid0 - providing it has only two drives
3882 */
3883 if (mddev->level == 0) {
3884 /* for raid0 takeover only one zone is supported */
e373ab10
N
3885 raid0_conf = mddev->private;
3886 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3887 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3888 " with more than one zone.\n",
3889 mdname(mddev));
dab8b292
TM
3890 return ERR_PTR(-EINVAL);
3891 }
53a6ab4d
N
3892 return raid10_takeover_raid0(mddev,
3893 raid0_conf->strip_zone->zone_end,
3894 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
3895 }
3896 return ERR_PTR(-EINVAL);
3897}
3898
3ea7daa5
N
3899static int raid10_check_reshape(struct mddev *mddev)
3900{
3901 /* Called when there is a request to change
3902 * - layout (to ->new_layout)
3903 * - chunk size (to ->new_chunk_sectors)
3904 * - raid_disks (by delta_disks)
3905 * or when trying to restart a reshape that was ongoing.
3906 *
3907 * We need to validate the request and possibly allocate
3908 * space if that might be an issue later.
3909 *
3910 * Currently we reject any reshape of a 'far' mode array,
3911 * allow chunk size to change if new is generally acceptable,
3912 * allow raid_disks to increase, and allow
3913 * a switch between 'near' mode and 'offset' mode.
3914 */
3915 struct r10conf *conf = mddev->private;
3916 struct geom geo;
3917
3918 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3919 return -EINVAL;
3920
3921 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3922 /* mustn't change number of copies */
3923 return -EINVAL;
3924 if (geo.far_copies > 1 && !geo.far_offset)
3925 /* Cannot switch to 'far' mode */
3926 return -EINVAL;
3927
3928 if (mddev->array_sectors & geo.chunk_mask)
3929 /* not factor of array size */
3930 return -EINVAL;
3931
3ea7daa5
N
3932 if (!enough(conf, -1))
3933 return -EINVAL;
3934
3935 kfree(conf->mirrors_new);
3936 conf->mirrors_new = NULL;
3937 if (mddev->delta_disks > 0) {
3938 /* allocate new 'mirrors' list */
3939 conf->mirrors_new = kzalloc(
dc280d98 3940 sizeof(struct raid10_info)
3ea7daa5
N
3941 *(mddev->raid_disks +
3942 mddev->delta_disks),
3943 GFP_KERNEL);
3944 if (!conf->mirrors_new)
3945 return -ENOMEM;
3946 }
3947 return 0;
3948}
3949
3950/*
3951 * Need to check if array has failed when deciding whether to:
3952 * - start an array
3953 * - remove non-faulty devices
3954 * - add a spare
3955 * - allow a reshape
3956 * This determination is simple when no reshape is happening.
3957 * However if there is a reshape, we need to carefully check
3958 * both the before and after sections.
3959 * This is because some failed devices may only affect one
3960 * of the two sections, and some non-in_sync devices may
3961 * be insync in the section most affected by failed devices.
3962 */
3963static int calc_degraded(struct r10conf *conf)
3964{
3965 int degraded, degraded2;
3966 int i;
3967
3968 rcu_read_lock();
3969 degraded = 0;
3970 /* 'prev' section first */
3971 for (i = 0; i < conf->prev.raid_disks; i++) {
3972 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3973 if (!rdev || test_bit(Faulty, &rdev->flags))
3974 degraded++;
3975 else if (!test_bit(In_sync, &rdev->flags))
3976 /* When we can reduce the number of devices in
3977 * an array, this might not contribute to
3978 * 'degraded'. It does now.
3979 */
3980 degraded++;
3981 }
3982 rcu_read_unlock();
3983 if (conf->geo.raid_disks == conf->prev.raid_disks)
3984 return degraded;
3985 rcu_read_lock();
3986 degraded2 = 0;
3987 for (i = 0; i < conf->geo.raid_disks; i++) {
3988 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3989 if (!rdev || test_bit(Faulty, &rdev->flags))
3990 degraded2++;
3991 else if (!test_bit(In_sync, &rdev->flags)) {
3992 /* If reshape is increasing the number of devices,
3993 * this section has already been recovered, so
3994 * it doesn't contribute to degraded.
3995 * else it does.
3996 */
3997 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3998 degraded2++;
3999 }
4000 }
4001 rcu_read_unlock();
4002 if (degraded2 > degraded)
4003 return degraded2;
4004 return degraded;
4005}
4006
4007static int raid10_start_reshape(struct mddev *mddev)
4008{
4009 /* A 'reshape' has been requested. This commits
4010 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4011 * This also checks if there are enough spares and adds them
4012 * to the array.
4013 * We currently require enough spares to make the final
4014 * array non-degraded. We also require that the difference
4015 * between old and new data_offset - on each device - is
4016 * enough that we never risk over-writing.
4017 */
4018
4019 unsigned long before_length, after_length;
4020 sector_t min_offset_diff = 0;
4021 int first = 1;
4022 struct geom new;
4023 struct r10conf *conf = mddev->private;
4024 struct md_rdev *rdev;
4025 int spares = 0;
bb63a701 4026 int ret;
3ea7daa5
N
4027
4028 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4029 return -EBUSY;
4030
4031 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4032 return -EINVAL;
4033
4034 before_length = ((1 << conf->prev.chunk_shift) *
4035 conf->prev.far_copies);
4036 after_length = ((1 << conf->geo.chunk_shift) *
4037 conf->geo.far_copies);
4038
4039 rdev_for_each(rdev, mddev) {
4040 if (!test_bit(In_sync, &rdev->flags)
4041 && !test_bit(Faulty, &rdev->flags))
4042 spares++;
4043 if (rdev->raid_disk >= 0) {
4044 long long diff = (rdev->new_data_offset
4045 - rdev->data_offset);
4046 if (!mddev->reshape_backwards)
4047 diff = -diff;
4048 if (diff < 0)
4049 diff = 0;
4050 if (first || diff < min_offset_diff)
4051 min_offset_diff = diff;
4052 }
4053 }
4054
4055 if (max(before_length, after_length) > min_offset_diff)
4056 return -EINVAL;
4057
4058 if (spares < mddev->delta_disks)
4059 return -EINVAL;
4060
4061 conf->offset_diff = min_offset_diff;
4062 spin_lock_irq(&conf->device_lock);
4063 if (conf->mirrors_new) {
4064 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4065 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4066 smp_mb();
c4796e21 4067 kfree(conf->mirrors_old);
3ea7daa5
N
4068 conf->mirrors_old = conf->mirrors;
4069 conf->mirrors = conf->mirrors_new;
4070 conf->mirrors_new = NULL;
4071 }
4072 setup_geo(&conf->geo, mddev, geo_start);
4073 smp_mb();
4074 if (mddev->reshape_backwards) {
4075 sector_t size = raid10_size(mddev, 0, 0);
4076 if (size < mddev->array_sectors) {
4077 spin_unlock_irq(&conf->device_lock);
4078 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4079 mdname(mddev));
4080 return -EINVAL;
4081 }
4082 mddev->resync_max_sectors = size;
4083 conf->reshape_progress = size;
4084 } else
4085 conf->reshape_progress = 0;
299b0685 4086 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4087 spin_unlock_irq(&conf->device_lock);
4088
bb63a701
N
4089 if (mddev->delta_disks && mddev->bitmap) {
4090 ret = bitmap_resize(mddev->bitmap,
4091 raid10_size(mddev, 0,
4092 conf->geo.raid_disks),
4093 0, 0);
4094 if (ret)
4095 goto abort;
4096 }
3ea7daa5
N
4097 if (mddev->delta_disks > 0) {
4098 rdev_for_each(rdev, mddev)
4099 if (rdev->raid_disk < 0 &&
4100 !test_bit(Faulty, &rdev->flags)) {
4101 if (raid10_add_disk(mddev, rdev) == 0) {
4102 if (rdev->raid_disk >=
4103 conf->prev.raid_disks)
4104 set_bit(In_sync, &rdev->flags);
4105 else
4106 rdev->recovery_offset = 0;
4107
4108 if (sysfs_link_rdev(mddev, rdev))
4109 /* Failure here is OK */;
4110 }
4111 } else if (rdev->raid_disk >= conf->prev.raid_disks
4112 && !test_bit(Faulty, &rdev->flags)) {
4113 /* This is a spare that was manually added */
4114 set_bit(In_sync, &rdev->flags);
4115 }
4116 }
4117 /* When a reshape changes the number of devices,
4118 * ->degraded is measured against the larger of the
4119 * pre and post numbers.
4120 */
4121 spin_lock_irq(&conf->device_lock);
4122 mddev->degraded = calc_degraded(conf);
4123 spin_unlock_irq(&conf->device_lock);
4124 mddev->raid_disks = conf->geo.raid_disks;
4125 mddev->reshape_position = conf->reshape_progress;
4126 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4127
4128 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4129 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4130 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4131 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4132 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4133
4134 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4135 "reshape");
4136 if (!mddev->sync_thread) {
bb63a701
N
4137 ret = -EAGAIN;
4138 goto abort;
3ea7daa5
N
4139 }
4140 conf->reshape_checkpoint = jiffies;
4141 md_wakeup_thread(mddev->sync_thread);
4142 md_new_event(mddev);
4143 return 0;
bb63a701
N
4144
4145abort:
4146 mddev->recovery = 0;
4147 spin_lock_irq(&conf->device_lock);
4148 conf->geo = conf->prev;
4149 mddev->raid_disks = conf->geo.raid_disks;
4150 rdev_for_each(rdev, mddev)
4151 rdev->new_data_offset = rdev->data_offset;
4152 smp_wmb();
4153 conf->reshape_progress = MaxSector;
299b0685 4154 conf->reshape_safe = MaxSector;
bb63a701
N
4155 mddev->reshape_position = MaxSector;
4156 spin_unlock_irq(&conf->device_lock);
4157 return ret;
3ea7daa5
N
4158}
4159
4160/* Calculate the last device-address that could contain
4161 * any block from the chunk that includes the array-address 's'
4162 * and report the next address.
4163 * i.e. the address returned will be chunk-aligned and after
4164 * any data that is in the chunk containing 's'.
4165 */
4166static sector_t last_dev_address(sector_t s, struct geom *geo)
4167{
4168 s = (s | geo->chunk_mask) + 1;
4169 s >>= geo->chunk_shift;
4170 s *= geo->near_copies;
4171 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4172 s *= geo->far_copies;
4173 s <<= geo->chunk_shift;
4174 return s;
4175}
4176
4177/* Calculate the first device-address that could contain
4178 * any block from the chunk that includes the array-address 's'.
4179 * This too will be the start of a chunk
4180 */
4181static sector_t first_dev_address(sector_t s, struct geom *geo)
4182{
4183 s >>= geo->chunk_shift;
4184 s *= geo->near_copies;
4185 sector_div(s, geo->raid_disks);
4186 s *= geo->far_copies;
4187 s <<= geo->chunk_shift;
4188 return s;
4189}
4190
4191static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4192 int *skipped)
4193{
4194 /* We simply copy at most one chunk (smallest of old and new)
4195 * at a time, possibly less if that exceeds RESYNC_PAGES,
4196 * or we hit a bad block or something.
4197 * This might mean we pause for normal IO in the middle of
02ec5026 4198 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4199 * can record any location.
4200 *
4201 * If we will want to write to a location that isn't
4202 * yet recorded as 'safe' (i.e. in metadata on disk) then
4203 * we need to flush all reshape requests and update the metadata.
4204 *
4205 * When reshaping forwards (e.g. to more devices), we interpret
4206 * 'safe' as the earliest block which might not have been copied
4207 * down yet. We divide this by previous stripe size and multiply
4208 * by previous stripe length to get lowest device offset that we
4209 * cannot write to yet.
4210 * We interpret 'sector_nr' as an address that we want to write to.
4211 * From this we use last_device_address() to find where we might
4212 * write to, and first_device_address on the 'safe' position.
4213 * If this 'next' write position is after the 'safe' position,
4214 * we must update the metadata to increase the 'safe' position.
4215 *
4216 * When reshaping backwards, we round in the opposite direction
4217 * and perform the reverse test: next write position must not be
4218 * less than current safe position.
4219 *
4220 * In all this the minimum difference in data offsets
4221 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4222 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4223 *
4224 * We need to prepare all the bios here before we start any IO
4225 * to ensure the size we choose is acceptable to all devices.
4226 * The means one for each copy for write-out and an extra one for
4227 * read-in.
4228 * We store the read-in bio in ->master_bio and the others in
4229 * ->devs[x].bio and ->devs[x].repl_bio.
4230 */
4231 struct r10conf *conf = mddev->private;
4232 struct r10bio *r10_bio;
4233 sector_t next, safe, last;
4234 int max_sectors;
4235 int nr_sectors;
4236 int s;
4237 struct md_rdev *rdev;
4238 int need_flush = 0;
4239 struct bio *blist;
4240 struct bio *bio, *read_bio;
4241 int sectors_done = 0;
4242
4243 if (sector_nr == 0) {
4244 /* If restarting in the middle, skip the initial sectors */
4245 if (mddev->reshape_backwards &&
4246 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4247 sector_nr = (raid10_size(mddev, 0, 0)
4248 - conf->reshape_progress);
4249 } else if (!mddev->reshape_backwards &&
4250 conf->reshape_progress > 0)
4251 sector_nr = conf->reshape_progress;
4252 if (sector_nr) {
4253 mddev->curr_resync_completed = sector_nr;
4254 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4255 *skipped = 1;
4256 return sector_nr;
4257 }
4258 }
4259
4260 /* We don't use sector_nr to track where we are up to
4261 * as that doesn't work well for ->reshape_backwards.
4262 * So just use ->reshape_progress.
4263 */
4264 if (mddev->reshape_backwards) {
4265 /* 'next' is the earliest device address that we might
4266 * write to for this chunk in the new layout
4267 */
4268 next = first_dev_address(conf->reshape_progress - 1,
4269 &conf->geo);
4270
4271 /* 'safe' is the last device address that we might read from
4272 * in the old layout after a restart
4273 */
4274 safe = last_dev_address(conf->reshape_safe - 1,
4275 &conf->prev);
4276
4277 if (next + conf->offset_diff < safe)
4278 need_flush = 1;
4279
4280 last = conf->reshape_progress - 1;
4281 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4282 & conf->prev.chunk_mask);
4283 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4284 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4285 } else {
4286 /* 'next' is after the last device address that we
4287 * might write to for this chunk in the new layout
4288 */
4289 next = last_dev_address(conf->reshape_progress, &conf->geo);
4290
4291 /* 'safe' is the earliest device address that we might
4292 * read from in the old layout after a restart
4293 */
4294 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4295
4296 /* Need to update metadata if 'next' might be beyond 'safe'
4297 * as that would possibly corrupt data
4298 */
4299 if (next > safe + conf->offset_diff)
4300 need_flush = 1;
4301
4302 sector_nr = conf->reshape_progress;
4303 last = sector_nr | (conf->geo.chunk_mask
4304 & conf->prev.chunk_mask);
4305
4306 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4307 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4308 }
4309
4310 if (need_flush ||
4311 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4312 /* Need to update reshape_position in metadata */
4313 wait_barrier(conf);
4314 mddev->reshape_position = conf->reshape_progress;
4315 if (mddev->reshape_backwards)
4316 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4317 - conf->reshape_progress;
4318 else
4319 mddev->curr_resync_completed = conf->reshape_progress;
4320 conf->reshape_checkpoint = jiffies;
4321 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4322 md_wakeup_thread(mddev->thread);
4323 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
4324 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4325 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4326 allow_barrier(conf);
4327 return sectors_done;
4328 }
3ea7daa5
N
4329 conf->reshape_safe = mddev->reshape_position;
4330 allow_barrier(conf);
4331 }
4332
4333read_more:
4334 /* Now schedule reads for blocks from sector_nr to last */
4335 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 4336 r10_bio->state = 0;
3ea7daa5
N
4337 raise_barrier(conf, sectors_done != 0);
4338 atomic_set(&r10_bio->remaining, 0);
4339 r10_bio->mddev = mddev;
4340 r10_bio->sector = sector_nr;
4341 set_bit(R10BIO_IsReshape, &r10_bio->state);
4342 r10_bio->sectors = last - sector_nr + 1;
4343 rdev = read_balance(conf, r10_bio, &max_sectors);
4344 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4345
4346 if (!rdev) {
4347 /* Cannot read from here, so need to record bad blocks
4348 * on all the target devices.
4349 */
4350 // FIXME
e337aead 4351 mempool_free(r10_bio, conf->r10buf_pool);
3ea7daa5
N
4352 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4353 return sectors_done;
4354 }
4355
4356 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4357
4358 read_bio->bi_bdev = rdev->bdev;
4f024f37 4359 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4360 + rdev->data_offset);
4361 read_bio->bi_private = r10_bio;
4362 read_bio->bi_end_io = end_sync_read;
796a5cf0 4363 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
ce0b0a46 4364 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4246a0b6 4365 read_bio->bi_error = 0;
3ea7daa5 4366 read_bio->bi_vcnt = 0;
4f024f37 4367 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4368 r10_bio->master_bio = read_bio;
4369 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4370
4371 /* Now find the locations in the new layout */
4372 __raid10_find_phys(&conf->geo, r10_bio);
4373
4374 blist = read_bio;
4375 read_bio->bi_next = NULL;
4376
d094d686 4377 rcu_read_lock();
3ea7daa5
N
4378 for (s = 0; s < conf->copies*2; s++) {
4379 struct bio *b;
4380 int d = r10_bio->devs[s/2].devnum;
4381 struct md_rdev *rdev2;
4382 if (s&1) {
d094d686 4383 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4384 b = r10_bio->devs[s/2].repl_bio;
4385 } else {
d094d686 4386 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4387 b = r10_bio->devs[s/2].bio;
4388 }
4389 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4390 continue;
8be185f2
KO
4391
4392 bio_reset(b);
3ea7daa5 4393 b->bi_bdev = rdev2->bdev;
4f024f37
KO
4394 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4395 rdev2->new_data_offset;
3ea7daa5
N
4396 b->bi_private = r10_bio;
4397 b->bi_end_io = end_reshape_write;
796a5cf0 4398 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
3ea7daa5 4399 b->bi_next = blist;
3ea7daa5
N
4400 blist = b;
4401 }
4402
4403 /* Now add as many pages as possible to all of these bios. */
4404
4405 nr_sectors = 0;
4406 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4407 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4408 int len = (max_sectors - s) << 9;
4409 if (len > PAGE_SIZE)
4410 len = PAGE_SIZE;
4411 for (bio = blist; bio ; bio = bio->bi_next) {
4412 struct bio *bio2;
4413 if (bio_add_page(bio, page, len, 0))
4414 continue;
4415
4416 /* Didn't fit, must stop */
4417 for (bio2 = blist;
4418 bio2 && bio2 != bio;
4419 bio2 = bio2->bi_next) {
4420 /* Remove last page from this bio */
4421 bio2->bi_vcnt--;
4f024f37 4422 bio2->bi_iter.bi_size -= len;
b7c44ed9 4423 bio_clear_flag(bio2, BIO_SEG_VALID);
3ea7daa5
N
4424 }
4425 goto bio_full;
4426 }
4427 sector_nr += len >> 9;
4428 nr_sectors += len >> 9;
4429 }
4430bio_full:
d094d686 4431 rcu_read_unlock();
3ea7daa5
N
4432 r10_bio->sectors = nr_sectors;
4433
4434 /* Now submit the read */
4435 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4436 atomic_inc(&r10_bio->remaining);
4437 read_bio->bi_next = NULL;
4438 generic_make_request(read_bio);
4439 sector_nr += nr_sectors;
4440 sectors_done += nr_sectors;
4441 if (sector_nr <= last)
4442 goto read_more;
4443
4444 /* Now that we have done the whole section we can
4445 * update reshape_progress
4446 */
4447 if (mddev->reshape_backwards)
4448 conf->reshape_progress -= sectors_done;
4449 else
4450 conf->reshape_progress += sectors_done;
4451
4452 return sectors_done;
4453}
4454
4455static void end_reshape_request(struct r10bio *r10_bio);
4456static int handle_reshape_read_error(struct mddev *mddev,
4457 struct r10bio *r10_bio);
4458static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4459{
4460 /* Reshape read completed. Hopefully we have a block
4461 * to write out.
4462 * If we got a read error then we do sync 1-page reads from
4463 * elsewhere until we find the data - or give up.
4464 */
4465 struct r10conf *conf = mddev->private;
4466 int s;
4467
4468 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4469 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4470 /* Reshape has been aborted */
4471 md_done_sync(mddev, r10_bio->sectors, 0);
4472 return;
4473 }
4474
4475 /* We definitely have the data in the pages, schedule the
4476 * writes.
4477 */
4478 atomic_set(&r10_bio->remaining, 1);
4479 for (s = 0; s < conf->copies*2; s++) {
4480 struct bio *b;
4481 int d = r10_bio->devs[s/2].devnum;
4482 struct md_rdev *rdev;
d094d686 4483 rcu_read_lock();
3ea7daa5 4484 if (s&1) {
d094d686 4485 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4486 b = r10_bio->devs[s/2].repl_bio;
4487 } else {
d094d686 4488 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4489 b = r10_bio->devs[s/2].bio;
4490 }
d094d686
N
4491 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4492 rcu_read_unlock();
3ea7daa5 4493 continue;
d094d686 4494 }
3ea7daa5 4495 atomic_inc(&rdev->nr_pending);
d094d686 4496 rcu_read_unlock();
3ea7daa5
N
4497 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4498 atomic_inc(&r10_bio->remaining);
4499 b->bi_next = NULL;
4500 generic_make_request(b);
4501 }
4502 end_reshape_request(r10_bio);
4503}
4504
4505static void end_reshape(struct r10conf *conf)
4506{
4507 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4508 return;
4509
4510 spin_lock_irq(&conf->device_lock);
4511 conf->prev = conf->geo;
4512 md_finish_reshape(conf->mddev);
4513 smp_wmb();
4514 conf->reshape_progress = MaxSector;
299b0685 4515 conf->reshape_safe = MaxSector;
3ea7daa5
N
4516 spin_unlock_irq(&conf->device_lock);
4517
4518 /* read-ahead size must cover two whole stripes, which is
4519 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4520 */
4521 if (conf->mddev->queue) {
4522 int stripe = conf->geo.raid_disks *
4523 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4524 stripe /= conf->geo.near_copies;
4525 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4526 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4527 }
4528 conf->fullsync = 0;
4529}
4530
3ea7daa5
N
4531static int handle_reshape_read_error(struct mddev *mddev,
4532 struct r10bio *r10_bio)
4533{
4534 /* Use sync reads to get the blocks from somewhere else */
4535 int sectors = r10_bio->sectors;
3ea7daa5 4536 struct r10conf *conf = mddev->private;
e0ee7785
N
4537 struct {
4538 struct r10bio r10_bio;
4539 struct r10dev devs[conf->copies];
4540 } on_stack;
4541 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4542 int slot = 0;
4543 int idx = 0;
4544 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4545
e0ee7785
N
4546 r10b->sector = r10_bio->sector;
4547 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4548
4549 while (sectors) {
4550 int s = sectors;
4551 int success = 0;
4552 int first_slot = slot;
4553
4554 if (s > (PAGE_SIZE >> 9))
4555 s = PAGE_SIZE >> 9;
4556
d094d686 4557 rcu_read_lock();
3ea7daa5 4558 while (!success) {
e0ee7785 4559 int d = r10b->devs[slot].devnum;
d094d686 4560 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4561 sector_t addr;
4562 if (rdev == NULL ||
4563 test_bit(Faulty, &rdev->flags) ||
4564 !test_bit(In_sync, &rdev->flags))
4565 goto failed;
4566
e0ee7785 4567 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
4568 atomic_inc(&rdev->nr_pending);
4569 rcu_read_unlock();
3ea7daa5
N
4570 success = sync_page_io(rdev,
4571 addr,
4572 s << 9,
4573 bvec[idx].bv_page,
796a5cf0 4574 REQ_OP_READ, 0, false);
d094d686
N
4575 rdev_dec_pending(rdev, mddev);
4576 rcu_read_lock();
3ea7daa5
N
4577 if (success)
4578 break;
4579 failed:
4580 slot++;
4581 if (slot >= conf->copies)
4582 slot = 0;
4583 if (slot == first_slot)
4584 break;
4585 }
d094d686 4586 rcu_read_unlock();
3ea7daa5
N
4587 if (!success) {
4588 /* couldn't read this block, must give up */
4589 set_bit(MD_RECOVERY_INTR,
4590 &mddev->recovery);
4591 return -EIO;
4592 }
4593 sectors -= s;
4594 idx++;
4595 }
4596 return 0;
4597}
4598
4246a0b6 4599static void end_reshape_write(struct bio *bio)
3ea7daa5 4600{
3ea7daa5
N
4601 struct r10bio *r10_bio = bio->bi_private;
4602 struct mddev *mddev = r10_bio->mddev;
4603 struct r10conf *conf = mddev->private;
4604 int d;
4605 int slot;
4606 int repl;
4607 struct md_rdev *rdev = NULL;
4608
4609 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4610 if (repl)
4611 rdev = conf->mirrors[d].replacement;
4612 if (!rdev) {
4613 smp_mb();
4614 rdev = conf->mirrors[d].rdev;
4615 }
4616
4246a0b6 4617 if (bio->bi_error) {
3ea7daa5
N
4618 /* FIXME should record badblock */
4619 md_error(mddev, rdev);
4620 }
4621
4622 rdev_dec_pending(rdev, mddev);
4623 end_reshape_request(r10_bio);
4624}
4625
4626static void end_reshape_request(struct r10bio *r10_bio)
4627{
4628 if (!atomic_dec_and_test(&r10_bio->remaining))
4629 return;
4630 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4631 bio_put(r10_bio->master_bio);
4632 put_buf(r10_bio);
4633}
4634
4635static void raid10_finish_reshape(struct mddev *mddev)
4636{
4637 struct r10conf *conf = mddev->private;
4638
4639 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4640 return;
4641
4642 if (mddev->delta_disks > 0) {
4643 sector_t size = raid10_size(mddev, 0, 0);
4644 md_set_array_sectors(mddev, size);
4645 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4646 mddev->recovery_cp = mddev->resync_max_sectors;
4647 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4648 }
4649 mddev->resync_max_sectors = size;
859644f0
HM
4650 if (mddev->queue) {
4651 set_capacity(mddev->gendisk, mddev->array_sectors);
4652 revalidate_disk(mddev->gendisk);
4653 }
63aced61
N
4654 } else {
4655 int d;
d094d686 4656 rcu_read_lock();
63aced61
N
4657 for (d = conf->geo.raid_disks ;
4658 d < conf->geo.raid_disks - mddev->delta_disks;
4659 d++) {
d094d686 4660 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
4661 if (rdev)
4662 clear_bit(In_sync, &rdev->flags);
d094d686 4663 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
4664 if (rdev)
4665 clear_bit(In_sync, &rdev->flags);
4666 }
d094d686 4667 rcu_read_unlock();
3ea7daa5
N
4668 }
4669 mddev->layout = mddev->new_layout;
4670 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4671 mddev->reshape_position = MaxSector;
4672 mddev->delta_disks = 0;
4673 mddev->reshape_backwards = 0;
4674}
4675
84fc4b56 4676static struct md_personality raid10_personality =
1da177e4
LT
4677{
4678 .name = "raid10",
2604b703 4679 .level = 10,
1da177e4 4680 .owner = THIS_MODULE,
849674e4
SL
4681 .make_request = raid10_make_request,
4682 .run = raid10_run,
afa0f557 4683 .free = raid10_free,
849674e4
SL
4684 .status = raid10_status,
4685 .error_handler = raid10_error,
1da177e4
LT
4686 .hot_add_disk = raid10_add_disk,
4687 .hot_remove_disk= raid10_remove_disk,
4688 .spare_active = raid10_spare_active,
849674e4 4689 .sync_request = raid10_sync_request,
6cce3b23 4690 .quiesce = raid10_quiesce,
80c3a6ce 4691 .size = raid10_size,
006a09a0 4692 .resize = raid10_resize,
dab8b292 4693 .takeover = raid10_takeover,
3ea7daa5
N
4694 .check_reshape = raid10_check_reshape,
4695 .start_reshape = raid10_start_reshape,
4696 .finish_reshape = raid10_finish_reshape,
5c675f83 4697 .congested = raid10_congested,
1da177e4
LT
4698};
4699
4700static int __init raid_init(void)
4701{
2604b703 4702 return register_md_personality(&raid10_personality);
1da177e4
LT
4703}
4704
4705static void raid_exit(void)
4706{
2604b703 4707 unregister_md_personality(&raid10_personality);
1da177e4
LT
4708}
4709
4710module_init(raid_init);
4711module_exit(raid_exit);
4712MODULE_LICENSE("GPL");
0efb9e61 4713MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4714MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4715MODULE_ALIAS("md-raid10");
2604b703 4716MODULE_ALIAS("md-level-10");
34db0cd6
N
4717
4718module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);