]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/raid10.c
[PATCH] md: really get sb_size setting right in all cases
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/raid/raid10.h>
22
23/*
24 * RAID10 provides a combination of RAID0 and RAID1 functionality.
25 * The layout of data is defined by
26 * chunk_size
27 * raid_disks
28 * near_copies (stored in low byte of layout)
29 * far_copies (stored in second byte of layout)
30 *
31 * The data to be stored is divided into chunks using chunksize.
32 * Each device is divided into far_copies sections.
33 * In each section, chunks are laid out in a style similar to raid0, but
34 * near_copies copies of each chunk is stored (each on a different drive).
35 * The starting device for each section is offset near_copies from the starting
36 * device of the previous section.
37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38 * drive.
39 * near_copies and far_copies must be at least one, and their product is at most
40 * raid_disks.
41 */
42
43/*
44 * Number of guaranteed r10bios in case of extreme VM load:
45 */
46#define NR_RAID10_BIOS 256
47
48static void unplug_slaves(mddev_t *mddev);
49
50static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
51{
52 conf_t *conf = data;
53 r10bio_t *r10_bio;
54 int size = offsetof(struct r10bio_s, devs[conf->copies]);
55
56 /* allocate a r10bio with room for raid_disks entries in the bios array */
57 r10_bio = kmalloc(size, gfp_flags);
58 if (r10_bio)
59 memset(r10_bio, 0, size);
60 else
61 unplug_slaves(conf->mddev);
62
63 return r10_bio;
64}
65
66static void r10bio_pool_free(void *r10_bio, void *data)
67{
68 kfree(r10_bio);
69}
70
71#define RESYNC_BLOCK_SIZE (64*1024)
72//#define RESYNC_BLOCK_SIZE PAGE_SIZE
73#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75#define RESYNC_WINDOW (2048*1024)
76
77/*
78 * When performing a resync, we need to read and compare, so
79 * we need as many pages are there are copies.
80 * When performing a recovery, we need 2 bios, one for read,
81 * one for write (we recover only one drive per r10buf)
82 *
83 */
84static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
85{
86 conf_t *conf = data;
87 struct page *page;
88 r10bio_t *r10_bio;
89 struct bio *bio;
90 int i, j;
91 int nalloc;
92
93 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94 if (!r10_bio) {
95 unplug_slaves(conf->mddev);
96 return NULL;
97 }
98
99 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100 nalloc = conf->copies; /* resync */
101 else
102 nalloc = 2; /* recovery */
103
104 /*
105 * Allocate bios.
106 */
107 for (j = nalloc ; j-- ; ) {
108 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r10_bio->devs[j].bio = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them
115 * where needed.
116 */
117 for (j = 0 ; j < nalloc; j++) {
118 bio = r10_bio->devs[j].bio;
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
123
124 bio->bi_io_vec[i].bv_page = page;
125 }
126 }
127
128 return r10_bio;
129
130out_free_pages:
131 for ( ; i > 0 ; i--)
132 __free_page(bio->bi_io_vec[i-1].bv_page);
133 while (j--)
134 for (i = 0; i < RESYNC_PAGES ; i++)
135 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136 j = -1;
137out_free_bio:
138 while ( ++j < nalloc )
139 bio_put(r10_bio->devs[j].bio);
140 r10bio_pool_free(r10_bio, conf);
141 return NULL;
142}
143
144static void r10buf_pool_free(void *__r10_bio, void *data)
145{
146 int i;
147 conf_t *conf = data;
148 r10bio_t *r10bio = __r10_bio;
149 int j;
150
151 for (j=0; j < conf->copies; j++) {
152 struct bio *bio = r10bio->devs[j].bio;
153 if (bio) {
154 for (i = 0; i < RESYNC_PAGES; i++) {
155 __free_page(bio->bi_io_vec[i].bv_page);
156 bio->bi_io_vec[i].bv_page = NULL;
157 }
158 bio_put(bio);
159 }
160 }
161 r10bio_pool_free(r10bio, conf);
162}
163
164static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165{
166 int i;
167
168 for (i = 0; i < conf->copies; i++) {
169 struct bio **bio = & r10_bio->devs[i].bio;
170 if (*bio)
171 bio_put(*bio);
172 *bio = NULL;
173 }
174}
175
176static inline void free_r10bio(r10bio_t *r10_bio)
177{
178 unsigned long flags;
179
180 conf_t *conf = mddev_to_conf(r10_bio->mddev);
181
182 /*
183 * Wake up any possible resync thread that waits for the device
184 * to go idle.
185 */
186 spin_lock_irqsave(&conf->resync_lock, flags);
187 if (!--conf->nr_pending) {
188 wake_up(&conf->wait_idle);
189 wake_up(&conf->wait_resume);
190 }
191 spin_unlock_irqrestore(&conf->resync_lock, flags);
192
193 put_all_bios(conf, r10_bio);
194 mempool_free(r10_bio, conf->r10bio_pool);
195}
196
197static inline void put_buf(r10bio_t *r10_bio)
198{
199 conf_t *conf = mddev_to_conf(r10_bio->mddev);
200 unsigned long flags;
201
202 mempool_free(r10_bio, conf->r10buf_pool);
203
204 spin_lock_irqsave(&conf->resync_lock, flags);
205 if (!conf->barrier)
206 BUG();
207 --conf->barrier;
208 wake_up(&conf->wait_resume);
209 wake_up(&conf->wait_idle);
210
211 if (!--conf->nr_pending) {
212 wake_up(&conf->wait_idle);
213 wake_up(&conf->wait_resume);
214 }
215 spin_unlock_irqrestore(&conf->resync_lock, flags);
216}
217
218static void reschedule_retry(r10bio_t *r10_bio)
219{
220 unsigned long flags;
221 mddev_t *mddev = r10_bio->mddev;
222 conf_t *conf = mddev_to_conf(mddev);
223
224 spin_lock_irqsave(&conf->device_lock, flags);
225 list_add(&r10_bio->retry_list, &conf->retry_list);
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
228 md_wakeup_thread(mddev->thread);
229}
230
231/*
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
235 */
236static void raid_end_bio_io(r10bio_t *r10_bio)
237{
238 struct bio *bio = r10_bio->master_bio;
239
240 bio_endio(bio, bio->bi_size,
241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 free_r10bio(r10_bio);
243}
244
245/*
246 * Update disk head position estimator based on IRQ completion info.
247 */
248static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249{
250 conf_t *conf = mddev_to_conf(r10_bio->mddev);
251
252 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 r10_bio->devs[slot].addr + (r10_bio->sectors);
254}
255
256static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257{
258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260 int slot, dev;
261 conf_t *conf = mddev_to_conf(r10_bio->mddev);
262
263 if (bio->bi_size)
264 return 1;
265
266 slot = r10_bio->read_slot;
267 dev = r10_bio->devs[slot].devnum;
268 /*
269 * this branch is our 'one mirror IO has finished' event handler:
270 */
271 if (!uptodate)
272 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273 else
274 /*
275 * Set R10BIO_Uptodate in our master bio, so that
276 * we will return a good error code to the higher
277 * levels even if IO on some other mirrored buffer fails.
278 *
279 * The 'master' represents the composite IO operation to
280 * user-side. So if something waits for IO, then it will
281 * wait for the 'master' bio.
282 */
283 set_bit(R10BIO_Uptodate, &r10_bio->state);
284
285 update_head_pos(slot, r10_bio);
286
287 /*
288 * we have only one bio on the read side
289 */
290 if (uptodate)
291 raid_end_bio_io(r10_bio);
292 else {
293 /*
294 * oops, read error:
295 */
296 char b[BDEVNAME_SIZE];
297 if (printk_ratelimit())
298 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300 reschedule_retry(r10_bio);
301 }
302
303 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304 return 0;
305}
306
307static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311 int slot, dev;
312 conf_t *conf = mddev_to_conf(r10_bio->mddev);
313
314 if (bio->bi_size)
315 return 1;
316
317 for (slot = 0; slot < conf->copies; slot++)
318 if (r10_bio->devs[slot].bio == bio)
319 break;
320 dev = r10_bio->devs[slot].devnum;
321
322 /*
323 * this branch is our 'one mirror IO has finished' event handler:
324 */
325 if (!uptodate)
326 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327 else
328 /*
329 * Set R10BIO_Uptodate in our master bio, so that
330 * we will return a good error code for to the higher
331 * levels even if IO on some other mirrored buffer fails.
332 *
333 * The 'master' represents the composite IO operation to
334 * user-side. So if something waits for IO, then it will
335 * wait for the 'master' bio.
336 */
337 set_bit(R10BIO_Uptodate, &r10_bio->state);
338
339 update_head_pos(slot, r10_bio);
340
341 /*
342 *
343 * Let's see if all mirrored write operations have finished
344 * already.
345 */
346 if (atomic_dec_and_test(&r10_bio->remaining)) {
347 md_write_end(r10_bio->mddev);
348 raid_end_bio_io(r10_bio);
349 }
350
351 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352 return 0;
353}
354
355
356/*
357 * RAID10 layout manager
358 * Aswell as the chunksize and raid_disks count, there are two
359 * parameters: near_copies and far_copies.
360 * near_copies * far_copies must be <= raid_disks.
361 * Normally one of these will be 1.
362 * If both are 1, we get raid0.
363 * If near_copies == raid_disks, we get raid1.
364 *
365 * Chunks are layed out in raid0 style with near_copies copies of the
366 * first chunk, followed by near_copies copies of the next chunk and
367 * so on.
368 * If far_copies > 1, then after 1/far_copies of the array has been assigned
369 * as described above, we start again with a device offset of near_copies.
370 * So we effectively have another copy of the whole array further down all
371 * the drives, but with blocks on different drives.
372 * With this layout, and block is never stored twice on the one device.
373 *
374 * raid10_find_phys finds the sector offset of a given virtual sector
375 * on each device that it is on. If a block isn't on a device,
376 * that entry in the array is set to MaxSector.
377 *
378 * raid10_find_virt does the reverse mapping, from a device and a
379 * sector offset to a virtual address
380 */
381
382static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383{
384 int n,f;
385 sector_t sector;
386 sector_t chunk;
387 sector_t stripe;
388 int dev;
389
390 int slot = 0;
391
392 /* now calculate first sector/dev */
393 chunk = r10bio->sector >> conf->chunk_shift;
394 sector = r10bio->sector & conf->chunk_mask;
395
396 chunk *= conf->near_copies;
397 stripe = chunk;
398 dev = sector_div(stripe, conf->raid_disks);
399
400 sector += stripe << conf->chunk_shift;
401
402 /* and calculate all the others */
403 for (n=0; n < conf->near_copies; n++) {
404 int d = dev;
405 sector_t s = sector;
406 r10bio->devs[slot].addr = sector;
407 r10bio->devs[slot].devnum = d;
408 slot++;
409
410 for (f = 1; f < conf->far_copies; f++) {
411 d += conf->near_copies;
412 if (d >= conf->raid_disks)
413 d -= conf->raid_disks;
414 s += conf->stride;
415 r10bio->devs[slot].devnum = d;
416 r10bio->devs[slot].addr = s;
417 slot++;
418 }
419 dev++;
420 if (dev >= conf->raid_disks) {
421 dev = 0;
422 sector += (conf->chunk_mask + 1);
423 }
424 }
425 BUG_ON(slot != conf->copies);
426}
427
428static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429{
430 sector_t offset, chunk, vchunk;
431
432 while (sector > conf->stride) {
433 sector -= conf->stride;
434 if (dev < conf->near_copies)
435 dev += conf->raid_disks - conf->near_copies;
436 else
437 dev -= conf->near_copies;
438 }
439
440 offset = sector & conf->chunk_mask;
441 chunk = sector >> conf->chunk_shift;
442 vchunk = chunk * conf->raid_disks + dev;
443 sector_div(vchunk, conf->near_copies);
444 return (vchunk << conf->chunk_shift) + offset;
445}
446
447/**
448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449 * @q: request queue
450 * @bio: the buffer head that's been built up so far
451 * @biovec: the request that could be merged to it.
452 *
453 * Return amount of bytes we can accept at this offset
454 * If near_copies == raid_disk, there are no striping issues,
455 * but in that case, the function isn't called at all.
456 */
457static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458 struct bio_vec *bio_vec)
459{
460 mddev_t *mddev = q->queuedata;
461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462 int max;
463 unsigned int chunk_sectors = mddev->chunk_size >> 9;
464 unsigned int bio_sectors = bio->bi_size >> 9;
465
466 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468 if (max <= bio_vec->bv_len && bio_sectors == 0)
469 return bio_vec->bv_len;
470 else
471 return max;
472}
473
474/*
475 * This routine returns the disk from which the requested read should
476 * be done. There is a per-array 'next expected sequential IO' sector
477 * number - if this matches on the next IO then we use the last disk.
478 * There is also a per-disk 'last know head position' sector that is
479 * maintained from IRQ contexts, both the normal and the resync IO
480 * completion handlers update this position correctly. If there is no
481 * perfect sequential match then we pick the disk whose head is closest.
482 *
483 * If there are 2 mirrors in the same 2 devices, performance degrades
484 * because position is mirror, not device based.
485 *
486 * The rdev for the device selected will have nr_pending incremented.
487 */
488
489/*
490 * FIXME: possibly should rethink readbalancing and do it differently
491 * depending on near_copies / far_copies geometry.
492 */
493static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494{
495 const unsigned long this_sector = r10_bio->sector;
496 int disk, slot, nslot;
497 const int sectors = r10_bio->sectors;
498 sector_t new_distance, current_distance;
499
500 raid10_find_phys(conf, r10_bio);
501 rcu_read_lock();
502 /*
503 * Check if we can balance. We can balance on the whole
504 * device if no resync is going on, or below the resync window.
505 * We take the first readable disk when above the resync window.
506 */
507 if (conf->mddev->recovery_cp < MaxSector
508 && (this_sector + sectors >= conf->next_resync)) {
509 /* make sure that disk is operational */
510 slot = 0;
511 disk = r10_bio->devs[slot].devnum;
512
513 while (!conf->mirrors[disk].rdev ||
514 !conf->mirrors[disk].rdev->in_sync) {
515 slot++;
516 if (slot == conf->copies) {
517 slot = 0;
518 disk = -1;
519 break;
520 }
521 disk = r10_bio->devs[slot].devnum;
522 }
523 goto rb_out;
524 }
525
526
527 /* make sure the disk is operational */
528 slot = 0;
529 disk = r10_bio->devs[slot].devnum;
530 while (!conf->mirrors[disk].rdev ||
531 !conf->mirrors[disk].rdev->in_sync) {
532 slot ++;
533 if (slot == conf->copies) {
534 disk = -1;
535 goto rb_out;
536 }
537 disk = r10_bio->devs[slot].devnum;
538 }
539
540
3ec67ac1
N
541 current_distance = abs(r10_bio->devs[slot].addr -
542 conf->mirrors[disk].head_position);
1da177e4
LT
543
544 /* Find the disk whose head is closest */
545
546 for (nslot = slot; nslot < conf->copies; nslot++) {
547 int ndisk = r10_bio->devs[nslot].devnum;
548
549
550 if (!conf->mirrors[ndisk].rdev ||
551 !conf->mirrors[ndisk].rdev->in_sync)
552 continue;
553
554 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
555 disk = ndisk;
556 slot = nslot;
557 break;
558 }
559 new_distance = abs(r10_bio->devs[nslot].addr -
560 conf->mirrors[ndisk].head_position);
561 if (new_distance < current_distance) {
562 current_distance = new_distance;
563 disk = ndisk;
564 slot = nslot;
565 }
566 }
567
568rb_out:
569 r10_bio->read_slot = slot;
570/* conf->next_seq_sect = this_sector + sectors;*/
571
572 if (disk >= 0 && conf->mirrors[disk].rdev)
573 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
574 rcu_read_unlock();
575
576 return disk;
577}
578
579static void unplug_slaves(mddev_t *mddev)
580{
581 conf_t *conf = mddev_to_conf(mddev);
582 int i;
583
584 rcu_read_lock();
585 for (i=0; i<mddev->raid_disks; i++) {
586 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
587 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
588 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
589
590 atomic_inc(&rdev->nr_pending);
591 rcu_read_unlock();
592
593 if (r_queue->unplug_fn)
594 r_queue->unplug_fn(r_queue);
595
596 rdev_dec_pending(rdev, mddev);
597 rcu_read_lock();
598 }
599 }
600 rcu_read_unlock();
601}
602
603static void raid10_unplug(request_queue_t *q)
604{
605 unplug_slaves(q->queuedata);
606}
607
608static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
609 sector_t *error_sector)
610{
611 mddev_t *mddev = q->queuedata;
612 conf_t *conf = mddev_to_conf(mddev);
613 int i, ret = 0;
614
615 rcu_read_lock();
616 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
617 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
618 if (rdev && !rdev->faulty) {
619 struct block_device *bdev = rdev->bdev;
620 request_queue_t *r_queue = bdev_get_queue(bdev);
621
622 if (!r_queue->issue_flush_fn)
623 ret = -EOPNOTSUPP;
624 else {
625 atomic_inc(&rdev->nr_pending);
626 rcu_read_unlock();
627 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
628 error_sector);
629 rdev_dec_pending(rdev, mddev);
630 rcu_read_lock();
631 }
632 }
633 }
634 rcu_read_unlock();
635 return ret;
636}
637
638/*
639 * Throttle resync depth, so that we can both get proper overlapping of
640 * requests, but are still able to handle normal requests quickly.
641 */
642#define RESYNC_DEPTH 32
643
644static void device_barrier(conf_t *conf, sector_t sect)
645{
646 spin_lock_irq(&conf->resync_lock);
647 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
648 conf->resync_lock, unplug_slaves(conf->mddev));
649
650 if (!conf->barrier++) {
651 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
652 conf->resync_lock, unplug_slaves(conf->mddev));
653 if (conf->nr_pending)
654 BUG();
655 }
656 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
657 conf->resync_lock, unplug_slaves(conf->mddev));
658 conf->next_resync = sect;
659 spin_unlock_irq(&conf->resync_lock);
660}
661
662static int make_request(request_queue_t *q, struct bio * bio)
663{
664 mddev_t *mddev = q->queuedata;
665 conf_t *conf = mddev_to_conf(mddev);
666 mirror_info_t *mirror;
667 r10bio_t *r10_bio;
668 struct bio *read_bio;
669 int i;
670 int chunk_sects = conf->chunk_mask + 1;
671
e5dcdd80
N
672 if (unlikely(bio_barrier(bio))) {
673 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
674 return 0;
675 }
676
1da177e4
LT
677 /* If this request crosses a chunk boundary, we need to
678 * split it. This will only happen for 1 PAGE (or less) requests.
679 */
680 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
681 > chunk_sects &&
682 conf->near_copies < conf->raid_disks)) {
683 struct bio_pair *bp;
684 /* Sanity check -- queue functions should prevent this happening */
685 if (bio->bi_vcnt != 1 ||
686 bio->bi_idx != 0)
687 goto bad_map;
688 /* This is a one page bio that upper layers
689 * refuse to split for us, so we need to split it.
690 */
691 bp = bio_split(bio, bio_split_pool,
692 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
693 if (make_request(q, &bp->bio1))
694 generic_make_request(&bp->bio1);
695 if (make_request(q, &bp->bio2))
696 generic_make_request(&bp->bio2);
697
698 bio_pair_release(bp);
699 return 0;
700 bad_map:
701 printk("raid10_make_request bug: can't convert block across chunks"
702 " or bigger than %dk %llu %d\n", chunk_sects/2,
703 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
704
705 bio_io_error(bio, bio->bi_size);
706 return 0;
707 }
708
3d310eb7 709 md_write_start(mddev, bio);
06d91a5f 710
1da177e4
LT
711 /*
712 * Register the new request and wait if the reconstruction
713 * thread has put up a bar for new requests.
714 * Continue immediately if no resync is active currently.
715 */
716 spin_lock_irq(&conf->resync_lock);
717 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
718 conf->nr_pending++;
719 spin_unlock_irq(&conf->resync_lock);
720
721 if (bio_data_dir(bio)==WRITE) {
722 disk_stat_inc(mddev->gendisk, writes);
723 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
724 } else {
725 disk_stat_inc(mddev->gendisk, reads);
726 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
727 }
728
729 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
730
731 r10_bio->master_bio = bio;
732 r10_bio->sectors = bio->bi_size >> 9;
733
734 r10_bio->mddev = mddev;
735 r10_bio->sector = bio->bi_sector;
736
737 if (bio_data_dir(bio) == READ) {
738 /*
739 * read balancing logic:
740 */
741 int disk = read_balance(conf, r10_bio);
742 int slot = r10_bio->read_slot;
743 if (disk < 0) {
744 raid_end_bio_io(r10_bio);
745 return 0;
746 }
747 mirror = conf->mirrors + disk;
748
749 read_bio = bio_clone(bio, GFP_NOIO);
750
751 r10_bio->devs[slot].bio = read_bio;
752
753 read_bio->bi_sector = r10_bio->devs[slot].addr +
754 mirror->rdev->data_offset;
755 read_bio->bi_bdev = mirror->rdev->bdev;
756 read_bio->bi_end_io = raid10_end_read_request;
757 read_bio->bi_rw = READ;
758 read_bio->bi_private = r10_bio;
759
760 generic_make_request(read_bio);
761 return 0;
762 }
763
764 /*
765 * WRITE:
766 */
767 /* first select target devices under spinlock and
768 * inc refcount on their rdev. Record them by setting
769 * bios[x] to bio
770 */
771 raid10_find_phys(conf, r10_bio);
772 rcu_read_lock();
773 for (i = 0; i < conf->copies; i++) {
774 int d = r10_bio->devs[i].devnum;
775 if (conf->mirrors[d].rdev &&
776 !conf->mirrors[d].rdev->faulty) {
777 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
778 r10_bio->devs[i].bio = bio;
779 } else
780 r10_bio->devs[i].bio = NULL;
781 }
782 rcu_read_unlock();
783
784 atomic_set(&r10_bio->remaining, 1);
06d91a5f 785
1da177e4
LT
786 for (i = 0; i < conf->copies; i++) {
787 struct bio *mbio;
788 int d = r10_bio->devs[i].devnum;
789 if (!r10_bio->devs[i].bio)
790 continue;
791
792 mbio = bio_clone(bio, GFP_NOIO);
793 r10_bio->devs[i].bio = mbio;
794
795 mbio->bi_sector = r10_bio->devs[i].addr+
796 conf->mirrors[d].rdev->data_offset;
797 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
798 mbio->bi_end_io = raid10_end_write_request;
799 mbio->bi_rw = WRITE;
800 mbio->bi_private = r10_bio;
801
802 atomic_inc(&r10_bio->remaining);
803 generic_make_request(mbio);
804 }
805
806 if (atomic_dec_and_test(&r10_bio->remaining)) {
807 md_write_end(mddev);
808 raid_end_bio_io(r10_bio);
809 }
810
811 return 0;
812}
813
814static void status(struct seq_file *seq, mddev_t *mddev)
815{
816 conf_t *conf = mddev_to_conf(mddev);
817 int i;
818
819 if (conf->near_copies < conf->raid_disks)
820 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
821 if (conf->near_copies > 1)
822 seq_printf(seq, " %d near-copies", conf->near_copies);
823 if (conf->far_copies > 1)
824 seq_printf(seq, " %d far-copies", conf->far_copies);
825
826 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
827 conf->working_disks);
828 for (i = 0; i < conf->raid_disks; i++)
829 seq_printf(seq, "%s",
830 conf->mirrors[i].rdev &&
831 conf->mirrors[i].rdev->in_sync ? "U" : "_");
832 seq_printf(seq, "]");
833}
834
835static void error(mddev_t *mddev, mdk_rdev_t *rdev)
836{
837 char b[BDEVNAME_SIZE];
838 conf_t *conf = mddev_to_conf(mddev);
839
840 /*
841 * If it is not operational, then we have already marked it as dead
842 * else if it is the last working disks, ignore the error, let the
843 * next level up know.
844 * else mark the drive as failed
845 */
846 if (rdev->in_sync
847 && conf->working_disks == 1)
848 /*
849 * Don't fail the drive, just return an IO error.
850 * The test should really be more sophisticated than
851 * "working_disks == 1", but it isn't critical, and
852 * can wait until we do more sophisticated "is the drive
853 * really dead" tests...
854 */
855 return;
856 if (rdev->in_sync) {
857 mddev->degraded++;
858 conf->working_disks--;
859 /*
860 * if recovery is running, make sure it aborts.
861 */
862 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
863 }
864 rdev->in_sync = 0;
865 rdev->faulty = 1;
866 mddev->sb_dirty = 1;
867 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
868 " Operation continuing on %d devices\n",
869 bdevname(rdev->bdev,b), conf->working_disks);
870}
871
872static void print_conf(conf_t *conf)
873{
874 int i;
875 mirror_info_t *tmp;
876
877 printk("RAID10 conf printout:\n");
878 if (!conf) {
879 printk("(!conf)\n");
880 return;
881 }
882 printk(" --- wd:%d rd:%d\n", conf->working_disks,
883 conf->raid_disks);
884
885 for (i = 0; i < conf->raid_disks; i++) {
886 char b[BDEVNAME_SIZE];
887 tmp = conf->mirrors + i;
888 if (tmp->rdev)
889 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
890 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
891 bdevname(tmp->rdev->bdev,b));
892 }
893}
894
895static void close_sync(conf_t *conf)
896{
897 spin_lock_irq(&conf->resync_lock);
898 wait_event_lock_irq(conf->wait_resume, !conf->barrier,
899 conf->resync_lock, unplug_slaves(conf->mddev));
900 spin_unlock_irq(&conf->resync_lock);
901
902 if (conf->barrier) BUG();
903 if (waitqueue_active(&conf->wait_idle)) BUG();
904
905 mempool_destroy(conf->r10buf_pool);
906 conf->r10buf_pool = NULL;
907}
908
909static int raid10_spare_active(mddev_t *mddev)
910{
911 int i;
912 conf_t *conf = mddev->private;
913 mirror_info_t *tmp;
914
915 /*
916 * Find all non-in_sync disks within the RAID10 configuration
917 * and mark them in_sync
918 */
919 for (i = 0; i < conf->raid_disks; i++) {
920 tmp = conf->mirrors + i;
921 if (tmp->rdev
922 && !tmp->rdev->faulty
923 && !tmp->rdev->in_sync) {
924 conf->working_disks++;
925 mddev->degraded--;
926 tmp->rdev->in_sync = 1;
927 }
928 }
929
930 print_conf(conf);
931 return 0;
932}
933
934
935static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
936{
937 conf_t *conf = mddev->private;
938 int found = 0;
939 int mirror;
940 mirror_info_t *p;
941
942 if (mddev->recovery_cp < MaxSector)
943 /* only hot-add to in-sync arrays, as recovery is
944 * very different from resync
945 */
946 return 0;
947
948 for (mirror=0; mirror < mddev->raid_disks; mirror++)
949 if ( !(p=conf->mirrors+mirror)->rdev) {
950
951 blk_queue_stack_limits(mddev->queue,
952 rdev->bdev->bd_disk->queue);
953 /* as we don't honour merge_bvec_fn, we must never risk
954 * violating it, so limit ->max_sector to one PAGE, as
955 * a one page request is never in violation.
956 */
957 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
958 mddev->queue->max_sectors > (PAGE_SIZE>>9))
959 mddev->queue->max_sectors = (PAGE_SIZE>>9);
960
961 p->head_position = 0;
962 rdev->raid_disk = mirror;
963 found = 1;
964 p->rdev = rdev;
965 break;
966 }
967
968 print_conf(conf);
969 return found;
970}
971
972static int raid10_remove_disk(mddev_t *mddev, int number)
973{
974 conf_t *conf = mddev->private;
975 int err = 0;
976 mdk_rdev_t *rdev;
977 mirror_info_t *p = conf->mirrors+ number;
978
979 print_conf(conf);
980 rdev = p->rdev;
981 if (rdev) {
982 if (rdev->in_sync ||
983 atomic_read(&rdev->nr_pending)) {
984 err = -EBUSY;
985 goto abort;
986 }
987 p->rdev = NULL;
fbd568a3 988 synchronize_rcu();
1da177e4
LT
989 if (atomic_read(&rdev->nr_pending)) {
990 /* lost the race, try later */
991 err = -EBUSY;
992 p->rdev = rdev;
993 }
994 }
995abort:
996
997 print_conf(conf);
998 return err;
999}
1000
1001
1002static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1003{
1004 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1005 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1006 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1007 int i,d;
1008
1009 if (bio->bi_size)
1010 return 1;
1011
1012 for (i=0; i<conf->copies; i++)
1013 if (r10_bio->devs[i].bio == bio)
1014 break;
1015 if (i == conf->copies)
1016 BUG();
1017 update_head_pos(i, r10_bio);
1018 d = r10_bio->devs[i].devnum;
1019 if (!uptodate)
1020 md_error(r10_bio->mddev,
1021 conf->mirrors[d].rdev);
1022
1023 /* for reconstruct, we always reschedule after a read.
1024 * for resync, only after all reads
1025 */
1026 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1027 atomic_dec_and_test(&r10_bio->remaining)) {
1028 /* we have read all the blocks,
1029 * do the comparison in process context in raid10d
1030 */
1031 reschedule_retry(r10_bio);
1032 }
1033 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1034 return 0;
1035}
1036
1037static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1038{
1039 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1040 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1041 mddev_t *mddev = r10_bio->mddev;
1042 conf_t *conf = mddev_to_conf(mddev);
1043 int i,d;
1044
1045 if (bio->bi_size)
1046 return 1;
1047
1048 for (i = 0; i < conf->copies; i++)
1049 if (r10_bio->devs[i].bio == bio)
1050 break;
1051 d = r10_bio->devs[i].devnum;
1052
1053 if (!uptodate)
1054 md_error(mddev, conf->mirrors[d].rdev);
1055 update_head_pos(i, r10_bio);
1056
1057 while (atomic_dec_and_test(&r10_bio->remaining)) {
1058 if (r10_bio->master_bio == NULL) {
1059 /* the primary of several recovery bios */
1060 md_done_sync(mddev, r10_bio->sectors, 1);
1061 put_buf(r10_bio);
1062 break;
1063 } else {
1064 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1065 put_buf(r10_bio);
1066 r10_bio = r10_bio2;
1067 }
1068 }
1069 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1070 return 0;
1071}
1072
1073/*
1074 * Note: sync and recover and handled very differently for raid10
1075 * This code is for resync.
1076 * For resync, we read through virtual addresses and read all blocks.
1077 * If there is any error, we schedule a write. The lowest numbered
1078 * drive is authoritative.
1079 * However requests come for physical address, so we need to map.
1080 * For every physical address there are raid_disks/copies virtual addresses,
1081 * which is always are least one, but is not necessarly an integer.
1082 * This means that a physical address can span multiple chunks, so we may
1083 * have to submit multiple io requests for a single sync request.
1084 */
1085/*
1086 * We check if all blocks are in-sync and only write to blocks that
1087 * aren't in sync
1088 */
1089static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1090{
1091 conf_t *conf = mddev_to_conf(mddev);
1092 int i, first;
1093 struct bio *tbio, *fbio;
1094
1095 atomic_set(&r10_bio->remaining, 1);
1096
1097 /* find the first device with a block */
1098 for (i=0; i<conf->copies; i++)
1099 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1100 break;
1101
1102 if (i == conf->copies)
1103 goto done;
1104
1105 first = i;
1106 fbio = r10_bio->devs[i].bio;
1107
1108 /* now find blocks with errors */
1109 for (i=first+1 ; i < conf->copies ; i++) {
1110 int vcnt, j, d;
1111
1112 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1113 continue;
1114 /* We know that the bi_io_vec layout is the same for
1115 * both 'first' and 'i', so we just compare them.
1116 * All vec entries are PAGE_SIZE;
1117 */
1118 tbio = r10_bio->devs[i].bio;
1119 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1120 for (j = 0; j < vcnt; j++)
1121 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1122 page_address(tbio->bi_io_vec[j].bv_page),
1123 PAGE_SIZE))
1124 break;
1125 if (j == vcnt)
1126 continue;
1127 /* Ok, we need to write this bio
1128 * First we need to fixup bv_offset, bv_len and
1129 * bi_vecs, as the read request might have corrupted these
1130 */
1131 tbio->bi_vcnt = vcnt;
1132 tbio->bi_size = r10_bio->sectors << 9;
1133 tbio->bi_idx = 0;
1134 tbio->bi_phys_segments = 0;
1135 tbio->bi_hw_segments = 0;
1136 tbio->bi_hw_front_size = 0;
1137 tbio->bi_hw_back_size = 0;
1138 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1139 tbio->bi_flags |= 1 << BIO_UPTODATE;
1140 tbio->bi_next = NULL;
1141 tbio->bi_rw = WRITE;
1142 tbio->bi_private = r10_bio;
1143 tbio->bi_sector = r10_bio->devs[i].addr;
1144
1145 for (j=0; j < vcnt ; j++) {
1146 tbio->bi_io_vec[j].bv_offset = 0;
1147 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1148
1149 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1150 page_address(fbio->bi_io_vec[j].bv_page),
1151 PAGE_SIZE);
1152 }
1153 tbio->bi_end_io = end_sync_write;
1154
1155 d = r10_bio->devs[i].devnum;
1156 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1157 atomic_inc(&r10_bio->remaining);
1158 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1159
1160 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1161 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1162 generic_make_request(tbio);
1163 }
1164
1165done:
1166 if (atomic_dec_and_test(&r10_bio->remaining)) {
1167 md_done_sync(mddev, r10_bio->sectors, 1);
1168 put_buf(r10_bio);
1169 }
1170}
1171
1172/*
1173 * Now for the recovery code.
1174 * Recovery happens across physical sectors.
1175 * We recover all non-is_sync drives by finding the virtual address of
1176 * each, and then choose a working drive that also has that virt address.
1177 * There is a separate r10_bio for each non-in_sync drive.
1178 * Only the first two slots are in use. The first for reading,
1179 * The second for writing.
1180 *
1181 */
1182
1183static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1184{
1185 conf_t *conf = mddev_to_conf(mddev);
1186 int i, d;
1187 struct bio *bio, *wbio;
1188
1189
1190 /* move the pages across to the second bio
1191 * and submit the write request
1192 */
1193 bio = r10_bio->devs[0].bio;
1194 wbio = r10_bio->devs[1].bio;
1195 for (i=0; i < wbio->bi_vcnt; i++) {
1196 struct page *p = bio->bi_io_vec[i].bv_page;
1197 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1198 wbio->bi_io_vec[i].bv_page = p;
1199 }
1200 d = r10_bio->devs[1].devnum;
1201
1202 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1203 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1204 generic_make_request(wbio);
1205}
1206
1207
1208/*
1209 * This is a kernel thread which:
1210 *
1211 * 1. Retries failed read operations on working mirrors.
1212 * 2. Updates the raid superblock when problems encounter.
1213 * 3. Performs writes following reads for array syncronising.
1214 */
1215
1216static void raid10d(mddev_t *mddev)
1217{
1218 r10bio_t *r10_bio;
1219 struct bio *bio;
1220 unsigned long flags;
1221 conf_t *conf = mddev_to_conf(mddev);
1222 struct list_head *head = &conf->retry_list;
1223 int unplug=0;
1224 mdk_rdev_t *rdev;
1225
1226 md_check_recovery(mddev);
1da177e4
LT
1227
1228 for (;;) {
1229 char b[BDEVNAME_SIZE];
1230 spin_lock_irqsave(&conf->device_lock, flags);
1231 if (list_empty(head))
1232 break;
1233 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1234 list_del(head->prev);
1235 spin_unlock_irqrestore(&conf->device_lock, flags);
1236
1237 mddev = r10_bio->mddev;
1238 conf = mddev_to_conf(mddev);
1239 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1240 sync_request_write(mddev, r10_bio);
1241 unplug = 1;
1242 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1243 recovery_request_write(mddev, r10_bio);
1244 unplug = 1;
1245 } else {
1246 int mirror;
1247 bio = r10_bio->devs[r10_bio->read_slot].bio;
1248 r10_bio->devs[r10_bio->read_slot].bio = NULL;
1249 bio_put(bio);
1250 mirror = read_balance(conf, r10_bio);
1251 if (mirror == -1) {
1252 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1253 " read error for block %llu\n",
1254 bdevname(bio->bi_bdev,b),
1255 (unsigned long long)r10_bio->sector);
1256 raid_end_bio_io(r10_bio);
1257 } else {
1258 rdev = conf->mirrors[mirror].rdev;
1259 if (printk_ratelimit())
1260 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1261 " another mirror\n",
1262 bdevname(rdev->bdev,b),
1263 (unsigned long long)r10_bio->sector);
1264 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1265 r10_bio->devs[r10_bio->read_slot].bio = bio;
1266 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1267 + rdev->data_offset;
1268 bio->bi_bdev = rdev->bdev;
1269 bio->bi_rw = READ;
1270 bio->bi_private = r10_bio;
1271 bio->bi_end_io = raid10_end_read_request;
1272 unplug = 1;
1273 generic_make_request(bio);
1274 }
1275 }
1276 }
1277 spin_unlock_irqrestore(&conf->device_lock, flags);
1278 if (unplug)
1279 unplug_slaves(mddev);
1280}
1281
1282
1283static int init_resync(conf_t *conf)
1284{
1285 int buffs;
1286
1287 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1288 if (conf->r10buf_pool)
1289 BUG();
1290 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1291 if (!conf->r10buf_pool)
1292 return -ENOMEM;
1293 conf->next_resync = 0;
1294 return 0;
1295}
1296
1297/*
1298 * perform a "sync" on one "block"
1299 *
1300 * We need to make sure that no normal I/O request - particularly write
1301 * requests - conflict with active sync requests.
1302 *
1303 * This is achieved by tracking pending requests and a 'barrier' concept
1304 * that can be installed to exclude normal IO requests.
1305 *
1306 * Resync and recovery are handled very differently.
1307 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1308 *
1309 * For resync, we iterate over virtual addresses, read all copies,
1310 * and update if there are differences. If only one copy is live,
1311 * skip it.
1312 * For recovery, we iterate over physical addresses, read a good
1313 * value for each non-in_sync drive, and over-write.
1314 *
1315 * So, for recovery we may have several outstanding complex requests for a
1316 * given address, one for each out-of-sync device. We model this by allocating
1317 * a number of r10_bio structures, one for each out-of-sync device.
1318 * As we setup these structures, we collect all bio's together into a list
1319 * which we then process collectively to add pages, and then process again
1320 * to pass to generic_make_request.
1321 *
1322 * The r10_bio structures are linked using a borrowed master_bio pointer.
1323 * This link is counted in ->remaining. When the r10_bio that points to NULL
1324 * has its remaining count decremented to 0, the whole complex operation
1325 * is complete.
1326 *
1327 */
1328
57afd89f 1329static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1330{
1331 conf_t *conf = mddev_to_conf(mddev);
1332 r10bio_t *r10_bio;
1333 struct bio *biolist = NULL, *bio;
1334 sector_t max_sector, nr_sectors;
1335 int disk;
1336 int i;
1337
1338 sector_t sectors_skipped = 0;
1339 int chunks_skipped = 0;
1340
1341 if (!conf->r10buf_pool)
1342 if (init_resync(conf))
57afd89f 1343 return 0;
1da177e4
LT
1344
1345 skipped:
1346 max_sector = mddev->size << 1;
1347 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1348 max_sector = mddev->resync_max_sectors;
1349 if (sector_nr >= max_sector) {
1350 close_sync(conf);
57afd89f 1351 *skipped = 1;
1da177e4
LT
1352 return sectors_skipped;
1353 }
1354 if (chunks_skipped >= conf->raid_disks) {
1355 /* if there has been nothing to do on any drive,
1356 * then there is nothing to do at all..
1357 */
57afd89f
N
1358 *skipped = 1;
1359 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1360 }
1361
1362 /* make sure whole request will fit in a chunk - if chunks
1363 * are meaningful
1364 */
1365 if (conf->near_copies < conf->raid_disks &&
1366 max_sector > (sector_nr | conf->chunk_mask))
1367 max_sector = (sector_nr | conf->chunk_mask) + 1;
1368 /*
1369 * If there is non-resync activity waiting for us then
1370 * put in a delay to throttle resync.
1371 */
1372 if (!go_faster && waitqueue_active(&conf->wait_resume))
1373 msleep_interruptible(1000);
1374 device_barrier(conf, sector_nr + RESYNC_SECTORS);
1375
1376 /* Again, very different code for resync and recovery.
1377 * Both must result in an r10bio with a list of bios that
1378 * have bi_end_io, bi_sector, bi_bdev set,
1379 * and bi_private set to the r10bio.
1380 * For recovery, we may actually create several r10bios
1381 * with 2 bios in each, that correspond to the bios in the main one.
1382 * In this case, the subordinate r10bios link back through a
1383 * borrowed master_bio pointer, and the counter in the master
1384 * includes a ref from each subordinate.
1385 */
1386 /* First, we decide what to do and set ->bi_end_io
1387 * To end_sync_read if we want to read, and
1388 * end_sync_write if we will want to write.
1389 */
1390
1391 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1392 /* recovery... the complicated one */
1393 int i, j, k;
1394 r10_bio = NULL;
1395
1396 for (i=0 ; i<conf->raid_disks; i++)
1397 if (conf->mirrors[i].rdev &&
1398 !conf->mirrors[i].rdev->in_sync) {
1399 /* want to reconstruct this device */
1400 r10bio_t *rb2 = r10_bio;
1401
1402 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1403 spin_lock_irq(&conf->resync_lock);
1404 conf->nr_pending++;
1405 if (rb2) conf->barrier++;
1406 spin_unlock_irq(&conf->resync_lock);
1407 atomic_set(&r10_bio->remaining, 0);
1408
1409 r10_bio->master_bio = (struct bio*)rb2;
1410 if (rb2)
1411 atomic_inc(&rb2->remaining);
1412 r10_bio->mddev = mddev;
1413 set_bit(R10BIO_IsRecover, &r10_bio->state);
1414 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1415 raid10_find_phys(conf, r10_bio);
1416 for (j=0; j<conf->copies;j++) {
1417 int d = r10_bio->devs[j].devnum;
1418 if (conf->mirrors[d].rdev &&
1419 conf->mirrors[d].rdev->in_sync) {
1420 /* This is where we read from */
1421 bio = r10_bio->devs[0].bio;
1422 bio->bi_next = biolist;
1423 biolist = bio;
1424 bio->bi_private = r10_bio;
1425 bio->bi_end_io = end_sync_read;
1426 bio->bi_rw = 0;
1427 bio->bi_sector = r10_bio->devs[j].addr +
1428 conf->mirrors[d].rdev->data_offset;
1429 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1430 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1431 atomic_inc(&r10_bio->remaining);
1432 /* and we write to 'i' */
1433
1434 for (k=0; k<conf->copies; k++)
1435 if (r10_bio->devs[k].devnum == i)
1436 break;
1437 bio = r10_bio->devs[1].bio;
1438 bio->bi_next = biolist;
1439 biolist = bio;
1440 bio->bi_private = r10_bio;
1441 bio->bi_end_io = end_sync_write;
1442 bio->bi_rw = 1;
1443 bio->bi_sector = r10_bio->devs[k].addr +
1444 conf->mirrors[i].rdev->data_offset;
1445 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1446
1447 r10_bio->devs[0].devnum = d;
1448 r10_bio->devs[1].devnum = i;
1449
1450 break;
1451 }
1452 }
1453 if (j == conf->copies) {
1454 BUG();
1455 }
1456 }
1457 if (biolist == NULL) {
1458 while (r10_bio) {
1459 r10bio_t *rb2 = r10_bio;
1460 r10_bio = (r10bio_t*) rb2->master_bio;
1461 rb2->master_bio = NULL;
1462 put_buf(rb2);
1463 }
1464 goto giveup;
1465 }
1466 } else {
1467 /* resync. Schedule a read for every block at this virt offset */
1468 int count = 0;
1469 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1470
1471 spin_lock_irq(&conf->resync_lock);
1472 conf->nr_pending++;
1473 spin_unlock_irq(&conf->resync_lock);
1474
1475 r10_bio->mddev = mddev;
1476 atomic_set(&r10_bio->remaining, 0);
1477
1478 r10_bio->master_bio = NULL;
1479 r10_bio->sector = sector_nr;
1480 set_bit(R10BIO_IsSync, &r10_bio->state);
1481 raid10_find_phys(conf, r10_bio);
1482 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1483
1484 for (i=0; i<conf->copies; i++) {
1485 int d = r10_bio->devs[i].devnum;
1486 bio = r10_bio->devs[i].bio;
1487 bio->bi_end_io = NULL;
1488 if (conf->mirrors[d].rdev == NULL ||
1489 conf->mirrors[d].rdev->faulty)
1490 continue;
1491 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1492 atomic_inc(&r10_bio->remaining);
1493 bio->bi_next = biolist;
1494 biolist = bio;
1495 bio->bi_private = r10_bio;
1496 bio->bi_end_io = end_sync_read;
1497 bio->bi_rw = 0;
1498 bio->bi_sector = r10_bio->devs[i].addr +
1499 conf->mirrors[d].rdev->data_offset;
1500 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1501 count++;
1502 }
1503
1504 if (count < 2) {
1505 for (i=0; i<conf->copies; i++) {
1506 int d = r10_bio->devs[i].devnum;
1507 if (r10_bio->devs[i].bio->bi_end_io)
1508 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1509 }
1510 put_buf(r10_bio);
1511 biolist = NULL;
1512 goto giveup;
1513 }
1514 }
1515
1516 for (bio = biolist; bio ; bio=bio->bi_next) {
1517
1518 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1519 if (bio->bi_end_io)
1520 bio->bi_flags |= 1 << BIO_UPTODATE;
1521 bio->bi_vcnt = 0;
1522 bio->bi_idx = 0;
1523 bio->bi_phys_segments = 0;
1524 bio->bi_hw_segments = 0;
1525 bio->bi_size = 0;
1526 }
1527
1528 nr_sectors = 0;
1529 do {
1530 struct page *page;
1531 int len = PAGE_SIZE;
1532 disk = 0;
1533 if (sector_nr + (len>>9) > max_sector)
1534 len = (max_sector - sector_nr) << 9;
1535 if (len == 0)
1536 break;
1537 for (bio= biolist ; bio ; bio=bio->bi_next) {
1538 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1539 if (bio_add_page(bio, page, len, 0) == 0) {
1540 /* stop here */
1541 struct bio *bio2;
1542 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1543 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1544 /* remove last page from this bio */
1545 bio2->bi_vcnt--;
1546 bio2->bi_size -= len;
1547 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1548 }
1549 goto bio_full;
1550 }
1551 disk = i;
1552 }
1553 nr_sectors += len>>9;
1554 sector_nr += len>>9;
1555 } while (biolist->bi_vcnt < RESYNC_PAGES);
1556 bio_full:
1557 r10_bio->sectors = nr_sectors;
1558
1559 while (biolist) {
1560 bio = biolist;
1561 biolist = biolist->bi_next;
1562
1563 bio->bi_next = NULL;
1564 r10_bio = bio->bi_private;
1565 r10_bio->sectors = nr_sectors;
1566
1567 if (bio->bi_end_io == end_sync_read) {
1568 md_sync_acct(bio->bi_bdev, nr_sectors);
1569 generic_make_request(bio);
1570 }
1571 }
1572
57afd89f
N
1573 if (sectors_skipped)
1574 /* pretend they weren't skipped, it makes
1575 * no important difference in this case
1576 */
1577 md_done_sync(mddev, sectors_skipped, 1);
1578
1da177e4
LT
1579 return sectors_skipped + nr_sectors;
1580 giveup:
1581 /* There is nowhere to write, so all non-sync
1582 * drives must be failed, so try the next chunk...
1583 */
1584 {
57afd89f 1585 sector_t sec = max_sector - sector_nr;
1da177e4
LT
1586 sectors_skipped += sec;
1587 chunks_skipped ++;
1588 sector_nr = max_sector;
1da177e4
LT
1589 goto skipped;
1590 }
1591}
1592
1593static int run(mddev_t *mddev)
1594{
1595 conf_t *conf;
1596 int i, disk_idx;
1597 mirror_info_t *disk;
1598 mdk_rdev_t *rdev;
1599 struct list_head *tmp;
1600 int nc, fc;
1601 sector_t stride, size;
1602
1603 if (mddev->level != 10) {
1604 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1605 mdname(mddev), mddev->level);
1606 goto out;
1607 }
1608 nc = mddev->layout & 255;
1609 fc = (mddev->layout >> 8) & 255;
1610 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1611 (mddev->layout >> 16)) {
1612 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1613 mdname(mddev), mddev->layout);
1614 goto out;
1615 }
1616 /*
1617 * copy the already verified devices into our private RAID10
1618 * bookkeeping area. [whatever we allocate in run(),
1619 * should be freed in stop()]
1620 */
1621 conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1622 mddev->private = conf;
1623 if (!conf) {
1624 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1625 mdname(mddev));
1626 goto out;
1627 }
1628 memset(conf, 0, sizeof(*conf));
1629 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1630 GFP_KERNEL);
1631 if (!conf->mirrors) {
1632 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1633 mdname(mddev));
1634 goto out_free_conf;
1635 }
1636 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1637
1638 conf->near_copies = nc;
1639 conf->far_copies = fc;
1640 conf->copies = nc*fc;
1641 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1642 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1643 stride = mddev->size >> (conf->chunk_shift-1);
1644 sector_div(stride, fc);
1645 conf->stride = stride << conf->chunk_shift;
1646
1647 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1648 r10bio_pool_free, conf);
1649 if (!conf->r10bio_pool) {
1650 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1651 mdname(mddev));
1652 goto out_free_conf;
1653 }
1da177e4
LT
1654
1655 ITERATE_RDEV(mddev, rdev, tmp) {
1656 disk_idx = rdev->raid_disk;
1657 if (disk_idx >= mddev->raid_disks
1658 || disk_idx < 0)
1659 continue;
1660 disk = conf->mirrors + disk_idx;
1661
1662 disk->rdev = rdev;
1663
1664 blk_queue_stack_limits(mddev->queue,
1665 rdev->bdev->bd_disk->queue);
1666 /* as we don't honour merge_bvec_fn, we must never risk
1667 * violating it, so limit ->max_sector to one PAGE, as
1668 * a one page request is never in violation.
1669 */
1670 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1671 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1672 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1673
1674 disk->head_position = 0;
1675 if (!rdev->faulty && rdev->in_sync)
1676 conf->working_disks++;
1677 }
1678 conf->raid_disks = mddev->raid_disks;
1679 conf->mddev = mddev;
1680 spin_lock_init(&conf->device_lock);
1681 INIT_LIST_HEAD(&conf->retry_list);
1682
1683 spin_lock_init(&conf->resync_lock);
1684 init_waitqueue_head(&conf->wait_idle);
1685 init_waitqueue_head(&conf->wait_resume);
1686
1687 if (!conf->working_disks) {
1688 printk(KERN_ERR "raid10: no operational mirrors for %s\n",
1689 mdname(mddev));
1690 goto out_free_conf;
1691 }
1692
1693 mddev->degraded = 0;
1694 for (i = 0; i < conf->raid_disks; i++) {
1695
1696 disk = conf->mirrors + i;
1697
1698 if (!disk->rdev) {
1699 disk->head_position = 0;
1700 mddev->degraded++;
1701 }
1702 }
1703
1704
1705 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1706 if (!mddev->thread) {
1707 printk(KERN_ERR
1708 "raid10: couldn't allocate thread for %s\n",
1709 mdname(mddev));
1710 goto out_free_conf;
1711 }
1712
1713 printk(KERN_INFO
1714 "raid10: raid set %s active with %d out of %d devices\n",
1715 mdname(mddev), mddev->raid_disks - mddev->degraded,
1716 mddev->raid_disks);
1717 /*
1718 * Ok, everything is just fine now
1719 */
1720 size = conf->stride * conf->raid_disks;
1721 sector_div(size, conf->near_copies);
1722 mddev->array_size = size/2;
1723 mddev->resync_max_sectors = size;
1724
7a5febe9
N
1725 mddev->queue->unplug_fn = raid10_unplug;
1726 mddev->queue->issue_flush_fn = raid10_issue_flush;
1727
1da177e4
LT
1728 /* Calculate max read-ahead size.
1729 * We need to readahead at least twice a whole stripe....
1730 * maybe...
1731 */
1732 {
1733 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1734 stripe /= conf->near_copies;
1735 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1736 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1737 }
1738
1739 if (conf->near_copies < mddev->raid_disks)
1740 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1741 return 0;
1742
1743out_free_conf:
1744 if (conf->r10bio_pool)
1745 mempool_destroy(conf->r10bio_pool);
990a8baf 1746 kfree(conf->mirrors);
1da177e4
LT
1747 kfree(conf);
1748 mddev->private = NULL;
1749out:
1750 return -EIO;
1751}
1752
1753static int stop(mddev_t *mddev)
1754{
1755 conf_t *conf = mddev_to_conf(mddev);
1756
1757 md_unregister_thread(mddev->thread);
1758 mddev->thread = NULL;
1759 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1760 if (conf->r10bio_pool)
1761 mempool_destroy(conf->r10bio_pool);
990a8baf 1762 kfree(conf->mirrors);
1da177e4
LT
1763 kfree(conf);
1764 mddev->private = NULL;
1765 return 0;
1766}
1767
1768
1769static mdk_personality_t raid10_personality =
1770{
1771 .name = "raid10",
1772 .owner = THIS_MODULE,
1773 .make_request = make_request,
1774 .run = run,
1775 .stop = stop,
1776 .status = status,
1777 .error_handler = error,
1778 .hot_add_disk = raid10_add_disk,
1779 .hot_remove_disk= raid10_remove_disk,
1780 .spare_active = raid10_spare_active,
1781 .sync_request = sync_request,
1782};
1783
1784static int __init raid_init(void)
1785{
1786 return register_md_personality(RAID10, &raid10_personality);
1787}
1788
1789static void raid_exit(void)
1790{
1791 unregister_md_personality(RAID10);
1792}
1793
1794module_init(raid_init);
1795module_exit(raid_exit);
1796MODULE_LICENSE("GPL");
1797MODULE_ALIAS("md-personality-9"); /* RAID10 */