]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid10.c
Drop 'size' argument from bio_endio and bi_end_io
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
6cce3b23 21#include "dm-bio-list.h"
1da177e4 22#include <linux/raid/raid10.h>
6cce3b23 23#include <linux/raid/bitmap.h>
1da177e4
LT
24
25/*
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
c93983bf 32 * far_offset (stored in bit 16 of layout )
1da177e4
LT
33 *
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
c93983bf 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
41 * drive.
42 * near_copies and far_copies must be at least one, and their product is at most
43 * raid_disks.
c93983bf
N
44 *
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
1da177e4
LT
48 */
49
50/*
51 * Number of guaranteed r10bios in case of extreme VM load:
52 */
53#define NR_RAID10_BIOS 256
54
55static void unplug_slaves(mddev_t *mddev);
56
0a27ec96
N
57static void allow_barrier(conf_t *conf);
58static void lower_barrier(conf_t *conf);
59
dd0fc66f 60static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
61{
62 conf_t *conf = data;
63 r10bio_t *r10_bio;
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
65
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
9ffae0cf
N
67 r10_bio = kzalloc(size, gfp_flags);
68 if (!r10_bio)
1da177e4
LT
69 unplug_slaves(conf->mddev);
70
71 return r10_bio;
72}
73
74static void r10bio_pool_free(void *r10_bio, void *data)
75{
76 kfree(r10_bio);
77}
78
79#define RESYNC_BLOCK_SIZE (64*1024)
80//#define RESYNC_BLOCK_SIZE PAGE_SIZE
81#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83#define RESYNC_WINDOW (2048*1024)
84
85/*
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
90 *
91 */
dd0fc66f 92static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
100
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 if (!r10_bio) {
103 unplug_slaves(conf->mddev);
104 return NULL;
105 }
106
107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 nalloc = conf->copies; /* resync */
109 else
110 nalloc = 2; /* recovery */
111
112 /*
113 * Allocate bios.
114 */
115 for (j = nalloc ; j-- ; ) {
116 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 if (!bio)
118 goto out_free_bio;
119 r10_bio->devs[j].bio = bio;
120 }
121 /*
122 * Allocate RESYNC_PAGES data pages and attach them
123 * where needed.
124 */
125 for (j = 0 ; j < nalloc; j++) {
126 bio = r10_bio->devs[j].bio;
127 for (i = 0; i < RESYNC_PAGES; i++) {
128 page = alloc_page(gfp_flags);
129 if (unlikely(!page))
130 goto out_free_pages;
131
132 bio->bi_io_vec[i].bv_page = page;
133 }
134 }
135
136 return r10_bio;
137
138out_free_pages:
139 for ( ; i > 0 ; i--)
1345b1d8 140 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
141 while (j--)
142 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
144 j = -1;
145out_free_bio:
146 while ( ++j < nalloc )
147 bio_put(r10_bio->devs[j].bio);
148 r10bio_pool_free(r10_bio, conf);
149 return NULL;
150}
151
152static void r10buf_pool_free(void *__r10_bio, void *data)
153{
154 int i;
155 conf_t *conf = data;
156 r10bio_t *r10bio = __r10_bio;
157 int j;
158
159 for (j=0; j < conf->copies; j++) {
160 struct bio *bio = r10bio->devs[j].bio;
161 if (bio) {
162 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 163 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
164 bio->bi_io_vec[i].bv_page = NULL;
165 }
166 bio_put(bio);
167 }
168 }
169 r10bio_pool_free(r10bio, conf);
170}
171
172static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173{
174 int i;
175
176 for (i = 0; i < conf->copies; i++) {
177 struct bio **bio = & r10_bio->devs[i].bio;
0eb3ff12 178 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
179 bio_put(*bio);
180 *bio = NULL;
181 }
182}
183
858119e1 184static void free_r10bio(r10bio_t *r10_bio)
1da177e4 185{
1da177e4
LT
186 conf_t *conf = mddev_to_conf(r10_bio->mddev);
187
188 /*
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
191 */
0a27ec96 192 allow_barrier(conf);
1da177e4
LT
193
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
196}
197
858119e1 198static void put_buf(r10bio_t *r10_bio)
1da177e4
LT
199{
200 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1da177e4
LT
201
202 mempool_free(r10_bio, conf->r10buf_pool);
203
0a27ec96 204 lower_barrier(conf);
1da177e4
LT
205}
206
207static void reschedule_retry(r10bio_t *r10_bio)
208{
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev_to_conf(mddev);
212
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 215 conf->nr_queued ++;
1da177e4
LT
216 spin_unlock_irqrestore(&conf->device_lock, flags);
217
218 md_wakeup_thread(mddev->thread);
219}
220
221/*
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
224 * cache layer.
225 */
226static void raid_end_bio_io(r10bio_t *r10_bio)
227{
228 struct bio *bio = r10_bio->master_bio;
229
6712ecf8 230 bio_endio(bio,
1da177e4
LT
231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 free_r10bio(r10_bio);
233}
234
235/*
236 * Update disk head position estimator based on IRQ completion info.
237 */
238static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239{
240 conf_t *conf = mddev_to_conf(r10_bio->mddev);
241
242 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 r10_bio->devs[slot].addr + (r10_bio->sectors);
244}
245
6712ecf8 246static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
247{
248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 int slot, dev;
251 conf_t *conf = mddev_to_conf(r10_bio->mddev);
252
1da177e4
LT
253
254 slot = r10_bio->read_slot;
255 dev = r10_bio->devs[slot].devnum;
256 /*
257 * this branch is our 'one mirror IO has finished' event handler:
258 */
4443ae10
N
259 update_head_pos(slot, r10_bio);
260
261 if (uptodate) {
1da177e4
LT
262 /*
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
266 *
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
270 */
271 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 272 raid_end_bio_io(r10_bio);
4443ae10 273 } else {
1da177e4
LT
274 /*
275 * oops, read error:
276 */
277 char b[BDEVNAME_SIZE];
278 if (printk_ratelimit())
279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 reschedule_retry(r10_bio);
282 }
283
284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
285}
286
6712ecf8 287static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
288{
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291 int slot, dev;
292 conf_t *conf = mddev_to_conf(r10_bio->mddev);
293
1da177e4
LT
294 for (slot = 0; slot < conf->copies; slot++)
295 if (r10_bio->devs[slot].bio == bio)
296 break;
297 dev = r10_bio->devs[slot].devnum;
298
299 /*
300 * this branch is our 'one mirror IO has finished' event handler:
301 */
6cce3b23 302 if (!uptodate) {
1da177e4 303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
6cce3b23
N
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded, &r10_bio->state);
306 } else
1da177e4
LT
307 /*
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
311 *
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
315 */
316 set_bit(R10BIO_Uptodate, &r10_bio->state);
317
318 update_head_pos(slot, r10_bio);
319
320 /*
321 *
322 * Let's see if all mirrored write operations have finished
323 * already.
324 */
325 if (atomic_dec_and_test(&r10_bio->remaining)) {
6cce3b23
N
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
328 r10_bio->sectors,
329 !test_bit(R10BIO_Degraded, &r10_bio->state),
330 0);
1da177e4
LT
331 md_write_end(r10_bio->mddev);
332 raid_end_bio_io(r10_bio);
333 }
334
335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
336}
337
338
339/*
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
347 *
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
350 * so on.
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
356 *
357 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 358 * on each device that it is on.
1da177e4
LT
359 *
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
362 */
363
364static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
365{
366 int n,f;
367 sector_t sector;
368 sector_t chunk;
369 sector_t stripe;
370 int dev;
371
372 int slot = 0;
373
374 /* now calculate first sector/dev */
375 chunk = r10bio->sector >> conf->chunk_shift;
376 sector = r10bio->sector & conf->chunk_mask;
377
378 chunk *= conf->near_copies;
379 stripe = chunk;
380 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
381 if (conf->far_offset)
382 stripe *= conf->far_copies;
1da177e4
LT
383
384 sector += stripe << conf->chunk_shift;
385
386 /* and calculate all the others */
387 for (n=0; n < conf->near_copies; n++) {
388 int d = dev;
389 sector_t s = sector;
390 r10bio->devs[slot].addr = sector;
391 r10bio->devs[slot].devnum = d;
392 slot++;
393
394 for (f = 1; f < conf->far_copies; f++) {
395 d += conf->near_copies;
396 if (d >= conf->raid_disks)
397 d -= conf->raid_disks;
398 s += conf->stride;
399 r10bio->devs[slot].devnum = d;
400 r10bio->devs[slot].addr = s;
401 slot++;
402 }
403 dev++;
404 if (dev >= conf->raid_disks) {
405 dev = 0;
406 sector += (conf->chunk_mask + 1);
407 }
408 }
409 BUG_ON(slot != conf->copies);
410}
411
412static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
413{
414 sector_t offset, chunk, vchunk;
415
1da177e4 416 offset = sector & conf->chunk_mask;
c93983bf
N
417 if (conf->far_offset) {
418 int fc;
419 chunk = sector >> conf->chunk_shift;
420 fc = sector_div(chunk, conf->far_copies);
421 dev -= fc * conf->near_copies;
422 if (dev < 0)
423 dev += conf->raid_disks;
424 } else {
64a742bc 425 while (sector >= conf->stride) {
c93983bf
N
426 sector -= conf->stride;
427 if (dev < conf->near_copies)
428 dev += conf->raid_disks - conf->near_copies;
429 else
430 dev -= conf->near_copies;
431 }
432 chunk = sector >> conf->chunk_shift;
433 }
1da177e4
LT
434 vchunk = chunk * conf->raid_disks + dev;
435 sector_div(vchunk, conf->near_copies);
436 return (vchunk << conf->chunk_shift) + offset;
437}
438
439/**
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
441 * @q: request queue
442 * @bio: the buffer head that's been built up so far
443 * @biovec: the request that could be merged to it.
444 *
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
448 */
165125e1 449static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
1da177e4
LT
450 struct bio_vec *bio_vec)
451{
452 mddev_t *mddev = q->queuedata;
453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
454 int max;
455 unsigned int chunk_sectors = mddev->chunk_size >> 9;
456 unsigned int bio_sectors = bio->bi_size >> 9;
457
458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460 if (max <= bio_vec->bv_len && bio_sectors == 0)
461 return bio_vec->bv_len;
462 else
463 return max;
464}
465
466/*
467 * This routine returns the disk from which the requested read should
468 * be done. There is a per-array 'next expected sequential IO' sector
469 * number - if this matches on the next IO then we use the last disk.
470 * There is also a per-disk 'last know head position' sector that is
471 * maintained from IRQ contexts, both the normal and the resync IO
472 * completion handlers update this position correctly. If there is no
473 * perfect sequential match then we pick the disk whose head is closest.
474 *
475 * If there are 2 mirrors in the same 2 devices, performance degrades
476 * because position is mirror, not device based.
477 *
478 * The rdev for the device selected will have nr_pending incremented.
479 */
480
481/*
482 * FIXME: possibly should rethink readbalancing and do it differently
483 * depending on near_copies / far_copies geometry.
484 */
485static int read_balance(conf_t *conf, r10bio_t *r10_bio)
486{
487 const unsigned long this_sector = r10_bio->sector;
488 int disk, slot, nslot;
489 const int sectors = r10_bio->sectors;
490 sector_t new_distance, current_distance;
d6065f7b 491 mdk_rdev_t *rdev;
1da177e4
LT
492
493 raid10_find_phys(conf, r10_bio);
494 rcu_read_lock();
495 /*
496 * Check if we can balance. We can balance on the whole
6cce3b23
N
497 * device if no resync is going on (recovery is ok), or below
498 * the resync window. We take the first readable disk when
499 * above the resync window.
1da177e4
LT
500 */
501 if (conf->mddev->recovery_cp < MaxSector
502 && (this_sector + sectors >= conf->next_resync)) {
503 /* make sure that disk is operational */
504 slot = 0;
505 disk = r10_bio->devs[slot].devnum;
506
d6065f7b 507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 508 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 509 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
510 slot++;
511 if (slot == conf->copies) {
512 slot = 0;
513 disk = -1;
514 break;
515 }
516 disk = r10_bio->devs[slot].devnum;
517 }
518 goto rb_out;
519 }
520
521
522 /* make sure the disk is operational */
523 slot = 0;
524 disk = r10_bio->devs[slot].devnum;
d6065f7b 525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 526 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 527 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
528 slot ++;
529 if (slot == conf->copies) {
530 disk = -1;
531 goto rb_out;
532 }
533 disk = r10_bio->devs[slot].devnum;
534 }
535
536
3ec67ac1
N
537 current_distance = abs(r10_bio->devs[slot].addr -
538 conf->mirrors[disk].head_position);
1da177e4
LT
539
540 /* Find the disk whose head is closest */
541
542 for (nslot = slot; nslot < conf->copies; nslot++) {
543 int ndisk = r10_bio->devs[nslot].devnum;
544
545
d6065f7b 546 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
0eb3ff12 547 r10_bio->devs[nslot].bio == IO_BLOCKED ||
b2d444d7 548 !test_bit(In_sync, &rdev->flags))
1da177e4
LT
549 continue;
550
22dfdf52
N
551 /* This optimisation is debatable, and completely destroys
552 * sequential read speed for 'far copies' arrays. So only
553 * keep it for 'near' arrays, and review those later.
554 */
555 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
1da177e4
LT
556 disk = ndisk;
557 slot = nslot;
558 break;
559 }
560 new_distance = abs(r10_bio->devs[nslot].addr -
561 conf->mirrors[ndisk].head_position);
562 if (new_distance < current_distance) {
563 current_distance = new_distance;
564 disk = ndisk;
565 slot = nslot;
566 }
567 }
568
569rb_out:
570 r10_bio->read_slot = slot;
571/* conf->next_seq_sect = this_sector + sectors;*/
572
d6065f7b 573 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
1da177e4 574 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
29fc7e3e
N
575 else
576 disk = -1;
1da177e4
LT
577 rcu_read_unlock();
578
579 return disk;
580}
581
582static void unplug_slaves(mddev_t *mddev)
583{
584 conf_t *conf = mddev_to_conf(mddev);
585 int i;
586
587 rcu_read_lock();
588 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 589 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 590 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 591 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
592
593 atomic_inc(&rdev->nr_pending);
594 rcu_read_unlock();
595
596 if (r_queue->unplug_fn)
597 r_queue->unplug_fn(r_queue);
598
599 rdev_dec_pending(rdev, mddev);
600 rcu_read_lock();
601 }
602 }
603 rcu_read_unlock();
604}
605
165125e1 606static void raid10_unplug(struct request_queue *q)
1da177e4 607{
6cce3b23
N
608 mddev_t *mddev = q->queuedata;
609
1da177e4 610 unplug_slaves(q->queuedata);
6cce3b23 611 md_wakeup_thread(mddev->thread);
1da177e4
LT
612}
613
165125e1 614static int raid10_issue_flush(struct request_queue *q, struct gendisk *disk,
1da177e4
LT
615 sector_t *error_sector)
616{
617 mddev_t *mddev = q->queuedata;
618 conf_t *conf = mddev_to_conf(mddev);
619 int i, ret = 0;
620
621 rcu_read_lock();
622 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 623 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 624 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4 625 struct block_device *bdev = rdev->bdev;
165125e1 626 struct request_queue *r_queue = bdev_get_queue(bdev);
1da177e4
LT
627
628 if (!r_queue->issue_flush_fn)
629 ret = -EOPNOTSUPP;
630 else {
631 atomic_inc(&rdev->nr_pending);
632 rcu_read_unlock();
633 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
634 error_sector);
635 rdev_dec_pending(rdev, mddev);
636 rcu_read_lock();
637 }
638 }
639 }
640 rcu_read_unlock();
641 return ret;
642}
643
0d129228
N
644static int raid10_congested(void *data, int bits)
645{
646 mddev_t *mddev = data;
647 conf_t *conf = mddev_to_conf(mddev);
648 int i, ret = 0;
649
650 rcu_read_lock();
651 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
652 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
653 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 654 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
655
656 ret |= bdi_congested(&q->backing_dev_info, bits);
657 }
658 }
659 rcu_read_unlock();
660 return ret;
661}
662
663
0a27ec96
N
664/* Barriers....
665 * Sometimes we need to suspend IO while we do something else,
666 * either some resync/recovery, or reconfigure the array.
667 * To do this we raise a 'barrier'.
668 * The 'barrier' is a counter that can be raised multiple times
669 * to count how many activities are happening which preclude
670 * normal IO.
671 * We can only raise the barrier if there is no pending IO.
672 * i.e. if nr_pending == 0.
673 * We choose only to raise the barrier if no-one is waiting for the
674 * barrier to go down. This means that as soon as an IO request
675 * is ready, no other operations which require a barrier will start
676 * until the IO request has had a chance.
677 *
678 * So: regular IO calls 'wait_barrier'. When that returns there
679 * is no backgroup IO happening, It must arrange to call
680 * allow_barrier when it has finished its IO.
681 * backgroup IO calls must call raise_barrier. Once that returns
682 * there is no normal IO happeing. It must arrange to call
683 * lower_barrier when the particular background IO completes.
1da177e4
LT
684 */
685#define RESYNC_DEPTH 32
686
6cce3b23 687static void raise_barrier(conf_t *conf, int force)
1da177e4 688{
6cce3b23 689 BUG_ON(force && !conf->barrier);
1da177e4 690 spin_lock_irq(&conf->resync_lock);
0a27ec96 691
6cce3b23
N
692 /* Wait until no block IO is waiting (unless 'force') */
693 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
0a27ec96
N
694 conf->resync_lock,
695 raid10_unplug(conf->mddev->queue));
696
697 /* block any new IO from starting */
698 conf->barrier++;
699
700 /* No wait for all pending IO to complete */
701 wait_event_lock_irq(conf->wait_barrier,
702 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
703 conf->resync_lock,
704 raid10_unplug(conf->mddev->queue));
705
706 spin_unlock_irq(&conf->resync_lock);
707}
708
709static void lower_barrier(conf_t *conf)
710{
711 unsigned long flags;
712 spin_lock_irqsave(&conf->resync_lock, flags);
713 conf->barrier--;
714 spin_unlock_irqrestore(&conf->resync_lock, flags);
715 wake_up(&conf->wait_barrier);
716}
717
718static void wait_barrier(conf_t *conf)
719{
720 spin_lock_irq(&conf->resync_lock);
721 if (conf->barrier) {
722 conf->nr_waiting++;
723 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
724 conf->resync_lock,
725 raid10_unplug(conf->mddev->queue));
726 conf->nr_waiting--;
1da177e4 727 }
0a27ec96 728 conf->nr_pending++;
1da177e4
LT
729 spin_unlock_irq(&conf->resync_lock);
730}
731
0a27ec96
N
732static void allow_barrier(conf_t *conf)
733{
734 unsigned long flags;
735 spin_lock_irqsave(&conf->resync_lock, flags);
736 conf->nr_pending--;
737 spin_unlock_irqrestore(&conf->resync_lock, flags);
738 wake_up(&conf->wait_barrier);
739}
740
4443ae10
N
741static void freeze_array(conf_t *conf)
742{
743 /* stop syncio and normal IO and wait for everything to
f188593e 744 * go quiet.
4443ae10
N
745 * We increment barrier and nr_waiting, and then
746 * wait until barrier+nr_pending match nr_queued+2
747 */
748 spin_lock_irq(&conf->resync_lock);
749 conf->barrier++;
750 conf->nr_waiting++;
751 wait_event_lock_irq(conf->wait_barrier,
752 conf->barrier+conf->nr_pending == conf->nr_queued+2,
753 conf->resync_lock,
754 raid10_unplug(conf->mddev->queue));
755 spin_unlock_irq(&conf->resync_lock);
756}
757
758static void unfreeze_array(conf_t *conf)
759{
760 /* reverse the effect of the freeze */
761 spin_lock_irq(&conf->resync_lock);
762 conf->barrier--;
763 conf->nr_waiting--;
764 wake_up(&conf->wait_barrier);
765 spin_unlock_irq(&conf->resync_lock);
766}
767
165125e1 768static int make_request(struct request_queue *q, struct bio * bio)
1da177e4
LT
769{
770 mddev_t *mddev = q->queuedata;
771 conf_t *conf = mddev_to_conf(mddev);
772 mirror_info_t *mirror;
773 r10bio_t *r10_bio;
774 struct bio *read_bio;
775 int i;
776 int chunk_sects = conf->chunk_mask + 1;
a362357b 777 const int rw = bio_data_dir(bio);
e3881a68 778 const int do_sync = bio_sync(bio);
6cce3b23
N
779 struct bio_list bl;
780 unsigned long flags;
1da177e4 781
e5dcdd80 782 if (unlikely(bio_barrier(bio))) {
6712ecf8 783 bio_endio(bio, -EOPNOTSUPP);
e5dcdd80
N
784 return 0;
785 }
786
1da177e4
LT
787 /* If this request crosses a chunk boundary, we need to
788 * split it. This will only happen for 1 PAGE (or less) requests.
789 */
790 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
791 > chunk_sects &&
792 conf->near_copies < conf->raid_disks)) {
793 struct bio_pair *bp;
794 /* Sanity check -- queue functions should prevent this happening */
795 if (bio->bi_vcnt != 1 ||
796 bio->bi_idx != 0)
797 goto bad_map;
798 /* This is a one page bio that upper layers
799 * refuse to split for us, so we need to split it.
800 */
801 bp = bio_split(bio, bio_split_pool,
802 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
803 if (make_request(q, &bp->bio1))
804 generic_make_request(&bp->bio1);
805 if (make_request(q, &bp->bio2))
806 generic_make_request(&bp->bio2);
807
808 bio_pair_release(bp);
809 return 0;
810 bad_map:
811 printk("raid10_make_request bug: can't convert block across chunks"
812 " or bigger than %dk %llu %d\n", chunk_sects/2,
813 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
814
6712ecf8 815 bio_io_error(bio);
1da177e4
LT
816 return 0;
817 }
818
3d310eb7 819 md_write_start(mddev, bio);
06d91a5f 820
1da177e4
LT
821 /*
822 * Register the new request and wait if the reconstruction
823 * thread has put up a bar for new requests.
824 * Continue immediately if no resync is active currently.
825 */
0a27ec96 826 wait_barrier(conf);
1da177e4 827
a362357b
JA
828 disk_stat_inc(mddev->gendisk, ios[rw]);
829 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
1da177e4
LT
830
831 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
832
833 r10_bio->master_bio = bio;
834 r10_bio->sectors = bio->bi_size >> 9;
835
836 r10_bio->mddev = mddev;
837 r10_bio->sector = bio->bi_sector;
6cce3b23 838 r10_bio->state = 0;
1da177e4 839
a362357b 840 if (rw == READ) {
1da177e4
LT
841 /*
842 * read balancing logic:
843 */
844 int disk = read_balance(conf, r10_bio);
845 int slot = r10_bio->read_slot;
846 if (disk < 0) {
847 raid_end_bio_io(r10_bio);
848 return 0;
849 }
850 mirror = conf->mirrors + disk;
851
852 read_bio = bio_clone(bio, GFP_NOIO);
853
854 r10_bio->devs[slot].bio = read_bio;
855
856 read_bio->bi_sector = r10_bio->devs[slot].addr +
857 mirror->rdev->data_offset;
858 read_bio->bi_bdev = mirror->rdev->bdev;
859 read_bio->bi_end_io = raid10_end_read_request;
e3881a68 860 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
861 read_bio->bi_private = r10_bio;
862
863 generic_make_request(read_bio);
864 return 0;
865 }
866
867 /*
868 * WRITE:
869 */
870 /* first select target devices under spinlock and
871 * inc refcount on their rdev. Record them by setting
872 * bios[x] to bio
873 */
874 raid10_find_phys(conf, r10_bio);
875 rcu_read_lock();
876 for (i = 0; i < conf->copies; i++) {
877 int d = r10_bio->devs[i].devnum;
d6065f7b
SW
878 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
879 if (rdev &&
b2d444d7 880 !test_bit(Faulty, &rdev->flags)) {
d6065f7b 881 atomic_inc(&rdev->nr_pending);
1da177e4 882 r10_bio->devs[i].bio = bio;
6cce3b23 883 } else {
1da177e4 884 r10_bio->devs[i].bio = NULL;
6cce3b23
N
885 set_bit(R10BIO_Degraded, &r10_bio->state);
886 }
1da177e4
LT
887 }
888 rcu_read_unlock();
889
6cce3b23 890 atomic_set(&r10_bio->remaining, 0);
06d91a5f 891
6cce3b23 892 bio_list_init(&bl);
1da177e4
LT
893 for (i = 0; i < conf->copies; i++) {
894 struct bio *mbio;
895 int d = r10_bio->devs[i].devnum;
896 if (!r10_bio->devs[i].bio)
897 continue;
898
899 mbio = bio_clone(bio, GFP_NOIO);
900 r10_bio->devs[i].bio = mbio;
901
902 mbio->bi_sector = r10_bio->devs[i].addr+
903 conf->mirrors[d].rdev->data_offset;
904 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
905 mbio->bi_end_io = raid10_end_write_request;
e3881a68 906 mbio->bi_rw = WRITE | do_sync;
1da177e4
LT
907 mbio->bi_private = r10_bio;
908
909 atomic_inc(&r10_bio->remaining);
6cce3b23 910 bio_list_add(&bl, mbio);
1da177e4
LT
911 }
912
f6f953aa
AR
913 if (unlikely(!atomic_read(&r10_bio->remaining))) {
914 /* the array is dead */
915 md_write_end(mddev);
916 raid_end_bio_io(r10_bio);
917 return 0;
918 }
919
6cce3b23
N
920 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
921 spin_lock_irqsave(&conf->device_lock, flags);
922 bio_list_merge(&conf->pending_bio_list, &bl);
923 blk_plug_device(mddev->queue);
924 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 925
e3881a68
LE
926 if (do_sync)
927 md_wakeup_thread(mddev->thread);
928
1da177e4
LT
929 return 0;
930}
931
932static void status(struct seq_file *seq, mddev_t *mddev)
933{
934 conf_t *conf = mddev_to_conf(mddev);
935 int i;
936
937 if (conf->near_copies < conf->raid_disks)
938 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
939 if (conf->near_copies > 1)
940 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
941 if (conf->far_copies > 1) {
942 if (conf->far_offset)
943 seq_printf(seq, " %d offset-copies", conf->far_copies);
944 else
945 seq_printf(seq, " %d far-copies", conf->far_copies);
946 }
1da177e4 947 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 948 conf->raid_disks - mddev->degraded);
1da177e4
LT
949 for (i = 0; i < conf->raid_disks; i++)
950 seq_printf(seq, "%s",
951 conf->mirrors[i].rdev &&
b2d444d7 952 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
953 seq_printf(seq, "]");
954}
955
956static void error(mddev_t *mddev, mdk_rdev_t *rdev)
957{
958 char b[BDEVNAME_SIZE];
959 conf_t *conf = mddev_to_conf(mddev);
960
961 /*
962 * If it is not operational, then we have already marked it as dead
963 * else if it is the last working disks, ignore the error, let the
964 * next level up know.
965 * else mark the drive as failed
966 */
b2d444d7 967 if (test_bit(In_sync, &rdev->flags)
76186dd8 968 && conf->raid_disks-mddev->degraded == 1)
1da177e4
LT
969 /*
970 * Don't fail the drive, just return an IO error.
971 * The test should really be more sophisticated than
972 * "working_disks == 1", but it isn't critical, and
973 * can wait until we do more sophisticated "is the drive
974 * really dead" tests...
975 */
976 return;
c04be0aa
N
977 if (test_and_clear_bit(In_sync, &rdev->flags)) {
978 unsigned long flags;
979 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 980 mddev->degraded++;
c04be0aa 981 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
982 /*
983 * if recovery is running, make sure it aborts.
984 */
985 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
986 }
b2d444d7 987 set_bit(Faulty, &rdev->flags);
850b2b42 988 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1da177e4
LT
989 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
990 " Operation continuing on %d devices\n",
76186dd8 991 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4
LT
992}
993
994static void print_conf(conf_t *conf)
995{
996 int i;
997 mirror_info_t *tmp;
998
999 printk("RAID10 conf printout:\n");
1000 if (!conf) {
1001 printk("(!conf)\n");
1002 return;
1003 }
76186dd8 1004 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1005 conf->raid_disks);
1006
1007 for (i = 0; i < conf->raid_disks; i++) {
1008 char b[BDEVNAME_SIZE];
1009 tmp = conf->mirrors + i;
1010 if (tmp->rdev)
1011 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1012 i, !test_bit(In_sync, &tmp->rdev->flags),
1013 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1014 bdevname(tmp->rdev->bdev,b));
1015 }
1016}
1017
1018static void close_sync(conf_t *conf)
1019{
0a27ec96
N
1020 wait_barrier(conf);
1021 allow_barrier(conf);
1da177e4
LT
1022
1023 mempool_destroy(conf->r10buf_pool);
1024 conf->r10buf_pool = NULL;
1025}
1026
6d508242
N
1027/* check if there are enough drives for
1028 * every block to appear on atleast one
1029 */
1030static int enough(conf_t *conf)
1031{
1032 int first = 0;
1033
1034 do {
1035 int n = conf->copies;
1036 int cnt = 0;
1037 while (n--) {
1038 if (conf->mirrors[first].rdev)
1039 cnt++;
1040 first = (first+1) % conf->raid_disks;
1041 }
1042 if (cnt == 0)
1043 return 0;
1044 } while (first != 0);
1045 return 1;
1046}
1047
1da177e4
LT
1048static int raid10_spare_active(mddev_t *mddev)
1049{
1050 int i;
1051 conf_t *conf = mddev->private;
1052 mirror_info_t *tmp;
1053
1054 /*
1055 * Find all non-in_sync disks within the RAID10 configuration
1056 * and mark them in_sync
1057 */
1058 for (i = 0; i < conf->raid_disks; i++) {
1059 tmp = conf->mirrors + i;
1060 if (tmp->rdev
b2d444d7 1061 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
1062 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1063 unsigned long flags;
1064 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1065 mddev->degraded--;
c04be0aa 1066 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1067 }
1068 }
1069
1070 print_conf(conf);
1071 return 0;
1072}
1073
1074
1075static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1076{
1077 conf_t *conf = mddev->private;
1078 int found = 0;
1079 int mirror;
1080 mirror_info_t *p;
1081
1082 if (mddev->recovery_cp < MaxSector)
1083 /* only hot-add to in-sync arrays, as recovery is
1084 * very different from resync
1085 */
1086 return 0;
6d508242
N
1087 if (!enough(conf))
1088 return 0;
1da177e4 1089
6cce3b23
N
1090 if (rdev->saved_raid_disk >= 0 &&
1091 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1092 mirror = rdev->saved_raid_disk;
1093 else
1094 mirror = 0;
1095 for ( ; mirror < mddev->raid_disks; mirror++)
1da177e4
LT
1096 if ( !(p=conf->mirrors+mirror)->rdev) {
1097
1098 blk_queue_stack_limits(mddev->queue,
1099 rdev->bdev->bd_disk->queue);
1100 /* as we don't honour merge_bvec_fn, we must never risk
1101 * violating it, so limit ->max_sector to one PAGE, as
1102 * a one page request is never in violation.
1103 */
1104 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1105 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1106 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1107
1108 p->head_position = 0;
1109 rdev->raid_disk = mirror;
1110 found = 1;
6cce3b23
N
1111 if (rdev->saved_raid_disk != mirror)
1112 conf->fullsync = 1;
d6065f7b 1113 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1114 break;
1115 }
1116
1117 print_conf(conf);
1118 return found;
1119}
1120
1121static int raid10_remove_disk(mddev_t *mddev, int number)
1122{
1123 conf_t *conf = mddev->private;
1124 int err = 0;
1125 mdk_rdev_t *rdev;
1126 mirror_info_t *p = conf->mirrors+ number;
1127
1128 print_conf(conf);
1129 rdev = p->rdev;
1130 if (rdev) {
b2d444d7 1131 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1132 atomic_read(&rdev->nr_pending)) {
1133 err = -EBUSY;
1134 goto abort;
1135 }
1136 p->rdev = NULL;
fbd568a3 1137 synchronize_rcu();
1da177e4
LT
1138 if (atomic_read(&rdev->nr_pending)) {
1139 /* lost the race, try later */
1140 err = -EBUSY;
1141 p->rdev = rdev;
1142 }
1143 }
1144abort:
1145
1146 print_conf(conf);
1147 return err;
1148}
1149
1150
6712ecf8 1151static void end_sync_read(struct bio *bio, int error)
1da177e4 1152{
1da177e4
LT
1153 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1154 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1155 int i,d;
1156
1da177e4
LT
1157 for (i=0; i<conf->copies; i++)
1158 if (r10_bio->devs[i].bio == bio)
1159 break;
b6385483 1160 BUG_ON(i == conf->copies);
1da177e4
LT
1161 update_head_pos(i, r10_bio);
1162 d = r10_bio->devs[i].devnum;
0eb3ff12
N
1163
1164 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1165 set_bit(R10BIO_Uptodate, &r10_bio->state);
4dbcdc75
N
1166 else {
1167 atomic_add(r10_bio->sectors,
1168 &conf->mirrors[d].rdev->corrected_errors);
1169 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1170 md_error(r10_bio->mddev,
1171 conf->mirrors[d].rdev);
1172 }
1da177e4
LT
1173
1174 /* for reconstruct, we always reschedule after a read.
1175 * for resync, only after all reads
1176 */
1177 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1178 atomic_dec_and_test(&r10_bio->remaining)) {
1179 /* we have read all the blocks,
1180 * do the comparison in process context in raid10d
1181 */
1182 reschedule_retry(r10_bio);
1183 }
1184 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1185}
1186
6712ecf8 1187static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1188{
1189 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1190 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1191 mddev_t *mddev = r10_bio->mddev;
1192 conf_t *conf = mddev_to_conf(mddev);
1193 int i,d;
1194
1da177e4
LT
1195 for (i = 0; i < conf->copies; i++)
1196 if (r10_bio->devs[i].bio == bio)
1197 break;
1198 d = r10_bio->devs[i].devnum;
1199
1200 if (!uptodate)
1201 md_error(mddev, conf->mirrors[d].rdev);
1202 update_head_pos(i, r10_bio);
1203
1204 while (atomic_dec_and_test(&r10_bio->remaining)) {
1205 if (r10_bio->master_bio == NULL) {
1206 /* the primary of several recovery bios */
1207 md_done_sync(mddev, r10_bio->sectors, 1);
1208 put_buf(r10_bio);
1209 break;
1210 } else {
1211 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1212 put_buf(r10_bio);
1213 r10_bio = r10_bio2;
1214 }
1215 }
1216 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1da177e4
LT
1217}
1218
1219/*
1220 * Note: sync and recover and handled very differently for raid10
1221 * This code is for resync.
1222 * For resync, we read through virtual addresses and read all blocks.
1223 * If there is any error, we schedule a write. The lowest numbered
1224 * drive is authoritative.
1225 * However requests come for physical address, so we need to map.
1226 * For every physical address there are raid_disks/copies virtual addresses,
1227 * which is always are least one, but is not necessarly an integer.
1228 * This means that a physical address can span multiple chunks, so we may
1229 * have to submit multiple io requests for a single sync request.
1230 */
1231/*
1232 * We check if all blocks are in-sync and only write to blocks that
1233 * aren't in sync
1234 */
1235static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1236{
1237 conf_t *conf = mddev_to_conf(mddev);
1238 int i, first;
1239 struct bio *tbio, *fbio;
1240
1241 atomic_set(&r10_bio->remaining, 1);
1242
1243 /* find the first device with a block */
1244 for (i=0; i<conf->copies; i++)
1245 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1246 break;
1247
1248 if (i == conf->copies)
1249 goto done;
1250
1251 first = i;
1252 fbio = r10_bio->devs[i].bio;
1253
1254 /* now find blocks with errors */
0eb3ff12
N
1255 for (i=0 ; i < conf->copies ; i++) {
1256 int j, d;
1257 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1258
1da177e4 1259 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1260
1261 if (tbio->bi_end_io != end_sync_read)
1262 continue;
1263 if (i == first)
1da177e4 1264 continue;
0eb3ff12
N
1265 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1266 /* We know that the bi_io_vec layout is the same for
1267 * both 'first' and 'i', so we just compare them.
1268 * All vec entries are PAGE_SIZE;
1269 */
1270 for (j = 0; j < vcnt; j++)
1271 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1272 page_address(tbio->bi_io_vec[j].bv_page),
1273 PAGE_SIZE))
1274 break;
1275 if (j == vcnt)
1276 continue;
1277 mddev->resync_mismatches += r10_bio->sectors;
1278 }
18f08819
N
1279 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1280 /* Don't fix anything. */
1281 continue;
1da177e4
LT
1282 /* Ok, we need to write this bio
1283 * First we need to fixup bv_offset, bv_len and
1284 * bi_vecs, as the read request might have corrupted these
1285 */
1286 tbio->bi_vcnt = vcnt;
1287 tbio->bi_size = r10_bio->sectors << 9;
1288 tbio->bi_idx = 0;
1289 tbio->bi_phys_segments = 0;
1290 tbio->bi_hw_segments = 0;
1291 tbio->bi_hw_front_size = 0;
1292 tbio->bi_hw_back_size = 0;
1293 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1294 tbio->bi_flags |= 1 << BIO_UPTODATE;
1295 tbio->bi_next = NULL;
1296 tbio->bi_rw = WRITE;
1297 tbio->bi_private = r10_bio;
1298 tbio->bi_sector = r10_bio->devs[i].addr;
1299
1300 for (j=0; j < vcnt ; j++) {
1301 tbio->bi_io_vec[j].bv_offset = 0;
1302 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1303
1304 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1305 page_address(fbio->bi_io_vec[j].bv_page),
1306 PAGE_SIZE);
1307 }
1308 tbio->bi_end_io = end_sync_write;
1309
1310 d = r10_bio->devs[i].devnum;
1311 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1312 atomic_inc(&r10_bio->remaining);
1313 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1314
1315 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1316 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1317 generic_make_request(tbio);
1318 }
1319
1320done:
1321 if (atomic_dec_and_test(&r10_bio->remaining)) {
1322 md_done_sync(mddev, r10_bio->sectors, 1);
1323 put_buf(r10_bio);
1324 }
1325}
1326
1327/*
1328 * Now for the recovery code.
1329 * Recovery happens across physical sectors.
1330 * We recover all non-is_sync drives by finding the virtual address of
1331 * each, and then choose a working drive that also has that virt address.
1332 * There is a separate r10_bio for each non-in_sync drive.
1333 * Only the first two slots are in use. The first for reading,
1334 * The second for writing.
1335 *
1336 */
1337
1338static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1339{
1340 conf_t *conf = mddev_to_conf(mddev);
1341 int i, d;
1342 struct bio *bio, *wbio;
1343
1344
1345 /* move the pages across to the second bio
1346 * and submit the write request
1347 */
1348 bio = r10_bio->devs[0].bio;
1349 wbio = r10_bio->devs[1].bio;
1350 for (i=0; i < wbio->bi_vcnt; i++) {
1351 struct page *p = bio->bi_io_vec[i].bv_page;
1352 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1353 wbio->bi_io_vec[i].bv_page = p;
1354 }
1355 d = r10_bio->devs[1].devnum;
1356
1357 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1358 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
0eb3ff12
N
1359 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1360 generic_make_request(wbio);
1361 else
6712ecf8 1362 bio_endio(wbio, -EIO);
1da177e4
LT
1363}
1364
1365
1366/*
1367 * This is a kernel thread which:
1368 *
1369 * 1. Retries failed read operations on working mirrors.
1370 * 2. Updates the raid superblock when problems encounter.
6814d536 1371 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1372 */
1373
6814d536
N
1374static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1375{
1376 int sect = 0; /* Offset from r10_bio->sector */
1377 int sectors = r10_bio->sectors;
1378 mdk_rdev_t*rdev;
1379 while(sectors) {
1380 int s = sectors;
1381 int sl = r10_bio->read_slot;
1382 int success = 0;
1383 int start;
1384
1385 if (s > (PAGE_SIZE>>9))
1386 s = PAGE_SIZE >> 9;
1387
1388 rcu_read_lock();
1389 do {
1390 int d = r10_bio->devs[sl].devnum;
1391 rdev = rcu_dereference(conf->mirrors[d].rdev);
1392 if (rdev &&
1393 test_bit(In_sync, &rdev->flags)) {
1394 atomic_inc(&rdev->nr_pending);
1395 rcu_read_unlock();
1396 success = sync_page_io(rdev->bdev,
1397 r10_bio->devs[sl].addr +
1398 sect + rdev->data_offset,
1399 s<<9,
1400 conf->tmppage, READ);
1401 rdev_dec_pending(rdev, mddev);
1402 rcu_read_lock();
1403 if (success)
1404 break;
1405 }
1406 sl++;
1407 if (sl == conf->copies)
1408 sl = 0;
1409 } while (!success && sl != r10_bio->read_slot);
1410 rcu_read_unlock();
1411
1412 if (!success) {
1413 /* Cannot read from anywhere -- bye bye array */
1414 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1415 md_error(mddev, conf->mirrors[dn].rdev);
1416 break;
1417 }
1418
1419 start = sl;
1420 /* write it back and re-read */
1421 rcu_read_lock();
1422 while (sl != r10_bio->read_slot) {
1423 int d;
1424 if (sl==0)
1425 sl = conf->copies;
1426 sl--;
1427 d = r10_bio->devs[sl].devnum;
1428 rdev = rcu_dereference(conf->mirrors[d].rdev);
1429 if (rdev &&
1430 test_bit(In_sync, &rdev->flags)) {
1431 atomic_inc(&rdev->nr_pending);
1432 rcu_read_unlock();
1433 atomic_add(s, &rdev->corrected_errors);
1434 if (sync_page_io(rdev->bdev,
1435 r10_bio->devs[sl].addr +
1436 sect + rdev->data_offset,
1437 s<<9, conf->tmppage, WRITE)
1438 == 0)
1439 /* Well, this device is dead */
1440 md_error(mddev, rdev);
1441 rdev_dec_pending(rdev, mddev);
1442 rcu_read_lock();
1443 }
1444 }
1445 sl = start;
1446 while (sl != r10_bio->read_slot) {
1447 int d;
1448 if (sl==0)
1449 sl = conf->copies;
1450 sl--;
1451 d = r10_bio->devs[sl].devnum;
1452 rdev = rcu_dereference(conf->mirrors[d].rdev);
1453 if (rdev &&
1454 test_bit(In_sync, &rdev->flags)) {
1455 char b[BDEVNAME_SIZE];
1456 atomic_inc(&rdev->nr_pending);
1457 rcu_read_unlock();
1458 if (sync_page_io(rdev->bdev,
1459 r10_bio->devs[sl].addr +
1460 sect + rdev->data_offset,
1461 s<<9, conf->tmppage, READ) == 0)
1462 /* Well, this device is dead */
1463 md_error(mddev, rdev);
1464 else
1465 printk(KERN_INFO
1466 "raid10:%s: read error corrected"
1467 " (%d sectors at %llu on %s)\n",
1468 mdname(mddev), s,
969b755a
RD
1469 (unsigned long long)(sect+
1470 rdev->data_offset),
6814d536
N
1471 bdevname(rdev->bdev, b));
1472
1473 rdev_dec_pending(rdev, mddev);
1474 rcu_read_lock();
1475 }
1476 }
1477 rcu_read_unlock();
1478
1479 sectors -= s;
1480 sect += s;
1481 }
1482}
1483
1da177e4
LT
1484static void raid10d(mddev_t *mddev)
1485{
1486 r10bio_t *r10_bio;
1487 struct bio *bio;
1488 unsigned long flags;
1489 conf_t *conf = mddev_to_conf(mddev);
1490 struct list_head *head = &conf->retry_list;
1491 int unplug=0;
1492 mdk_rdev_t *rdev;
1493
1494 md_check_recovery(mddev);
1da177e4
LT
1495
1496 for (;;) {
1497 char b[BDEVNAME_SIZE];
1498 spin_lock_irqsave(&conf->device_lock, flags);
6cce3b23
N
1499
1500 if (conf->pending_bio_list.head) {
1501 bio = bio_list_get(&conf->pending_bio_list);
1502 blk_remove_plug(mddev->queue);
1503 spin_unlock_irqrestore(&conf->device_lock, flags);
1504 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
4ad13663 1505 bitmap_unplug(mddev->bitmap);
6cce3b23
N
1506
1507 while (bio) { /* submit pending writes */
1508 struct bio *next = bio->bi_next;
1509 bio->bi_next = NULL;
1510 generic_make_request(bio);
1511 bio = next;
1512 }
1513 unplug = 1;
1514
1515 continue;
1516 }
1517
1da177e4
LT
1518 if (list_empty(head))
1519 break;
1520 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1521 list_del(head->prev);
4443ae10 1522 conf->nr_queued--;
1da177e4
LT
1523 spin_unlock_irqrestore(&conf->device_lock, flags);
1524
1525 mddev = r10_bio->mddev;
1526 conf = mddev_to_conf(mddev);
1527 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1528 sync_request_write(mddev, r10_bio);
1529 unplug = 1;
1530 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1531 recovery_request_write(mddev, r10_bio);
1532 unplug = 1;
1533 } else {
1534 int mirror;
4443ae10
N
1535 /* we got a read error. Maybe the drive is bad. Maybe just
1536 * the block and we can fix it.
1537 * We freeze all other IO, and try reading the block from
1538 * other devices. When we find one, we re-write
1539 * and check it that fixes the read error.
1540 * This is all done synchronously while the array is
1541 * frozen.
1542 */
6814d536
N
1543 if (mddev->ro == 0) {
1544 freeze_array(conf);
1545 fix_read_error(conf, mddev, r10_bio);
1546 unfreeze_array(conf);
4443ae10
N
1547 }
1548
1da177e4 1549 bio = r10_bio->devs[r10_bio->read_slot].bio;
0eb3ff12
N
1550 r10_bio->devs[r10_bio->read_slot].bio =
1551 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1552 mirror = read_balance(conf, r10_bio);
1553 if (mirror == -1) {
1554 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1555 " read error for block %llu\n",
1556 bdevname(bio->bi_bdev,b),
1557 (unsigned long long)r10_bio->sector);
1558 raid_end_bio_io(r10_bio);
14e71344 1559 bio_put(bio);
1da177e4 1560 } else {
e3881a68 1561 const int do_sync = bio_sync(r10_bio->master_bio);
14e71344 1562 bio_put(bio);
1da177e4
LT
1563 rdev = conf->mirrors[mirror].rdev;
1564 if (printk_ratelimit())
1565 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1566 " another mirror\n",
1567 bdevname(rdev->bdev,b),
1568 (unsigned long long)r10_bio->sector);
1569 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1570 r10_bio->devs[r10_bio->read_slot].bio = bio;
1571 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1572 + rdev->data_offset;
1573 bio->bi_bdev = rdev->bdev;
e3881a68 1574 bio->bi_rw = READ | do_sync;
1da177e4
LT
1575 bio->bi_private = r10_bio;
1576 bio->bi_end_io = raid10_end_read_request;
1577 unplug = 1;
1578 generic_make_request(bio);
1579 }
1580 }
1581 }
1582 spin_unlock_irqrestore(&conf->device_lock, flags);
1583 if (unplug)
1584 unplug_slaves(mddev);
1585}
1586
1587
1588static int init_resync(conf_t *conf)
1589{
1590 int buffs;
1591
1592 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 1593 BUG_ON(conf->r10buf_pool);
1da177e4
LT
1594 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1595 if (!conf->r10buf_pool)
1596 return -ENOMEM;
1597 conf->next_resync = 0;
1598 return 0;
1599}
1600
1601/*
1602 * perform a "sync" on one "block"
1603 *
1604 * We need to make sure that no normal I/O request - particularly write
1605 * requests - conflict with active sync requests.
1606 *
1607 * This is achieved by tracking pending requests and a 'barrier' concept
1608 * that can be installed to exclude normal IO requests.
1609 *
1610 * Resync and recovery are handled very differently.
1611 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1612 *
1613 * For resync, we iterate over virtual addresses, read all copies,
1614 * and update if there are differences. If only one copy is live,
1615 * skip it.
1616 * For recovery, we iterate over physical addresses, read a good
1617 * value for each non-in_sync drive, and over-write.
1618 *
1619 * So, for recovery we may have several outstanding complex requests for a
1620 * given address, one for each out-of-sync device. We model this by allocating
1621 * a number of r10_bio structures, one for each out-of-sync device.
1622 * As we setup these structures, we collect all bio's together into a list
1623 * which we then process collectively to add pages, and then process again
1624 * to pass to generic_make_request.
1625 *
1626 * The r10_bio structures are linked using a borrowed master_bio pointer.
1627 * This link is counted in ->remaining. When the r10_bio that points to NULL
1628 * has its remaining count decremented to 0, the whole complex operation
1629 * is complete.
1630 *
1631 */
1632
57afd89f 1633static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1634{
1635 conf_t *conf = mddev_to_conf(mddev);
1636 r10bio_t *r10_bio;
1637 struct bio *biolist = NULL, *bio;
1638 sector_t max_sector, nr_sectors;
1639 int disk;
1640 int i;
6cce3b23
N
1641 int max_sync;
1642 int sync_blocks;
1da177e4
LT
1643
1644 sector_t sectors_skipped = 0;
1645 int chunks_skipped = 0;
1646
1647 if (!conf->r10buf_pool)
1648 if (init_resync(conf))
57afd89f 1649 return 0;
1da177e4
LT
1650
1651 skipped:
1652 max_sector = mddev->size << 1;
1653 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1654 max_sector = mddev->resync_max_sectors;
1655 if (sector_nr >= max_sector) {
6cce3b23
N
1656 /* If we aborted, we need to abort the
1657 * sync on the 'current' bitmap chucks (there can
1658 * be several when recovering multiple devices).
1659 * as we may have started syncing it but not finished.
1660 * We can find the current address in
1661 * mddev->curr_resync, but for recovery,
1662 * we need to convert that to several
1663 * virtual addresses.
1664 */
1665 if (mddev->curr_resync < max_sector) { /* aborted */
1666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1667 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1668 &sync_blocks, 1);
1669 else for (i=0; i<conf->raid_disks; i++) {
1670 sector_t sect =
1671 raid10_find_virt(conf, mddev->curr_resync, i);
1672 bitmap_end_sync(mddev->bitmap, sect,
1673 &sync_blocks, 1);
1674 }
1675 } else /* completed sync */
1676 conf->fullsync = 0;
1677
1678 bitmap_close_sync(mddev->bitmap);
1da177e4 1679 close_sync(conf);
57afd89f 1680 *skipped = 1;
1da177e4
LT
1681 return sectors_skipped;
1682 }
1683 if (chunks_skipped >= conf->raid_disks) {
1684 /* if there has been nothing to do on any drive,
1685 * then there is nothing to do at all..
1686 */
57afd89f
N
1687 *skipped = 1;
1688 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1689 }
1690
1691 /* make sure whole request will fit in a chunk - if chunks
1692 * are meaningful
1693 */
1694 if (conf->near_copies < conf->raid_disks &&
1695 max_sector > (sector_nr | conf->chunk_mask))
1696 max_sector = (sector_nr | conf->chunk_mask) + 1;
1697 /*
1698 * If there is non-resync activity waiting for us then
1699 * put in a delay to throttle resync.
1700 */
0a27ec96 1701 if (!go_faster && conf->nr_waiting)
1da177e4 1702 msleep_interruptible(1000);
1da177e4
LT
1703
1704 /* Again, very different code for resync and recovery.
1705 * Both must result in an r10bio with a list of bios that
1706 * have bi_end_io, bi_sector, bi_bdev set,
1707 * and bi_private set to the r10bio.
1708 * For recovery, we may actually create several r10bios
1709 * with 2 bios in each, that correspond to the bios in the main one.
1710 * In this case, the subordinate r10bios link back through a
1711 * borrowed master_bio pointer, and the counter in the master
1712 * includes a ref from each subordinate.
1713 */
1714 /* First, we decide what to do and set ->bi_end_io
1715 * To end_sync_read if we want to read, and
1716 * end_sync_write if we will want to write.
1717 */
1718
6cce3b23 1719 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
1720 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1721 /* recovery... the complicated one */
1722 int i, j, k;
1723 r10_bio = NULL;
1724
1725 for (i=0 ; i<conf->raid_disks; i++)
1726 if (conf->mirrors[i].rdev &&
b2d444d7 1727 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
6cce3b23 1728 int still_degraded = 0;
1da177e4
LT
1729 /* want to reconstruct this device */
1730 r10bio_t *rb2 = r10_bio;
6cce3b23
N
1731 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1732 int must_sync;
1733 /* Unless we are doing a full sync, we only need
1734 * to recover the block if it is set in the bitmap
1735 */
1736 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1737 &sync_blocks, 1);
1738 if (sync_blocks < max_sync)
1739 max_sync = sync_blocks;
1740 if (!must_sync &&
1741 !conf->fullsync) {
1742 /* yep, skip the sync_blocks here, but don't assume
1743 * that there will never be anything to do here
1744 */
1745 chunks_skipped = -1;
1746 continue;
1747 }
1da177e4
LT
1748
1749 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
6cce3b23 1750 raise_barrier(conf, rb2 != NULL);
1da177e4
LT
1751 atomic_set(&r10_bio->remaining, 0);
1752
1753 r10_bio->master_bio = (struct bio*)rb2;
1754 if (rb2)
1755 atomic_inc(&rb2->remaining);
1756 r10_bio->mddev = mddev;
1757 set_bit(R10BIO_IsRecover, &r10_bio->state);
6cce3b23
N
1758 r10_bio->sector = sect;
1759
1da177e4 1760 raid10_find_phys(conf, r10_bio);
6cce3b23
N
1761 /* Need to check if this section will still be
1762 * degraded
1763 */
1764 for (j=0; j<conf->copies;j++) {
1765 int d = r10_bio->devs[j].devnum;
1766 if (conf->mirrors[d].rdev == NULL ||
a24a8dd8 1767 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
6cce3b23 1768 still_degraded = 1;
a24a8dd8
N
1769 break;
1770 }
6cce3b23
N
1771 }
1772 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1773 &sync_blocks, still_degraded);
1774
1da177e4
LT
1775 for (j=0; j<conf->copies;j++) {
1776 int d = r10_bio->devs[j].devnum;
1777 if (conf->mirrors[d].rdev &&
b2d444d7 1778 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1da177e4
LT
1779 /* This is where we read from */
1780 bio = r10_bio->devs[0].bio;
1781 bio->bi_next = biolist;
1782 biolist = bio;
1783 bio->bi_private = r10_bio;
1784 bio->bi_end_io = end_sync_read;
802ba064 1785 bio->bi_rw = READ;
1da177e4
LT
1786 bio->bi_sector = r10_bio->devs[j].addr +
1787 conf->mirrors[d].rdev->data_offset;
1788 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1789 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1790 atomic_inc(&r10_bio->remaining);
1791 /* and we write to 'i' */
1792
1793 for (k=0; k<conf->copies; k++)
1794 if (r10_bio->devs[k].devnum == i)
1795 break;
64a742bc 1796 BUG_ON(k == conf->copies);
1da177e4
LT
1797 bio = r10_bio->devs[1].bio;
1798 bio->bi_next = biolist;
1799 biolist = bio;
1800 bio->bi_private = r10_bio;
1801 bio->bi_end_io = end_sync_write;
802ba064 1802 bio->bi_rw = WRITE;
1da177e4
LT
1803 bio->bi_sector = r10_bio->devs[k].addr +
1804 conf->mirrors[i].rdev->data_offset;
1805 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1806
1807 r10_bio->devs[0].devnum = d;
1808 r10_bio->devs[1].devnum = i;
1809
1810 break;
1811 }
1812 }
1813 if (j == conf->copies) {
87fc767b
N
1814 /* Cannot recover, so abort the recovery */
1815 put_buf(r10_bio);
1816 r10_bio = rb2;
1817 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1818 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1819 mdname(mddev));
1820 break;
1da177e4
LT
1821 }
1822 }
1823 if (biolist == NULL) {
1824 while (r10_bio) {
1825 r10bio_t *rb2 = r10_bio;
1826 r10_bio = (r10bio_t*) rb2->master_bio;
1827 rb2->master_bio = NULL;
1828 put_buf(rb2);
1829 }
1830 goto giveup;
1831 }
1832 } else {
1833 /* resync. Schedule a read for every block at this virt offset */
1834 int count = 0;
6cce3b23
N
1835
1836 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1837 &sync_blocks, mddev->degraded) &&
1838 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1839 /* We can skip this block */
1840 *skipped = 1;
1841 return sync_blocks + sectors_skipped;
1842 }
1843 if (sync_blocks < max_sync)
1844 max_sync = sync_blocks;
1da177e4
LT
1845 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1846
1da177e4
LT
1847 r10_bio->mddev = mddev;
1848 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
1849 raise_barrier(conf, 0);
1850 conf->next_resync = sector_nr;
1da177e4
LT
1851
1852 r10_bio->master_bio = NULL;
1853 r10_bio->sector = sector_nr;
1854 set_bit(R10BIO_IsSync, &r10_bio->state);
1855 raid10_find_phys(conf, r10_bio);
1856 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1857
1858 for (i=0; i<conf->copies; i++) {
1859 int d = r10_bio->devs[i].devnum;
1860 bio = r10_bio->devs[i].bio;
1861 bio->bi_end_io = NULL;
af03b8e4 1862 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 1863 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 1864 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4
LT
1865 continue;
1866 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1867 atomic_inc(&r10_bio->remaining);
1868 bio->bi_next = biolist;
1869 biolist = bio;
1870 bio->bi_private = r10_bio;
1871 bio->bi_end_io = end_sync_read;
802ba064 1872 bio->bi_rw = READ;
1da177e4
LT
1873 bio->bi_sector = r10_bio->devs[i].addr +
1874 conf->mirrors[d].rdev->data_offset;
1875 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1876 count++;
1877 }
1878
1879 if (count < 2) {
1880 for (i=0; i<conf->copies; i++) {
1881 int d = r10_bio->devs[i].devnum;
1882 if (r10_bio->devs[i].bio->bi_end_io)
1883 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1884 }
1885 put_buf(r10_bio);
1886 biolist = NULL;
1887 goto giveup;
1888 }
1889 }
1890
1891 for (bio = biolist; bio ; bio=bio->bi_next) {
1892
1893 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1894 if (bio->bi_end_io)
1895 bio->bi_flags |= 1 << BIO_UPTODATE;
1896 bio->bi_vcnt = 0;
1897 bio->bi_idx = 0;
1898 bio->bi_phys_segments = 0;
1899 bio->bi_hw_segments = 0;
1900 bio->bi_size = 0;
1901 }
1902
1903 nr_sectors = 0;
6cce3b23
N
1904 if (sector_nr + max_sync < max_sector)
1905 max_sector = sector_nr + max_sync;
1da177e4
LT
1906 do {
1907 struct page *page;
1908 int len = PAGE_SIZE;
1909 disk = 0;
1910 if (sector_nr + (len>>9) > max_sector)
1911 len = (max_sector - sector_nr) << 9;
1912 if (len == 0)
1913 break;
1914 for (bio= biolist ; bio ; bio=bio->bi_next) {
1915 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1916 if (bio_add_page(bio, page, len, 0) == 0) {
1917 /* stop here */
1918 struct bio *bio2;
1919 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1920 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1921 /* remove last page from this bio */
1922 bio2->bi_vcnt--;
1923 bio2->bi_size -= len;
1924 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1925 }
1926 goto bio_full;
1927 }
1928 disk = i;
1929 }
1930 nr_sectors += len>>9;
1931 sector_nr += len>>9;
1932 } while (biolist->bi_vcnt < RESYNC_PAGES);
1933 bio_full:
1934 r10_bio->sectors = nr_sectors;
1935
1936 while (biolist) {
1937 bio = biolist;
1938 biolist = biolist->bi_next;
1939
1940 bio->bi_next = NULL;
1941 r10_bio = bio->bi_private;
1942 r10_bio->sectors = nr_sectors;
1943
1944 if (bio->bi_end_io == end_sync_read) {
1945 md_sync_acct(bio->bi_bdev, nr_sectors);
1946 generic_make_request(bio);
1947 }
1948 }
1949
57afd89f
N
1950 if (sectors_skipped)
1951 /* pretend they weren't skipped, it makes
1952 * no important difference in this case
1953 */
1954 md_done_sync(mddev, sectors_skipped, 1);
1955
1da177e4
LT
1956 return sectors_skipped + nr_sectors;
1957 giveup:
1958 /* There is nowhere to write, so all non-sync
1959 * drives must be failed, so try the next chunk...
1960 */
1961 {
57afd89f 1962 sector_t sec = max_sector - sector_nr;
1da177e4
LT
1963 sectors_skipped += sec;
1964 chunks_skipped ++;
1965 sector_nr = max_sector;
1da177e4
LT
1966 goto skipped;
1967 }
1968}
1969
1970static int run(mddev_t *mddev)
1971{
1972 conf_t *conf;
1973 int i, disk_idx;
1974 mirror_info_t *disk;
1975 mdk_rdev_t *rdev;
1976 struct list_head *tmp;
c93983bf 1977 int nc, fc, fo;
1da177e4
LT
1978 sector_t stride, size;
1979
2604b703
N
1980 if (mddev->chunk_size == 0) {
1981 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1982 return -EINVAL;
1da177e4 1983 }
2604b703 1984
1da177e4
LT
1985 nc = mddev->layout & 255;
1986 fc = (mddev->layout >> 8) & 255;
c93983bf 1987 fo = mddev->layout & (1<<16);
1da177e4 1988 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
c93983bf 1989 (mddev->layout >> 17)) {
1da177e4
LT
1990 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1991 mdname(mddev), mddev->layout);
1992 goto out;
1993 }
1994 /*
1995 * copy the already verified devices into our private RAID10
1996 * bookkeeping area. [whatever we allocate in run(),
1997 * should be freed in stop()]
1998 */
4443ae10 1999 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4
LT
2000 mddev->private = conf;
2001 if (!conf) {
2002 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2003 mdname(mddev));
2004 goto out;
2005 }
4443ae10 2006 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
2007 GFP_KERNEL);
2008 if (!conf->mirrors) {
2009 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2010 mdname(mddev));
2011 goto out_free_conf;
2012 }
4443ae10
N
2013
2014 conf->tmppage = alloc_page(GFP_KERNEL);
2015 if (!conf->tmppage)
2016 goto out_free_conf;
1da177e4 2017
64a742bc
N
2018 conf->mddev = mddev;
2019 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2020 conf->near_copies = nc;
2021 conf->far_copies = fc;
2022 conf->copies = nc*fc;
c93983bf 2023 conf->far_offset = fo;
1da177e4
LT
2024 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2025 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
64a742bc
N
2026 size = mddev->size >> (conf->chunk_shift-1);
2027 sector_div(size, fc);
2028 size = size * conf->raid_disks;
2029 sector_div(size, nc);
2030 /* 'size' is now the number of chunks in the array */
2031 /* calculate "used chunks per device" in 'stride' */
2032 stride = size * conf->copies;
af03b8e4
N
2033
2034 /* We need to round up when dividing by raid_disks to
2035 * get the stride size.
2036 */
2037 stride += conf->raid_disks - 1;
64a742bc
N
2038 sector_div(stride, conf->raid_disks);
2039 mddev->size = stride << (conf->chunk_shift-1);
2040
c93983bf 2041 if (fo)
64a742bc
N
2042 stride = 1;
2043 else
c93983bf 2044 sector_div(stride, fc);
64a742bc
N
2045 conf->stride = stride << conf->chunk_shift;
2046
1da177e4
LT
2047 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2048 r10bio_pool_free, conf);
2049 if (!conf->r10bio_pool) {
2050 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2051 mdname(mddev));
2052 goto out_free_conf;
2053 }
1da177e4
LT
2054
2055 ITERATE_RDEV(mddev, rdev, tmp) {
2056 disk_idx = rdev->raid_disk;
2057 if (disk_idx >= mddev->raid_disks
2058 || disk_idx < 0)
2059 continue;
2060 disk = conf->mirrors + disk_idx;
2061
2062 disk->rdev = rdev;
2063
2064 blk_queue_stack_limits(mddev->queue,
2065 rdev->bdev->bd_disk->queue);
2066 /* as we don't honour merge_bvec_fn, we must never risk
2067 * violating it, so limit ->max_sector to one PAGE, as
2068 * a one page request is never in violation.
2069 */
2070 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2071 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2072 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2073
2074 disk->head_position = 0;
1da177e4 2075 }
1da177e4
LT
2076 spin_lock_init(&conf->device_lock);
2077 INIT_LIST_HEAD(&conf->retry_list);
2078
2079 spin_lock_init(&conf->resync_lock);
0a27ec96 2080 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2081
6d508242
N
2082 /* need to check that every block has at least one working mirror */
2083 if (!enough(conf)) {
2084 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2085 mdname(mddev));
1da177e4
LT
2086 goto out_free_conf;
2087 }
2088
2089 mddev->degraded = 0;
2090 for (i = 0; i < conf->raid_disks; i++) {
2091
2092 disk = conf->mirrors + i;
2093
5fd6c1dc 2094 if (!disk->rdev ||
2e333e89 2095 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2096 disk->head_position = 0;
2097 mddev->degraded++;
2098 }
2099 }
2100
2101
2102 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2103 if (!mddev->thread) {
2104 printk(KERN_ERR
2105 "raid10: couldn't allocate thread for %s\n",
2106 mdname(mddev));
2107 goto out_free_conf;
2108 }
2109
2110 printk(KERN_INFO
2111 "raid10: raid set %s active with %d out of %d devices\n",
2112 mdname(mddev), mddev->raid_disks - mddev->degraded,
2113 mddev->raid_disks);
2114 /*
2115 * Ok, everything is just fine now
2116 */
64a742bc
N
2117 mddev->array_size = size << (conf->chunk_shift-1);
2118 mddev->resync_max_sectors = size << conf->chunk_shift;
1da177e4 2119
7a5febe9
N
2120 mddev->queue->unplug_fn = raid10_unplug;
2121 mddev->queue->issue_flush_fn = raid10_issue_flush;
0d129228
N
2122 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2123 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2124
1da177e4
LT
2125 /* Calculate max read-ahead size.
2126 * We need to readahead at least twice a whole stripe....
2127 * maybe...
2128 */
2129 {
8932c2e0 2130 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
2131 stripe /= conf->near_copies;
2132 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2133 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2134 }
2135
2136 if (conf->near_copies < mddev->raid_disks)
2137 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2138 return 0;
2139
2140out_free_conf:
2141 if (conf->r10bio_pool)
2142 mempool_destroy(conf->r10bio_pool);
1345b1d8 2143 safe_put_page(conf->tmppage);
990a8baf 2144 kfree(conf->mirrors);
1da177e4
LT
2145 kfree(conf);
2146 mddev->private = NULL;
2147out:
2148 return -EIO;
2149}
2150
2151static int stop(mddev_t *mddev)
2152{
2153 conf_t *conf = mddev_to_conf(mddev);
2154
2155 md_unregister_thread(mddev->thread);
2156 mddev->thread = NULL;
2157 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2158 if (conf->r10bio_pool)
2159 mempool_destroy(conf->r10bio_pool);
990a8baf 2160 kfree(conf->mirrors);
1da177e4
LT
2161 kfree(conf);
2162 mddev->private = NULL;
2163 return 0;
2164}
2165
6cce3b23
N
2166static void raid10_quiesce(mddev_t *mddev, int state)
2167{
2168 conf_t *conf = mddev_to_conf(mddev);
2169
2170 switch(state) {
2171 case 1:
2172 raise_barrier(conf, 0);
2173 break;
2174 case 0:
2175 lower_barrier(conf);
2176 break;
2177 }
2178 if (mddev->thread) {
2179 if (mddev->bitmap)
2180 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2181 else
2182 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2183 md_wakeup_thread(mddev->thread);
2184 }
2185}
1da177e4 2186
2604b703 2187static struct mdk_personality raid10_personality =
1da177e4
LT
2188{
2189 .name = "raid10",
2604b703 2190 .level = 10,
1da177e4
LT
2191 .owner = THIS_MODULE,
2192 .make_request = make_request,
2193 .run = run,
2194 .stop = stop,
2195 .status = status,
2196 .error_handler = error,
2197 .hot_add_disk = raid10_add_disk,
2198 .hot_remove_disk= raid10_remove_disk,
2199 .spare_active = raid10_spare_active,
2200 .sync_request = sync_request,
6cce3b23 2201 .quiesce = raid10_quiesce,
1da177e4
LT
2202};
2203
2204static int __init raid_init(void)
2205{
2604b703 2206 return register_md_personality(&raid10_personality);
1da177e4
LT
2207}
2208
2209static void raid_exit(void)
2210{
2604b703 2211 unregister_md_personality(&raid10_personality);
1da177e4
LT
2212}
2213
2214module_init(raid_init);
2215module_exit(raid_exit);
2216MODULE_LICENSE("GPL");
2217MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 2218MODULE_ALIAS("md-raid10");
2604b703 2219MODULE_ALIAS("md-level-10");