]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/md/raid10.c
treewide: kmalloc() -> kmalloc_array()
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
109e3765 28#include <trace/events/block.h>
43b2e5d8 29#include "md.h"
ef740c37 30#include "raid10.h"
dab8b292 31#include "raid0.h"
935fe098 32#include "md-bitmap.h"
1da177e4
LT
33
34/*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
c93983bf 41 * far_offset (stored in bit 16 of layout )
475901af 42 * use_far_sets (stored in bit 17 of layout )
8bce6d35 43 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 44 *
475901af
JB
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
c93983bf
N
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
1da177e4
LT
73 */
74
75/*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78#define NR_RAID10_BIOS 256
79
473e87ce
JB
80/* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85#define IO_BLOCKED ((struct bio *)1)
86/* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90#define IO_MADE_GOOD ((struct bio *)2)
91
92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94/* When there are this many requests queued to be written by
34db0cd6
N
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98static int max_queued_requests = 1024;
99
e879a879
N
100static void allow_barrier(struct r10conf *conf);
101static void lower_barrier(struct r10conf *conf);
635f6416 102static int _enough(struct r10conf *conf, int previous, int ignore);
1919cbb2 103static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 107static void end_reshape_write(struct bio *bio);
3ea7daa5 108static void end_reshape(struct r10conf *conf);
0a27ec96 109
578b54ad
N
110#define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
fb0eb5df
ML
113#include "raid1-10.c"
114
f0250618
ML
115/*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120{
121 return get_resync_pages(bio)->raid_bio;
122}
123
dd0fc66f 124static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 125{
e879a879 126 struct r10conf *conf = data;
9f2c9d12 127 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 128
69335ef3
N
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
7eaceacc 131 return kzalloc(size, gfp_flags);
1da177e4
LT
132}
133
134static void r10bio_pool_free(void *r10_bio, void *data)
135{
136 kfree(r10_bio);
137}
138
8db87912 139#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
0310fa21
N
140/* amount of memory to reserve for resync requests */
141#define RESYNC_WINDOW (1024*1024)
142/* maximum number of concurrent requests, memory permitting */
143#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
4b242e97 144#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
8db87912 145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4
LT
146
147/*
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
152 *
153 */
dd0fc66f 154static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 155{
e879a879 156 struct r10conf *conf = data;
9f2c9d12 157 struct r10bio *r10_bio;
1da177e4 158 struct bio *bio;
f0250618
ML
159 int j;
160 int nalloc, nalloc_rp;
161 struct resync_pages *rps;
1da177e4
LT
162
163 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 164 if (!r10_bio)
1da177e4 165 return NULL;
1da177e4 166
3ea7daa5
N
167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
169 nalloc = conf->copies; /* resync */
170 else
171 nalloc = 2; /* recovery */
172
f0250618
ML
173 /* allocate once for all bios */
174 if (!conf->have_replacement)
175 nalloc_rp = nalloc;
176 else
177 nalloc_rp = nalloc * 2;
6da2ec56 178 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
f0250618
ML
179 if (!rps)
180 goto out_free_r10bio;
181
1da177e4
LT
182 /*
183 * Allocate bios.
184 */
185 for (j = nalloc ; j-- ; ) {
6746557f 186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
187 if (!bio)
188 goto out_free_bio;
189 r10_bio->devs[j].bio = bio;
69335ef3
N
190 if (!conf->have_replacement)
191 continue;
192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 if (!bio)
194 goto out_free_bio;
195 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
196 }
197 /*
198 * Allocate RESYNC_PAGES data pages and attach them
199 * where needed.
200 */
f0250618 201 for (j = 0; j < nalloc; j++) {
69335ef3 202 struct bio *rbio = r10_bio->devs[j].repl_bio;
f0250618
ML
203 struct resync_pages *rp, *rp_repl;
204
205 rp = &rps[j];
206 if (rbio)
207 rp_repl = &rps[nalloc + j];
208
1da177e4 209 bio = r10_bio->devs[j].bio;
f0250618
ML
210
211 if (!j || test_bit(MD_RECOVERY_SYNC,
212 &conf->mddev->recovery)) {
213 if (resync_alloc_pages(rp, gfp_flags))
1da177e4 214 goto out_free_pages;
f0250618
ML
215 } else {
216 memcpy(rp, &rps[0], sizeof(*rp));
217 resync_get_all_pages(rp);
218 }
1da177e4 219
f0250618
ML
220 rp->raid_bio = r10_bio;
221 bio->bi_private = rp;
222 if (rbio) {
223 memcpy(rp_repl, rp, sizeof(*rp));
224 rbio->bi_private = rp_repl;
1da177e4
LT
225 }
226 }
227
228 return r10_bio;
229
230out_free_pages:
f0250618
ML
231 while (--j >= 0)
232 resync_free_pages(&rps[j * 2]);
233
5fdd2cf8 234 j = 0;
1da177e4 235out_free_bio:
5fdd2cf8 236 for ( ; j < nalloc; j++) {
237 if (r10_bio->devs[j].bio)
238 bio_put(r10_bio->devs[j].bio);
69335ef3
N
239 if (r10_bio->devs[j].repl_bio)
240 bio_put(r10_bio->devs[j].repl_bio);
241 }
f0250618
ML
242 kfree(rps);
243out_free_r10bio:
1da177e4
LT
244 r10bio_pool_free(r10_bio, conf);
245 return NULL;
246}
247
248static void r10buf_pool_free(void *__r10_bio, void *data)
249{
e879a879 250 struct r10conf *conf = data;
9f2c9d12 251 struct r10bio *r10bio = __r10_bio;
1da177e4 252 int j;
f0250618 253 struct resync_pages *rp = NULL;
1da177e4 254
f0250618 255 for (j = conf->copies; j--; ) {
1da177e4 256 struct bio *bio = r10bio->devs[j].bio;
f0250618 257
eb81b328
GJ
258 if (bio) {
259 rp = get_resync_pages(bio);
260 resync_free_pages(rp);
261 bio_put(bio);
262 }
f0250618 263
69335ef3
N
264 bio = r10bio->devs[j].repl_bio;
265 if (bio)
266 bio_put(bio);
1da177e4 267 }
f0250618
ML
268
269 /* resync pages array stored in the 1st bio's .bi_private */
270 kfree(rp);
271
1da177e4
LT
272 r10bio_pool_free(r10bio, conf);
273}
274
e879a879 275static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
276{
277 int i;
278
279 for (i = 0; i < conf->copies; i++) {
280 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 281 if (!BIO_SPECIAL(*bio))
1da177e4
LT
282 bio_put(*bio);
283 *bio = NULL;
69335ef3
N
284 bio = &r10_bio->devs[i].repl_bio;
285 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286 bio_put(*bio);
287 *bio = NULL;
1da177e4
LT
288 }
289}
290
9f2c9d12 291static void free_r10bio(struct r10bio *r10_bio)
1da177e4 292{
e879a879 293 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 294
1da177e4 295 put_all_bios(conf, r10_bio);
afeee514 296 mempool_free(r10_bio, &conf->r10bio_pool);
1da177e4
LT
297}
298
9f2c9d12 299static void put_buf(struct r10bio *r10_bio)
1da177e4 300{
e879a879 301 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 302
afeee514 303 mempool_free(r10_bio, &conf->r10buf_pool);
1da177e4 304
0a27ec96 305 lower_barrier(conf);
1da177e4
LT
306}
307
9f2c9d12 308static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
309{
310 unsigned long flags;
fd01b88c 311 struct mddev *mddev = r10_bio->mddev;
e879a879 312 struct r10conf *conf = mddev->private;
1da177e4
LT
313
314 spin_lock_irqsave(&conf->device_lock, flags);
315 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 316 conf->nr_queued ++;
1da177e4
LT
317 spin_unlock_irqrestore(&conf->device_lock, flags);
318
388667be
AJ
319 /* wake up frozen array... */
320 wake_up(&conf->wait_barrier);
321
1da177e4
LT
322 md_wakeup_thread(mddev->thread);
323}
324
325/*
326 * raid_end_bio_io() is called when we have finished servicing a mirrored
327 * operation and are ready to return a success/failure code to the buffer
328 * cache layer.
329 */
9f2c9d12 330static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
331{
332 struct bio *bio = r10_bio->master_bio;
e879a879 333 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 334
856e08e2 335 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4e4cbee9 336 bio->bi_status = BLK_STS_IOERR;
fd16f2e8
N
337
338 bio_endio(bio);
339 /*
340 * Wake up any possible resync thread that waits for the device
341 * to go idle.
342 */
343 allow_barrier(conf);
344
1da177e4
LT
345 free_r10bio(r10_bio);
346}
347
348/*
349 * Update disk head position estimator based on IRQ completion info.
350 */
9f2c9d12 351static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 352{
e879a879 353 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
354
355 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356 r10_bio->devs[slot].addr + (r10_bio->sectors);
357}
358
778ca018
NK
359/*
360 * Find the disk number which triggered given bio
361 */
e879a879 362static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 363 struct bio *bio, int *slotp, int *replp)
778ca018
NK
364{
365 int slot;
69335ef3 366 int repl = 0;
778ca018 367
69335ef3 368 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
369 if (r10_bio->devs[slot].bio == bio)
370 break;
69335ef3
N
371 if (r10_bio->devs[slot].repl_bio == bio) {
372 repl = 1;
373 break;
374 }
375 }
778ca018
NK
376
377 BUG_ON(slot == conf->copies);
378 update_head_pos(slot, r10_bio);
379
749c55e9
N
380 if (slotp)
381 *slotp = slot;
69335ef3
N
382 if (replp)
383 *replp = repl;
778ca018
NK
384 return r10_bio->devs[slot].devnum;
385}
386
4246a0b6 387static void raid10_end_read_request(struct bio *bio)
1da177e4 388{
4e4cbee9 389 int uptodate = !bio->bi_status;
9f2c9d12 390 struct r10bio *r10_bio = bio->bi_private;
a0e764c5 391 int slot;
abbf098e 392 struct md_rdev *rdev;
e879a879 393 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 394
1da177e4 395 slot = r10_bio->read_slot;
abbf098e 396 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
397 /*
398 * this branch is our 'one mirror IO has finished' event handler:
399 */
4443ae10
N
400 update_head_pos(slot, r10_bio);
401
402 if (uptodate) {
1da177e4
LT
403 /*
404 * Set R10BIO_Uptodate in our master bio, so that
405 * we will return a good error code to the higher
406 * levels even if IO on some other mirrored buffer fails.
407 *
408 * The 'master' represents the composite IO operation to
409 * user-side. So if something waits for IO, then it will
410 * wait for the 'master' bio.
411 */
412 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
413 } else {
414 /* If all other devices that store this block have
415 * failed, we want to return the error upwards rather
416 * than fail the last device. Here we redefine
417 * "uptodate" to mean "Don't want to retry"
418 */
635f6416
N
419 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420 rdev->raid_disk))
fae8cc5e 421 uptodate = 1;
fae8cc5e
N
422 }
423 if (uptodate) {
1da177e4 424 raid_end_bio_io(r10_bio);
abbf098e 425 rdev_dec_pending(rdev, conf->mddev);
4443ae10 426 } else {
1da177e4 427 /*
7c4e06ff 428 * oops, read error - keep the refcount on the rdev
1da177e4
LT
429 */
430 char b[BDEVNAME_SIZE];
08464e09 431 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
8bda470e 432 mdname(conf->mddev),
abbf098e 433 bdevname(rdev->bdev, b),
8bda470e 434 (unsigned long long)r10_bio->sector);
856e08e2 435 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
436 reschedule_retry(r10_bio);
437 }
1da177e4
LT
438}
439
9f2c9d12 440static void close_write(struct r10bio *r10_bio)
bd870a16
N
441{
442 /* clear the bitmap if all writes complete successfully */
443 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444 r10_bio->sectors,
445 !test_bit(R10BIO_Degraded, &r10_bio->state),
446 0);
447 md_write_end(r10_bio->mddev);
448}
449
9f2c9d12 450static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
451{
452 if (atomic_dec_and_test(&r10_bio->remaining)) {
453 if (test_bit(R10BIO_WriteError, &r10_bio->state))
454 reschedule_retry(r10_bio);
455 else {
456 close_write(r10_bio);
457 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458 reschedule_retry(r10_bio);
459 else
460 raid_end_bio_io(r10_bio);
461 }
462 }
463}
464
4246a0b6 465static void raid10_end_write_request(struct bio *bio)
1da177e4 466{
9f2c9d12 467 struct r10bio *r10_bio = bio->bi_private;
778ca018 468 int dev;
749c55e9 469 int dec_rdev = 1;
e879a879 470 struct r10conf *conf = r10_bio->mddev->private;
475b0321 471 int slot, repl;
4ca40c2c 472 struct md_rdev *rdev = NULL;
1919cbb2 473 struct bio *to_put = NULL;
579ed34f
SL
474 bool discard_error;
475
4e4cbee9 476 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 477
475b0321 478 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 479
475b0321
N
480 if (repl)
481 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
482 if (!rdev) {
483 smp_rmb();
484 repl = 0;
475b0321 485 rdev = conf->mirrors[dev].rdev;
4ca40c2c 486 }
1da177e4
LT
487 /*
488 * this branch is our 'one mirror IO has finished' event handler:
489 */
4e4cbee9 490 if (bio->bi_status && !discard_error) {
475b0321
N
491 if (repl)
492 /* Never record new bad blocks to replacement,
493 * just fail it.
494 */
495 md_error(rdev->mddev, rdev);
496 else {
497 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
498 if (!test_and_set_bit(WantReplacement, &rdev->flags))
499 set_bit(MD_RECOVERY_NEEDED,
500 &rdev->mddev->recovery);
1919cbb2 501
475b0321 502 dec_rdev = 0;
1919cbb2
N
503 if (test_bit(FailFast, &rdev->flags) &&
504 (bio->bi_opf & MD_FAILFAST)) {
505 md_error(rdev->mddev, rdev);
506 if (!test_bit(Faulty, &rdev->flags))
507 /* This is the only remaining device,
508 * We need to retry the write without
509 * FailFast
510 */
511 set_bit(R10BIO_WriteError, &r10_bio->state);
512 else {
513 r10_bio->devs[slot].bio = NULL;
514 to_put = bio;
515 dec_rdev = 1;
516 }
517 } else
518 set_bit(R10BIO_WriteError, &r10_bio->state);
475b0321 519 }
749c55e9 520 } else {
1da177e4
LT
521 /*
522 * Set R10BIO_Uptodate in our master bio, so that
523 * we will return a good error code for to the higher
524 * levels even if IO on some other mirrored buffer fails.
525 *
526 * The 'master' represents the composite IO operation to
527 * user-side. So if something waits for IO, then it will
528 * wait for the 'master' bio.
529 */
749c55e9
N
530 sector_t first_bad;
531 int bad_sectors;
532
3056e3ae
AL
533 /*
534 * Do not set R10BIO_Uptodate if the current device is
535 * rebuilding or Faulty. This is because we cannot use
536 * such device for properly reading the data back (we could
537 * potentially use it, if the current write would have felt
538 * before rdev->recovery_offset, but for simplicity we don't
539 * check this here.
540 */
541 if (test_bit(In_sync, &rdev->flags) &&
542 !test_bit(Faulty, &rdev->flags))
543 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 544
749c55e9 545 /* Maybe we can clear some bad blocks. */
475b0321 546 if (is_badblock(rdev,
749c55e9
N
547 r10_bio->devs[slot].addr,
548 r10_bio->sectors,
579ed34f 549 &first_bad, &bad_sectors) && !discard_error) {
749c55e9 550 bio_put(bio);
475b0321
N
551 if (repl)
552 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553 else
554 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
555 dec_rdev = 0;
556 set_bit(R10BIO_MadeGood, &r10_bio->state);
557 }
558 }
559
1da177e4
LT
560 /*
561 *
562 * Let's see if all mirrored write operations have finished
563 * already.
564 */
19d5f834 565 one_write_done(r10_bio);
749c55e9 566 if (dec_rdev)
884162df 567 rdev_dec_pending(rdev, conf->mddev);
1919cbb2
N
568 if (to_put)
569 bio_put(to_put);
1da177e4
LT
570}
571
1da177e4
LT
572/*
573 * RAID10 layout manager
25985edc 574 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
575 * parameters: near_copies and far_copies.
576 * near_copies * far_copies must be <= raid_disks.
577 * Normally one of these will be 1.
578 * If both are 1, we get raid0.
579 * If near_copies == raid_disks, we get raid1.
580 *
25985edc 581 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
582 * first chunk, followed by near_copies copies of the next chunk and
583 * so on.
584 * If far_copies > 1, then after 1/far_copies of the array has been assigned
585 * as described above, we start again with a device offset of near_copies.
586 * So we effectively have another copy of the whole array further down all
587 * the drives, but with blocks on different drives.
588 * With this layout, and block is never stored twice on the one device.
589 *
590 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 591 * on each device that it is on.
1da177e4
LT
592 *
593 * raid10_find_virt does the reverse mapping, from a device and a
594 * sector offset to a virtual address
595 */
596
f8c9e74f 597static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
598{
599 int n,f;
600 sector_t sector;
601 sector_t chunk;
602 sector_t stripe;
603 int dev;
1da177e4 604 int slot = 0;
9a3152ab
JB
605 int last_far_set_start, last_far_set_size;
606
607 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608 last_far_set_start *= geo->far_set_size;
609
610 last_far_set_size = geo->far_set_size;
611 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
612
613 /* now calculate first sector/dev */
5cf00fcd
N
614 chunk = r10bio->sector >> geo->chunk_shift;
615 sector = r10bio->sector & geo->chunk_mask;
1da177e4 616
5cf00fcd 617 chunk *= geo->near_copies;
1da177e4 618 stripe = chunk;
5cf00fcd
N
619 dev = sector_div(stripe, geo->raid_disks);
620 if (geo->far_offset)
621 stripe *= geo->far_copies;
1da177e4 622
5cf00fcd 623 sector += stripe << geo->chunk_shift;
1da177e4
LT
624
625 /* and calculate all the others */
5cf00fcd 626 for (n = 0; n < geo->near_copies; n++) {
1da177e4 627 int d = dev;
475901af 628 int set;
1da177e4 629 sector_t s = sector;
1da177e4 630 r10bio->devs[slot].devnum = d;
4c0ca26b 631 r10bio->devs[slot].addr = s;
1da177e4
LT
632 slot++;
633
5cf00fcd 634 for (f = 1; f < geo->far_copies; f++) {
475901af 635 set = d / geo->far_set_size;
5cf00fcd 636 d += geo->near_copies;
475901af 637
9a3152ab
JB
638 if ((geo->raid_disks % geo->far_set_size) &&
639 (d > last_far_set_start)) {
640 d -= last_far_set_start;
641 d %= last_far_set_size;
642 d += last_far_set_start;
643 } else {
644 d %= geo->far_set_size;
645 d += geo->far_set_size * set;
646 }
5cf00fcd 647 s += geo->stride;
1da177e4
LT
648 r10bio->devs[slot].devnum = d;
649 r10bio->devs[slot].addr = s;
650 slot++;
651 }
652 dev++;
5cf00fcd 653 if (dev >= geo->raid_disks) {
1da177e4 654 dev = 0;
5cf00fcd 655 sector += (geo->chunk_mask + 1);
1da177e4
LT
656 }
657 }
f8c9e74f
N
658}
659
660static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661{
662 struct geom *geo = &conf->geo;
663
664 if (conf->reshape_progress != MaxSector &&
665 ((r10bio->sector >= conf->reshape_progress) !=
666 conf->mddev->reshape_backwards)) {
667 set_bit(R10BIO_Previous, &r10bio->state);
668 geo = &conf->prev;
669 } else
670 clear_bit(R10BIO_Previous, &r10bio->state);
671
672 __raid10_find_phys(geo, r10bio);
1da177e4
LT
673}
674
e879a879 675static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
676{
677 sector_t offset, chunk, vchunk;
f8c9e74f
N
678 /* Never use conf->prev as this is only called during resync
679 * or recovery, so reshape isn't happening
680 */
5cf00fcd 681 struct geom *geo = &conf->geo;
475901af
JB
682 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683 int far_set_size = geo->far_set_size;
9a3152ab
JB
684 int last_far_set_start;
685
686 if (geo->raid_disks % geo->far_set_size) {
687 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688 last_far_set_start *= geo->far_set_size;
689
690 if (dev >= last_far_set_start) {
691 far_set_size = geo->far_set_size;
692 far_set_size += (geo->raid_disks % geo->far_set_size);
693 far_set_start = last_far_set_start;
694 }
695 }
1da177e4 696
5cf00fcd
N
697 offset = sector & geo->chunk_mask;
698 if (geo->far_offset) {
c93983bf 699 int fc;
5cf00fcd
N
700 chunk = sector >> geo->chunk_shift;
701 fc = sector_div(chunk, geo->far_copies);
702 dev -= fc * geo->near_copies;
475901af
JB
703 if (dev < far_set_start)
704 dev += far_set_size;
c93983bf 705 } else {
5cf00fcd
N
706 while (sector >= geo->stride) {
707 sector -= geo->stride;
475901af
JB
708 if (dev < (geo->near_copies + far_set_start))
709 dev += far_set_size - geo->near_copies;
c93983bf 710 else
5cf00fcd 711 dev -= geo->near_copies;
c93983bf 712 }
5cf00fcd 713 chunk = sector >> geo->chunk_shift;
c93983bf 714 }
5cf00fcd
N
715 vchunk = chunk * geo->raid_disks + dev;
716 sector_div(vchunk, geo->near_copies);
717 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
718}
719
1da177e4
LT
720/*
721 * This routine returns the disk from which the requested read should
722 * be done. There is a per-array 'next expected sequential IO' sector
723 * number - if this matches on the next IO then we use the last disk.
724 * There is also a per-disk 'last know head position' sector that is
725 * maintained from IRQ contexts, both the normal and the resync IO
726 * completion handlers update this position correctly. If there is no
727 * perfect sequential match then we pick the disk whose head is closest.
728 *
729 * If there are 2 mirrors in the same 2 devices, performance degrades
730 * because position is mirror, not device based.
731 *
732 * The rdev for the device selected will have nr_pending incremented.
733 */
734
735/*
736 * FIXME: possibly should rethink readbalancing and do it differently
737 * depending on near_copies / far_copies geometry.
738 */
96c3fd1f
N
739static struct md_rdev *read_balance(struct r10conf *conf,
740 struct r10bio *r10_bio,
741 int *max_sectors)
1da177e4 742{
af3a2cd6 743 const sector_t this_sector = r10_bio->sector;
56d99121 744 int disk, slot;
856e08e2
N
745 int sectors = r10_bio->sectors;
746 int best_good_sectors;
56d99121 747 sector_t new_distance, best_dist;
3bbae04b 748 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
749 int do_balance;
750 int best_slot;
5cf00fcd 751 struct geom *geo = &conf->geo;
1da177e4
LT
752
753 raid10_find_phys(conf, r10_bio);
754 rcu_read_lock();
56d99121 755 best_slot = -1;
abbf098e 756 best_rdev = NULL;
56d99121 757 best_dist = MaxSector;
856e08e2 758 best_good_sectors = 0;
56d99121 759 do_balance = 1;
8d3ca83d 760 clear_bit(R10BIO_FailFast, &r10_bio->state);
1da177e4
LT
761 /*
762 * Check if we can balance. We can balance on the whole
6cce3b23
N
763 * device if no resync is going on (recovery is ok), or below
764 * the resync window. We take the first readable disk when
765 * above the resync window.
1da177e4 766 */
d4098c72
GJ
767 if ((conf->mddev->recovery_cp < MaxSector
768 && (this_sector + sectors >= conf->next_resync)) ||
769 (mddev_is_clustered(conf->mddev) &&
770 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771 this_sector + sectors)))
56d99121 772 do_balance = 0;
1da177e4 773
56d99121 774 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
775 sector_t first_bad;
776 int bad_sectors;
777 sector_t dev_sector;
778
56d99121
N
779 if (r10_bio->devs[slot].bio == IO_BLOCKED)
780 continue;
1da177e4 781 disk = r10_bio->devs[slot].devnum;
abbf098e
N
782 rdev = rcu_dereference(conf->mirrors[disk].replacement);
783 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 786 if (rdev == NULL ||
8ae12666 787 test_bit(Faulty, &rdev->flags))
abbf098e
N
788 continue;
789 if (!test_bit(In_sync, &rdev->flags) &&
790 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
791 continue;
792
856e08e2
N
793 dev_sector = r10_bio->devs[slot].addr;
794 if (is_badblock(rdev, dev_sector, sectors,
795 &first_bad, &bad_sectors)) {
796 if (best_dist < MaxSector)
797 /* Already have a better slot */
798 continue;
799 if (first_bad <= dev_sector) {
800 /* Cannot read here. If this is the
801 * 'primary' device, then we must not read
802 * beyond 'bad_sectors' from another device.
803 */
804 bad_sectors -= (dev_sector - first_bad);
805 if (!do_balance && sectors > bad_sectors)
806 sectors = bad_sectors;
807 if (best_good_sectors > sectors)
808 best_good_sectors = sectors;
809 } else {
810 sector_t good_sectors =
811 first_bad - dev_sector;
812 if (good_sectors > best_good_sectors) {
813 best_good_sectors = good_sectors;
814 best_slot = slot;
abbf098e 815 best_rdev = rdev;
856e08e2
N
816 }
817 if (!do_balance)
818 /* Must read from here */
819 break;
820 }
821 continue;
822 } else
823 best_good_sectors = sectors;
824
56d99121
N
825 if (!do_balance)
826 break;
1da177e4 827
8d3ca83d
N
828 if (best_slot >= 0)
829 /* At least 2 disks to choose from so failfast is OK */
830 set_bit(R10BIO_FailFast, &r10_bio->state);
22dfdf52
N
831 /* This optimisation is debatable, and completely destroys
832 * sequential read speed for 'far copies' arrays. So only
833 * keep it for 'near' arrays, and review those later.
834 */
5cf00fcd 835 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
8d3ca83d 836 new_distance = 0;
8ed3a195
KS
837
838 /* for far > 1 always use the lowest address */
8d3ca83d 839 else if (geo->far_copies > 1)
56d99121 840 new_distance = r10_bio->devs[slot].addr;
8ed3a195 841 else
56d99121
N
842 new_distance = abs(r10_bio->devs[slot].addr -
843 conf->mirrors[disk].head_position);
844 if (new_distance < best_dist) {
845 best_dist = new_distance;
846 best_slot = slot;
abbf098e 847 best_rdev = rdev;
1da177e4
LT
848 }
849 }
abbf098e 850 if (slot >= conf->copies) {
56d99121 851 slot = best_slot;
abbf098e
N
852 rdev = best_rdev;
853 }
1da177e4 854
56d99121 855 if (slot >= 0) {
56d99121 856 atomic_inc(&rdev->nr_pending);
56d99121
N
857 r10_bio->read_slot = slot;
858 } else
96c3fd1f 859 rdev = NULL;
1da177e4 860 rcu_read_unlock();
856e08e2 861 *max_sectors = best_good_sectors;
1da177e4 862
96c3fd1f 863 return rdev;
1da177e4
LT
864}
865
5c675f83 866static int raid10_congested(struct mddev *mddev, int bits)
0d129228 867{
e879a879 868 struct r10conf *conf = mddev->private;
0d129228
N
869 int i, ret = 0;
870
4452226e 871 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
872 conf->pending_count >= max_queued_requests)
873 return 1;
874
0d129228 875 rcu_read_lock();
f8c9e74f
N
876 for (i = 0;
877 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878 && ret == 0;
879 i++) {
3cb03002 880 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 881 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 882 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 883
dc3b17cc 884 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228
N
885 }
886 }
887 rcu_read_unlock();
888 return ret;
889}
890
e879a879 891static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
892{
893 /* Any writes that have been queued but are awaiting
894 * bitmap updates get flushed here.
a35e63ef 895 */
a35e63ef
N
896 spin_lock_irq(&conf->device_lock);
897
898 if (conf->pending_bio_list.head) {
18022a1b 899 struct blk_plug plug;
a35e63ef 900 struct bio *bio;
18022a1b 901
a35e63ef 902 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 903 conf->pending_count = 0;
a35e63ef 904 spin_unlock_irq(&conf->device_lock);
474beb57
N
905
906 /*
907 * As this is called in a wait_event() loop (see freeze_array),
908 * current->state might be TASK_UNINTERRUPTIBLE which will
909 * cause a warning when we prepare to wait again. As it is
910 * rare that this path is taken, it is perfectly safe to force
911 * us to go around the wait_event() loop again, so the warning
912 * is a false-positive. Silence the warning by resetting
913 * thread state
914 */
915 __set_current_state(TASK_RUNNING);
916
18022a1b 917 blk_start_plug(&plug);
a35e63ef
N
918 /* flush any pending bitmap writes to disk
919 * before proceeding w/ I/O */
920 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 921 wake_up(&conf->wait_barrier);
a35e63ef
N
922
923 while (bio) { /* submit pending writes */
924 struct bio *next = bio->bi_next;
74d46992 925 struct md_rdev *rdev = (void*)bio->bi_disk;
a35e63ef 926 bio->bi_next = NULL;
74d46992 927 bio_set_dev(bio, rdev->bdev);
a9ae93c8 928 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 929 bio_io_error(bio);
a9ae93c8 930 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 931 !blk_queue_discard(bio->bi_disk->queue)))
532a2a3f 932 /* Just ignore it */
4246a0b6 933 bio_endio(bio);
532a2a3f
SL
934 else
935 generic_make_request(bio);
a35e63ef
N
936 bio = next;
937 }
18022a1b 938 blk_finish_plug(&plug);
a35e63ef
N
939 } else
940 spin_unlock_irq(&conf->device_lock);
a35e63ef 941}
7eaceacc 942
0a27ec96
N
943/* Barriers....
944 * Sometimes we need to suspend IO while we do something else,
945 * either some resync/recovery, or reconfigure the array.
946 * To do this we raise a 'barrier'.
947 * The 'barrier' is a counter that can be raised multiple times
948 * to count how many activities are happening which preclude
949 * normal IO.
950 * We can only raise the barrier if there is no pending IO.
951 * i.e. if nr_pending == 0.
952 * We choose only to raise the barrier if no-one is waiting for the
953 * barrier to go down. This means that as soon as an IO request
954 * is ready, no other operations which require a barrier will start
955 * until the IO request has had a chance.
956 *
957 * So: regular IO calls 'wait_barrier'. When that returns there
958 * is no backgroup IO happening, It must arrange to call
959 * allow_barrier when it has finished its IO.
960 * backgroup IO calls must call raise_barrier. Once that returns
961 * there is no normal IO happeing. It must arrange to call
962 * lower_barrier when the particular background IO completes.
1da177e4 963 */
1da177e4 964
e879a879 965static void raise_barrier(struct r10conf *conf, int force)
1da177e4 966{
6cce3b23 967 BUG_ON(force && !conf->barrier);
1da177e4 968 spin_lock_irq(&conf->resync_lock);
0a27ec96 969
6cce3b23
N
970 /* Wait until no block IO is waiting (unless 'force') */
971 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 972 conf->resync_lock);
0a27ec96
N
973
974 /* block any new IO from starting */
975 conf->barrier++;
976
c3b328ac 977 /* Now wait for all pending IO to complete */
0a27ec96 978 wait_event_lock_irq(conf->wait_barrier,
0e5313e2 979 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
eed8c02e 980 conf->resync_lock);
0a27ec96
N
981
982 spin_unlock_irq(&conf->resync_lock);
983}
984
e879a879 985static void lower_barrier(struct r10conf *conf)
0a27ec96
N
986{
987 unsigned long flags;
988 spin_lock_irqsave(&conf->resync_lock, flags);
989 conf->barrier--;
990 spin_unlock_irqrestore(&conf->resync_lock, flags);
991 wake_up(&conf->wait_barrier);
992}
993
e879a879 994static void wait_barrier(struct r10conf *conf)
0a27ec96
N
995{
996 spin_lock_irq(&conf->resync_lock);
997 if (conf->barrier) {
998 conf->nr_waiting++;
d6b42dcb
N
999 /* Wait for the barrier to drop.
1000 * However if there are already pending
1001 * requests (preventing the barrier from
1002 * rising completely), and the
1003 * pre-process bio queue isn't empty,
1004 * then don't wait, as we need to empty
1005 * that queue to get the nr_pending
1006 * count down.
1007 */
578b54ad 1008 raid10_log(conf->mddev, "wait barrier");
d6b42dcb
N
1009 wait_event_lock_irq(conf->wait_barrier,
1010 !conf->barrier ||
0e5313e2 1011 (atomic_read(&conf->nr_pending) &&
d6b42dcb 1012 current->bio_list &&
f5fe1b51
N
1013 (!bio_list_empty(&current->bio_list[0]) ||
1014 !bio_list_empty(&current->bio_list[1]))),
eed8c02e 1015 conf->resync_lock);
0a27ec96 1016 conf->nr_waiting--;
0e5313e2
TM
1017 if (!conf->nr_waiting)
1018 wake_up(&conf->wait_barrier);
1da177e4 1019 }
0e5313e2 1020 atomic_inc(&conf->nr_pending);
1da177e4
LT
1021 spin_unlock_irq(&conf->resync_lock);
1022}
1023
e879a879 1024static void allow_barrier(struct r10conf *conf)
0a27ec96 1025{
0e5313e2
TM
1026 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027 (conf->array_freeze_pending))
1028 wake_up(&conf->wait_barrier);
0a27ec96
N
1029}
1030
e2d59925 1031static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1032{
1033 /* stop syncio and normal IO and wait for everything to
f188593e 1034 * go quiet.
4443ae10 1035 * We increment barrier and nr_waiting, and then
e2d59925 1036 * wait until nr_pending match nr_queued+extra
1c830532
N
1037 * This is called in the context of one normal IO request
1038 * that has failed. Thus any sync request that might be pending
1039 * will be blocked by nr_pending, and we need to wait for
1040 * pending IO requests to complete or be queued for re-try.
e2d59925 1041 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1042 * must match the number of pending IOs (nr_pending) before
1043 * we continue.
4443ae10
N
1044 */
1045 spin_lock_irq(&conf->resync_lock);
0e5313e2 1046 conf->array_freeze_pending++;
4443ae10
N
1047 conf->barrier++;
1048 conf->nr_waiting++;
eed8c02e 1049 wait_event_lock_irq_cmd(conf->wait_barrier,
0e5313e2 1050 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
eed8c02e
LC
1051 conf->resync_lock,
1052 flush_pending_writes(conf));
c3b328ac 1053
0e5313e2 1054 conf->array_freeze_pending--;
4443ae10
N
1055 spin_unlock_irq(&conf->resync_lock);
1056}
1057
e879a879 1058static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1059{
1060 /* reverse the effect of the freeze */
1061 spin_lock_irq(&conf->resync_lock);
1062 conf->barrier--;
1063 conf->nr_waiting--;
1064 wake_up(&conf->wait_barrier);
1065 spin_unlock_irq(&conf->resync_lock);
1066}
1067
f8c9e74f
N
1068static sector_t choose_data_offset(struct r10bio *r10_bio,
1069 struct md_rdev *rdev)
1070{
1071 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072 test_bit(R10BIO_Previous, &r10_bio->state))
1073 return rdev->data_offset;
1074 else
1075 return rdev->new_data_offset;
1076}
1077
57c67df4
N
1078struct raid10_plug_cb {
1079 struct blk_plug_cb cb;
1080 struct bio_list pending;
1081 int pending_cnt;
1082};
1083
1084static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085{
1086 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087 cb);
1088 struct mddev *mddev = plug->cb.data;
1089 struct r10conf *conf = mddev->private;
1090 struct bio *bio;
1091
874807a8 1092 if (from_schedule || current->bio_list) {
57c67df4
N
1093 spin_lock_irq(&conf->device_lock);
1094 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 conf->pending_count += plug->pending_cnt;
1096 spin_unlock_irq(&conf->device_lock);
ee0b0244 1097 wake_up(&conf->wait_barrier);
57c67df4
N
1098 md_wakeup_thread(mddev->thread);
1099 kfree(plug);
1100 return;
1101 }
1102
1103 /* we aren't scheduling, so we can do the write-out directly. */
1104 bio = bio_list_get(&plug->pending);
1105 bitmap_unplug(mddev->bitmap);
1106 wake_up(&conf->wait_barrier);
1107
1108 while (bio) { /* submit pending writes */
1109 struct bio *next = bio->bi_next;
74d46992 1110 struct md_rdev *rdev = (void*)bio->bi_disk;
57c67df4 1111 bio->bi_next = NULL;
74d46992 1112 bio_set_dev(bio, rdev->bdev);
a9ae93c8 1113 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 1114 bio_io_error(bio);
a9ae93c8 1115 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 1116 !blk_queue_discard(bio->bi_disk->queue)))
32f9f570 1117 /* Just ignore it */
4246a0b6 1118 bio_endio(bio);
32f9f570
SL
1119 else
1120 generic_make_request(bio);
57c67df4
N
1121 bio = next;
1122 }
1123 kfree(plug);
1124}
1125
bb5f1ed7
RL
1126static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127 struct r10bio *r10_bio)
1da177e4 1128{
e879a879 1129 struct r10conf *conf = mddev->private;
1da177e4 1130 struct bio *read_bio;
bb5f1ed7
RL
1131 const int op = bio_op(bio);
1132 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
bb5f1ed7
RL
1133 int max_sectors;
1134 sector_t sectors;
1135 struct md_rdev *rdev;
545250f2
N
1136 char b[BDEVNAME_SIZE];
1137 int slot = r10_bio->read_slot;
1138 struct md_rdev *err_rdev = NULL;
1139 gfp_t gfp = GFP_NOIO;
bb5f1ed7 1140
545250f2
N
1141 if (r10_bio->devs[slot].rdev) {
1142 /*
1143 * This is an error retry, but we cannot
1144 * safely dereference the rdev in the r10_bio,
1145 * we must use the one in conf.
1146 * If it has already been disconnected (unlikely)
1147 * we lose the device name in error messages.
1148 */
1149 int disk;
1150 /*
1151 * As we are blocking raid10, it is a little safer to
1152 * use __GFP_HIGH.
1153 */
1154 gfp = GFP_NOIO | __GFP_HIGH;
1155
1156 rcu_read_lock();
1157 disk = r10_bio->devs[slot].devnum;
1158 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159 if (err_rdev)
1160 bdevname(err_rdev->bdev, b);
1161 else {
1162 strcpy(b, "???");
1163 /* This never gets dereferenced */
1164 err_rdev = r10_bio->devs[slot].rdev;
1165 }
1166 rcu_read_unlock();
1167 }
bb5f1ed7
RL
1168 /*
1169 * Register the new request and wait if the reconstruction
1170 * thread has put up a bar for new requests.
1171 * Continue immediately if no resync is active currently.
1172 */
1173 wait_barrier(conf);
1174
fc9977dd 1175 sectors = r10_bio->sectors;
bb5f1ed7
RL
1176 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177 bio->bi_iter.bi_sector < conf->reshape_progress &&
1178 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179 /*
1180 * IO spans the reshape position. Need to wait for reshape to
1181 * pass
1182 */
1183 raid10_log(conf->mddev, "wait reshape");
1184 allow_barrier(conf);
1185 wait_event(conf->wait_barrier,
1186 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187 conf->reshape_progress >= bio->bi_iter.bi_sector +
1188 sectors);
1189 wait_barrier(conf);
1190 }
1191
bb5f1ed7
RL
1192 rdev = read_balance(conf, r10_bio, &max_sectors);
1193 if (!rdev) {
545250f2
N
1194 if (err_rdev) {
1195 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196 mdname(mddev), b,
1197 (unsigned long long)r10_bio->sector);
1198 }
bb5f1ed7
RL
1199 raid_end_bio_io(r10_bio);
1200 return;
1201 }
545250f2
N
1202 if (err_rdev)
1203 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204 mdname(mddev),
1205 bdevname(rdev->bdev, b),
1206 (unsigned long long)r10_bio->sector);
fc9977dd
N
1207 if (max_sectors < bio_sectors(bio)) {
1208 struct bio *split = bio_split(bio, max_sectors,
afeee514 1209 gfp, &conf->bio_split);
fc9977dd
N
1210 bio_chain(split, bio);
1211 generic_make_request(bio);
1212 bio = split;
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = max_sectors;
1215 }
bb5f1ed7
RL
1216 slot = r10_bio->read_slot;
1217
afeee514 1218 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
bb5f1ed7
RL
1219
1220 r10_bio->devs[slot].bio = read_bio;
1221 r10_bio->devs[slot].rdev = rdev;
1222
1223 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1224 choose_data_offset(r10_bio, rdev);
74d46992 1225 bio_set_dev(read_bio, rdev->bdev);
bb5f1ed7
RL
1226 read_bio->bi_end_io = raid10_end_read_request;
1227 bio_set_op_attrs(read_bio, op, do_sync);
1228 if (test_bit(FailFast, &rdev->flags) &&
1229 test_bit(R10BIO_FailFast, &r10_bio->state))
1230 read_bio->bi_opf |= MD_FAILFAST;
1231 read_bio->bi_private = r10_bio;
1232
1233 if (mddev->gendisk)
74d46992 1234 trace_block_bio_remap(read_bio->bi_disk->queue,
bb5f1ed7
RL
1235 read_bio, disk_devt(mddev->gendisk),
1236 r10_bio->sector);
fc9977dd 1237 generic_make_request(read_bio);
bb5f1ed7
RL
1238 return;
1239}
1240
27f26a0f
GJ
1241static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1242 struct bio *bio, bool replacement,
fc9977dd 1243 int n_copy)
bb5f1ed7 1244{
796a5cf0 1245 const int op = bio_op(bio);
1eff9d32
JA
1246 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1247 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
6cce3b23 1248 unsigned long flags;
57c67df4
N
1249 struct blk_plug_cb *cb;
1250 struct raid10_plug_cb *plug = NULL;
27f26a0f
GJ
1251 struct r10conf *conf = mddev->private;
1252 struct md_rdev *rdev;
1253 int devnum = r10_bio->devs[n_copy].devnum;
1254 struct bio *mbio;
1255
1256 if (replacement) {
1257 rdev = conf->mirrors[devnum].replacement;
1258 if (rdev == NULL) {
1259 /* Replacement just got moved to main 'rdev' */
1260 smp_mb();
1261 rdev = conf->mirrors[devnum].rdev;
1262 }
1263 } else
1264 rdev = conf->mirrors[devnum].rdev;
1265
afeee514 1266 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
27f26a0f
GJ
1267 if (replacement)
1268 r10_bio->devs[n_copy].repl_bio = mbio;
1269 else
1270 r10_bio->devs[n_copy].bio = mbio;
1271
1272 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1273 choose_data_offset(r10_bio, rdev));
74d46992 1274 bio_set_dev(mbio, rdev->bdev);
27f26a0f
GJ
1275 mbio->bi_end_io = raid10_end_write_request;
1276 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1277 if (!replacement && test_bit(FailFast,
1278 &conf->mirrors[devnum].rdev->flags)
1279 && enough(conf, devnum))
1280 mbio->bi_opf |= MD_FAILFAST;
1281 mbio->bi_private = r10_bio;
1282
1283 if (conf->mddev->gendisk)
74d46992 1284 trace_block_bio_remap(mbio->bi_disk->queue,
27f26a0f
GJ
1285 mbio, disk_devt(conf->mddev->gendisk),
1286 r10_bio->sector);
1287 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1288 mbio->bi_disk = (void *)rdev;
27f26a0f
GJ
1289
1290 atomic_inc(&r10_bio->remaining);
1291
1292 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1293 if (cb)
1294 plug = container_of(cb, struct raid10_plug_cb, cb);
1295 else
1296 plug = NULL;
27f26a0f
GJ
1297 if (plug) {
1298 bio_list_add(&plug->pending, mbio);
1299 plug->pending_cnt++;
1300 } else {
23b245c0 1301 spin_lock_irqsave(&conf->device_lock, flags);
27f26a0f
GJ
1302 bio_list_add(&conf->pending_bio_list, mbio);
1303 conf->pending_count++;
23b245c0 1304 spin_unlock_irqrestore(&conf->device_lock, flags);
27f26a0f 1305 md_wakeup_thread(mddev->thread);
23b245c0 1306 }
27f26a0f
GJ
1307}
1308
1309static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1310 struct r10bio *r10_bio)
1311{
1312 struct r10conf *conf = mddev->private;
1313 int i;
1314 struct md_rdev *blocked_rdev;
bb5f1ed7 1315 sector_t sectors;
d4432c23 1316 int max_sectors;
1da177e4 1317
cb8a7a7e
GJ
1318 if ((mddev_is_clustered(mddev) &&
1319 md_cluster_ops->area_resyncing(mddev, WRITE,
1320 bio->bi_iter.bi_sector,
1321 bio_end_sector(bio)))) {
1322 DEFINE_WAIT(w);
1323 for (;;) {
1324 prepare_to_wait(&conf->wait_barrier,
1325 &w, TASK_IDLE);
1326 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1327 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1328 break;
1329 schedule();
1330 }
1331 finish_wait(&conf->wait_barrier, &w);
1332 }
1333
cc13b1d1
N
1334 /*
1335 * Register the new request and wait if the reconstruction
1336 * thread has put up a bar for new requests.
1337 * Continue immediately if no resync is active currently.
1338 */
1339 wait_barrier(conf);
1340
fc9977dd 1341 sectors = r10_bio->sectors;
3ea7daa5 1342 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1343 bio->bi_iter.bi_sector < conf->reshape_progress &&
1344 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
bb5f1ed7
RL
1345 /*
1346 * IO spans the reshape position. Need to wait for reshape to
1347 * pass
3ea7daa5 1348 */
578b54ad 1349 raid10_log(conf->mddev, "wait reshape");
3ea7daa5
N
1350 allow_barrier(conf);
1351 wait_event(conf->wait_barrier,
4f024f37
KO
1352 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1353 conf->reshape_progress >= bio->bi_iter.bi_sector +
1354 sectors);
3ea7daa5
N
1355 wait_barrier(conf);
1356 }
bb5f1ed7 1357
3ea7daa5 1358 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3ea7daa5 1359 (mddev->reshape_backwards
4f024f37
KO
1360 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1361 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1362 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1363 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1364 /* Need to update reshape_position in metadata */
1365 mddev->reshape_position = conf->reshape_progress;
2953079c
SL
1366 set_mask_bits(&mddev->sb_flags, 0,
1367 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
3ea7daa5 1368 md_wakeup_thread(mddev->thread);
578b54ad 1369 raid10_log(conf->mddev, "wait reshape metadata");
3ea7daa5 1370 wait_event(mddev->sb_wait,
2953079c 1371 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
3ea7daa5
N
1372
1373 conf->reshape_safe = mddev->reshape_position;
1374 }
1375
34db0cd6
N
1376 if (conf->pending_count >= max_queued_requests) {
1377 md_wakeup_thread(mddev->thread);
578b54ad 1378 raid10_log(mddev, "wait queued");
34db0cd6
N
1379 wait_event(conf->wait_barrier,
1380 conf->pending_count < max_queued_requests);
1381 }
6bfe0b49 1382 /* first select target devices under rcu_lock and
1da177e4
LT
1383 * inc refcount on their rdev. Record them by setting
1384 * bios[x] to bio
d4432c23
N
1385 * If there are known/acknowledged bad blocks on any device
1386 * on which we have seen a write error, we want to avoid
1387 * writing to those blocks. This potentially requires several
1388 * writes to write around the bad blocks. Each set of writes
fd16f2e8 1389 * gets its own r10_bio with a set of bios attached.
1da177e4 1390 */
c3b328ac 1391
69335ef3 1392 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1393 raid10_find_phys(conf, r10_bio);
d4432c23 1394retry_write:
cb6969e8 1395 blocked_rdev = NULL;
1da177e4 1396 rcu_read_lock();
d4432c23
N
1397 max_sectors = r10_bio->sectors;
1398
1da177e4
LT
1399 for (i = 0; i < conf->copies; i++) {
1400 int d = r10_bio->devs[i].devnum;
3cb03002 1401 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1402 struct md_rdev *rrdev = rcu_dereference(
1403 conf->mirrors[d].replacement);
4ca40c2c
N
1404 if (rdev == rrdev)
1405 rrdev = NULL;
6bfe0b49
DW
1406 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407 atomic_inc(&rdev->nr_pending);
1408 blocked_rdev = rdev;
1409 break;
1410 }
475b0321
N
1411 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1412 atomic_inc(&rrdev->nr_pending);
1413 blocked_rdev = rrdev;
1414 break;
1415 }
8ae12666 1416 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1417 rdev = NULL;
8ae12666 1418 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1419 rrdev = NULL;
1420
d4432c23 1421 r10_bio->devs[i].bio = NULL;
475b0321 1422 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1423
1424 if (!rdev && !rrdev) {
6cce3b23 1425 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1426 continue;
1427 }
e7c0c3fa 1428 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1429 sector_t first_bad;
1430 sector_t dev_sector = r10_bio->devs[i].addr;
1431 int bad_sectors;
1432 int is_bad;
1433
bb5f1ed7 1434 is_bad = is_badblock(rdev, dev_sector, max_sectors,
d4432c23
N
1435 &first_bad, &bad_sectors);
1436 if (is_bad < 0) {
1437 /* Mustn't write here until the bad block
1438 * is acknowledged
1439 */
1440 atomic_inc(&rdev->nr_pending);
1441 set_bit(BlockedBadBlocks, &rdev->flags);
1442 blocked_rdev = rdev;
1443 break;
1444 }
1445 if (is_bad && first_bad <= dev_sector) {
1446 /* Cannot write here at all */
1447 bad_sectors -= (dev_sector - first_bad);
1448 if (bad_sectors < max_sectors)
1449 /* Mustn't write more than bad_sectors
1450 * to other devices yet
1451 */
1452 max_sectors = bad_sectors;
1453 /* We don't set R10BIO_Degraded as that
1454 * only applies if the disk is missing,
1455 * so it might be re-added, and we want to
1456 * know to recover this chunk.
1457 * In this case the device is here, and the
1458 * fact that this chunk is not in-sync is
1459 * recorded in the bad block log.
1460 */
1461 continue;
1462 }
1463 if (is_bad) {
1464 int good_sectors = first_bad - dev_sector;
1465 if (good_sectors < max_sectors)
1466 max_sectors = good_sectors;
1467 }
6cce3b23 1468 }
e7c0c3fa
N
1469 if (rdev) {
1470 r10_bio->devs[i].bio = bio;
1471 atomic_inc(&rdev->nr_pending);
1472 }
475b0321
N
1473 if (rrdev) {
1474 r10_bio->devs[i].repl_bio = bio;
1475 atomic_inc(&rrdev->nr_pending);
1476 }
1da177e4
LT
1477 }
1478 rcu_read_unlock();
1479
6bfe0b49
DW
1480 if (unlikely(blocked_rdev)) {
1481 /* Have to wait for this device to get unblocked, then retry */
1482 int j;
1483 int d;
1484
475b0321 1485 for (j = 0; j < i; j++) {
6bfe0b49
DW
1486 if (r10_bio->devs[j].bio) {
1487 d = r10_bio->devs[j].devnum;
1488 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1489 }
475b0321 1490 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1491 struct md_rdev *rdev;
475b0321 1492 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1493 rdev = conf->mirrors[d].replacement;
1494 if (!rdev) {
1495 /* Race with remove_disk */
1496 smp_mb();
1497 rdev = conf->mirrors[d].rdev;
1498 }
1499 rdev_dec_pending(rdev, mddev);
475b0321
N
1500 }
1501 }
6bfe0b49 1502 allow_barrier(conf);
578b54ad 1503 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49
DW
1504 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1505 wait_barrier(conf);
1506 goto retry_write;
1507 }
1508
6b6c8110 1509 if (max_sectors < r10_bio->sectors)
d4432c23 1510 r10_bio->sectors = max_sectors;
fc9977dd
N
1511
1512 if (r10_bio->sectors < bio_sectors(bio)) {
1513 struct bio *split = bio_split(bio, r10_bio->sectors,
afeee514 1514 GFP_NOIO, &conf->bio_split);
fc9977dd
N
1515 bio_chain(split, bio);
1516 generic_make_request(bio);
1517 bio = split;
1518 r10_bio->master_bio = bio;
d4432c23 1519 }
d4432c23 1520
4e78064f 1521 atomic_set(&r10_bio->remaining, 1);
d4432c23 1522 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1523
1da177e4 1524 for (i = 0; i < conf->copies; i++) {
27f26a0f 1525 if (r10_bio->devs[i].bio)
fc9977dd 1526 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
27f26a0f 1527 if (r10_bio->devs[i].repl_bio)
fc9977dd 1528 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
d4432c23 1529 }
079fa166 1530 one_write_done(r10_bio);
20d0189b
KO
1531}
1532
fc9977dd 1533static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
bb5f1ed7
RL
1534{
1535 struct r10conf *conf = mddev->private;
1536 struct r10bio *r10_bio;
1537
afeee514 1538 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
bb5f1ed7
RL
1539
1540 r10_bio->master_bio = bio;
fc9977dd 1541 r10_bio->sectors = sectors;
bb5f1ed7
RL
1542
1543 r10_bio->mddev = mddev;
1544 r10_bio->sector = bio->bi_iter.bi_sector;
1545 r10_bio->state = 0;
545250f2 1546 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
bb5f1ed7
RL
1547
1548 if (bio_data_dir(bio) == READ)
1549 raid10_read_request(mddev, bio, r10_bio);
1550 else
1551 raid10_write_request(mddev, bio, r10_bio);
1552}
1553
cc27b0c7 1554static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1555{
1556 struct r10conf *conf = mddev->private;
1557 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1558 int chunk_sects = chunk_mask + 1;
fc9977dd 1559 int sectors = bio_sectors(bio);
20d0189b 1560
1eff9d32 1561 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
20d0189b 1562 md_flush_request(mddev, bio);
cc27b0c7 1563 return true;
20d0189b
KO
1564 }
1565
cc27b0c7
N
1566 if (!md_write_start(mddev, bio))
1567 return false;
1568
fc9977dd
N
1569 /*
1570 * If this request crosses a chunk boundary, we need to split
1571 * it.
1572 */
1573 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1574 sectors > chunk_sects
1575 && (conf->geo.near_copies < conf->geo.raid_disks
1576 || conf->prev.near_copies <
1577 conf->prev.raid_disks)))
1578 sectors = chunk_sects -
1579 (bio->bi_iter.bi_sector &
1580 (chunk_sects - 1));
1581 __make_request(mddev, bio, sectors);
079fa166
N
1582
1583 /* In case raid10d snuck in to freeze_array */
1584 wake_up(&conf->wait_barrier);
cc27b0c7 1585 return true;
1da177e4
LT
1586}
1587
849674e4 1588static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1589{
e879a879 1590 struct r10conf *conf = mddev->private;
1da177e4
LT
1591 int i;
1592
5cf00fcd 1593 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1594 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1595 if (conf->geo.near_copies > 1)
1596 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597 if (conf->geo.far_copies > 1) {
1598 if (conf->geo.far_offset)
1599 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1600 else
5cf00fcd 1601 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1602 if (conf->geo.far_set_size != conf->geo.raid_disks)
1603 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1604 }
5cf00fcd
N
1605 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1607 rcu_read_lock();
1608 for (i = 0; i < conf->geo.raid_disks; i++) {
1609 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1610 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1611 }
1612 rcu_read_unlock();
1da177e4
LT
1613 seq_printf(seq, "]");
1614}
1615
700c7213
N
1616/* check if there are enough drives for
1617 * every block to appear on atleast one.
1618 * Don't consider the device numbered 'ignore'
1619 * as we might be about to remove it.
1620 */
635f6416 1621static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1622{
1623 int first = 0;
725d6e57 1624 int has_enough = 0;
635f6416
N
1625 int disks, ncopies;
1626 if (previous) {
1627 disks = conf->prev.raid_disks;
1628 ncopies = conf->prev.near_copies;
1629 } else {
1630 disks = conf->geo.raid_disks;
1631 ncopies = conf->geo.near_copies;
1632 }
700c7213 1633
725d6e57 1634 rcu_read_lock();
700c7213
N
1635 do {
1636 int n = conf->copies;
1637 int cnt = 0;
80b48124 1638 int this = first;
700c7213 1639 while (n--) {
725d6e57
N
1640 struct md_rdev *rdev;
1641 if (this != ignore &&
1642 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1643 test_bit(In_sync, &rdev->flags))
700c7213 1644 cnt++;
635f6416 1645 this = (this+1) % disks;
700c7213
N
1646 }
1647 if (cnt == 0)
725d6e57 1648 goto out;
635f6416 1649 first = (first + ncopies) % disks;
700c7213 1650 } while (first != 0);
725d6e57
N
1651 has_enough = 1;
1652out:
1653 rcu_read_unlock();
1654 return has_enough;
700c7213
N
1655}
1656
f8c9e74f
N
1657static int enough(struct r10conf *conf, int ignore)
1658{
635f6416
N
1659 /* when calling 'enough', both 'prev' and 'geo' must
1660 * be stable.
1661 * This is ensured if ->reconfig_mutex or ->device_lock
1662 * is held.
1663 */
1664 return _enough(conf, 0, ignore) &&
1665 _enough(conf, 1, ignore);
f8c9e74f
N
1666}
1667
849674e4 1668static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1669{
1670 char b[BDEVNAME_SIZE];
e879a879 1671 struct r10conf *conf = mddev->private;
635f6416 1672 unsigned long flags;
1da177e4
LT
1673
1674 /*
1675 * If it is not operational, then we have already marked it as dead
1676 * else if it is the last working disks, ignore the error, let the
1677 * next level up know.
1678 * else mark the drive as failed
1679 */
635f6416 1680 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1681 if (test_bit(In_sync, &rdev->flags)
635f6416 1682 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1683 /*
1684 * Don't fail the drive, just return an IO error.
1da177e4 1685 */
635f6416 1686 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1687 return;
635f6416 1688 }
2446dba0 1689 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1690 mddev->degraded++;
2446dba0
N
1691 /*
1692 * If recovery is running, make sure it aborts.
1693 */
1694 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1695 set_bit(Blocked, &rdev->flags);
b2d444d7 1696 set_bit(Faulty, &rdev->flags);
2953079c
SL
1697 set_mask_bits(&mddev->sb_flags, 0,
1698 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
635f6416 1699 spin_unlock_irqrestore(&conf->device_lock, flags);
08464e09
N
1700 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1701 "md/raid10:%s: Operation continuing on %d devices.\n",
1702 mdname(mddev), bdevname(rdev->bdev, b),
1703 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1704}
1705
e879a879 1706static void print_conf(struct r10conf *conf)
1da177e4
LT
1707{
1708 int i;
4056ca51 1709 struct md_rdev *rdev;
1da177e4 1710
08464e09 1711 pr_debug("RAID10 conf printout:\n");
1da177e4 1712 if (!conf) {
08464e09 1713 pr_debug("(!conf)\n");
1da177e4
LT
1714 return;
1715 }
08464e09
N
1716 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1717 conf->geo.raid_disks);
1da177e4 1718
4056ca51
N
1719 /* This is only called with ->reconfix_mutex held, so
1720 * rcu protection of rdev is not needed */
5cf00fcd 1721 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1722 char b[BDEVNAME_SIZE];
4056ca51
N
1723 rdev = conf->mirrors[i].rdev;
1724 if (rdev)
08464e09
N
1725 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1726 i, !test_bit(In_sync, &rdev->flags),
1727 !test_bit(Faulty, &rdev->flags),
1728 bdevname(rdev->bdev,b));
1da177e4
LT
1729 }
1730}
1731
e879a879 1732static void close_sync(struct r10conf *conf)
1da177e4 1733{
0a27ec96
N
1734 wait_barrier(conf);
1735 allow_barrier(conf);
1da177e4 1736
afeee514 1737 mempool_exit(&conf->r10buf_pool);
1da177e4
LT
1738}
1739
fd01b88c 1740static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1741{
1742 int i;
e879a879 1743 struct r10conf *conf = mddev->private;
dc280d98 1744 struct raid10_info *tmp;
6b965620
N
1745 int count = 0;
1746 unsigned long flags;
1da177e4
LT
1747
1748 /*
1749 * Find all non-in_sync disks within the RAID10 configuration
1750 * and mark them in_sync
1751 */
5cf00fcd 1752 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1753 tmp = conf->mirrors + i;
4ca40c2c
N
1754 if (tmp->replacement
1755 && tmp->replacement->recovery_offset == MaxSector
1756 && !test_bit(Faulty, &tmp->replacement->flags)
1757 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1758 /* Replacement has just become active */
1759 if (!tmp->rdev
1760 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1761 count++;
1762 if (tmp->rdev) {
1763 /* Replaced device not technically faulty,
1764 * but we need to be sure it gets removed
1765 * and never re-added.
1766 */
1767 set_bit(Faulty, &tmp->rdev->flags);
1768 sysfs_notify_dirent_safe(
1769 tmp->rdev->sysfs_state);
1770 }
1771 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1772 } else if (tmp->rdev
61e4947c 1773 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1774 && !test_bit(Faulty, &tmp->rdev->flags)
1775 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1776 count++;
2863b9eb 1777 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1778 }
1779 }
6b965620
N
1780 spin_lock_irqsave(&conf->device_lock, flags);
1781 mddev->degraded -= count;
1782 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1783
1784 print_conf(conf);
6b965620 1785 return count;
1da177e4
LT
1786}
1787
fd01b88c 1788static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1789{
e879a879 1790 struct r10conf *conf = mddev->private;
199050ea 1791 int err = -EEXIST;
1da177e4 1792 int mirror;
6c2fce2e 1793 int first = 0;
5cf00fcd 1794 int last = conf->geo.raid_disks - 1;
1da177e4
LT
1795
1796 if (mddev->recovery_cp < MaxSector)
1797 /* only hot-add to in-sync arrays, as recovery is
1798 * very different from resync
1799 */
199050ea 1800 return -EBUSY;
635f6416 1801 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1802 return -EINVAL;
1da177e4 1803
1501efad
DW
1804 if (md_integrity_add_rdev(rdev, mddev))
1805 return -ENXIO;
1806
a53a6c85 1807 if (rdev->raid_disk >= 0)
6c2fce2e 1808 first = last = rdev->raid_disk;
1da177e4 1809
2c4193df 1810 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1811 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1812 mirror = rdev->saved_raid_disk;
1813 else
6c2fce2e 1814 mirror = first;
2bb77736 1815 for ( ; mirror <= last ; mirror++) {
dc280d98 1816 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1817 if (p->recovery_disabled == mddev->recovery_disabled)
1818 continue;
b7044d41
N
1819 if (p->rdev) {
1820 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1821 p->replacement != NULL)
1822 continue;
1823 clear_bit(In_sync, &rdev->flags);
1824 set_bit(Replacement, &rdev->flags);
1825 rdev->raid_disk = mirror;
1826 err = 0;
9092c02d
JB
1827 if (mddev->gendisk)
1828 disk_stack_limits(mddev->gendisk, rdev->bdev,
1829 rdev->data_offset << 9);
b7044d41
N
1830 conf->fullsync = 1;
1831 rcu_assign_pointer(p->replacement, rdev);
1832 break;
1833 }
1da177e4 1834
9092c02d
JB
1835 if (mddev->gendisk)
1836 disk_stack_limits(mddev->gendisk, rdev->bdev,
1837 rdev->data_offset << 9);
1da177e4 1838
2bb77736 1839 p->head_position = 0;
d890fa2b 1840 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1841 rdev->raid_disk = mirror;
1842 err = 0;
1843 if (rdev->saved_raid_disk != mirror)
1844 conf->fullsync = 1;
1845 rcu_assign_pointer(p->rdev, rdev);
1846 break;
1847 }
ed30be07 1848 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 1849 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
532a2a3f 1850
1da177e4 1851 print_conf(conf);
199050ea 1852 return err;
1da177e4
LT
1853}
1854
b8321b68 1855static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1856{
e879a879 1857 struct r10conf *conf = mddev->private;
1da177e4 1858 int err = 0;
b8321b68 1859 int number = rdev->raid_disk;
c8ab903e 1860 struct md_rdev **rdevp;
dc280d98 1861 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1862
1863 print_conf(conf);
c8ab903e
N
1864 if (rdev == p->rdev)
1865 rdevp = &p->rdev;
1866 else if (rdev == p->replacement)
1867 rdevp = &p->replacement;
1868 else
1869 return 0;
1870
1871 if (test_bit(In_sync, &rdev->flags) ||
1872 atomic_read(&rdev->nr_pending)) {
1873 err = -EBUSY;
1874 goto abort;
1875 }
d787be40 1876 /* Only remove non-faulty devices if recovery
c8ab903e
N
1877 * is not possible.
1878 */
1879 if (!test_bit(Faulty, &rdev->flags) &&
1880 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1881 (!p->replacement || p->replacement == rdev) &&
63aced61 1882 number < conf->geo.raid_disks &&
c8ab903e
N
1883 enough(conf, -1)) {
1884 err = -EBUSY;
1885 goto abort;
1da177e4 1886 }
c8ab903e 1887 *rdevp = NULL;
d787be40
N
1888 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1889 synchronize_rcu();
1890 if (atomic_read(&rdev->nr_pending)) {
1891 /* lost the race, try later */
1892 err = -EBUSY;
1893 *rdevp = rdev;
1894 goto abort;
1895 }
1896 }
1897 if (p->replacement) {
4ca40c2c
N
1898 /* We must have just cleared 'rdev' */
1899 p->rdev = p->replacement;
1900 clear_bit(Replacement, &p->replacement->flags);
1901 smp_mb(); /* Make sure other CPUs may see both as identical
1902 * but will never see neither -- if they are careful.
1903 */
1904 p->replacement = NULL;
e5bc9c3c 1905 }
4ca40c2c 1906
e5bc9c3c 1907 clear_bit(WantReplacement, &rdev->flags);
c8ab903e
N
1908 err = md_integrity_register(mddev);
1909
1da177e4
LT
1910abort:
1911
1912 print_conf(conf);
1913 return err;
1914}
1915
81fa1520 1916static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1da177e4 1917{
e879a879 1918 struct r10conf *conf = r10_bio->mddev->private;
0eb3ff12 1919
4e4cbee9 1920 if (!bio->bi_status)
0eb3ff12 1921 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1922 else
1923 /* The write handler will notice the lack of
1924 * R10BIO_Uptodate and record any errors etc
1925 */
4dbcdc75
N
1926 atomic_add(r10_bio->sectors,
1927 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1928
1929 /* for reconstruct, we always reschedule after a read.
1930 * for resync, only after all reads
1931 */
73d5c38a 1932 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1933 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1934 atomic_dec_and_test(&r10_bio->remaining)) {
1935 /* we have read all the blocks,
1936 * do the comparison in process context in raid10d
1937 */
1938 reschedule_retry(r10_bio);
1939 }
1da177e4
LT
1940}
1941
81fa1520
ML
1942static void end_sync_read(struct bio *bio)
1943{
f0250618 1944 struct r10bio *r10_bio = get_resync_r10bio(bio);
81fa1520
ML
1945 struct r10conf *conf = r10_bio->mddev->private;
1946 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1947
1948 __end_sync_read(r10_bio, bio, d);
1949}
1950
1951static void end_reshape_read(struct bio *bio)
1952{
f0250618 1953 /* reshape read bio isn't allocated from r10buf_pool */
81fa1520
ML
1954 struct r10bio *r10_bio = bio->bi_private;
1955
1956 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1957}
1958
9f2c9d12 1959static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1960{
fd01b88c 1961 struct mddev *mddev = r10_bio->mddev;
dfc70645 1962
1da177e4
LT
1963 while (atomic_dec_and_test(&r10_bio->remaining)) {
1964 if (r10_bio->master_bio == NULL) {
1965 /* the primary of several recovery bios */
73d5c38a 1966 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1967 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1968 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1969 reschedule_retry(r10_bio);
1970 else
1971 put_buf(r10_bio);
73d5c38a 1972 md_done_sync(mddev, s, 1);
1da177e4
LT
1973 break;
1974 } else {
9f2c9d12 1975 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1976 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1978 reschedule_retry(r10_bio);
1979 else
1980 put_buf(r10_bio);
1da177e4
LT
1981 r10_bio = r10_bio2;
1982 }
1983 }
1da177e4
LT
1984}
1985
4246a0b6 1986static void end_sync_write(struct bio *bio)
5e570289 1987{
f0250618 1988 struct r10bio *r10_bio = get_resync_r10bio(bio);
fd01b88c 1989 struct mddev *mddev = r10_bio->mddev;
e879a879 1990 struct r10conf *conf = mddev->private;
5e570289
N
1991 int d;
1992 sector_t first_bad;
1993 int bad_sectors;
1994 int slot;
9ad1aefc 1995 int repl;
4ca40c2c 1996 struct md_rdev *rdev = NULL;
5e570289 1997
9ad1aefc
N
1998 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1999 if (repl)
2000 rdev = conf->mirrors[d].replacement;
547414d1 2001 else
9ad1aefc 2002 rdev = conf->mirrors[d].rdev;
5e570289 2003
4e4cbee9 2004 if (bio->bi_status) {
9ad1aefc
N
2005 if (repl)
2006 md_error(mddev, rdev);
2007 else {
2008 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2009 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2010 set_bit(MD_RECOVERY_NEEDED,
2011 &rdev->mddev->recovery);
9ad1aefc
N
2012 set_bit(R10BIO_WriteError, &r10_bio->state);
2013 }
2014 } else if (is_badblock(rdev,
5e570289
N
2015 r10_bio->devs[slot].addr,
2016 r10_bio->sectors,
2017 &first_bad, &bad_sectors))
2018 set_bit(R10BIO_MadeGood, &r10_bio->state);
2019
9ad1aefc 2020 rdev_dec_pending(rdev, mddev);
5e570289
N
2021
2022 end_sync_request(r10_bio);
2023}
2024
1da177e4
LT
2025/*
2026 * Note: sync and recover and handled very differently for raid10
2027 * This code is for resync.
2028 * For resync, we read through virtual addresses and read all blocks.
2029 * If there is any error, we schedule a write. The lowest numbered
2030 * drive is authoritative.
2031 * However requests come for physical address, so we need to map.
2032 * For every physical address there are raid_disks/copies virtual addresses,
2033 * which is always are least one, but is not necessarly an integer.
2034 * This means that a physical address can span multiple chunks, so we may
2035 * have to submit multiple io requests for a single sync request.
2036 */
2037/*
2038 * We check if all blocks are in-sync and only write to blocks that
2039 * aren't in sync
2040 */
9f2c9d12 2041static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2042{
e879a879 2043 struct r10conf *conf = mddev->private;
1da177e4
LT
2044 int i, first;
2045 struct bio *tbio, *fbio;
f4380a91 2046 int vcnt;
cdb76be3 2047 struct page **tpages, **fpages;
1da177e4
LT
2048
2049 atomic_set(&r10_bio->remaining, 1);
2050
2051 /* find the first device with a block */
2052 for (i=0; i<conf->copies; i++)
4e4cbee9 2053 if (!r10_bio->devs[i].bio->bi_status)
1da177e4
LT
2054 break;
2055
2056 if (i == conf->copies)
2057 goto done;
2058
2059 first = i;
2060 fbio = r10_bio->devs[i].bio;
cc578588
AP
2061 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2062 fbio->bi_iter.bi_idx = 0;
cdb76be3 2063 fpages = get_resync_pages(fbio)->pages;
1da177e4 2064
f4380a91 2065 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2066 /* now find blocks with errors */
0eb3ff12
N
2067 for (i=0 ; i < conf->copies ; i++) {
2068 int j, d;
8d3ca83d 2069 struct md_rdev *rdev;
f0250618 2070 struct resync_pages *rp;
1da177e4 2071
1da177e4 2072 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2073
2074 if (tbio->bi_end_io != end_sync_read)
2075 continue;
2076 if (i == first)
1da177e4 2077 continue;
cdb76be3
ML
2078
2079 tpages = get_resync_pages(tbio)->pages;
8d3ca83d
N
2080 d = r10_bio->devs[i].devnum;
2081 rdev = conf->mirrors[d].rdev;
4e4cbee9 2082 if (!r10_bio->devs[i].bio->bi_status) {
0eb3ff12
N
2083 /* We know that the bi_io_vec layout is the same for
2084 * both 'first' and 'i', so we just compare them.
2085 * All vec entries are PAGE_SIZE;
2086 */
7bb23c49
N
2087 int sectors = r10_bio->sectors;
2088 for (j = 0; j < vcnt; j++) {
2089 int len = PAGE_SIZE;
2090 if (sectors < (len / 512))
2091 len = sectors * 512;
cdb76be3
ML
2092 if (memcmp(page_address(fpages[j]),
2093 page_address(tpages[j]),
7bb23c49 2094 len))
0eb3ff12 2095 break;
7bb23c49
N
2096 sectors -= len/512;
2097 }
0eb3ff12
N
2098 if (j == vcnt)
2099 continue;
7f7583d4 2100 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2101 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102 /* Don't fix anything. */
2103 continue;
8d3ca83d
N
2104 } else if (test_bit(FailFast, &rdev->flags)) {
2105 /* Just give up on this device */
2106 md_error(rdev->mddev, rdev);
2107 continue;
0eb3ff12 2108 }
f84ee364
N
2109 /* Ok, we need to write this bio, either to correct an
2110 * inconsistency or to correct an unreadable block.
1da177e4
LT
2111 * First we need to fixup bv_offset, bv_len and
2112 * bi_vecs, as the read request might have corrupted these
2113 */
f0250618 2114 rp = get_resync_pages(tbio);
8be185f2
KO
2115 bio_reset(tbio);
2116
fb0eb5df
ML
2117 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2118
f0250618
ML
2119 rp->raid_bio = r10_bio;
2120 tbio->bi_private = rp;
4f024f37 2121 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4 2122 tbio->bi_end_io = end_sync_write;
796a5cf0 2123 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1da177e4 2124
c31df25f
KO
2125 bio_copy_data(tbio, fbio);
2126
1da177e4
LT
2127 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2128 atomic_inc(&r10_bio->remaining);
aa8b57aa 2129 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2130
1919cbb2
N
2131 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2132 tbio->bi_opf |= MD_FAILFAST;
4f024f37 2133 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
74d46992 2134 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
1da177e4
LT
2135 generic_make_request(tbio);
2136 }
2137
9ad1aefc
N
2138 /* Now write out to any replacement devices
2139 * that are active
2140 */
2141 for (i = 0; i < conf->copies; i++) {
c31df25f 2142 int d;
9ad1aefc
N
2143
2144 tbio = r10_bio->devs[i].repl_bio;
2145 if (!tbio || !tbio->bi_end_io)
2146 continue;
2147 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148 && r10_bio->devs[i].bio != fbio)
c31df25f 2149 bio_copy_data(tbio, fbio);
9ad1aefc
N
2150 d = r10_bio->devs[i].devnum;
2151 atomic_inc(&r10_bio->remaining);
2152 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2153 bio_sectors(tbio));
9ad1aefc
N
2154 generic_make_request(tbio);
2155 }
2156
1da177e4
LT
2157done:
2158 if (atomic_dec_and_test(&r10_bio->remaining)) {
2159 md_done_sync(mddev, r10_bio->sectors, 1);
2160 put_buf(r10_bio);
2161 }
2162}
2163
2164/*
2165 * Now for the recovery code.
2166 * Recovery happens across physical sectors.
2167 * We recover all non-is_sync drives by finding the virtual address of
2168 * each, and then choose a working drive that also has that virt address.
2169 * There is a separate r10_bio for each non-in_sync drive.
2170 * Only the first two slots are in use. The first for reading,
2171 * The second for writing.
2172 *
2173 */
9f2c9d12 2174static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2175{
2176 /* We got a read error during recovery.
2177 * We repeat the read in smaller page-sized sections.
2178 * If a read succeeds, write it to the new device or record
2179 * a bad block if we cannot.
2180 * If a read fails, record a bad block on both old and
2181 * new devices.
2182 */
fd01b88c 2183 struct mddev *mddev = r10_bio->mddev;
e879a879 2184 struct r10conf *conf = mddev->private;
5e570289
N
2185 struct bio *bio = r10_bio->devs[0].bio;
2186 sector_t sect = 0;
2187 int sectors = r10_bio->sectors;
2188 int idx = 0;
2189 int dr = r10_bio->devs[0].devnum;
2190 int dw = r10_bio->devs[1].devnum;
cdb76be3 2191 struct page **pages = get_resync_pages(bio)->pages;
5e570289
N
2192
2193 while (sectors) {
2194 int s = sectors;
3cb03002 2195 struct md_rdev *rdev;
5e570289
N
2196 sector_t addr;
2197 int ok;
2198
2199 if (s > (PAGE_SIZE>>9))
2200 s = PAGE_SIZE >> 9;
2201
2202 rdev = conf->mirrors[dr].rdev;
2203 addr = r10_bio->devs[0].addr + sect,
2204 ok = sync_page_io(rdev,
2205 addr,
2206 s << 9,
cdb76be3 2207 pages[idx],
796a5cf0 2208 REQ_OP_READ, 0, false);
5e570289
N
2209 if (ok) {
2210 rdev = conf->mirrors[dw].rdev;
2211 addr = r10_bio->devs[1].addr + sect;
2212 ok = sync_page_io(rdev,
2213 addr,
2214 s << 9,
cdb76be3 2215 pages[idx],
796a5cf0 2216 REQ_OP_WRITE, 0, false);
b7044d41 2217 if (!ok) {
5e570289 2218 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2219 if (!test_and_set_bit(WantReplacement,
2220 &rdev->flags))
2221 set_bit(MD_RECOVERY_NEEDED,
2222 &rdev->mddev->recovery);
2223 }
5e570289
N
2224 }
2225 if (!ok) {
2226 /* We don't worry if we cannot set a bad block -
2227 * it really is bad so there is no loss in not
2228 * recording it yet
2229 */
2230 rdev_set_badblocks(rdev, addr, s, 0);
2231
2232 if (rdev != conf->mirrors[dw].rdev) {
2233 /* need bad block on destination too */
3cb03002 2234 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2235 addr = r10_bio->devs[1].addr + sect;
2236 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2237 if (!ok) {
2238 /* just abort the recovery */
08464e09
N
2239 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2240 mdname(mddev));
5e570289
N
2241
2242 conf->mirrors[dw].recovery_disabled
2243 = mddev->recovery_disabled;
2244 set_bit(MD_RECOVERY_INTR,
2245 &mddev->recovery);
2246 break;
2247 }
2248 }
2249 }
2250
2251 sectors -= s;
2252 sect += s;
2253 idx++;
2254 }
2255}
1da177e4 2256
9f2c9d12 2257static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2258{
e879a879 2259 struct r10conf *conf = mddev->private;
c65060ad 2260 int d;
24afd80d 2261 struct bio *wbio, *wbio2;
1da177e4 2262
5e570289
N
2263 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2264 fix_recovery_read_error(r10_bio);
2265 end_sync_request(r10_bio);
2266 return;
2267 }
2268
c65060ad
NK
2269 /*
2270 * share the pages with the first bio
1da177e4
LT
2271 * and submit the write request
2272 */
1da177e4 2273 d = r10_bio->devs[1].devnum;
24afd80d
N
2274 wbio = r10_bio->devs[1].bio;
2275 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2276 /* Need to test wbio2->bi_end_io before we call
2277 * generic_make_request as if the former is NULL,
2278 * the latter is free to free wbio2.
2279 */
2280 if (wbio2 && !wbio2->bi_end_io)
2281 wbio2 = NULL;
24afd80d
N
2282 if (wbio->bi_end_io) {
2283 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2284 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2285 generic_make_request(wbio);
2286 }
0eb25bb0 2287 if (wbio2) {
24afd80d
N
2288 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2289 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2290 bio_sectors(wbio2));
24afd80d
N
2291 generic_make_request(wbio2);
2292 }
1da177e4
LT
2293}
2294
1e50915f
RB
2295/*
2296 * Used by fix_read_error() to decay the per rdev read_errors.
2297 * We halve the read error count for every hour that has elapsed
2298 * since the last recorded read error.
2299 *
2300 */
fd01b88c 2301static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2302{
0e3ef49e 2303 long cur_time_mon;
1e50915f
RB
2304 unsigned long hours_since_last;
2305 unsigned int read_errors = atomic_read(&rdev->read_errors);
2306
0e3ef49e 2307 cur_time_mon = ktime_get_seconds();
1e50915f 2308
0e3ef49e 2309 if (rdev->last_read_error == 0) {
1e50915f
RB
2310 /* first time we've seen a read error */
2311 rdev->last_read_error = cur_time_mon;
2312 return;
2313 }
2314
0e3ef49e
AB
2315 hours_since_last = (long)(cur_time_mon -
2316 rdev->last_read_error) / 3600;
1e50915f
RB
2317
2318 rdev->last_read_error = cur_time_mon;
2319
2320 /*
2321 * if hours_since_last is > the number of bits in read_errors
2322 * just set read errors to 0. We do this to avoid
2323 * overflowing the shift of read_errors by hours_since_last.
2324 */
2325 if (hours_since_last >= 8 * sizeof(read_errors))
2326 atomic_set(&rdev->read_errors, 0);
2327 else
2328 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2329}
2330
3cb03002 2331static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2332 int sectors, struct page *page, int rw)
2333{
2334 sector_t first_bad;
2335 int bad_sectors;
2336
2337 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2338 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2339 return -1;
796a5cf0 2340 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
58c54fcc
N
2341 /* success */
2342 return 1;
b7044d41 2343 if (rw == WRITE) {
58c54fcc 2344 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2345 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2346 set_bit(MD_RECOVERY_NEEDED,
2347 &rdev->mddev->recovery);
2348 }
58c54fcc
N
2349 /* need to record an error - either for the block or the device */
2350 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2351 md_error(rdev->mddev, rdev);
2352 return 0;
2353}
2354
1da177e4
LT
2355/*
2356 * This is a kernel thread which:
2357 *
2358 * 1. Retries failed read operations on working mirrors.
2359 * 2. Updates the raid superblock when problems encounter.
6814d536 2360 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2361 */
2362
e879a879 2363static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2364{
2365 int sect = 0; /* Offset from r10_bio->sector */
2366 int sectors = r10_bio->sectors;
13db16d7 2367 struct md_rdev *rdev;
1e50915f 2368 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2369 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2370
7c4e06ff
N
2371 /* still own a reference to this rdev, so it cannot
2372 * have been cleared recently.
2373 */
2374 rdev = conf->mirrors[d].rdev;
1e50915f 2375
7c4e06ff
N
2376 if (test_bit(Faulty, &rdev->flags))
2377 /* drive has already been failed, just ignore any
2378 more fix_read_error() attempts */
2379 return;
1e50915f 2380
7c4e06ff
N
2381 check_decay_read_errors(mddev, rdev);
2382 atomic_inc(&rdev->read_errors);
2383 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2384 char b[BDEVNAME_SIZE];
2385 bdevname(rdev->bdev, b);
1e50915f 2386
08464e09
N
2387 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2388 mdname(mddev), b,
2389 atomic_read(&rdev->read_errors), max_read_errors);
2390 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2391 mdname(mddev), b);
d683c8e0 2392 md_error(mddev, rdev);
fae8cc5e 2393 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2394 return;
1e50915f 2395 }
1e50915f 2396
6814d536
N
2397 while(sectors) {
2398 int s = sectors;
2399 int sl = r10_bio->read_slot;
2400 int success = 0;
2401 int start;
2402
2403 if (s > (PAGE_SIZE>>9))
2404 s = PAGE_SIZE >> 9;
2405
2406 rcu_read_lock();
2407 do {
8dbed5ce
N
2408 sector_t first_bad;
2409 int bad_sectors;
2410
0544a21d 2411 d = r10_bio->devs[sl].devnum;
6814d536
N
2412 rdev = rcu_dereference(conf->mirrors[d].rdev);
2413 if (rdev &&
8dbed5ce 2414 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2415 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2416 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2417 &first_bad, &bad_sectors) == 0) {
6814d536
N
2418 atomic_inc(&rdev->nr_pending);
2419 rcu_read_unlock();
2b193363 2420 success = sync_page_io(rdev,
6814d536 2421 r10_bio->devs[sl].addr +
ccebd4c4 2422 sect,
6814d536 2423 s<<9,
796a5cf0
MC
2424 conf->tmppage,
2425 REQ_OP_READ, 0, false);
6814d536
N
2426 rdev_dec_pending(rdev, mddev);
2427 rcu_read_lock();
2428 if (success)
2429 break;
2430 }
2431 sl++;
2432 if (sl == conf->copies)
2433 sl = 0;
2434 } while (!success && sl != r10_bio->read_slot);
2435 rcu_read_unlock();
2436
2437 if (!success) {
58c54fcc
N
2438 /* Cannot read from anywhere, just mark the block
2439 * as bad on the first device to discourage future
2440 * reads.
2441 */
6814d536 2442 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2443 rdev = conf->mirrors[dn].rdev;
2444
2445 if (!rdev_set_badblocks(
2446 rdev,
2447 r10_bio->devs[r10_bio->read_slot].addr
2448 + sect,
fae8cc5e 2449 s, 0)) {
58c54fcc 2450 md_error(mddev, rdev);
fae8cc5e
N
2451 r10_bio->devs[r10_bio->read_slot].bio
2452 = IO_BLOCKED;
2453 }
6814d536
N
2454 break;
2455 }
2456
2457 start = sl;
2458 /* write it back and re-read */
2459 rcu_read_lock();
2460 while (sl != r10_bio->read_slot) {
67b8dc4b 2461 char b[BDEVNAME_SIZE];
0544a21d 2462
6814d536
N
2463 if (sl==0)
2464 sl = conf->copies;
2465 sl--;
2466 d = r10_bio->devs[sl].devnum;
2467 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2468 if (!rdev ||
f5b67ae8 2469 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2470 !test_bit(In_sync, &rdev->flags))
2471 continue;
2472
2473 atomic_inc(&rdev->nr_pending);
2474 rcu_read_unlock();
58c54fcc
N
2475 if (r10_sync_page_io(rdev,
2476 r10_bio->devs[sl].addr +
2477 sect,
055d3747 2478 s, conf->tmppage, WRITE)
1294b9c9
N
2479 == 0) {
2480 /* Well, this device is dead */
08464e09
N
2481 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2482 mdname(mddev), s,
2483 (unsigned long long)(
2484 sect +
2485 choose_data_offset(r10_bio,
2486 rdev)),
2487 bdevname(rdev->bdev, b));
2488 pr_notice("md/raid10:%s: %s: failing drive\n",
2489 mdname(mddev),
2490 bdevname(rdev->bdev, b));
6814d536 2491 }
1294b9c9
N
2492 rdev_dec_pending(rdev, mddev);
2493 rcu_read_lock();
6814d536
N
2494 }
2495 sl = start;
2496 while (sl != r10_bio->read_slot) {
1294b9c9 2497 char b[BDEVNAME_SIZE];
0544a21d 2498
6814d536
N
2499 if (sl==0)
2500 sl = conf->copies;
2501 sl--;
2502 d = r10_bio->devs[sl].devnum;
2503 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2504 if (!rdev ||
f5b67ae8 2505 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2506 !test_bit(In_sync, &rdev->flags))
2507 continue;
6814d536 2508
1294b9c9
N
2509 atomic_inc(&rdev->nr_pending);
2510 rcu_read_unlock();
58c54fcc
N
2511 switch (r10_sync_page_io(rdev,
2512 r10_bio->devs[sl].addr +
2513 sect,
055d3747 2514 s, conf->tmppage,
58c54fcc
N
2515 READ)) {
2516 case 0:
1294b9c9 2517 /* Well, this device is dead */
08464e09 2518 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
1294b9c9
N
2519 mdname(mddev), s,
2520 (unsigned long long)(
f8c9e74f
N
2521 sect +
2522 choose_data_offset(r10_bio, rdev)),
1294b9c9 2523 bdevname(rdev->bdev, b));
08464e09 2524 pr_notice("md/raid10:%s: %s: failing drive\n",
1294b9c9
N
2525 mdname(mddev),
2526 bdevname(rdev->bdev, b));
58c54fcc
N
2527 break;
2528 case 1:
08464e09 2529 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
1294b9c9
N
2530 mdname(mddev), s,
2531 (unsigned long long)(
f8c9e74f
N
2532 sect +
2533 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2534 bdevname(rdev->bdev, b));
2535 atomic_add(s, &rdev->corrected_errors);
6814d536 2536 }
1294b9c9
N
2537
2538 rdev_dec_pending(rdev, mddev);
2539 rcu_read_lock();
6814d536
N
2540 }
2541 rcu_read_unlock();
2542
2543 sectors -= s;
2544 sect += s;
2545 }
2546}
2547
9f2c9d12 2548static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2549{
2550 struct bio *bio = r10_bio->master_bio;
fd01b88c 2551 struct mddev *mddev = r10_bio->mddev;
e879a879 2552 struct r10conf *conf = mddev->private;
3cb03002 2553 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2554 /* bio has the data to be written to slot 'i' where
2555 * we just recently had a write error.
2556 * We repeatedly clone the bio and trim down to one block,
2557 * then try the write. Where the write fails we record
2558 * a bad block.
2559 * It is conceivable that the bio doesn't exactly align with
2560 * blocks. We must handle this.
2561 *
2562 * We currently own a reference to the rdev.
2563 */
2564
2565 int block_sectors;
2566 sector_t sector;
2567 int sectors;
2568 int sect_to_write = r10_bio->sectors;
2569 int ok = 1;
2570
2571 if (rdev->badblocks.shift < 0)
2572 return 0;
2573
f04ebb0b
N
2574 block_sectors = roundup(1 << rdev->badblocks.shift,
2575 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2576 sector = r10_bio->sector;
2577 sectors = ((r10_bio->sector + block_sectors)
2578 & ~(sector_t)(block_sectors - 1))
2579 - sector;
2580
2581 while (sect_to_write) {
2582 struct bio *wbio;
27028626 2583 sector_t wsector;
bd870a16
N
2584 if (sectors > sect_to_write)
2585 sectors = sect_to_write;
2586 /* Write at 'sector' for 'sectors' */
afeee514 2587 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
4f024f37 2588 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2589 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2590 wbio->bi_iter.bi_sector = wsector +
2591 choose_data_offset(r10_bio, rdev);
74d46992 2592 bio_set_dev(wbio, rdev->bdev);
796a5cf0 2593 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2594
2595 if (submit_bio_wait(wbio) < 0)
bd870a16 2596 /* Failure! */
27028626 2597 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2598 sectors, 0)
2599 && ok;
2600
2601 bio_put(wbio);
2602 sect_to_write -= sectors;
2603 sector += sectors;
2604 sectors = block_sectors;
2605 }
2606 return ok;
2607}
2608
9f2c9d12 2609static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2610{
2611 int slot = r10_bio->read_slot;
560f8e55 2612 struct bio *bio;
e879a879 2613 struct r10conf *conf = mddev->private;
abbf098e 2614 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2615
2616 /* we got a read error. Maybe the drive is bad. Maybe just
2617 * the block and we can fix it.
2618 * We freeze all other IO, and try reading the block from
2619 * other devices. When we find one, we re-write
2620 * and check it that fixes the read error.
2621 * This is all done synchronously while the array is
2622 * frozen.
2623 */
fae8cc5e 2624 bio = r10_bio->devs[slot].bio;
fae8cc5e
N
2625 bio_put(bio);
2626 r10_bio->devs[slot].bio = NULL;
2627
8d3ca83d
N
2628 if (mddev->ro)
2629 r10_bio->devs[slot].bio = IO_BLOCKED;
2630 else if (!test_bit(FailFast, &rdev->flags)) {
e2d59925 2631 freeze_array(conf, 1);
560f8e55
N
2632 fix_read_error(conf, mddev, r10_bio);
2633 unfreeze_array(conf);
fae8cc5e 2634 } else
8d3ca83d 2635 md_error(mddev, rdev);
fae8cc5e 2636
abbf098e 2637 rdev_dec_pending(rdev, mddev);
545250f2
N
2638 allow_barrier(conf);
2639 r10_bio->state = 0;
2640 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
560f8e55
N
2641}
2642
e879a879 2643static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2644{
2645 /* Some sort of write request has finished and it
2646 * succeeded in writing where we thought there was a
2647 * bad block. So forget the bad block.
1a0b7cd8
N
2648 * Or possibly if failed and we need to record
2649 * a bad block.
749c55e9
N
2650 */
2651 int m;
3cb03002 2652 struct md_rdev *rdev;
749c55e9
N
2653
2654 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2655 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2656 for (m = 0; m < conf->copies; m++) {
2657 int dev = r10_bio->devs[m].devnum;
2658 rdev = conf->mirrors[dev].rdev;
01a69cab
YY
2659 if (r10_bio->devs[m].bio == NULL ||
2660 r10_bio->devs[m].bio->bi_end_io == NULL)
1a0b7cd8 2661 continue;
4e4cbee9 2662 if (!r10_bio->devs[m].bio->bi_status) {
749c55e9
N
2663 rdev_clear_badblocks(
2664 rdev,
2665 r10_bio->devs[m].addr,
c6563a8c 2666 r10_bio->sectors, 0);
1a0b7cd8
N
2667 } else {
2668 if (!rdev_set_badblocks(
2669 rdev,
2670 r10_bio->devs[m].addr,
2671 r10_bio->sectors, 0))
2672 md_error(conf->mddev, rdev);
749c55e9 2673 }
9ad1aefc 2674 rdev = conf->mirrors[dev].replacement;
01a69cab
YY
2675 if (r10_bio->devs[m].repl_bio == NULL ||
2676 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
9ad1aefc 2677 continue;
4246a0b6 2678
4e4cbee9 2679 if (!r10_bio->devs[m].repl_bio->bi_status) {
9ad1aefc
N
2680 rdev_clear_badblocks(
2681 rdev,
2682 r10_bio->devs[m].addr,
c6563a8c 2683 r10_bio->sectors, 0);
9ad1aefc
N
2684 } else {
2685 if (!rdev_set_badblocks(
2686 rdev,
2687 r10_bio->devs[m].addr,
2688 r10_bio->sectors, 0))
2689 md_error(conf->mddev, rdev);
2690 }
1a0b7cd8 2691 }
749c55e9
N
2692 put_buf(r10_bio);
2693 } else {
95af587e 2694 bool fail = false;
bd870a16
N
2695 for (m = 0; m < conf->copies; m++) {
2696 int dev = r10_bio->devs[m].devnum;
2697 struct bio *bio = r10_bio->devs[m].bio;
2698 rdev = conf->mirrors[dev].rdev;
2699 if (bio == IO_MADE_GOOD) {
749c55e9
N
2700 rdev_clear_badblocks(
2701 rdev,
2702 r10_bio->devs[m].addr,
c6563a8c 2703 r10_bio->sectors, 0);
749c55e9 2704 rdev_dec_pending(rdev, conf->mddev);
4e4cbee9 2705 } else if (bio != NULL && bio->bi_status) {
95af587e 2706 fail = true;
bd870a16
N
2707 if (!narrow_write_error(r10_bio, m)) {
2708 md_error(conf->mddev, rdev);
2709 set_bit(R10BIO_Degraded,
2710 &r10_bio->state);
2711 }
2712 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2713 }
475b0321
N
2714 bio = r10_bio->devs[m].repl_bio;
2715 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2716 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2717 rdev_clear_badblocks(
2718 rdev,
2719 r10_bio->devs[m].addr,
c6563a8c 2720 r10_bio->sectors, 0);
475b0321
N
2721 rdev_dec_pending(rdev, conf->mddev);
2722 }
bd870a16 2723 }
95af587e
N
2724 if (fail) {
2725 spin_lock_irq(&conf->device_lock);
2726 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 2727 conf->nr_queued++;
95af587e 2728 spin_unlock_irq(&conf->device_lock);
cf25ae78
GJ
2729 /*
2730 * In case freeze_array() is waiting for condition
2731 * nr_pending == nr_queued + extra to be true.
2732 */
2733 wake_up(&conf->wait_barrier);
95af587e 2734 md_wakeup_thread(conf->mddev->thread);
c340702c
N
2735 } else {
2736 if (test_bit(R10BIO_WriteError,
2737 &r10_bio->state))
2738 close_write(r10_bio);
95af587e 2739 raid_end_bio_io(r10_bio);
c340702c 2740 }
749c55e9
N
2741 }
2742}
2743
4ed8731d 2744static void raid10d(struct md_thread *thread)
1da177e4 2745{
4ed8731d 2746 struct mddev *mddev = thread->mddev;
9f2c9d12 2747 struct r10bio *r10_bio;
1da177e4 2748 unsigned long flags;
e879a879 2749 struct r10conf *conf = mddev->private;
1da177e4 2750 struct list_head *head = &conf->retry_list;
e1dfa0a2 2751 struct blk_plug plug;
1da177e4
LT
2752
2753 md_check_recovery(mddev);
1da177e4 2754
95af587e 2755 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2756 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
95af587e
N
2757 LIST_HEAD(tmp);
2758 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 2759 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
23ddba80
SL
2760 while (!list_empty(&conf->bio_end_io_list)) {
2761 list_move(conf->bio_end_io_list.prev, &tmp);
2762 conf->nr_queued--;
2763 }
95af587e
N
2764 }
2765 spin_unlock_irqrestore(&conf->device_lock, flags);
2766 while (!list_empty(&tmp)) {
a452744b
MP
2767 r10_bio = list_first_entry(&tmp, struct r10bio,
2768 retry_list);
95af587e 2769 list_del(&r10_bio->retry_list);
c340702c
N
2770 if (mddev->degraded)
2771 set_bit(R10BIO_Degraded, &r10_bio->state);
2772
2773 if (test_bit(R10BIO_WriteError,
2774 &r10_bio->state))
2775 close_write(r10_bio);
95af587e
N
2776 raid_end_bio_io(r10_bio);
2777 }
2778 }
2779
e1dfa0a2 2780 blk_start_plug(&plug);
1da177e4 2781 for (;;) {
6cce3b23 2782
0021b7bc 2783 flush_pending_writes(conf);
6cce3b23 2784
a35e63ef
N
2785 spin_lock_irqsave(&conf->device_lock, flags);
2786 if (list_empty(head)) {
2787 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2788 break;
a35e63ef 2789 }
9f2c9d12 2790 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2791 list_del(head->prev);
4443ae10 2792 conf->nr_queued--;
1da177e4
LT
2793 spin_unlock_irqrestore(&conf->device_lock, flags);
2794
2795 mddev = r10_bio->mddev;
070ec55d 2796 conf = mddev->private;
bd870a16
N
2797 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2798 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2799 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2800 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2801 reshape_request_write(mddev, r10_bio);
749c55e9 2802 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2803 sync_request_write(mddev, r10_bio);
7eaceacc 2804 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2805 recovery_request_write(mddev, r10_bio);
856e08e2 2806 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2807 handle_read_error(mddev, r10_bio);
fc9977dd
N
2808 else
2809 WARN_ON_ONCE(1);
560f8e55 2810
1d9d5241 2811 cond_resched();
2953079c 2812 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2813 md_check_recovery(mddev);
1da177e4 2814 }
e1dfa0a2 2815 blk_finish_plug(&plug);
1da177e4
LT
2816}
2817
e879a879 2818static int init_resync(struct r10conf *conf)
1da177e4 2819{
afeee514 2820 int ret, buffs, i;
1da177e4
LT
2821
2822 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514 2823 BUG_ON(mempool_initialized(&conf->r10buf_pool));
69335ef3 2824 conf->have_replacement = 0;
5cf00fcd 2825 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2826 if (conf->mirrors[i].replacement)
2827 conf->have_replacement = 1;
afeee514
KO
2828 ret = mempool_init(&conf->r10buf_pool, buffs,
2829 r10buf_pool_alloc, r10buf_pool_free, conf);
2830 if (ret)
2831 return ret;
1da177e4
LT
2832 conf->next_resync = 0;
2833 return 0;
2834}
2835
208410b5
SL
2836static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2837{
afeee514 2838 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
208410b5
SL
2839 struct rsync_pages *rp;
2840 struct bio *bio;
2841 int nalloc;
2842 int i;
2843
2844 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2845 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2846 nalloc = conf->copies; /* resync */
2847 else
2848 nalloc = 2; /* recovery */
2849
2850 for (i = 0; i < nalloc; i++) {
2851 bio = r10bio->devs[i].bio;
2852 rp = bio->bi_private;
2853 bio_reset(bio);
2854 bio->bi_private = rp;
2855 bio = r10bio->devs[i].repl_bio;
2856 if (bio) {
2857 rp = bio->bi_private;
2858 bio_reset(bio);
2859 bio->bi_private = rp;
2860 }
2861 }
2862 return r10bio;
2863}
2864
8db87912
GJ
2865/*
2866 * Set cluster_sync_high since we need other nodes to add the
2867 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2868 */
2869static void raid10_set_cluster_sync_high(struct r10conf *conf)
2870{
2871 sector_t window_size;
2872 int extra_chunk, chunks;
2873
2874 /*
2875 * First, here we define "stripe" as a unit which across
2876 * all member devices one time, so we get chunks by use
2877 * raid_disks / near_copies. Otherwise, if near_copies is
2878 * close to raid_disks, then resync window could increases
2879 * linearly with the increase of raid_disks, which means
2880 * we will suspend a really large IO window while it is not
2881 * necessary. If raid_disks is not divisible by near_copies,
2882 * an extra chunk is needed to ensure the whole "stripe" is
2883 * covered.
2884 */
2885
2886 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2887 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2888 extra_chunk = 0;
2889 else
2890 extra_chunk = 1;
2891 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2892
2893 /*
2894 * At least use a 32M window to align with raid1's resync window
2895 */
2896 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2897 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2898
2899 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2900}
2901
1da177e4
LT
2902/*
2903 * perform a "sync" on one "block"
2904 *
2905 * We need to make sure that no normal I/O request - particularly write
2906 * requests - conflict with active sync requests.
2907 *
2908 * This is achieved by tracking pending requests and a 'barrier' concept
2909 * that can be installed to exclude normal IO requests.
2910 *
2911 * Resync and recovery are handled very differently.
2912 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2913 *
2914 * For resync, we iterate over virtual addresses, read all copies,
2915 * and update if there are differences. If only one copy is live,
2916 * skip it.
2917 * For recovery, we iterate over physical addresses, read a good
2918 * value for each non-in_sync drive, and over-write.
2919 *
2920 * So, for recovery we may have several outstanding complex requests for a
2921 * given address, one for each out-of-sync device. We model this by allocating
2922 * a number of r10_bio structures, one for each out-of-sync device.
2923 * As we setup these structures, we collect all bio's together into a list
2924 * which we then process collectively to add pages, and then process again
2925 * to pass to generic_make_request.
2926 *
2927 * The r10_bio structures are linked using a borrowed master_bio pointer.
2928 * This link is counted in ->remaining. When the r10_bio that points to NULL
2929 * has its remaining count decremented to 0, the whole complex operation
2930 * is complete.
2931 *
2932 */
2933
849674e4 2934static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 2935 int *skipped)
1da177e4 2936{
e879a879 2937 struct r10conf *conf = mddev->private;
9f2c9d12 2938 struct r10bio *r10_bio;
1da177e4
LT
2939 struct bio *biolist = NULL, *bio;
2940 sector_t max_sector, nr_sectors;
1da177e4 2941 int i;
6cce3b23 2942 int max_sync;
57dab0bd 2943 sector_t sync_blocks;
1da177e4
LT
2944 sector_t sectors_skipped = 0;
2945 int chunks_skipped = 0;
5cf00fcd 2946 sector_t chunk_mask = conf->geo.chunk_mask;
022e510f 2947 int page_idx = 0;
1da177e4 2948
afeee514 2949 if (!mempool_initialized(&conf->r10buf_pool))
1da177e4 2950 if (init_resync(conf))
57afd89f 2951 return 0;
1da177e4 2952
7e83ccbe
MW
2953 /*
2954 * Allow skipping a full rebuild for incremental assembly
2955 * of a clean array, like RAID1 does.
2956 */
2957 if (mddev->bitmap == NULL &&
2958 mddev->recovery_cp == MaxSector &&
13765120
N
2959 mddev->reshape_position == MaxSector &&
2960 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2961 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2962 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2963 conf->fullsync == 0) {
2964 *skipped = 1;
13765120 2965 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2966 }
2967
1da177e4 2968 skipped:
58c0fed4 2969 max_sector = mddev->dev_sectors;
3ea7daa5
N
2970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2971 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2972 max_sector = mddev->resync_max_sectors;
2973 if (sector_nr >= max_sector) {
8db87912
GJ
2974 conf->cluster_sync_low = 0;
2975 conf->cluster_sync_high = 0;
2976
6cce3b23
N
2977 /* If we aborted, we need to abort the
2978 * sync on the 'current' bitmap chucks (there can
2979 * be several when recovering multiple devices).
2980 * as we may have started syncing it but not finished.
2981 * We can find the current address in
2982 * mddev->curr_resync, but for recovery,
2983 * we need to convert that to several
2984 * virtual addresses.
2985 */
3ea7daa5
N
2986 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2987 end_reshape(conf);
b3968552 2988 close_sync(conf);
3ea7daa5
N
2989 return 0;
2990 }
2991
6cce3b23
N
2992 if (mddev->curr_resync < max_sector) { /* aborted */
2993 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2994 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2995 &sync_blocks, 1);
5cf00fcd 2996 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2997 sector_t sect =
2998 raid10_find_virt(conf, mddev->curr_resync, i);
2999 bitmap_end_sync(mddev->bitmap, sect,
3000 &sync_blocks, 1);
3001 }
9ad1aefc
N
3002 } else {
3003 /* completed sync */
3004 if ((!mddev->bitmap || conf->fullsync)
3005 && conf->have_replacement
3006 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3007 /* Completed a full sync so the replacements
3008 * are now fully recovered.
3009 */
f90145f3
N
3010 rcu_read_lock();
3011 for (i = 0; i < conf->geo.raid_disks; i++) {
3012 struct md_rdev *rdev =
3013 rcu_dereference(conf->mirrors[i].replacement);
3014 if (rdev)
3015 rdev->recovery_offset = MaxSector;
3016 }
3017 rcu_read_unlock();
9ad1aefc 3018 }
6cce3b23 3019 conf->fullsync = 0;
9ad1aefc 3020 }
6cce3b23 3021 bitmap_close_sync(mddev->bitmap);
1da177e4 3022 close_sync(conf);
57afd89f 3023 *skipped = 1;
1da177e4
LT
3024 return sectors_skipped;
3025 }
3ea7daa5
N
3026
3027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3028 return reshape_request(mddev, sector_nr, skipped);
3029
5cf00fcd 3030 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3031 /* if there has been nothing to do on any drive,
3032 * then there is nothing to do at all..
3033 */
57afd89f
N
3034 *skipped = 1;
3035 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3036 }
3037
c6207277
N
3038 if (max_sector > mddev->resync_max)
3039 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3040
1da177e4
LT
3041 /* make sure whole request will fit in a chunk - if chunks
3042 * are meaningful
3043 */
5cf00fcd
N
3044 if (conf->geo.near_copies < conf->geo.raid_disks &&
3045 max_sector > (sector_nr | chunk_mask))
3046 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 3047
7ac50447
TM
3048 /*
3049 * If there is non-resync activity waiting for a turn, then let it
3050 * though before starting on this new sync request.
3051 */
3052 if (conf->nr_waiting)
3053 schedule_timeout_uninterruptible(1);
3054
1da177e4
LT
3055 /* Again, very different code for resync and recovery.
3056 * Both must result in an r10bio with a list of bios that
74d46992 3057 * have bi_end_io, bi_sector, bi_disk set,
1da177e4
LT
3058 * and bi_private set to the r10bio.
3059 * For recovery, we may actually create several r10bios
3060 * with 2 bios in each, that correspond to the bios in the main one.
3061 * In this case, the subordinate r10bios link back through a
3062 * borrowed master_bio pointer, and the counter in the master
3063 * includes a ref from each subordinate.
3064 */
3065 /* First, we decide what to do and set ->bi_end_io
3066 * To end_sync_read if we want to read, and
3067 * end_sync_write if we will want to write.
3068 */
3069
6cce3b23 3070 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3071 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3072 /* recovery... the complicated one */
e875ecea 3073 int j;
1da177e4
LT
3074 r10_bio = NULL;
3075
5cf00fcd 3076 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3077 int still_degraded;
9f2c9d12 3078 struct r10bio *rb2;
ab9d47e9
N
3079 sector_t sect;
3080 int must_sync;
e875ecea 3081 int any_working;
dc280d98 3082 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 3083 struct md_rdev *mrdev, *mreplace;
24afd80d 3084
f90145f3
N
3085 rcu_read_lock();
3086 mrdev = rcu_dereference(mirror->rdev);
3087 mreplace = rcu_dereference(mirror->replacement);
3088
3089 if ((mrdev == NULL ||
f5b67ae8 3090 test_bit(Faulty, &mrdev->flags) ||
f90145f3
N
3091 test_bit(In_sync, &mrdev->flags)) &&
3092 (mreplace == NULL ||
3093 test_bit(Faulty, &mreplace->flags))) {
3094 rcu_read_unlock();
ab9d47e9 3095 continue;
f90145f3 3096 }
1da177e4 3097
ab9d47e9
N
3098 still_degraded = 0;
3099 /* want to reconstruct this device */
3100 rb2 = r10_bio;
3101 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3102 if (sect >= mddev->resync_max_sectors) {
3103 /* last stripe is not complete - don't
3104 * try to recover this sector.
3105 */
f90145f3 3106 rcu_read_unlock();
fc448a18
N
3107 continue;
3108 }
f5b67ae8
N
3109 if (mreplace && test_bit(Faulty, &mreplace->flags))
3110 mreplace = NULL;
24afd80d
N
3111 /* Unless we are doing a full sync, or a replacement
3112 * we only need to recover the block if it is set in
3113 * the bitmap
ab9d47e9
N
3114 */
3115 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3116 &sync_blocks, 1);
3117 if (sync_blocks < max_sync)
3118 max_sync = sync_blocks;
3119 if (!must_sync &&
f90145f3 3120 mreplace == NULL &&
ab9d47e9
N
3121 !conf->fullsync) {
3122 /* yep, skip the sync_blocks here, but don't assume
3123 * that there will never be anything to do here
3124 */
3125 chunks_skipped = -1;
f90145f3 3126 rcu_read_unlock();
ab9d47e9
N
3127 continue;
3128 }
f90145f3
N
3129 atomic_inc(&mrdev->nr_pending);
3130 if (mreplace)
3131 atomic_inc(&mreplace->nr_pending);
3132 rcu_read_unlock();
6cce3b23 3133
208410b5 3134 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3135 r10_bio->state = 0;
ab9d47e9
N
3136 raise_barrier(conf, rb2 != NULL);
3137 atomic_set(&r10_bio->remaining, 0);
18055569 3138
ab9d47e9
N
3139 r10_bio->master_bio = (struct bio*)rb2;
3140 if (rb2)
3141 atomic_inc(&rb2->remaining);
3142 r10_bio->mddev = mddev;
3143 set_bit(R10BIO_IsRecover, &r10_bio->state);
3144 r10_bio->sector = sect;
1da177e4 3145
ab9d47e9
N
3146 raid10_find_phys(conf, r10_bio);
3147
3148 /* Need to check if the array will still be
3149 * degraded
3150 */
f90145f3
N
3151 rcu_read_lock();
3152 for (j = 0; j < conf->geo.raid_disks; j++) {
3153 struct md_rdev *rdev = rcu_dereference(
3154 conf->mirrors[j].rdev);
3155 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3156 still_degraded = 1;
87fc767b 3157 break;
1da177e4 3158 }
f90145f3 3159 }
ab9d47e9
N
3160
3161 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3162 &sync_blocks, still_degraded);
3163
e875ecea 3164 any_working = 0;
ab9d47e9 3165 for (j=0; j<conf->copies;j++) {
e875ecea 3166 int k;
ab9d47e9 3167 int d = r10_bio->devs[j].devnum;
5e570289 3168 sector_t from_addr, to_addr;
f90145f3
N
3169 struct md_rdev *rdev =
3170 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3171 sector_t sector, first_bad;
3172 int bad_sectors;
f90145f3
N
3173 if (!rdev ||
3174 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3175 continue;
3176 /* This is where we read from */
e875ecea 3177 any_working = 1;
40c356ce
N
3178 sector = r10_bio->devs[j].addr;
3179
3180 if (is_badblock(rdev, sector, max_sync,
3181 &first_bad, &bad_sectors)) {
3182 if (first_bad > sector)
3183 max_sync = first_bad - sector;
3184 else {
3185 bad_sectors -= (sector
3186 - first_bad);
3187 if (max_sync > bad_sectors)
3188 max_sync = bad_sectors;
3189 continue;
3190 }
3191 }
ab9d47e9
N
3192 bio = r10_bio->devs[0].bio;
3193 bio->bi_next = biolist;
3194 biolist = bio;
ab9d47e9 3195 bio->bi_end_io = end_sync_read;
796a5cf0 3196 bio_set_op_attrs(bio, REQ_OP_READ, 0);
8d3ca83d
N
3197 if (test_bit(FailFast, &rdev->flags))
3198 bio->bi_opf |= MD_FAILFAST;
5e570289 3199 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3200 bio->bi_iter.bi_sector = from_addr +
3201 rdev->data_offset;
74d46992 3202 bio_set_dev(bio, rdev->bdev);
24afd80d
N
3203 atomic_inc(&rdev->nr_pending);
3204 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3205
3206 for (k=0; k<conf->copies; k++)
3207 if (r10_bio->devs[k].devnum == i)
3208 break;
3209 BUG_ON(k == conf->copies);
5e570289 3210 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3211 r10_bio->devs[0].devnum = d;
5e570289 3212 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3213 r10_bio->devs[1].devnum = i;
5e570289 3214 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3215
f90145f3 3216 if (!test_bit(In_sync, &mrdev->flags)) {
24afd80d
N
3217 bio = r10_bio->devs[1].bio;
3218 bio->bi_next = biolist;
3219 biolist = bio;
24afd80d 3220 bio->bi_end_io = end_sync_write;
796a5cf0 3221 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3222 bio->bi_iter.bi_sector = to_addr
f90145f3 3223 + mrdev->data_offset;
74d46992 3224 bio_set_dev(bio, mrdev->bdev);
24afd80d
N
3225 atomic_inc(&r10_bio->remaining);
3226 } else
3227 r10_bio->devs[1].bio->bi_end_io = NULL;
3228
3229 /* and maybe write to replacement */
3230 bio = r10_bio->devs[1].repl_bio;
3231 if (bio)
3232 bio->bi_end_io = NULL;
f90145f3 3233 /* Note: if mreplace != NULL, then bio
24afd80d
N
3234 * cannot be NULL as r10buf_pool_alloc will
3235 * have allocated it.
3236 * So the second test here is pointless.
3237 * But it keeps semantic-checkers happy, and
3238 * this comment keeps human reviewers
3239 * happy.
3240 */
f90145f3
N
3241 if (mreplace == NULL || bio == NULL ||
3242 test_bit(Faulty, &mreplace->flags))
24afd80d
N
3243 break;
3244 bio->bi_next = biolist;
3245 biolist = bio;
24afd80d 3246 bio->bi_end_io = end_sync_write;
796a5cf0 3247 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3248 bio->bi_iter.bi_sector = to_addr +
f90145f3 3249 mreplace->data_offset;
74d46992 3250 bio_set_dev(bio, mreplace->bdev);
24afd80d 3251 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3252 break;
3253 }
f90145f3 3254 rcu_read_unlock();
ab9d47e9 3255 if (j == conf->copies) {
e875ecea
N
3256 /* Cannot recover, so abort the recovery or
3257 * record a bad block */
e875ecea
N
3258 if (any_working) {
3259 /* problem is that there are bad blocks
3260 * on other device(s)
3261 */
3262 int k;
3263 for (k = 0; k < conf->copies; k++)
3264 if (r10_bio->devs[k].devnum == i)
3265 break;
24afd80d 3266 if (!test_bit(In_sync,
f90145f3 3267 &mrdev->flags)
24afd80d 3268 && !rdev_set_badblocks(
f90145f3 3269 mrdev,
24afd80d
N
3270 r10_bio->devs[k].addr,
3271 max_sync, 0))
3272 any_working = 0;
f90145f3 3273 if (mreplace &&
24afd80d 3274 !rdev_set_badblocks(
f90145f3 3275 mreplace,
e875ecea
N
3276 r10_bio->devs[k].addr,
3277 max_sync, 0))
3278 any_working = 0;
3279 }
3280 if (!any_working) {
3281 if (!test_and_set_bit(MD_RECOVERY_INTR,
3282 &mddev->recovery))
08464e09 3283 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
e875ecea 3284 mdname(mddev));
24afd80d 3285 mirror->recovery_disabled
e875ecea
N
3286 = mddev->recovery_disabled;
3287 }
e8b84915
N
3288 put_buf(r10_bio);
3289 if (rb2)
3290 atomic_dec(&rb2->remaining);
3291 r10_bio = rb2;
f90145f3
N
3292 rdev_dec_pending(mrdev, mddev);
3293 if (mreplace)
3294 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3295 break;
1da177e4 3296 }
f90145f3
N
3297 rdev_dec_pending(mrdev, mddev);
3298 if (mreplace)
3299 rdev_dec_pending(mreplace, mddev);
8d3ca83d
N
3300 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3301 /* Only want this if there is elsewhere to
3302 * read from. 'j' is currently the first
3303 * readable copy.
3304 */
3305 int targets = 1;
3306 for (; j < conf->copies; j++) {
3307 int d = r10_bio->devs[j].devnum;
3308 if (conf->mirrors[d].rdev &&
3309 test_bit(In_sync,
3310 &conf->mirrors[d].rdev->flags))
3311 targets++;
3312 }
3313 if (targets == 1)
3314 r10_bio->devs[0].bio->bi_opf
3315 &= ~MD_FAILFAST;
3316 }
ab9d47e9 3317 }
1da177e4
LT
3318 if (biolist == NULL) {
3319 while (r10_bio) {
9f2c9d12
N
3320 struct r10bio *rb2 = r10_bio;
3321 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3322 rb2->master_bio = NULL;
3323 put_buf(rb2);
3324 }
3325 goto giveup;
3326 }
3327 } else {
3328 /* resync. Schedule a read for every block at this virt offset */
3329 int count = 0;
6cce3b23 3330
8db87912
GJ
3331 /*
3332 * Since curr_resync_completed could probably not update in
3333 * time, and we will set cluster_sync_low based on it.
3334 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3335 * safety reason, which ensures curr_resync_completed is
3336 * updated in bitmap_cond_end_sync.
3337 */
3338 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3339 mddev_is_clustered(mddev) &&
3340 (sector_nr + 2 * RESYNC_SECTORS >
3341 conf->cluster_sync_high));
78200d45 3342
6cce3b23
N
3343 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3344 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3345 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3346 &mddev->recovery)) {
6cce3b23
N
3347 /* We can skip this block */
3348 *skipped = 1;
3349 return sync_blocks + sectors_skipped;
3350 }
3351 if (sync_blocks < max_sync)
3352 max_sync = sync_blocks;
208410b5 3353 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3354 r10_bio->state = 0;
1da177e4 3355
1da177e4
LT
3356 r10_bio->mddev = mddev;
3357 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3358 raise_barrier(conf, 0);
3359 conf->next_resync = sector_nr;
1da177e4
LT
3360
3361 r10_bio->master_bio = NULL;
3362 r10_bio->sector = sector_nr;
3363 set_bit(R10BIO_IsSync, &r10_bio->state);
3364 raid10_find_phys(conf, r10_bio);
5cf00fcd 3365 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3366
5cf00fcd 3367 for (i = 0; i < conf->copies; i++) {
1da177e4 3368 int d = r10_bio->devs[i].devnum;
40c356ce
N
3369 sector_t first_bad, sector;
3370 int bad_sectors;
f90145f3 3371 struct md_rdev *rdev;
40c356ce 3372
9ad1aefc
N
3373 if (r10_bio->devs[i].repl_bio)
3374 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3375
1da177e4 3376 bio = r10_bio->devs[i].bio;
4e4cbee9 3377 bio->bi_status = BLK_STS_IOERR;
f90145f3
N
3378 rcu_read_lock();
3379 rdev = rcu_dereference(conf->mirrors[d].rdev);
3380 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3381 rcu_read_unlock();
1da177e4 3382 continue;
f90145f3 3383 }
40c356ce 3384 sector = r10_bio->devs[i].addr;
f90145f3 3385 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3386 &first_bad, &bad_sectors)) {
3387 if (first_bad > sector)
3388 max_sync = first_bad - sector;
3389 else {
3390 bad_sectors -= (sector - first_bad);
3391 if (max_sync > bad_sectors)
91502f09 3392 max_sync = bad_sectors;
f90145f3 3393 rcu_read_unlock();
40c356ce
N
3394 continue;
3395 }
3396 }
f90145f3 3397 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3398 atomic_inc(&r10_bio->remaining);
3399 bio->bi_next = biolist;
3400 biolist = bio;
1da177e4 3401 bio->bi_end_io = end_sync_read;
796a5cf0 3402 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1cdd1257 3403 if (test_bit(FailFast, &rdev->flags))
8d3ca83d 3404 bio->bi_opf |= MD_FAILFAST;
f90145f3 3405 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3406 bio_set_dev(bio, rdev->bdev);
1da177e4 3407 count++;
9ad1aefc 3408
f90145f3
N
3409 rdev = rcu_dereference(conf->mirrors[d].replacement);
3410 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3411 rcu_read_unlock();
9ad1aefc 3412 continue;
f90145f3
N
3413 }
3414 atomic_inc(&rdev->nr_pending);
9ad1aefc
N
3415
3416 /* Need to set up for writing to the replacement */
3417 bio = r10_bio->devs[i].repl_bio;
4e4cbee9 3418 bio->bi_status = BLK_STS_IOERR;
9ad1aefc
N
3419
3420 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3421 bio->bi_next = biolist;
3422 biolist = bio;
9ad1aefc 3423 bio->bi_end_io = end_sync_write;
796a5cf0 3424 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1cdd1257 3425 if (test_bit(FailFast, &rdev->flags))
1919cbb2 3426 bio->bi_opf |= MD_FAILFAST;
f90145f3 3427 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3428 bio_set_dev(bio, rdev->bdev);
9ad1aefc 3429 count++;
1cdd1257 3430 rcu_read_unlock();
1da177e4
LT
3431 }
3432
3433 if (count < 2) {
3434 for (i=0; i<conf->copies; i++) {
3435 int d = r10_bio->devs[i].devnum;
3436 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3437 rdev_dec_pending(conf->mirrors[d].rdev,
3438 mddev);
9ad1aefc
N
3439 if (r10_bio->devs[i].repl_bio &&
3440 r10_bio->devs[i].repl_bio->bi_end_io)
3441 rdev_dec_pending(
3442 conf->mirrors[d].replacement,
3443 mddev);
1da177e4
LT
3444 }
3445 put_buf(r10_bio);
3446 biolist = NULL;
3447 goto giveup;
3448 }
3449 }
3450
1da177e4 3451 nr_sectors = 0;
6cce3b23
N
3452 if (sector_nr + max_sync < max_sector)
3453 max_sector = sector_nr + max_sync;
1da177e4
LT
3454 do {
3455 struct page *page;
3456 int len = PAGE_SIZE;
1da177e4
LT
3457 if (sector_nr + (len>>9) > max_sector)
3458 len = (max_sector - sector_nr) << 9;
3459 if (len == 0)
3460 break;
3461 for (bio= biolist ; bio ; bio=bio->bi_next) {
f0250618 3462 struct resync_pages *rp = get_resync_pages(bio);
022e510f 3463 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
3464 /*
3465 * won't fail because the vec table is big enough
3466 * to hold all these pages
3467 */
3468 bio_add_page(bio, page, len, 0);
1da177e4
LT
3469 }
3470 nr_sectors += len>>9;
3471 sector_nr += len>>9;
022e510f 3472 } while (++page_idx < RESYNC_PAGES);
1da177e4
LT
3473 r10_bio->sectors = nr_sectors;
3474
8db87912
GJ
3475 if (mddev_is_clustered(mddev) &&
3476 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3477 /* It is resync not recovery */
3478 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3479 conf->cluster_sync_low = mddev->curr_resync_completed;
3480 raid10_set_cluster_sync_high(conf);
3481 /* Send resync message */
3482 md_cluster_ops->resync_info_update(mddev,
3483 conf->cluster_sync_low,
3484 conf->cluster_sync_high);
3485 }
3486 } else if (mddev_is_clustered(mddev)) {
3487 /* This is recovery not resync */
3488 sector_t sect_va1, sect_va2;
3489 bool broadcast_msg = false;
3490
3491 for (i = 0; i < conf->geo.raid_disks; i++) {
3492 /*
3493 * sector_nr is a device address for recovery, so we
3494 * need translate it to array address before compare
3495 * with cluster_sync_high.
3496 */
3497 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3498
3499 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3500 broadcast_msg = true;
3501 /*
3502 * curr_resync_completed is similar as
3503 * sector_nr, so make the translation too.
3504 */
3505 sect_va2 = raid10_find_virt(conf,
3506 mddev->curr_resync_completed, i);
3507
3508 if (conf->cluster_sync_low == 0 ||
3509 conf->cluster_sync_low > sect_va2)
3510 conf->cluster_sync_low = sect_va2;
3511 }
3512 }
3513 if (broadcast_msg) {
3514 raid10_set_cluster_sync_high(conf);
3515 md_cluster_ops->resync_info_update(mddev,
3516 conf->cluster_sync_low,
3517 conf->cluster_sync_high);
3518 }
3519 }
3520
1da177e4
LT
3521 while (biolist) {
3522 bio = biolist;
3523 biolist = biolist->bi_next;
3524
3525 bio->bi_next = NULL;
f0250618 3526 r10_bio = get_resync_r10bio(bio);
1da177e4
LT
3527 r10_bio->sectors = nr_sectors;
3528
3529 if (bio->bi_end_io == end_sync_read) {
74d46992 3530 md_sync_acct_bio(bio, nr_sectors);
4e4cbee9 3531 bio->bi_status = 0;
1da177e4
LT
3532 generic_make_request(bio);
3533 }
3534 }
3535
57afd89f
N
3536 if (sectors_skipped)
3537 /* pretend they weren't skipped, it makes
3538 * no important difference in this case
3539 */
3540 md_done_sync(mddev, sectors_skipped, 1);
3541
1da177e4
LT
3542 return sectors_skipped + nr_sectors;
3543 giveup:
3544 /* There is nowhere to write, so all non-sync
e875ecea
N
3545 * drives must be failed or in resync, all drives
3546 * have a bad block, so try the next chunk...
1da177e4 3547 */
09b4068a
N
3548 if (sector_nr + max_sync < max_sector)
3549 max_sector = sector_nr + max_sync;
3550
3551 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3552 chunks_skipped ++;
3553 sector_nr = max_sector;
1da177e4 3554 goto skipped;
1da177e4
LT
3555}
3556
80c3a6ce 3557static sector_t
fd01b88c 3558raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3559{
3560 sector_t size;
e879a879 3561 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3562
3563 if (!raid_disks)
3ea7daa5
N
3564 raid_disks = min(conf->geo.raid_disks,
3565 conf->prev.raid_disks);
80c3a6ce 3566 if (!sectors)
dab8b292 3567 sectors = conf->dev_sectors;
80c3a6ce 3568
5cf00fcd
N
3569 size = sectors >> conf->geo.chunk_shift;
3570 sector_div(size, conf->geo.far_copies);
80c3a6ce 3571 size = size * raid_disks;
5cf00fcd 3572 sector_div(size, conf->geo.near_copies);
80c3a6ce 3573
5cf00fcd 3574 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3575}
3576
6508fdbf
N
3577static void calc_sectors(struct r10conf *conf, sector_t size)
3578{
3579 /* Calculate the number of sectors-per-device that will
3580 * actually be used, and set conf->dev_sectors and
3581 * conf->stride
3582 */
3583
5cf00fcd
N
3584 size = size >> conf->geo.chunk_shift;
3585 sector_div(size, conf->geo.far_copies);
3586 size = size * conf->geo.raid_disks;
3587 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3588 /* 'size' is now the number of chunks in the array */
3589 /* calculate "used chunks per device" */
3590 size = size * conf->copies;
3591
3592 /* We need to round up when dividing by raid_disks to
3593 * get the stride size.
3594 */
5cf00fcd 3595 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3596
5cf00fcd 3597 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3598
5cf00fcd
N
3599 if (conf->geo.far_offset)
3600 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3601 else {
5cf00fcd
N
3602 sector_div(size, conf->geo.far_copies);
3603 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3604 }
3605}
dab8b292 3606
deb200d0
N
3607enum geo_type {geo_new, geo_old, geo_start};
3608static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3609{
3610 int nc, fc, fo;
3611 int layout, chunk, disks;
3612 switch (new) {
3613 case geo_old:
3614 layout = mddev->layout;
3615 chunk = mddev->chunk_sectors;
3616 disks = mddev->raid_disks - mddev->delta_disks;
3617 break;
3618 case geo_new:
3619 layout = mddev->new_layout;
3620 chunk = mddev->new_chunk_sectors;
3621 disks = mddev->raid_disks;
3622 break;
3623 default: /* avoid 'may be unused' warnings */
3624 case geo_start: /* new when starting reshape - raid_disks not
3625 * updated yet. */
3626 layout = mddev->new_layout;
3627 chunk = mddev->new_chunk_sectors;
3628 disks = mddev->raid_disks + mddev->delta_disks;
3629 break;
3630 }
8bce6d35 3631 if (layout >> 19)
deb200d0
N
3632 return -1;
3633 if (chunk < (PAGE_SIZE >> 9) ||
3634 !is_power_of_2(chunk))
3635 return -2;
3636 nc = layout & 255;
3637 fc = (layout >> 8) & 255;
3638 fo = layout & (1<<16);
3639 geo->raid_disks = disks;
3640 geo->near_copies = nc;
3641 geo->far_copies = fc;
3642 geo->far_offset = fo;
8bce6d35
N
3643 switch (layout >> 17) {
3644 case 0: /* original layout. simple but not always optimal */
3645 geo->far_set_size = disks;
3646 break;
3647 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3648 * actually using this, but leave code here just in case.*/
3649 geo->far_set_size = disks/fc;
3650 WARN(geo->far_set_size < fc,
3651 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3652 break;
3653 case 2: /* "improved" layout fixed to match documentation */
3654 geo->far_set_size = fc * nc;
3655 break;
3656 default: /* Not a valid layout */
3657 return -1;
3658 }
deb200d0
N
3659 geo->chunk_mask = chunk - 1;
3660 geo->chunk_shift = ffz(~chunk);
3661 return nc*fc;
3662}
3663
e879a879 3664static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3665{
e879a879 3666 struct r10conf *conf = NULL;
dab8b292 3667 int err = -EINVAL;
deb200d0
N
3668 struct geom geo;
3669 int copies;
3670
3671 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3672
deb200d0 3673 if (copies == -2) {
08464e09
N
3674 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3675 mdname(mddev), PAGE_SIZE);
dab8b292 3676 goto out;
1da177e4 3677 }
2604b703 3678
deb200d0 3679 if (copies < 2 || copies > mddev->raid_disks) {
08464e09
N
3680 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3681 mdname(mddev), mddev->new_layout);
1da177e4
LT
3682 goto out;
3683 }
dab8b292
TM
3684
3685 err = -ENOMEM;
e879a879 3686 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3687 if (!conf)
1da177e4 3688 goto out;
dab8b292 3689
3ea7daa5 3690 /* FIXME calc properly */
dc280d98 3691 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3692 max(0,-mddev->delta_disks)),
dab8b292
TM
3693 GFP_KERNEL);
3694 if (!conf->mirrors)
3695 goto out;
4443ae10
N
3696
3697 conf->tmppage = alloc_page(GFP_KERNEL);
3698 if (!conf->tmppage)
dab8b292
TM
3699 goto out;
3700
deb200d0
N
3701 conf->geo = geo;
3702 conf->copies = copies;
afeee514
KO
3703 err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3704 r10bio_pool_free, conf);
3705 if (err)
dab8b292
TM
3706 goto out;
3707
afeee514
KO
3708 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3709 if (err)
fc9977dd
N
3710 goto out;
3711
6508fdbf 3712 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3713 if (mddev->reshape_position == MaxSector) {
3714 conf->prev = conf->geo;
3715 conf->reshape_progress = MaxSector;
3716 } else {
3717 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3718 err = -EINVAL;
3719 goto out;
3720 }
3721 conf->reshape_progress = mddev->reshape_position;
3722 if (conf->prev.far_offset)
3723 conf->prev.stride = 1 << conf->prev.chunk_shift;
3724 else
3725 /* far_copies must be 1 */
3726 conf->prev.stride = conf->dev_sectors;
3727 }
299b0685 3728 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 3729 spin_lock_init(&conf->device_lock);
dab8b292 3730 INIT_LIST_HEAD(&conf->retry_list);
95af587e 3731 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
3732
3733 spin_lock_init(&conf->resync_lock);
3734 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 3735 atomic_set(&conf->nr_pending, 0);
dab8b292 3736
afeee514 3737 err = -ENOMEM;
0232605d 3738 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3739 if (!conf->thread)
3740 goto out;
3741
dab8b292
TM
3742 conf->mddev = mddev;
3743 return conf;
3744
3745 out:
dab8b292 3746 if (conf) {
afeee514 3747 mempool_exit(&conf->r10bio_pool);
dab8b292
TM
3748 kfree(conf->mirrors);
3749 safe_put_page(conf->tmppage);
afeee514 3750 bioset_exit(&conf->bio_split);
dab8b292
TM
3751 kfree(conf);
3752 }
3753 return ERR_PTR(err);
3754}
3755
849674e4 3756static int raid10_run(struct mddev *mddev)
dab8b292 3757{
e879a879 3758 struct r10conf *conf;
dab8b292 3759 int i, disk_idx, chunk_size;
dc280d98 3760 struct raid10_info *disk;
3cb03002 3761 struct md_rdev *rdev;
dab8b292 3762 sector_t size;
3ea7daa5
N
3763 sector_t min_offset_diff = 0;
3764 int first = 1;
532a2a3f 3765 bool discard_supported = false;
dab8b292 3766
a415c0f1
N
3767 if (mddev_init_writes_pending(mddev) < 0)
3768 return -ENOMEM;
3769
dab8b292
TM
3770 if (mddev->private == NULL) {
3771 conf = setup_conf(mddev);
3772 if (IS_ERR(conf))
3773 return PTR_ERR(conf);
3774 mddev->private = conf;
3775 }
3776 conf = mddev->private;
3777 if (!conf)
3778 goto out;
3779
8db87912
GJ
3780 if (mddev_is_clustered(conf->mddev)) {
3781 int fc, fo;
3782
3783 fc = (mddev->layout >> 8) & 255;
3784 fo = mddev->layout & (1<<16);
3785 if (fc > 1 || fo > 0) {
3786 pr_err("only near layout is supported by clustered"
3787 " raid10\n");
43a52123 3788 goto out_free_conf;
8db87912
GJ
3789 }
3790 }
3791
dab8b292
TM
3792 mddev->thread = conf->thread;
3793 conf->thread = NULL;
3794
8f6c2e4b 3795 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3796 if (mddev->queue) {
532a2a3f
SL
3797 blk_queue_max_discard_sectors(mddev->queue,
3798 mddev->chunk_sectors);
5026d7a9 3799 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 3800 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
cc4d1efd
JB
3801 blk_queue_io_min(mddev->queue, chunk_size);
3802 if (conf->geo.raid_disks % conf->geo.near_copies)
3803 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3804 else
3805 blk_queue_io_opt(mddev->queue, chunk_size *
3806 (conf->geo.raid_disks / conf->geo.near_copies));
3807 }
8f6c2e4b 3808
dafb20fa 3809 rdev_for_each(rdev, mddev) {
3ea7daa5 3810 long long diff;
34b343cf 3811
1da177e4 3812 disk_idx = rdev->raid_disk;
f8c9e74f
N
3813 if (disk_idx < 0)
3814 continue;
3815 if (disk_idx >= conf->geo.raid_disks &&
3816 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3817 continue;
3818 disk = conf->mirrors + disk_idx;
3819
56a2559b
N
3820 if (test_bit(Replacement, &rdev->flags)) {
3821 if (disk->replacement)
3822 goto out_free_conf;
3823 disk->replacement = rdev;
3824 } else {
3825 if (disk->rdev)
3826 goto out_free_conf;
3827 disk->rdev = rdev;
3828 }
3ea7daa5
N
3829 diff = (rdev->new_data_offset - rdev->data_offset);
3830 if (!mddev->reshape_backwards)
3831 diff = -diff;
3832 if (diff < 0)
3833 diff = 0;
3834 if (first || diff < min_offset_diff)
3835 min_offset_diff = diff;
56a2559b 3836
cc4d1efd
JB
3837 if (mddev->gendisk)
3838 disk_stack_limits(mddev->gendisk, rdev->bdev,
3839 rdev->data_offset << 9);
1da177e4
LT
3840
3841 disk->head_position = 0;
532a2a3f
SL
3842
3843 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3844 discard_supported = true;
6f287ca6 3845 first = 0;
1da177e4 3846 }
3ea7daa5 3847
ed30be07
JB
3848 if (mddev->queue) {
3849 if (discard_supported)
8b904b5b 3850 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
ed30be07
JB
3851 mddev->queue);
3852 else
8b904b5b 3853 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
ed30be07
JB
3854 mddev->queue);
3855 }
6d508242 3856 /* need to check that every block has at least one working mirror */
700c7213 3857 if (!enough(conf, -1)) {
08464e09 3858 pr_err("md/raid10:%s: not enough operational mirrors.\n",
6d508242 3859 mdname(mddev));
1da177e4
LT
3860 goto out_free_conf;
3861 }
3862
3ea7daa5
N
3863 if (conf->reshape_progress != MaxSector) {
3864 /* must ensure that shape change is supported */
3865 if (conf->geo.far_copies != 1 &&
3866 conf->geo.far_offset == 0)
3867 goto out_free_conf;
3868 if (conf->prev.far_copies != 1 &&
78eaa0d4 3869 conf->prev.far_offset == 0)
3ea7daa5
N
3870 goto out_free_conf;
3871 }
3872
1da177e4 3873 mddev->degraded = 0;
f8c9e74f
N
3874 for (i = 0;
3875 i < conf->geo.raid_disks
3876 || i < conf->prev.raid_disks;
3877 i++) {
1da177e4
LT
3878
3879 disk = conf->mirrors + i;
3880
56a2559b
N
3881 if (!disk->rdev && disk->replacement) {
3882 /* The replacement is all we have - use it */
3883 disk->rdev = disk->replacement;
3884 disk->replacement = NULL;
3885 clear_bit(Replacement, &disk->rdev->flags);
3886 }
3887
5fd6c1dc 3888 if (!disk->rdev ||
2e333e89 3889 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3890 disk->head_position = 0;
3891 mddev->degraded++;
0b59bb64
N
3892 if (disk->rdev &&
3893 disk->rdev->saved_raid_disk < 0)
8c2e870a 3894 conf->fullsync = 1;
1da177e4 3895 }
d890fa2b 3896 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3897 }
3898
8c6ac868 3899 if (mddev->recovery_cp != MaxSector)
08464e09
N
3900 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3901 mdname(mddev));
3902 pr_info("md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3903 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3904 conf->geo.raid_disks);
1da177e4
LT
3905 /*
3906 * Ok, everything is just fine now
3907 */
dab8b292
TM
3908 mddev->dev_sectors = conf->dev_sectors;
3909 size = raid10_size(mddev, 0, 0);
3910 md_set_array_sectors(mddev, size);
3911 mddev->resync_max_sectors = size;
46533ff7 3912 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
1da177e4 3913
cc4d1efd 3914 if (mddev->queue) {
5cf00fcd 3915 int stripe = conf->geo.raid_disks *
9d8f0363 3916 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3917
3918 /* Calculate max read-ahead size.
3919 * We need to readahead at least twice a whole stripe....
3920 * maybe...
3921 */
5cf00fcd 3922 stripe /= conf->geo.near_copies;
dc3b17cc
JK
3923 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3924 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
1da177e4
LT
3925 }
3926
a91a2785
MP
3927 if (md_integrity_register(mddev))
3928 goto out_free_conf;
3929
3ea7daa5
N
3930 if (conf->reshape_progress != MaxSector) {
3931 unsigned long before_length, after_length;
3932
3933 before_length = ((1 << conf->prev.chunk_shift) *
3934 conf->prev.far_copies);
3935 after_length = ((1 << conf->geo.chunk_shift) *
3936 conf->geo.far_copies);
3937
3938 if (max(before_length, after_length) > min_offset_diff) {
3939 /* This cannot work */
08464e09 3940 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3ea7daa5
N
3941 goto out_free_conf;
3942 }
3943 conf->offset_diff = min_offset_diff;
3944
3ea7daa5
N
3945 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3946 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3947 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3948 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3949 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3950 "reshape");
3951 }
3952
1da177e4
LT
3953 return 0;
3954
3955out_free_conf:
01f96c0a 3956 md_unregister_thread(&mddev->thread);
afeee514 3957 mempool_exit(&conf->r10bio_pool);
1345b1d8 3958 safe_put_page(conf->tmppage);
990a8baf 3959 kfree(conf->mirrors);
1da177e4
LT
3960 kfree(conf);
3961 mddev->private = NULL;
3962out:
3963 return -EIO;
3964}
3965
afa0f557 3966static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 3967{
afa0f557 3968 struct r10conf *conf = priv;
1da177e4 3969
afeee514 3970 mempool_exit(&conf->r10bio_pool);
0fea7ed8 3971 safe_put_page(conf->tmppage);
990a8baf 3972 kfree(conf->mirrors);
c4796e21
N
3973 kfree(conf->mirrors_old);
3974 kfree(conf->mirrors_new);
afeee514 3975 bioset_exit(&conf->bio_split);
1da177e4 3976 kfree(conf);
1da177e4
LT
3977}
3978
b03e0ccb 3979static void raid10_quiesce(struct mddev *mddev, int quiesce)
6cce3b23 3980{
e879a879 3981 struct r10conf *conf = mddev->private;
6cce3b23 3982
b03e0ccb 3983 if (quiesce)
6cce3b23 3984 raise_barrier(conf, 0);
b03e0ccb 3985 else
6cce3b23 3986 lower_barrier(conf);
6cce3b23 3987}
1da177e4 3988
006a09a0
N
3989static int raid10_resize(struct mddev *mddev, sector_t sectors)
3990{
3991 /* Resize of 'far' arrays is not supported.
3992 * For 'near' and 'offset' arrays we can set the
3993 * number of sectors used to be an appropriate multiple
3994 * of the chunk size.
3995 * For 'offset', this is far_copies*chunksize.
3996 * For 'near' the multiplier is the LCM of
3997 * near_copies and raid_disks.
3998 * So if far_copies > 1 && !far_offset, fail.
3999 * Else find LCM(raid_disks, near_copy)*far_copies and
4000 * multiply by chunk_size. Then round to this number.
4001 * This is mostly done by raid10_size()
4002 */
4003 struct r10conf *conf = mddev->private;
4004 sector_t oldsize, size;
4005
f8c9e74f
N
4006 if (mddev->reshape_position != MaxSector)
4007 return -EBUSY;
4008
5cf00fcd 4009 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
4010 return -EINVAL;
4011
4012 oldsize = raid10_size(mddev, 0, 0);
4013 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
4014 if (mddev->external_size &&
4015 mddev->array_sectors > size)
006a09a0 4016 return -EINVAL;
a4a6125a
N
4017 if (mddev->bitmap) {
4018 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4019 if (ret)
4020 return ret;
4021 }
4022 md_set_array_sectors(mddev, size);
006a09a0
N
4023 if (sectors > mddev->dev_sectors &&
4024 mddev->recovery_cp > oldsize) {
4025 mddev->recovery_cp = oldsize;
4026 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4027 }
6508fdbf
N
4028 calc_sectors(conf, sectors);
4029 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
4030 mddev->resync_max_sectors = size;
4031 return 0;
4032}
4033
53a6ab4d 4034static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 4035{
3cb03002 4036 struct md_rdev *rdev;
e879a879 4037 struct r10conf *conf;
dab8b292
TM
4038
4039 if (mddev->degraded > 0) {
08464e09
N
4040 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4041 mdname(mddev));
dab8b292
TM
4042 return ERR_PTR(-EINVAL);
4043 }
53a6ab4d 4044 sector_div(size, devs);
dab8b292 4045
dab8b292
TM
4046 /* Set new parameters */
4047 mddev->new_level = 10;
4048 /* new layout: far_copies = 1, near_copies = 2 */
4049 mddev->new_layout = (1<<8) + 2;
4050 mddev->new_chunk_sectors = mddev->chunk_sectors;
4051 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
4052 mddev->raid_disks *= 2;
4053 /* make sure it will be not marked as dirty */
4054 mddev->recovery_cp = MaxSector;
53a6ab4d 4055 mddev->dev_sectors = size;
dab8b292
TM
4056
4057 conf = setup_conf(mddev);
02214dc5 4058 if (!IS_ERR(conf)) {
dafb20fa 4059 rdev_for_each(rdev, mddev)
53a6ab4d 4060 if (rdev->raid_disk >= 0) {
e93f68a1 4061 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
4062 rdev->sectors = size;
4063 }
02214dc5
KW
4064 conf->barrier = 1;
4065 }
4066
dab8b292
TM
4067 return conf;
4068}
4069
fd01b88c 4070static void *raid10_takeover(struct mddev *mddev)
dab8b292 4071{
e373ab10 4072 struct r0conf *raid0_conf;
dab8b292
TM
4073
4074 /* raid10 can take over:
4075 * raid0 - providing it has only two drives
4076 */
4077 if (mddev->level == 0) {
4078 /* for raid0 takeover only one zone is supported */
e373ab10
N
4079 raid0_conf = mddev->private;
4080 if (raid0_conf->nr_strip_zones > 1) {
08464e09
N
4081 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4082 mdname(mddev));
dab8b292
TM
4083 return ERR_PTR(-EINVAL);
4084 }
53a6ab4d
N
4085 return raid10_takeover_raid0(mddev,
4086 raid0_conf->strip_zone->zone_end,
4087 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
4088 }
4089 return ERR_PTR(-EINVAL);
4090}
4091
3ea7daa5
N
4092static int raid10_check_reshape(struct mddev *mddev)
4093{
4094 /* Called when there is a request to change
4095 * - layout (to ->new_layout)
4096 * - chunk size (to ->new_chunk_sectors)
4097 * - raid_disks (by delta_disks)
4098 * or when trying to restart a reshape that was ongoing.
4099 *
4100 * We need to validate the request and possibly allocate
4101 * space if that might be an issue later.
4102 *
4103 * Currently we reject any reshape of a 'far' mode array,
4104 * allow chunk size to change if new is generally acceptable,
4105 * allow raid_disks to increase, and allow
4106 * a switch between 'near' mode and 'offset' mode.
4107 */
4108 struct r10conf *conf = mddev->private;
4109 struct geom geo;
4110
4111 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4112 return -EINVAL;
4113
4114 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4115 /* mustn't change number of copies */
4116 return -EINVAL;
4117 if (geo.far_copies > 1 && !geo.far_offset)
4118 /* Cannot switch to 'far' mode */
4119 return -EINVAL;
4120
4121 if (mddev->array_sectors & geo.chunk_mask)
4122 /* not factor of array size */
4123 return -EINVAL;
4124
3ea7daa5
N
4125 if (!enough(conf, -1))
4126 return -EINVAL;
4127
4128 kfree(conf->mirrors_new);
4129 conf->mirrors_new = NULL;
4130 if (mddev->delta_disks > 0) {
4131 /* allocate new 'mirrors' list */
4132 conf->mirrors_new = kzalloc(
dc280d98 4133 sizeof(struct raid10_info)
3ea7daa5
N
4134 *(mddev->raid_disks +
4135 mddev->delta_disks),
4136 GFP_KERNEL);
4137 if (!conf->mirrors_new)
4138 return -ENOMEM;
4139 }
4140 return 0;
4141}
4142
4143/*
4144 * Need to check if array has failed when deciding whether to:
4145 * - start an array
4146 * - remove non-faulty devices
4147 * - add a spare
4148 * - allow a reshape
4149 * This determination is simple when no reshape is happening.
4150 * However if there is a reshape, we need to carefully check
4151 * both the before and after sections.
4152 * This is because some failed devices may only affect one
4153 * of the two sections, and some non-in_sync devices may
4154 * be insync in the section most affected by failed devices.
4155 */
4156static int calc_degraded(struct r10conf *conf)
4157{
4158 int degraded, degraded2;
4159 int i;
4160
4161 rcu_read_lock();
4162 degraded = 0;
4163 /* 'prev' section first */
4164 for (i = 0; i < conf->prev.raid_disks; i++) {
4165 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4166 if (!rdev || test_bit(Faulty, &rdev->flags))
4167 degraded++;
4168 else if (!test_bit(In_sync, &rdev->flags))
4169 /* When we can reduce the number of devices in
4170 * an array, this might not contribute to
4171 * 'degraded'. It does now.
4172 */
4173 degraded++;
4174 }
4175 rcu_read_unlock();
4176 if (conf->geo.raid_disks == conf->prev.raid_disks)
4177 return degraded;
4178 rcu_read_lock();
4179 degraded2 = 0;
4180 for (i = 0; i < conf->geo.raid_disks; i++) {
4181 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4182 if (!rdev || test_bit(Faulty, &rdev->flags))
4183 degraded2++;
4184 else if (!test_bit(In_sync, &rdev->flags)) {
4185 /* If reshape is increasing the number of devices,
4186 * this section has already been recovered, so
4187 * it doesn't contribute to degraded.
4188 * else it does.
4189 */
4190 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4191 degraded2++;
4192 }
4193 }
4194 rcu_read_unlock();
4195 if (degraded2 > degraded)
4196 return degraded2;
4197 return degraded;
4198}
4199
4200static int raid10_start_reshape(struct mddev *mddev)
4201{
4202 /* A 'reshape' has been requested. This commits
4203 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4204 * This also checks if there are enough spares and adds them
4205 * to the array.
4206 * We currently require enough spares to make the final
4207 * array non-degraded. We also require that the difference
4208 * between old and new data_offset - on each device - is
4209 * enough that we never risk over-writing.
4210 */
4211
4212 unsigned long before_length, after_length;
4213 sector_t min_offset_diff = 0;
4214 int first = 1;
4215 struct geom new;
4216 struct r10conf *conf = mddev->private;
4217 struct md_rdev *rdev;
4218 int spares = 0;
bb63a701 4219 int ret;
3ea7daa5
N
4220
4221 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4222 return -EBUSY;
4223
4224 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4225 return -EINVAL;
4226
4227 before_length = ((1 << conf->prev.chunk_shift) *
4228 conf->prev.far_copies);
4229 after_length = ((1 << conf->geo.chunk_shift) *
4230 conf->geo.far_copies);
4231
4232 rdev_for_each(rdev, mddev) {
4233 if (!test_bit(In_sync, &rdev->flags)
4234 && !test_bit(Faulty, &rdev->flags))
4235 spares++;
4236 if (rdev->raid_disk >= 0) {
4237 long long diff = (rdev->new_data_offset
4238 - rdev->data_offset);
4239 if (!mddev->reshape_backwards)
4240 diff = -diff;
4241 if (diff < 0)
4242 diff = 0;
4243 if (first || diff < min_offset_diff)
4244 min_offset_diff = diff;
b506335e 4245 first = 0;
3ea7daa5
N
4246 }
4247 }
4248
4249 if (max(before_length, after_length) > min_offset_diff)
4250 return -EINVAL;
4251
4252 if (spares < mddev->delta_disks)
4253 return -EINVAL;
4254
4255 conf->offset_diff = min_offset_diff;
4256 spin_lock_irq(&conf->device_lock);
4257 if (conf->mirrors_new) {
4258 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4259 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4260 smp_mb();
c4796e21 4261 kfree(conf->mirrors_old);
3ea7daa5
N
4262 conf->mirrors_old = conf->mirrors;
4263 conf->mirrors = conf->mirrors_new;
4264 conf->mirrors_new = NULL;
4265 }
4266 setup_geo(&conf->geo, mddev, geo_start);
4267 smp_mb();
4268 if (mddev->reshape_backwards) {
4269 sector_t size = raid10_size(mddev, 0, 0);
4270 if (size < mddev->array_sectors) {
4271 spin_unlock_irq(&conf->device_lock);
08464e09
N
4272 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4273 mdname(mddev));
3ea7daa5
N
4274 return -EINVAL;
4275 }
4276 mddev->resync_max_sectors = size;
4277 conf->reshape_progress = size;
4278 } else
4279 conf->reshape_progress = 0;
299b0685 4280 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4281 spin_unlock_irq(&conf->device_lock);
4282
bb63a701
N
4283 if (mddev->delta_disks && mddev->bitmap) {
4284 ret = bitmap_resize(mddev->bitmap,
4285 raid10_size(mddev, 0,
4286 conf->geo.raid_disks),
4287 0, 0);
4288 if (ret)
4289 goto abort;
4290 }
3ea7daa5
N
4291 if (mddev->delta_disks > 0) {
4292 rdev_for_each(rdev, mddev)
4293 if (rdev->raid_disk < 0 &&
4294 !test_bit(Faulty, &rdev->flags)) {
4295 if (raid10_add_disk(mddev, rdev) == 0) {
4296 if (rdev->raid_disk >=
4297 conf->prev.raid_disks)
4298 set_bit(In_sync, &rdev->flags);
4299 else
4300 rdev->recovery_offset = 0;
4301
4302 if (sysfs_link_rdev(mddev, rdev))
4303 /* Failure here is OK */;
4304 }
4305 } else if (rdev->raid_disk >= conf->prev.raid_disks
4306 && !test_bit(Faulty, &rdev->flags)) {
4307 /* This is a spare that was manually added */
4308 set_bit(In_sync, &rdev->flags);
4309 }
4310 }
4311 /* When a reshape changes the number of devices,
4312 * ->degraded is measured against the larger of the
4313 * pre and post numbers.
4314 */
4315 spin_lock_irq(&conf->device_lock);
4316 mddev->degraded = calc_degraded(conf);
4317 spin_unlock_irq(&conf->device_lock);
4318 mddev->raid_disks = conf->geo.raid_disks;
4319 mddev->reshape_position = conf->reshape_progress;
2953079c 4320 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5
N
4321
4322 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4323 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4324 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4325 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4326 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4327
4328 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4329 "reshape");
4330 if (!mddev->sync_thread) {
bb63a701
N
4331 ret = -EAGAIN;
4332 goto abort;
3ea7daa5
N
4333 }
4334 conf->reshape_checkpoint = jiffies;
4335 md_wakeup_thread(mddev->sync_thread);
4336 md_new_event(mddev);
4337 return 0;
bb63a701
N
4338
4339abort:
4340 mddev->recovery = 0;
4341 spin_lock_irq(&conf->device_lock);
4342 conf->geo = conf->prev;
4343 mddev->raid_disks = conf->geo.raid_disks;
4344 rdev_for_each(rdev, mddev)
4345 rdev->new_data_offset = rdev->data_offset;
4346 smp_wmb();
4347 conf->reshape_progress = MaxSector;
299b0685 4348 conf->reshape_safe = MaxSector;
bb63a701
N
4349 mddev->reshape_position = MaxSector;
4350 spin_unlock_irq(&conf->device_lock);
4351 return ret;
3ea7daa5
N
4352}
4353
4354/* Calculate the last device-address that could contain
4355 * any block from the chunk that includes the array-address 's'
4356 * and report the next address.
4357 * i.e. the address returned will be chunk-aligned and after
4358 * any data that is in the chunk containing 's'.
4359 */
4360static sector_t last_dev_address(sector_t s, struct geom *geo)
4361{
4362 s = (s | geo->chunk_mask) + 1;
4363 s >>= geo->chunk_shift;
4364 s *= geo->near_copies;
4365 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4366 s *= geo->far_copies;
4367 s <<= geo->chunk_shift;
4368 return s;
4369}
4370
4371/* Calculate the first device-address that could contain
4372 * any block from the chunk that includes the array-address 's'.
4373 * This too will be the start of a chunk
4374 */
4375static sector_t first_dev_address(sector_t s, struct geom *geo)
4376{
4377 s >>= geo->chunk_shift;
4378 s *= geo->near_copies;
4379 sector_div(s, geo->raid_disks);
4380 s *= geo->far_copies;
4381 s <<= geo->chunk_shift;
4382 return s;
4383}
4384
4385static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4386 int *skipped)
4387{
4388 /* We simply copy at most one chunk (smallest of old and new)
4389 * at a time, possibly less if that exceeds RESYNC_PAGES,
4390 * or we hit a bad block or something.
4391 * This might mean we pause for normal IO in the middle of
02ec5026 4392 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4393 * can record any location.
4394 *
4395 * If we will want to write to a location that isn't
4396 * yet recorded as 'safe' (i.e. in metadata on disk) then
4397 * we need to flush all reshape requests and update the metadata.
4398 *
4399 * When reshaping forwards (e.g. to more devices), we interpret
4400 * 'safe' as the earliest block which might not have been copied
4401 * down yet. We divide this by previous stripe size and multiply
4402 * by previous stripe length to get lowest device offset that we
4403 * cannot write to yet.
4404 * We interpret 'sector_nr' as an address that we want to write to.
4405 * From this we use last_device_address() to find where we might
4406 * write to, and first_device_address on the 'safe' position.
4407 * If this 'next' write position is after the 'safe' position,
4408 * we must update the metadata to increase the 'safe' position.
4409 *
4410 * When reshaping backwards, we round in the opposite direction
4411 * and perform the reverse test: next write position must not be
4412 * less than current safe position.
4413 *
4414 * In all this the minimum difference in data offsets
4415 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4416 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4417 *
4418 * We need to prepare all the bios here before we start any IO
4419 * to ensure the size we choose is acceptable to all devices.
4420 * The means one for each copy for write-out and an extra one for
4421 * read-in.
4422 * We store the read-in bio in ->master_bio and the others in
4423 * ->devs[x].bio and ->devs[x].repl_bio.
4424 */
4425 struct r10conf *conf = mddev->private;
4426 struct r10bio *r10_bio;
4427 sector_t next, safe, last;
4428 int max_sectors;
4429 int nr_sectors;
4430 int s;
4431 struct md_rdev *rdev;
4432 int need_flush = 0;
4433 struct bio *blist;
4434 struct bio *bio, *read_bio;
4435 int sectors_done = 0;
f0250618 4436 struct page **pages;
3ea7daa5
N
4437
4438 if (sector_nr == 0) {
4439 /* If restarting in the middle, skip the initial sectors */
4440 if (mddev->reshape_backwards &&
4441 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4442 sector_nr = (raid10_size(mddev, 0, 0)
4443 - conf->reshape_progress);
4444 } else if (!mddev->reshape_backwards &&
4445 conf->reshape_progress > 0)
4446 sector_nr = conf->reshape_progress;
4447 if (sector_nr) {
4448 mddev->curr_resync_completed = sector_nr;
4449 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4450 *skipped = 1;
4451 return sector_nr;
4452 }
4453 }
4454
4455 /* We don't use sector_nr to track where we are up to
4456 * as that doesn't work well for ->reshape_backwards.
4457 * So just use ->reshape_progress.
4458 */
4459 if (mddev->reshape_backwards) {
4460 /* 'next' is the earliest device address that we might
4461 * write to for this chunk in the new layout
4462 */
4463 next = first_dev_address(conf->reshape_progress - 1,
4464 &conf->geo);
4465
4466 /* 'safe' is the last device address that we might read from
4467 * in the old layout after a restart
4468 */
4469 safe = last_dev_address(conf->reshape_safe - 1,
4470 &conf->prev);
4471
4472 if (next + conf->offset_diff < safe)
4473 need_flush = 1;
4474
4475 last = conf->reshape_progress - 1;
4476 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4477 & conf->prev.chunk_mask);
4478 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4479 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4480 } else {
4481 /* 'next' is after the last device address that we
4482 * might write to for this chunk in the new layout
4483 */
4484 next = last_dev_address(conf->reshape_progress, &conf->geo);
4485
4486 /* 'safe' is the earliest device address that we might
4487 * read from in the old layout after a restart
4488 */
4489 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4490
4491 /* Need to update metadata if 'next' might be beyond 'safe'
4492 * as that would possibly corrupt data
4493 */
4494 if (next > safe + conf->offset_diff)
4495 need_flush = 1;
4496
4497 sector_nr = conf->reshape_progress;
4498 last = sector_nr | (conf->geo.chunk_mask
4499 & conf->prev.chunk_mask);
4500
4501 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4502 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4503 }
4504
4505 if (need_flush ||
4506 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4507 /* Need to update reshape_position in metadata */
4508 wait_barrier(conf);
4509 mddev->reshape_position = conf->reshape_progress;
4510 if (mddev->reshape_backwards)
4511 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4512 - conf->reshape_progress;
4513 else
4514 mddev->curr_resync_completed = conf->reshape_progress;
4515 conf->reshape_checkpoint = jiffies;
2953079c 4516 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5 4517 md_wakeup_thread(mddev->thread);
2953079c 4518 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
4519 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4520 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4521 allow_barrier(conf);
4522 return sectors_done;
4523 }
3ea7daa5
N
4524 conf->reshape_safe = mddev->reshape_position;
4525 allow_barrier(conf);
4526 }
4527
4528read_more:
4529 /* Now schedule reads for blocks from sector_nr to last */
208410b5 4530 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 4531 r10_bio->state = 0;
3ea7daa5
N
4532 raise_barrier(conf, sectors_done != 0);
4533 atomic_set(&r10_bio->remaining, 0);
4534 r10_bio->mddev = mddev;
4535 r10_bio->sector = sector_nr;
4536 set_bit(R10BIO_IsReshape, &r10_bio->state);
4537 r10_bio->sectors = last - sector_nr + 1;
4538 rdev = read_balance(conf, r10_bio, &max_sectors);
4539 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4540
4541 if (!rdev) {
4542 /* Cannot read from here, so need to record bad blocks
4543 * on all the target devices.
4544 */
4545 // FIXME
afeee514 4546 mempool_free(r10_bio, &conf->r10buf_pool);
3ea7daa5
N
4547 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548 return sectors_done;
4549 }
4550
4551 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4552
74d46992 4553 bio_set_dev(read_bio, rdev->bdev);
4f024f37 4554 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4555 + rdev->data_offset);
4556 read_bio->bi_private = r10_bio;
81fa1520 4557 read_bio->bi_end_io = end_reshape_read;
796a5cf0 4558 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
ce0b0a46 4559 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4e4cbee9 4560 read_bio->bi_status = 0;
3ea7daa5 4561 read_bio->bi_vcnt = 0;
4f024f37 4562 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4563 r10_bio->master_bio = read_bio;
4564 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4565
4566 /* Now find the locations in the new layout */
4567 __raid10_find_phys(&conf->geo, r10_bio);
4568
4569 blist = read_bio;
4570 read_bio->bi_next = NULL;
4571
d094d686 4572 rcu_read_lock();
3ea7daa5
N
4573 for (s = 0; s < conf->copies*2; s++) {
4574 struct bio *b;
4575 int d = r10_bio->devs[s/2].devnum;
4576 struct md_rdev *rdev2;
4577 if (s&1) {
d094d686 4578 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4579 b = r10_bio->devs[s/2].repl_bio;
4580 } else {
d094d686 4581 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4582 b = r10_bio->devs[s/2].bio;
4583 }
4584 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4585 continue;
8be185f2 4586
74d46992 4587 bio_set_dev(b, rdev2->bdev);
4f024f37
KO
4588 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4589 rdev2->new_data_offset;
3ea7daa5 4590 b->bi_end_io = end_reshape_write;
796a5cf0 4591 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
3ea7daa5 4592 b->bi_next = blist;
3ea7daa5
N
4593 blist = b;
4594 }
4595
4596 /* Now add as many pages as possible to all of these bios. */
4597
4598 nr_sectors = 0;
f0250618 4599 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4600 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
f0250618 4601 struct page *page = pages[s / (PAGE_SIZE >> 9)];
3ea7daa5
N
4602 int len = (max_sectors - s) << 9;
4603 if (len > PAGE_SIZE)
4604 len = PAGE_SIZE;
4605 for (bio = blist; bio ; bio = bio->bi_next) {
c85ba149
ML
4606 /*
4607 * won't fail because the vec table is big enough
4608 * to hold all these pages
4609 */
4610 bio_add_page(bio, page, len, 0);
3ea7daa5
N
4611 }
4612 sector_nr += len >> 9;
4613 nr_sectors += len >> 9;
4614 }
d094d686 4615 rcu_read_unlock();
3ea7daa5
N
4616 r10_bio->sectors = nr_sectors;
4617
4618 /* Now submit the read */
74d46992 4619 md_sync_acct_bio(read_bio, r10_bio->sectors);
3ea7daa5
N
4620 atomic_inc(&r10_bio->remaining);
4621 read_bio->bi_next = NULL;
4622 generic_make_request(read_bio);
4623 sector_nr += nr_sectors;
4624 sectors_done += nr_sectors;
4625 if (sector_nr <= last)
4626 goto read_more;
4627
4628 /* Now that we have done the whole section we can
4629 * update reshape_progress
4630 */
4631 if (mddev->reshape_backwards)
4632 conf->reshape_progress -= sectors_done;
4633 else
4634 conf->reshape_progress += sectors_done;
4635
4636 return sectors_done;
4637}
4638
4639static void end_reshape_request(struct r10bio *r10_bio);
4640static int handle_reshape_read_error(struct mddev *mddev,
4641 struct r10bio *r10_bio);
4642static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4643{
4644 /* Reshape read completed. Hopefully we have a block
4645 * to write out.
4646 * If we got a read error then we do sync 1-page reads from
4647 * elsewhere until we find the data - or give up.
4648 */
4649 struct r10conf *conf = mddev->private;
4650 int s;
4651
4652 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4653 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4654 /* Reshape has been aborted */
4655 md_done_sync(mddev, r10_bio->sectors, 0);
4656 return;
4657 }
4658
4659 /* We definitely have the data in the pages, schedule the
4660 * writes.
4661 */
4662 atomic_set(&r10_bio->remaining, 1);
4663 for (s = 0; s < conf->copies*2; s++) {
4664 struct bio *b;
4665 int d = r10_bio->devs[s/2].devnum;
4666 struct md_rdev *rdev;
d094d686 4667 rcu_read_lock();
3ea7daa5 4668 if (s&1) {
d094d686 4669 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4670 b = r10_bio->devs[s/2].repl_bio;
4671 } else {
d094d686 4672 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4673 b = r10_bio->devs[s/2].bio;
4674 }
d094d686
N
4675 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4676 rcu_read_unlock();
3ea7daa5 4677 continue;
d094d686 4678 }
3ea7daa5 4679 atomic_inc(&rdev->nr_pending);
d094d686 4680 rcu_read_unlock();
74d46992 4681 md_sync_acct_bio(b, r10_bio->sectors);
3ea7daa5
N
4682 atomic_inc(&r10_bio->remaining);
4683 b->bi_next = NULL;
4684 generic_make_request(b);
4685 }
4686 end_reshape_request(r10_bio);
4687}
4688
4689static void end_reshape(struct r10conf *conf)
4690{
4691 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4692 return;
4693
4694 spin_lock_irq(&conf->device_lock);
4695 conf->prev = conf->geo;
4696 md_finish_reshape(conf->mddev);
4697 smp_wmb();
4698 conf->reshape_progress = MaxSector;
299b0685 4699 conf->reshape_safe = MaxSector;
3ea7daa5
N
4700 spin_unlock_irq(&conf->device_lock);
4701
4702 /* read-ahead size must cover two whole stripes, which is
4703 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4704 */
4705 if (conf->mddev->queue) {
4706 int stripe = conf->geo.raid_disks *
4707 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4708 stripe /= conf->geo.near_copies;
dc3b17cc
JK
4709 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4710 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3ea7daa5
N
4711 }
4712 conf->fullsync = 0;
4713}
4714
3ea7daa5
N
4715static int handle_reshape_read_error(struct mddev *mddev,
4716 struct r10bio *r10_bio)
4717{
4718 /* Use sync reads to get the blocks from somewhere else */
4719 int sectors = r10_bio->sectors;
3ea7daa5 4720 struct r10conf *conf = mddev->private;
584ed9fa 4721 struct r10bio *r10b;
3ea7daa5
N
4722 int slot = 0;
4723 int idx = 0;
2d06e3b7
ML
4724 struct page **pages;
4725
584ed9fa
MK
4726 r10b = kmalloc(sizeof(*r10b) +
4727 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4728 if (!r10b) {
4729 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4730 return -ENOMEM;
4731 }
4732
2d06e3b7
ML
4733 /* reshape IOs share pages from .devs[0].bio */
4734 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4735
e0ee7785
N
4736 r10b->sector = r10_bio->sector;
4737 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4738
4739 while (sectors) {
4740 int s = sectors;
4741 int success = 0;
4742 int first_slot = slot;
4743
4744 if (s > (PAGE_SIZE >> 9))
4745 s = PAGE_SIZE >> 9;
4746
d094d686 4747 rcu_read_lock();
3ea7daa5 4748 while (!success) {
e0ee7785 4749 int d = r10b->devs[slot].devnum;
d094d686 4750 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4751 sector_t addr;
4752 if (rdev == NULL ||
4753 test_bit(Faulty, &rdev->flags) ||
4754 !test_bit(In_sync, &rdev->flags))
4755 goto failed;
4756
e0ee7785 4757 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
4758 atomic_inc(&rdev->nr_pending);
4759 rcu_read_unlock();
3ea7daa5
N
4760 success = sync_page_io(rdev,
4761 addr,
4762 s << 9,
2d06e3b7 4763 pages[idx],
796a5cf0 4764 REQ_OP_READ, 0, false);
d094d686
N
4765 rdev_dec_pending(rdev, mddev);
4766 rcu_read_lock();
3ea7daa5
N
4767 if (success)
4768 break;
4769 failed:
4770 slot++;
4771 if (slot >= conf->copies)
4772 slot = 0;
4773 if (slot == first_slot)
4774 break;
4775 }
d094d686 4776 rcu_read_unlock();
3ea7daa5
N
4777 if (!success) {
4778 /* couldn't read this block, must give up */
4779 set_bit(MD_RECOVERY_INTR,
4780 &mddev->recovery);
584ed9fa 4781 kfree(r10b);
3ea7daa5
N
4782 return -EIO;
4783 }
4784 sectors -= s;
4785 idx++;
4786 }
584ed9fa 4787 kfree(r10b);
3ea7daa5
N
4788 return 0;
4789}
4790
4246a0b6 4791static void end_reshape_write(struct bio *bio)
3ea7daa5 4792{
f0250618 4793 struct r10bio *r10_bio = get_resync_r10bio(bio);
3ea7daa5
N
4794 struct mddev *mddev = r10_bio->mddev;
4795 struct r10conf *conf = mddev->private;
4796 int d;
4797 int slot;
4798 int repl;
4799 struct md_rdev *rdev = NULL;
4800
4801 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4802 if (repl)
4803 rdev = conf->mirrors[d].replacement;
4804 if (!rdev) {
4805 smp_mb();
4806 rdev = conf->mirrors[d].rdev;
4807 }
4808
4e4cbee9 4809 if (bio->bi_status) {
3ea7daa5
N
4810 /* FIXME should record badblock */
4811 md_error(mddev, rdev);
4812 }
4813
4814 rdev_dec_pending(rdev, mddev);
4815 end_reshape_request(r10_bio);
4816}
4817
4818static void end_reshape_request(struct r10bio *r10_bio)
4819{
4820 if (!atomic_dec_and_test(&r10_bio->remaining))
4821 return;
4822 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4823 bio_put(r10_bio->master_bio);
4824 put_buf(r10_bio);
4825}
4826
4827static void raid10_finish_reshape(struct mddev *mddev)
4828{
4829 struct r10conf *conf = mddev->private;
4830
4831 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4832 return;
4833
4834 if (mddev->delta_disks > 0) {
3ea7daa5
N
4835 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4836 mddev->recovery_cp = mddev->resync_max_sectors;
4837 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4838 }
8876391e 4839 mddev->resync_max_sectors = mddev->array_sectors;
63aced61
N
4840 } else {
4841 int d;
d094d686 4842 rcu_read_lock();
63aced61
N
4843 for (d = conf->geo.raid_disks ;
4844 d < conf->geo.raid_disks - mddev->delta_disks;
4845 d++) {
d094d686 4846 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
4847 if (rdev)
4848 clear_bit(In_sync, &rdev->flags);
d094d686 4849 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
4850 if (rdev)
4851 clear_bit(In_sync, &rdev->flags);
4852 }
d094d686 4853 rcu_read_unlock();
3ea7daa5
N
4854 }
4855 mddev->layout = mddev->new_layout;
4856 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4857 mddev->reshape_position = MaxSector;
4858 mddev->delta_disks = 0;
4859 mddev->reshape_backwards = 0;
4860}
4861
84fc4b56 4862static struct md_personality raid10_personality =
1da177e4
LT
4863{
4864 .name = "raid10",
2604b703 4865 .level = 10,
1da177e4 4866 .owner = THIS_MODULE,
849674e4
SL
4867 .make_request = raid10_make_request,
4868 .run = raid10_run,
afa0f557 4869 .free = raid10_free,
849674e4
SL
4870 .status = raid10_status,
4871 .error_handler = raid10_error,
1da177e4
LT
4872 .hot_add_disk = raid10_add_disk,
4873 .hot_remove_disk= raid10_remove_disk,
4874 .spare_active = raid10_spare_active,
849674e4 4875 .sync_request = raid10_sync_request,
6cce3b23 4876 .quiesce = raid10_quiesce,
80c3a6ce 4877 .size = raid10_size,
006a09a0 4878 .resize = raid10_resize,
dab8b292 4879 .takeover = raid10_takeover,
3ea7daa5
N
4880 .check_reshape = raid10_check_reshape,
4881 .start_reshape = raid10_start_reshape,
4882 .finish_reshape = raid10_finish_reshape,
5c675f83 4883 .congested = raid10_congested,
1da177e4
LT
4884};
4885
4886static int __init raid_init(void)
4887{
2604b703 4888 return register_md_personality(&raid10_personality);
1da177e4
LT
4889}
4890
4891static void raid_exit(void)
4892{
2604b703 4893 unregister_md_personality(&raid10_personality);
1da177e4
LT
4894}
4895
4896module_init(raid_init);
4897module_exit(raid_exit);
4898MODULE_LICENSE("GPL");
0efb9e61 4899MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4900MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4901MODULE_ALIAS("md-raid10");
2604b703 4902MODULE_ALIAS("md-level-10");
34db0cd6
N
4903
4904module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);