]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/md/raid10.c
md/raid10: Handle replacement devices during resync.
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
43b2e5d8 27#include "md.h"
ef740c37 28#include "raid10.h"
dab8b292 29#include "raid0.h"
ef740c37 30#include "bitmap.h"
1da177e4
LT
31
32/*
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
c93983bf 39 * far_offset (stored in bit 16 of layout )
1da177e4
LT
40 *
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
c93983bf 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
1da177e4
LT
55 */
56
57/*
58 * Number of guaranteed r10bios in case of extreme VM load:
59 */
60#define NR_RAID10_BIOS 256
61
34db0cd6
N
62/* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
65 */
66static int max_queued_requests = 1024;
67
e879a879
N
68static void allow_barrier(struct r10conf *conf);
69static void lower_barrier(struct r10conf *conf);
0a27ec96 70
dd0fc66f 71static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 72{
e879a879 73 struct r10conf *conf = data;
9f2c9d12 74 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 75
69335ef3
N
76 /* allocate a r10bio with room for raid_disks entries in the
77 * bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r10bio_pool_free(void *r10_bio, void *data)
82{
83 kfree(r10_bio);
84}
85
0310fa21 86/* Maximum size of each resync request */
1da177e4 87#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 88#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
89/* amount of memory to reserve for resync requests */
90#define RESYNC_WINDOW (1024*1024)
91/* maximum number of concurrent requests, memory permitting */
92#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
93
94/*
95 * When performing a resync, we need to read and compare, so
96 * we need as many pages are there are copies.
97 * When performing a recovery, we need 2 bios, one for read,
98 * one for write (we recover only one drive per r10buf)
99 *
100 */
dd0fc66f 101static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 102{
e879a879 103 struct r10conf *conf = data;
1da177e4 104 struct page *page;
9f2c9d12 105 struct r10bio *r10_bio;
1da177e4
LT
106 struct bio *bio;
107 int i, j;
108 int nalloc;
109
110 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 111 if (!r10_bio)
1da177e4 112 return NULL;
1da177e4
LT
113
114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 nalloc = conf->copies; /* resync */
116 else
117 nalloc = 2; /* recovery */
118
119 /*
120 * Allocate bios.
121 */
122 for (j = nalloc ; j-- ; ) {
6746557f 123 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
124 if (!bio)
125 goto out_free_bio;
126 r10_bio->devs[j].bio = bio;
69335ef3
N
127 if (!conf->have_replacement)
128 continue;
129 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
130 if (!bio)
131 goto out_free_bio;
132 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
133 }
134 /*
135 * Allocate RESYNC_PAGES data pages and attach them
136 * where needed.
137 */
138 for (j = 0 ; j < nalloc; j++) {
69335ef3 139 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
140 bio = r10_bio->devs[j].bio;
141 for (i = 0; i < RESYNC_PAGES; i++) {
c65060ad
NK
142 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
143 &conf->mddev->recovery)) {
144 /* we can share bv_page's during recovery */
145 struct bio *rbio = r10_bio->devs[0].bio;
146 page = rbio->bi_io_vec[i].bv_page;
147 get_page(page);
148 } else
149 page = alloc_page(gfp_flags);
1da177e4
LT
150 if (unlikely(!page))
151 goto out_free_pages;
152
153 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
154 if (rbio)
155 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
156 }
157 }
158
159 return r10_bio;
160
161out_free_pages:
162 for ( ; i > 0 ; i--)
1345b1d8 163 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
164 while (j--)
165 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 166 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
167 j = -1;
168out_free_bio:
69335ef3 169 while (++j < nalloc) {
1da177e4 170 bio_put(r10_bio->devs[j].bio);
69335ef3
N
171 if (r10_bio->devs[j].repl_bio)
172 bio_put(r10_bio->devs[j].repl_bio);
173 }
1da177e4
LT
174 r10bio_pool_free(r10_bio, conf);
175 return NULL;
176}
177
178static void r10buf_pool_free(void *__r10_bio, void *data)
179{
180 int i;
e879a879 181 struct r10conf *conf = data;
9f2c9d12 182 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
183 int j;
184
185 for (j=0; j < conf->copies; j++) {
186 struct bio *bio = r10bio->devs[j].bio;
187 if (bio) {
188 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 189 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
190 bio->bi_io_vec[i].bv_page = NULL;
191 }
192 bio_put(bio);
193 }
69335ef3
N
194 bio = r10bio->devs[j].repl_bio;
195 if (bio)
196 bio_put(bio);
1da177e4
LT
197 }
198 r10bio_pool_free(r10bio, conf);
199}
200
e879a879 201static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
202{
203 int i;
204
205 for (i = 0; i < conf->copies; i++) {
206 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 207 if (!BIO_SPECIAL(*bio))
1da177e4
LT
208 bio_put(*bio);
209 *bio = NULL;
69335ef3
N
210 bio = &r10_bio->devs[i].repl_bio;
211 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
212 bio_put(*bio);
213 *bio = NULL;
1da177e4
LT
214 }
215}
216
9f2c9d12 217static void free_r10bio(struct r10bio *r10_bio)
1da177e4 218{
e879a879 219 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 220
1da177e4
LT
221 put_all_bios(conf, r10_bio);
222 mempool_free(r10_bio, conf->r10bio_pool);
223}
224
9f2c9d12 225static void put_buf(struct r10bio *r10_bio)
1da177e4 226{
e879a879 227 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
228
229 mempool_free(r10_bio, conf->r10buf_pool);
230
0a27ec96 231 lower_barrier(conf);
1da177e4
LT
232}
233
9f2c9d12 234static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
235{
236 unsigned long flags;
fd01b88c 237 struct mddev *mddev = r10_bio->mddev;
e879a879 238 struct r10conf *conf = mddev->private;
1da177e4
LT
239
240 spin_lock_irqsave(&conf->device_lock, flags);
241 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 242 conf->nr_queued ++;
1da177e4
LT
243 spin_unlock_irqrestore(&conf->device_lock, flags);
244
388667be
AJ
245 /* wake up frozen array... */
246 wake_up(&conf->wait_barrier);
247
1da177e4
LT
248 md_wakeup_thread(mddev->thread);
249}
250
251/*
252 * raid_end_bio_io() is called when we have finished servicing a mirrored
253 * operation and are ready to return a success/failure code to the buffer
254 * cache layer.
255 */
9f2c9d12 256static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
257{
258 struct bio *bio = r10_bio->master_bio;
856e08e2 259 int done;
e879a879 260 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 261
856e08e2
N
262 if (bio->bi_phys_segments) {
263 unsigned long flags;
264 spin_lock_irqsave(&conf->device_lock, flags);
265 bio->bi_phys_segments--;
266 done = (bio->bi_phys_segments == 0);
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268 } else
269 done = 1;
270 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
271 clear_bit(BIO_UPTODATE, &bio->bi_flags);
272 if (done) {
273 bio_endio(bio, 0);
274 /*
275 * Wake up any possible resync thread that waits for the device
276 * to go idle.
277 */
278 allow_barrier(conf);
279 }
1da177e4
LT
280 free_r10bio(r10_bio);
281}
282
283/*
284 * Update disk head position estimator based on IRQ completion info.
285 */
9f2c9d12 286static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 287{
e879a879 288 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
289
290 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
291 r10_bio->devs[slot].addr + (r10_bio->sectors);
292}
293
778ca018
NK
294/*
295 * Find the disk number which triggered given bio
296 */
e879a879 297static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 298 struct bio *bio, int *slotp, int *replp)
778ca018
NK
299{
300 int slot;
69335ef3 301 int repl = 0;
778ca018 302
69335ef3 303 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
304 if (r10_bio->devs[slot].bio == bio)
305 break;
69335ef3
N
306 if (r10_bio->devs[slot].repl_bio == bio) {
307 repl = 1;
308 break;
309 }
310 }
778ca018
NK
311
312 BUG_ON(slot == conf->copies);
313 update_head_pos(slot, r10_bio);
314
749c55e9
N
315 if (slotp)
316 *slotp = slot;
69335ef3
N
317 if (replp)
318 *replp = repl;
778ca018
NK
319 return r10_bio->devs[slot].devnum;
320}
321
6712ecf8 322static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
323{
324 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 325 struct r10bio *r10_bio = bio->bi_private;
1da177e4 326 int slot, dev;
abbf098e 327 struct md_rdev *rdev;
e879a879 328 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 329
1da177e4
LT
330
331 slot = r10_bio->read_slot;
332 dev = r10_bio->devs[slot].devnum;
abbf098e 333 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
334 /*
335 * this branch is our 'one mirror IO has finished' event handler:
336 */
4443ae10
N
337 update_head_pos(slot, r10_bio);
338
339 if (uptodate) {
1da177e4
LT
340 /*
341 * Set R10BIO_Uptodate in our master bio, so that
342 * we will return a good error code to the higher
343 * levels even if IO on some other mirrored buffer fails.
344 *
345 * The 'master' represents the composite IO operation to
346 * user-side. So if something waits for IO, then it will
347 * wait for the 'master' bio.
348 */
349 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 350 raid_end_bio_io(r10_bio);
abbf098e 351 rdev_dec_pending(rdev, conf->mddev);
4443ae10 352 } else {
1da177e4 353 /*
7c4e06ff 354 * oops, read error - keep the refcount on the rdev
1da177e4
LT
355 */
356 char b[BDEVNAME_SIZE];
8bda470e
CD
357 printk_ratelimited(KERN_ERR
358 "md/raid10:%s: %s: rescheduling sector %llu\n",
359 mdname(conf->mddev),
abbf098e 360 bdevname(rdev->bdev, b),
8bda470e 361 (unsigned long long)r10_bio->sector);
856e08e2 362 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
363 reschedule_retry(r10_bio);
364 }
1da177e4
LT
365}
366
9f2c9d12 367static void close_write(struct r10bio *r10_bio)
bd870a16
N
368{
369 /* clear the bitmap if all writes complete successfully */
370 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
371 r10_bio->sectors,
372 !test_bit(R10BIO_Degraded, &r10_bio->state),
373 0);
374 md_write_end(r10_bio->mddev);
375}
376
9f2c9d12 377static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
378{
379 if (atomic_dec_and_test(&r10_bio->remaining)) {
380 if (test_bit(R10BIO_WriteError, &r10_bio->state))
381 reschedule_retry(r10_bio);
382 else {
383 close_write(r10_bio);
384 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
385 reschedule_retry(r10_bio);
386 else
387 raid_end_bio_io(r10_bio);
388 }
389 }
390}
391
6712ecf8 392static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r10bio *r10_bio = bio->bi_private;
778ca018 396 int dev;
749c55e9 397 int dec_rdev = 1;
e879a879 398 struct r10conf *conf = r10_bio->mddev->private;
475b0321
N
399 int slot, repl;
400 struct md_rdev *rdev;
1da177e4 401
475b0321 402 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 403
475b0321
N
404 if (repl)
405 rdev = conf->mirrors[dev].replacement;
406 else
407 rdev = conf->mirrors[dev].rdev;
1da177e4
LT
408 /*
409 * this branch is our 'one mirror IO has finished' event handler:
410 */
6cce3b23 411 if (!uptodate) {
475b0321
N
412 if (repl)
413 /* Never record new bad blocks to replacement,
414 * just fail it.
415 */
416 md_error(rdev->mddev, rdev);
417 else {
418 set_bit(WriteErrorSeen, &rdev->flags);
419 set_bit(R10BIO_WriteError, &r10_bio->state);
420 dec_rdev = 0;
421 }
749c55e9 422 } else {
1da177e4
LT
423 /*
424 * Set R10BIO_Uptodate in our master bio, so that
425 * we will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer fails.
427 *
428 * The 'master' represents the composite IO operation to
429 * user-side. So if something waits for IO, then it will
430 * wait for the 'master' bio.
431 */
749c55e9
N
432 sector_t first_bad;
433 int bad_sectors;
434
1da177e4
LT
435 set_bit(R10BIO_Uptodate, &r10_bio->state);
436
749c55e9 437 /* Maybe we can clear some bad blocks. */
475b0321 438 if (is_badblock(rdev,
749c55e9
N
439 r10_bio->devs[slot].addr,
440 r10_bio->sectors,
441 &first_bad, &bad_sectors)) {
442 bio_put(bio);
475b0321
N
443 if (repl)
444 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
445 else
446 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
447 dec_rdev = 0;
448 set_bit(R10BIO_MadeGood, &r10_bio->state);
449 }
450 }
451
1da177e4
LT
452 /*
453 *
454 * Let's see if all mirrored write operations have finished
455 * already.
456 */
19d5f834 457 one_write_done(r10_bio);
749c55e9
N
458 if (dec_rdev)
459 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
460}
461
1da177e4
LT
462/*
463 * RAID10 layout manager
25985edc 464 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
465 * parameters: near_copies and far_copies.
466 * near_copies * far_copies must be <= raid_disks.
467 * Normally one of these will be 1.
468 * If both are 1, we get raid0.
469 * If near_copies == raid_disks, we get raid1.
470 *
25985edc 471 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
472 * first chunk, followed by near_copies copies of the next chunk and
473 * so on.
474 * If far_copies > 1, then after 1/far_copies of the array has been assigned
475 * as described above, we start again with a device offset of near_copies.
476 * So we effectively have another copy of the whole array further down all
477 * the drives, but with blocks on different drives.
478 * With this layout, and block is never stored twice on the one device.
479 *
480 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 481 * on each device that it is on.
1da177e4
LT
482 *
483 * raid10_find_virt does the reverse mapping, from a device and a
484 * sector offset to a virtual address
485 */
486
e879a879 487static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
1da177e4
LT
488{
489 int n,f;
490 sector_t sector;
491 sector_t chunk;
492 sector_t stripe;
493 int dev;
494
495 int slot = 0;
496
497 /* now calculate first sector/dev */
498 chunk = r10bio->sector >> conf->chunk_shift;
499 sector = r10bio->sector & conf->chunk_mask;
500
501 chunk *= conf->near_copies;
502 stripe = chunk;
503 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
504 if (conf->far_offset)
505 stripe *= conf->far_copies;
1da177e4
LT
506
507 sector += stripe << conf->chunk_shift;
508
509 /* and calculate all the others */
510 for (n=0; n < conf->near_copies; n++) {
511 int d = dev;
512 sector_t s = sector;
513 r10bio->devs[slot].addr = sector;
514 r10bio->devs[slot].devnum = d;
515 slot++;
516
517 for (f = 1; f < conf->far_copies; f++) {
518 d += conf->near_copies;
519 if (d >= conf->raid_disks)
520 d -= conf->raid_disks;
521 s += conf->stride;
522 r10bio->devs[slot].devnum = d;
523 r10bio->devs[slot].addr = s;
524 slot++;
525 }
526 dev++;
527 if (dev >= conf->raid_disks) {
528 dev = 0;
529 sector += (conf->chunk_mask + 1);
530 }
531 }
532 BUG_ON(slot != conf->copies);
533}
534
e879a879 535static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
536{
537 sector_t offset, chunk, vchunk;
538
1da177e4 539 offset = sector & conf->chunk_mask;
c93983bf
N
540 if (conf->far_offset) {
541 int fc;
542 chunk = sector >> conf->chunk_shift;
543 fc = sector_div(chunk, conf->far_copies);
544 dev -= fc * conf->near_copies;
545 if (dev < 0)
546 dev += conf->raid_disks;
547 } else {
64a742bc 548 while (sector >= conf->stride) {
c93983bf
N
549 sector -= conf->stride;
550 if (dev < conf->near_copies)
551 dev += conf->raid_disks - conf->near_copies;
552 else
553 dev -= conf->near_copies;
554 }
555 chunk = sector >> conf->chunk_shift;
556 }
1da177e4
LT
557 vchunk = chunk * conf->raid_disks + dev;
558 sector_div(vchunk, conf->near_copies);
559 return (vchunk << conf->chunk_shift) + offset;
560}
561
562/**
563 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
564 * @q: request queue
cc371e66 565 * @bvm: properties of new bio
1da177e4
LT
566 * @biovec: the request that could be merged to it.
567 *
568 * Return amount of bytes we can accept at this offset
569 * If near_copies == raid_disk, there are no striping issues,
570 * but in that case, the function isn't called at all.
571 */
cc371e66
AK
572static int raid10_mergeable_bvec(struct request_queue *q,
573 struct bvec_merge_data *bvm,
574 struct bio_vec *biovec)
1da177e4 575{
fd01b88c 576 struct mddev *mddev = q->queuedata;
cc371e66 577 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 578 int max;
9d8f0363 579 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 580 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
581
582 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
583 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
584 if (max <= biovec->bv_len && bio_sectors == 0)
585 return biovec->bv_len;
1da177e4
LT
586 else
587 return max;
588}
589
590/*
591 * This routine returns the disk from which the requested read should
592 * be done. There is a per-array 'next expected sequential IO' sector
593 * number - if this matches on the next IO then we use the last disk.
594 * There is also a per-disk 'last know head position' sector that is
595 * maintained from IRQ contexts, both the normal and the resync IO
596 * completion handlers update this position correctly. If there is no
597 * perfect sequential match then we pick the disk whose head is closest.
598 *
599 * If there are 2 mirrors in the same 2 devices, performance degrades
600 * because position is mirror, not device based.
601 *
602 * The rdev for the device selected will have nr_pending incremented.
603 */
604
605/*
606 * FIXME: possibly should rethink readbalancing and do it differently
607 * depending on near_copies / far_copies geometry.
608 */
96c3fd1f
N
609static struct md_rdev *read_balance(struct r10conf *conf,
610 struct r10bio *r10_bio,
611 int *max_sectors)
1da177e4 612{
af3a2cd6 613 const sector_t this_sector = r10_bio->sector;
56d99121 614 int disk, slot;
856e08e2
N
615 int sectors = r10_bio->sectors;
616 int best_good_sectors;
56d99121 617 sector_t new_distance, best_dist;
abbf098e 618 struct md_rdev *rdev, *best_rdev;
56d99121
N
619 int do_balance;
620 int best_slot;
1da177e4
LT
621
622 raid10_find_phys(conf, r10_bio);
623 rcu_read_lock();
56d99121 624retry:
856e08e2 625 sectors = r10_bio->sectors;
56d99121 626 best_slot = -1;
abbf098e 627 best_rdev = NULL;
56d99121 628 best_dist = MaxSector;
856e08e2 629 best_good_sectors = 0;
56d99121 630 do_balance = 1;
1da177e4
LT
631 /*
632 * Check if we can balance. We can balance on the whole
6cce3b23
N
633 * device if no resync is going on (recovery is ok), or below
634 * the resync window. We take the first readable disk when
635 * above the resync window.
1da177e4
LT
636 */
637 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
638 && (this_sector + sectors >= conf->next_resync))
639 do_balance = 0;
1da177e4 640
56d99121 641 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
642 sector_t first_bad;
643 int bad_sectors;
644 sector_t dev_sector;
645
56d99121
N
646 if (r10_bio->devs[slot].bio == IO_BLOCKED)
647 continue;
1da177e4 648 disk = r10_bio->devs[slot].devnum;
abbf098e
N
649 rdev = rcu_dereference(conf->mirrors[disk].replacement);
650 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
651 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
652 rdev = rcu_dereference(conf->mirrors[disk].rdev);
56d99121 653 if (rdev == NULL)
1da177e4 654 continue;
abbf098e
N
655 if (test_bit(Faulty, &rdev->flags))
656 continue;
657 if (!test_bit(In_sync, &rdev->flags) &&
658 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
659 continue;
660
856e08e2
N
661 dev_sector = r10_bio->devs[slot].addr;
662 if (is_badblock(rdev, dev_sector, sectors,
663 &first_bad, &bad_sectors)) {
664 if (best_dist < MaxSector)
665 /* Already have a better slot */
666 continue;
667 if (first_bad <= dev_sector) {
668 /* Cannot read here. If this is the
669 * 'primary' device, then we must not read
670 * beyond 'bad_sectors' from another device.
671 */
672 bad_sectors -= (dev_sector - first_bad);
673 if (!do_balance && sectors > bad_sectors)
674 sectors = bad_sectors;
675 if (best_good_sectors > sectors)
676 best_good_sectors = sectors;
677 } else {
678 sector_t good_sectors =
679 first_bad - dev_sector;
680 if (good_sectors > best_good_sectors) {
681 best_good_sectors = good_sectors;
682 best_slot = slot;
abbf098e 683 best_rdev = rdev;
856e08e2
N
684 }
685 if (!do_balance)
686 /* Must read from here */
687 break;
688 }
689 continue;
690 } else
691 best_good_sectors = sectors;
692
56d99121
N
693 if (!do_balance)
694 break;
1da177e4 695
22dfdf52
N
696 /* This optimisation is debatable, and completely destroys
697 * sequential read speed for 'far copies' arrays. So only
698 * keep it for 'near' arrays, and review those later.
699 */
56d99121 700 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 701 break;
8ed3a195
KS
702
703 /* for far > 1 always use the lowest address */
704 if (conf->far_copies > 1)
56d99121 705 new_distance = r10_bio->devs[slot].addr;
8ed3a195 706 else
56d99121
N
707 new_distance = abs(r10_bio->devs[slot].addr -
708 conf->mirrors[disk].head_position);
709 if (new_distance < best_dist) {
710 best_dist = new_distance;
711 best_slot = slot;
abbf098e 712 best_rdev = rdev;
1da177e4
LT
713 }
714 }
abbf098e 715 if (slot >= conf->copies) {
56d99121 716 slot = best_slot;
abbf098e
N
717 rdev = best_rdev;
718 }
1da177e4 719
56d99121 720 if (slot >= 0) {
56d99121
N
721 atomic_inc(&rdev->nr_pending);
722 if (test_bit(Faulty, &rdev->flags)) {
723 /* Cannot risk returning a device that failed
724 * before we inc'ed nr_pending
725 */
726 rdev_dec_pending(rdev, conf->mddev);
727 goto retry;
728 }
729 r10_bio->read_slot = slot;
730 } else
96c3fd1f 731 rdev = NULL;
1da177e4 732 rcu_read_unlock();
856e08e2 733 *max_sectors = best_good_sectors;
1da177e4 734
96c3fd1f 735 return rdev;
1da177e4
LT
736}
737
0d129228
N
738static int raid10_congested(void *data, int bits)
739{
fd01b88c 740 struct mddev *mddev = data;
e879a879 741 struct r10conf *conf = mddev->private;
0d129228
N
742 int i, ret = 0;
743
34db0cd6
N
744 if ((bits & (1 << BDI_async_congested)) &&
745 conf->pending_count >= max_queued_requests)
746 return 1;
747
3fa841d7
N
748 if (mddev_congested(mddev, bits))
749 return 1;
0d129228 750 rcu_read_lock();
84707f38 751 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
3cb03002 752 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 753 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 754 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
755
756 ret |= bdi_congested(&q->backing_dev_info, bits);
757 }
758 }
759 rcu_read_unlock();
760 return ret;
761}
762
e879a879 763static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
764{
765 /* Any writes that have been queued but are awaiting
766 * bitmap updates get flushed here.
a35e63ef 767 */
a35e63ef
N
768 spin_lock_irq(&conf->device_lock);
769
770 if (conf->pending_bio_list.head) {
771 struct bio *bio;
772 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 773 conf->pending_count = 0;
a35e63ef
N
774 spin_unlock_irq(&conf->device_lock);
775 /* flush any pending bitmap writes to disk
776 * before proceeding w/ I/O */
777 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 778 wake_up(&conf->wait_barrier);
a35e63ef
N
779
780 while (bio) { /* submit pending writes */
781 struct bio *next = bio->bi_next;
782 bio->bi_next = NULL;
783 generic_make_request(bio);
784 bio = next;
785 }
a35e63ef
N
786 } else
787 spin_unlock_irq(&conf->device_lock);
a35e63ef 788}
7eaceacc 789
0a27ec96
N
790/* Barriers....
791 * Sometimes we need to suspend IO while we do something else,
792 * either some resync/recovery, or reconfigure the array.
793 * To do this we raise a 'barrier'.
794 * The 'barrier' is a counter that can be raised multiple times
795 * to count how many activities are happening which preclude
796 * normal IO.
797 * We can only raise the barrier if there is no pending IO.
798 * i.e. if nr_pending == 0.
799 * We choose only to raise the barrier if no-one is waiting for the
800 * barrier to go down. This means that as soon as an IO request
801 * is ready, no other operations which require a barrier will start
802 * until the IO request has had a chance.
803 *
804 * So: regular IO calls 'wait_barrier'. When that returns there
805 * is no backgroup IO happening, It must arrange to call
806 * allow_barrier when it has finished its IO.
807 * backgroup IO calls must call raise_barrier. Once that returns
808 * there is no normal IO happeing. It must arrange to call
809 * lower_barrier when the particular background IO completes.
1da177e4 810 */
1da177e4 811
e879a879 812static void raise_barrier(struct r10conf *conf, int force)
1da177e4 813{
6cce3b23 814 BUG_ON(force && !conf->barrier);
1da177e4 815 spin_lock_irq(&conf->resync_lock);
0a27ec96 816
6cce3b23
N
817 /* Wait until no block IO is waiting (unless 'force') */
818 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 819 conf->resync_lock, );
0a27ec96
N
820
821 /* block any new IO from starting */
822 conf->barrier++;
823
c3b328ac 824 /* Now wait for all pending IO to complete */
0a27ec96
N
825 wait_event_lock_irq(conf->wait_barrier,
826 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 827 conf->resync_lock, );
0a27ec96
N
828
829 spin_unlock_irq(&conf->resync_lock);
830}
831
e879a879 832static void lower_barrier(struct r10conf *conf)
0a27ec96
N
833{
834 unsigned long flags;
835 spin_lock_irqsave(&conf->resync_lock, flags);
836 conf->barrier--;
837 spin_unlock_irqrestore(&conf->resync_lock, flags);
838 wake_up(&conf->wait_barrier);
839}
840
e879a879 841static void wait_barrier(struct r10conf *conf)
0a27ec96
N
842{
843 spin_lock_irq(&conf->resync_lock);
844 if (conf->barrier) {
845 conf->nr_waiting++;
846 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
847 conf->resync_lock,
c3b328ac 848 );
0a27ec96 849 conf->nr_waiting--;
1da177e4 850 }
0a27ec96 851 conf->nr_pending++;
1da177e4
LT
852 spin_unlock_irq(&conf->resync_lock);
853}
854
e879a879 855static void allow_barrier(struct r10conf *conf)
0a27ec96
N
856{
857 unsigned long flags;
858 spin_lock_irqsave(&conf->resync_lock, flags);
859 conf->nr_pending--;
860 spin_unlock_irqrestore(&conf->resync_lock, flags);
861 wake_up(&conf->wait_barrier);
862}
863
e879a879 864static void freeze_array(struct r10conf *conf)
4443ae10
N
865{
866 /* stop syncio and normal IO and wait for everything to
f188593e 867 * go quiet.
4443ae10 868 * We increment barrier and nr_waiting, and then
1c830532
N
869 * wait until nr_pending match nr_queued+1
870 * This is called in the context of one normal IO request
871 * that has failed. Thus any sync request that might be pending
872 * will be blocked by nr_pending, and we need to wait for
873 * pending IO requests to complete or be queued for re-try.
874 * Thus the number queued (nr_queued) plus this request (1)
875 * must match the number of pending IOs (nr_pending) before
876 * we continue.
4443ae10
N
877 */
878 spin_lock_irq(&conf->resync_lock);
879 conf->barrier++;
880 conf->nr_waiting++;
881 wait_event_lock_irq(conf->wait_barrier,
1c830532 882 conf->nr_pending == conf->nr_queued+1,
4443ae10 883 conf->resync_lock,
c3b328ac
N
884 flush_pending_writes(conf));
885
4443ae10
N
886 spin_unlock_irq(&conf->resync_lock);
887}
888
e879a879 889static void unfreeze_array(struct r10conf *conf)
4443ae10
N
890{
891 /* reverse the effect of the freeze */
892 spin_lock_irq(&conf->resync_lock);
893 conf->barrier--;
894 conf->nr_waiting--;
895 wake_up(&conf->wait_barrier);
896 spin_unlock_irq(&conf->resync_lock);
897}
898
b4fdcb02 899static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 900{
e879a879 901 struct r10conf *conf = mddev->private;
9f2c9d12 902 struct r10bio *r10_bio;
1da177e4
LT
903 struct bio *read_bio;
904 int i;
905 int chunk_sects = conf->chunk_mask + 1;
a362357b 906 const int rw = bio_data_dir(bio);
2c7d46ec 907 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 908 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 909 unsigned long flags;
3cb03002 910 struct md_rdev *blocked_rdev;
c3b328ac 911 int plugged;
d4432c23
N
912 int sectors_handled;
913 int max_sectors;
1da177e4 914
e9c7469b
TH
915 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
916 md_flush_request(mddev, bio);
5a7bbad2 917 return;
e5dcdd80
N
918 }
919
1da177e4
LT
920 /* If this request crosses a chunk boundary, we need to
921 * split it. This will only happen for 1 PAGE (or less) requests.
922 */
923 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
924 > chunk_sects &&
925 conf->near_copies < conf->raid_disks)) {
926 struct bio_pair *bp;
927 /* Sanity check -- queue functions should prevent this happening */
928 if (bio->bi_vcnt != 1 ||
929 bio->bi_idx != 0)
930 goto bad_map;
931 /* This is a one page bio that upper layers
932 * refuse to split for us, so we need to split it.
933 */
6feef531 934 bp = bio_split(bio,
1da177e4 935 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
936
937 /* Each of these 'make_request' calls will call 'wait_barrier'.
938 * If the first succeeds but the second blocks due to the resync
939 * thread raising the barrier, we will deadlock because the
940 * IO to the underlying device will be queued in generic_make_request
941 * and will never complete, so will never reduce nr_pending.
942 * So increment nr_waiting here so no new raise_barriers will
943 * succeed, and so the second wait_barrier cannot block.
944 */
945 spin_lock_irq(&conf->resync_lock);
946 conf->nr_waiting++;
947 spin_unlock_irq(&conf->resync_lock);
948
5a7bbad2
CH
949 make_request(mddev, &bp->bio1);
950 make_request(mddev, &bp->bio2);
1da177e4 951
51e9ac77
N
952 spin_lock_irq(&conf->resync_lock);
953 conf->nr_waiting--;
954 wake_up(&conf->wait_barrier);
955 spin_unlock_irq(&conf->resync_lock);
956
1da177e4 957 bio_pair_release(bp);
5a7bbad2 958 return;
1da177e4 959 bad_map:
128595ed
N
960 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
961 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
962 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
963
6712ecf8 964 bio_io_error(bio);
5a7bbad2 965 return;
1da177e4
LT
966 }
967
3d310eb7 968 md_write_start(mddev, bio);
06d91a5f 969
1da177e4
LT
970 /*
971 * Register the new request and wait if the reconstruction
972 * thread has put up a bar for new requests.
973 * Continue immediately if no resync is active currently.
974 */
0a27ec96 975 wait_barrier(conf);
1da177e4 976
1da177e4
LT
977 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
978
979 r10_bio->master_bio = bio;
980 r10_bio->sectors = bio->bi_size >> 9;
981
982 r10_bio->mddev = mddev;
983 r10_bio->sector = bio->bi_sector;
6cce3b23 984 r10_bio->state = 0;
1da177e4 985
856e08e2
N
986 /* We might need to issue multiple reads to different
987 * devices if there are bad blocks around, so we keep
988 * track of the number of reads in bio->bi_phys_segments.
989 * If this is 0, there is only one r10_bio and no locking
990 * will be needed when the request completes. If it is
991 * non-zero, then it is the number of not-completed requests.
992 */
993 bio->bi_phys_segments = 0;
994 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
995
a362357b 996 if (rw == READ) {
1da177e4
LT
997 /*
998 * read balancing logic:
999 */
96c3fd1f 1000 struct md_rdev *rdev;
856e08e2
N
1001 int slot;
1002
1003read_again:
96c3fd1f
N
1004 rdev = read_balance(conf, r10_bio, &max_sectors);
1005 if (!rdev) {
1da177e4 1006 raid_end_bio_io(r10_bio);
5a7bbad2 1007 return;
1da177e4 1008 }
96c3fd1f 1009 slot = r10_bio->read_slot;
1da177e4 1010
a167f663 1011 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1012 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1013 max_sectors);
1da177e4
LT
1014
1015 r10_bio->devs[slot].bio = read_bio;
abbf098e 1016 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1017
1018 read_bio->bi_sector = r10_bio->devs[slot].addr +
96c3fd1f
N
1019 rdev->data_offset;
1020 read_bio->bi_bdev = rdev->bdev;
1da177e4 1021 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1022 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1023 read_bio->bi_private = r10_bio;
1024
856e08e2
N
1025 if (max_sectors < r10_bio->sectors) {
1026 /* Could not read all from this device, so we will
1027 * need another r10_bio.
1028 */
856e08e2
N
1029 sectors_handled = (r10_bio->sectors + max_sectors
1030 - bio->bi_sector);
1031 r10_bio->sectors = max_sectors;
1032 spin_lock_irq(&conf->device_lock);
1033 if (bio->bi_phys_segments == 0)
1034 bio->bi_phys_segments = 2;
1035 else
1036 bio->bi_phys_segments++;
1037 spin_unlock(&conf->device_lock);
1038 /* Cannot call generic_make_request directly
1039 * as that will be queued in __generic_make_request
1040 * and subsequent mempool_alloc might block
1041 * waiting for it. so hand bio over to raid10d.
1042 */
1043 reschedule_retry(r10_bio);
1044
1045 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1046
1047 r10_bio->master_bio = bio;
1048 r10_bio->sectors = ((bio->bi_size >> 9)
1049 - sectors_handled);
1050 r10_bio->state = 0;
1051 r10_bio->mddev = mddev;
1052 r10_bio->sector = bio->bi_sector + sectors_handled;
1053 goto read_again;
1054 } else
1055 generic_make_request(read_bio);
5a7bbad2 1056 return;
1da177e4
LT
1057 }
1058
1059 /*
1060 * WRITE:
1061 */
34db0cd6
N
1062 if (conf->pending_count >= max_queued_requests) {
1063 md_wakeup_thread(mddev->thread);
1064 wait_event(conf->wait_barrier,
1065 conf->pending_count < max_queued_requests);
1066 }
6bfe0b49 1067 /* first select target devices under rcu_lock and
1da177e4
LT
1068 * inc refcount on their rdev. Record them by setting
1069 * bios[x] to bio
d4432c23
N
1070 * If there are known/acknowledged bad blocks on any device
1071 * on which we have seen a write error, we want to avoid
1072 * writing to those blocks. This potentially requires several
1073 * writes to write around the bad blocks. Each set of writes
1074 * gets its own r10_bio with a set of bios attached. The number
1075 * of r10_bios is recored in bio->bi_phys_segments just as with
1076 * the read case.
1da177e4 1077 */
c3b328ac
N
1078 plugged = mddev_check_plugged(mddev);
1079
69335ef3 1080 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1081 raid10_find_phys(conf, r10_bio);
d4432c23 1082retry_write:
cb6969e8 1083 blocked_rdev = NULL;
1da177e4 1084 rcu_read_lock();
d4432c23
N
1085 max_sectors = r10_bio->sectors;
1086
1da177e4
LT
1087 for (i = 0; i < conf->copies; i++) {
1088 int d = r10_bio->devs[i].devnum;
3cb03002 1089 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1090 struct md_rdev *rrdev = rcu_dereference(
1091 conf->mirrors[d].replacement);
6bfe0b49
DW
1092 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1093 atomic_inc(&rdev->nr_pending);
1094 blocked_rdev = rdev;
1095 break;
1096 }
475b0321
N
1097 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1098 atomic_inc(&rrdev->nr_pending);
1099 blocked_rdev = rrdev;
1100 break;
1101 }
1102 if (rrdev && test_bit(Faulty, &rrdev->flags))
1103 rrdev = NULL;
1104
d4432c23 1105 r10_bio->devs[i].bio = NULL;
475b0321 1106 r10_bio->devs[i].repl_bio = NULL;
d4432c23 1107 if (!rdev || test_bit(Faulty, &rdev->flags)) {
6cce3b23 1108 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1109 continue;
1110 }
1111 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1112 sector_t first_bad;
1113 sector_t dev_sector = r10_bio->devs[i].addr;
1114 int bad_sectors;
1115 int is_bad;
1116
1117 is_bad = is_badblock(rdev, dev_sector,
1118 max_sectors,
1119 &first_bad, &bad_sectors);
1120 if (is_bad < 0) {
1121 /* Mustn't write here until the bad block
1122 * is acknowledged
1123 */
1124 atomic_inc(&rdev->nr_pending);
1125 set_bit(BlockedBadBlocks, &rdev->flags);
1126 blocked_rdev = rdev;
1127 break;
1128 }
1129 if (is_bad && first_bad <= dev_sector) {
1130 /* Cannot write here at all */
1131 bad_sectors -= (dev_sector - first_bad);
1132 if (bad_sectors < max_sectors)
1133 /* Mustn't write more than bad_sectors
1134 * to other devices yet
1135 */
1136 max_sectors = bad_sectors;
1137 /* We don't set R10BIO_Degraded as that
1138 * only applies if the disk is missing,
1139 * so it might be re-added, and we want to
1140 * know to recover this chunk.
1141 * In this case the device is here, and the
1142 * fact that this chunk is not in-sync is
1143 * recorded in the bad block log.
1144 */
1145 continue;
1146 }
1147 if (is_bad) {
1148 int good_sectors = first_bad - dev_sector;
1149 if (good_sectors < max_sectors)
1150 max_sectors = good_sectors;
1151 }
6cce3b23 1152 }
d4432c23
N
1153 r10_bio->devs[i].bio = bio;
1154 atomic_inc(&rdev->nr_pending);
475b0321
N
1155 if (rrdev) {
1156 r10_bio->devs[i].repl_bio = bio;
1157 atomic_inc(&rrdev->nr_pending);
1158 }
1da177e4
LT
1159 }
1160 rcu_read_unlock();
1161
6bfe0b49
DW
1162 if (unlikely(blocked_rdev)) {
1163 /* Have to wait for this device to get unblocked, then retry */
1164 int j;
1165 int d;
1166
475b0321 1167 for (j = 0; j < i; j++) {
6bfe0b49
DW
1168 if (r10_bio->devs[j].bio) {
1169 d = r10_bio->devs[j].devnum;
1170 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1171 }
475b0321
N
1172 if (r10_bio->devs[j].repl_bio) {
1173 d = r10_bio->devs[j].devnum;
1174 rdev_dec_pending(
1175 conf->mirrors[d].replacement, mddev);
1176 }
1177 }
6bfe0b49
DW
1178 allow_barrier(conf);
1179 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1180 wait_barrier(conf);
1181 goto retry_write;
1182 }
1183
d4432c23
N
1184 if (max_sectors < r10_bio->sectors) {
1185 /* We are splitting this into multiple parts, so
1186 * we need to prepare for allocating another r10_bio.
1187 */
1188 r10_bio->sectors = max_sectors;
1189 spin_lock_irq(&conf->device_lock);
1190 if (bio->bi_phys_segments == 0)
1191 bio->bi_phys_segments = 2;
1192 else
1193 bio->bi_phys_segments++;
1194 spin_unlock_irq(&conf->device_lock);
1195 }
1196 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1197
4e78064f 1198 atomic_set(&r10_bio->remaining, 1);
d4432c23 1199 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1200
1da177e4
LT
1201 for (i = 0; i < conf->copies; i++) {
1202 struct bio *mbio;
1203 int d = r10_bio->devs[i].devnum;
1204 if (!r10_bio->devs[i].bio)
1205 continue;
1206
a167f663 1207 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1208 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1209 max_sectors);
1da177e4
LT
1210 r10_bio->devs[i].bio = mbio;
1211
d4432c23
N
1212 mbio->bi_sector = (r10_bio->devs[i].addr+
1213 conf->mirrors[d].rdev->data_offset);
1da177e4
LT
1214 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1215 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1216 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1217 mbio->bi_private = r10_bio;
1218
1219 atomic_inc(&r10_bio->remaining);
4e78064f
N
1220 spin_lock_irqsave(&conf->device_lock, flags);
1221 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1222 conf->pending_count++;
4e78064f 1223 spin_unlock_irqrestore(&conf->device_lock, flags);
475b0321
N
1224
1225 if (!r10_bio->devs[i].repl_bio)
1226 continue;
1227
1228 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1229 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1230 max_sectors);
1231 r10_bio->devs[i].repl_bio = mbio;
1232
1233 mbio->bi_sector = (r10_bio->devs[i].addr+
1234 conf->mirrors[d].replacement->data_offset);
1235 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1236 mbio->bi_end_io = raid10_end_write_request;
1237 mbio->bi_rw = WRITE | do_sync | do_fua;
1238 mbio->bi_private = r10_bio;
1239
1240 atomic_inc(&r10_bio->remaining);
1241 spin_lock_irqsave(&conf->device_lock, flags);
1242 bio_list_add(&conf->pending_bio_list, mbio);
1243 conf->pending_count++;
1244 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1245 }
1246
079fa166
N
1247 /* Don't remove the bias on 'remaining' (one_write_done) until
1248 * after checking if we need to go around again.
1249 */
a35e63ef 1250
d4432c23 1251 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1252 one_write_done(r10_bio);
5e570289 1253 /* We need another r10_bio. It has already been counted
d4432c23
N
1254 * in bio->bi_phys_segments.
1255 */
1256 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1257
1258 r10_bio->master_bio = bio;
1259 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1260
1261 r10_bio->mddev = mddev;
1262 r10_bio->sector = bio->bi_sector + sectors_handled;
1263 r10_bio->state = 0;
1264 goto retry_write;
1265 }
079fa166
N
1266 one_write_done(r10_bio);
1267
1268 /* In case raid10d snuck in to freeze_array */
1269 wake_up(&conf->wait_barrier);
d4432c23 1270
c3b328ac 1271 if (do_sync || !mddev->bitmap || !plugged)
e3881a68 1272 md_wakeup_thread(mddev->thread);
1da177e4
LT
1273}
1274
fd01b88c 1275static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1276{
e879a879 1277 struct r10conf *conf = mddev->private;
1da177e4
LT
1278 int i;
1279
1280 if (conf->near_copies < conf->raid_disks)
9d8f0363 1281 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
1282 if (conf->near_copies > 1)
1283 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
1284 if (conf->far_copies > 1) {
1285 if (conf->far_offset)
1286 seq_printf(seq, " %d offset-copies", conf->far_copies);
1287 else
1288 seq_printf(seq, " %d far-copies", conf->far_copies);
1289 }
1da177e4 1290 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 1291 conf->raid_disks - mddev->degraded);
1da177e4
LT
1292 for (i = 0; i < conf->raid_disks; i++)
1293 seq_printf(seq, "%s",
1294 conf->mirrors[i].rdev &&
b2d444d7 1295 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1296 seq_printf(seq, "]");
1297}
1298
700c7213
N
1299/* check if there are enough drives for
1300 * every block to appear on atleast one.
1301 * Don't consider the device numbered 'ignore'
1302 * as we might be about to remove it.
1303 */
e879a879 1304static int enough(struct r10conf *conf, int ignore)
700c7213
N
1305{
1306 int first = 0;
1307
1308 do {
1309 int n = conf->copies;
1310 int cnt = 0;
1311 while (n--) {
1312 if (conf->mirrors[first].rdev &&
1313 first != ignore)
1314 cnt++;
1315 first = (first+1) % conf->raid_disks;
1316 }
1317 if (cnt == 0)
1318 return 0;
1319 } while (first != 0);
1320 return 1;
1321}
1322
fd01b88c 1323static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1324{
1325 char b[BDEVNAME_SIZE];
e879a879 1326 struct r10conf *conf = mddev->private;
1da177e4
LT
1327
1328 /*
1329 * If it is not operational, then we have already marked it as dead
1330 * else if it is the last working disks, ignore the error, let the
1331 * next level up know.
1332 * else mark the drive as failed
1333 */
b2d444d7 1334 if (test_bit(In_sync, &rdev->flags)
700c7213 1335 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1336 /*
1337 * Don't fail the drive, just return an IO error.
1da177e4
LT
1338 */
1339 return;
c04be0aa
N
1340 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1341 unsigned long flags;
1342 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1343 mddev->degraded++;
c04be0aa 1344 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1345 /*
1346 * if recovery is running, make sure it aborts.
1347 */
dfc70645 1348 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1349 }
de393cde 1350 set_bit(Blocked, &rdev->flags);
b2d444d7 1351 set_bit(Faulty, &rdev->flags);
850b2b42 1352 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1353 printk(KERN_ALERT
1354 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1355 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1356 mdname(mddev), bdevname(rdev->bdev, b),
1357 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1358}
1359
e879a879 1360static void print_conf(struct r10conf *conf)
1da177e4
LT
1361{
1362 int i;
0f6d02d5 1363 struct mirror_info *tmp;
1da177e4 1364
128595ed 1365 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1366 if (!conf) {
128595ed 1367 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1368 return;
1369 }
128595ed 1370 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1371 conf->raid_disks);
1372
1373 for (i = 0; i < conf->raid_disks; i++) {
1374 char b[BDEVNAME_SIZE];
1375 tmp = conf->mirrors + i;
1376 if (tmp->rdev)
128595ed 1377 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1378 i, !test_bit(In_sync, &tmp->rdev->flags),
1379 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1380 bdevname(tmp->rdev->bdev,b));
1381 }
1382}
1383
e879a879 1384static void close_sync(struct r10conf *conf)
1da177e4 1385{
0a27ec96
N
1386 wait_barrier(conf);
1387 allow_barrier(conf);
1da177e4
LT
1388
1389 mempool_destroy(conf->r10buf_pool);
1390 conf->r10buf_pool = NULL;
1391}
1392
fd01b88c 1393static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1394{
1395 int i;
e879a879 1396 struct r10conf *conf = mddev->private;
0f6d02d5 1397 struct mirror_info *tmp;
6b965620
N
1398 int count = 0;
1399 unsigned long flags;
1da177e4
LT
1400
1401 /*
1402 * Find all non-in_sync disks within the RAID10 configuration
1403 * and mark them in_sync
1404 */
1405 for (i = 0; i < conf->raid_disks; i++) {
1406 tmp = conf->mirrors + i;
1407 if (tmp->rdev
b2d444d7 1408 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 1409 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1410 count++;
e6ffbcb6 1411 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1412 }
1413 }
6b965620
N
1414 spin_lock_irqsave(&conf->device_lock, flags);
1415 mddev->degraded -= count;
1416 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1417
1418 print_conf(conf);
6b965620 1419 return count;
1da177e4
LT
1420}
1421
1422
fd01b88c 1423static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1424{
e879a879 1425 struct r10conf *conf = mddev->private;
199050ea 1426 int err = -EEXIST;
1da177e4 1427 int mirror;
6c2fce2e 1428 int first = 0;
84707f38 1429 int last = conf->raid_disks - 1;
1da177e4
LT
1430
1431 if (mddev->recovery_cp < MaxSector)
1432 /* only hot-add to in-sync arrays, as recovery is
1433 * very different from resync
1434 */
199050ea 1435 return -EBUSY;
700c7213 1436 if (!enough(conf, -1))
199050ea 1437 return -EINVAL;
1da177e4 1438
a53a6c85 1439 if (rdev->raid_disk >= 0)
6c2fce2e 1440 first = last = rdev->raid_disk;
1da177e4 1441
2c4193df 1442 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1443 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1444 mirror = rdev->saved_raid_disk;
1445 else
6c2fce2e 1446 mirror = first;
2bb77736 1447 for ( ; mirror <= last ; mirror++) {
0f6d02d5 1448 struct mirror_info *p = &conf->mirrors[mirror];
2bb77736
N
1449 if (p->recovery_disabled == mddev->recovery_disabled)
1450 continue;
7fcc7c8a 1451 if (p->rdev)
2bb77736 1452 continue;
1da177e4 1453
2bb77736
N
1454 disk_stack_limits(mddev->gendisk, rdev->bdev,
1455 rdev->data_offset << 9);
1456 /* as we don't honour merge_bvec_fn, we must
1457 * never risk violating it, so limit
1458 * ->max_segments to one lying with a single
1459 * page, as a one page request is never in
1460 * violation.
1461 */
1462 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1463 blk_queue_max_segments(mddev->queue, 1);
1464 blk_queue_segment_boundary(mddev->queue,
1465 PAGE_CACHE_SIZE - 1);
1da177e4
LT
1466 }
1467
2bb77736 1468 p->head_position = 0;
d890fa2b 1469 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1470 rdev->raid_disk = mirror;
1471 err = 0;
1472 if (rdev->saved_raid_disk != mirror)
1473 conf->fullsync = 1;
1474 rcu_assign_pointer(p->rdev, rdev);
1475 break;
1476 }
1477
ac5e7113 1478 md_integrity_add_rdev(rdev, mddev);
1da177e4 1479 print_conf(conf);
199050ea 1480 return err;
1da177e4
LT
1481}
1482
b8321b68 1483static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1484{
e879a879 1485 struct r10conf *conf = mddev->private;
1da177e4 1486 int err = 0;
b8321b68 1487 int number = rdev->raid_disk;
c8ab903e
N
1488 struct md_rdev **rdevp;
1489 struct mirror_info *p = conf->mirrors + number;
1da177e4
LT
1490
1491 print_conf(conf);
c8ab903e
N
1492 if (rdev == p->rdev)
1493 rdevp = &p->rdev;
1494 else if (rdev == p->replacement)
1495 rdevp = &p->replacement;
1496 else
1497 return 0;
1498
1499 if (test_bit(In_sync, &rdev->flags) ||
1500 atomic_read(&rdev->nr_pending)) {
1501 err = -EBUSY;
1502 goto abort;
1503 }
1504 /* Only remove faulty devices if recovery
1505 * is not possible.
1506 */
1507 if (!test_bit(Faulty, &rdev->flags) &&
1508 mddev->recovery_disabled != p->recovery_disabled &&
1509 enough(conf, -1)) {
1510 err = -EBUSY;
1511 goto abort;
1da177e4 1512 }
c8ab903e
N
1513 *rdevp = NULL;
1514 synchronize_rcu();
1515 if (atomic_read(&rdev->nr_pending)) {
1516 /* lost the race, try later */
1517 err = -EBUSY;
1518 *rdevp = rdev;
1519 goto abort;
1520 }
1521 err = md_integrity_register(mddev);
1522
1da177e4
LT
1523abort:
1524
1525 print_conf(conf);
1526 return err;
1527}
1528
1529
6712ecf8 1530static void end_sync_read(struct bio *bio, int error)
1da177e4 1531{
9f2c9d12 1532 struct r10bio *r10_bio = bio->bi_private;
e879a879 1533 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1534 int d;
1da177e4 1535
69335ef3 1536 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1537
1538 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1539 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1540 else
1541 /* The write handler will notice the lack of
1542 * R10BIO_Uptodate and record any errors etc
1543 */
4dbcdc75
N
1544 atomic_add(r10_bio->sectors,
1545 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1546
1547 /* for reconstruct, we always reschedule after a read.
1548 * for resync, only after all reads
1549 */
73d5c38a 1550 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1551 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1552 atomic_dec_and_test(&r10_bio->remaining)) {
1553 /* we have read all the blocks,
1554 * do the comparison in process context in raid10d
1555 */
1556 reschedule_retry(r10_bio);
1557 }
1da177e4
LT
1558}
1559
9f2c9d12 1560static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1561{
fd01b88c 1562 struct mddev *mddev = r10_bio->mddev;
dfc70645 1563
1da177e4
LT
1564 while (atomic_dec_and_test(&r10_bio->remaining)) {
1565 if (r10_bio->master_bio == NULL) {
1566 /* the primary of several recovery bios */
73d5c38a 1567 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1568 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1569 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1570 reschedule_retry(r10_bio);
1571 else
1572 put_buf(r10_bio);
73d5c38a 1573 md_done_sync(mddev, s, 1);
1da177e4
LT
1574 break;
1575 } else {
9f2c9d12 1576 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1577 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1578 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1579 reschedule_retry(r10_bio);
1580 else
1581 put_buf(r10_bio);
1da177e4
LT
1582 r10_bio = r10_bio2;
1583 }
1584 }
1da177e4
LT
1585}
1586
5e570289
N
1587static void end_sync_write(struct bio *bio, int error)
1588{
1589 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1590 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1591 struct mddev *mddev = r10_bio->mddev;
e879a879 1592 struct r10conf *conf = mddev->private;
5e570289
N
1593 int d;
1594 sector_t first_bad;
1595 int bad_sectors;
1596 int slot;
9ad1aefc
N
1597 int repl;
1598 struct md_rdev *rdev;
5e570289 1599
9ad1aefc
N
1600 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1601 if (repl)
1602 rdev = conf->mirrors[d].replacement;
1603 else
1604 rdev = conf->mirrors[d].rdev;
5e570289
N
1605
1606 if (!uptodate) {
9ad1aefc
N
1607 if (repl)
1608 md_error(mddev, rdev);
1609 else {
1610 set_bit(WriteErrorSeen, &rdev->flags);
1611 set_bit(R10BIO_WriteError, &r10_bio->state);
1612 }
1613 } else if (is_badblock(rdev,
5e570289
N
1614 r10_bio->devs[slot].addr,
1615 r10_bio->sectors,
1616 &first_bad, &bad_sectors))
1617 set_bit(R10BIO_MadeGood, &r10_bio->state);
1618
9ad1aefc 1619 rdev_dec_pending(rdev, mddev);
5e570289
N
1620
1621 end_sync_request(r10_bio);
1622}
1623
1da177e4
LT
1624/*
1625 * Note: sync and recover and handled very differently for raid10
1626 * This code is for resync.
1627 * For resync, we read through virtual addresses and read all blocks.
1628 * If there is any error, we schedule a write. The lowest numbered
1629 * drive is authoritative.
1630 * However requests come for physical address, so we need to map.
1631 * For every physical address there are raid_disks/copies virtual addresses,
1632 * which is always are least one, but is not necessarly an integer.
1633 * This means that a physical address can span multiple chunks, so we may
1634 * have to submit multiple io requests for a single sync request.
1635 */
1636/*
1637 * We check if all blocks are in-sync and only write to blocks that
1638 * aren't in sync
1639 */
9f2c9d12 1640static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1641{
e879a879 1642 struct r10conf *conf = mddev->private;
1da177e4
LT
1643 int i, first;
1644 struct bio *tbio, *fbio;
1645
1646 atomic_set(&r10_bio->remaining, 1);
1647
1648 /* find the first device with a block */
1649 for (i=0; i<conf->copies; i++)
1650 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1651 break;
1652
1653 if (i == conf->copies)
1654 goto done;
1655
1656 first = i;
1657 fbio = r10_bio->devs[i].bio;
1658
1659 /* now find blocks with errors */
0eb3ff12
N
1660 for (i=0 ; i < conf->copies ; i++) {
1661 int j, d;
1662 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1663
1da177e4 1664 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1665
1666 if (tbio->bi_end_io != end_sync_read)
1667 continue;
1668 if (i == first)
1da177e4 1669 continue;
0eb3ff12
N
1670 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1671 /* We know that the bi_io_vec layout is the same for
1672 * both 'first' and 'i', so we just compare them.
1673 * All vec entries are PAGE_SIZE;
1674 */
1675 for (j = 0; j < vcnt; j++)
1676 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1677 page_address(tbio->bi_io_vec[j].bv_page),
1678 PAGE_SIZE))
1679 break;
1680 if (j == vcnt)
1681 continue;
1682 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1683 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1684 /* Don't fix anything. */
1685 continue;
0eb3ff12 1686 }
f84ee364
N
1687 /* Ok, we need to write this bio, either to correct an
1688 * inconsistency or to correct an unreadable block.
1da177e4
LT
1689 * First we need to fixup bv_offset, bv_len and
1690 * bi_vecs, as the read request might have corrupted these
1691 */
1692 tbio->bi_vcnt = vcnt;
1693 tbio->bi_size = r10_bio->sectors << 9;
1694 tbio->bi_idx = 0;
1695 tbio->bi_phys_segments = 0;
1da177e4
LT
1696 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1697 tbio->bi_flags |= 1 << BIO_UPTODATE;
1698 tbio->bi_next = NULL;
1699 tbio->bi_rw = WRITE;
1700 tbio->bi_private = r10_bio;
1701 tbio->bi_sector = r10_bio->devs[i].addr;
1702
1703 for (j=0; j < vcnt ; j++) {
1704 tbio->bi_io_vec[j].bv_offset = 0;
1705 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1706
1707 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1708 page_address(fbio->bi_io_vec[j].bv_page),
1709 PAGE_SIZE);
1710 }
1711 tbio->bi_end_io = end_sync_write;
1712
1713 d = r10_bio->devs[i].devnum;
1714 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1715 atomic_inc(&r10_bio->remaining);
1716 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1717
1718 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1719 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1720 generic_make_request(tbio);
1721 }
1722
9ad1aefc
N
1723 /* Now write out to any replacement devices
1724 * that are active
1725 */
1726 for (i = 0; i < conf->copies; i++) {
1727 int j, d;
1728 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1729
1730 tbio = r10_bio->devs[i].repl_bio;
1731 if (!tbio || !tbio->bi_end_io)
1732 continue;
1733 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1734 && r10_bio->devs[i].bio != fbio)
1735 for (j = 0; j < vcnt; j++)
1736 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1737 page_address(fbio->bi_io_vec[j].bv_page),
1738 PAGE_SIZE);
1739 d = r10_bio->devs[i].devnum;
1740 atomic_inc(&r10_bio->remaining);
1741 md_sync_acct(conf->mirrors[d].replacement->bdev,
1742 tbio->bi_size >> 9);
1743 generic_make_request(tbio);
1744 }
1745
1da177e4
LT
1746done:
1747 if (atomic_dec_and_test(&r10_bio->remaining)) {
1748 md_done_sync(mddev, r10_bio->sectors, 1);
1749 put_buf(r10_bio);
1750 }
1751}
1752
1753/*
1754 * Now for the recovery code.
1755 * Recovery happens across physical sectors.
1756 * We recover all non-is_sync drives by finding the virtual address of
1757 * each, and then choose a working drive that also has that virt address.
1758 * There is a separate r10_bio for each non-in_sync drive.
1759 * Only the first two slots are in use. The first for reading,
1760 * The second for writing.
1761 *
1762 */
9f2c9d12 1763static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
1764{
1765 /* We got a read error during recovery.
1766 * We repeat the read in smaller page-sized sections.
1767 * If a read succeeds, write it to the new device or record
1768 * a bad block if we cannot.
1769 * If a read fails, record a bad block on both old and
1770 * new devices.
1771 */
fd01b88c 1772 struct mddev *mddev = r10_bio->mddev;
e879a879 1773 struct r10conf *conf = mddev->private;
5e570289
N
1774 struct bio *bio = r10_bio->devs[0].bio;
1775 sector_t sect = 0;
1776 int sectors = r10_bio->sectors;
1777 int idx = 0;
1778 int dr = r10_bio->devs[0].devnum;
1779 int dw = r10_bio->devs[1].devnum;
1780
1781 while (sectors) {
1782 int s = sectors;
3cb03002 1783 struct md_rdev *rdev;
5e570289
N
1784 sector_t addr;
1785 int ok;
1786
1787 if (s > (PAGE_SIZE>>9))
1788 s = PAGE_SIZE >> 9;
1789
1790 rdev = conf->mirrors[dr].rdev;
1791 addr = r10_bio->devs[0].addr + sect,
1792 ok = sync_page_io(rdev,
1793 addr,
1794 s << 9,
1795 bio->bi_io_vec[idx].bv_page,
1796 READ, false);
1797 if (ok) {
1798 rdev = conf->mirrors[dw].rdev;
1799 addr = r10_bio->devs[1].addr + sect;
1800 ok = sync_page_io(rdev,
1801 addr,
1802 s << 9,
1803 bio->bi_io_vec[idx].bv_page,
1804 WRITE, false);
1805 if (!ok)
1806 set_bit(WriteErrorSeen, &rdev->flags);
1807 }
1808 if (!ok) {
1809 /* We don't worry if we cannot set a bad block -
1810 * it really is bad so there is no loss in not
1811 * recording it yet
1812 */
1813 rdev_set_badblocks(rdev, addr, s, 0);
1814
1815 if (rdev != conf->mirrors[dw].rdev) {
1816 /* need bad block on destination too */
3cb03002 1817 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
1818 addr = r10_bio->devs[1].addr + sect;
1819 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1820 if (!ok) {
1821 /* just abort the recovery */
1822 printk(KERN_NOTICE
1823 "md/raid10:%s: recovery aborted"
1824 " due to read error\n",
1825 mdname(mddev));
1826
1827 conf->mirrors[dw].recovery_disabled
1828 = mddev->recovery_disabled;
1829 set_bit(MD_RECOVERY_INTR,
1830 &mddev->recovery);
1831 break;
1832 }
1833 }
1834 }
1835
1836 sectors -= s;
1837 sect += s;
1838 idx++;
1839 }
1840}
1da177e4 1841
9f2c9d12 1842static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1843{
e879a879 1844 struct r10conf *conf = mddev->private;
c65060ad
NK
1845 int d;
1846 struct bio *wbio;
1da177e4 1847
5e570289
N
1848 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1849 fix_recovery_read_error(r10_bio);
1850 end_sync_request(r10_bio);
1851 return;
1852 }
1853
c65060ad
NK
1854 /*
1855 * share the pages with the first bio
1da177e4
LT
1856 * and submit the write request
1857 */
1da177e4 1858 wbio = r10_bio->devs[1].bio;
1da177e4
LT
1859 d = r10_bio->devs[1].devnum;
1860
1861 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1862 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
5e570289 1863 generic_make_request(wbio);
1da177e4
LT
1864}
1865
1866
1e50915f
RB
1867/*
1868 * Used by fix_read_error() to decay the per rdev read_errors.
1869 * We halve the read error count for every hour that has elapsed
1870 * since the last recorded read error.
1871 *
1872 */
fd01b88c 1873static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
1874{
1875 struct timespec cur_time_mon;
1876 unsigned long hours_since_last;
1877 unsigned int read_errors = atomic_read(&rdev->read_errors);
1878
1879 ktime_get_ts(&cur_time_mon);
1880
1881 if (rdev->last_read_error.tv_sec == 0 &&
1882 rdev->last_read_error.tv_nsec == 0) {
1883 /* first time we've seen a read error */
1884 rdev->last_read_error = cur_time_mon;
1885 return;
1886 }
1887
1888 hours_since_last = (cur_time_mon.tv_sec -
1889 rdev->last_read_error.tv_sec) / 3600;
1890
1891 rdev->last_read_error = cur_time_mon;
1892
1893 /*
1894 * if hours_since_last is > the number of bits in read_errors
1895 * just set read errors to 0. We do this to avoid
1896 * overflowing the shift of read_errors by hours_since_last.
1897 */
1898 if (hours_since_last >= 8 * sizeof(read_errors))
1899 atomic_set(&rdev->read_errors, 0);
1900 else
1901 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1902}
1903
3cb03002 1904static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
1905 int sectors, struct page *page, int rw)
1906{
1907 sector_t first_bad;
1908 int bad_sectors;
1909
1910 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1911 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1912 return -1;
1913 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1914 /* success */
1915 return 1;
1916 if (rw == WRITE)
1917 set_bit(WriteErrorSeen, &rdev->flags);
1918 /* need to record an error - either for the block or the device */
1919 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1920 md_error(rdev->mddev, rdev);
1921 return 0;
1922}
1923
1da177e4
LT
1924/*
1925 * This is a kernel thread which:
1926 *
1927 * 1. Retries failed read operations on working mirrors.
1928 * 2. Updates the raid superblock when problems encounter.
6814d536 1929 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1930 */
1931
e879a879 1932static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
1933{
1934 int sect = 0; /* Offset from r10_bio->sector */
1935 int sectors = r10_bio->sectors;
3cb03002 1936 struct md_rdev*rdev;
1e50915f 1937 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1938 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 1939
7c4e06ff
N
1940 /* still own a reference to this rdev, so it cannot
1941 * have been cleared recently.
1942 */
1943 rdev = conf->mirrors[d].rdev;
1e50915f 1944
7c4e06ff
N
1945 if (test_bit(Faulty, &rdev->flags))
1946 /* drive has already been failed, just ignore any
1947 more fix_read_error() attempts */
1948 return;
1e50915f 1949
7c4e06ff
N
1950 check_decay_read_errors(mddev, rdev);
1951 atomic_inc(&rdev->read_errors);
1952 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1953 char b[BDEVNAME_SIZE];
1954 bdevname(rdev->bdev, b);
1e50915f 1955
7c4e06ff
N
1956 printk(KERN_NOTICE
1957 "md/raid10:%s: %s: Raid device exceeded "
1958 "read_error threshold [cur %d:max %d]\n",
1959 mdname(mddev), b,
1960 atomic_read(&rdev->read_errors), max_read_errors);
1961 printk(KERN_NOTICE
1962 "md/raid10:%s: %s: Failing raid device\n",
1963 mdname(mddev), b);
1964 md_error(mddev, conf->mirrors[d].rdev);
1965 return;
1e50915f 1966 }
1e50915f 1967
6814d536
N
1968 while(sectors) {
1969 int s = sectors;
1970 int sl = r10_bio->read_slot;
1971 int success = 0;
1972 int start;
1973
1974 if (s > (PAGE_SIZE>>9))
1975 s = PAGE_SIZE >> 9;
1976
1977 rcu_read_lock();
1978 do {
8dbed5ce
N
1979 sector_t first_bad;
1980 int bad_sectors;
1981
0544a21d 1982 d = r10_bio->devs[sl].devnum;
6814d536
N
1983 rdev = rcu_dereference(conf->mirrors[d].rdev);
1984 if (rdev &&
8dbed5ce
N
1985 test_bit(In_sync, &rdev->flags) &&
1986 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1987 &first_bad, &bad_sectors) == 0) {
6814d536
N
1988 atomic_inc(&rdev->nr_pending);
1989 rcu_read_unlock();
2b193363 1990 success = sync_page_io(rdev,
6814d536 1991 r10_bio->devs[sl].addr +
ccebd4c4 1992 sect,
6814d536 1993 s<<9,
ccebd4c4 1994 conf->tmppage, READ, false);
6814d536
N
1995 rdev_dec_pending(rdev, mddev);
1996 rcu_read_lock();
1997 if (success)
1998 break;
1999 }
2000 sl++;
2001 if (sl == conf->copies)
2002 sl = 0;
2003 } while (!success && sl != r10_bio->read_slot);
2004 rcu_read_unlock();
2005
2006 if (!success) {
58c54fcc
N
2007 /* Cannot read from anywhere, just mark the block
2008 * as bad on the first device to discourage future
2009 * reads.
2010 */
6814d536 2011 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2012 rdev = conf->mirrors[dn].rdev;
2013
2014 if (!rdev_set_badblocks(
2015 rdev,
2016 r10_bio->devs[r10_bio->read_slot].addr
2017 + sect,
2018 s, 0))
2019 md_error(mddev, rdev);
6814d536
N
2020 break;
2021 }
2022
2023 start = sl;
2024 /* write it back and re-read */
2025 rcu_read_lock();
2026 while (sl != r10_bio->read_slot) {
67b8dc4b 2027 char b[BDEVNAME_SIZE];
0544a21d 2028
6814d536
N
2029 if (sl==0)
2030 sl = conf->copies;
2031 sl--;
2032 d = r10_bio->devs[sl].devnum;
2033 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2034 if (!rdev ||
2035 !test_bit(In_sync, &rdev->flags))
2036 continue;
2037
2038 atomic_inc(&rdev->nr_pending);
2039 rcu_read_unlock();
58c54fcc
N
2040 if (r10_sync_page_io(rdev,
2041 r10_bio->devs[sl].addr +
2042 sect,
2043 s<<9, conf->tmppage, WRITE)
1294b9c9
N
2044 == 0) {
2045 /* Well, this device is dead */
2046 printk(KERN_NOTICE
2047 "md/raid10:%s: read correction "
2048 "write failed"
2049 " (%d sectors at %llu on %s)\n",
2050 mdname(mddev), s,
2051 (unsigned long long)(
2052 sect + rdev->data_offset),
2053 bdevname(rdev->bdev, b));
2054 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2055 "drive\n",
2056 mdname(mddev),
2057 bdevname(rdev->bdev, b));
6814d536 2058 }
1294b9c9
N
2059 rdev_dec_pending(rdev, mddev);
2060 rcu_read_lock();
6814d536
N
2061 }
2062 sl = start;
2063 while (sl != r10_bio->read_slot) {
1294b9c9 2064 char b[BDEVNAME_SIZE];
0544a21d 2065
6814d536
N
2066 if (sl==0)
2067 sl = conf->copies;
2068 sl--;
2069 d = r10_bio->devs[sl].devnum;
2070 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2071 if (!rdev ||
2072 !test_bit(In_sync, &rdev->flags))
2073 continue;
6814d536 2074
1294b9c9
N
2075 atomic_inc(&rdev->nr_pending);
2076 rcu_read_unlock();
58c54fcc
N
2077 switch (r10_sync_page_io(rdev,
2078 r10_bio->devs[sl].addr +
2079 sect,
2080 s<<9, conf->tmppage,
2081 READ)) {
2082 case 0:
1294b9c9
N
2083 /* Well, this device is dead */
2084 printk(KERN_NOTICE
2085 "md/raid10:%s: unable to read back "
2086 "corrected sectors"
2087 " (%d sectors at %llu on %s)\n",
2088 mdname(mddev), s,
2089 (unsigned long long)(
2090 sect + rdev->data_offset),
2091 bdevname(rdev->bdev, b));
2092 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2093 "drive\n",
2094 mdname(mddev),
2095 bdevname(rdev->bdev, b));
58c54fcc
N
2096 break;
2097 case 1:
1294b9c9
N
2098 printk(KERN_INFO
2099 "md/raid10:%s: read error corrected"
2100 " (%d sectors at %llu on %s)\n",
2101 mdname(mddev), s,
2102 (unsigned long long)(
2103 sect + rdev->data_offset),
2104 bdevname(rdev->bdev, b));
2105 atomic_add(s, &rdev->corrected_errors);
6814d536 2106 }
1294b9c9
N
2107
2108 rdev_dec_pending(rdev, mddev);
2109 rcu_read_lock();
6814d536
N
2110 }
2111 rcu_read_unlock();
2112
2113 sectors -= s;
2114 sect += s;
2115 }
2116}
2117
bd870a16
N
2118static void bi_complete(struct bio *bio, int error)
2119{
2120 complete((struct completion *)bio->bi_private);
2121}
2122
2123static int submit_bio_wait(int rw, struct bio *bio)
2124{
2125 struct completion event;
2126 rw |= REQ_SYNC;
2127
2128 init_completion(&event);
2129 bio->bi_private = &event;
2130 bio->bi_end_io = bi_complete;
2131 submit_bio(rw, bio);
2132 wait_for_completion(&event);
2133
2134 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2135}
2136
9f2c9d12 2137static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2138{
2139 struct bio *bio = r10_bio->master_bio;
fd01b88c 2140 struct mddev *mddev = r10_bio->mddev;
e879a879 2141 struct r10conf *conf = mddev->private;
3cb03002 2142 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2143 /* bio has the data to be written to slot 'i' where
2144 * we just recently had a write error.
2145 * We repeatedly clone the bio and trim down to one block,
2146 * then try the write. Where the write fails we record
2147 * a bad block.
2148 * It is conceivable that the bio doesn't exactly align with
2149 * blocks. We must handle this.
2150 *
2151 * We currently own a reference to the rdev.
2152 */
2153
2154 int block_sectors;
2155 sector_t sector;
2156 int sectors;
2157 int sect_to_write = r10_bio->sectors;
2158 int ok = 1;
2159
2160 if (rdev->badblocks.shift < 0)
2161 return 0;
2162
2163 block_sectors = 1 << rdev->badblocks.shift;
2164 sector = r10_bio->sector;
2165 sectors = ((r10_bio->sector + block_sectors)
2166 & ~(sector_t)(block_sectors - 1))
2167 - sector;
2168
2169 while (sect_to_write) {
2170 struct bio *wbio;
2171 if (sectors > sect_to_write)
2172 sectors = sect_to_write;
2173 /* Write at 'sector' for 'sectors' */
2174 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2175 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2176 wbio->bi_sector = (r10_bio->devs[i].addr+
2177 rdev->data_offset+
2178 (sector - r10_bio->sector));
2179 wbio->bi_bdev = rdev->bdev;
2180 if (submit_bio_wait(WRITE, wbio) == 0)
2181 /* Failure! */
2182 ok = rdev_set_badblocks(rdev, sector,
2183 sectors, 0)
2184 && ok;
2185
2186 bio_put(wbio);
2187 sect_to_write -= sectors;
2188 sector += sectors;
2189 sectors = block_sectors;
2190 }
2191 return ok;
2192}
2193
9f2c9d12 2194static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2195{
2196 int slot = r10_bio->read_slot;
560f8e55 2197 struct bio *bio;
e879a879 2198 struct r10conf *conf = mddev->private;
abbf098e 2199 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2200 char b[BDEVNAME_SIZE];
2201 unsigned long do_sync;
856e08e2 2202 int max_sectors;
560f8e55
N
2203
2204 /* we got a read error. Maybe the drive is bad. Maybe just
2205 * the block and we can fix it.
2206 * We freeze all other IO, and try reading the block from
2207 * other devices. When we find one, we re-write
2208 * and check it that fixes the read error.
2209 * This is all done synchronously while the array is
2210 * frozen.
2211 */
2212 if (mddev->ro == 0) {
2213 freeze_array(conf);
2214 fix_read_error(conf, mddev, r10_bio);
2215 unfreeze_array(conf);
2216 }
abbf098e 2217 rdev_dec_pending(rdev, mddev);
560f8e55
N
2218
2219 bio = r10_bio->devs[slot].bio;
7399c31b 2220 bdevname(bio->bi_bdev, b);
560f8e55
N
2221 r10_bio->devs[slot].bio =
2222 mddev->ro ? IO_BLOCKED : NULL;
7399c31b 2223read_more:
96c3fd1f
N
2224 rdev = read_balance(conf, r10_bio, &max_sectors);
2225 if (rdev == NULL) {
560f8e55
N
2226 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2227 " read error for block %llu\n",
7399c31b 2228 mdname(mddev), b,
560f8e55
N
2229 (unsigned long long)r10_bio->sector);
2230 raid_end_bio_io(r10_bio);
2231 bio_put(bio);
2232 return;
2233 }
2234
2235 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
7399c31b
N
2236 if (bio)
2237 bio_put(bio);
560f8e55 2238 slot = r10_bio->read_slot;
560f8e55
N
2239 printk_ratelimited(
2240 KERN_ERR
2241 "md/raid10:%s: %s: redirecting"
2242 "sector %llu to another mirror\n",
2243 mdname(mddev),
2244 bdevname(rdev->bdev, b),
2245 (unsigned long long)r10_bio->sector);
2246 bio = bio_clone_mddev(r10_bio->master_bio,
2247 GFP_NOIO, mddev);
7399c31b
N
2248 md_trim_bio(bio,
2249 r10_bio->sector - bio->bi_sector,
2250 max_sectors);
560f8e55 2251 r10_bio->devs[slot].bio = bio;
abbf098e 2252 r10_bio->devs[slot].rdev = rdev;
560f8e55
N
2253 bio->bi_sector = r10_bio->devs[slot].addr
2254 + rdev->data_offset;
2255 bio->bi_bdev = rdev->bdev;
2256 bio->bi_rw = READ | do_sync;
2257 bio->bi_private = r10_bio;
2258 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2259 if (max_sectors < r10_bio->sectors) {
2260 /* Drat - have to split this up more */
2261 struct bio *mbio = r10_bio->master_bio;
2262 int sectors_handled =
2263 r10_bio->sector + max_sectors
2264 - mbio->bi_sector;
2265 r10_bio->sectors = max_sectors;
2266 spin_lock_irq(&conf->device_lock);
2267 if (mbio->bi_phys_segments == 0)
2268 mbio->bi_phys_segments = 2;
2269 else
2270 mbio->bi_phys_segments++;
2271 spin_unlock_irq(&conf->device_lock);
2272 generic_make_request(bio);
2273 bio = NULL;
2274
2275 r10_bio = mempool_alloc(conf->r10bio_pool,
2276 GFP_NOIO);
2277 r10_bio->master_bio = mbio;
2278 r10_bio->sectors = (mbio->bi_size >> 9)
2279 - sectors_handled;
2280 r10_bio->state = 0;
2281 set_bit(R10BIO_ReadError,
2282 &r10_bio->state);
2283 r10_bio->mddev = mddev;
2284 r10_bio->sector = mbio->bi_sector
2285 + sectors_handled;
2286
2287 goto read_more;
2288 } else
2289 generic_make_request(bio);
560f8e55
N
2290}
2291
e879a879 2292static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2293{
2294 /* Some sort of write request has finished and it
2295 * succeeded in writing where we thought there was a
2296 * bad block. So forget the bad block.
1a0b7cd8
N
2297 * Or possibly if failed and we need to record
2298 * a bad block.
749c55e9
N
2299 */
2300 int m;
3cb03002 2301 struct md_rdev *rdev;
749c55e9
N
2302
2303 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2304 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2305 for (m = 0; m < conf->copies; m++) {
2306 int dev = r10_bio->devs[m].devnum;
2307 rdev = conf->mirrors[dev].rdev;
2308 if (r10_bio->devs[m].bio == NULL)
2309 continue;
2310 if (test_bit(BIO_UPTODATE,
749c55e9 2311 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2312 rdev_clear_badblocks(
2313 rdev,
2314 r10_bio->devs[m].addr,
2315 r10_bio->sectors);
1a0b7cd8
N
2316 } else {
2317 if (!rdev_set_badblocks(
2318 rdev,
2319 r10_bio->devs[m].addr,
2320 r10_bio->sectors, 0))
2321 md_error(conf->mddev, rdev);
749c55e9 2322 }
9ad1aefc
N
2323 rdev = conf->mirrors[dev].replacement;
2324 if (r10_bio->devs[m].repl_bio == NULL)
2325 continue;
2326 if (test_bit(BIO_UPTODATE,
2327 &r10_bio->devs[m].repl_bio->bi_flags)) {
2328 rdev_clear_badblocks(
2329 rdev,
2330 r10_bio->devs[m].addr,
2331 r10_bio->sectors);
2332 } else {
2333 if (!rdev_set_badblocks(
2334 rdev,
2335 r10_bio->devs[m].addr,
2336 r10_bio->sectors, 0))
2337 md_error(conf->mddev, rdev);
2338 }
1a0b7cd8 2339 }
749c55e9
N
2340 put_buf(r10_bio);
2341 } else {
bd870a16
N
2342 for (m = 0; m < conf->copies; m++) {
2343 int dev = r10_bio->devs[m].devnum;
2344 struct bio *bio = r10_bio->devs[m].bio;
2345 rdev = conf->mirrors[dev].rdev;
2346 if (bio == IO_MADE_GOOD) {
749c55e9
N
2347 rdev_clear_badblocks(
2348 rdev,
2349 r10_bio->devs[m].addr,
2350 r10_bio->sectors);
2351 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2352 } else if (bio != NULL &&
2353 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2354 if (!narrow_write_error(r10_bio, m)) {
2355 md_error(conf->mddev, rdev);
2356 set_bit(R10BIO_Degraded,
2357 &r10_bio->state);
2358 }
2359 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2360 }
475b0321
N
2361 bio = r10_bio->devs[m].repl_bio;
2362 rdev = conf->mirrors[dev].replacement;
2363 if (bio == IO_MADE_GOOD) {
2364 rdev_clear_badblocks(
2365 rdev,
2366 r10_bio->devs[m].addr,
2367 r10_bio->sectors);
2368 rdev_dec_pending(rdev, conf->mddev);
2369 }
bd870a16
N
2370 }
2371 if (test_bit(R10BIO_WriteError,
2372 &r10_bio->state))
2373 close_write(r10_bio);
749c55e9
N
2374 raid_end_bio_io(r10_bio);
2375 }
2376}
2377
fd01b88c 2378static void raid10d(struct mddev *mddev)
1da177e4 2379{
9f2c9d12 2380 struct r10bio *r10_bio;
1da177e4 2381 unsigned long flags;
e879a879 2382 struct r10conf *conf = mddev->private;
1da177e4 2383 struct list_head *head = &conf->retry_list;
e1dfa0a2 2384 struct blk_plug plug;
1da177e4
LT
2385
2386 md_check_recovery(mddev);
1da177e4 2387
e1dfa0a2 2388 blk_start_plug(&plug);
1da177e4 2389 for (;;) {
6cce3b23 2390
7eaceacc 2391 flush_pending_writes(conf);
6cce3b23 2392
a35e63ef
N
2393 spin_lock_irqsave(&conf->device_lock, flags);
2394 if (list_empty(head)) {
2395 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2396 break;
a35e63ef 2397 }
9f2c9d12 2398 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2399 list_del(head->prev);
4443ae10 2400 conf->nr_queued--;
1da177e4
LT
2401 spin_unlock_irqrestore(&conf->device_lock, flags);
2402
2403 mddev = r10_bio->mddev;
070ec55d 2404 conf = mddev->private;
bd870a16
N
2405 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2406 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2407 handle_write_completed(conf, r10_bio);
2408 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2409 sync_request_write(mddev, r10_bio);
7eaceacc 2410 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2411 recovery_request_write(mddev, r10_bio);
856e08e2 2412 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2413 handle_read_error(mddev, r10_bio);
856e08e2
N
2414 else {
2415 /* just a partial read to be scheduled from a
2416 * separate context
2417 */
2418 int slot = r10_bio->read_slot;
2419 generic_make_request(r10_bio->devs[slot].bio);
2420 }
560f8e55 2421
1d9d5241 2422 cond_resched();
de393cde
N
2423 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2424 md_check_recovery(mddev);
1da177e4 2425 }
e1dfa0a2 2426 blk_finish_plug(&plug);
1da177e4
LT
2427}
2428
2429
e879a879 2430static int init_resync(struct r10conf *conf)
1da177e4
LT
2431{
2432 int buffs;
69335ef3 2433 int i;
1da177e4
LT
2434
2435 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2436 BUG_ON(conf->r10buf_pool);
69335ef3
N
2437 conf->have_replacement = 0;
2438 for (i = 0; i < conf->raid_disks; i++)
2439 if (conf->mirrors[i].replacement)
2440 conf->have_replacement = 1;
1da177e4
LT
2441 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2442 if (!conf->r10buf_pool)
2443 return -ENOMEM;
2444 conf->next_resync = 0;
2445 return 0;
2446}
2447
2448/*
2449 * perform a "sync" on one "block"
2450 *
2451 * We need to make sure that no normal I/O request - particularly write
2452 * requests - conflict with active sync requests.
2453 *
2454 * This is achieved by tracking pending requests and a 'barrier' concept
2455 * that can be installed to exclude normal IO requests.
2456 *
2457 * Resync and recovery are handled very differently.
2458 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2459 *
2460 * For resync, we iterate over virtual addresses, read all copies,
2461 * and update if there are differences. If only one copy is live,
2462 * skip it.
2463 * For recovery, we iterate over physical addresses, read a good
2464 * value for each non-in_sync drive, and over-write.
2465 *
2466 * So, for recovery we may have several outstanding complex requests for a
2467 * given address, one for each out-of-sync device. We model this by allocating
2468 * a number of r10_bio structures, one for each out-of-sync device.
2469 * As we setup these structures, we collect all bio's together into a list
2470 * which we then process collectively to add pages, and then process again
2471 * to pass to generic_make_request.
2472 *
2473 * The r10_bio structures are linked using a borrowed master_bio pointer.
2474 * This link is counted in ->remaining. When the r10_bio that points to NULL
2475 * has its remaining count decremented to 0, the whole complex operation
2476 * is complete.
2477 *
2478 */
2479
fd01b88c 2480static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2481 int *skipped, int go_faster)
1da177e4 2482{
e879a879 2483 struct r10conf *conf = mddev->private;
9f2c9d12 2484 struct r10bio *r10_bio;
1da177e4
LT
2485 struct bio *biolist = NULL, *bio;
2486 sector_t max_sector, nr_sectors;
1da177e4 2487 int i;
6cce3b23 2488 int max_sync;
57dab0bd 2489 sector_t sync_blocks;
1da177e4
LT
2490 sector_t sectors_skipped = 0;
2491 int chunks_skipped = 0;
2492
2493 if (!conf->r10buf_pool)
2494 if (init_resync(conf))
57afd89f 2495 return 0;
1da177e4
LT
2496
2497 skipped:
58c0fed4 2498 max_sector = mddev->dev_sectors;
1da177e4
LT
2499 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2500 max_sector = mddev->resync_max_sectors;
2501 if (sector_nr >= max_sector) {
6cce3b23
N
2502 /* If we aborted, we need to abort the
2503 * sync on the 'current' bitmap chucks (there can
2504 * be several when recovering multiple devices).
2505 * as we may have started syncing it but not finished.
2506 * We can find the current address in
2507 * mddev->curr_resync, but for recovery,
2508 * we need to convert that to several
2509 * virtual addresses.
2510 */
2511 if (mddev->curr_resync < max_sector) { /* aborted */
2512 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2513 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2514 &sync_blocks, 1);
2515 else for (i=0; i<conf->raid_disks; i++) {
2516 sector_t sect =
2517 raid10_find_virt(conf, mddev->curr_resync, i);
2518 bitmap_end_sync(mddev->bitmap, sect,
2519 &sync_blocks, 1);
2520 }
9ad1aefc
N
2521 } else {
2522 /* completed sync */
2523 if ((!mddev->bitmap || conf->fullsync)
2524 && conf->have_replacement
2525 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2526 /* Completed a full sync so the replacements
2527 * are now fully recovered.
2528 */
2529 for (i = 0; i < conf->raid_disks; i++)
2530 if (conf->mirrors[i].replacement)
2531 conf->mirrors[i].replacement
2532 ->recovery_offset
2533 = MaxSector;
2534 }
6cce3b23 2535 conf->fullsync = 0;
9ad1aefc 2536 }
6cce3b23 2537 bitmap_close_sync(mddev->bitmap);
1da177e4 2538 close_sync(conf);
57afd89f 2539 *skipped = 1;
1da177e4
LT
2540 return sectors_skipped;
2541 }
2542 if (chunks_skipped >= conf->raid_disks) {
2543 /* if there has been nothing to do on any drive,
2544 * then there is nothing to do at all..
2545 */
57afd89f
N
2546 *skipped = 1;
2547 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2548 }
2549
c6207277
N
2550 if (max_sector > mddev->resync_max)
2551 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2552
1da177e4
LT
2553 /* make sure whole request will fit in a chunk - if chunks
2554 * are meaningful
2555 */
2556 if (conf->near_copies < conf->raid_disks &&
2557 max_sector > (sector_nr | conf->chunk_mask))
2558 max_sector = (sector_nr | conf->chunk_mask) + 1;
2559 /*
2560 * If there is non-resync activity waiting for us then
2561 * put in a delay to throttle resync.
2562 */
0a27ec96 2563 if (!go_faster && conf->nr_waiting)
1da177e4 2564 msleep_interruptible(1000);
1da177e4
LT
2565
2566 /* Again, very different code for resync and recovery.
2567 * Both must result in an r10bio with a list of bios that
2568 * have bi_end_io, bi_sector, bi_bdev set,
2569 * and bi_private set to the r10bio.
2570 * For recovery, we may actually create several r10bios
2571 * with 2 bios in each, that correspond to the bios in the main one.
2572 * In this case, the subordinate r10bios link back through a
2573 * borrowed master_bio pointer, and the counter in the master
2574 * includes a ref from each subordinate.
2575 */
2576 /* First, we decide what to do and set ->bi_end_io
2577 * To end_sync_read if we want to read, and
2578 * end_sync_write if we will want to write.
2579 */
2580
6cce3b23 2581 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2582 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2583 /* recovery... the complicated one */
e875ecea 2584 int j;
1da177e4
LT
2585 r10_bio = NULL;
2586
ab9d47e9
N
2587 for (i=0 ; i<conf->raid_disks; i++) {
2588 int still_degraded;
9f2c9d12 2589 struct r10bio *rb2;
ab9d47e9
N
2590 sector_t sect;
2591 int must_sync;
e875ecea 2592 int any_working;
1da177e4 2593
ab9d47e9
N
2594 if (conf->mirrors[i].rdev == NULL ||
2595 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2596 continue;
1da177e4 2597
ab9d47e9
N
2598 still_degraded = 0;
2599 /* want to reconstruct this device */
2600 rb2 = r10_bio;
2601 sect = raid10_find_virt(conf, sector_nr, i);
2602 /* Unless we are doing a full sync, we only need
2603 * to recover the block if it is set in the bitmap
2604 */
2605 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2606 &sync_blocks, 1);
2607 if (sync_blocks < max_sync)
2608 max_sync = sync_blocks;
2609 if (!must_sync &&
2610 !conf->fullsync) {
2611 /* yep, skip the sync_blocks here, but don't assume
2612 * that there will never be anything to do here
2613 */
2614 chunks_skipped = -1;
2615 continue;
2616 }
6cce3b23 2617
ab9d47e9
N
2618 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2619 raise_barrier(conf, rb2 != NULL);
2620 atomic_set(&r10_bio->remaining, 0);
18055569 2621
ab9d47e9
N
2622 r10_bio->master_bio = (struct bio*)rb2;
2623 if (rb2)
2624 atomic_inc(&rb2->remaining);
2625 r10_bio->mddev = mddev;
2626 set_bit(R10BIO_IsRecover, &r10_bio->state);
2627 r10_bio->sector = sect;
1da177e4 2628
ab9d47e9
N
2629 raid10_find_phys(conf, r10_bio);
2630
2631 /* Need to check if the array will still be
2632 * degraded
2633 */
2634 for (j=0; j<conf->raid_disks; j++)
2635 if (conf->mirrors[j].rdev == NULL ||
2636 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2637 still_degraded = 1;
87fc767b 2638 break;
1da177e4 2639 }
ab9d47e9
N
2640
2641 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2642 &sync_blocks, still_degraded);
2643
e875ecea 2644 any_working = 0;
ab9d47e9 2645 for (j=0; j<conf->copies;j++) {
e875ecea 2646 int k;
ab9d47e9 2647 int d = r10_bio->devs[j].devnum;
5e570289 2648 sector_t from_addr, to_addr;
3cb03002 2649 struct md_rdev *rdev;
40c356ce
N
2650 sector_t sector, first_bad;
2651 int bad_sectors;
ab9d47e9
N
2652 if (!conf->mirrors[d].rdev ||
2653 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2654 continue;
2655 /* This is where we read from */
e875ecea 2656 any_working = 1;
40c356ce
N
2657 rdev = conf->mirrors[d].rdev;
2658 sector = r10_bio->devs[j].addr;
2659
2660 if (is_badblock(rdev, sector, max_sync,
2661 &first_bad, &bad_sectors)) {
2662 if (first_bad > sector)
2663 max_sync = first_bad - sector;
2664 else {
2665 bad_sectors -= (sector
2666 - first_bad);
2667 if (max_sync > bad_sectors)
2668 max_sync = bad_sectors;
2669 continue;
2670 }
2671 }
ab9d47e9
N
2672 bio = r10_bio->devs[0].bio;
2673 bio->bi_next = biolist;
2674 biolist = bio;
2675 bio->bi_private = r10_bio;
2676 bio->bi_end_io = end_sync_read;
2677 bio->bi_rw = READ;
5e570289
N
2678 from_addr = r10_bio->devs[j].addr;
2679 bio->bi_sector = from_addr +
ab9d47e9
N
2680 conf->mirrors[d].rdev->data_offset;
2681 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2682 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2683 atomic_inc(&r10_bio->remaining);
2684 /* and we write to 'i' */
2685
2686 for (k=0; k<conf->copies; k++)
2687 if (r10_bio->devs[k].devnum == i)
2688 break;
2689 BUG_ON(k == conf->copies);
2690 bio = r10_bio->devs[1].bio;
2691 bio->bi_next = biolist;
2692 biolist = bio;
2693 bio->bi_private = r10_bio;
2694 bio->bi_end_io = end_sync_write;
2695 bio->bi_rw = WRITE;
5e570289
N
2696 to_addr = r10_bio->devs[k].addr;
2697 bio->bi_sector = to_addr +
ab9d47e9
N
2698 conf->mirrors[i].rdev->data_offset;
2699 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2700
2701 r10_bio->devs[0].devnum = d;
5e570289 2702 r10_bio->devs[0].addr = from_addr;
ab9d47e9 2703 r10_bio->devs[1].devnum = i;
5e570289 2704 r10_bio->devs[1].addr = to_addr;
ab9d47e9
N
2705
2706 break;
2707 }
2708 if (j == conf->copies) {
e875ecea
N
2709 /* Cannot recover, so abort the recovery or
2710 * record a bad block */
ab9d47e9
N
2711 put_buf(r10_bio);
2712 if (rb2)
2713 atomic_dec(&rb2->remaining);
2714 r10_bio = rb2;
e875ecea
N
2715 if (any_working) {
2716 /* problem is that there are bad blocks
2717 * on other device(s)
2718 */
2719 int k;
2720 for (k = 0; k < conf->copies; k++)
2721 if (r10_bio->devs[k].devnum == i)
2722 break;
2723 if (!rdev_set_badblocks(
2724 conf->mirrors[i].rdev,
2725 r10_bio->devs[k].addr,
2726 max_sync, 0))
2727 any_working = 0;
2728 }
2729 if (!any_working) {
2730 if (!test_and_set_bit(MD_RECOVERY_INTR,
2731 &mddev->recovery))
2732 printk(KERN_INFO "md/raid10:%s: insufficient "
2733 "working devices for recovery.\n",
2734 mdname(mddev));
2735 conf->mirrors[i].recovery_disabled
2736 = mddev->recovery_disabled;
2737 }
ab9d47e9 2738 break;
1da177e4 2739 }
ab9d47e9 2740 }
1da177e4
LT
2741 if (biolist == NULL) {
2742 while (r10_bio) {
9f2c9d12
N
2743 struct r10bio *rb2 = r10_bio;
2744 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
2745 rb2->master_bio = NULL;
2746 put_buf(rb2);
2747 }
2748 goto giveup;
2749 }
2750 } else {
2751 /* resync. Schedule a read for every block at this virt offset */
2752 int count = 0;
6cce3b23 2753
78200d45
N
2754 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2755
6cce3b23
N
2756 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2757 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
2758 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2759 &mddev->recovery)) {
6cce3b23
N
2760 /* We can skip this block */
2761 *skipped = 1;
2762 return sync_blocks + sectors_skipped;
2763 }
2764 if (sync_blocks < max_sync)
2765 max_sync = sync_blocks;
1da177e4
LT
2766 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2767
1da177e4
LT
2768 r10_bio->mddev = mddev;
2769 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
2770 raise_barrier(conf, 0);
2771 conf->next_resync = sector_nr;
1da177e4
LT
2772
2773 r10_bio->master_bio = NULL;
2774 r10_bio->sector = sector_nr;
2775 set_bit(R10BIO_IsSync, &r10_bio->state);
2776 raid10_find_phys(conf, r10_bio);
2777 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2778
2779 for (i=0; i<conf->copies; i++) {
2780 int d = r10_bio->devs[i].devnum;
40c356ce
N
2781 sector_t first_bad, sector;
2782 int bad_sectors;
2783
9ad1aefc
N
2784 if (r10_bio->devs[i].repl_bio)
2785 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2786
1da177e4
LT
2787 bio = r10_bio->devs[i].bio;
2788 bio->bi_end_io = NULL;
af03b8e4 2789 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2790 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2791 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 2792 continue;
40c356ce
N
2793 sector = r10_bio->devs[i].addr;
2794 if (is_badblock(conf->mirrors[d].rdev,
2795 sector, max_sync,
2796 &first_bad, &bad_sectors)) {
2797 if (first_bad > sector)
2798 max_sync = first_bad - sector;
2799 else {
2800 bad_sectors -= (sector - first_bad);
2801 if (max_sync > bad_sectors)
2802 max_sync = max_sync;
2803 continue;
2804 }
2805 }
1da177e4
LT
2806 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2807 atomic_inc(&r10_bio->remaining);
2808 bio->bi_next = biolist;
2809 biolist = bio;
2810 bio->bi_private = r10_bio;
2811 bio->bi_end_io = end_sync_read;
802ba064 2812 bio->bi_rw = READ;
40c356ce 2813 bio->bi_sector = sector +
1da177e4
LT
2814 conf->mirrors[d].rdev->data_offset;
2815 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2816 count++;
9ad1aefc
N
2817
2818 if (conf->mirrors[d].replacement == NULL ||
2819 test_bit(Faulty,
2820 &conf->mirrors[d].replacement->flags))
2821 continue;
2822
2823 /* Need to set up for writing to the replacement */
2824 bio = r10_bio->devs[i].repl_bio;
2825 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2826
2827 sector = r10_bio->devs[i].addr;
2828 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2829 bio->bi_next = biolist;
2830 biolist = bio;
2831 bio->bi_private = r10_bio;
2832 bio->bi_end_io = end_sync_write;
2833 bio->bi_rw = WRITE;
2834 bio->bi_sector = sector +
2835 conf->mirrors[d].replacement->data_offset;
2836 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
2837 count++;
1da177e4
LT
2838 }
2839
2840 if (count < 2) {
2841 for (i=0; i<conf->copies; i++) {
2842 int d = r10_bio->devs[i].devnum;
2843 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
2844 rdev_dec_pending(conf->mirrors[d].rdev,
2845 mddev);
9ad1aefc
N
2846 if (r10_bio->devs[i].repl_bio &&
2847 r10_bio->devs[i].repl_bio->bi_end_io)
2848 rdev_dec_pending(
2849 conf->mirrors[d].replacement,
2850 mddev);
1da177e4
LT
2851 }
2852 put_buf(r10_bio);
2853 biolist = NULL;
2854 goto giveup;
2855 }
2856 }
2857
2858 for (bio = biolist; bio ; bio=bio->bi_next) {
2859
2860 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2861 if (bio->bi_end_io)
2862 bio->bi_flags |= 1 << BIO_UPTODATE;
2863 bio->bi_vcnt = 0;
2864 bio->bi_idx = 0;
2865 bio->bi_phys_segments = 0;
1da177e4
LT
2866 bio->bi_size = 0;
2867 }
2868
2869 nr_sectors = 0;
6cce3b23
N
2870 if (sector_nr + max_sync < max_sector)
2871 max_sector = sector_nr + max_sync;
1da177e4
LT
2872 do {
2873 struct page *page;
2874 int len = PAGE_SIZE;
1da177e4
LT
2875 if (sector_nr + (len>>9) > max_sector)
2876 len = (max_sector - sector_nr) << 9;
2877 if (len == 0)
2878 break;
2879 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 2880 struct bio *bio2;
1da177e4 2881 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
2882 if (bio_add_page(bio, page, len, 0))
2883 continue;
2884
2885 /* stop here */
2886 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2887 for (bio2 = biolist;
2888 bio2 && bio2 != bio;
2889 bio2 = bio2->bi_next) {
2890 /* remove last page from this bio */
2891 bio2->bi_vcnt--;
2892 bio2->bi_size -= len;
2893 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 2894 }
ab9d47e9 2895 goto bio_full;
1da177e4
LT
2896 }
2897 nr_sectors += len>>9;
2898 sector_nr += len>>9;
2899 } while (biolist->bi_vcnt < RESYNC_PAGES);
2900 bio_full:
2901 r10_bio->sectors = nr_sectors;
2902
2903 while (biolist) {
2904 bio = biolist;
2905 biolist = biolist->bi_next;
2906
2907 bio->bi_next = NULL;
2908 r10_bio = bio->bi_private;
2909 r10_bio->sectors = nr_sectors;
2910
2911 if (bio->bi_end_io == end_sync_read) {
2912 md_sync_acct(bio->bi_bdev, nr_sectors);
2913 generic_make_request(bio);
2914 }
2915 }
2916
57afd89f
N
2917 if (sectors_skipped)
2918 /* pretend they weren't skipped, it makes
2919 * no important difference in this case
2920 */
2921 md_done_sync(mddev, sectors_skipped, 1);
2922
1da177e4
LT
2923 return sectors_skipped + nr_sectors;
2924 giveup:
2925 /* There is nowhere to write, so all non-sync
e875ecea
N
2926 * drives must be failed or in resync, all drives
2927 * have a bad block, so try the next chunk...
1da177e4 2928 */
09b4068a
N
2929 if (sector_nr + max_sync < max_sector)
2930 max_sector = sector_nr + max_sync;
2931
2932 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2933 chunks_skipped ++;
2934 sector_nr = max_sector;
1da177e4 2935 goto skipped;
1da177e4
LT
2936}
2937
80c3a6ce 2938static sector_t
fd01b88c 2939raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2940{
2941 sector_t size;
e879a879 2942 struct r10conf *conf = mddev->private;
80c3a6ce
DW
2943
2944 if (!raid_disks)
84707f38 2945 raid_disks = conf->raid_disks;
80c3a6ce 2946 if (!sectors)
dab8b292 2947 sectors = conf->dev_sectors;
80c3a6ce
DW
2948
2949 size = sectors >> conf->chunk_shift;
2950 sector_div(size, conf->far_copies);
2951 size = size * raid_disks;
2952 sector_div(size, conf->near_copies);
2953
2954 return size << conf->chunk_shift;
2955}
2956
dab8b292 2957
e879a879 2958static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 2959{
e879a879 2960 struct r10conf *conf = NULL;
c93983bf 2961 int nc, fc, fo;
1da177e4 2962 sector_t stride, size;
dab8b292 2963 int err = -EINVAL;
1da177e4 2964
f73ea873
MT
2965 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2966 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
2967 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2968 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2969 mdname(mddev), PAGE_SIZE);
dab8b292 2970 goto out;
1da177e4 2971 }
2604b703 2972
f73ea873
MT
2973 nc = mddev->new_layout & 255;
2974 fc = (mddev->new_layout >> 8) & 255;
2975 fo = mddev->new_layout & (1<<16);
dab8b292 2976
1da177e4 2977 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 2978 (mddev->new_layout >> 17)) {
128595ed 2979 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 2980 mdname(mddev), mddev->new_layout);
1da177e4
LT
2981 goto out;
2982 }
dab8b292
TM
2983
2984 err = -ENOMEM;
e879a879 2985 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 2986 if (!conf)
1da177e4 2987 goto out;
dab8b292 2988
4443ae10 2989 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
2990 GFP_KERNEL);
2991 if (!conf->mirrors)
2992 goto out;
4443ae10
N
2993
2994 conf->tmppage = alloc_page(GFP_KERNEL);
2995 if (!conf->tmppage)
dab8b292
TM
2996 goto out;
2997
1da177e4 2998
64a742bc 2999 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
3000 conf->near_copies = nc;
3001 conf->far_copies = fc;
3002 conf->copies = nc*fc;
c93983bf 3003 conf->far_offset = fo;
dab8b292
TM
3004 conf->chunk_mask = mddev->new_chunk_sectors - 1;
3005 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3006
3007 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3008 r10bio_pool_free, conf);
3009 if (!conf->r10bio_pool)
3010 goto out;
3011
58c0fed4 3012 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
3013 sector_div(size, fc);
3014 size = size * conf->raid_disks;
3015 sector_div(size, nc);
3016 /* 'size' is now the number of chunks in the array */
3017 /* calculate "used chunks per device" in 'stride' */
3018 stride = size * conf->copies;
af03b8e4
N
3019
3020 /* We need to round up when dividing by raid_disks to
3021 * get the stride size.
3022 */
3023 stride += conf->raid_disks - 1;
64a742bc 3024 sector_div(stride, conf->raid_disks);
dab8b292
TM
3025
3026 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 3027
c93983bf 3028 if (fo)
64a742bc
N
3029 stride = 1;
3030 else
c93983bf 3031 sector_div(stride, fc);
64a742bc
N
3032 conf->stride = stride << conf->chunk_shift;
3033
1da177e4 3034
e7e72bf6 3035 spin_lock_init(&conf->device_lock);
dab8b292
TM
3036 INIT_LIST_HEAD(&conf->retry_list);
3037
3038 spin_lock_init(&conf->resync_lock);
3039 init_waitqueue_head(&conf->wait_barrier);
3040
3041 conf->thread = md_register_thread(raid10d, mddev, NULL);
3042 if (!conf->thread)
3043 goto out;
3044
dab8b292
TM
3045 conf->mddev = mddev;
3046 return conf;
3047
3048 out:
128595ed 3049 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
3050 mdname(mddev));
3051 if (conf) {
3052 if (conf->r10bio_pool)
3053 mempool_destroy(conf->r10bio_pool);
3054 kfree(conf->mirrors);
3055 safe_put_page(conf->tmppage);
3056 kfree(conf);
3057 }
3058 return ERR_PTR(err);
3059}
3060
fd01b88c 3061static int run(struct mddev *mddev)
dab8b292 3062{
e879a879 3063 struct r10conf *conf;
dab8b292 3064 int i, disk_idx, chunk_size;
0f6d02d5 3065 struct mirror_info *disk;
3cb03002 3066 struct md_rdev *rdev;
dab8b292
TM
3067 sector_t size;
3068
3069 /*
3070 * copy the already verified devices into our private RAID10
3071 * bookkeeping area. [whatever we allocate in run(),
3072 * should be freed in stop()]
3073 */
3074
3075 if (mddev->private == NULL) {
3076 conf = setup_conf(mddev);
3077 if (IS_ERR(conf))
3078 return PTR_ERR(conf);
3079 mddev->private = conf;
3080 }
3081 conf = mddev->private;
3082 if (!conf)
3083 goto out;
3084
dab8b292
TM
3085 mddev->thread = conf->thread;
3086 conf->thread = NULL;
3087
8f6c2e4b
MP
3088 chunk_size = mddev->chunk_sectors << 9;
3089 blk_queue_io_min(mddev->queue, chunk_size);
3090 if (conf->raid_disks % conf->near_copies)
3091 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3092 else
3093 blk_queue_io_opt(mddev->queue, chunk_size *
3094 (conf->raid_disks / conf->near_copies));
3095
159ec1fc 3096 list_for_each_entry(rdev, &mddev->disks, same_set) {
34b343cf 3097
1da177e4 3098 disk_idx = rdev->raid_disk;
84707f38 3099 if (disk_idx >= conf->raid_disks
1da177e4
LT
3100 || disk_idx < 0)
3101 continue;
3102 disk = conf->mirrors + disk_idx;
3103
3104 disk->rdev = rdev;
8f6c2e4b
MP
3105 disk_stack_limits(mddev->gendisk, rdev->bdev,
3106 rdev->data_offset << 9);
1da177e4 3107 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
3108 * violating it, so limit max_segments to 1 lying
3109 * within a single page.
1da177e4 3110 */
627a2d3c
N
3111 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
3112 blk_queue_max_segments(mddev->queue, 1);
3113 blk_queue_segment_boundary(mddev->queue,
3114 PAGE_CACHE_SIZE - 1);
3115 }
1da177e4
LT
3116
3117 disk->head_position = 0;
1da177e4 3118 }
6d508242 3119 /* need to check that every block has at least one working mirror */
700c7213 3120 if (!enough(conf, -1)) {
128595ed 3121 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3122 mdname(mddev));
1da177e4
LT
3123 goto out_free_conf;
3124 }
3125
3126 mddev->degraded = 0;
3127 for (i = 0; i < conf->raid_disks; i++) {
3128
3129 disk = conf->mirrors + i;
3130
5fd6c1dc 3131 if (!disk->rdev ||
2e333e89 3132 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3133 disk->head_position = 0;
3134 mddev->degraded++;
8c2e870a
NB
3135 if (disk->rdev)
3136 conf->fullsync = 1;
1da177e4 3137 }
d890fa2b 3138 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3139 }
3140
8c6ac868 3141 if (mddev->recovery_cp != MaxSector)
128595ed 3142 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3143 " -- starting background reconstruction\n",
3144 mdname(mddev));
1da177e4 3145 printk(KERN_INFO
128595ed 3146 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
3147 mdname(mddev), conf->raid_disks - mddev->degraded,
3148 conf->raid_disks);
1da177e4
LT
3149 /*
3150 * Ok, everything is just fine now
3151 */
dab8b292
TM
3152 mddev->dev_sectors = conf->dev_sectors;
3153 size = raid10_size(mddev, 0, 0);
3154 md_set_array_sectors(mddev, size);
3155 mddev->resync_max_sectors = size;
1da177e4 3156
0d129228
N
3157 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3158 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 3159
1da177e4
LT
3160 /* Calculate max read-ahead size.
3161 * We need to readahead at least twice a whole stripe....
3162 * maybe...
3163 */
3164 {
9d8f0363
AN
3165 int stripe = conf->raid_disks *
3166 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
3167 stripe /= conf->near_copies;
3168 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3169 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3170 }
3171
84707f38 3172 if (conf->near_copies < conf->raid_disks)
1da177e4 3173 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
3174
3175 if (md_integrity_register(mddev))
3176 goto out_free_conf;
3177
1da177e4
LT
3178 return 0;
3179
3180out_free_conf:
01f96c0a 3181 md_unregister_thread(&mddev->thread);
1da177e4
LT
3182 if (conf->r10bio_pool)
3183 mempool_destroy(conf->r10bio_pool);
1345b1d8 3184 safe_put_page(conf->tmppage);
990a8baf 3185 kfree(conf->mirrors);
1da177e4
LT
3186 kfree(conf);
3187 mddev->private = NULL;
3188out:
3189 return -EIO;
3190}
3191
fd01b88c 3192static int stop(struct mddev *mddev)
1da177e4 3193{
e879a879 3194 struct r10conf *conf = mddev->private;
1da177e4 3195
409c57f3
N
3196 raise_barrier(conf, 0);
3197 lower_barrier(conf);
3198
01f96c0a 3199 md_unregister_thread(&mddev->thread);
1da177e4
LT
3200 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3201 if (conf->r10bio_pool)
3202 mempool_destroy(conf->r10bio_pool);
990a8baf 3203 kfree(conf->mirrors);
1da177e4
LT
3204 kfree(conf);
3205 mddev->private = NULL;
3206 return 0;
3207}
3208
fd01b88c 3209static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3210{
e879a879 3211 struct r10conf *conf = mddev->private;
6cce3b23
N
3212
3213 switch(state) {
3214 case 1:
3215 raise_barrier(conf, 0);
3216 break;
3217 case 0:
3218 lower_barrier(conf);
3219 break;
3220 }
6cce3b23 3221}
1da177e4 3222
fd01b88c 3223static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3224{
3cb03002 3225 struct md_rdev *rdev;
e879a879 3226 struct r10conf *conf;
dab8b292
TM
3227
3228 if (mddev->degraded > 0) {
128595ed
N
3229 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3230 mdname(mddev));
dab8b292
TM
3231 return ERR_PTR(-EINVAL);
3232 }
3233
dab8b292
TM
3234 /* Set new parameters */
3235 mddev->new_level = 10;
3236 /* new layout: far_copies = 1, near_copies = 2 */
3237 mddev->new_layout = (1<<8) + 2;
3238 mddev->new_chunk_sectors = mddev->chunk_sectors;
3239 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3240 mddev->raid_disks *= 2;
3241 /* make sure it will be not marked as dirty */
3242 mddev->recovery_cp = MaxSector;
3243
3244 conf = setup_conf(mddev);
02214dc5 3245 if (!IS_ERR(conf)) {
e93f68a1
N
3246 list_for_each_entry(rdev, &mddev->disks, same_set)
3247 if (rdev->raid_disk >= 0)
3248 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3249 conf->barrier = 1;
3250 }
3251
dab8b292
TM
3252 return conf;
3253}
3254
fd01b88c 3255static void *raid10_takeover(struct mddev *mddev)
dab8b292 3256{
e373ab10 3257 struct r0conf *raid0_conf;
dab8b292
TM
3258
3259 /* raid10 can take over:
3260 * raid0 - providing it has only two drives
3261 */
3262 if (mddev->level == 0) {
3263 /* for raid0 takeover only one zone is supported */
e373ab10
N
3264 raid0_conf = mddev->private;
3265 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3266 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3267 " with more than one zone.\n",
3268 mdname(mddev));
dab8b292
TM
3269 return ERR_PTR(-EINVAL);
3270 }
3271 return raid10_takeover_raid0(mddev);
3272 }
3273 return ERR_PTR(-EINVAL);
3274}
3275
84fc4b56 3276static struct md_personality raid10_personality =
1da177e4
LT
3277{
3278 .name = "raid10",
2604b703 3279 .level = 10,
1da177e4
LT
3280 .owner = THIS_MODULE,
3281 .make_request = make_request,
3282 .run = run,
3283 .stop = stop,
3284 .status = status,
3285 .error_handler = error,
3286 .hot_add_disk = raid10_add_disk,
3287 .hot_remove_disk= raid10_remove_disk,
3288 .spare_active = raid10_spare_active,
3289 .sync_request = sync_request,
6cce3b23 3290 .quiesce = raid10_quiesce,
80c3a6ce 3291 .size = raid10_size,
dab8b292 3292 .takeover = raid10_takeover,
1da177e4
LT
3293};
3294
3295static int __init raid_init(void)
3296{
2604b703 3297 return register_md_personality(&raid10_personality);
1da177e4
LT
3298}
3299
3300static void raid_exit(void)
3301{
2604b703 3302 unregister_md_personality(&raid10_personality);
1da177e4
LT
3303}
3304
3305module_init(raid_init);
3306module_exit(raid_exit);
3307MODULE_LICENSE("GPL");
0efb9e61 3308MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 3309MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 3310MODULE_ALIAS("md-raid10");
2604b703 3311MODULE_ALIAS("md-level-10");
34db0cd6
N
3312
3313module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);