]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/md/raid10.c
md/raid10: preferentially read from replacement device if possible.
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
43b2e5d8 27#include "md.h"
ef740c37 28#include "raid10.h"
dab8b292 29#include "raid0.h"
ef740c37 30#include "bitmap.h"
1da177e4
LT
31
32/*
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
c93983bf 39 * far_offset (stored in bit 16 of layout )
1da177e4
LT
40 *
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
c93983bf 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
1da177e4
LT
55 */
56
57/*
58 * Number of guaranteed r10bios in case of extreme VM load:
59 */
60#define NR_RAID10_BIOS 256
61
34db0cd6
N
62/* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
65 */
66static int max_queued_requests = 1024;
67
e879a879
N
68static void allow_barrier(struct r10conf *conf);
69static void lower_barrier(struct r10conf *conf);
0a27ec96 70
dd0fc66f 71static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 72{
e879a879 73 struct r10conf *conf = data;
9f2c9d12 74 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 75
69335ef3
N
76 /* allocate a r10bio with room for raid_disks entries in the
77 * bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r10bio_pool_free(void *r10_bio, void *data)
82{
83 kfree(r10_bio);
84}
85
0310fa21 86/* Maximum size of each resync request */
1da177e4 87#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 88#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
89/* amount of memory to reserve for resync requests */
90#define RESYNC_WINDOW (1024*1024)
91/* maximum number of concurrent requests, memory permitting */
92#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
93
94/*
95 * When performing a resync, we need to read and compare, so
96 * we need as many pages are there are copies.
97 * When performing a recovery, we need 2 bios, one for read,
98 * one for write (we recover only one drive per r10buf)
99 *
100 */
dd0fc66f 101static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 102{
e879a879 103 struct r10conf *conf = data;
1da177e4 104 struct page *page;
9f2c9d12 105 struct r10bio *r10_bio;
1da177e4
LT
106 struct bio *bio;
107 int i, j;
108 int nalloc;
109
110 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 111 if (!r10_bio)
1da177e4 112 return NULL;
1da177e4
LT
113
114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 nalloc = conf->copies; /* resync */
116 else
117 nalloc = 2; /* recovery */
118
119 /*
120 * Allocate bios.
121 */
122 for (j = nalloc ; j-- ; ) {
6746557f 123 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
124 if (!bio)
125 goto out_free_bio;
126 r10_bio->devs[j].bio = bio;
69335ef3
N
127 if (!conf->have_replacement)
128 continue;
129 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
130 if (!bio)
131 goto out_free_bio;
132 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
133 }
134 /*
135 * Allocate RESYNC_PAGES data pages and attach them
136 * where needed.
137 */
138 for (j = 0 ; j < nalloc; j++) {
69335ef3 139 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
140 bio = r10_bio->devs[j].bio;
141 for (i = 0; i < RESYNC_PAGES; i++) {
c65060ad
NK
142 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
143 &conf->mddev->recovery)) {
144 /* we can share bv_page's during recovery */
145 struct bio *rbio = r10_bio->devs[0].bio;
146 page = rbio->bi_io_vec[i].bv_page;
147 get_page(page);
148 } else
149 page = alloc_page(gfp_flags);
1da177e4
LT
150 if (unlikely(!page))
151 goto out_free_pages;
152
153 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
154 if (rbio)
155 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
156 }
157 }
158
159 return r10_bio;
160
161out_free_pages:
162 for ( ; i > 0 ; i--)
1345b1d8 163 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
164 while (j--)
165 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 166 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
167 j = -1;
168out_free_bio:
69335ef3 169 while (++j < nalloc) {
1da177e4 170 bio_put(r10_bio->devs[j].bio);
69335ef3
N
171 if (r10_bio->devs[j].repl_bio)
172 bio_put(r10_bio->devs[j].repl_bio);
173 }
1da177e4
LT
174 r10bio_pool_free(r10_bio, conf);
175 return NULL;
176}
177
178static void r10buf_pool_free(void *__r10_bio, void *data)
179{
180 int i;
e879a879 181 struct r10conf *conf = data;
9f2c9d12 182 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
183 int j;
184
185 for (j=0; j < conf->copies; j++) {
186 struct bio *bio = r10bio->devs[j].bio;
187 if (bio) {
188 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 189 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
190 bio->bi_io_vec[i].bv_page = NULL;
191 }
192 bio_put(bio);
193 }
69335ef3
N
194 bio = r10bio->devs[j].repl_bio;
195 if (bio)
196 bio_put(bio);
1da177e4
LT
197 }
198 r10bio_pool_free(r10bio, conf);
199}
200
e879a879 201static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
202{
203 int i;
204
205 for (i = 0; i < conf->copies; i++) {
206 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 207 if (!BIO_SPECIAL(*bio))
1da177e4
LT
208 bio_put(*bio);
209 *bio = NULL;
69335ef3
N
210 bio = &r10_bio->devs[i].repl_bio;
211 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
212 bio_put(*bio);
213 *bio = NULL;
1da177e4
LT
214 }
215}
216
9f2c9d12 217static void free_r10bio(struct r10bio *r10_bio)
1da177e4 218{
e879a879 219 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 220
1da177e4
LT
221 put_all_bios(conf, r10_bio);
222 mempool_free(r10_bio, conf->r10bio_pool);
223}
224
9f2c9d12 225static void put_buf(struct r10bio *r10_bio)
1da177e4 226{
e879a879 227 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
228
229 mempool_free(r10_bio, conf->r10buf_pool);
230
0a27ec96 231 lower_barrier(conf);
1da177e4
LT
232}
233
9f2c9d12 234static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
235{
236 unsigned long flags;
fd01b88c 237 struct mddev *mddev = r10_bio->mddev;
e879a879 238 struct r10conf *conf = mddev->private;
1da177e4
LT
239
240 spin_lock_irqsave(&conf->device_lock, flags);
241 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 242 conf->nr_queued ++;
1da177e4
LT
243 spin_unlock_irqrestore(&conf->device_lock, flags);
244
388667be
AJ
245 /* wake up frozen array... */
246 wake_up(&conf->wait_barrier);
247
1da177e4
LT
248 md_wakeup_thread(mddev->thread);
249}
250
251/*
252 * raid_end_bio_io() is called when we have finished servicing a mirrored
253 * operation and are ready to return a success/failure code to the buffer
254 * cache layer.
255 */
9f2c9d12 256static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
257{
258 struct bio *bio = r10_bio->master_bio;
856e08e2 259 int done;
e879a879 260 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 261
856e08e2
N
262 if (bio->bi_phys_segments) {
263 unsigned long flags;
264 spin_lock_irqsave(&conf->device_lock, flags);
265 bio->bi_phys_segments--;
266 done = (bio->bi_phys_segments == 0);
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268 } else
269 done = 1;
270 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
271 clear_bit(BIO_UPTODATE, &bio->bi_flags);
272 if (done) {
273 bio_endio(bio, 0);
274 /*
275 * Wake up any possible resync thread that waits for the device
276 * to go idle.
277 */
278 allow_barrier(conf);
279 }
1da177e4
LT
280 free_r10bio(r10_bio);
281}
282
283/*
284 * Update disk head position estimator based on IRQ completion info.
285 */
9f2c9d12 286static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 287{
e879a879 288 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
289
290 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
291 r10_bio->devs[slot].addr + (r10_bio->sectors);
292}
293
778ca018
NK
294/*
295 * Find the disk number which triggered given bio
296 */
e879a879 297static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 298 struct bio *bio, int *slotp, int *replp)
778ca018
NK
299{
300 int slot;
69335ef3 301 int repl = 0;
778ca018 302
69335ef3 303 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
304 if (r10_bio->devs[slot].bio == bio)
305 break;
69335ef3
N
306 if (r10_bio->devs[slot].repl_bio == bio) {
307 repl = 1;
308 break;
309 }
310 }
778ca018
NK
311
312 BUG_ON(slot == conf->copies);
313 update_head_pos(slot, r10_bio);
314
749c55e9
N
315 if (slotp)
316 *slotp = slot;
69335ef3
N
317 if (replp)
318 *replp = repl;
778ca018
NK
319 return r10_bio->devs[slot].devnum;
320}
321
6712ecf8 322static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
323{
324 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 325 struct r10bio *r10_bio = bio->bi_private;
1da177e4 326 int slot, dev;
abbf098e 327 struct md_rdev *rdev;
e879a879 328 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 329
1da177e4
LT
330
331 slot = r10_bio->read_slot;
332 dev = r10_bio->devs[slot].devnum;
abbf098e 333 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
334 /*
335 * this branch is our 'one mirror IO has finished' event handler:
336 */
4443ae10
N
337 update_head_pos(slot, r10_bio);
338
339 if (uptodate) {
1da177e4
LT
340 /*
341 * Set R10BIO_Uptodate in our master bio, so that
342 * we will return a good error code to the higher
343 * levels even if IO on some other mirrored buffer fails.
344 *
345 * The 'master' represents the composite IO operation to
346 * user-side. So if something waits for IO, then it will
347 * wait for the 'master' bio.
348 */
349 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 350 raid_end_bio_io(r10_bio);
abbf098e 351 rdev_dec_pending(rdev, conf->mddev);
4443ae10 352 } else {
1da177e4 353 /*
7c4e06ff 354 * oops, read error - keep the refcount on the rdev
1da177e4
LT
355 */
356 char b[BDEVNAME_SIZE];
8bda470e
CD
357 printk_ratelimited(KERN_ERR
358 "md/raid10:%s: %s: rescheduling sector %llu\n",
359 mdname(conf->mddev),
abbf098e 360 bdevname(rdev->bdev, b),
8bda470e 361 (unsigned long long)r10_bio->sector);
856e08e2 362 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
363 reschedule_retry(r10_bio);
364 }
1da177e4
LT
365}
366
9f2c9d12 367static void close_write(struct r10bio *r10_bio)
bd870a16
N
368{
369 /* clear the bitmap if all writes complete successfully */
370 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
371 r10_bio->sectors,
372 !test_bit(R10BIO_Degraded, &r10_bio->state),
373 0);
374 md_write_end(r10_bio->mddev);
375}
376
9f2c9d12 377static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
378{
379 if (atomic_dec_and_test(&r10_bio->remaining)) {
380 if (test_bit(R10BIO_WriteError, &r10_bio->state))
381 reschedule_retry(r10_bio);
382 else {
383 close_write(r10_bio);
384 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
385 reschedule_retry(r10_bio);
386 else
387 raid_end_bio_io(r10_bio);
388 }
389 }
390}
391
6712ecf8 392static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r10bio *r10_bio = bio->bi_private;
778ca018 396 int dev;
749c55e9 397 int dec_rdev = 1;
e879a879 398 struct r10conf *conf = r10_bio->mddev->private;
749c55e9 399 int slot;
1da177e4 400
69335ef3 401 dev = find_bio_disk(conf, r10_bio, bio, &slot, NULL);
1da177e4
LT
402
403 /*
404 * this branch is our 'one mirror IO has finished' event handler:
405 */
6cce3b23 406 if (!uptodate) {
bd870a16
N
407 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
408 set_bit(R10BIO_WriteError, &r10_bio->state);
409 dec_rdev = 0;
749c55e9 410 } else {
1da177e4
LT
411 /*
412 * Set R10BIO_Uptodate in our master bio, so that
413 * we will return a good error code for to the higher
414 * levels even if IO on some other mirrored buffer fails.
415 *
416 * The 'master' represents the composite IO operation to
417 * user-side. So if something waits for IO, then it will
418 * wait for the 'master' bio.
419 */
749c55e9
N
420 sector_t first_bad;
421 int bad_sectors;
422
1da177e4
LT
423 set_bit(R10BIO_Uptodate, &r10_bio->state);
424
749c55e9
N
425 /* Maybe we can clear some bad blocks. */
426 if (is_badblock(conf->mirrors[dev].rdev,
427 r10_bio->devs[slot].addr,
428 r10_bio->sectors,
429 &first_bad, &bad_sectors)) {
430 bio_put(bio);
431 r10_bio->devs[slot].bio = IO_MADE_GOOD;
432 dec_rdev = 0;
433 set_bit(R10BIO_MadeGood, &r10_bio->state);
434 }
435 }
436
1da177e4
LT
437 /*
438 *
439 * Let's see if all mirrored write operations have finished
440 * already.
441 */
19d5f834 442 one_write_done(r10_bio);
749c55e9
N
443 if (dec_rdev)
444 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
445}
446
447
448/*
449 * RAID10 layout manager
25985edc 450 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
451 * parameters: near_copies and far_copies.
452 * near_copies * far_copies must be <= raid_disks.
453 * Normally one of these will be 1.
454 * If both are 1, we get raid0.
455 * If near_copies == raid_disks, we get raid1.
456 *
25985edc 457 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
458 * first chunk, followed by near_copies copies of the next chunk and
459 * so on.
460 * If far_copies > 1, then after 1/far_copies of the array has been assigned
461 * as described above, we start again with a device offset of near_copies.
462 * So we effectively have another copy of the whole array further down all
463 * the drives, but with blocks on different drives.
464 * With this layout, and block is never stored twice on the one device.
465 *
466 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 467 * on each device that it is on.
1da177e4
LT
468 *
469 * raid10_find_virt does the reverse mapping, from a device and a
470 * sector offset to a virtual address
471 */
472
e879a879 473static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
1da177e4
LT
474{
475 int n,f;
476 sector_t sector;
477 sector_t chunk;
478 sector_t stripe;
479 int dev;
480
481 int slot = 0;
482
483 /* now calculate first sector/dev */
484 chunk = r10bio->sector >> conf->chunk_shift;
485 sector = r10bio->sector & conf->chunk_mask;
486
487 chunk *= conf->near_copies;
488 stripe = chunk;
489 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
490 if (conf->far_offset)
491 stripe *= conf->far_copies;
1da177e4
LT
492
493 sector += stripe << conf->chunk_shift;
494
495 /* and calculate all the others */
496 for (n=0; n < conf->near_copies; n++) {
497 int d = dev;
498 sector_t s = sector;
499 r10bio->devs[slot].addr = sector;
500 r10bio->devs[slot].devnum = d;
501 slot++;
502
503 for (f = 1; f < conf->far_copies; f++) {
504 d += conf->near_copies;
505 if (d >= conf->raid_disks)
506 d -= conf->raid_disks;
507 s += conf->stride;
508 r10bio->devs[slot].devnum = d;
509 r10bio->devs[slot].addr = s;
510 slot++;
511 }
512 dev++;
513 if (dev >= conf->raid_disks) {
514 dev = 0;
515 sector += (conf->chunk_mask + 1);
516 }
517 }
518 BUG_ON(slot != conf->copies);
519}
520
e879a879 521static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
522{
523 sector_t offset, chunk, vchunk;
524
1da177e4 525 offset = sector & conf->chunk_mask;
c93983bf
N
526 if (conf->far_offset) {
527 int fc;
528 chunk = sector >> conf->chunk_shift;
529 fc = sector_div(chunk, conf->far_copies);
530 dev -= fc * conf->near_copies;
531 if (dev < 0)
532 dev += conf->raid_disks;
533 } else {
64a742bc 534 while (sector >= conf->stride) {
c93983bf
N
535 sector -= conf->stride;
536 if (dev < conf->near_copies)
537 dev += conf->raid_disks - conf->near_copies;
538 else
539 dev -= conf->near_copies;
540 }
541 chunk = sector >> conf->chunk_shift;
542 }
1da177e4
LT
543 vchunk = chunk * conf->raid_disks + dev;
544 sector_div(vchunk, conf->near_copies);
545 return (vchunk << conf->chunk_shift) + offset;
546}
547
548/**
549 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
550 * @q: request queue
cc371e66 551 * @bvm: properties of new bio
1da177e4
LT
552 * @biovec: the request that could be merged to it.
553 *
554 * Return amount of bytes we can accept at this offset
555 * If near_copies == raid_disk, there are no striping issues,
556 * but in that case, the function isn't called at all.
557 */
cc371e66
AK
558static int raid10_mergeable_bvec(struct request_queue *q,
559 struct bvec_merge_data *bvm,
560 struct bio_vec *biovec)
1da177e4 561{
fd01b88c 562 struct mddev *mddev = q->queuedata;
cc371e66 563 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 564 int max;
9d8f0363 565 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 566 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
567
568 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
569 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
570 if (max <= biovec->bv_len && bio_sectors == 0)
571 return biovec->bv_len;
1da177e4
LT
572 else
573 return max;
574}
575
576/*
577 * This routine returns the disk from which the requested read should
578 * be done. There is a per-array 'next expected sequential IO' sector
579 * number - if this matches on the next IO then we use the last disk.
580 * There is also a per-disk 'last know head position' sector that is
581 * maintained from IRQ contexts, both the normal and the resync IO
582 * completion handlers update this position correctly. If there is no
583 * perfect sequential match then we pick the disk whose head is closest.
584 *
585 * If there are 2 mirrors in the same 2 devices, performance degrades
586 * because position is mirror, not device based.
587 *
588 * The rdev for the device selected will have nr_pending incremented.
589 */
590
591/*
592 * FIXME: possibly should rethink readbalancing and do it differently
593 * depending on near_copies / far_copies geometry.
594 */
96c3fd1f
N
595static struct md_rdev *read_balance(struct r10conf *conf,
596 struct r10bio *r10_bio,
597 int *max_sectors)
1da177e4 598{
af3a2cd6 599 const sector_t this_sector = r10_bio->sector;
56d99121 600 int disk, slot;
856e08e2
N
601 int sectors = r10_bio->sectors;
602 int best_good_sectors;
56d99121 603 sector_t new_distance, best_dist;
abbf098e 604 struct md_rdev *rdev, *best_rdev;
56d99121
N
605 int do_balance;
606 int best_slot;
1da177e4
LT
607
608 raid10_find_phys(conf, r10_bio);
609 rcu_read_lock();
56d99121 610retry:
856e08e2 611 sectors = r10_bio->sectors;
56d99121 612 best_slot = -1;
abbf098e 613 best_rdev = NULL;
56d99121 614 best_dist = MaxSector;
856e08e2 615 best_good_sectors = 0;
56d99121 616 do_balance = 1;
1da177e4
LT
617 /*
618 * Check if we can balance. We can balance on the whole
6cce3b23
N
619 * device if no resync is going on (recovery is ok), or below
620 * the resync window. We take the first readable disk when
621 * above the resync window.
1da177e4
LT
622 */
623 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
624 && (this_sector + sectors >= conf->next_resync))
625 do_balance = 0;
1da177e4 626
56d99121 627 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
628 sector_t first_bad;
629 int bad_sectors;
630 sector_t dev_sector;
631
56d99121
N
632 if (r10_bio->devs[slot].bio == IO_BLOCKED)
633 continue;
1da177e4 634 disk = r10_bio->devs[slot].devnum;
abbf098e
N
635 rdev = rcu_dereference(conf->mirrors[disk].replacement);
636 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
637 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
638 rdev = rcu_dereference(conf->mirrors[disk].rdev);
56d99121 639 if (rdev == NULL)
1da177e4 640 continue;
abbf098e
N
641 if (test_bit(Faulty, &rdev->flags))
642 continue;
643 if (!test_bit(In_sync, &rdev->flags) &&
644 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
645 continue;
646
856e08e2
N
647 dev_sector = r10_bio->devs[slot].addr;
648 if (is_badblock(rdev, dev_sector, sectors,
649 &first_bad, &bad_sectors)) {
650 if (best_dist < MaxSector)
651 /* Already have a better slot */
652 continue;
653 if (first_bad <= dev_sector) {
654 /* Cannot read here. If this is the
655 * 'primary' device, then we must not read
656 * beyond 'bad_sectors' from another device.
657 */
658 bad_sectors -= (dev_sector - first_bad);
659 if (!do_balance && sectors > bad_sectors)
660 sectors = bad_sectors;
661 if (best_good_sectors > sectors)
662 best_good_sectors = sectors;
663 } else {
664 sector_t good_sectors =
665 first_bad - dev_sector;
666 if (good_sectors > best_good_sectors) {
667 best_good_sectors = good_sectors;
668 best_slot = slot;
abbf098e 669 best_rdev = rdev;
856e08e2
N
670 }
671 if (!do_balance)
672 /* Must read from here */
673 break;
674 }
675 continue;
676 } else
677 best_good_sectors = sectors;
678
56d99121
N
679 if (!do_balance)
680 break;
1da177e4 681
22dfdf52
N
682 /* This optimisation is debatable, and completely destroys
683 * sequential read speed for 'far copies' arrays. So only
684 * keep it for 'near' arrays, and review those later.
685 */
56d99121 686 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 687 break;
8ed3a195
KS
688
689 /* for far > 1 always use the lowest address */
690 if (conf->far_copies > 1)
56d99121 691 new_distance = r10_bio->devs[slot].addr;
8ed3a195 692 else
56d99121
N
693 new_distance = abs(r10_bio->devs[slot].addr -
694 conf->mirrors[disk].head_position);
695 if (new_distance < best_dist) {
696 best_dist = new_distance;
697 best_slot = slot;
abbf098e 698 best_rdev = rdev;
1da177e4
LT
699 }
700 }
abbf098e 701 if (slot >= conf->copies) {
56d99121 702 slot = best_slot;
abbf098e
N
703 rdev = best_rdev;
704 }
1da177e4 705
56d99121 706 if (slot >= 0) {
56d99121
N
707 atomic_inc(&rdev->nr_pending);
708 if (test_bit(Faulty, &rdev->flags)) {
709 /* Cannot risk returning a device that failed
710 * before we inc'ed nr_pending
711 */
712 rdev_dec_pending(rdev, conf->mddev);
713 goto retry;
714 }
715 r10_bio->read_slot = slot;
716 } else
96c3fd1f 717 rdev = NULL;
1da177e4 718 rcu_read_unlock();
856e08e2 719 *max_sectors = best_good_sectors;
1da177e4 720
96c3fd1f 721 return rdev;
1da177e4
LT
722}
723
0d129228
N
724static int raid10_congested(void *data, int bits)
725{
fd01b88c 726 struct mddev *mddev = data;
e879a879 727 struct r10conf *conf = mddev->private;
0d129228
N
728 int i, ret = 0;
729
34db0cd6
N
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
3fa841d7
N
734 if (mddev_congested(mddev, bits))
735 return 1;
0d129228 736 rcu_read_lock();
84707f38 737 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
3cb03002 738 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 739 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 740 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
741
742 ret |= bdi_congested(&q->backing_dev_info, bits);
743 }
744 }
745 rcu_read_unlock();
746 return ret;
747}
748
e879a879 749static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
750{
751 /* Any writes that have been queued but are awaiting
752 * bitmap updates get flushed here.
a35e63ef 753 */
a35e63ef
N
754 spin_lock_irq(&conf->device_lock);
755
756 if (conf->pending_bio_list.head) {
757 struct bio *bio;
758 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 759 conf->pending_count = 0;
a35e63ef
N
760 spin_unlock_irq(&conf->device_lock);
761 /* flush any pending bitmap writes to disk
762 * before proceeding w/ I/O */
763 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 764 wake_up(&conf->wait_barrier);
a35e63ef
N
765
766 while (bio) { /* submit pending writes */
767 struct bio *next = bio->bi_next;
768 bio->bi_next = NULL;
769 generic_make_request(bio);
770 bio = next;
771 }
a35e63ef
N
772 } else
773 spin_unlock_irq(&conf->device_lock);
a35e63ef 774}
7eaceacc 775
0a27ec96
N
776/* Barriers....
777 * Sometimes we need to suspend IO while we do something else,
778 * either some resync/recovery, or reconfigure the array.
779 * To do this we raise a 'barrier'.
780 * The 'barrier' is a counter that can be raised multiple times
781 * to count how many activities are happening which preclude
782 * normal IO.
783 * We can only raise the barrier if there is no pending IO.
784 * i.e. if nr_pending == 0.
785 * We choose only to raise the barrier if no-one is waiting for the
786 * barrier to go down. This means that as soon as an IO request
787 * is ready, no other operations which require a barrier will start
788 * until the IO request has had a chance.
789 *
790 * So: regular IO calls 'wait_barrier'. When that returns there
791 * is no backgroup IO happening, It must arrange to call
792 * allow_barrier when it has finished its IO.
793 * backgroup IO calls must call raise_barrier. Once that returns
794 * there is no normal IO happeing. It must arrange to call
795 * lower_barrier when the particular background IO completes.
1da177e4 796 */
1da177e4 797
e879a879 798static void raise_barrier(struct r10conf *conf, int force)
1da177e4 799{
6cce3b23 800 BUG_ON(force && !conf->barrier);
1da177e4 801 spin_lock_irq(&conf->resync_lock);
0a27ec96 802
6cce3b23
N
803 /* Wait until no block IO is waiting (unless 'force') */
804 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 805 conf->resync_lock, );
0a27ec96
N
806
807 /* block any new IO from starting */
808 conf->barrier++;
809
c3b328ac 810 /* Now wait for all pending IO to complete */
0a27ec96
N
811 wait_event_lock_irq(conf->wait_barrier,
812 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 813 conf->resync_lock, );
0a27ec96
N
814
815 spin_unlock_irq(&conf->resync_lock);
816}
817
e879a879 818static void lower_barrier(struct r10conf *conf)
0a27ec96
N
819{
820 unsigned long flags;
821 spin_lock_irqsave(&conf->resync_lock, flags);
822 conf->barrier--;
823 spin_unlock_irqrestore(&conf->resync_lock, flags);
824 wake_up(&conf->wait_barrier);
825}
826
e879a879 827static void wait_barrier(struct r10conf *conf)
0a27ec96
N
828{
829 spin_lock_irq(&conf->resync_lock);
830 if (conf->barrier) {
831 conf->nr_waiting++;
832 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
833 conf->resync_lock,
c3b328ac 834 );
0a27ec96 835 conf->nr_waiting--;
1da177e4 836 }
0a27ec96 837 conf->nr_pending++;
1da177e4
LT
838 spin_unlock_irq(&conf->resync_lock);
839}
840
e879a879 841static void allow_barrier(struct r10conf *conf)
0a27ec96
N
842{
843 unsigned long flags;
844 spin_lock_irqsave(&conf->resync_lock, flags);
845 conf->nr_pending--;
846 spin_unlock_irqrestore(&conf->resync_lock, flags);
847 wake_up(&conf->wait_barrier);
848}
849
e879a879 850static void freeze_array(struct r10conf *conf)
4443ae10
N
851{
852 /* stop syncio and normal IO and wait for everything to
f188593e 853 * go quiet.
4443ae10 854 * We increment barrier and nr_waiting, and then
1c830532
N
855 * wait until nr_pending match nr_queued+1
856 * This is called in the context of one normal IO request
857 * that has failed. Thus any sync request that might be pending
858 * will be blocked by nr_pending, and we need to wait for
859 * pending IO requests to complete or be queued for re-try.
860 * Thus the number queued (nr_queued) plus this request (1)
861 * must match the number of pending IOs (nr_pending) before
862 * we continue.
4443ae10
N
863 */
864 spin_lock_irq(&conf->resync_lock);
865 conf->barrier++;
866 conf->nr_waiting++;
867 wait_event_lock_irq(conf->wait_barrier,
1c830532 868 conf->nr_pending == conf->nr_queued+1,
4443ae10 869 conf->resync_lock,
c3b328ac
N
870 flush_pending_writes(conf));
871
4443ae10
N
872 spin_unlock_irq(&conf->resync_lock);
873}
874
e879a879 875static void unfreeze_array(struct r10conf *conf)
4443ae10
N
876{
877 /* reverse the effect of the freeze */
878 spin_lock_irq(&conf->resync_lock);
879 conf->barrier--;
880 conf->nr_waiting--;
881 wake_up(&conf->wait_barrier);
882 spin_unlock_irq(&conf->resync_lock);
883}
884
b4fdcb02 885static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 886{
e879a879 887 struct r10conf *conf = mddev->private;
9f2c9d12 888 struct r10bio *r10_bio;
1da177e4
LT
889 struct bio *read_bio;
890 int i;
891 int chunk_sects = conf->chunk_mask + 1;
a362357b 892 const int rw = bio_data_dir(bio);
2c7d46ec 893 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 894 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 895 unsigned long flags;
3cb03002 896 struct md_rdev *blocked_rdev;
c3b328ac 897 int plugged;
d4432c23
N
898 int sectors_handled;
899 int max_sectors;
1da177e4 900
e9c7469b
TH
901 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
902 md_flush_request(mddev, bio);
5a7bbad2 903 return;
e5dcdd80
N
904 }
905
1da177e4
LT
906 /* If this request crosses a chunk boundary, we need to
907 * split it. This will only happen for 1 PAGE (or less) requests.
908 */
909 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
910 > chunk_sects &&
911 conf->near_copies < conf->raid_disks)) {
912 struct bio_pair *bp;
913 /* Sanity check -- queue functions should prevent this happening */
914 if (bio->bi_vcnt != 1 ||
915 bio->bi_idx != 0)
916 goto bad_map;
917 /* This is a one page bio that upper layers
918 * refuse to split for us, so we need to split it.
919 */
6feef531 920 bp = bio_split(bio,
1da177e4 921 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
922
923 /* Each of these 'make_request' calls will call 'wait_barrier'.
924 * If the first succeeds but the second blocks due to the resync
925 * thread raising the barrier, we will deadlock because the
926 * IO to the underlying device will be queued in generic_make_request
927 * and will never complete, so will never reduce nr_pending.
928 * So increment nr_waiting here so no new raise_barriers will
929 * succeed, and so the second wait_barrier cannot block.
930 */
931 spin_lock_irq(&conf->resync_lock);
932 conf->nr_waiting++;
933 spin_unlock_irq(&conf->resync_lock);
934
5a7bbad2
CH
935 make_request(mddev, &bp->bio1);
936 make_request(mddev, &bp->bio2);
1da177e4 937
51e9ac77
N
938 spin_lock_irq(&conf->resync_lock);
939 conf->nr_waiting--;
940 wake_up(&conf->wait_barrier);
941 spin_unlock_irq(&conf->resync_lock);
942
1da177e4 943 bio_pair_release(bp);
5a7bbad2 944 return;
1da177e4 945 bad_map:
128595ed
N
946 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
947 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
948 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
949
6712ecf8 950 bio_io_error(bio);
5a7bbad2 951 return;
1da177e4
LT
952 }
953
3d310eb7 954 md_write_start(mddev, bio);
06d91a5f 955
1da177e4
LT
956 /*
957 * Register the new request and wait if the reconstruction
958 * thread has put up a bar for new requests.
959 * Continue immediately if no resync is active currently.
960 */
0a27ec96 961 wait_barrier(conf);
1da177e4 962
1da177e4
LT
963 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
964
965 r10_bio->master_bio = bio;
966 r10_bio->sectors = bio->bi_size >> 9;
967
968 r10_bio->mddev = mddev;
969 r10_bio->sector = bio->bi_sector;
6cce3b23 970 r10_bio->state = 0;
1da177e4 971
856e08e2
N
972 /* We might need to issue multiple reads to different
973 * devices if there are bad blocks around, so we keep
974 * track of the number of reads in bio->bi_phys_segments.
975 * If this is 0, there is only one r10_bio and no locking
976 * will be needed when the request completes. If it is
977 * non-zero, then it is the number of not-completed requests.
978 */
979 bio->bi_phys_segments = 0;
980 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
981
a362357b 982 if (rw == READ) {
1da177e4
LT
983 /*
984 * read balancing logic:
985 */
96c3fd1f 986 struct md_rdev *rdev;
856e08e2
N
987 int slot;
988
989read_again:
96c3fd1f
N
990 rdev = read_balance(conf, r10_bio, &max_sectors);
991 if (!rdev) {
1da177e4 992 raid_end_bio_io(r10_bio);
5a7bbad2 993 return;
1da177e4 994 }
96c3fd1f 995 slot = r10_bio->read_slot;
1da177e4 996
a167f663 997 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
998 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
999 max_sectors);
1da177e4
LT
1000
1001 r10_bio->devs[slot].bio = read_bio;
abbf098e 1002 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1003
1004 read_bio->bi_sector = r10_bio->devs[slot].addr +
96c3fd1f
N
1005 rdev->data_offset;
1006 read_bio->bi_bdev = rdev->bdev;
1da177e4 1007 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1008 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1009 read_bio->bi_private = r10_bio;
1010
856e08e2
N
1011 if (max_sectors < r10_bio->sectors) {
1012 /* Could not read all from this device, so we will
1013 * need another r10_bio.
1014 */
856e08e2
N
1015 sectors_handled = (r10_bio->sectors + max_sectors
1016 - bio->bi_sector);
1017 r10_bio->sectors = max_sectors;
1018 spin_lock_irq(&conf->device_lock);
1019 if (bio->bi_phys_segments == 0)
1020 bio->bi_phys_segments = 2;
1021 else
1022 bio->bi_phys_segments++;
1023 spin_unlock(&conf->device_lock);
1024 /* Cannot call generic_make_request directly
1025 * as that will be queued in __generic_make_request
1026 * and subsequent mempool_alloc might block
1027 * waiting for it. so hand bio over to raid10d.
1028 */
1029 reschedule_retry(r10_bio);
1030
1031 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1032
1033 r10_bio->master_bio = bio;
1034 r10_bio->sectors = ((bio->bi_size >> 9)
1035 - sectors_handled);
1036 r10_bio->state = 0;
1037 r10_bio->mddev = mddev;
1038 r10_bio->sector = bio->bi_sector + sectors_handled;
1039 goto read_again;
1040 } else
1041 generic_make_request(read_bio);
5a7bbad2 1042 return;
1da177e4
LT
1043 }
1044
1045 /*
1046 * WRITE:
1047 */
34db0cd6
N
1048 if (conf->pending_count >= max_queued_requests) {
1049 md_wakeup_thread(mddev->thread);
1050 wait_event(conf->wait_barrier,
1051 conf->pending_count < max_queued_requests);
1052 }
6bfe0b49 1053 /* first select target devices under rcu_lock and
1da177e4
LT
1054 * inc refcount on their rdev. Record them by setting
1055 * bios[x] to bio
d4432c23
N
1056 * If there are known/acknowledged bad blocks on any device
1057 * on which we have seen a write error, we want to avoid
1058 * writing to those blocks. This potentially requires several
1059 * writes to write around the bad blocks. Each set of writes
1060 * gets its own r10_bio with a set of bios attached. The number
1061 * of r10_bios is recored in bio->bi_phys_segments just as with
1062 * the read case.
1da177e4 1063 */
c3b328ac
N
1064 plugged = mddev_check_plugged(mddev);
1065
69335ef3 1066 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1067 raid10_find_phys(conf, r10_bio);
d4432c23 1068retry_write:
cb6969e8 1069 blocked_rdev = NULL;
1da177e4 1070 rcu_read_lock();
d4432c23
N
1071 max_sectors = r10_bio->sectors;
1072
1da177e4
LT
1073 for (i = 0; i < conf->copies; i++) {
1074 int d = r10_bio->devs[i].devnum;
3cb03002 1075 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
1076 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1077 atomic_inc(&rdev->nr_pending);
1078 blocked_rdev = rdev;
1079 break;
1080 }
d4432c23
N
1081 r10_bio->devs[i].bio = NULL;
1082 if (!rdev || test_bit(Faulty, &rdev->flags)) {
6cce3b23 1083 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1084 continue;
1085 }
1086 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1087 sector_t first_bad;
1088 sector_t dev_sector = r10_bio->devs[i].addr;
1089 int bad_sectors;
1090 int is_bad;
1091
1092 is_bad = is_badblock(rdev, dev_sector,
1093 max_sectors,
1094 &first_bad, &bad_sectors);
1095 if (is_bad < 0) {
1096 /* Mustn't write here until the bad block
1097 * is acknowledged
1098 */
1099 atomic_inc(&rdev->nr_pending);
1100 set_bit(BlockedBadBlocks, &rdev->flags);
1101 blocked_rdev = rdev;
1102 break;
1103 }
1104 if (is_bad && first_bad <= dev_sector) {
1105 /* Cannot write here at all */
1106 bad_sectors -= (dev_sector - first_bad);
1107 if (bad_sectors < max_sectors)
1108 /* Mustn't write more than bad_sectors
1109 * to other devices yet
1110 */
1111 max_sectors = bad_sectors;
1112 /* We don't set R10BIO_Degraded as that
1113 * only applies if the disk is missing,
1114 * so it might be re-added, and we want to
1115 * know to recover this chunk.
1116 * In this case the device is here, and the
1117 * fact that this chunk is not in-sync is
1118 * recorded in the bad block log.
1119 */
1120 continue;
1121 }
1122 if (is_bad) {
1123 int good_sectors = first_bad - dev_sector;
1124 if (good_sectors < max_sectors)
1125 max_sectors = good_sectors;
1126 }
6cce3b23 1127 }
d4432c23
N
1128 r10_bio->devs[i].bio = bio;
1129 atomic_inc(&rdev->nr_pending);
1da177e4
LT
1130 }
1131 rcu_read_unlock();
1132
6bfe0b49
DW
1133 if (unlikely(blocked_rdev)) {
1134 /* Have to wait for this device to get unblocked, then retry */
1135 int j;
1136 int d;
1137
1138 for (j = 0; j < i; j++)
1139 if (r10_bio->devs[j].bio) {
1140 d = r10_bio->devs[j].devnum;
1141 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1142 }
1143 allow_barrier(conf);
1144 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1145 wait_barrier(conf);
1146 goto retry_write;
1147 }
1148
d4432c23
N
1149 if (max_sectors < r10_bio->sectors) {
1150 /* We are splitting this into multiple parts, so
1151 * we need to prepare for allocating another r10_bio.
1152 */
1153 r10_bio->sectors = max_sectors;
1154 spin_lock_irq(&conf->device_lock);
1155 if (bio->bi_phys_segments == 0)
1156 bio->bi_phys_segments = 2;
1157 else
1158 bio->bi_phys_segments++;
1159 spin_unlock_irq(&conf->device_lock);
1160 }
1161 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1162
4e78064f 1163 atomic_set(&r10_bio->remaining, 1);
d4432c23 1164 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1165
1da177e4
LT
1166 for (i = 0; i < conf->copies; i++) {
1167 struct bio *mbio;
1168 int d = r10_bio->devs[i].devnum;
1169 if (!r10_bio->devs[i].bio)
1170 continue;
1171
a167f663 1172 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1173 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1174 max_sectors);
1da177e4
LT
1175 r10_bio->devs[i].bio = mbio;
1176
d4432c23
N
1177 mbio->bi_sector = (r10_bio->devs[i].addr+
1178 conf->mirrors[d].rdev->data_offset);
1da177e4
LT
1179 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1180 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1181 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1182 mbio->bi_private = r10_bio;
1183
1184 atomic_inc(&r10_bio->remaining);
4e78064f
N
1185 spin_lock_irqsave(&conf->device_lock, flags);
1186 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1187 conf->pending_count++;
4e78064f 1188 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1189 }
1190
079fa166
N
1191 /* Don't remove the bias on 'remaining' (one_write_done) until
1192 * after checking if we need to go around again.
1193 */
a35e63ef 1194
d4432c23 1195 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1196 one_write_done(r10_bio);
5e570289 1197 /* We need another r10_bio. It has already been counted
d4432c23
N
1198 * in bio->bi_phys_segments.
1199 */
1200 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1201
1202 r10_bio->master_bio = bio;
1203 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1204
1205 r10_bio->mddev = mddev;
1206 r10_bio->sector = bio->bi_sector + sectors_handled;
1207 r10_bio->state = 0;
1208 goto retry_write;
1209 }
079fa166
N
1210 one_write_done(r10_bio);
1211
1212 /* In case raid10d snuck in to freeze_array */
1213 wake_up(&conf->wait_barrier);
d4432c23 1214
c3b328ac 1215 if (do_sync || !mddev->bitmap || !plugged)
e3881a68 1216 md_wakeup_thread(mddev->thread);
1da177e4
LT
1217}
1218
fd01b88c 1219static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1220{
e879a879 1221 struct r10conf *conf = mddev->private;
1da177e4
LT
1222 int i;
1223
1224 if (conf->near_copies < conf->raid_disks)
9d8f0363 1225 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
1226 if (conf->near_copies > 1)
1227 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
1228 if (conf->far_copies > 1) {
1229 if (conf->far_offset)
1230 seq_printf(seq, " %d offset-copies", conf->far_copies);
1231 else
1232 seq_printf(seq, " %d far-copies", conf->far_copies);
1233 }
1da177e4 1234 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 1235 conf->raid_disks - mddev->degraded);
1da177e4
LT
1236 for (i = 0; i < conf->raid_disks; i++)
1237 seq_printf(seq, "%s",
1238 conf->mirrors[i].rdev &&
b2d444d7 1239 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1240 seq_printf(seq, "]");
1241}
1242
700c7213
N
1243/* check if there are enough drives for
1244 * every block to appear on atleast one.
1245 * Don't consider the device numbered 'ignore'
1246 * as we might be about to remove it.
1247 */
e879a879 1248static int enough(struct r10conf *conf, int ignore)
700c7213
N
1249{
1250 int first = 0;
1251
1252 do {
1253 int n = conf->copies;
1254 int cnt = 0;
1255 while (n--) {
1256 if (conf->mirrors[first].rdev &&
1257 first != ignore)
1258 cnt++;
1259 first = (first+1) % conf->raid_disks;
1260 }
1261 if (cnt == 0)
1262 return 0;
1263 } while (first != 0);
1264 return 1;
1265}
1266
fd01b88c 1267static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1268{
1269 char b[BDEVNAME_SIZE];
e879a879 1270 struct r10conf *conf = mddev->private;
1da177e4
LT
1271
1272 /*
1273 * If it is not operational, then we have already marked it as dead
1274 * else if it is the last working disks, ignore the error, let the
1275 * next level up know.
1276 * else mark the drive as failed
1277 */
b2d444d7 1278 if (test_bit(In_sync, &rdev->flags)
700c7213 1279 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1280 /*
1281 * Don't fail the drive, just return an IO error.
1da177e4
LT
1282 */
1283 return;
c04be0aa
N
1284 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1285 unsigned long flags;
1286 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1287 mddev->degraded++;
c04be0aa 1288 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1289 /*
1290 * if recovery is running, make sure it aborts.
1291 */
dfc70645 1292 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1293 }
de393cde 1294 set_bit(Blocked, &rdev->flags);
b2d444d7 1295 set_bit(Faulty, &rdev->flags);
850b2b42 1296 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1297 printk(KERN_ALERT
1298 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1299 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1300 mdname(mddev), bdevname(rdev->bdev, b),
1301 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1302}
1303
e879a879 1304static void print_conf(struct r10conf *conf)
1da177e4
LT
1305{
1306 int i;
0f6d02d5 1307 struct mirror_info *tmp;
1da177e4 1308
128595ed 1309 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1310 if (!conf) {
128595ed 1311 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1312 return;
1313 }
128595ed 1314 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1315 conf->raid_disks);
1316
1317 for (i = 0; i < conf->raid_disks; i++) {
1318 char b[BDEVNAME_SIZE];
1319 tmp = conf->mirrors + i;
1320 if (tmp->rdev)
128595ed 1321 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1322 i, !test_bit(In_sync, &tmp->rdev->flags),
1323 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1324 bdevname(tmp->rdev->bdev,b));
1325 }
1326}
1327
e879a879 1328static void close_sync(struct r10conf *conf)
1da177e4 1329{
0a27ec96
N
1330 wait_barrier(conf);
1331 allow_barrier(conf);
1da177e4
LT
1332
1333 mempool_destroy(conf->r10buf_pool);
1334 conf->r10buf_pool = NULL;
1335}
1336
fd01b88c 1337static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1338{
1339 int i;
e879a879 1340 struct r10conf *conf = mddev->private;
0f6d02d5 1341 struct mirror_info *tmp;
6b965620
N
1342 int count = 0;
1343 unsigned long flags;
1da177e4
LT
1344
1345 /*
1346 * Find all non-in_sync disks within the RAID10 configuration
1347 * and mark them in_sync
1348 */
1349 for (i = 0; i < conf->raid_disks; i++) {
1350 tmp = conf->mirrors + i;
1351 if (tmp->rdev
b2d444d7 1352 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 1353 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1354 count++;
e6ffbcb6 1355 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1356 }
1357 }
6b965620
N
1358 spin_lock_irqsave(&conf->device_lock, flags);
1359 mddev->degraded -= count;
1360 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1361
1362 print_conf(conf);
6b965620 1363 return count;
1da177e4
LT
1364}
1365
1366
fd01b88c 1367static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1368{
e879a879 1369 struct r10conf *conf = mddev->private;
199050ea 1370 int err = -EEXIST;
1da177e4 1371 int mirror;
6c2fce2e 1372 int first = 0;
84707f38 1373 int last = conf->raid_disks - 1;
1da177e4
LT
1374
1375 if (mddev->recovery_cp < MaxSector)
1376 /* only hot-add to in-sync arrays, as recovery is
1377 * very different from resync
1378 */
199050ea 1379 return -EBUSY;
700c7213 1380 if (!enough(conf, -1))
199050ea 1381 return -EINVAL;
1da177e4 1382
a53a6c85 1383 if (rdev->raid_disk >= 0)
6c2fce2e 1384 first = last = rdev->raid_disk;
1da177e4 1385
2c4193df 1386 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1387 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1388 mirror = rdev->saved_raid_disk;
1389 else
6c2fce2e 1390 mirror = first;
2bb77736 1391 for ( ; mirror <= last ; mirror++) {
0f6d02d5 1392 struct mirror_info *p = &conf->mirrors[mirror];
2bb77736
N
1393 if (p->recovery_disabled == mddev->recovery_disabled)
1394 continue;
7fcc7c8a 1395 if (p->rdev)
2bb77736 1396 continue;
1da177e4 1397
2bb77736
N
1398 disk_stack_limits(mddev->gendisk, rdev->bdev,
1399 rdev->data_offset << 9);
1400 /* as we don't honour merge_bvec_fn, we must
1401 * never risk violating it, so limit
1402 * ->max_segments to one lying with a single
1403 * page, as a one page request is never in
1404 * violation.
1405 */
1406 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1407 blk_queue_max_segments(mddev->queue, 1);
1408 blk_queue_segment_boundary(mddev->queue,
1409 PAGE_CACHE_SIZE - 1);
1da177e4
LT
1410 }
1411
2bb77736 1412 p->head_position = 0;
d890fa2b 1413 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1414 rdev->raid_disk = mirror;
1415 err = 0;
1416 if (rdev->saved_raid_disk != mirror)
1417 conf->fullsync = 1;
1418 rcu_assign_pointer(p->rdev, rdev);
1419 break;
1420 }
1421
ac5e7113 1422 md_integrity_add_rdev(rdev, mddev);
1da177e4 1423 print_conf(conf);
199050ea 1424 return err;
1da177e4
LT
1425}
1426
b8321b68 1427static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1428{
e879a879 1429 struct r10conf *conf = mddev->private;
1da177e4 1430 int err = 0;
b8321b68 1431 int number = rdev->raid_disk;
0f6d02d5 1432 struct mirror_info *p = conf->mirrors+ number;
1da177e4
LT
1433
1434 print_conf(conf);
b8321b68 1435 if (rdev == p->rdev) {
b2d444d7 1436 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1437 atomic_read(&rdev->nr_pending)) {
1438 err = -EBUSY;
1439 goto abort;
1440 }
dfc70645
N
1441 /* Only remove faulty devices in recovery
1442 * is not possible.
1443 */
1444 if (!test_bit(Faulty, &rdev->flags) &&
2bb77736 1445 mddev->recovery_disabled != p->recovery_disabled &&
700c7213 1446 enough(conf, -1)) {
dfc70645
N
1447 err = -EBUSY;
1448 goto abort;
1449 }
1da177e4 1450 p->rdev = NULL;
fbd568a3 1451 synchronize_rcu();
1da177e4
LT
1452 if (atomic_read(&rdev->nr_pending)) {
1453 /* lost the race, try later */
1454 err = -EBUSY;
1455 p->rdev = rdev;
ac5e7113 1456 goto abort;
1da177e4 1457 }
a91a2785 1458 err = md_integrity_register(mddev);
1da177e4
LT
1459 }
1460abort:
1461
1462 print_conf(conf);
1463 return err;
1464}
1465
1466
6712ecf8 1467static void end_sync_read(struct bio *bio, int error)
1da177e4 1468{
9f2c9d12 1469 struct r10bio *r10_bio = bio->bi_private;
e879a879 1470 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1471 int d;
1da177e4 1472
69335ef3 1473 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1474
1475 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1476 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1477 else
1478 /* The write handler will notice the lack of
1479 * R10BIO_Uptodate and record any errors etc
1480 */
4dbcdc75
N
1481 atomic_add(r10_bio->sectors,
1482 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1483
1484 /* for reconstruct, we always reschedule after a read.
1485 * for resync, only after all reads
1486 */
73d5c38a 1487 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1488 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1489 atomic_dec_and_test(&r10_bio->remaining)) {
1490 /* we have read all the blocks,
1491 * do the comparison in process context in raid10d
1492 */
1493 reschedule_retry(r10_bio);
1494 }
1da177e4
LT
1495}
1496
9f2c9d12 1497static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1498{
fd01b88c 1499 struct mddev *mddev = r10_bio->mddev;
dfc70645 1500
1da177e4
LT
1501 while (atomic_dec_and_test(&r10_bio->remaining)) {
1502 if (r10_bio->master_bio == NULL) {
1503 /* the primary of several recovery bios */
73d5c38a 1504 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1505 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1506 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1507 reschedule_retry(r10_bio);
1508 else
1509 put_buf(r10_bio);
73d5c38a 1510 md_done_sync(mddev, s, 1);
1da177e4
LT
1511 break;
1512 } else {
9f2c9d12 1513 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1514 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1515 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1516 reschedule_retry(r10_bio);
1517 else
1518 put_buf(r10_bio);
1da177e4
LT
1519 r10_bio = r10_bio2;
1520 }
1521 }
1da177e4
LT
1522}
1523
5e570289
N
1524static void end_sync_write(struct bio *bio, int error)
1525{
1526 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1527 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1528 struct mddev *mddev = r10_bio->mddev;
e879a879 1529 struct r10conf *conf = mddev->private;
5e570289
N
1530 int d;
1531 sector_t first_bad;
1532 int bad_sectors;
1533 int slot;
1534
69335ef3 1535 d = find_bio_disk(conf, r10_bio, bio, &slot, NULL);
5e570289
N
1536
1537 if (!uptodate) {
1538 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1539 set_bit(R10BIO_WriteError, &r10_bio->state);
1540 } else if (is_badblock(conf->mirrors[d].rdev,
1541 r10_bio->devs[slot].addr,
1542 r10_bio->sectors,
1543 &first_bad, &bad_sectors))
1544 set_bit(R10BIO_MadeGood, &r10_bio->state);
1545
1546 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1547
1548 end_sync_request(r10_bio);
1549}
1550
1da177e4
LT
1551/*
1552 * Note: sync and recover and handled very differently for raid10
1553 * This code is for resync.
1554 * For resync, we read through virtual addresses and read all blocks.
1555 * If there is any error, we schedule a write. The lowest numbered
1556 * drive is authoritative.
1557 * However requests come for physical address, so we need to map.
1558 * For every physical address there are raid_disks/copies virtual addresses,
1559 * which is always are least one, but is not necessarly an integer.
1560 * This means that a physical address can span multiple chunks, so we may
1561 * have to submit multiple io requests for a single sync request.
1562 */
1563/*
1564 * We check if all blocks are in-sync and only write to blocks that
1565 * aren't in sync
1566 */
9f2c9d12 1567static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1568{
e879a879 1569 struct r10conf *conf = mddev->private;
1da177e4
LT
1570 int i, first;
1571 struct bio *tbio, *fbio;
1572
1573 atomic_set(&r10_bio->remaining, 1);
1574
1575 /* find the first device with a block */
1576 for (i=0; i<conf->copies; i++)
1577 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1578 break;
1579
1580 if (i == conf->copies)
1581 goto done;
1582
1583 first = i;
1584 fbio = r10_bio->devs[i].bio;
1585
1586 /* now find blocks with errors */
0eb3ff12
N
1587 for (i=0 ; i < conf->copies ; i++) {
1588 int j, d;
1589 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1590
1da177e4 1591 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1592
1593 if (tbio->bi_end_io != end_sync_read)
1594 continue;
1595 if (i == first)
1da177e4 1596 continue;
0eb3ff12
N
1597 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1598 /* We know that the bi_io_vec layout is the same for
1599 * both 'first' and 'i', so we just compare them.
1600 * All vec entries are PAGE_SIZE;
1601 */
1602 for (j = 0; j < vcnt; j++)
1603 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1604 page_address(tbio->bi_io_vec[j].bv_page),
1605 PAGE_SIZE))
1606 break;
1607 if (j == vcnt)
1608 continue;
1609 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1610 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1611 /* Don't fix anything. */
1612 continue;
0eb3ff12 1613 }
f84ee364
N
1614 /* Ok, we need to write this bio, either to correct an
1615 * inconsistency or to correct an unreadable block.
1da177e4
LT
1616 * First we need to fixup bv_offset, bv_len and
1617 * bi_vecs, as the read request might have corrupted these
1618 */
1619 tbio->bi_vcnt = vcnt;
1620 tbio->bi_size = r10_bio->sectors << 9;
1621 tbio->bi_idx = 0;
1622 tbio->bi_phys_segments = 0;
1da177e4
LT
1623 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1624 tbio->bi_flags |= 1 << BIO_UPTODATE;
1625 tbio->bi_next = NULL;
1626 tbio->bi_rw = WRITE;
1627 tbio->bi_private = r10_bio;
1628 tbio->bi_sector = r10_bio->devs[i].addr;
1629
1630 for (j=0; j < vcnt ; j++) {
1631 tbio->bi_io_vec[j].bv_offset = 0;
1632 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1633
1634 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1635 page_address(fbio->bi_io_vec[j].bv_page),
1636 PAGE_SIZE);
1637 }
1638 tbio->bi_end_io = end_sync_write;
1639
1640 d = r10_bio->devs[i].devnum;
1641 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1642 atomic_inc(&r10_bio->remaining);
1643 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1644
1645 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1646 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1647 generic_make_request(tbio);
1648 }
1649
1650done:
1651 if (atomic_dec_and_test(&r10_bio->remaining)) {
1652 md_done_sync(mddev, r10_bio->sectors, 1);
1653 put_buf(r10_bio);
1654 }
1655}
1656
1657/*
1658 * Now for the recovery code.
1659 * Recovery happens across physical sectors.
1660 * We recover all non-is_sync drives by finding the virtual address of
1661 * each, and then choose a working drive that also has that virt address.
1662 * There is a separate r10_bio for each non-in_sync drive.
1663 * Only the first two slots are in use. The first for reading,
1664 * The second for writing.
1665 *
1666 */
9f2c9d12 1667static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
1668{
1669 /* We got a read error during recovery.
1670 * We repeat the read in smaller page-sized sections.
1671 * If a read succeeds, write it to the new device or record
1672 * a bad block if we cannot.
1673 * If a read fails, record a bad block on both old and
1674 * new devices.
1675 */
fd01b88c 1676 struct mddev *mddev = r10_bio->mddev;
e879a879 1677 struct r10conf *conf = mddev->private;
5e570289
N
1678 struct bio *bio = r10_bio->devs[0].bio;
1679 sector_t sect = 0;
1680 int sectors = r10_bio->sectors;
1681 int idx = 0;
1682 int dr = r10_bio->devs[0].devnum;
1683 int dw = r10_bio->devs[1].devnum;
1684
1685 while (sectors) {
1686 int s = sectors;
3cb03002 1687 struct md_rdev *rdev;
5e570289
N
1688 sector_t addr;
1689 int ok;
1690
1691 if (s > (PAGE_SIZE>>9))
1692 s = PAGE_SIZE >> 9;
1693
1694 rdev = conf->mirrors[dr].rdev;
1695 addr = r10_bio->devs[0].addr + sect,
1696 ok = sync_page_io(rdev,
1697 addr,
1698 s << 9,
1699 bio->bi_io_vec[idx].bv_page,
1700 READ, false);
1701 if (ok) {
1702 rdev = conf->mirrors[dw].rdev;
1703 addr = r10_bio->devs[1].addr + sect;
1704 ok = sync_page_io(rdev,
1705 addr,
1706 s << 9,
1707 bio->bi_io_vec[idx].bv_page,
1708 WRITE, false);
1709 if (!ok)
1710 set_bit(WriteErrorSeen, &rdev->flags);
1711 }
1712 if (!ok) {
1713 /* We don't worry if we cannot set a bad block -
1714 * it really is bad so there is no loss in not
1715 * recording it yet
1716 */
1717 rdev_set_badblocks(rdev, addr, s, 0);
1718
1719 if (rdev != conf->mirrors[dw].rdev) {
1720 /* need bad block on destination too */
3cb03002 1721 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
1722 addr = r10_bio->devs[1].addr + sect;
1723 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1724 if (!ok) {
1725 /* just abort the recovery */
1726 printk(KERN_NOTICE
1727 "md/raid10:%s: recovery aborted"
1728 " due to read error\n",
1729 mdname(mddev));
1730
1731 conf->mirrors[dw].recovery_disabled
1732 = mddev->recovery_disabled;
1733 set_bit(MD_RECOVERY_INTR,
1734 &mddev->recovery);
1735 break;
1736 }
1737 }
1738 }
1739
1740 sectors -= s;
1741 sect += s;
1742 idx++;
1743 }
1744}
1da177e4 1745
9f2c9d12 1746static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1747{
e879a879 1748 struct r10conf *conf = mddev->private;
c65060ad
NK
1749 int d;
1750 struct bio *wbio;
1da177e4 1751
5e570289
N
1752 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1753 fix_recovery_read_error(r10_bio);
1754 end_sync_request(r10_bio);
1755 return;
1756 }
1757
c65060ad
NK
1758 /*
1759 * share the pages with the first bio
1da177e4
LT
1760 * and submit the write request
1761 */
1da177e4 1762 wbio = r10_bio->devs[1].bio;
1da177e4
LT
1763 d = r10_bio->devs[1].devnum;
1764
1765 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1766 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
5e570289 1767 generic_make_request(wbio);
1da177e4
LT
1768}
1769
1770
1e50915f
RB
1771/*
1772 * Used by fix_read_error() to decay the per rdev read_errors.
1773 * We halve the read error count for every hour that has elapsed
1774 * since the last recorded read error.
1775 *
1776 */
fd01b88c 1777static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
1778{
1779 struct timespec cur_time_mon;
1780 unsigned long hours_since_last;
1781 unsigned int read_errors = atomic_read(&rdev->read_errors);
1782
1783 ktime_get_ts(&cur_time_mon);
1784
1785 if (rdev->last_read_error.tv_sec == 0 &&
1786 rdev->last_read_error.tv_nsec == 0) {
1787 /* first time we've seen a read error */
1788 rdev->last_read_error = cur_time_mon;
1789 return;
1790 }
1791
1792 hours_since_last = (cur_time_mon.tv_sec -
1793 rdev->last_read_error.tv_sec) / 3600;
1794
1795 rdev->last_read_error = cur_time_mon;
1796
1797 /*
1798 * if hours_since_last is > the number of bits in read_errors
1799 * just set read errors to 0. We do this to avoid
1800 * overflowing the shift of read_errors by hours_since_last.
1801 */
1802 if (hours_since_last >= 8 * sizeof(read_errors))
1803 atomic_set(&rdev->read_errors, 0);
1804 else
1805 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1806}
1807
3cb03002 1808static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
1809 int sectors, struct page *page, int rw)
1810{
1811 sector_t first_bad;
1812 int bad_sectors;
1813
1814 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1815 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1816 return -1;
1817 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1818 /* success */
1819 return 1;
1820 if (rw == WRITE)
1821 set_bit(WriteErrorSeen, &rdev->flags);
1822 /* need to record an error - either for the block or the device */
1823 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1824 md_error(rdev->mddev, rdev);
1825 return 0;
1826}
1827
1da177e4
LT
1828/*
1829 * This is a kernel thread which:
1830 *
1831 * 1. Retries failed read operations on working mirrors.
1832 * 2. Updates the raid superblock when problems encounter.
6814d536 1833 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1834 */
1835
e879a879 1836static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
1837{
1838 int sect = 0; /* Offset from r10_bio->sector */
1839 int sectors = r10_bio->sectors;
3cb03002 1840 struct md_rdev*rdev;
1e50915f 1841 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1842 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 1843
7c4e06ff
N
1844 /* still own a reference to this rdev, so it cannot
1845 * have been cleared recently.
1846 */
1847 rdev = conf->mirrors[d].rdev;
1e50915f 1848
7c4e06ff
N
1849 if (test_bit(Faulty, &rdev->flags))
1850 /* drive has already been failed, just ignore any
1851 more fix_read_error() attempts */
1852 return;
1e50915f 1853
7c4e06ff
N
1854 check_decay_read_errors(mddev, rdev);
1855 atomic_inc(&rdev->read_errors);
1856 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1857 char b[BDEVNAME_SIZE];
1858 bdevname(rdev->bdev, b);
1e50915f 1859
7c4e06ff
N
1860 printk(KERN_NOTICE
1861 "md/raid10:%s: %s: Raid device exceeded "
1862 "read_error threshold [cur %d:max %d]\n",
1863 mdname(mddev), b,
1864 atomic_read(&rdev->read_errors), max_read_errors);
1865 printk(KERN_NOTICE
1866 "md/raid10:%s: %s: Failing raid device\n",
1867 mdname(mddev), b);
1868 md_error(mddev, conf->mirrors[d].rdev);
1869 return;
1e50915f 1870 }
1e50915f 1871
6814d536
N
1872 while(sectors) {
1873 int s = sectors;
1874 int sl = r10_bio->read_slot;
1875 int success = 0;
1876 int start;
1877
1878 if (s > (PAGE_SIZE>>9))
1879 s = PAGE_SIZE >> 9;
1880
1881 rcu_read_lock();
1882 do {
8dbed5ce
N
1883 sector_t first_bad;
1884 int bad_sectors;
1885
0544a21d 1886 d = r10_bio->devs[sl].devnum;
6814d536
N
1887 rdev = rcu_dereference(conf->mirrors[d].rdev);
1888 if (rdev &&
8dbed5ce
N
1889 test_bit(In_sync, &rdev->flags) &&
1890 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1891 &first_bad, &bad_sectors) == 0) {
6814d536
N
1892 atomic_inc(&rdev->nr_pending);
1893 rcu_read_unlock();
2b193363 1894 success = sync_page_io(rdev,
6814d536 1895 r10_bio->devs[sl].addr +
ccebd4c4 1896 sect,
6814d536 1897 s<<9,
ccebd4c4 1898 conf->tmppage, READ, false);
6814d536
N
1899 rdev_dec_pending(rdev, mddev);
1900 rcu_read_lock();
1901 if (success)
1902 break;
1903 }
1904 sl++;
1905 if (sl == conf->copies)
1906 sl = 0;
1907 } while (!success && sl != r10_bio->read_slot);
1908 rcu_read_unlock();
1909
1910 if (!success) {
58c54fcc
N
1911 /* Cannot read from anywhere, just mark the block
1912 * as bad on the first device to discourage future
1913 * reads.
1914 */
6814d536 1915 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
1916 rdev = conf->mirrors[dn].rdev;
1917
1918 if (!rdev_set_badblocks(
1919 rdev,
1920 r10_bio->devs[r10_bio->read_slot].addr
1921 + sect,
1922 s, 0))
1923 md_error(mddev, rdev);
6814d536
N
1924 break;
1925 }
1926
1927 start = sl;
1928 /* write it back and re-read */
1929 rcu_read_lock();
1930 while (sl != r10_bio->read_slot) {
67b8dc4b 1931 char b[BDEVNAME_SIZE];
0544a21d 1932
6814d536
N
1933 if (sl==0)
1934 sl = conf->copies;
1935 sl--;
1936 d = r10_bio->devs[sl].devnum;
1937 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1938 if (!rdev ||
1939 !test_bit(In_sync, &rdev->flags))
1940 continue;
1941
1942 atomic_inc(&rdev->nr_pending);
1943 rcu_read_unlock();
58c54fcc
N
1944 if (r10_sync_page_io(rdev,
1945 r10_bio->devs[sl].addr +
1946 sect,
1947 s<<9, conf->tmppage, WRITE)
1294b9c9
N
1948 == 0) {
1949 /* Well, this device is dead */
1950 printk(KERN_NOTICE
1951 "md/raid10:%s: read correction "
1952 "write failed"
1953 " (%d sectors at %llu on %s)\n",
1954 mdname(mddev), s,
1955 (unsigned long long)(
1956 sect + rdev->data_offset),
1957 bdevname(rdev->bdev, b));
1958 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1959 "drive\n",
1960 mdname(mddev),
1961 bdevname(rdev->bdev, b));
6814d536 1962 }
1294b9c9
N
1963 rdev_dec_pending(rdev, mddev);
1964 rcu_read_lock();
6814d536
N
1965 }
1966 sl = start;
1967 while (sl != r10_bio->read_slot) {
1294b9c9 1968 char b[BDEVNAME_SIZE];
0544a21d 1969
6814d536
N
1970 if (sl==0)
1971 sl = conf->copies;
1972 sl--;
1973 d = r10_bio->devs[sl].devnum;
1974 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1975 if (!rdev ||
1976 !test_bit(In_sync, &rdev->flags))
1977 continue;
6814d536 1978
1294b9c9
N
1979 atomic_inc(&rdev->nr_pending);
1980 rcu_read_unlock();
58c54fcc
N
1981 switch (r10_sync_page_io(rdev,
1982 r10_bio->devs[sl].addr +
1983 sect,
1984 s<<9, conf->tmppage,
1985 READ)) {
1986 case 0:
1294b9c9
N
1987 /* Well, this device is dead */
1988 printk(KERN_NOTICE
1989 "md/raid10:%s: unable to read back "
1990 "corrected sectors"
1991 " (%d sectors at %llu on %s)\n",
1992 mdname(mddev), s,
1993 (unsigned long long)(
1994 sect + rdev->data_offset),
1995 bdevname(rdev->bdev, b));
1996 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1997 "drive\n",
1998 mdname(mddev),
1999 bdevname(rdev->bdev, b));
58c54fcc
N
2000 break;
2001 case 1:
1294b9c9
N
2002 printk(KERN_INFO
2003 "md/raid10:%s: read error corrected"
2004 " (%d sectors at %llu on %s)\n",
2005 mdname(mddev), s,
2006 (unsigned long long)(
2007 sect + rdev->data_offset),
2008 bdevname(rdev->bdev, b));
2009 atomic_add(s, &rdev->corrected_errors);
6814d536 2010 }
1294b9c9
N
2011
2012 rdev_dec_pending(rdev, mddev);
2013 rcu_read_lock();
6814d536
N
2014 }
2015 rcu_read_unlock();
2016
2017 sectors -= s;
2018 sect += s;
2019 }
2020}
2021
bd870a16
N
2022static void bi_complete(struct bio *bio, int error)
2023{
2024 complete((struct completion *)bio->bi_private);
2025}
2026
2027static int submit_bio_wait(int rw, struct bio *bio)
2028{
2029 struct completion event;
2030 rw |= REQ_SYNC;
2031
2032 init_completion(&event);
2033 bio->bi_private = &event;
2034 bio->bi_end_io = bi_complete;
2035 submit_bio(rw, bio);
2036 wait_for_completion(&event);
2037
2038 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2039}
2040
9f2c9d12 2041static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2042{
2043 struct bio *bio = r10_bio->master_bio;
fd01b88c 2044 struct mddev *mddev = r10_bio->mddev;
e879a879 2045 struct r10conf *conf = mddev->private;
3cb03002 2046 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2047 /* bio has the data to be written to slot 'i' where
2048 * we just recently had a write error.
2049 * We repeatedly clone the bio and trim down to one block,
2050 * then try the write. Where the write fails we record
2051 * a bad block.
2052 * It is conceivable that the bio doesn't exactly align with
2053 * blocks. We must handle this.
2054 *
2055 * We currently own a reference to the rdev.
2056 */
2057
2058 int block_sectors;
2059 sector_t sector;
2060 int sectors;
2061 int sect_to_write = r10_bio->sectors;
2062 int ok = 1;
2063
2064 if (rdev->badblocks.shift < 0)
2065 return 0;
2066
2067 block_sectors = 1 << rdev->badblocks.shift;
2068 sector = r10_bio->sector;
2069 sectors = ((r10_bio->sector + block_sectors)
2070 & ~(sector_t)(block_sectors - 1))
2071 - sector;
2072
2073 while (sect_to_write) {
2074 struct bio *wbio;
2075 if (sectors > sect_to_write)
2076 sectors = sect_to_write;
2077 /* Write at 'sector' for 'sectors' */
2078 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2079 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2080 wbio->bi_sector = (r10_bio->devs[i].addr+
2081 rdev->data_offset+
2082 (sector - r10_bio->sector));
2083 wbio->bi_bdev = rdev->bdev;
2084 if (submit_bio_wait(WRITE, wbio) == 0)
2085 /* Failure! */
2086 ok = rdev_set_badblocks(rdev, sector,
2087 sectors, 0)
2088 && ok;
2089
2090 bio_put(wbio);
2091 sect_to_write -= sectors;
2092 sector += sectors;
2093 sectors = block_sectors;
2094 }
2095 return ok;
2096}
2097
9f2c9d12 2098static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2099{
2100 int slot = r10_bio->read_slot;
560f8e55 2101 struct bio *bio;
e879a879 2102 struct r10conf *conf = mddev->private;
abbf098e 2103 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2104 char b[BDEVNAME_SIZE];
2105 unsigned long do_sync;
856e08e2 2106 int max_sectors;
560f8e55
N
2107
2108 /* we got a read error. Maybe the drive is bad. Maybe just
2109 * the block and we can fix it.
2110 * We freeze all other IO, and try reading the block from
2111 * other devices. When we find one, we re-write
2112 * and check it that fixes the read error.
2113 * This is all done synchronously while the array is
2114 * frozen.
2115 */
2116 if (mddev->ro == 0) {
2117 freeze_array(conf);
2118 fix_read_error(conf, mddev, r10_bio);
2119 unfreeze_array(conf);
2120 }
abbf098e 2121 rdev_dec_pending(rdev, mddev);
560f8e55
N
2122
2123 bio = r10_bio->devs[slot].bio;
7399c31b 2124 bdevname(bio->bi_bdev, b);
560f8e55
N
2125 r10_bio->devs[slot].bio =
2126 mddev->ro ? IO_BLOCKED : NULL;
7399c31b 2127read_more:
96c3fd1f
N
2128 rdev = read_balance(conf, r10_bio, &max_sectors);
2129 if (rdev == NULL) {
560f8e55
N
2130 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2131 " read error for block %llu\n",
7399c31b 2132 mdname(mddev), b,
560f8e55
N
2133 (unsigned long long)r10_bio->sector);
2134 raid_end_bio_io(r10_bio);
2135 bio_put(bio);
2136 return;
2137 }
2138
2139 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
7399c31b
N
2140 if (bio)
2141 bio_put(bio);
560f8e55 2142 slot = r10_bio->read_slot;
560f8e55
N
2143 printk_ratelimited(
2144 KERN_ERR
2145 "md/raid10:%s: %s: redirecting"
2146 "sector %llu to another mirror\n",
2147 mdname(mddev),
2148 bdevname(rdev->bdev, b),
2149 (unsigned long long)r10_bio->sector);
2150 bio = bio_clone_mddev(r10_bio->master_bio,
2151 GFP_NOIO, mddev);
7399c31b
N
2152 md_trim_bio(bio,
2153 r10_bio->sector - bio->bi_sector,
2154 max_sectors);
560f8e55 2155 r10_bio->devs[slot].bio = bio;
abbf098e 2156 r10_bio->devs[slot].rdev = rdev;
560f8e55
N
2157 bio->bi_sector = r10_bio->devs[slot].addr
2158 + rdev->data_offset;
2159 bio->bi_bdev = rdev->bdev;
2160 bio->bi_rw = READ | do_sync;
2161 bio->bi_private = r10_bio;
2162 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2163 if (max_sectors < r10_bio->sectors) {
2164 /* Drat - have to split this up more */
2165 struct bio *mbio = r10_bio->master_bio;
2166 int sectors_handled =
2167 r10_bio->sector + max_sectors
2168 - mbio->bi_sector;
2169 r10_bio->sectors = max_sectors;
2170 spin_lock_irq(&conf->device_lock);
2171 if (mbio->bi_phys_segments == 0)
2172 mbio->bi_phys_segments = 2;
2173 else
2174 mbio->bi_phys_segments++;
2175 spin_unlock_irq(&conf->device_lock);
2176 generic_make_request(bio);
2177 bio = NULL;
2178
2179 r10_bio = mempool_alloc(conf->r10bio_pool,
2180 GFP_NOIO);
2181 r10_bio->master_bio = mbio;
2182 r10_bio->sectors = (mbio->bi_size >> 9)
2183 - sectors_handled;
2184 r10_bio->state = 0;
2185 set_bit(R10BIO_ReadError,
2186 &r10_bio->state);
2187 r10_bio->mddev = mddev;
2188 r10_bio->sector = mbio->bi_sector
2189 + sectors_handled;
2190
2191 goto read_more;
2192 } else
2193 generic_make_request(bio);
560f8e55
N
2194}
2195
e879a879 2196static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2197{
2198 /* Some sort of write request has finished and it
2199 * succeeded in writing where we thought there was a
2200 * bad block. So forget the bad block.
1a0b7cd8
N
2201 * Or possibly if failed and we need to record
2202 * a bad block.
749c55e9
N
2203 */
2204 int m;
3cb03002 2205 struct md_rdev *rdev;
749c55e9
N
2206
2207 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2208 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2209 for (m = 0; m < conf->copies; m++) {
2210 int dev = r10_bio->devs[m].devnum;
2211 rdev = conf->mirrors[dev].rdev;
2212 if (r10_bio->devs[m].bio == NULL)
2213 continue;
2214 if (test_bit(BIO_UPTODATE,
749c55e9 2215 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2216 rdev_clear_badblocks(
2217 rdev,
2218 r10_bio->devs[m].addr,
2219 r10_bio->sectors);
1a0b7cd8
N
2220 } else {
2221 if (!rdev_set_badblocks(
2222 rdev,
2223 r10_bio->devs[m].addr,
2224 r10_bio->sectors, 0))
2225 md_error(conf->mddev, rdev);
749c55e9 2226 }
1a0b7cd8 2227 }
749c55e9
N
2228 put_buf(r10_bio);
2229 } else {
bd870a16
N
2230 for (m = 0; m < conf->copies; m++) {
2231 int dev = r10_bio->devs[m].devnum;
2232 struct bio *bio = r10_bio->devs[m].bio;
2233 rdev = conf->mirrors[dev].rdev;
2234 if (bio == IO_MADE_GOOD) {
749c55e9
N
2235 rdev_clear_badblocks(
2236 rdev,
2237 r10_bio->devs[m].addr,
2238 r10_bio->sectors);
2239 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2240 } else if (bio != NULL &&
2241 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2242 if (!narrow_write_error(r10_bio, m)) {
2243 md_error(conf->mddev, rdev);
2244 set_bit(R10BIO_Degraded,
2245 &r10_bio->state);
2246 }
2247 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2248 }
bd870a16
N
2249 }
2250 if (test_bit(R10BIO_WriteError,
2251 &r10_bio->state))
2252 close_write(r10_bio);
749c55e9
N
2253 raid_end_bio_io(r10_bio);
2254 }
2255}
2256
fd01b88c 2257static void raid10d(struct mddev *mddev)
1da177e4 2258{
9f2c9d12 2259 struct r10bio *r10_bio;
1da177e4 2260 unsigned long flags;
e879a879 2261 struct r10conf *conf = mddev->private;
1da177e4 2262 struct list_head *head = &conf->retry_list;
e1dfa0a2 2263 struct blk_plug plug;
1da177e4
LT
2264
2265 md_check_recovery(mddev);
1da177e4 2266
e1dfa0a2 2267 blk_start_plug(&plug);
1da177e4 2268 for (;;) {
6cce3b23 2269
7eaceacc 2270 flush_pending_writes(conf);
6cce3b23 2271
a35e63ef
N
2272 spin_lock_irqsave(&conf->device_lock, flags);
2273 if (list_empty(head)) {
2274 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2275 break;
a35e63ef 2276 }
9f2c9d12 2277 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2278 list_del(head->prev);
4443ae10 2279 conf->nr_queued--;
1da177e4
LT
2280 spin_unlock_irqrestore(&conf->device_lock, flags);
2281
2282 mddev = r10_bio->mddev;
070ec55d 2283 conf = mddev->private;
bd870a16
N
2284 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2285 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2286 handle_write_completed(conf, r10_bio);
2287 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2288 sync_request_write(mddev, r10_bio);
7eaceacc 2289 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2290 recovery_request_write(mddev, r10_bio);
856e08e2 2291 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2292 handle_read_error(mddev, r10_bio);
856e08e2
N
2293 else {
2294 /* just a partial read to be scheduled from a
2295 * separate context
2296 */
2297 int slot = r10_bio->read_slot;
2298 generic_make_request(r10_bio->devs[slot].bio);
2299 }
560f8e55 2300
1d9d5241 2301 cond_resched();
de393cde
N
2302 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2303 md_check_recovery(mddev);
1da177e4 2304 }
e1dfa0a2 2305 blk_finish_plug(&plug);
1da177e4
LT
2306}
2307
2308
e879a879 2309static int init_resync(struct r10conf *conf)
1da177e4
LT
2310{
2311 int buffs;
69335ef3 2312 int i;
1da177e4
LT
2313
2314 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2315 BUG_ON(conf->r10buf_pool);
69335ef3
N
2316 conf->have_replacement = 0;
2317 for (i = 0; i < conf->raid_disks; i++)
2318 if (conf->mirrors[i].replacement)
2319 conf->have_replacement = 1;
1da177e4
LT
2320 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2321 if (!conf->r10buf_pool)
2322 return -ENOMEM;
2323 conf->next_resync = 0;
2324 return 0;
2325}
2326
2327/*
2328 * perform a "sync" on one "block"
2329 *
2330 * We need to make sure that no normal I/O request - particularly write
2331 * requests - conflict with active sync requests.
2332 *
2333 * This is achieved by tracking pending requests and a 'barrier' concept
2334 * that can be installed to exclude normal IO requests.
2335 *
2336 * Resync and recovery are handled very differently.
2337 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2338 *
2339 * For resync, we iterate over virtual addresses, read all copies,
2340 * and update if there are differences. If only one copy is live,
2341 * skip it.
2342 * For recovery, we iterate over physical addresses, read a good
2343 * value for each non-in_sync drive, and over-write.
2344 *
2345 * So, for recovery we may have several outstanding complex requests for a
2346 * given address, one for each out-of-sync device. We model this by allocating
2347 * a number of r10_bio structures, one for each out-of-sync device.
2348 * As we setup these structures, we collect all bio's together into a list
2349 * which we then process collectively to add pages, and then process again
2350 * to pass to generic_make_request.
2351 *
2352 * The r10_bio structures are linked using a borrowed master_bio pointer.
2353 * This link is counted in ->remaining. When the r10_bio that points to NULL
2354 * has its remaining count decremented to 0, the whole complex operation
2355 * is complete.
2356 *
2357 */
2358
fd01b88c 2359static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2360 int *skipped, int go_faster)
1da177e4 2361{
e879a879 2362 struct r10conf *conf = mddev->private;
9f2c9d12 2363 struct r10bio *r10_bio;
1da177e4
LT
2364 struct bio *biolist = NULL, *bio;
2365 sector_t max_sector, nr_sectors;
1da177e4 2366 int i;
6cce3b23 2367 int max_sync;
57dab0bd 2368 sector_t sync_blocks;
1da177e4
LT
2369 sector_t sectors_skipped = 0;
2370 int chunks_skipped = 0;
2371
2372 if (!conf->r10buf_pool)
2373 if (init_resync(conf))
57afd89f 2374 return 0;
1da177e4
LT
2375
2376 skipped:
58c0fed4 2377 max_sector = mddev->dev_sectors;
1da177e4
LT
2378 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2379 max_sector = mddev->resync_max_sectors;
2380 if (sector_nr >= max_sector) {
6cce3b23
N
2381 /* If we aborted, we need to abort the
2382 * sync on the 'current' bitmap chucks (there can
2383 * be several when recovering multiple devices).
2384 * as we may have started syncing it but not finished.
2385 * We can find the current address in
2386 * mddev->curr_resync, but for recovery,
2387 * we need to convert that to several
2388 * virtual addresses.
2389 */
2390 if (mddev->curr_resync < max_sector) { /* aborted */
2391 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2392 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2393 &sync_blocks, 1);
2394 else for (i=0; i<conf->raid_disks; i++) {
2395 sector_t sect =
2396 raid10_find_virt(conf, mddev->curr_resync, i);
2397 bitmap_end_sync(mddev->bitmap, sect,
2398 &sync_blocks, 1);
2399 }
2400 } else /* completed sync */
2401 conf->fullsync = 0;
2402
2403 bitmap_close_sync(mddev->bitmap);
1da177e4 2404 close_sync(conf);
57afd89f 2405 *skipped = 1;
1da177e4
LT
2406 return sectors_skipped;
2407 }
2408 if (chunks_skipped >= conf->raid_disks) {
2409 /* if there has been nothing to do on any drive,
2410 * then there is nothing to do at all..
2411 */
57afd89f
N
2412 *skipped = 1;
2413 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2414 }
2415
c6207277
N
2416 if (max_sector > mddev->resync_max)
2417 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2418
1da177e4
LT
2419 /* make sure whole request will fit in a chunk - if chunks
2420 * are meaningful
2421 */
2422 if (conf->near_copies < conf->raid_disks &&
2423 max_sector > (sector_nr | conf->chunk_mask))
2424 max_sector = (sector_nr | conf->chunk_mask) + 1;
2425 /*
2426 * If there is non-resync activity waiting for us then
2427 * put in a delay to throttle resync.
2428 */
0a27ec96 2429 if (!go_faster && conf->nr_waiting)
1da177e4 2430 msleep_interruptible(1000);
1da177e4
LT
2431
2432 /* Again, very different code for resync and recovery.
2433 * Both must result in an r10bio with a list of bios that
2434 * have bi_end_io, bi_sector, bi_bdev set,
2435 * and bi_private set to the r10bio.
2436 * For recovery, we may actually create several r10bios
2437 * with 2 bios in each, that correspond to the bios in the main one.
2438 * In this case, the subordinate r10bios link back through a
2439 * borrowed master_bio pointer, and the counter in the master
2440 * includes a ref from each subordinate.
2441 */
2442 /* First, we decide what to do and set ->bi_end_io
2443 * To end_sync_read if we want to read, and
2444 * end_sync_write if we will want to write.
2445 */
2446
6cce3b23 2447 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2448 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2449 /* recovery... the complicated one */
e875ecea 2450 int j;
1da177e4
LT
2451 r10_bio = NULL;
2452
ab9d47e9
N
2453 for (i=0 ; i<conf->raid_disks; i++) {
2454 int still_degraded;
9f2c9d12 2455 struct r10bio *rb2;
ab9d47e9
N
2456 sector_t sect;
2457 int must_sync;
e875ecea 2458 int any_working;
1da177e4 2459
ab9d47e9
N
2460 if (conf->mirrors[i].rdev == NULL ||
2461 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2462 continue;
1da177e4 2463
ab9d47e9
N
2464 still_degraded = 0;
2465 /* want to reconstruct this device */
2466 rb2 = r10_bio;
2467 sect = raid10_find_virt(conf, sector_nr, i);
2468 /* Unless we are doing a full sync, we only need
2469 * to recover the block if it is set in the bitmap
2470 */
2471 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2472 &sync_blocks, 1);
2473 if (sync_blocks < max_sync)
2474 max_sync = sync_blocks;
2475 if (!must_sync &&
2476 !conf->fullsync) {
2477 /* yep, skip the sync_blocks here, but don't assume
2478 * that there will never be anything to do here
2479 */
2480 chunks_skipped = -1;
2481 continue;
2482 }
6cce3b23 2483
ab9d47e9
N
2484 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2485 raise_barrier(conf, rb2 != NULL);
2486 atomic_set(&r10_bio->remaining, 0);
18055569 2487
ab9d47e9
N
2488 r10_bio->master_bio = (struct bio*)rb2;
2489 if (rb2)
2490 atomic_inc(&rb2->remaining);
2491 r10_bio->mddev = mddev;
2492 set_bit(R10BIO_IsRecover, &r10_bio->state);
2493 r10_bio->sector = sect;
1da177e4 2494
ab9d47e9
N
2495 raid10_find_phys(conf, r10_bio);
2496
2497 /* Need to check if the array will still be
2498 * degraded
2499 */
2500 for (j=0; j<conf->raid_disks; j++)
2501 if (conf->mirrors[j].rdev == NULL ||
2502 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2503 still_degraded = 1;
87fc767b 2504 break;
1da177e4 2505 }
ab9d47e9
N
2506
2507 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2508 &sync_blocks, still_degraded);
2509
e875ecea 2510 any_working = 0;
ab9d47e9 2511 for (j=0; j<conf->copies;j++) {
e875ecea 2512 int k;
ab9d47e9 2513 int d = r10_bio->devs[j].devnum;
5e570289 2514 sector_t from_addr, to_addr;
3cb03002 2515 struct md_rdev *rdev;
40c356ce
N
2516 sector_t sector, first_bad;
2517 int bad_sectors;
ab9d47e9
N
2518 if (!conf->mirrors[d].rdev ||
2519 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2520 continue;
2521 /* This is where we read from */
e875ecea 2522 any_working = 1;
40c356ce
N
2523 rdev = conf->mirrors[d].rdev;
2524 sector = r10_bio->devs[j].addr;
2525
2526 if (is_badblock(rdev, sector, max_sync,
2527 &first_bad, &bad_sectors)) {
2528 if (first_bad > sector)
2529 max_sync = first_bad - sector;
2530 else {
2531 bad_sectors -= (sector
2532 - first_bad);
2533 if (max_sync > bad_sectors)
2534 max_sync = bad_sectors;
2535 continue;
2536 }
2537 }
ab9d47e9
N
2538 bio = r10_bio->devs[0].bio;
2539 bio->bi_next = biolist;
2540 biolist = bio;
2541 bio->bi_private = r10_bio;
2542 bio->bi_end_io = end_sync_read;
2543 bio->bi_rw = READ;
5e570289
N
2544 from_addr = r10_bio->devs[j].addr;
2545 bio->bi_sector = from_addr +
ab9d47e9
N
2546 conf->mirrors[d].rdev->data_offset;
2547 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2548 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2549 atomic_inc(&r10_bio->remaining);
2550 /* and we write to 'i' */
2551
2552 for (k=0; k<conf->copies; k++)
2553 if (r10_bio->devs[k].devnum == i)
2554 break;
2555 BUG_ON(k == conf->copies);
2556 bio = r10_bio->devs[1].bio;
2557 bio->bi_next = biolist;
2558 biolist = bio;
2559 bio->bi_private = r10_bio;
2560 bio->bi_end_io = end_sync_write;
2561 bio->bi_rw = WRITE;
5e570289
N
2562 to_addr = r10_bio->devs[k].addr;
2563 bio->bi_sector = to_addr +
ab9d47e9
N
2564 conf->mirrors[i].rdev->data_offset;
2565 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2566
2567 r10_bio->devs[0].devnum = d;
5e570289 2568 r10_bio->devs[0].addr = from_addr;
ab9d47e9 2569 r10_bio->devs[1].devnum = i;
5e570289 2570 r10_bio->devs[1].addr = to_addr;
ab9d47e9
N
2571
2572 break;
2573 }
2574 if (j == conf->copies) {
e875ecea
N
2575 /* Cannot recover, so abort the recovery or
2576 * record a bad block */
ab9d47e9
N
2577 put_buf(r10_bio);
2578 if (rb2)
2579 atomic_dec(&rb2->remaining);
2580 r10_bio = rb2;
e875ecea
N
2581 if (any_working) {
2582 /* problem is that there are bad blocks
2583 * on other device(s)
2584 */
2585 int k;
2586 for (k = 0; k < conf->copies; k++)
2587 if (r10_bio->devs[k].devnum == i)
2588 break;
2589 if (!rdev_set_badblocks(
2590 conf->mirrors[i].rdev,
2591 r10_bio->devs[k].addr,
2592 max_sync, 0))
2593 any_working = 0;
2594 }
2595 if (!any_working) {
2596 if (!test_and_set_bit(MD_RECOVERY_INTR,
2597 &mddev->recovery))
2598 printk(KERN_INFO "md/raid10:%s: insufficient "
2599 "working devices for recovery.\n",
2600 mdname(mddev));
2601 conf->mirrors[i].recovery_disabled
2602 = mddev->recovery_disabled;
2603 }
ab9d47e9 2604 break;
1da177e4 2605 }
ab9d47e9 2606 }
1da177e4
LT
2607 if (biolist == NULL) {
2608 while (r10_bio) {
9f2c9d12
N
2609 struct r10bio *rb2 = r10_bio;
2610 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
2611 rb2->master_bio = NULL;
2612 put_buf(rb2);
2613 }
2614 goto giveup;
2615 }
2616 } else {
2617 /* resync. Schedule a read for every block at this virt offset */
2618 int count = 0;
6cce3b23 2619
78200d45
N
2620 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2621
6cce3b23
N
2622 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2623 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
2624 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2625 &mddev->recovery)) {
6cce3b23
N
2626 /* We can skip this block */
2627 *skipped = 1;
2628 return sync_blocks + sectors_skipped;
2629 }
2630 if (sync_blocks < max_sync)
2631 max_sync = sync_blocks;
1da177e4
LT
2632 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2633
1da177e4
LT
2634 r10_bio->mddev = mddev;
2635 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
2636 raise_barrier(conf, 0);
2637 conf->next_resync = sector_nr;
1da177e4
LT
2638
2639 r10_bio->master_bio = NULL;
2640 r10_bio->sector = sector_nr;
2641 set_bit(R10BIO_IsSync, &r10_bio->state);
2642 raid10_find_phys(conf, r10_bio);
2643 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2644
2645 for (i=0; i<conf->copies; i++) {
2646 int d = r10_bio->devs[i].devnum;
40c356ce
N
2647 sector_t first_bad, sector;
2648 int bad_sectors;
2649
1da177e4
LT
2650 bio = r10_bio->devs[i].bio;
2651 bio->bi_end_io = NULL;
af03b8e4 2652 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2653 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2654 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 2655 continue;
40c356ce
N
2656 sector = r10_bio->devs[i].addr;
2657 if (is_badblock(conf->mirrors[d].rdev,
2658 sector, max_sync,
2659 &first_bad, &bad_sectors)) {
2660 if (first_bad > sector)
2661 max_sync = first_bad - sector;
2662 else {
2663 bad_sectors -= (sector - first_bad);
2664 if (max_sync > bad_sectors)
2665 max_sync = max_sync;
2666 continue;
2667 }
2668 }
1da177e4
LT
2669 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2670 atomic_inc(&r10_bio->remaining);
2671 bio->bi_next = biolist;
2672 biolist = bio;
2673 bio->bi_private = r10_bio;
2674 bio->bi_end_io = end_sync_read;
802ba064 2675 bio->bi_rw = READ;
40c356ce 2676 bio->bi_sector = sector +
1da177e4
LT
2677 conf->mirrors[d].rdev->data_offset;
2678 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2679 count++;
2680 }
2681
2682 if (count < 2) {
2683 for (i=0; i<conf->copies; i++) {
2684 int d = r10_bio->devs[i].devnum;
2685 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
2686 rdev_dec_pending(conf->mirrors[d].rdev,
2687 mddev);
1da177e4
LT
2688 }
2689 put_buf(r10_bio);
2690 biolist = NULL;
2691 goto giveup;
2692 }
2693 }
2694
2695 for (bio = biolist; bio ; bio=bio->bi_next) {
2696
2697 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2698 if (bio->bi_end_io)
2699 bio->bi_flags |= 1 << BIO_UPTODATE;
2700 bio->bi_vcnt = 0;
2701 bio->bi_idx = 0;
2702 bio->bi_phys_segments = 0;
1da177e4
LT
2703 bio->bi_size = 0;
2704 }
2705
2706 nr_sectors = 0;
6cce3b23
N
2707 if (sector_nr + max_sync < max_sector)
2708 max_sector = sector_nr + max_sync;
1da177e4
LT
2709 do {
2710 struct page *page;
2711 int len = PAGE_SIZE;
1da177e4
LT
2712 if (sector_nr + (len>>9) > max_sector)
2713 len = (max_sector - sector_nr) << 9;
2714 if (len == 0)
2715 break;
2716 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 2717 struct bio *bio2;
1da177e4 2718 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
2719 if (bio_add_page(bio, page, len, 0))
2720 continue;
2721
2722 /* stop here */
2723 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2724 for (bio2 = biolist;
2725 bio2 && bio2 != bio;
2726 bio2 = bio2->bi_next) {
2727 /* remove last page from this bio */
2728 bio2->bi_vcnt--;
2729 bio2->bi_size -= len;
2730 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 2731 }
ab9d47e9 2732 goto bio_full;
1da177e4
LT
2733 }
2734 nr_sectors += len>>9;
2735 sector_nr += len>>9;
2736 } while (biolist->bi_vcnt < RESYNC_PAGES);
2737 bio_full:
2738 r10_bio->sectors = nr_sectors;
2739
2740 while (biolist) {
2741 bio = biolist;
2742 biolist = biolist->bi_next;
2743
2744 bio->bi_next = NULL;
2745 r10_bio = bio->bi_private;
2746 r10_bio->sectors = nr_sectors;
2747
2748 if (bio->bi_end_io == end_sync_read) {
2749 md_sync_acct(bio->bi_bdev, nr_sectors);
2750 generic_make_request(bio);
2751 }
2752 }
2753
57afd89f
N
2754 if (sectors_skipped)
2755 /* pretend they weren't skipped, it makes
2756 * no important difference in this case
2757 */
2758 md_done_sync(mddev, sectors_skipped, 1);
2759
1da177e4
LT
2760 return sectors_skipped + nr_sectors;
2761 giveup:
2762 /* There is nowhere to write, so all non-sync
e875ecea
N
2763 * drives must be failed or in resync, all drives
2764 * have a bad block, so try the next chunk...
1da177e4 2765 */
09b4068a
N
2766 if (sector_nr + max_sync < max_sector)
2767 max_sector = sector_nr + max_sync;
2768
2769 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2770 chunks_skipped ++;
2771 sector_nr = max_sector;
1da177e4 2772 goto skipped;
1da177e4
LT
2773}
2774
80c3a6ce 2775static sector_t
fd01b88c 2776raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2777{
2778 sector_t size;
e879a879 2779 struct r10conf *conf = mddev->private;
80c3a6ce
DW
2780
2781 if (!raid_disks)
84707f38 2782 raid_disks = conf->raid_disks;
80c3a6ce 2783 if (!sectors)
dab8b292 2784 sectors = conf->dev_sectors;
80c3a6ce
DW
2785
2786 size = sectors >> conf->chunk_shift;
2787 sector_div(size, conf->far_copies);
2788 size = size * raid_disks;
2789 sector_div(size, conf->near_copies);
2790
2791 return size << conf->chunk_shift;
2792}
2793
dab8b292 2794
e879a879 2795static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 2796{
e879a879 2797 struct r10conf *conf = NULL;
c93983bf 2798 int nc, fc, fo;
1da177e4 2799 sector_t stride, size;
dab8b292 2800 int err = -EINVAL;
1da177e4 2801
f73ea873
MT
2802 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2803 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
2804 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2805 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2806 mdname(mddev), PAGE_SIZE);
dab8b292 2807 goto out;
1da177e4 2808 }
2604b703 2809
f73ea873
MT
2810 nc = mddev->new_layout & 255;
2811 fc = (mddev->new_layout >> 8) & 255;
2812 fo = mddev->new_layout & (1<<16);
dab8b292 2813
1da177e4 2814 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 2815 (mddev->new_layout >> 17)) {
128595ed 2816 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 2817 mdname(mddev), mddev->new_layout);
1da177e4
LT
2818 goto out;
2819 }
dab8b292
TM
2820
2821 err = -ENOMEM;
e879a879 2822 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 2823 if (!conf)
1da177e4 2824 goto out;
dab8b292 2825
4443ae10 2826 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
2827 GFP_KERNEL);
2828 if (!conf->mirrors)
2829 goto out;
4443ae10
N
2830
2831 conf->tmppage = alloc_page(GFP_KERNEL);
2832 if (!conf->tmppage)
dab8b292
TM
2833 goto out;
2834
1da177e4 2835
64a742bc 2836 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2837 conf->near_copies = nc;
2838 conf->far_copies = fc;
2839 conf->copies = nc*fc;
c93983bf 2840 conf->far_offset = fo;
dab8b292
TM
2841 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2842 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2843
2844 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2845 r10bio_pool_free, conf);
2846 if (!conf->r10bio_pool)
2847 goto out;
2848
58c0fed4 2849 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
2850 sector_div(size, fc);
2851 size = size * conf->raid_disks;
2852 sector_div(size, nc);
2853 /* 'size' is now the number of chunks in the array */
2854 /* calculate "used chunks per device" in 'stride' */
2855 stride = size * conf->copies;
af03b8e4
N
2856
2857 /* We need to round up when dividing by raid_disks to
2858 * get the stride size.
2859 */
2860 stride += conf->raid_disks - 1;
64a742bc 2861 sector_div(stride, conf->raid_disks);
dab8b292
TM
2862
2863 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 2864
c93983bf 2865 if (fo)
64a742bc
N
2866 stride = 1;
2867 else
c93983bf 2868 sector_div(stride, fc);
64a742bc
N
2869 conf->stride = stride << conf->chunk_shift;
2870
1da177e4 2871
e7e72bf6 2872 spin_lock_init(&conf->device_lock);
dab8b292
TM
2873 INIT_LIST_HEAD(&conf->retry_list);
2874
2875 spin_lock_init(&conf->resync_lock);
2876 init_waitqueue_head(&conf->wait_barrier);
2877
2878 conf->thread = md_register_thread(raid10d, mddev, NULL);
2879 if (!conf->thread)
2880 goto out;
2881
dab8b292
TM
2882 conf->mddev = mddev;
2883 return conf;
2884
2885 out:
128595ed 2886 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
2887 mdname(mddev));
2888 if (conf) {
2889 if (conf->r10bio_pool)
2890 mempool_destroy(conf->r10bio_pool);
2891 kfree(conf->mirrors);
2892 safe_put_page(conf->tmppage);
2893 kfree(conf);
2894 }
2895 return ERR_PTR(err);
2896}
2897
fd01b88c 2898static int run(struct mddev *mddev)
dab8b292 2899{
e879a879 2900 struct r10conf *conf;
dab8b292 2901 int i, disk_idx, chunk_size;
0f6d02d5 2902 struct mirror_info *disk;
3cb03002 2903 struct md_rdev *rdev;
dab8b292
TM
2904 sector_t size;
2905
2906 /*
2907 * copy the already verified devices into our private RAID10
2908 * bookkeeping area. [whatever we allocate in run(),
2909 * should be freed in stop()]
2910 */
2911
2912 if (mddev->private == NULL) {
2913 conf = setup_conf(mddev);
2914 if (IS_ERR(conf))
2915 return PTR_ERR(conf);
2916 mddev->private = conf;
2917 }
2918 conf = mddev->private;
2919 if (!conf)
2920 goto out;
2921
dab8b292
TM
2922 mddev->thread = conf->thread;
2923 conf->thread = NULL;
2924
8f6c2e4b
MP
2925 chunk_size = mddev->chunk_sectors << 9;
2926 blk_queue_io_min(mddev->queue, chunk_size);
2927 if (conf->raid_disks % conf->near_copies)
2928 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2929 else
2930 blk_queue_io_opt(mddev->queue, chunk_size *
2931 (conf->raid_disks / conf->near_copies));
2932
159ec1fc 2933 list_for_each_entry(rdev, &mddev->disks, same_set) {
34b343cf 2934
1da177e4 2935 disk_idx = rdev->raid_disk;
84707f38 2936 if (disk_idx >= conf->raid_disks
1da177e4
LT
2937 || disk_idx < 0)
2938 continue;
2939 disk = conf->mirrors + disk_idx;
2940
2941 disk->rdev = rdev;
8f6c2e4b
MP
2942 disk_stack_limits(mddev->gendisk, rdev->bdev,
2943 rdev->data_offset << 9);
1da177e4 2944 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2945 * violating it, so limit max_segments to 1 lying
2946 * within a single page.
1da177e4 2947 */
627a2d3c
N
2948 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2949 blk_queue_max_segments(mddev->queue, 1);
2950 blk_queue_segment_boundary(mddev->queue,
2951 PAGE_CACHE_SIZE - 1);
2952 }
1da177e4
LT
2953
2954 disk->head_position = 0;
1da177e4 2955 }
6d508242 2956 /* need to check that every block has at least one working mirror */
700c7213 2957 if (!enough(conf, -1)) {
128595ed 2958 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 2959 mdname(mddev));
1da177e4
LT
2960 goto out_free_conf;
2961 }
2962
2963 mddev->degraded = 0;
2964 for (i = 0; i < conf->raid_disks; i++) {
2965
2966 disk = conf->mirrors + i;
2967
5fd6c1dc 2968 if (!disk->rdev ||
2e333e89 2969 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2970 disk->head_position = 0;
2971 mddev->degraded++;
8c2e870a
NB
2972 if (disk->rdev)
2973 conf->fullsync = 1;
1da177e4 2974 }
d890fa2b 2975 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
2976 }
2977
8c6ac868 2978 if (mddev->recovery_cp != MaxSector)
128595ed 2979 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
2980 " -- starting background reconstruction\n",
2981 mdname(mddev));
1da177e4 2982 printk(KERN_INFO
128595ed 2983 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
2984 mdname(mddev), conf->raid_disks - mddev->degraded,
2985 conf->raid_disks);
1da177e4
LT
2986 /*
2987 * Ok, everything is just fine now
2988 */
dab8b292
TM
2989 mddev->dev_sectors = conf->dev_sectors;
2990 size = raid10_size(mddev, 0, 0);
2991 md_set_array_sectors(mddev, size);
2992 mddev->resync_max_sectors = size;
1da177e4 2993
0d129228
N
2994 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2995 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2996
1da177e4
LT
2997 /* Calculate max read-ahead size.
2998 * We need to readahead at least twice a whole stripe....
2999 * maybe...
3000 */
3001 {
9d8f0363
AN
3002 int stripe = conf->raid_disks *
3003 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
3004 stripe /= conf->near_copies;
3005 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3006 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3007 }
3008
84707f38 3009 if (conf->near_copies < conf->raid_disks)
1da177e4 3010 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
3011
3012 if (md_integrity_register(mddev))
3013 goto out_free_conf;
3014
1da177e4
LT
3015 return 0;
3016
3017out_free_conf:
01f96c0a 3018 md_unregister_thread(&mddev->thread);
1da177e4
LT
3019 if (conf->r10bio_pool)
3020 mempool_destroy(conf->r10bio_pool);
1345b1d8 3021 safe_put_page(conf->tmppage);
990a8baf 3022 kfree(conf->mirrors);
1da177e4
LT
3023 kfree(conf);
3024 mddev->private = NULL;
3025out:
3026 return -EIO;
3027}
3028
fd01b88c 3029static int stop(struct mddev *mddev)
1da177e4 3030{
e879a879 3031 struct r10conf *conf = mddev->private;
1da177e4 3032
409c57f3
N
3033 raise_barrier(conf, 0);
3034 lower_barrier(conf);
3035
01f96c0a 3036 md_unregister_thread(&mddev->thread);
1da177e4
LT
3037 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3038 if (conf->r10bio_pool)
3039 mempool_destroy(conf->r10bio_pool);
990a8baf 3040 kfree(conf->mirrors);
1da177e4
LT
3041 kfree(conf);
3042 mddev->private = NULL;
3043 return 0;
3044}
3045
fd01b88c 3046static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3047{
e879a879 3048 struct r10conf *conf = mddev->private;
6cce3b23
N
3049
3050 switch(state) {
3051 case 1:
3052 raise_barrier(conf, 0);
3053 break;
3054 case 0:
3055 lower_barrier(conf);
3056 break;
3057 }
6cce3b23 3058}
1da177e4 3059
fd01b88c 3060static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3061{
3cb03002 3062 struct md_rdev *rdev;
e879a879 3063 struct r10conf *conf;
dab8b292
TM
3064
3065 if (mddev->degraded > 0) {
128595ed
N
3066 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3067 mdname(mddev));
dab8b292
TM
3068 return ERR_PTR(-EINVAL);
3069 }
3070
dab8b292
TM
3071 /* Set new parameters */
3072 mddev->new_level = 10;
3073 /* new layout: far_copies = 1, near_copies = 2 */
3074 mddev->new_layout = (1<<8) + 2;
3075 mddev->new_chunk_sectors = mddev->chunk_sectors;
3076 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3077 mddev->raid_disks *= 2;
3078 /* make sure it will be not marked as dirty */
3079 mddev->recovery_cp = MaxSector;
3080
3081 conf = setup_conf(mddev);
02214dc5 3082 if (!IS_ERR(conf)) {
e93f68a1
N
3083 list_for_each_entry(rdev, &mddev->disks, same_set)
3084 if (rdev->raid_disk >= 0)
3085 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3086 conf->barrier = 1;
3087 }
3088
dab8b292
TM
3089 return conf;
3090}
3091
fd01b88c 3092static void *raid10_takeover(struct mddev *mddev)
dab8b292 3093{
e373ab10 3094 struct r0conf *raid0_conf;
dab8b292
TM
3095
3096 /* raid10 can take over:
3097 * raid0 - providing it has only two drives
3098 */
3099 if (mddev->level == 0) {
3100 /* for raid0 takeover only one zone is supported */
e373ab10
N
3101 raid0_conf = mddev->private;
3102 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3103 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3104 " with more than one zone.\n",
3105 mdname(mddev));
dab8b292
TM
3106 return ERR_PTR(-EINVAL);
3107 }
3108 return raid10_takeover_raid0(mddev);
3109 }
3110 return ERR_PTR(-EINVAL);
3111}
3112
84fc4b56 3113static struct md_personality raid10_personality =
1da177e4
LT
3114{
3115 .name = "raid10",
2604b703 3116 .level = 10,
1da177e4
LT
3117 .owner = THIS_MODULE,
3118 .make_request = make_request,
3119 .run = run,
3120 .stop = stop,
3121 .status = status,
3122 .error_handler = error,
3123 .hot_add_disk = raid10_add_disk,
3124 .hot_remove_disk= raid10_remove_disk,
3125 .spare_active = raid10_spare_active,
3126 .sync_request = sync_request,
6cce3b23 3127 .quiesce = raid10_quiesce,
80c3a6ce 3128 .size = raid10_size,
dab8b292 3129 .takeover = raid10_takeover,
1da177e4
LT
3130};
3131
3132static int __init raid_init(void)
3133{
2604b703 3134 return register_md_personality(&raid10_personality);
1da177e4
LT
3135}
3136
3137static void raid_exit(void)
3138{
2604b703 3139 unregister_md_personality(&raid10_personality);
1da177e4
LT
3140}
3141
3142module_init(raid_init);
3143module_exit(raid_exit);
3144MODULE_LICENSE("GPL");
0efb9e61 3145MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 3146MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 3147MODULE_ALIAS("md-raid10");
2604b703 3148MODULE_ALIAS("md-level-10");
34db0cd6
N
3149
3150module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);