]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/md/raid10.c
md/raid10: split out interpretation of layout to separate function.
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
43b2e5d8 27#include "md.h"
ef740c37 28#include "raid10.h"
dab8b292 29#include "raid0.h"
ef740c37 30#include "bitmap.h"
1da177e4
LT
31
32/*
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
c93983bf 39 * far_offset (stored in bit 16 of layout )
1da177e4
LT
40 *
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
c93983bf 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
1da177e4
LT
55 */
56
57/*
58 * Number of guaranteed r10bios in case of extreme VM load:
59 */
60#define NR_RAID10_BIOS 256
61
34db0cd6
N
62/* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
65 */
66static int max_queued_requests = 1024;
67
e879a879
N
68static void allow_barrier(struct r10conf *conf);
69static void lower_barrier(struct r10conf *conf);
fae8cc5e 70static int enough(struct r10conf *conf, int ignore);
0a27ec96 71
dd0fc66f 72static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 73{
e879a879 74 struct r10conf *conf = data;
9f2c9d12 75 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 76
69335ef3
N
77 /* allocate a r10bio with room for raid_disks entries in the
78 * bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r10bio_pool_free(void *r10_bio, void *data)
83{
84 kfree(r10_bio);
85}
86
0310fa21 87/* Maximum size of each resync request */
1da177e4 88#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
90/* amount of memory to reserve for resync requests */
91#define RESYNC_WINDOW (1024*1024)
92/* maximum number of concurrent requests, memory permitting */
93#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
94
95/*
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
100 *
101 */
dd0fc66f 102static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 103{
e879a879 104 struct r10conf *conf = data;
1da177e4 105 struct page *page;
9f2c9d12 106 struct r10bio *r10_bio;
1da177e4
LT
107 struct bio *bio;
108 int i, j;
109 int nalloc;
110
111 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 112 if (!r10_bio)
1da177e4 113 return NULL;
1da177e4
LT
114
115 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116 nalloc = conf->copies; /* resync */
117 else
118 nalloc = 2; /* recovery */
119
120 /*
121 * Allocate bios.
122 */
123 for (j = nalloc ; j-- ; ) {
6746557f 124 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
125 if (!bio)
126 goto out_free_bio;
127 r10_bio->devs[j].bio = bio;
69335ef3
N
128 if (!conf->have_replacement)
129 continue;
130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 if (!bio)
132 goto out_free_bio;
133 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
134 }
135 /*
136 * Allocate RESYNC_PAGES data pages and attach them
137 * where needed.
138 */
139 for (j = 0 ; j < nalloc; j++) {
69335ef3 140 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
141 bio = r10_bio->devs[j].bio;
142 for (i = 0; i < RESYNC_PAGES; i++) {
c65060ad
NK
143 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144 &conf->mddev->recovery)) {
145 /* we can share bv_page's during recovery */
146 struct bio *rbio = r10_bio->devs[0].bio;
147 page = rbio->bi_io_vec[i].bv_page;
148 get_page(page);
149 } else
150 page = alloc_page(gfp_flags);
1da177e4
LT
151 if (unlikely(!page))
152 goto out_free_pages;
153
154 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
155 if (rbio)
156 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
157 }
158 }
159
160 return r10_bio;
161
162out_free_pages:
163 for ( ; i > 0 ; i--)
1345b1d8 164 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
165 while (j--)
166 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 167 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
168 j = -1;
169out_free_bio:
69335ef3 170 while (++j < nalloc) {
1da177e4 171 bio_put(r10_bio->devs[j].bio);
69335ef3
N
172 if (r10_bio->devs[j].repl_bio)
173 bio_put(r10_bio->devs[j].repl_bio);
174 }
1da177e4
LT
175 r10bio_pool_free(r10_bio, conf);
176 return NULL;
177}
178
179static void r10buf_pool_free(void *__r10_bio, void *data)
180{
181 int i;
e879a879 182 struct r10conf *conf = data;
9f2c9d12 183 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
184 int j;
185
186 for (j=0; j < conf->copies; j++) {
187 struct bio *bio = r10bio->devs[j].bio;
188 if (bio) {
189 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 190 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
191 bio->bi_io_vec[i].bv_page = NULL;
192 }
193 bio_put(bio);
194 }
69335ef3
N
195 bio = r10bio->devs[j].repl_bio;
196 if (bio)
197 bio_put(bio);
1da177e4
LT
198 }
199 r10bio_pool_free(r10bio, conf);
200}
201
e879a879 202static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
203{
204 int i;
205
206 for (i = 0; i < conf->copies; i++) {
207 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 208 if (!BIO_SPECIAL(*bio))
1da177e4
LT
209 bio_put(*bio);
210 *bio = NULL;
69335ef3
N
211 bio = &r10_bio->devs[i].repl_bio;
212 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213 bio_put(*bio);
214 *bio = NULL;
1da177e4
LT
215 }
216}
217
9f2c9d12 218static void free_r10bio(struct r10bio *r10_bio)
1da177e4 219{
e879a879 220 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 221
1da177e4
LT
222 put_all_bios(conf, r10_bio);
223 mempool_free(r10_bio, conf->r10bio_pool);
224}
225
9f2c9d12 226static void put_buf(struct r10bio *r10_bio)
1da177e4 227{
e879a879 228 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
229
230 mempool_free(r10_bio, conf->r10buf_pool);
231
0a27ec96 232 lower_barrier(conf);
1da177e4
LT
233}
234
9f2c9d12 235static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
236{
237 unsigned long flags;
fd01b88c 238 struct mddev *mddev = r10_bio->mddev;
e879a879 239 struct r10conf *conf = mddev->private;
1da177e4
LT
240
241 spin_lock_irqsave(&conf->device_lock, flags);
242 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 243 conf->nr_queued ++;
1da177e4
LT
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245
388667be
AJ
246 /* wake up frozen array... */
247 wake_up(&conf->wait_barrier);
248
1da177e4
LT
249 md_wakeup_thread(mddev->thread);
250}
251
252/*
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
255 * cache layer.
256 */
9f2c9d12 257static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
258{
259 struct bio *bio = r10_bio->master_bio;
856e08e2 260 int done;
e879a879 261 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 262
856e08e2
N
263 if (bio->bi_phys_segments) {
264 unsigned long flags;
265 spin_lock_irqsave(&conf->device_lock, flags);
266 bio->bi_phys_segments--;
267 done = (bio->bi_phys_segments == 0);
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269 } else
270 done = 1;
271 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272 clear_bit(BIO_UPTODATE, &bio->bi_flags);
273 if (done) {
274 bio_endio(bio, 0);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf);
280 }
1da177e4
LT
281 free_r10bio(r10_bio);
282}
283
284/*
285 * Update disk head position estimator based on IRQ completion info.
286 */
9f2c9d12 287static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 288{
e879a879 289 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
290
291 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292 r10_bio->devs[slot].addr + (r10_bio->sectors);
293}
294
778ca018
NK
295/*
296 * Find the disk number which triggered given bio
297 */
e879a879 298static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 299 struct bio *bio, int *slotp, int *replp)
778ca018
NK
300{
301 int slot;
69335ef3 302 int repl = 0;
778ca018 303
69335ef3 304 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
305 if (r10_bio->devs[slot].bio == bio)
306 break;
69335ef3
N
307 if (r10_bio->devs[slot].repl_bio == bio) {
308 repl = 1;
309 break;
310 }
311 }
778ca018
NK
312
313 BUG_ON(slot == conf->copies);
314 update_head_pos(slot, r10_bio);
315
749c55e9
N
316 if (slotp)
317 *slotp = slot;
69335ef3
N
318 if (replp)
319 *replp = repl;
778ca018
NK
320 return r10_bio->devs[slot].devnum;
321}
322
6712ecf8 323static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
324{
325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 326 struct r10bio *r10_bio = bio->bi_private;
1da177e4 327 int slot, dev;
abbf098e 328 struct md_rdev *rdev;
e879a879 329 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 330
1da177e4
LT
331
332 slot = r10_bio->read_slot;
333 dev = r10_bio->devs[slot].devnum;
abbf098e 334 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
4443ae10
N
338 update_head_pos(slot, r10_bio);
339
340 if (uptodate) {
1da177e4
LT
341 /*
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
345 *
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
349 */
350 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
351 } else {
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
356 */
357 unsigned long flags;
358 spin_lock_irqsave(&conf->device_lock, flags);
359 if (!enough(conf, rdev->raid_disk))
360 uptodate = 1;
361 spin_unlock_irqrestore(&conf->device_lock, flags);
362 }
363 if (uptodate) {
1da177e4 364 raid_end_bio_io(r10_bio);
abbf098e 365 rdev_dec_pending(rdev, conf->mddev);
4443ae10 366 } else {
1da177e4 367 /*
7c4e06ff 368 * oops, read error - keep the refcount on the rdev
1da177e4
LT
369 */
370 char b[BDEVNAME_SIZE];
8bda470e
CD
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
373 mdname(conf->mddev),
abbf098e 374 bdevname(rdev->bdev, b),
8bda470e 375 (unsigned long long)r10_bio->sector);
856e08e2 376 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
377 reschedule_retry(r10_bio);
378 }
1da177e4
LT
379}
380
9f2c9d12 381static void close_write(struct r10bio *r10_bio)
bd870a16
N
382{
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385 r10_bio->sectors,
386 !test_bit(R10BIO_Degraded, &r10_bio->state),
387 0);
388 md_write_end(r10_bio->mddev);
389}
390
9f2c9d12 391static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
392{
393 if (atomic_dec_and_test(&r10_bio->remaining)) {
394 if (test_bit(R10BIO_WriteError, &r10_bio->state))
395 reschedule_retry(r10_bio);
396 else {
397 close_write(r10_bio);
398 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399 reschedule_retry(r10_bio);
400 else
401 raid_end_bio_io(r10_bio);
402 }
403 }
404}
405
6712ecf8 406static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
407{
408 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 409 struct r10bio *r10_bio = bio->bi_private;
778ca018 410 int dev;
749c55e9 411 int dec_rdev = 1;
e879a879 412 struct r10conf *conf = r10_bio->mddev->private;
475b0321 413 int slot, repl;
4ca40c2c 414 struct md_rdev *rdev = NULL;
1da177e4 415
475b0321 416 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 417
475b0321
N
418 if (repl)
419 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
420 if (!rdev) {
421 smp_rmb();
422 repl = 0;
475b0321 423 rdev = conf->mirrors[dev].rdev;
4ca40c2c 424 }
1da177e4
LT
425 /*
426 * this branch is our 'one mirror IO has finished' event handler:
427 */
6cce3b23 428 if (!uptodate) {
475b0321
N
429 if (repl)
430 /* Never record new bad blocks to replacement,
431 * just fail it.
432 */
433 md_error(rdev->mddev, rdev);
434 else {
435 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED,
438 &rdev->mddev->recovery);
475b0321
N
439 set_bit(R10BIO_WriteError, &r10_bio->state);
440 dec_rdev = 0;
441 }
749c55e9 442 } else {
1da177e4
LT
443 /*
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
447 *
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
451 */
749c55e9
N
452 sector_t first_bad;
453 int bad_sectors;
454
1da177e4
LT
455 set_bit(R10BIO_Uptodate, &r10_bio->state);
456
749c55e9 457 /* Maybe we can clear some bad blocks. */
475b0321 458 if (is_badblock(rdev,
749c55e9
N
459 r10_bio->devs[slot].addr,
460 r10_bio->sectors,
461 &first_bad, &bad_sectors)) {
462 bio_put(bio);
475b0321
N
463 if (repl)
464 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
465 else
466 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
467 dec_rdev = 0;
468 set_bit(R10BIO_MadeGood, &r10_bio->state);
469 }
470 }
471
1da177e4
LT
472 /*
473 *
474 * Let's see if all mirrored write operations have finished
475 * already.
476 */
19d5f834 477 one_write_done(r10_bio);
749c55e9
N
478 if (dec_rdev)
479 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
480}
481
1da177e4
LT
482/*
483 * RAID10 layout manager
25985edc 484 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
485 * parameters: near_copies and far_copies.
486 * near_copies * far_copies must be <= raid_disks.
487 * Normally one of these will be 1.
488 * If both are 1, we get raid0.
489 * If near_copies == raid_disks, we get raid1.
490 *
25985edc 491 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
492 * first chunk, followed by near_copies copies of the next chunk and
493 * so on.
494 * If far_copies > 1, then after 1/far_copies of the array has been assigned
495 * as described above, we start again with a device offset of near_copies.
496 * So we effectively have another copy of the whole array further down all
497 * the drives, but with blocks on different drives.
498 * With this layout, and block is never stored twice on the one device.
499 *
500 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 501 * on each device that it is on.
1da177e4
LT
502 *
503 * raid10_find_virt does the reverse mapping, from a device and a
504 * sector offset to a virtual address
505 */
506
f8c9e74f 507static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
508{
509 int n,f;
510 sector_t sector;
511 sector_t chunk;
512 sector_t stripe;
513 int dev;
1da177e4
LT
514 int slot = 0;
515
516 /* now calculate first sector/dev */
5cf00fcd
N
517 chunk = r10bio->sector >> geo->chunk_shift;
518 sector = r10bio->sector & geo->chunk_mask;
1da177e4 519
5cf00fcd 520 chunk *= geo->near_copies;
1da177e4 521 stripe = chunk;
5cf00fcd
N
522 dev = sector_div(stripe, geo->raid_disks);
523 if (geo->far_offset)
524 stripe *= geo->far_copies;
1da177e4 525
5cf00fcd 526 sector += stripe << geo->chunk_shift;
1da177e4
LT
527
528 /* and calculate all the others */
5cf00fcd 529 for (n = 0; n < geo->near_copies; n++) {
1da177e4
LT
530 int d = dev;
531 sector_t s = sector;
532 r10bio->devs[slot].addr = sector;
533 r10bio->devs[slot].devnum = d;
534 slot++;
535
5cf00fcd
N
536 for (f = 1; f < geo->far_copies; f++) {
537 d += geo->near_copies;
538 if (d >= geo->raid_disks)
539 d -= geo->raid_disks;
540 s += geo->stride;
1da177e4
LT
541 r10bio->devs[slot].devnum = d;
542 r10bio->devs[slot].addr = s;
543 slot++;
544 }
545 dev++;
5cf00fcd 546 if (dev >= geo->raid_disks) {
1da177e4 547 dev = 0;
5cf00fcd 548 sector += (geo->chunk_mask + 1);
1da177e4
LT
549 }
550 }
f8c9e74f
N
551}
552
553static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
554{
555 struct geom *geo = &conf->geo;
556
557 if (conf->reshape_progress != MaxSector &&
558 ((r10bio->sector >= conf->reshape_progress) !=
559 conf->mddev->reshape_backwards)) {
560 set_bit(R10BIO_Previous, &r10bio->state);
561 geo = &conf->prev;
562 } else
563 clear_bit(R10BIO_Previous, &r10bio->state);
564
565 __raid10_find_phys(geo, r10bio);
1da177e4
LT
566}
567
e879a879 568static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
569{
570 sector_t offset, chunk, vchunk;
f8c9e74f
N
571 /* Never use conf->prev as this is only called during resync
572 * or recovery, so reshape isn't happening
573 */
5cf00fcd 574 struct geom *geo = &conf->geo;
1da177e4 575
5cf00fcd
N
576 offset = sector & geo->chunk_mask;
577 if (geo->far_offset) {
c93983bf 578 int fc;
5cf00fcd
N
579 chunk = sector >> geo->chunk_shift;
580 fc = sector_div(chunk, geo->far_copies);
581 dev -= fc * geo->near_copies;
c93983bf 582 if (dev < 0)
5cf00fcd 583 dev += geo->raid_disks;
c93983bf 584 } else {
5cf00fcd
N
585 while (sector >= geo->stride) {
586 sector -= geo->stride;
587 if (dev < geo->near_copies)
588 dev += geo->raid_disks - geo->near_copies;
c93983bf 589 else
5cf00fcd 590 dev -= geo->near_copies;
c93983bf 591 }
5cf00fcd 592 chunk = sector >> geo->chunk_shift;
c93983bf 593 }
5cf00fcd
N
594 vchunk = chunk * geo->raid_disks + dev;
595 sector_div(vchunk, geo->near_copies);
596 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
597}
598
599/**
600 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
601 * @q: request queue
cc371e66 602 * @bvm: properties of new bio
1da177e4
LT
603 * @biovec: the request that could be merged to it.
604 *
605 * Return amount of bytes we can accept at this offset
050b6615
N
606 * This requires checking for end-of-chunk if near_copies != raid_disks,
607 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 608 */
cc371e66
AK
609static int raid10_mergeable_bvec(struct request_queue *q,
610 struct bvec_merge_data *bvm,
611 struct bio_vec *biovec)
1da177e4 612{
fd01b88c 613 struct mddev *mddev = q->queuedata;
050b6615 614 struct r10conf *conf = mddev->private;
cc371e66 615 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 616 int max;
9d8f0363 617 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 618 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 619 struct geom *geo = &conf->geo;
1da177e4 620
f8c9e74f
N
621 if (conf->reshape_progress != MaxSector &&
622 ((sector >= conf->reshape_progress) !=
623 conf->mddev->reshape_backwards))
624 geo = &conf->prev;
625
5cf00fcd 626 if (geo->near_copies < geo->raid_disks) {
050b6615
N
627 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
628 + bio_sectors)) << 9;
629 if (max < 0)
630 /* bio_add cannot handle a negative return */
631 max = 0;
632 if (max <= biovec->bv_len && bio_sectors == 0)
633 return biovec->bv_len;
634 } else
635 max = biovec->bv_len;
636
637 if (mddev->merge_check_needed) {
638 struct r10bio r10_bio;
639 int s;
f8c9e74f
N
640 if (conf->reshape_progress != MaxSector) {
641 /* Cannot give any guidance during reshape */
642 if (max <= biovec->bv_len && bio_sectors == 0)
643 return biovec->bv_len;
644 return 0;
645 }
050b6615
N
646 r10_bio.sector = sector;
647 raid10_find_phys(conf, &r10_bio);
648 rcu_read_lock();
649 for (s = 0; s < conf->copies; s++) {
650 int disk = r10_bio.devs[s].devnum;
651 struct md_rdev *rdev = rcu_dereference(
652 conf->mirrors[disk].rdev);
653 if (rdev && !test_bit(Faulty, &rdev->flags)) {
654 struct request_queue *q =
655 bdev_get_queue(rdev->bdev);
656 if (q->merge_bvec_fn) {
657 bvm->bi_sector = r10_bio.devs[s].addr
658 + rdev->data_offset;
659 bvm->bi_bdev = rdev->bdev;
660 max = min(max, q->merge_bvec_fn(
661 q, bvm, biovec));
662 }
663 }
664 rdev = rcu_dereference(conf->mirrors[disk].replacement);
665 if (rdev && !test_bit(Faulty, &rdev->flags)) {
666 struct request_queue *q =
667 bdev_get_queue(rdev->bdev);
668 if (q->merge_bvec_fn) {
669 bvm->bi_sector = r10_bio.devs[s].addr
670 + rdev->data_offset;
671 bvm->bi_bdev = rdev->bdev;
672 max = min(max, q->merge_bvec_fn(
673 q, bvm, biovec));
674 }
675 }
676 }
677 rcu_read_unlock();
678 }
679 return max;
1da177e4
LT
680}
681
682/*
683 * This routine returns the disk from which the requested read should
684 * be done. There is a per-array 'next expected sequential IO' sector
685 * number - if this matches on the next IO then we use the last disk.
686 * There is also a per-disk 'last know head position' sector that is
687 * maintained from IRQ contexts, both the normal and the resync IO
688 * completion handlers update this position correctly. If there is no
689 * perfect sequential match then we pick the disk whose head is closest.
690 *
691 * If there are 2 mirrors in the same 2 devices, performance degrades
692 * because position is mirror, not device based.
693 *
694 * The rdev for the device selected will have nr_pending incremented.
695 */
696
697/*
698 * FIXME: possibly should rethink readbalancing and do it differently
699 * depending on near_copies / far_copies geometry.
700 */
96c3fd1f
N
701static struct md_rdev *read_balance(struct r10conf *conf,
702 struct r10bio *r10_bio,
703 int *max_sectors)
1da177e4 704{
af3a2cd6 705 const sector_t this_sector = r10_bio->sector;
56d99121 706 int disk, slot;
856e08e2
N
707 int sectors = r10_bio->sectors;
708 int best_good_sectors;
56d99121 709 sector_t new_distance, best_dist;
abbf098e 710 struct md_rdev *rdev, *best_rdev;
56d99121
N
711 int do_balance;
712 int best_slot;
5cf00fcd 713 struct geom *geo = &conf->geo;
1da177e4
LT
714
715 raid10_find_phys(conf, r10_bio);
716 rcu_read_lock();
56d99121 717retry:
856e08e2 718 sectors = r10_bio->sectors;
56d99121 719 best_slot = -1;
abbf098e 720 best_rdev = NULL;
56d99121 721 best_dist = MaxSector;
856e08e2 722 best_good_sectors = 0;
56d99121 723 do_balance = 1;
1da177e4
LT
724 /*
725 * Check if we can balance. We can balance on the whole
6cce3b23
N
726 * device if no resync is going on (recovery is ok), or below
727 * the resync window. We take the first readable disk when
728 * above the resync window.
1da177e4
LT
729 */
730 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
731 && (this_sector + sectors >= conf->next_resync))
732 do_balance = 0;
1da177e4 733
56d99121 734 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
735 sector_t first_bad;
736 int bad_sectors;
737 sector_t dev_sector;
738
56d99121
N
739 if (r10_bio->devs[slot].bio == IO_BLOCKED)
740 continue;
1da177e4 741 disk = r10_bio->devs[slot].devnum;
abbf098e
N
742 rdev = rcu_dereference(conf->mirrors[disk].replacement);
743 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 744 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
745 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
746 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
747 if (rdev == NULL ||
748 test_bit(Faulty, &rdev->flags) ||
749 test_bit(Unmerged, &rdev->flags))
abbf098e
N
750 continue;
751 if (!test_bit(In_sync, &rdev->flags) &&
752 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
753 continue;
754
856e08e2
N
755 dev_sector = r10_bio->devs[slot].addr;
756 if (is_badblock(rdev, dev_sector, sectors,
757 &first_bad, &bad_sectors)) {
758 if (best_dist < MaxSector)
759 /* Already have a better slot */
760 continue;
761 if (first_bad <= dev_sector) {
762 /* Cannot read here. If this is the
763 * 'primary' device, then we must not read
764 * beyond 'bad_sectors' from another device.
765 */
766 bad_sectors -= (dev_sector - first_bad);
767 if (!do_balance && sectors > bad_sectors)
768 sectors = bad_sectors;
769 if (best_good_sectors > sectors)
770 best_good_sectors = sectors;
771 } else {
772 sector_t good_sectors =
773 first_bad - dev_sector;
774 if (good_sectors > best_good_sectors) {
775 best_good_sectors = good_sectors;
776 best_slot = slot;
abbf098e 777 best_rdev = rdev;
856e08e2
N
778 }
779 if (!do_balance)
780 /* Must read from here */
781 break;
782 }
783 continue;
784 } else
785 best_good_sectors = sectors;
786
56d99121
N
787 if (!do_balance)
788 break;
1da177e4 789
22dfdf52
N
790 /* This optimisation is debatable, and completely destroys
791 * sequential read speed for 'far copies' arrays. So only
792 * keep it for 'near' arrays, and review those later.
793 */
5cf00fcd 794 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 795 break;
8ed3a195
KS
796
797 /* for far > 1 always use the lowest address */
5cf00fcd 798 if (geo->far_copies > 1)
56d99121 799 new_distance = r10_bio->devs[slot].addr;
8ed3a195 800 else
56d99121
N
801 new_distance = abs(r10_bio->devs[slot].addr -
802 conf->mirrors[disk].head_position);
803 if (new_distance < best_dist) {
804 best_dist = new_distance;
805 best_slot = slot;
abbf098e 806 best_rdev = rdev;
1da177e4
LT
807 }
808 }
abbf098e 809 if (slot >= conf->copies) {
56d99121 810 slot = best_slot;
abbf098e
N
811 rdev = best_rdev;
812 }
1da177e4 813
56d99121 814 if (slot >= 0) {
56d99121
N
815 atomic_inc(&rdev->nr_pending);
816 if (test_bit(Faulty, &rdev->flags)) {
817 /* Cannot risk returning a device that failed
818 * before we inc'ed nr_pending
819 */
820 rdev_dec_pending(rdev, conf->mddev);
821 goto retry;
822 }
823 r10_bio->read_slot = slot;
824 } else
96c3fd1f 825 rdev = NULL;
1da177e4 826 rcu_read_unlock();
856e08e2 827 *max_sectors = best_good_sectors;
1da177e4 828
96c3fd1f 829 return rdev;
1da177e4
LT
830}
831
0d129228
N
832static int raid10_congested(void *data, int bits)
833{
fd01b88c 834 struct mddev *mddev = data;
e879a879 835 struct r10conf *conf = mddev->private;
0d129228
N
836 int i, ret = 0;
837
34db0cd6
N
838 if ((bits & (1 << BDI_async_congested)) &&
839 conf->pending_count >= max_queued_requests)
840 return 1;
841
3fa841d7
N
842 if (mddev_congested(mddev, bits))
843 return 1;
0d129228 844 rcu_read_lock();
f8c9e74f
N
845 for (i = 0;
846 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
847 && ret == 0;
848 i++) {
3cb03002 849 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 850 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 851 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
852
853 ret |= bdi_congested(&q->backing_dev_info, bits);
854 }
855 }
856 rcu_read_unlock();
857 return ret;
858}
859
e879a879 860static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
861{
862 /* Any writes that have been queued but are awaiting
863 * bitmap updates get flushed here.
a35e63ef 864 */
a35e63ef
N
865 spin_lock_irq(&conf->device_lock);
866
867 if (conf->pending_bio_list.head) {
868 struct bio *bio;
869 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 870 conf->pending_count = 0;
a35e63ef
N
871 spin_unlock_irq(&conf->device_lock);
872 /* flush any pending bitmap writes to disk
873 * before proceeding w/ I/O */
874 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 875 wake_up(&conf->wait_barrier);
a35e63ef
N
876
877 while (bio) { /* submit pending writes */
878 struct bio *next = bio->bi_next;
879 bio->bi_next = NULL;
880 generic_make_request(bio);
881 bio = next;
882 }
a35e63ef
N
883 } else
884 spin_unlock_irq(&conf->device_lock);
a35e63ef 885}
7eaceacc 886
0a27ec96
N
887/* Barriers....
888 * Sometimes we need to suspend IO while we do something else,
889 * either some resync/recovery, or reconfigure the array.
890 * To do this we raise a 'barrier'.
891 * The 'barrier' is a counter that can be raised multiple times
892 * to count how many activities are happening which preclude
893 * normal IO.
894 * We can only raise the barrier if there is no pending IO.
895 * i.e. if nr_pending == 0.
896 * We choose only to raise the barrier if no-one is waiting for the
897 * barrier to go down. This means that as soon as an IO request
898 * is ready, no other operations which require a barrier will start
899 * until the IO request has had a chance.
900 *
901 * So: regular IO calls 'wait_barrier'. When that returns there
902 * is no backgroup IO happening, It must arrange to call
903 * allow_barrier when it has finished its IO.
904 * backgroup IO calls must call raise_barrier. Once that returns
905 * there is no normal IO happeing. It must arrange to call
906 * lower_barrier when the particular background IO completes.
1da177e4 907 */
1da177e4 908
e879a879 909static void raise_barrier(struct r10conf *conf, int force)
1da177e4 910{
6cce3b23 911 BUG_ON(force && !conf->barrier);
1da177e4 912 spin_lock_irq(&conf->resync_lock);
0a27ec96 913
6cce3b23
N
914 /* Wait until no block IO is waiting (unless 'force') */
915 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 916 conf->resync_lock, );
0a27ec96
N
917
918 /* block any new IO from starting */
919 conf->barrier++;
920
c3b328ac 921 /* Now wait for all pending IO to complete */
0a27ec96
N
922 wait_event_lock_irq(conf->wait_barrier,
923 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 924 conf->resync_lock, );
0a27ec96
N
925
926 spin_unlock_irq(&conf->resync_lock);
927}
928
e879a879 929static void lower_barrier(struct r10conf *conf)
0a27ec96
N
930{
931 unsigned long flags;
932 spin_lock_irqsave(&conf->resync_lock, flags);
933 conf->barrier--;
934 spin_unlock_irqrestore(&conf->resync_lock, flags);
935 wake_up(&conf->wait_barrier);
936}
937
e879a879 938static void wait_barrier(struct r10conf *conf)
0a27ec96
N
939{
940 spin_lock_irq(&conf->resync_lock);
941 if (conf->barrier) {
942 conf->nr_waiting++;
d6b42dcb
N
943 /* Wait for the barrier to drop.
944 * However if there are already pending
945 * requests (preventing the barrier from
946 * rising completely), and the
947 * pre-process bio queue isn't empty,
948 * then don't wait, as we need to empty
949 * that queue to get the nr_pending
950 * count down.
951 */
952 wait_event_lock_irq(conf->wait_barrier,
953 !conf->barrier ||
954 (conf->nr_pending &&
955 current->bio_list &&
956 !bio_list_empty(current->bio_list)),
0a27ec96 957 conf->resync_lock,
d6b42dcb 958 );
0a27ec96 959 conf->nr_waiting--;
1da177e4 960 }
0a27ec96 961 conf->nr_pending++;
1da177e4
LT
962 spin_unlock_irq(&conf->resync_lock);
963}
964
e879a879 965static void allow_barrier(struct r10conf *conf)
0a27ec96
N
966{
967 unsigned long flags;
968 spin_lock_irqsave(&conf->resync_lock, flags);
969 conf->nr_pending--;
970 spin_unlock_irqrestore(&conf->resync_lock, flags);
971 wake_up(&conf->wait_barrier);
972}
973
e879a879 974static void freeze_array(struct r10conf *conf)
4443ae10
N
975{
976 /* stop syncio and normal IO and wait for everything to
f188593e 977 * go quiet.
4443ae10 978 * We increment barrier and nr_waiting, and then
1c830532
N
979 * wait until nr_pending match nr_queued+1
980 * This is called in the context of one normal IO request
981 * that has failed. Thus any sync request that might be pending
982 * will be blocked by nr_pending, and we need to wait for
983 * pending IO requests to complete or be queued for re-try.
984 * Thus the number queued (nr_queued) plus this request (1)
985 * must match the number of pending IOs (nr_pending) before
986 * we continue.
4443ae10
N
987 */
988 spin_lock_irq(&conf->resync_lock);
989 conf->barrier++;
990 conf->nr_waiting++;
991 wait_event_lock_irq(conf->wait_barrier,
1c830532 992 conf->nr_pending == conf->nr_queued+1,
4443ae10 993 conf->resync_lock,
c3b328ac
N
994 flush_pending_writes(conf));
995
4443ae10
N
996 spin_unlock_irq(&conf->resync_lock);
997}
998
e879a879 999static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1000{
1001 /* reverse the effect of the freeze */
1002 spin_lock_irq(&conf->resync_lock);
1003 conf->barrier--;
1004 conf->nr_waiting--;
1005 wake_up(&conf->wait_barrier);
1006 spin_unlock_irq(&conf->resync_lock);
1007}
1008
f8c9e74f
N
1009static sector_t choose_data_offset(struct r10bio *r10_bio,
1010 struct md_rdev *rdev)
1011{
1012 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1013 test_bit(R10BIO_Previous, &r10_bio->state))
1014 return rdev->data_offset;
1015 else
1016 return rdev->new_data_offset;
1017}
1018
b4fdcb02 1019static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1020{
e879a879 1021 struct r10conf *conf = mddev->private;
9f2c9d12 1022 struct r10bio *r10_bio;
1da177e4
LT
1023 struct bio *read_bio;
1024 int i;
f8c9e74f 1025 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1026 int chunk_sects = chunk_mask + 1;
a362357b 1027 const int rw = bio_data_dir(bio);
2c7d46ec 1028 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1029 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 1030 unsigned long flags;
3cb03002 1031 struct md_rdev *blocked_rdev;
c3b328ac 1032 int plugged;
d4432c23
N
1033 int sectors_handled;
1034 int max_sectors;
1da177e4 1035
e9c7469b
TH
1036 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1037 md_flush_request(mddev, bio);
5a7bbad2 1038 return;
e5dcdd80
N
1039 }
1040
1da177e4
LT
1041 /* If this request crosses a chunk boundary, we need to
1042 * split it. This will only happen for 1 PAGE (or less) requests.
1043 */
5cf00fcd
N
1044 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1045 > chunk_sects
f8c9e74f
N
1046 && (conf->geo.near_copies < conf->geo.raid_disks
1047 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1048 struct bio_pair *bp;
1049 /* Sanity check -- queue functions should prevent this happening */
1050 if (bio->bi_vcnt != 1 ||
1051 bio->bi_idx != 0)
1052 goto bad_map;
1053 /* This is a one page bio that upper layers
1054 * refuse to split for us, so we need to split it.
1055 */
6feef531 1056 bp = bio_split(bio,
1da177e4 1057 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1058
1059 /* Each of these 'make_request' calls will call 'wait_barrier'.
1060 * If the first succeeds but the second blocks due to the resync
1061 * thread raising the barrier, we will deadlock because the
1062 * IO to the underlying device will be queued in generic_make_request
1063 * and will never complete, so will never reduce nr_pending.
1064 * So increment nr_waiting here so no new raise_barriers will
1065 * succeed, and so the second wait_barrier cannot block.
1066 */
1067 spin_lock_irq(&conf->resync_lock);
1068 conf->nr_waiting++;
1069 spin_unlock_irq(&conf->resync_lock);
1070
5a7bbad2
CH
1071 make_request(mddev, &bp->bio1);
1072 make_request(mddev, &bp->bio2);
1da177e4 1073
51e9ac77
N
1074 spin_lock_irq(&conf->resync_lock);
1075 conf->nr_waiting--;
1076 wake_up(&conf->wait_barrier);
1077 spin_unlock_irq(&conf->resync_lock);
1078
1da177e4 1079 bio_pair_release(bp);
5a7bbad2 1080 return;
1da177e4 1081 bad_map:
128595ed
N
1082 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1083 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
1084 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1085
6712ecf8 1086 bio_io_error(bio);
5a7bbad2 1087 return;
1da177e4
LT
1088 }
1089
3d310eb7 1090 md_write_start(mddev, bio);
06d91a5f 1091
1da177e4
LT
1092 /*
1093 * Register the new request and wait if the reconstruction
1094 * thread has put up a bar for new requests.
1095 * Continue immediately if no resync is active currently.
1096 */
0a27ec96 1097 wait_barrier(conf);
1da177e4 1098
1da177e4
LT
1099 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1100
1101 r10_bio->master_bio = bio;
1102 r10_bio->sectors = bio->bi_size >> 9;
1103
1104 r10_bio->mddev = mddev;
1105 r10_bio->sector = bio->bi_sector;
6cce3b23 1106 r10_bio->state = 0;
1da177e4 1107
856e08e2
N
1108 /* We might need to issue multiple reads to different
1109 * devices if there are bad blocks around, so we keep
1110 * track of the number of reads in bio->bi_phys_segments.
1111 * If this is 0, there is only one r10_bio and no locking
1112 * will be needed when the request completes. If it is
1113 * non-zero, then it is the number of not-completed requests.
1114 */
1115 bio->bi_phys_segments = 0;
1116 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1117
a362357b 1118 if (rw == READ) {
1da177e4
LT
1119 /*
1120 * read balancing logic:
1121 */
96c3fd1f 1122 struct md_rdev *rdev;
856e08e2
N
1123 int slot;
1124
1125read_again:
96c3fd1f
N
1126 rdev = read_balance(conf, r10_bio, &max_sectors);
1127 if (!rdev) {
1da177e4 1128 raid_end_bio_io(r10_bio);
5a7bbad2 1129 return;
1da177e4 1130 }
96c3fd1f 1131 slot = r10_bio->read_slot;
1da177e4 1132
a167f663 1133 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1134 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1135 max_sectors);
1da177e4
LT
1136
1137 r10_bio->devs[slot].bio = read_bio;
abbf098e 1138 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1139
1140 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1141 choose_data_offset(r10_bio, rdev);
96c3fd1f 1142 read_bio->bi_bdev = rdev->bdev;
1da177e4 1143 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1144 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1145 read_bio->bi_private = r10_bio;
1146
856e08e2
N
1147 if (max_sectors < r10_bio->sectors) {
1148 /* Could not read all from this device, so we will
1149 * need another r10_bio.
1150 */
856e08e2
N
1151 sectors_handled = (r10_bio->sectors + max_sectors
1152 - bio->bi_sector);
1153 r10_bio->sectors = max_sectors;
1154 spin_lock_irq(&conf->device_lock);
1155 if (bio->bi_phys_segments == 0)
1156 bio->bi_phys_segments = 2;
1157 else
1158 bio->bi_phys_segments++;
1159 spin_unlock(&conf->device_lock);
1160 /* Cannot call generic_make_request directly
1161 * as that will be queued in __generic_make_request
1162 * and subsequent mempool_alloc might block
1163 * waiting for it. so hand bio over to raid10d.
1164 */
1165 reschedule_retry(r10_bio);
1166
1167 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1168
1169 r10_bio->master_bio = bio;
1170 r10_bio->sectors = ((bio->bi_size >> 9)
1171 - sectors_handled);
1172 r10_bio->state = 0;
1173 r10_bio->mddev = mddev;
1174 r10_bio->sector = bio->bi_sector + sectors_handled;
1175 goto read_again;
1176 } else
1177 generic_make_request(read_bio);
5a7bbad2 1178 return;
1da177e4
LT
1179 }
1180
1181 /*
1182 * WRITE:
1183 */
34db0cd6
N
1184 if (conf->pending_count >= max_queued_requests) {
1185 md_wakeup_thread(mddev->thread);
1186 wait_event(conf->wait_barrier,
1187 conf->pending_count < max_queued_requests);
1188 }
6bfe0b49 1189 /* first select target devices under rcu_lock and
1da177e4
LT
1190 * inc refcount on their rdev. Record them by setting
1191 * bios[x] to bio
d4432c23
N
1192 * If there are known/acknowledged bad blocks on any device
1193 * on which we have seen a write error, we want to avoid
1194 * writing to those blocks. This potentially requires several
1195 * writes to write around the bad blocks. Each set of writes
1196 * gets its own r10_bio with a set of bios attached. The number
1197 * of r10_bios is recored in bio->bi_phys_segments just as with
1198 * the read case.
1da177e4 1199 */
c3b328ac
N
1200 plugged = mddev_check_plugged(mddev);
1201
69335ef3 1202 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1203 raid10_find_phys(conf, r10_bio);
d4432c23 1204retry_write:
cb6969e8 1205 blocked_rdev = NULL;
1da177e4 1206 rcu_read_lock();
d4432c23
N
1207 max_sectors = r10_bio->sectors;
1208
1da177e4
LT
1209 for (i = 0; i < conf->copies; i++) {
1210 int d = r10_bio->devs[i].devnum;
3cb03002 1211 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1212 struct md_rdev *rrdev = rcu_dereference(
1213 conf->mirrors[d].replacement);
4ca40c2c
N
1214 if (rdev == rrdev)
1215 rrdev = NULL;
6bfe0b49
DW
1216 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1217 atomic_inc(&rdev->nr_pending);
1218 blocked_rdev = rdev;
1219 break;
1220 }
475b0321
N
1221 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1222 atomic_inc(&rrdev->nr_pending);
1223 blocked_rdev = rrdev;
1224 break;
1225 }
050b6615
N
1226 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1227 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1228 rrdev = NULL;
1229
d4432c23 1230 r10_bio->devs[i].bio = NULL;
475b0321 1231 r10_bio->devs[i].repl_bio = NULL;
050b6615
N
1232 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1233 test_bit(Unmerged, &rdev->flags)) {
6cce3b23 1234 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1235 continue;
1236 }
1237 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1238 sector_t first_bad;
1239 sector_t dev_sector = r10_bio->devs[i].addr;
1240 int bad_sectors;
1241 int is_bad;
1242
1243 is_bad = is_badblock(rdev, dev_sector,
1244 max_sectors,
1245 &first_bad, &bad_sectors);
1246 if (is_bad < 0) {
1247 /* Mustn't write here until the bad block
1248 * is acknowledged
1249 */
1250 atomic_inc(&rdev->nr_pending);
1251 set_bit(BlockedBadBlocks, &rdev->flags);
1252 blocked_rdev = rdev;
1253 break;
1254 }
1255 if (is_bad && first_bad <= dev_sector) {
1256 /* Cannot write here at all */
1257 bad_sectors -= (dev_sector - first_bad);
1258 if (bad_sectors < max_sectors)
1259 /* Mustn't write more than bad_sectors
1260 * to other devices yet
1261 */
1262 max_sectors = bad_sectors;
1263 /* We don't set R10BIO_Degraded as that
1264 * only applies if the disk is missing,
1265 * so it might be re-added, and we want to
1266 * know to recover this chunk.
1267 * In this case the device is here, and the
1268 * fact that this chunk is not in-sync is
1269 * recorded in the bad block log.
1270 */
1271 continue;
1272 }
1273 if (is_bad) {
1274 int good_sectors = first_bad - dev_sector;
1275 if (good_sectors < max_sectors)
1276 max_sectors = good_sectors;
1277 }
6cce3b23 1278 }
d4432c23
N
1279 r10_bio->devs[i].bio = bio;
1280 atomic_inc(&rdev->nr_pending);
475b0321
N
1281 if (rrdev) {
1282 r10_bio->devs[i].repl_bio = bio;
1283 atomic_inc(&rrdev->nr_pending);
1284 }
1da177e4
LT
1285 }
1286 rcu_read_unlock();
1287
6bfe0b49
DW
1288 if (unlikely(blocked_rdev)) {
1289 /* Have to wait for this device to get unblocked, then retry */
1290 int j;
1291 int d;
1292
475b0321 1293 for (j = 0; j < i; j++) {
6bfe0b49
DW
1294 if (r10_bio->devs[j].bio) {
1295 d = r10_bio->devs[j].devnum;
1296 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1297 }
475b0321 1298 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1299 struct md_rdev *rdev;
475b0321 1300 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1301 rdev = conf->mirrors[d].replacement;
1302 if (!rdev) {
1303 /* Race with remove_disk */
1304 smp_mb();
1305 rdev = conf->mirrors[d].rdev;
1306 }
1307 rdev_dec_pending(rdev, mddev);
475b0321
N
1308 }
1309 }
6bfe0b49
DW
1310 allow_barrier(conf);
1311 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1312 wait_barrier(conf);
1313 goto retry_write;
1314 }
1315
d4432c23
N
1316 if (max_sectors < r10_bio->sectors) {
1317 /* We are splitting this into multiple parts, so
1318 * we need to prepare for allocating another r10_bio.
1319 */
1320 r10_bio->sectors = max_sectors;
1321 spin_lock_irq(&conf->device_lock);
1322 if (bio->bi_phys_segments == 0)
1323 bio->bi_phys_segments = 2;
1324 else
1325 bio->bi_phys_segments++;
1326 spin_unlock_irq(&conf->device_lock);
1327 }
1328 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1329
4e78064f 1330 atomic_set(&r10_bio->remaining, 1);
d4432c23 1331 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1332
1da177e4
LT
1333 for (i = 0; i < conf->copies; i++) {
1334 struct bio *mbio;
1335 int d = r10_bio->devs[i].devnum;
1336 if (!r10_bio->devs[i].bio)
1337 continue;
1338
a167f663 1339 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1340 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1341 max_sectors);
1da177e4
LT
1342 r10_bio->devs[i].bio = mbio;
1343
d4432c23 1344 mbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f
N
1345 choose_data_offset(r10_bio,
1346 conf->mirrors[d].rdev));
1da177e4
LT
1347 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1348 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1349 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1350 mbio->bi_private = r10_bio;
1351
1352 atomic_inc(&r10_bio->remaining);
4e78064f
N
1353 spin_lock_irqsave(&conf->device_lock, flags);
1354 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1355 conf->pending_count++;
4e78064f 1356 spin_unlock_irqrestore(&conf->device_lock, flags);
475b0321
N
1357
1358 if (!r10_bio->devs[i].repl_bio)
1359 continue;
1360
1361 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1362 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1363 max_sectors);
1364 r10_bio->devs[i].repl_bio = mbio;
1365
4ca40c2c
N
1366 /* We are actively writing to the original device
1367 * so it cannot disappear, so the replacement cannot
1368 * become NULL here
1369 */
f8c9e74f
N
1370 mbio->bi_sector = (r10_bio->devs[i].addr +
1371 choose_data_offset(
1372 r10_bio,
1373 conf->mirrors[d].replacement));
475b0321
N
1374 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1375 mbio->bi_end_io = raid10_end_write_request;
1376 mbio->bi_rw = WRITE | do_sync | do_fua;
1377 mbio->bi_private = r10_bio;
1378
1379 atomic_inc(&r10_bio->remaining);
1380 spin_lock_irqsave(&conf->device_lock, flags);
1381 bio_list_add(&conf->pending_bio_list, mbio);
1382 conf->pending_count++;
1383 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1384 }
1385
079fa166
N
1386 /* Don't remove the bias on 'remaining' (one_write_done) until
1387 * after checking if we need to go around again.
1388 */
a35e63ef 1389
d4432c23 1390 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1391 one_write_done(r10_bio);
5e570289 1392 /* We need another r10_bio. It has already been counted
d4432c23
N
1393 * in bio->bi_phys_segments.
1394 */
1395 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1396
1397 r10_bio->master_bio = bio;
1398 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1399
1400 r10_bio->mddev = mddev;
1401 r10_bio->sector = bio->bi_sector + sectors_handled;
1402 r10_bio->state = 0;
1403 goto retry_write;
1404 }
079fa166
N
1405 one_write_done(r10_bio);
1406
1407 /* In case raid10d snuck in to freeze_array */
1408 wake_up(&conf->wait_barrier);
d4432c23 1409
c3b328ac 1410 if (do_sync || !mddev->bitmap || !plugged)
e3881a68 1411 md_wakeup_thread(mddev->thread);
1da177e4
LT
1412}
1413
fd01b88c 1414static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1415{
e879a879 1416 struct r10conf *conf = mddev->private;
1da177e4
LT
1417 int i;
1418
5cf00fcd 1419 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1420 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1421 if (conf->geo.near_copies > 1)
1422 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1423 if (conf->geo.far_copies > 1) {
1424 if (conf->geo.far_offset)
1425 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1426 else
5cf00fcd 1427 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1428 }
5cf00fcd
N
1429 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1430 conf->geo.raid_disks - mddev->degraded);
1431 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1432 seq_printf(seq, "%s",
1433 conf->mirrors[i].rdev &&
b2d444d7 1434 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1435 seq_printf(seq, "]");
1436}
1437
700c7213
N
1438/* check if there are enough drives for
1439 * every block to appear on atleast one.
1440 * Don't consider the device numbered 'ignore'
1441 * as we might be about to remove it.
1442 */
f8c9e74f 1443static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1444{
1445 int first = 0;
1446
1447 do {
1448 int n = conf->copies;
1449 int cnt = 0;
1450 while (n--) {
1451 if (conf->mirrors[first].rdev &&
1452 first != ignore)
1453 cnt++;
f8c9e74f 1454 first = (first+1) % geo->raid_disks;
700c7213
N
1455 }
1456 if (cnt == 0)
1457 return 0;
1458 } while (first != 0);
1459 return 1;
1460}
1461
f8c9e74f
N
1462static int enough(struct r10conf *conf, int ignore)
1463{
1464 return _enough(conf, &conf->geo, ignore) &&
1465 _enough(conf, &conf->prev, ignore);
1466}
1467
fd01b88c 1468static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1469{
1470 char b[BDEVNAME_SIZE];
e879a879 1471 struct r10conf *conf = mddev->private;
1da177e4
LT
1472
1473 /*
1474 * If it is not operational, then we have already marked it as dead
1475 * else if it is the last working disks, ignore the error, let the
1476 * next level up know.
1477 * else mark the drive as failed
1478 */
b2d444d7 1479 if (test_bit(In_sync, &rdev->flags)
700c7213 1480 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1481 /*
1482 * Don't fail the drive, just return an IO error.
1da177e4
LT
1483 */
1484 return;
c04be0aa
N
1485 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1486 unsigned long flags;
1487 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1488 mddev->degraded++;
c04be0aa 1489 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1490 /*
1491 * if recovery is running, make sure it aborts.
1492 */
dfc70645 1493 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1494 }
de393cde 1495 set_bit(Blocked, &rdev->flags);
b2d444d7 1496 set_bit(Faulty, &rdev->flags);
850b2b42 1497 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1498 printk(KERN_ALERT
1499 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1500 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1501 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1502 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1503}
1504
e879a879 1505static void print_conf(struct r10conf *conf)
1da177e4
LT
1506{
1507 int i;
0f6d02d5 1508 struct mirror_info *tmp;
1da177e4 1509
128595ed 1510 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1511 if (!conf) {
128595ed 1512 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1513 return;
1514 }
5cf00fcd
N
1515 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1516 conf->geo.raid_disks);
1da177e4 1517
5cf00fcd 1518 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1519 char b[BDEVNAME_SIZE];
1520 tmp = conf->mirrors + i;
1521 if (tmp->rdev)
128595ed 1522 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1523 i, !test_bit(In_sync, &tmp->rdev->flags),
1524 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1525 bdevname(tmp->rdev->bdev,b));
1526 }
1527}
1528
e879a879 1529static void close_sync(struct r10conf *conf)
1da177e4 1530{
0a27ec96
N
1531 wait_barrier(conf);
1532 allow_barrier(conf);
1da177e4
LT
1533
1534 mempool_destroy(conf->r10buf_pool);
1535 conf->r10buf_pool = NULL;
1536}
1537
fd01b88c 1538static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1539{
1540 int i;
e879a879 1541 struct r10conf *conf = mddev->private;
0f6d02d5 1542 struct mirror_info *tmp;
6b965620
N
1543 int count = 0;
1544 unsigned long flags;
1da177e4
LT
1545
1546 /*
1547 * Find all non-in_sync disks within the RAID10 configuration
1548 * and mark them in_sync
1549 */
5cf00fcd 1550 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1551 tmp = conf->mirrors + i;
4ca40c2c
N
1552 if (tmp->replacement
1553 && tmp->replacement->recovery_offset == MaxSector
1554 && !test_bit(Faulty, &tmp->replacement->flags)
1555 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1556 /* Replacement has just become active */
1557 if (!tmp->rdev
1558 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1559 count++;
1560 if (tmp->rdev) {
1561 /* Replaced device not technically faulty,
1562 * but we need to be sure it gets removed
1563 * and never re-added.
1564 */
1565 set_bit(Faulty, &tmp->rdev->flags);
1566 sysfs_notify_dirent_safe(
1567 tmp->rdev->sysfs_state);
1568 }
1569 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1570 } else if (tmp->rdev
1571 && !test_bit(Faulty, &tmp->rdev->flags)
1572 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1573 count++;
e6ffbcb6 1574 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1575 }
1576 }
6b965620
N
1577 spin_lock_irqsave(&conf->device_lock, flags);
1578 mddev->degraded -= count;
1579 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1580
1581 print_conf(conf);
6b965620 1582 return count;
1da177e4
LT
1583}
1584
1585
fd01b88c 1586static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1587{
e879a879 1588 struct r10conf *conf = mddev->private;
199050ea 1589 int err = -EEXIST;
1da177e4 1590 int mirror;
6c2fce2e 1591 int first = 0;
5cf00fcd 1592 int last = conf->geo.raid_disks - 1;
050b6615 1593 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1594
1595 if (mddev->recovery_cp < MaxSector)
1596 /* only hot-add to in-sync arrays, as recovery is
1597 * very different from resync
1598 */
199050ea 1599 return -EBUSY;
f8c9e74f 1600 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1601 return -EINVAL;
1da177e4 1602
a53a6c85 1603 if (rdev->raid_disk >= 0)
6c2fce2e 1604 first = last = rdev->raid_disk;
1da177e4 1605
050b6615
N
1606 if (q->merge_bvec_fn) {
1607 set_bit(Unmerged, &rdev->flags);
1608 mddev->merge_check_needed = 1;
1609 }
1610
2c4193df 1611 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1612 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1613 mirror = rdev->saved_raid_disk;
1614 else
6c2fce2e 1615 mirror = first;
2bb77736 1616 for ( ; mirror <= last ; mirror++) {
0f6d02d5 1617 struct mirror_info *p = &conf->mirrors[mirror];
2bb77736
N
1618 if (p->recovery_disabled == mddev->recovery_disabled)
1619 continue;
b7044d41
N
1620 if (p->rdev) {
1621 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1622 p->replacement != NULL)
1623 continue;
1624 clear_bit(In_sync, &rdev->flags);
1625 set_bit(Replacement, &rdev->flags);
1626 rdev->raid_disk = mirror;
1627 err = 0;
1628 disk_stack_limits(mddev->gendisk, rdev->bdev,
1629 rdev->data_offset << 9);
b7044d41
N
1630 conf->fullsync = 1;
1631 rcu_assign_pointer(p->replacement, rdev);
1632 break;
1633 }
1da177e4 1634
2bb77736
N
1635 disk_stack_limits(mddev->gendisk, rdev->bdev,
1636 rdev->data_offset << 9);
1da177e4 1637
2bb77736 1638 p->head_position = 0;
d890fa2b 1639 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1640 rdev->raid_disk = mirror;
1641 err = 0;
1642 if (rdev->saved_raid_disk != mirror)
1643 conf->fullsync = 1;
1644 rcu_assign_pointer(p->rdev, rdev);
1645 break;
1646 }
050b6615
N
1647 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1648 /* Some requests might not have seen this new
1649 * merge_bvec_fn. We must wait for them to complete
1650 * before merging the device fully.
1651 * First we make sure any code which has tested
1652 * our function has submitted the request, then
1653 * we wait for all outstanding requests to complete.
1654 */
1655 synchronize_sched();
1656 raise_barrier(conf, 0);
1657 lower_barrier(conf);
1658 clear_bit(Unmerged, &rdev->flags);
1659 }
ac5e7113 1660 md_integrity_add_rdev(rdev, mddev);
1da177e4 1661 print_conf(conf);
199050ea 1662 return err;
1da177e4
LT
1663}
1664
b8321b68 1665static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1666{
e879a879 1667 struct r10conf *conf = mddev->private;
1da177e4 1668 int err = 0;
b8321b68 1669 int number = rdev->raid_disk;
c8ab903e
N
1670 struct md_rdev **rdevp;
1671 struct mirror_info *p = conf->mirrors + number;
1da177e4
LT
1672
1673 print_conf(conf);
c8ab903e
N
1674 if (rdev == p->rdev)
1675 rdevp = &p->rdev;
1676 else if (rdev == p->replacement)
1677 rdevp = &p->replacement;
1678 else
1679 return 0;
1680
1681 if (test_bit(In_sync, &rdev->flags) ||
1682 atomic_read(&rdev->nr_pending)) {
1683 err = -EBUSY;
1684 goto abort;
1685 }
1686 /* Only remove faulty devices if recovery
1687 * is not possible.
1688 */
1689 if (!test_bit(Faulty, &rdev->flags) &&
1690 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1691 (!p->replacement || p->replacement == rdev) &&
c8ab903e
N
1692 enough(conf, -1)) {
1693 err = -EBUSY;
1694 goto abort;
1da177e4 1695 }
c8ab903e
N
1696 *rdevp = NULL;
1697 synchronize_rcu();
1698 if (atomic_read(&rdev->nr_pending)) {
1699 /* lost the race, try later */
1700 err = -EBUSY;
1701 *rdevp = rdev;
1702 goto abort;
4ca40c2c
N
1703 } else if (p->replacement) {
1704 /* We must have just cleared 'rdev' */
1705 p->rdev = p->replacement;
1706 clear_bit(Replacement, &p->replacement->flags);
1707 smp_mb(); /* Make sure other CPUs may see both as identical
1708 * but will never see neither -- if they are careful.
1709 */
1710 p->replacement = NULL;
1711 clear_bit(WantReplacement, &rdev->flags);
1712 } else
1713 /* We might have just remove the Replacement as faulty
1714 * Clear the flag just in case
1715 */
1716 clear_bit(WantReplacement, &rdev->flags);
1717
c8ab903e
N
1718 err = md_integrity_register(mddev);
1719
1da177e4
LT
1720abort:
1721
1722 print_conf(conf);
1723 return err;
1724}
1725
1726
6712ecf8 1727static void end_sync_read(struct bio *bio, int error)
1da177e4 1728{
9f2c9d12 1729 struct r10bio *r10_bio = bio->bi_private;
e879a879 1730 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1731 int d;
1da177e4 1732
69335ef3 1733 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1734
1735 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1736 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1737 else
1738 /* The write handler will notice the lack of
1739 * R10BIO_Uptodate and record any errors etc
1740 */
4dbcdc75
N
1741 atomic_add(r10_bio->sectors,
1742 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1743
1744 /* for reconstruct, we always reschedule after a read.
1745 * for resync, only after all reads
1746 */
73d5c38a 1747 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1748 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1749 atomic_dec_and_test(&r10_bio->remaining)) {
1750 /* we have read all the blocks,
1751 * do the comparison in process context in raid10d
1752 */
1753 reschedule_retry(r10_bio);
1754 }
1da177e4
LT
1755}
1756
9f2c9d12 1757static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1758{
fd01b88c 1759 struct mddev *mddev = r10_bio->mddev;
dfc70645 1760
1da177e4
LT
1761 while (atomic_dec_and_test(&r10_bio->remaining)) {
1762 if (r10_bio->master_bio == NULL) {
1763 /* the primary of several recovery bios */
73d5c38a 1764 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1765 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1766 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1767 reschedule_retry(r10_bio);
1768 else
1769 put_buf(r10_bio);
73d5c38a 1770 md_done_sync(mddev, s, 1);
1da177e4
LT
1771 break;
1772 } else {
9f2c9d12 1773 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1774 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1775 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1776 reschedule_retry(r10_bio);
1777 else
1778 put_buf(r10_bio);
1da177e4
LT
1779 r10_bio = r10_bio2;
1780 }
1781 }
1da177e4
LT
1782}
1783
5e570289
N
1784static void end_sync_write(struct bio *bio, int error)
1785{
1786 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1787 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1788 struct mddev *mddev = r10_bio->mddev;
e879a879 1789 struct r10conf *conf = mddev->private;
5e570289
N
1790 int d;
1791 sector_t first_bad;
1792 int bad_sectors;
1793 int slot;
9ad1aefc 1794 int repl;
4ca40c2c 1795 struct md_rdev *rdev = NULL;
5e570289 1796
9ad1aefc
N
1797 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1798 if (repl)
1799 rdev = conf->mirrors[d].replacement;
547414d1 1800 else
9ad1aefc 1801 rdev = conf->mirrors[d].rdev;
5e570289
N
1802
1803 if (!uptodate) {
9ad1aefc
N
1804 if (repl)
1805 md_error(mddev, rdev);
1806 else {
1807 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1808 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1809 set_bit(MD_RECOVERY_NEEDED,
1810 &rdev->mddev->recovery);
9ad1aefc
N
1811 set_bit(R10BIO_WriteError, &r10_bio->state);
1812 }
1813 } else if (is_badblock(rdev,
5e570289
N
1814 r10_bio->devs[slot].addr,
1815 r10_bio->sectors,
1816 &first_bad, &bad_sectors))
1817 set_bit(R10BIO_MadeGood, &r10_bio->state);
1818
9ad1aefc 1819 rdev_dec_pending(rdev, mddev);
5e570289
N
1820
1821 end_sync_request(r10_bio);
1822}
1823
1da177e4
LT
1824/*
1825 * Note: sync and recover and handled very differently for raid10
1826 * This code is for resync.
1827 * For resync, we read through virtual addresses and read all blocks.
1828 * If there is any error, we schedule a write. The lowest numbered
1829 * drive is authoritative.
1830 * However requests come for physical address, so we need to map.
1831 * For every physical address there are raid_disks/copies virtual addresses,
1832 * which is always are least one, but is not necessarly an integer.
1833 * This means that a physical address can span multiple chunks, so we may
1834 * have to submit multiple io requests for a single sync request.
1835 */
1836/*
1837 * We check if all blocks are in-sync and only write to blocks that
1838 * aren't in sync
1839 */
9f2c9d12 1840static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1841{
e879a879 1842 struct r10conf *conf = mddev->private;
1da177e4
LT
1843 int i, first;
1844 struct bio *tbio, *fbio;
f4380a91 1845 int vcnt;
1da177e4
LT
1846
1847 atomic_set(&r10_bio->remaining, 1);
1848
1849 /* find the first device with a block */
1850 for (i=0; i<conf->copies; i++)
1851 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1852 break;
1853
1854 if (i == conf->copies)
1855 goto done;
1856
1857 first = i;
1858 fbio = r10_bio->devs[i].bio;
1859
f4380a91 1860 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1861 /* now find blocks with errors */
0eb3ff12
N
1862 for (i=0 ; i < conf->copies ; i++) {
1863 int j, d;
1da177e4 1864
1da177e4 1865 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1866
1867 if (tbio->bi_end_io != end_sync_read)
1868 continue;
1869 if (i == first)
1da177e4 1870 continue;
0eb3ff12
N
1871 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1872 /* We know that the bi_io_vec layout is the same for
1873 * both 'first' and 'i', so we just compare them.
1874 * All vec entries are PAGE_SIZE;
1875 */
1876 for (j = 0; j < vcnt; j++)
1877 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1878 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 1879 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
1880 break;
1881 if (j == vcnt)
1882 continue;
1883 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1884 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1885 /* Don't fix anything. */
1886 continue;
0eb3ff12 1887 }
f84ee364
N
1888 /* Ok, we need to write this bio, either to correct an
1889 * inconsistency or to correct an unreadable block.
1da177e4
LT
1890 * First we need to fixup bv_offset, bv_len and
1891 * bi_vecs, as the read request might have corrupted these
1892 */
1893 tbio->bi_vcnt = vcnt;
1894 tbio->bi_size = r10_bio->sectors << 9;
1895 tbio->bi_idx = 0;
1896 tbio->bi_phys_segments = 0;
1da177e4
LT
1897 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1898 tbio->bi_flags |= 1 << BIO_UPTODATE;
1899 tbio->bi_next = NULL;
1900 tbio->bi_rw = WRITE;
1901 tbio->bi_private = r10_bio;
1902 tbio->bi_sector = r10_bio->devs[i].addr;
1903
1904 for (j=0; j < vcnt ; j++) {
1905 tbio->bi_io_vec[j].bv_offset = 0;
1906 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1907
1908 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1909 page_address(fbio->bi_io_vec[j].bv_page),
1910 PAGE_SIZE);
1911 }
1912 tbio->bi_end_io = end_sync_write;
1913
1914 d = r10_bio->devs[i].devnum;
1915 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1916 atomic_inc(&r10_bio->remaining);
1917 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1918
1919 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1920 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1921 generic_make_request(tbio);
1922 }
1923
9ad1aefc
N
1924 /* Now write out to any replacement devices
1925 * that are active
1926 */
1927 for (i = 0; i < conf->copies; i++) {
1928 int j, d;
9ad1aefc
N
1929
1930 tbio = r10_bio->devs[i].repl_bio;
1931 if (!tbio || !tbio->bi_end_io)
1932 continue;
1933 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1934 && r10_bio->devs[i].bio != fbio)
1935 for (j = 0; j < vcnt; j++)
1936 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1937 page_address(fbio->bi_io_vec[j].bv_page),
1938 PAGE_SIZE);
1939 d = r10_bio->devs[i].devnum;
1940 atomic_inc(&r10_bio->remaining);
1941 md_sync_acct(conf->mirrors[d].replacement->bdev,
1942 tbio->bi_size >> 9);
1943 generic_make_request(tbio);
1944 }
1945
1da177e4
LT
1946done:
1947 if (atomic_dec_and_test(&r10_bio->remaining)) {
1948 md_done_sync(mddev, r10_bio->sectors, 1);
1949 put_buf(r10_bio);
1950 }
1951}
1952
1953/*
1954 * Now for the recovery code.
1955 * Recovery happens across physical sectors.
1956 * We recover all non-is_sync drives by finding the virtual address of
1957 * each, and then choose a working drive that also has that virt address.
1958 * There is a separate r10_bio for each non-in_sync drive.
1959 * Only the first two slots are in use. The first for reading,
1960 * The second for writing.
1961 *
1962 */
9f2c9d12 1963static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
1964{
1965 /* We got a read error during recovery.
1966 * We repeat the read in smaller page-sized sections.
1967 * If a read succeeds, write it to the new device or record
1968 * a bad block if we cannot.
1969 * If a read fails, record a bad block on both old and
1970 * new devices.
1971 */
fd01b88c 1972 struct mddev *mddev = r10_bio->mddev;
e879a879 1973 struct r10conf *conf = mddev->private;
5e570289
N
1974 struct bio *bio = r10_bio->devs[0].bio;
1975 sector_t sect = 0;
1976 int sectors = r10_bio->sectors;
1977 int idx = 0;
1978 int dr = r10_bio->devs[0].devnum;
1979 int dw = r10_bio->devs[1].devnum;
1980
1981 while (sectors) {
1982 int s = sectors;
3cb03002 1983 struct md_rdev *rdev;
5e570289
N
1984 sector_t addr;
1985 int ok;
1986
1987 if (s > (PAGE_SIZE>>9))
1988 s = PAGE_SIZE >> 9;
1989
1990 rdev = conf->mirrors[dr].rdev;
1991 addr = r10_bio->devs[0].addr + sect,
1992 ok = sync_page_io(rdev,
1993 addr,
1994 s << 9,
1995 bio->bi_io_vec[idx].bv_page,
1996 READ, false);
1997 if (ok) {
1998 rdev = conf->mirrors[dw].rdev;
1999 addr = r10_bio->devs[1].addr + sect;
2000 ok = sync_page_io(rdev,
2001 addr,
2002 s << 9,
2003 bio->bi_io_vec[idx].bv_page,
2004 WRITE, false);
b7044d41 2005 if (!ok) {
5e570289 2006 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2007 if (!test_and_set_bit(WantReplacement,
2008 &rdev->flags))
2009 set_bit(MD_RECOVERY_NEEDED,
2010 &rdev->mddev->recovery);
2011 }
5e570289
N
2012 }
2013 if (!ok) {
2014 /* We don't worry if we cannot set a bad block -
2015 * it really is bad so there is no loss in not
2016 * recording it yet
2017 */
2018 rdev_set_badblocks(rdev, addr, s, 0);
2019
2020 if (rdev != conf->mirrors[dw].rdev) {
2021 /* need bad block on destination too */
3cb03002 2022 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2023 addr = r10_bio->devs[1].addr + sect;
2024 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2025 if (!ok) {
2026 /* just abort the recovery */
2027 printk(KERN_NOTICE
2028 "md/raid10:%s: recovery aborted"
2029 " due to read error\n",
2030 mdname(mddev));
2031
2032 conf->mirrors[dw].recovery_disabled
2033 = mddev->recovery_disabled;
2034 set_bit(MD_RECOVERY_INTR,
2035 &mddev->recovery);
2036 break;
2037 }
2038 }
2039 }
2040
2041 sectors -= s;
2042 sect += s;
2043 idx++;
2044 }
2045}
1da177e4 2046
9f2c9d12 2047static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2048{
e879a879 2049 struct r10conf *conf = mddev->private;
c65060ad 2050 int d;
24afd80d 2051 struct bio *wbio, *wbio2;
1da177e4 2052
5e570289
N
2053 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2054 fix_recovery_read_error(r10_bio);
2055 end_sync_request(r10_bio);
2056 return;
2057 }
2058
c65060ad
NK
2059 /*
2060 * share the pages with the first bio
1da177e4
LT
2061 * and submit the write request
2062 */
1da177e4 2063 d = r10_bio->devs[1].devnum;
24afd80d
N
2064 wbio = r10_bio->devs[1].bio;
2065 wbio2 = r10_bio->devs[1].repl_bio;
2066 if (wbio->bi_end_io) {
2067 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2068 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2069 generic_make_request(wbio);
2070 }
2071 if (wbio2 && wbio2->bi_end_io) {
2072 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2073 md_sync_acct(conf->mirrors[d].replacement->bdev,
2074 wbio2->bi_size >> 9);
2075 generic_make_request(wbio2);
2076 }
1da177e4
LT
2077}
2078
2079
1e50915f
RB
2080/*
2081 * Used by fix_read_error() to decay the per rdev read_errors.
2082 * We halve the read error count for every hour that has elapsed
2083 * since the last recorded read error.
2084 *
2085 */
fd01b88c 2086static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2087{
2088 struct timespec cur_time_mon;
2089 unsigned long hours_since_last;
2090 unsigned int read_errors = atomic_read(&rdev->read_errors);
2091
2092 ktime_get_ts(&cur_time_mon);
2093
2094 if (rdev->last_read_error.tv_sec == 0 &&
2095 rdev->last_read_error.tv_nsec == 0) {
2096 /* first time we've seen a read error */
2097 rdev->last_read_error = cur_time_mon;
2098 return;
2099 }
2100
2101 hours_since_last = (cur_time_mon.tv_sec -
2102 rdev->last_read_error.tv_sec) / 3600;
2103
2104 rdev->last_read_error = cur_time_mon;
2105
2106 /*
2107 * if hours_since_last is > the number of bits in read_errors
2108 * just set read errors to 0. We do this to avoid
2109 * overflowing the shift of read_errors by hours_since_last.
2110 */
2111 if (hours_since_last >= 8 * sizeof(read_errors))
2112 atomic_set(&rdev->read_errors, 0);
2113 else
2114 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2115}
2116
3cb03002 2117static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2118 int sectors, struct page *page, int rw)
2119{
2120 sector_t first_bad;
2121 int bad_sectors;
2122
2123 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2124 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2125 return -1;
2126 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2127 /* success */
2128 return 1;
b7044d41 2129 if (rw == WRITE) {
58c54fcc 2130 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2131 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2132 set_bit(MD_RECOVERY_NEEDED,
2133 &rdev->mddev->recovery);
2134 }
58c54fcc
N
2135 /* need to record an error - either for the block or the device */
2136 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2137 md_error(rdev->mddev, rdev);
2138 return 0;
2139}
2140
1da177e4
LT
2141/*
2142 * This is a kernel thread which:
2143 *
2144 * 1. Retries failed read operations on working mirrors.
2145 * 2. Updates the raid superblock when problems encounter.
6814d536 2146 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2147 */
2148
e879a879 2149static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2150{
2151 int sect = 0; /* Offset from r10_bio->sector */
2152 int sectors = r10_bio->sectors;
3cb03002 2153 struct md_rdev*rdev;
1e50915f 2154 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2155 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2156
7c4e06ff
N
2157 /* still own a reference to this rdev, so it cannot
2158 * have been cleared recently.
2159 */
2160 rdev = conf->mirrors[d].rdev;
1e50915f 2161
7c4e06ff
N
2162 if (test_bit(Faulty, &rdev->flags))
2163 /* drive has already been failed, just ignore any
2164 more fix_read_error() attempts */
2165 return;
1e50915f 2166
7c4e06ff
N
2167 check_decay_read_errors(mddev, rdev);
2168 atomic_inc(&rdev->read_errors);
2169 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2170 char b[BDEVNAME_SIZE];
2171 bdevname(rdev->bdev, b);
1e50915f 2172
7c4e06ff
N
2173 printk(KERN_NOTICE
2174 "md/raid10:%s: %s: Raid device exceeded "
2175 "read_error threshold [cur %d:max %d]\n",
2176 mdname(mddev), b,
2177 atomic_read(&rdev->read_errors), max_read_errors);
2178 printk(KERN_NOTICE
2179 "md/raid10:%s: %s: Failing raid device\n",
2180 mdname(mddev), b);
2181 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2182 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2183 return;
1e50915f 2184 }
1e50915f 2185
6814d536
N
2186 while(sectors) {
2187 int s = sectors;
2188 int sl = r10_bio->read_slot;
2189 int success = 0;
2190 int start;
2191
2192 if (s > (PAGE_SIZE>>9))
2193 s = PAGE_SIZE >> 9;
2194
2195 rcu_read_lock();
2196 do {
8dbed5ce
N
2197 sector_t first_bad;
2198 int bad_sectors;
2199
0544a21d 2200 d = r10_bio->devs[sl].devnum;
6814d536
N
2201 rdev = rcu_dereference(conf->mirrors[d].rdev);
2202 if (rdev &&
050b6615 2203 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2204 test_bit(In_sync, &rdev->flags) &&
2205 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2206 &first_bad, &bad_sectors) == 0) {
6814d536
N
2207 atomic_inc(&rdev->nr_pending);
2208 rcu_read_unlock();
2b193363 2209 success = sync_page_io(rdev,
6814d536 2210 r10_bio->devs[sl].addr +
ccebd4c4 2211 sect,
6814d536 2212 s<<9,
ccebd4c4 2213 conf->tmppage, READ, false);
6814d536
N
2214 rdev_dec_pending(rdev, mddev);
2215 rcu_read_lock();
2216 if (success)
2217 break;
2218 }
2219 sl++;
2220 if (sl == conf->copies)
2221 sl = 0;
2222 } while (!success && sl != r10_bio->read_slot);
2223 rcu_read_unlock();
2224
2225 if (!success) {
58c54fcc
N
2226 /* Cannot read from anywhere, just mark the block
2227 * as bad on the first device to discourage future
2228 * reads.
2229 */
6814d536 2230 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2231 rdev = conf->mirrors[dn].rdev;
2232
2233 if (!rdev_set_badblocks(
2234 rdev,
2235 r10_bio->devs[r10_bio->read_slot].addr
2236 + sect,
fae8cc5e 2237 s, 0)) {
58c54fcc 2238 md_error(mddev, rdev);
fae8cc5e
N
2239 r10_bio->devs[r10_bio->read_slot].bio
2240 = IO_BLOCKED;
2241 }
6814d536
N
2242 break;
2243 }
2244
2245 start = sl;
2246 /* write it back and re-read */
2247 rcu_read_lock();
2248 while (sl != r10_bio->read_slot) {
67b8dc4b 2249 char b[BDEVNAME_SIZE];
0544a21d 2250
6814d536
N
2251 if (sl==0)
2252 sl = conf->copies;
2253 sl--;
2254 d = r10_bio->devs[sl].devnum;
2255 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2256 if (!rdev ||
050b6615 2257 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2258 !test_bit(In_sync, &rdev->flags))
2259 continue;
2260
2261 atomic_inc(&rdev->nr_pending);
2262 rcu_read_unlock();
58c54fcc
N
2263 if (r10_sync_page_io(rdev,
2264 r10_bio->devs[sl].addr +
2265 sect,
2266 s<<9, conf->tmppage, WRITE)
1294b9c9
N
2267 == 0) {
2268 /* Well, this device is dead */
2269 printk(KERN_NOTICE
2270 "md/raid10:%s: read correction "
2271 "write failed"
2272 " (%d sectors at %llu on %s)\n",
2273 mdname(mddev), s,
2274 (unsigned long long)(
f8c9e74f
N
2275 sect +
2276 choose_data_offset(r10_bio,
2277 rdev)),
1294b9c9
N
2278 bdevname(rdev->bdev, b));
2279 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2280 "drive\n",
2281 mdname(mddev),
2282 bdevname(rdev->bdev, b));
6814d536 2283 }
1294b9c9
N
2284 rdev_dec_pending(rdev, mddev);
2285 rcu_read_lock();
6814d536
N
2286 }
2287 sl = start;
2288 while (sl != r10_bio->read_slot) {
1294b9c9 2289 char b[BDEVNAME_SIZE];
0544a21d 2290
6814d536
N
2291 if (sl==0)
2292 sl = conf->copies;
2293 sl--;
2294 d = r10_bio->devs[sl].devnum;
2295 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2296 if (!rdev ||
2297 !test_bit(In_sync, &rdev->flags))
2298 continue;
6814d536 2299
1294b9c9
N
2300 atomic_inc(&rdev->nr_pending);
2301 rcu_read_unlock();
58c54fcc
N
2302 switch (r10_sync_page_io(rdev,
2303 r10_bio->devs[sl].addr +
2304 sect,
2305 s<<9, conf->tmppage,
2306 READ)) {
2307 case 0:
1294b9c9
N
2308 /* Well, this device is dead */
2309 printk(KERN_NOTICE
2310 "md/raid10:%s: unable to read back "
2311 "corrected sectors"
2312 " (%d sectors at %llu on %s)\n",
2313 mdname(mddev), s,
2314 (unsigned long long)(
f8c9e74f
N
2315 sect +
2316 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2317 bdevname(rdev->bdev, b));
2318 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2319 "drive\n",
2320 mdname(mddev),
2321 bdevname(rdev->bdev, b));
58c54fcc
N
2322 break;
2323 case 1:
1294b9c9
N
2324 printk(KERN_INFO
2325 "md/raid10:%s: read error corrected"
2326 " (%d sectors at %llu on %s)\n",
2327 mdname(mddev), s,
2328 (unsigned long long)(
f8c9e74f
N
2329 sect +
2330 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2331 bdevname(rdev->bdev, b));
2332 atomic_add(s, &rdev->corrected_errors);
6814d536 2333 }
1294b9c9
N
2334
2335 rdev_dec_pending(rdev, mddev);
2336 rcu_read_lock();
6814d536
N
2337 }
2338 rcu_read_unlock();
2339
2340 sectors -= s;
2341 sect += s;
2342 }
2343}
2344
bd870a16
N
2345static void bi_complete(struct bio *bio, int error)
2346{
2347 complete((struct completion *)bio->bi_private);
2348}
2349
2350static int submit_bio_wait(int rw, struct bio *bio)
2351{
2352 struct completion event;
2353 rw |= REQ_SYNC;
2354
2355 init_completion(&event);
2356 bio->bi_private = &event;
2357 bio->bi_end_io = bi_complete;
2358 submit_bio(rw, bio);
2359 wait_for_completion(&event);
2360
2361 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2362}
2363
9f2c9d12 2364static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2365{
2366 struct bio *bio = r10_bio->master_bio;
fd01b88c 2367 struct mddev *mddev = r10_bio->mddev;
e879a879 2368 struct r10conf *conf = mddev->private;
3cb03002 2369 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2370 /* bio has the data to be written to slot 'i' where
2371 * we just recently had a write error.
2372 * We repeatedly clone the bio and trim down to one block,
2373 * then try the write. Where the write fails we record
2374 * a bad block.
2375 * It is conceivable that the bio doesn't exactly align with
2376 * blocks. We must handle this.
2377 *
2378 * We currently own a reference to the rdev.
2379 */
2380
2381 int block_sectors;
2382 sector_t sector;
2383 int sectors;
2384 int sect_to_write = r10_bio->sectors;
2385 int ok = 1;
2386
2387 if (rdev->badblocks.shift < 0)
2388 return 0;
2389
2390 block_sectors = 1 << rdev->badblocks.shift;
2391 sector = r10_bio->sector;
2392 sectors = ((r10_bio->sector + block_sectors)
2393 & ~(sector_t)(block_sectors - 1))
2394 - sector;
2395
2396 while (sect_to_write) {
2397 struct bio *wbio;
2398 if (sectors > sect_to_write)
2399 sectors = sect_to_write;
2400 /* Write at 'sector' for 'sectors' */
2401 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2402 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2403 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2404 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2405 (sector - r10_bio->sector));
2406 wbio->bi_bdev = rdev->bdev;
2407 if (submit_bio_wait(WRITE, wbio) == 0)
2408 /* Failure! */
2409 ok = rdev_set_badblocks(rdev, sector,
2410 sectors, 0)
2411 && ok;
2412
2413 bio_put(wbio);
2414 sect_to_write -= sectors;
2415 sector += sectors;
2416 sectors = block_sectors;
2417 }
2418 return ok;
2419}
2420
9f2c9d12 2421static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2422{
2423 int slot = r10_bio->read_slot;
560f8e55 2424 struct bio *bio;
e879a879 2425 struct r10conf *conf = mddev->private;
abbf098e 2426 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2427 char b[BDEVNAME_SIZE];
2428 unsigned long do_sync;
856e08e2 2429 int max_sectors;
560f8e55
N
2430
2431 /* we got a read error. Maybe the drive is bad. Maybe just
2432 * the block and we can fix it.
2433 * We freeze all other IO, and try reading the block from
2434 * other devices. When we find one, we re-write
2435 * and check it that fixes the read error.
2436 * This is all done synchronously while the array is
2437 * frozen.
2438 */
fae8cc5e
N
2439 bio = r10_bio->devs[slot].bio;
2440 bdevname(bio->bi_bdev, b);
2441 bio_put(bio);
2442 r10_bio->devs[slot].bio = NULL;
2443
560f8e55
N
2444 if (mddev->ro == 0) {
2445 freeze_array(conf);
2446 fix_read_error(conf, mddev, r10_bio);
2447 unfreeze_array(conf);
fae8cc5e
N
2448 } else
2449 r10_bio->devs[slot].bio = IO_BLOCKED;
2450
abbf098e 2451 rdev_dec_pending(rdev, mddev);
560f8e55 2452
7399c31b 2453read_more:
96c3fd1f
N
2454 rdev = read_balance(conf, r10_bio, &max_sectors);
2455 if (rdev == NULL) {
560f8e55
N
2456 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2457 " read error for block %llu\n",
7399c31b 2458 mdname(mddev), b,
560f8e55
N
2459 (unsigned long long)r10_bio->sector);
2460 raid_end_bio_io(r10_bio);
560f8e55
N
2461 return;
2462 }
2463
2464 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2465 slot = r10_bio->read_slot;
560f8e55
N
2466 printk_ratelimited(
2467 KERN_ERR
2468 "md/raid10:%s: %s: redirecting"
2469 "sector %llu to another mirror\n",
2470 mdname(mddev),
2471 bdevname(rdev->bdev, b),
2472 (unsigned long long)r10_bio->sector);
2473 bio = bio_clone_mddev(r10_bio->master_bio,
2474 GFP_NOIO, mddev);
7399c31b
N
2475 md_trim_bio(bio,
2476 r10_bio->sector - bio->bi_sector,
2477 max_sectors);
560f8e55 2478 r10_bio->devs[slot].bio = bio;
abbf098e 2479 r10_bio->devs[slot].rdev = rdev;
560f8e55 2480 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2481 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2482 bio->bi_bdev = rdev->bdev;
2483 bio->bi_rw = READ | do_sync;
2484 bio->bi_private = r10_bio;
2485 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2486 if (max_sectors < r10_bio->sectors) {
2487 /* Drat - have to split this up more */
2488 struct bio *mbio = r10_bio->master_bio;
2489 int sectors_handled =
2490 r10_bio->sector + max_sectors
2491 - mbio->bi_sector;
2492 r10_bio->sectors = max_sectors;
2493 spin_lock_irq(&conf->device_lock);
2494 if (mbio->bi_phys_segments == 0)
2495 mbio->bi_phys_segments = 2;
2496 else
2497 mbio->bi_phys_segments++;
2498 spin_unlock_irq(&conf->device_lock);
2499 generic_make_request(bio);
7399c31b
N
2500
2501 r10_bio = mempool_alloc(conf->r10bio_pool,
2502 GFP_NOIO);
2503 r10_bio->master_bio = mbio;
2504 r10_bio->sectors = (mbio->bi_size >> 9)
2505 - sectors_handled;
2506 r10_bio->state = 0;
2507 set_bit(R10BIO_ReadError,
2508 &r10_bio->state);
2509 r10_bio->mddev = mddev;
2510 r10_bio->sector = mbio->bi_sector
2511 + sectors_handled;
2512
2513 goto read_more;
2514 } else
2515 generic_make_request(bio);
560f8e55
N
2516}
2517
e879a879 2518static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2519{
2520 /* Some sort of write request has finished and it
2521 * succeeded in writing where we thought there was a
2522 * bad block. So forget the bad block.
1a0b7cd8
N
2523 * Or possibly if failed and we need to record
2524 * a bad block.
749c55e9
N
2525 */
2526 int m;
3cb03002 2527 struct md_rdev *rdev;
749c55e9
N
2528
2529 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2530 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2531 for (m = 0; m < conf->copies; m++) {
2532 int dev = r10_bio->devs[m].devnum;
2533 rdev = conf->mirrors[dev].rdev;
2534 if (r10_bio->devs[m].bio == NULL)
2535 continue;
2536 if (test_bit(BIO_UPTODATE,
749c55e9 2537 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2538 rdev_clear_badblocks(
2539 rdev,
2540 r10_bio->devs[m].addr,
c6563a8c 2541 r10_bio->sectors, 0);
1a0b7cd8
N
2542 } else {
2543 if (!rdev_set_badblocks(
2544 rdev,
2545 r10_bio->devs[m].addr,
2546 r10_bio->sectors, 0))
2547 md_error(conf->mddev, rdev);
749c55e9 2548 }
9ad1aefc
N
2549 rdev = conf->mirrors[dev].replacement;
2550 if (r10_bio->devs[m].repl_bio == NULL)
2551 continue;
2552 if (test_bit(BIO_UPTODATE,
2553 &r10_bio->devs[m].repl_bio->bi_flags)) {
2554 rdev_clear_badblocks(
2555 rdev,
2556 r10_bio->devs[m].addr,
c6563a8c 2557 r10_bio->sectors, 0);
9ad1aefc
N
2558 } else {
2559 if (!rdev_set_badblocks(
2560 rdev,
2561 r10_bio->devs[m].addr,
2562 r10_bio->sectors, 0))
2563 md_error(conf->mddev, rdev);
2564 }
1a0b7cd8 2565 }
749c55e9
N
2566 put_buf(r10_bio);
2567 } else {
bd870a16
N
2568 for (m = 0; m < conf->copies; m++) {
2569 int dev = r10_bio->devs[m].devnum;
2570 struct bio *bio = r10_bio->devs[m].bio;
2571 rdev = conf->mirrors[dev].rdev;
2572 if (bio == IO_MADE_GOOD) {
749c55e9
N
2573 rdev_clear_badblocks(
2574 rdev,
2575 r10_bio->devs[m].addr,
c6563a8c 2576 r10_bio->sectors, 0);
749c55e9 2577 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2578 } else if (bio != NULL &&
2579 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2580 if (!narrow_write_error(r10_bio, m)) {
2581 md_error(conf->mddev, rdev);
2582 set_bit(R10BIO_Degraded,
2583 &r10_bio->state);
2584 }
2585 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2586 }
475b0321
N
2587 bio = r10_bio->devs[m].repl_bio;
2588 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2589 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2590 rdev_clear_badblocks(
2591 rdev,
2592 r10_bio->devs[m].addr,
c6563a8c 2593 r10_bio->sectors, 0);
475b0321
N
2594 rdev_dec_pending(rdev, conf->mddev);
2595 }
bd870a16
N
2596 }
2597 if (test_bit(R10BIO_WriteError,
2598 &r10_bio->state))
2599 close_write(r10_bio);
749c55e9
N
2600 raid_end_bio_io(r10_bio);
2601 }
2602}
2603
fd01b88c 2604static void raid10d(struct mddev *mddev)
1da177e4 2605{
9f2c9d12 2606 struct r10bio *r10_bio;
1da177e4 2607 unsigned long flags;
e879a879 2608 struct r10conf *conf = mddev->private;
1da177e4 2609 struct list_head *head = &conf->retry_list;
e1dfa0a2 2610 struct blk_plug plug;
1da177e4
LT
2611
2612 md_check_recovery(mddev);
1da177e4 2613
e1dfa0a2 2614 blk_start_plug(&plug);
1da177e4 2615 for (;;) {
6cce3b23 2616
7eaceacc 2617 flush_pending_writes(conf);
6cce3b23 2618
a35e63ef
N
2619 spin_lock_irqsave(&conf->device_lock, flags);
2620 if (list_empty(head)) {
2621 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2622 break;
a35e63ef 2623 }
9f2c9d12 2624 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2625 list_del(head->prev);
4443ae10 2626 conf->nr_queued--;
1da177e4
LT
2627 spin_unlock_irqrestore(&conf->device_lock, flags);
2628
2629 mddev = r10_bio->mddev;
070ec55d 2630 conf = mddev->private;
bd870a16
N
2631 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2632 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2633 handle_write_completed(conf, r10_bio);
2634 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2635 sync_request_write(mddev, r10_bio);
7eaceacc 2636 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2637 recovery_request_write(mddev, r10_bio);
856e08e2 2638 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2639 handle_read_error(mddev, r10_bio);
856e08e2
N
2640 else {
2641 /* just a partial read to be scheduled from a
2642 * separate context
2643 */
2644 int slot = r10_bio->read_slot;
2645 generic_make_request(r10_bio->devs[slot].bio);
2646 }
560f8e55 2647
1d9d5241 2648 cond_resched();
de393cde
N
2649 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2650 md_check_recovery(mddev);
1da177e4 2651 }
e1dfa0a2 2652 blk_finish_plug(&plug);
1da177e4
LT
2653}
2654
2655
e879a879 2656static int init_resync(struct r10conf *conf)
1da177e4
LT
2657{
2658 int buffs;
69335ef3 2659 int i;
1da177e4
LT
2660
2661 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2662 BUG_ON(conf->r10buf_pool);
69335ef3 2663 conf->have_replacement = 0;
5cf00fcd 2664 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2665 if (conf->mirrors[i].replacement)
2666 conf->have_replacement = 1;
1da177e4
LT
2667 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2668 if (!conf->r10buf_pool)
2669 return -ENOMEM;
2670 conf->next_resync = 0;
2671 return 0;
2672}
2673
2674/*
2675 * perform a "sync" on one "block"
2676 *
2677 * We need to make sure that no normal I/O request - particularly write
2678 * requests - conflict with active sync requests.
2679 *
2680 * This is achieved by tracking pending requests and a 'barrier' concept
2681 * that can be installed to exclude normal IO requests.
2682 *
2683 * Resync and recovery are handled very differently.
2684 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2685 *
2686 * For resync, we iterate over virtual addresses, read all copies,
2687 * and update if there are differences. If only one copy is live,
2688 * skip it.
2689 * For recovery, we iterate over physical addresses, read a good
2690 * value for each non-in_sync drive, and over-write.
2691 *
2692 * So, for recovery we may have several outstanding complex requests for a
2693 * given address, one for each out-of-sync device. We model this by allocating
2694 * a number of r10_bio structures, one for each out-of-sync device.
2695 * As we setup these structures, we collect all bio's together into a list
2696 * which we then process collectively to add pages, and then process again
2697 * to pass to generic_make_request.
2698 *
2699 * The r10_bio structures are linked using a borrowed master_bio pointer.
2700 * This link is counted in ->remaining. When the r10_bio that points to NULL
2701 * has its remaining count decremented to 0, the whole complex operation
2702 * is complete.
2703 *
2704 */
2705
fd01b88c 2706static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2707 int *skipped, int go_faster)
1da177e4 2708{
e879a879 2709 struct r10conf *conf = mddev->private;
9f2c9d12 2710 struct r10bio *r10_bio;
1da177e4
LT
2711 struct bio *biolist = NULL, *bio;
2712 sector_t max_sector, nr_sectors;
1da177e4 2713 int i;
6cce3b23 2714 int max_sync;
57dab0bd 2715 sector_t sync_blocks;
1da177e4
LT
2716 sector_t sectors_skipped = 0;
2717 int chunks_skipped = 0;
5cf00fcd 2718 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2719
2720 if (!conf->r10buf_pool)
2721 if (init_resync(conf))
57afd89f 2722 return 0;
1da177e4
LT
2723
2724 skipped:
58c0fed4 2725 max_sector = mddev->dev_sectors;
1da177e4
LT
2726 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2727 max_sector = mddev->resync_max_sectors;
2728 if (sector_nr >= max_sector) {
6cce3b23
N
2729 /* If we aborted, we need to abort the
2730 * sync on the 'current' bitmap chucks (there can
2731 * be several when recovering multiple devices).
2732 * as we may have started syncing it but not finished.
2733 * We can find the current address in
2734 * mddev->curr_resync, but for recovery,
2735 * we need to convert that to several
2736 * virtual addresses.
2737 */
2738 if (mddev->curr_resync < max_sector) { /* aborted */
2739 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2740 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2741 &sync_blocks, 1);
5cf00fcd 2742 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2743 sector_t sect =
2744 raid10_find_virt(conf, mddev->curr_resync, i);
2745 bitmap_end_sync(mddev->bitmap, sect,
2746 &sync_blocks, 1);
2747 }
9ad1aefc
N
2748 } else {
2749 /* completed sync */
2750 if ((!mddev->bitmap || conf->fullsync)
2751 && conf->have_replacement
2752 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2753 /* Completed a full sync so the replacements
2754 * are now fully recovered.
2755 */
5cf00fcd 2756 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2757 if (conf->mirrors[i].replacement)
2758 conf->mirrors[i].replacement
2759 ->recovery_offset
2760 = MaxSector;
2761 }
6cce3b23 2762 conf->fullsync = 0;
9ad1aefc 2763 }
6cce3b23 2764 bitmap_close_sync(mddev->bitmap);
1da177e4 2765 close_sync(conf);
57afd89f 2766 *skipped = 1;
1da177e4
LT
2767 return sectors_skipped;
2768 }
5cf00fcd 2769 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2770 /* if there has been nothing to do on any drive,
2771 * then there is nothing to do at all..
2772 */
57afd89f
N
2773 *skipped = 1;
2774 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2775 }
2776
c6207277
N
2777 if (max_sector > mddev->resync_max)
2778 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2779
1da177e4
LT
2780 /* make sure whole request will fit in a chunk - if chunks
2781 * are meaningful
2782 */
5cf00fcd
N
2783 if (conf->geo.near_copies < conf->geo.raid_disks &&
2784 max_sector > (sector_nr | chunk_mask))
2785 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2786 /*
2787 * If there is non-resync activity waiting for us then
2788 * put in a delay to throttle resync.
2789 */
0a27ec96 2790 if (!go_faster && conf->nr_waiting)
1da177e4 2791 msleep_interruptible(1000);
1da177e4
LT
2792
2793 /* Again, very different code for resync and recovery.
2794 * Both must result in an r10bio with a list of bios that
2795 * have bi_end_io, bi_sector, bi_bdev set,
2796 * and bi_private set to the r10bio.
2797 * For recovery, we may actually create several r10bios
2798 * with 2 bios in each, that correspond to the bios in the main one.
2799 * In this case, the subordinate r10bios link back through a
2800 * borrowed master_bio pointer, and the counter in the master
2801 * includes a ref from each subordinate.
2802 */
2803 /* First, we decide what to do and set ->bi_end_io
2804 * To end_sync_read if we want to read, and
2805 * end_sync_write if we will want to write.
2806 */
2807
6cce3b23 2808 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2809 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2810 /* recovery... the complicated one */
e875ecea 2811 int j;
1da177e4
LT
2812 r10_bio = NULL;
2813
5cf00fcd 2814 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2815 int still_degraded;
9f2c9d12 2816 struct r10bio *rb2;
ab9d47e9
N
2817 sector_t sect;
2818 int must_sync;
e875ecea 2819 int any_working;
24afd80d
N
2820 struct mirror_info *mirror = &conf->mirrors[i];
2821
2822 if ((mirror->rdev == NULL ||
2823 test_bit(In_sync, &mirror->rdev->flags))
2824 &&
2825 (mirror->replacement == NULL ||
2826 test_bit(Faulty,
2827 &mirror->replacement->flags)))
ab9d47e9 2828 continue;
1da177e4 2829
ab9d47e9
N
2830 still_degraded = 0;
2831 /* want to reconstruct this device */
2832 rb2 = r10_bio;
2833 sect = raid10_find_virt(conf, sector_nr, i);
24afd80d
N
2834 /* Unless we are doing a full sync, or a replacement
2835 * we only need to recover the block if it is set in
2836 * the bitmap
ab9d47e9
N
2837 */
2838 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2839 &sync_blocks, 1);
2840 if (sync_blocks < max_sync)
2841 max_sync = sync_blocks;
2842 if (!must_sync &&
24afd80d 2843 mirror->replacement == NULL &&
ab9d47e9
N
2844 !conf->fullsync) {
2845 /* yep, skip the sync_blocks here, but don't assume
2846 * that there will never be anything to do here
2847 */
2848 chunks_skipped = -1;
2849 continue;
2850 }
6cce3b23 2851
ab9d47e9
N
2852 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2853 raise_barrier(conf, rb2 != NULL);
2854 atomic_set(&r10_bio->remaining, 0);
18055569 2855
ab9d47e9
N
2856 r10_bio->master_bio = (struct bio*)rb2;
2857 if (rb2)
2858 atomic_inc(&rb2->remaining);
2859 r10_bio->mddev = mddev;
2860 set_bit(R10BIO_IsRecover, &r10_bio->state);
2861 r10_bio->sector = sect;
1da177e4 2862
ab9d47e9
N
2863 raid10_find_phys(conf, r10_bio);
2864
2865 /* Need to check if the array will still be
2866 * degraded
2867 */
5cf00fcd 2868 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
2869 if (conf->mirrors[j].rdev == NULL ||
2870 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2871 still_degraded = 1;
87fc767b 2872 break;
1da177e4 2873 }
ab9d47e9
N
2874
2875 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2876 &sync_blocks, still_degraded);
2877
e875ecea 2878 any_working = 0;
ab9d47e9 2879 for (j=0; j<conf->copies;j++) {
e875ecea 2880 int k;
ab9d47e9 2881 int d = r10_bio->devs[j].devnum;
5e570289 2882 sector_t from_addr, to_addr;
3cb03002 2883 struct md_rdev *rdev;
40c356ce
N
2884 sector_t sector, first_bad;
2885 int bad_sectors;
ab9d47e9
N
2886 if (!conf->mirrors[d].rdev ||
2887 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2888 continue;
2889 /* This is where we read from */
e875ecea 2890 any_working = 1;
40c356ce
N
2891 rdev = conf->mirrors[d].rdev;
2892 sector = r10_bio->devs[j].addr;
2893
2894 if (is_badblock(rdev, sector, max_sync,
2895 &first_bad, &bad_sectors)) {
2896 if (first_bad > sector)
2897 max_sync = first_bad - sector;
2898 else {
2899 bad_sectors -= (sector
2900 - first_bad);
2901 if (max_sync > bad_sectors)
2902 max_sync = bad_sectors;
2903 continue;
2904 }
2905 }
ab9d47e9
N
2906 bio = r10_bio->devs[0].bio;
2907 bio->bi_next = biolist;
2908 biolist = bio;
2909 bio->bi_private = r10_bio;
2910 bio->bi_end_io = end_sync_read;
2911 bio->bi_rw = READ;
5e570289 2912 from_addr = r10_bio->devs[j].addr;
24afd80d
N
2913 bio->bi_sector = from_addr + rdev->data_offset;
2914 bio->bi_bdev = rdev->bdev;
2915 atomic_inc(&rdev->nr_pending);
2916 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
2917
2918 for (k=0; k<conf->copies; k++)
2919 if (r10_bio->devs[k].devnum == i)
2920 break;
2921 BUG_ON(k == conf->copies);
5e570289 2922 to_addr = r10_bio->devs[k].addr;
ab9d47e9 2923 r10_bio->devs[0].devnum = d;
5e570289 2924 r10_bio->devs[0].addr = from_addr;
ab9d47e9 2925 r10_bio->devs[1].devnum = i;
5e570289 2926 r10_bio->devs[1].addr = to_addr;
ab9d47e9 2927
24afd80d
N
2928 rdev = mirror->rdev;
2929 if (!test_bit(In_sync, &rdev->flags)) {
2930 bio = r10_bio->devs[1].bio;
2931 bio->bi_next = biolist;
2932 biolist = bio;
2933 bio->bi_private = r10_bio;
2934 bio->bi_end_io = end_sync_write;
2935 bio->bi_rw = WRITE;
2936 bio->bi_sector = to_addr
2937 + rdev->data_offset;
2938 bio->bi_bdev = rdev->bdev;
2939 atomic_inc(&r10_bio->remaining);
2940 } else
2941 r10_bio->devs[1].bio->bi_end_io = NULL;
2942
2943 /* and maybe write to replacement */
2944 bio = r10_bio->devs[1].repl_bio;
2945 if (bio)
2946 bio->bi_end_io = NULL;
2947 rdev = mirror->replacement;
2948 /* Note: if rdev != NULL, then bio
2949 * cannot be NULL as r10buf_pool_alloc will
2950 * have allocated it.
2951 * So the second test here is pointless.
2952 * But it keeps semantic-checkers happy, and
2953 * this comment keeps human reviewers
2954 * happy.
2955 */
2956 if (rdev == NULL || bio == NULL ||
2957 test_bit(Faulty, &rdev->flags))
2958 break;
2959 bio->bi_next = biolist;
2960 biolist = bio;
2961 bio->bi_private = r10_bio;
2962 bio->bi_end_io = end_sync_write;
2963 bio->bi_rw = WRITE;
2964 bio->bi_sector = to_addr + rdev->data_offset;
2965 bio->bi_bdev = rdev->bdev;
2966 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
2967 break;
2968 }
2969 if (j == conf->copies) {
e875ecea
N
2970 /* Cannot recover, so abort the recovery or
2971 * record a bad block */
ab9d47e9
N
2972 put_buf(r10_bio);
2973 if (rb2)
2974 atomic_dec(&rb2->remaining);
2975 r10_bio = rb2;
e875ecea
N
2976 if (any_working) {
2977 /* problem is that there are bad blocks
2978 * on other device(s)
2979 */
2980 int k;
2981 for (k = 0; k < conf->copies; k++)
2982 if (r10_bio->devs[k].devnum == i)
2983 break;
24afd80d
N
2984 if (!test_bit(In_sync,
2985 &mirror->rdev->flags)
2986 && !rdev_set_badblocks(
2987 mirror->rdev,
2988 r10_bio->devs[k].addr,
2989 max_sync, 0))
2990 any_working = 0;
2991 if (mirror->replacement &&
2992 !rdev_set_badblocks(
2993 mirror->replacement,
e875ecea
N
2994 r10_bio->devs[k].addr,
2995 max_sync, 0))
2996 any_working = 0;
2997 }
2998 if (!any_working) {
2999 if (!test_and_set_bit(MD_RECOVERY_INTR,
3000 &mddev->recovery))
3001 printk(KERN_INFO "md/raid10:%s: insufficient "
3002 "working devices for recovery.\n",
3003 mdname(mddev));
24afd80d 3004 mirror->recovery_disabled
e875ecea
N
3005 = mddev->recovery_disabled;
3006 }
ab9d47e9 3007 break;
1da177e4 3008 }
ab9d47e9 3009 }
1da177e4
LT
3010 if (biolist == NULL) {
3011 while (r10_bio) {
9f2c9d12
N
3012 struct r10bio *rb2 = r10_bio;
3013 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3014 rb2->master_bio = NULL;
3015 put_buf(rb2);
3016 }
3017 goto giveup;
3018 }
3019 } else {
3020 /* resync. Schedule a read for every block at this virt offset */
3021 int count = 0;
6cce3b23 3022
78200d45
N
3023 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3024
6cce3b23
N
3025 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3026 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3027 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3028 &mddev->recovery)) {
6cce3b23
N
3029 /* We can skip this block */
3030 *skipped = 1;
3031 return sync_blocks + sectors_skipped;
3032 }
3033 if (sync_blocks < max_sync)
3034 max_sync = sync_blocks;
1da177e4
LT
3035 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3036
1da177e4
LT
3037 r10_bio->mddev = mddev;
3038 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3039 raise_barrier(conf, 0);
3040 conf->next_resync = sector_nr;
1da177e4
LT
3041
3042 r10_bio->master_bio = NULL;
3043 r10_bio->sector = sector_nr;
3044 set_bit(R10BIO_IsSync, &r10_bio->state);
3045 raid10_find_phys(conf, r10_bio);
5cf00fcd 3046 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3047
5cf00fcd 3048 for (i = 0; i < conf->copies; i++) {
1da177e4 3049 int d = r10_bio->devs[i].devnum;
40c356ce
N
3050 sector_t first_bad, sector;
3051 int bad_sectors;
3052
9ad1aefc
N
3053 if (r10_bio->devs[i].repl_bio)
3054 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3055
1da177e4
LT
3056 bio = r10_bio->devs[i].bio;
3057 bio->bi_end_io = NULL;
af03b8e4 3058 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3059 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3060 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3061 continue;
40c356ce
N
3062 sector = r10_bio->devs[i].addr;
3063 if (is_badblock(conf->mirrors[d].rdev,
3064 sector, max_sync,
3065 &first_bad, &bad_sectors)) {
3066 if (first_bad > sector)
3067 max_sync = first_bad - sector;
3068 else {
3069 bad_sectors -= (sector - first_bad);
3070 if (max_sync > bad_sectors)
3071 max_sync = max_sync;
3072 continue;
3073 }
3074 }
1da177e4
LT
3075 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3076 atomic_inc(&r10_bio->remaining);
3077 bio->bi_next = biolist;
3078 biolist = bio;
3079 bio->bi_private = r10_bio;
3080 bio->bi_end_io = end_sync_read;
802ba064 3081 bio->bi_rw = READ;
40c356ce 3082 bio->bi_sector = sector +
1da177e4
LT
3083 conf->mirrors[d].rdev->data_offset;
3084 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3085 count++;
9ad1aefc
N
3086
3087 if (conf->mirrors[d].replacement == NULL ||
3088 test_bit(Faulty,
3089 &conf->mirrors[d].replacement->flags))
3090 continue;
3091
3092 /* Need to set up for writing to the replacement */
3093 bio = r10_bio->devs[i].repl_bio;
3094 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3095
3096 sector = r10_bio->devs[i].addr;
3097 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3098 bio->bi_next = biolist;
3099 biolist = bio;
3100 bio->bi_private = r10_bio;
3101 bio->bi_end_io = end_sync_write;
3102 bio->bi_rw = WRITE;
3103 bio->bi_sector = sector +
3104 conf->mirrors[d].replacement->data_offset;
3105 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3106 count++;
1da177e4
LT
3107 }
3108
3109 if (count < 2) {
3110 for (i=0; i<conf->copies; i++) {
3111 int d = r10_bio->devs[i].devnum;
3112 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3113 rdev_dec_pending(conf->mirrors[d].rdev,
3114 mddev);
9ad1aefc
N
3115 if (r10_bio->devs[i].repl_bio &&
3116 r10_bio->devs[i].repl_bio->bi_end_io)
3117 rdev_dec_pending(
3118 conf->mirrors[d].replacement,
3119 mddev);
1da177e4
LT
3120 }
3121 put_buf(r10_bio);
3122 biolist = NULL;
3123 goto giveup;
3124 }
3125 }
3126
3127 for (bio = biolist; bio ; bio=bio->bi_next) {
3128
3129 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3130 if (bio->bi_end_io)
3131 bio->bi_flags |= 1 << BIO_UPTODATE;
3132 bio->bi_vcnt = 0;
3133 bio->bi_idx = 0;
3134 bio->bi_phys_segments = 0;
1da177e4
LT
3135 bio->bi_size = 0;
3136 }
3137
3138 nr_sectors = 0;
6cce3b23
N
3139 if (sector_nr + max_sync < max_sector)
3140 max_sector = sector_nr + max_sync;
1da177e4
LT
3141 do {
3142 struct page *page;
3143 int len = PAGE_SIZE;
1da177e4
LT
3144 if (sector_nr + (len>>9) > max_sector)
3145 len = (max_sector - sector_nr) << 9;
3146 if (len == 0)
3147 break;
3148 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3149 struct bio *bio2;
1da177e4 3150 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3151 if (bio_add_page(bio, page, len, 0))
3152 continue;
3153
3154 /* stop here */
3155 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3156 for (bio2 = biolist;
3157 bio2 && bio2 != bio;
3158 bio2 = bio2->bi_next) {
3159 /* remove last page from this bio */
3160 bio2->bi_vcnt--;
3161 bio2->bi_size -= len;
3162 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3163 }
ab9d47e9 3164 goto bio_full;
1da177e4
LT
3165 }
3166 nr_sectors += len>>9;
3167 sector_nr += len>>9;
3168 } while (biolist->bi_vcnt < RESYNC_PAGES);
3169 bio_full:
3170 r10_bio->sectors = nr_sectors;
3171
3172 while (biolist) {
3173 bio = biolist;
3174 biolist = biolist->bi_next;
3175
3176 bio->bi_next = NULL;
3177 r10_bio = bio->bi_private;
3178 r10_bio->sectors = nr_sectors;
3179
3180 if (bio->bi_end_io == end_sync_read) {
3181 md_sync_acct(bio->bi_bdev, nr_sectors);
3182 generic_make_request(bio);
3183 }
3184 }
3185
57afd89f
N
3186 if (sectors_skipped)
3187 /* pretend they weren't skipped, it makes
3188 * no important difference in this case
3189 */
3190 md_done_sync(mddev, sectors_skipped, 1);
3191
1da177e4
LT
3192 return sectors_skipped + nr_sectors;
3193 giveup:
3194 /* There is nowhere to write, so all non-sync
e875ecea
N
3195 * drives must be failed or in resync, all drives
3196 * have a bad block, so try the next chunk...
1da177e4 3197 */
09b4068a
N
3198 if (sector_nr + max_sync < max_sector)
3199 max_sector = sector_nr + max_sync;
3200
3201 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3202 chunks_skipped ++;
3203 sector_nr = max_sector;
1da177e4 3204 goto skipped;
1da177e4
LT
3205}
3206
80c3a6ce 3207static sector_t
fd01b88c 3208raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3209{
3210 sector_t size;
e879a879 3211 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3212
3213 if (!raid_disks)
5cf00fcd 3214 raid_disks = conf->geo.raid_disks;
80c3a6ce 3215 if (!sectors)
dab8b292 3216 sectors = conf->dev_sectors;
80c3a6ce 3217
5cf00fcd
N
3218 size = sectors >> conf->geo.chunk_shift;
3219 sector_div(size, conf->geo.far_copies);
80c3a6ce 3220 size = size * raid_disks;
5cf00fcd 3221 sector_div(size, conf->geo.near_copies);
80c3a6ce 3222
5cf00fcd 3223 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3224}
3225
6508fdbf
N
3226static void calc_sectors(struct r10conf *conf, sector_t size)
3227{
3228 /* Calculate the number of sectors-per-device that will
3229 * actually be used, and set conf->dev_sectors and
3230 * conf->stride
3231 */
3232
5cf00fcd
N
3233 size = size >> conf->geo.chunk_shift;
3234 sector_div(size, conf->geo.far_copies);
3235 size = size * conf->geo.raid_disks;
3236 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3237 /* 'size' is now the number of chunks in the array */
3238 /* calculate "used chunks per device" */
3239 size = size * conf->copies;
3240
3241 /* We need to round up when dividing by raid_disks to
3242 * get the stride size.
3243 */
5cf00fcd 3244 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3245
5cf00fcd 3246 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3247
5cf00fcd
N
3248 if (conf->geo.far_offset)
3249 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3250 else {
5cf00fcd
N
3251 sector_div(size, conf->geo.far_copies);
3252 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3253 }
3254}
dab8b292 3255
deb200d0
N
3256enum geo_type {geo_new, geo_old, geo_start};
3257static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3258{
3259 int nc, fc, fo;
3260 int layout, chunk, disks;
3261 switch (new) {
3262 case geo_old:
3263 layout = mddev->layout;
3264 chunk = mddev->chunk_sectors;
3265 disks = mddev->raid_disks - mddev->delta_disks;
3266 break;
3267 case geo_new:
3268 layout = mddev->new_layout;
3269 chunk = mddev->new_chunk_sectors;
3270 disks = mddev->raid_disks;
3271 break;
3272 default: /* avoid 'may be unused' warnings */
3273 case geo_start: /* new when starting reshape - raid_disks not
3274 * updated yet. */
3275 layout = mddev->new_layout;
3276 chunk = mddev->new_chunk_sectors;
3277 disks = mddev->raid_disks + mddev->delta_disks;
3278 break;
3279 }
3280 if (layout >> 17)
3281 return -1;
3282 if (chunk < (PAGE_SIZE >> 9) ||
3283 !is_power_of_2(chunk))
3284 return -2;
3285 nc = layout & 255;
3286 fc = (layout >> 8) & 255;
3287 fo = layout & (1<<16);
3288 geo->raid_disks = disks;
3289 geo->near_copies = nc;
3290 geo->far_copies = fc;
3291 geo->far_offset = fo;
3292 geo->chunk_mask = chunk - 1;
3293 geo->chunk_shift = ffz(~chunk);
3294 return nc*fc;
3295}
3296
e879a879 3297static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3298{
e879a879 3299 struct r10conf *conf = NULL;
dab8b292 3300 int err = -EINVAL;
deb200d0
N
3301 struct geom geo;
3302 int copies;
3303
3304 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3305
deb200d0 3306 if (copies == -2) {
128595ed
N
3307 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3308 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3309 mdname(mddev), PAGE_SIZE);
dab8b292 3310 goto out;
1da177e4 3311 }
2604b703 3312
deb200d0 3313 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3314 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3315 mdname(mddev), mddev->new_layout);
1da177e4
LT
3316 goto out;
3317 }
dab8b292
TM
3318
3319 err = -ENOMEM;
e879a879 3320 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3321 if (!conf)
1da177e4 3322 goto out;
dab8b292 3323
4443ae10 3324 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
3325 GFP_KERNEL);
3326 if (!conf->mirrors)
3327 goto out;
4443ae10
N
3328
3329 conf->tmppage = alloc_page(GFP_KERNEL);
3330 if (!conf->tmppage)
dab8b292
TM
3331 goto out;
3332
deb200d0
N
3333 conf->geo = geo;
3334 conf->copies = copies;
dab8b292
TM
3335 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3336 r10bio_pool_free, conf);
3337 if (!conf->r10bio_pool)
3338 goto out;
3339
6508fdbf 3340 calc_sectors(conf, mddev->dev_sectors);
f8c9e74f
N
3341 conf->prev = conf->geo;
3342 conf->reshape_progress = MaxSector;
1da177e4 3343
e7e72bf6 3344 spin_lock_init(&conf->device_lock);
dab8b292
TM
3345 INIT_LIST_HEAD(&conf->retry_list);
3346
3347 spin_lock_init(&conf->resync_lock);
3348 init_waitqueue_head(&conf->wait_barrier);
3349
3350 conf->thread = md_register_thread(raid10d, mddev, NULL);
3351 if (!conf->thread)
3352 goto out;
3353
dab8b292
TM
3354 conf->mddev = mddev;
3355 return conf;
3356
3357 out:
128595ed 3358 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
3359 mdname(mddev));
3360 if (conf) {
3361 if (conf->r10bio_pool)
3362 mempool_destroy(conf->r10bio_pool);
3363 kfree(conf->mirrors);
3364 safe_put_page(conf->tmppage);
3365 kfree(conf);
3366 }
3367 return ERR_PTR(err);
3368}
3369
fd01b88c 3370static int run(struct mddev *mddev)
dab8b292 3371{
e879a879 3372 struct r10conf *conf;
dab8b292 3373 int i, disk_idx, chunk_size;
0f6d02d5 3374 struct mirror_info *disk;
3cb03002 3375 struct md_rdev *rdev;
dab8b292
TM
3376 sector_t size;
3377
3378 /*
3379 * copy the already verified devices into our private RAID10
3380 * bookkeeping area. [whatever we allocate in run(),
3381 * should be freed in stop()]
3382 */
3383
3384 if (mddev->private == NULL) {
3385 conf = setup_conf(mddev);
3386 if (IS_ERR(conf))
3387 return PTR_ERR(conf);
3388 mddev->private = conf;
3389 }
3390 conf = mddev->private;
3391 if (!conf)
3392 goto out;
3393
dab8b292
TM
3394 mddev->thread = conf->thread;
3395 conf->thread = NULL;
3396
8f6c2e4b
MP
3397 chunk_size = mddev->chunk_sectors << 9;
3398 blk_queue_io_min(mddev->queue, chunk_size);
5cf00fcd
N
3399 if (conf->geo.raid_disks % conf->geo.near_copies)
3400 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
8f6c2e4b
MP
3401 else
3402 blk_queue_io_opt(mddev->queue, chunk_size *
5cf00fcd 3403 (conf->geo.raid_disks / conf->geo.near_copies));
8f6c2e4b 3404
dafb20fa 3405 rdev_for_each(rdev, mddev) {
34b343cf 3406
1da177e4 3407 disk_idx = rdev->raid_disk;
f8c9e74f
N
3408 if (disk_idx < 0)
3409 continue;
3410 if (disk_idx >= conf->geo.raid_disks &&
3411 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3412 continue;
3413 disk = conf->mirrors + disk_idx;
3414
56a2559b
N
3415 if (test_bit(Replacement, &rdev->flags)) {
3416 if (disk->replacement)
3417 goto out_free_conf;
3418 disk->replacement = rdev;
3419 } else {
3420 if (disk->rdev)
3421 goto out_free_conf;
3422 disk->rdev = rdev;
3423 }
3424
8f6c2e4b
MP
3425 disk_stack_limits(mddev->gendisk, rdev->bdev,
3426 rdev->data_offset << 9);
1da177e4
LT
3427
3428 disk->head_position = 0;
1da177e4 3429 }
6d508242 3430 /* need to check that every block has at least one working mirror */
700c7213 3431 if (!enough(conf, -1)) {
128595ed 3432 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3433 mdname(mddev));
1da177e4
LT
3434 goto out_free_conf;
3435 }
3436
3437 mddev->degraded = 0;
f8c9e74f
N
3438 for (i = 0;
3439 i < conf->geo.raid_disks
3440 || i < conf->prev.raid_disks;
3441 i++) {
1da177e4
LT
3442
3443 disk = conf->mirrors + i;
3444
56a2559b
N
3445 if (!disk->rdev && disk->replacement) {
3446 /* The replacement is all we have - use it */
3447 disk->rdev = disk->replacement;
3448 disk->replacement = NULL;
3449 clear_bit(Replacement, &disk->rdev->flags);
3450 }
3451
5fd6c1dc 3452 if (!disk->rdev ||
2e333e89 3453 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3454 disk->head_position = 0;
3455 mddev->degraded++;
8c2e870a
NB
3456 if (disk->rdev)
3457 conf->fullsync = 1;
1da177e4 3458 }
d890fa2b 3459 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3460 }
3461
8c6ac868 3462 if (mddev->recovery_cp != MaxSector)
128595ed 3463 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3464 " -- starting background reconstruction\n",
3465 mdname(mddev));
1da177e4 3466 printk(KERN_INFO
128595ed 3467 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3468 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3469 conf->geo.raid_disks);
1da177e4
LT
3470 /*
3471 * Ok, everything is just fine now
3472 */
dab8b292
TM
3473 mddev->dev_sectors = conf->dev_sectors;
3474 size = raid10_size(mddev, 0, 0);
3475 md_set_array_sectors(mddev, size);
3476 mddev->resync_max_sectors = size;
1da177e4 3477
0d129228
N
3478 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3479 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 3480
1da177e4
LT
3481 /* Calculate max read-ahead size.
3482 * We need to readahead at least twice a whole stripe....
3483 * maybe...
3484 */
3485 {
5cf00fcd 3486 int stripe = conf->geo.raid_disks *
9d8f0363 3487 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5cf00fcd 3488 stripe /= conf->geo.near_copies;
1da177e4
LT
3489 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3490 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3491 }
3492
050b6615 3493 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
3494
3495 if (md_integrity_register(mddev))
3496 goto out_free_conf;
3497
1da177e4
LT
3498 return 0;
3499
3500out_free_conf:
01f96c0a 3501 md_unregister_thread(&mddev->thread);
1da177e4
LT
3502 if (conf->r10bio_pool)
3503 mempool_destroy(conf->r10bio_pool);
1345b1d8 3504 safe_put_page(conf->tmppage);
990a8baf 3505 kfree(conf->mirrors);
1da177e4
LT
3506 kfree(conf);
3507 mddev->private = NULL;
3508out:
3509 return -EIO;
3510}
3511
fd01b88c 3512static int stop(struct mddev *mddev)
1da177e4 3513{
e879a879 3514 struct r10conf *conf = mddev->private;
1da177e4 3515
409c57f3
N
3516 raise_barrier(conf, 0);
3517 lower_barrier(conf);
3518
01f96c0a 3519 md_unregister_thread(&mddev->thread);
1da177e4
LT
3520 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3521 if (conf->r10bio_pool)
3522 mempool_destroy(conf->r10bio_pool);
990a8baf 3523 kfree(conf->mirrors);
1da177e4
LT
3524 kfree(conf);
3525 mddev->private = NULL;
3526 return 0;
3527}
3528
fd01b88c 3529static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3530{
e879a879 3531 struct r10conf *conf = mddev->private;
6cce3b23
N
3532
3533 switch(state) {
3534 case 1:
3535 raise_barrier(conf, 0);
3536 break;
3537 case 0:
3538 lower_barrier(conf);
3539 break;
3540 }
6cce3b23 3541}
1da177e4 3542
006a09a0
N
3543static int raid10_resize(struct mddev *mddev, sector_t sectors)
3544{
3545 /* Resize of 'far' arrays is not supported.
3546 * For 'near' and 'offset' arrays we can set the
3547 * number of sectors used to be an appropriate multiple
3548 * of the chunk size.
3549 * For 'offset', this is far_copies*chunksize.
3550 * For 'near' the multiplier is the LCM of
3551 * near_copies and raid_disks.
3552 * So if far_copies > 1 && !far_offset, fail.
3553 * Else find LCM(raid_disks, near_copy)*far_copies and
3554 * multiply by chunk_size. Then round to this number.
3555 * This is mostly done by raid10_size()
3556 */
3557 struct r10conf *conf = mddev->private;
3558 sector_t oldsize, size;
3559
f8c9e74f
N
3560 if (mddev->reshape_position != MaxSector)
3561 return -EBUSY;
3562
5cf00fcd 3563 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3564 return -EINVAL;
3565
3566 oldsize = raid10_size(mddev, 0, 0);
3567 size = raid10_size(mddev, sectors, 0);
3568 md_set_array_sectors(mddev, size);
3569 if (mddev->array_sectors > size)
3570 return -EINVAL;
3571 set_capacity(mddev->gendisk, mddev->array_sectors);
3572 revalidate_disk(mddev->gendisk);
3573 if (sectors > mddev->dev_sectors &&
3574 mddev->recovery_cp > oldsize) {
3575 mddev->recovery_cp = oldsize;
3576 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3577 }
6508fdbf
N
3578 calc_sectors(conf, sectors);
3579 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3580 mddev->resync_max_sectors = size;
3581 return 0;
3582}
3583
fd01b88c 3584static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3585{
3cb03002 3586 struct md_rdev *rdev;
e879a879 3587 struct r10conf *conf;
dab8b292
TM
3588
3589 if (mddev->degraded > 0) {
128595ed
N
3590 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3591 mdname(mddev));
dab8b292
TM
3592 return ERR_PTR(-EINVAL);
3593 }
3594
dab8b292
TM
3595 /* Set new parameters */
3596 mddev->new_level = 10;
3597 /* new layout: far_copies = 1, near_copies = 2 */
3598 mddev->new_layout = (1<<8) + 2;
3599 mddev->new_chunk_sectors = mddev->chunk_sectors;
3600 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3601 mddev->raid_disks *= 2;
3602 /* make sure it will be not marked as dirty */
3603 mddev->recovery_cp = MaxSector;
3604
3605 conf = setup_conf(mddev);
02214dc5 3606 if (!IS_ERR(conf)) {
dafb20fa 3607 rdev_for_each(rdev, mddev)
e93f68a1
N
3608 if (rdev->raid_disk >= 0)
3609 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3610 conf->barrier = 1;
3611 }
3612
dab8b292
TM
3613 return conf;
3614}
3615
fd01b88c 3616static void *raid10_takeover(struct mddev *mddev)
dab8b292 3617{
e373ab10 3618 struct r0conf *raid0_conf;
dab8b292
TM
3619
3620 /* raid10 can take over:
3621 * raid0 - providing it has only two drives
3622 */
3623 if (mddev->level == 0) {
3624 /* for raid0 takeover only one zone is supported */
e373ab10
N
3625 raid0_conf = mddev->private;
3626 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3627 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3628 " with more than one zone.\n",
3629 mdname(mddev));
dab8b292
TM
3630 return ERR_PTR(-EINVAL);
3631 }
3632 return raid10_takeover_raid0(mddev);
3633 }
3634 return ERR_PTR(-EINVAL);
3635}
3636
84fc4b56 3637static struct md_personality raid10_personality =
1da177e4
LT
3638{
3639 .name = "raid10",
2604b703 3640 .level = 10,
1da177e4
LT
3641 .owner = THIS_MODULE,
3642 .make_request = make_request,
3643 .run = run,
3644 .stop = stop,
3645 .status = status,
3646 .error_handler = error,
3647 .hot_add_disk = raid10_add_disk,
3648 .hot_remove_disk= raid10_remove_disk,
3649 .spare_active = raid10_spare_active,
3650 .sync_request = sync_request,
6cce3b23 3651 .quiesce = raid10_quiesce,
80c3a6ce 3652 .size = raid10_size,
006a09a0 3653 .resize = raid10_resize,
dab8b292 3654 .takeover = raid10_takeover,
1da177e4
LT
3655};
3656
3657static int __init raid_init(void)
3658{
2604b703 3659 return register_md_personality(&raid10_personality);
1da177e4
LT
3660}
3661
3662static void raid_exit(void)
3663{
2604b703 3664 unregister_md_personality(&raid10_personality);
1da177e4
LT
3665}
3666
3667module_init(raid_init);
3668module_exit(raid_exit);
3669MODULE_LICENSE("GPL");
0efb9e61 3670MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 3671MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 3672MODULE_ALIAS("md-raid10");
2604b703 3673MODULE_ALIAS("md-level-10");
34db0cd6
N
3674
3675module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);