]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid10.c
md/raid5: allow 5-device RAID6 to be reshaped to 4-device.
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
1da177e4 42 *
475901af
JB
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
1da177e4
LT
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
473e87ce
JB
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
34db0cd6
N
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
e879a879
N
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
635f6416 100static int _enough(struct r10conf *conf, int previous, int ignore);
3ea7daa5
N
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
0a27ec96 106
dd0fc66f 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 108{
e879a879 109 struct r10conf *conf = data;
9f2c9d12 110 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 111
69335ef3
N
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
7eaceacc 114 return kzalloc(size, gfp_flags);
1da177e4
LT
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
0310fa21 122/* Maximum size of each resync request */
1da177e4 123#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
dd0fc66f 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 138{
e879a879 139 struct r10conf *conf = data;
1da177e4 140 struct page *page;
9f2c9d12 141 struct r10bio *r10_bio;
1da177e4
LT
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 147 if (!r10_bio)
1da177e4 148 return NULL;
1da177e4 149
3ea7daa5
N
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
6746557f 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
69335ef3
N
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
69335ef3 176 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
c65060ad
NK
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
1da177e4
LT
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
1345b1d8 201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 205 j = 0;
1da177e4 206out_free_bio:
5fdd2cf8 207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
69335ef3
N
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
1da177e4
LT
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
e879a879 220 struct r10conf *conf = data;
9f2c9d12 221 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 228 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
69335ef3
N
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
1da177e4
LT
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
e879a879 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 246 if (!BIO_SPECIAL(*bio))
1da177e4
LT
247 bio_put(*bio);
248 *bio = NULL;
69335ef3
N
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
1da177e4
LT
253 }
254}
255
9f2c9d12 256static void free_r10bio(struct r10bio *r10_bio)
1da177e4 257{
e879a879 258 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 259
1da177e4
LT
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
9f2c9d12 264static void put_buf(struct r10bio *r10_bio)
1da177e4 265{
e879a879 266 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
0a27ec96 270 lower_barrier(conf);
1da177e4
LT
271}
272
9f2c9d12 273static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
274{
275 unsigned long flags;
fd01b88c 276 struct mddev *mddev = r10_bio->mddev;
e879a879 277 struct r10conf *conf = mddev->private;
1da177e4
LT
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 281 conf->nr_queued ++;
1da177e4
LT
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
388667be
AJ
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
1da177e4
LT
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
9f2c9d12 295static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
296{
297 struct bio *bio = r10_bio->master_bio;
856e08e2 298 int done;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
856e08e2
N
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
1da177e4
LT
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
9f2c9d12 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 326{
e879a879 327 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
778ca018
NK
333/*
334 * Find the disk number which triggered given bio
335 */
e879a879 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 337 struct bio *bio, int *slotp, int *replp)
778ca018
NK
338{
339 int slot;
69335ef3 340 int repl = 0;
778ca018 341
69335ef3 342 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
343 if (r10_bio->devs[slot].bio == bio)
344 break;
69335ef3
N
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
778ca018
NK
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
749c55e9
N
354 if (slotp)
355 *slotp = slot;
69335ef3
N
356 if (replp)
357 *replp = repl;
778ca018
NK
358 return r10_bio->devs[slot].devnum;
359}
360
6712ecf8 361static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 364 struct r10bio *r10_bio = bio->bi_private;
1da177e4 365 int slot, dev;
abbf098e 366 struct md_rdev *rdev;
e879a879 367 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 368
1da177e4
LT
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
635f6416
N
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
fae8cc5e 397 uptodate = 1;
fae8cc5e
N
398 }
399 if (uptodate) {
1da177e4 400 raid_end_bio_io(r10_bio);
abbf098e 401 rdev_dec_pending(rdev, conf->mddev);
4443ae10 402 } else {
1da177e4 403 /*
7c4e06ff 404 * oops, read error - keep the refcount on the rdev
1da177e4
LT
405 */
406 char b[BDEVNAME_SIZE];
8bda470e
CD
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
abbf098e 410 bdevname(rdev->bdev, b),
8bda470e 411 (unsigned long long)r10_bio->sector);
856e08e2 412 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
413 reschedule_retry(r10_bio);
414 }
1da177e4
LT
415}
416
9f2c9d12 417static void close_write(struct r10bio *r10_bio)
bd870a16
N
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
9f2c9d12 427static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
6712ecf8 442static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
443{
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 445 struct r10bio *r10_bio = bio->bi_private;
778ca018 446 int dev;
749c55e9 447 int dec_rdev = 1;
e879a879 448 struct r10conf *conf = r10_bio->mddev->private;
475b0321 449 int slot, repl;
4ca40c2c 450 struct md_rdev *rdev = NULL;
1da177e4 451
475b0321 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 453
475b0321
N
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
475b0321 459 rdev = conf->mirrors[dev].rdev;
4ca40c2c 460 }
1da177e4
LT
461 /*
462 * this branch is our 'one mirror IO has finished' event handler:
463 */
6cce3b23 464 if (!uptodate) {
475b0321
N
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
468 */
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475b0321
N
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
477 }
749c55e9 478 } else {
1da177e4
LT
479 /*
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
483 *
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
487 */
749c55e9
N
488 sector_t first_bad;
489 int bad_sectors;
490
3056e3ae
AL
491 /*
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
498 */
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 502
749c55e9 503 /* Maybe we can clear some bad blocks. */
475b0321 504 if (is_badblock(rdev,
749c55e9
N
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
475b0321
N
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
515 }
516 }
517
1da177e4
LT
518 /*
519 *
520 * Let's see if all mirrored write operations have finished
521 * already.
522 */
19d5f834 523 one_write_done(r10_bio);
749c55e9 524 if (dec_rdev)
884162df 525 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
526}
527
1da177e4
LT
528/*
529 * RAID10 layout manager
25985edc 530 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
536 *
25985edc 537 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
545 *
546 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 547 * on each device that it is on.
1da177e4
LT
548 *
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
551 */
552
f8c9e74f 553static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
554{
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
1da177e4 560 int slot = 0;
9a3152ab
JB
561 int last_far_set_start, last_far_set_size;
562
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
565
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
568
569 /* now calculate first sector/dev */
5cf00fcd
N
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
1da177e4 572
5cf00fcd 573 chunk *= geo->near_copies;
1da177e4 574 stripe = chunk;
5cf00fcd
N
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
1da177e4 578
5cf00fcd 579 sector += stripe << geo->chunk_shift;
1da177e4
LT
580
581 /* and calculate all the others */
5cf00fcd 582 for (n = 0; n < geo->near_copies; n++) {
1da177e4 583 int d = dev;
475901af 584 int set;
1da177e4 585 sector_t s = sector;
1da177e4 586 r10bio->devs[slot].devnum = d;
4c0ca26b 587 r10bio->devs[slot].addr = s;
1da177e4
LT
588 slot++;
589
5cf00fcd 590 for (f = 1; f < geo->far_copies; f++) {
475901af 591 set = d / geo->far_set_size;
5cf00fcd 592 d += geo->near_copies;
475901af 593
9a3152ab
JB
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
602 }
5cf00fcd 603 s += geo->stride;
1da177e4
LT
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
607 }
608 dev++;
5cf00fcd 609 if (dev >= geo->raid_disks) {
1da177e4 610 dev = 0;
5cf00fcd 611 sector += (geo->chunk_mask + 1);
1da177e4
LT
612 }
613 }
f8c9e74f
N
614}
615
616static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617{
618 struct geom *geo = &conf->geo;
619
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
627
628 __raid10_find_phys(geo, r10bio);
1da177e4
LT
629}
630
e879a879 631static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
632{
633 sector_t offset, chunk, vchunk;
f8c9e74f
N
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
636 */
5cf00fcd 637 struct geom *geo = &conf->geo;
475901af
JB
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
9a3152ab
JB
640 int last_far_set_start;
641
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
645
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
650 }
651 }
1da177e4 652
5cf00fcd
N
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
c93983bf 655 int fc;
5cf00fcd
N
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
475901af
JB
659 if (dev < far_set_start)
660 dev += far_set_size;
c93983bf 661 } else {
5cf00fcd
N
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
475901af
JB
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
c93983bf 666 else
5cf00fcd 667 dev -= geo->near_copies;
c93983bf 668 }
5cf00fcd 669 chunk = sector >> geo->chunk_shift;
c93983bf 670 }
5cf00fcd
N
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
674}
675
676/**
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
cc371e66 679 * @bvm: properties of new bio
1da177e4
LT
680 * @biovec: the request that could be merged to it.
681 *
682 * Return amount of bytes we can accept at this offset
050b6615
N
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 685 */
cc371e66
AK
686static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
1da177e4 689{
fd01b88c 690 struct mddev *mddev = q->queuedata;
050b6615 691 struct r10conf *conf = mddev->private;
cc371e66 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 693 int max;
3ea7daa5 694 unsigned int chunk_sectors;
cc371e66 695 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 696 struct geom *geo = &conf->geo;
1da177e4 697
3ea7daa5 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
703
5cf00fcd 704 if (geo->near_copies < geo->raid_disks) {
050b6615
N
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
714
715 if (mddev->merge_check_needed) {
e0ee7785
N
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 721 int s;
f8c9e74f
N
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
727 }
e0ee7785
N
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
050b6615
N
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
e0ee7785 732 int disk = r10_bio->devs[s].devnum;
050b6615
N
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
e0ee7785 739 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
744 }
745 }
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
e0ee7785 751 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
756 }
757 }
758 }
759 rcu_read_unlock();
760 }
761 return max;
1da177e4
LT
762}
763
764/*
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
772 *
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
775 *
776 * The rdev for the device selected will have nr_pending incremented.
777 */
778
779/*
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
782 */
96c3fd1f
N
783static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
1da177e4 786{
af3a2cd6 787 const sector_t this_sector = r10_bio->sector;
56d99121 788 int disk, slot;
856e08e2
N
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
56d99121 791 sector_t new_distance, best_dist;
3bbae04b 792 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
793 int do_balance;
794 int best_slot;
5cf00fcd 795 struct geom *geo = &conf->geo;
1da177e4
LT
796
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
56d99121 799retry:
856e08e2 800 sectors = r10_bio->sectors;
56d99121 801 best_slot = -1;
abbf098e 802 best_rdev = NULL;
56d99121 803 best_dist = MaxSector;
856e08e2 804 best_good_sectors = 0;
56d99121 805 do_balance = 1;
1da177e4
LT
806 /*
807 * Check if we can balance. We can balance on the whole
6cce3b23
N
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
1da177e4
LT
811 */
812 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
1da177e4 815
56d99121 816 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
820
56d99121
N
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
1da177e4 823 disk = r10_bio->devs[slot].devnum;
abbf098e
N
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 826 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
abbf098e
N
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
835 continue;
836
856e08e2
N
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
847 */
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
abbf098e 859 best_rdev = rdev;
856e08e2
N
860 }
861 if (!do_balance)
862 /* Must read from here */
863 break;
864 }
865 continue;
866 } else
867 best_good_sectors = sectors;
868
56d99121
N
869 if (!do_balance)
870 break;
1da177e4 871
22dfdf52
N
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
875 */
5cf00fcd 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 877 break;
8ed3a195
KS
878
879 /* for far > 1 always use the lowest address */
5cf00fcd 880 if (geo->far_copies > 1)
56d99121 881 new_distance = r10_bio->devs[slot].addr;
8ed3a195 882 else
56d99121
N
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
abbf098e 888 best_rdev = rdev;
1da177e4
LT
889 }
890 }
abbf098e 891 if (slot >= conf->copies) {
56d99121 892 slot = best_slot;
abbf098e
N
893 rdev = best_rdev;
894 }
1da177e4 895
56d99121 896 if (slot >= 0) {
56d99121
N
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
901 */
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
904 }
905 r10_bio->read_slot = slot;
906 } else
96c3fd1f 907 rdev = NULL;
1da177e4 908 rcu_read_unlock();
856e08e2 909 *max_sectors = best_good_sectors;
1da177e4 910
96c3fd1f 911 return rdev;
1da177e4
LT
912}
913
cc4d1efd 914int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 915{
e879a879 916 struct r10conf *conf = mddev->private;
0d129228
N
917 int i, ret = 0;
918
34db0cd6
N
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
922
0d129228 923 rcu_read_lock();
f8c9e74f
N
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
3cb03002 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 930 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
931
932 ret |= bdi_congested(&q->backing_dev_info, bits);
933 }
934 }
935 rcu_read_unlock();
936 return ret;
937}
cc4d1efd
JB
938EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940static int raid10_congested(void *data, int bits)
941{
942 struct mddev *mddev = data;
943
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
946}
0d129228 947
e879a879 948static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
949{
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
a35e63ef 952 */
a35e63ef
N
953 spin_lock_irq(&conf->device_lock);
954
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 958 conf->pending_count = 0;
a35e63ef
N
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 963 wake_up(&conf->wait_barrier);
a35e63ef
N
964
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
532a2a3f
SL
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
a35e63ef
N
974 bio = next;
975 }
a35e63ef
N
976 } else
977 spin_unlock_irq(&conf->device_lock);
a35e63ef 978}
7eaceacc 979
0a27ec96
N
980/* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
993 *
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1da177e4 1000 */
1da177e4 1001
e879a879 1002static void raise_barrier(struct r10conf *conf, int force)
1da177e4 1003{
6cce3b23 1004 BUG_ON(force && !conf->barrier);
1da177e4 1005 spin_lock_irq(&conf->resync_lock);
0a27ec96 1006
6cce3b23
N
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 1009 conf->resync_lock);
0a27ec96
N
1010
1011 /* block any new IO from starting */
1012 conf->barrier++;
1013
c3b328ac 1014 /* Now wait for all pending IO to complete */
0a27ec96
N
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 1017 conf->resync_lock);
0a27ec96
N
1018
1019 spin_unlock_irq(&conf->resync_lock);
1020}
1021
e879a879 1022static void lower_barrier(struct r10conf *conf)
0a27ec96
N
1023{
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1029}
1030
e879a879 1031static void wait_barrier(struct r10conf *conf)
0a27ec96
N
1032{
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
d6b42dcb
N
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1044 */
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
eed8c02e 1050 conf->resync_lock);
0a27ec96 1051 conf->nr_waiting--;
1da177e4 1052 }
0a27ec96 1053 conf->nr_pending++;
1da177e4
LT
1054 spin_unlock_irq(&conf->resync_lock);
1055}
1056
e879a879 1057static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1058{
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1064}
1065
e2d59925 1066static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1067{
1068 /* stop syncio and normal IO and wait for everything to
f188593e 1069 * go quiet.
4443ae10 1070 * We increment barrier and nr_waiting, and then
e2d59925 1071 * wait until nr_pending match nr_queued+extra
1c830532
N
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
e2d59925 1076 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
4443ae10
N
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
eed8c02e 1083 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 1084 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
c3b328ac 1087
4443ae10
N
1088 spin_unlock_irq(&conf->resync_lock);
1089}
1090
e879a879 1091static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1092{
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1099}
1100
f8c9e74f
N
1101static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1103{
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1109}
1110
57c67df4
N
1111struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1115};
1116
1117static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118{
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1124
874807a8 1125 if (from_schedule || current->bio_list) {
57c67df4
N
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
ee0b0244 1130 wake_up(&conf->wait_barrier);
57c67df4
N
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1134 }
1135
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1140
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
32f9f570
SL
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
57c67df4
N
1150 bio = next;
1151 }
1152 kfree(plug);
1153}
1154
b4fdcb02 1155static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1156{
e879a879 1157 struct r10conf *conf = mddev->private;
9f2c9d12 1158 struct r10bio *r10_bio;
1da177e4
LT
1159 struct bio *read_bio;
1160 int i;
f8c9e74f 1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1162 int chunk_sects = chunk_mask + 1;
a362357b 1163 const int rw = bio_data_dir(bio);
2c7d46ec 1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1166 const unsigned long do_discard = (bio->bi_rw
1167 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1169 unsigned long flags;
3cb03002 1170 struct md_rdev *blocked_rdev;
57c67df4
N
1171 struct blk_plug_cb *cb;
1172 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1173 int sectors_handled;
1174 int max_sectors;
3ea7daa5 1175 int sectors;
1da177e4 1176
e9c7469b
TH
1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 md_flush_request(mddev, bio);
5a7bbad2 1179 return;
e5dcdd80
N
1180 }
1181
1da177e4
LT
1182 /* If this request crosses a chunk boundary, we need to
1183 * split it. This will only happen for 1 PAGE (or less) requests.
1184 */
aa8b57aa 1185 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
5cf00fcd 1186 > chunk_sects
f8c9e74f
N
1187 && (conf->geo.near_copies < conf->geo.raid_disks
1188 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1189 struct bio_pair *bp;
1190 /* Sanity check -- queue functions should prevent this happening */
5b83636a 1191 if (bio_segments(bio) > 1)
1da177e4
LT
1192 goto bad_map;
1193 /* This is a one page bio that upper layers
1194 * refuse to split for us, so we need to split it.
1195 */
6feef531 1196 bp = bio_split(bio,
1da177e4 1197 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1198
1199 /* Each of these 'make_request' calls will call 'wait_barrier'.
1200 * If the first succeeds but the second blocks due to the resync
1201 * thread raising the barrier, we will deadlock because the
1202 * IO to the underlying device will be queued in generic_make_request
1203 * and will never complete, so will never reduce nr_pending.
1204 * So increment nr_waiting here so no new raise_barriers will
1205 * succeed, and so the second wait_barrier cannot block.
1206 */
1207 spin_lock_irq(&conf->resync_lock);
1208 conf->nr_waiting++;
1209 spin_unlock_irq(&conf->resync_lock);
1210
5a7bbad2
CH
1211 make_request(mddev, &bp->bio1);
1212 make_request(mddev, &bp->bio2);
1da177e4 1213
51e9ac77
N
1214 spin_lock_irq(&conf->resync_lock);
1215 conf->nr_waiting--;
1216 wake_up(&conf->wait_barrier);
1217 spin_unlock_irq(&conf->resync_lock);
1218
1da177e4 1219 bio_pair_release(bp);
5a7bbad2 1220 return;
1da177e4 1221 bad_map:
128595ed
N
1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
aa8b57aa 1224 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1da177e4 1225
6712ecf8 1226 bio_io_error(bio);
5a7bbad2 1227 return;
1da177e4
LT
1228 }
1229
3d310eb7 1230 md_write_start(mddev, bio);
06d91a5f 1231
1da177e4
LT
1232 /*
1233 * Register the new request and wait if the reconstruction
1234 * thread has put up a bar for new requests.
1235 * Continue immediately if no resync is active currently.
1236 */
0a27ec96 1237 wait_barrier(conf);
1da177e4 1238
aa8b57aa 1239 sectors = bio_sectors(bio);
3ea7daa5
N
1240 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 bio->bi_sector < conf->reshape_progress &&
1242 bio->bi_sector + sectors > conf->reshape_progress) {
1243 /* IO spans the reshape position. Need to wait for
1244 * reshape to pass
1245 */
1246 allow_barrier(conf);
1247 wait_event(conf->wait_barrier,
1248 conf->reshape_progress <= bio->bi_sector ||
1249 conf->reshape_progress >= bio->bi_sector + sectors);
1250 wait_barrier(conf);
1251 }
1252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253 bio_data_dir(bio) == WRITE &&
1254 (mddev->reshape_backwards
1255 ? (bio->bi_sector < conf->reshape_safe &&
1256 bio->bi_sector + sectors > conf->reshape_progress)
1257 : (bio->bi_sector + sectors > conf->reshape_safe &&
1258 bio->bi_sector < conf->reshape_progress))) {
1259 /* Need to update reshape_position in metadata */
1260 mddev->reshape_position = conf->reshape_progress;
1261 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263 md_wakeup_thread(mddev->thread);
1264 wait_event(mddev->sb_wait,
1265 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1266
1267 conf->reshape_safe = mddev->reshape_position;
1268 }
1269
1da177e4
LT
1270 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1271
1272 r10_bio->master_bio = bio;
3ea7daa5 1273 r10_bio->sectors = sectors;
1da177e4
LT
1274
1275 r10_bio->mddev = mddev;
1276 r10_bio->sector = bio->bi_sector;
6cce3b23 1277 r10_bio->state = 0;
1da177e4 1278
856e08e2
N
1279 /* We might need to issue multiple reads to different
1280 * devices if there are bad blocks around, so we keep
1281 * track of the number of reads in bio->bi_phys_segments.
1282 * If this is 0, there is only one r10_bio and no locking
1283 * will be needed when the request completes. If it is
1284 * non-zero, then it is the number of not-completed requests.
1285 */
1286 bio->bi_phys_segments = 0;
1287 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1288
a362357b 1289 if (rw == READ) {
1da177e4
LT
1290 /*
1291 * read balancing logic:
1292 */
96c3fd1f 1293 struct md_rdev *rdev;
856e08e2
N
1294 int slot;
1295
1296read_again:
96c3fd1f
N
1297 rdev = read_balance(conf, r10_bio, &max_sectors);
1298 if (!rdev) {
1da177e4 1299 raid_end_bio_io(r10_bio);
5a7bbad2 1300 return;
1da177e4 1301 }
96c3fd1f 1302 slot = r10_bio->read_slot;
1da177e4 1303
a167f663 1304 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1305 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1306 max_sectors);
1da177e4
LT
1307
1308 r10_bio->devs[slot].bio = read_bio;
abbf098e 1309 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1310
1311 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1312 choose_data_offset(r10_bio, rdev);
96c3fd1f 1313 read_bio->bi_bdev = rdev->bdev;
1da177e4 1314 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1315 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1316 read_bio->bi_private = r10_bio;
1317
856e08e2
N
1318 if (max_sectors < r10_bio->sectors) {
1319 /* Could not read all from this device, so we will
1320 * need another r10_bio.
1321 */
856e08e2
N
1322 sectors_handled = (r10_bio->sectors + max_sectors
1323 - bio->bi_sector);
1324 r10_bio->sectors = max_sectors;
1325 spin_lock_irq(&conf->device_lock);
1326 if (bio->bi_phys_segments == 0)
1327 bio->bi_phys_segments = 2;
1328 else
1329 bio->bi_phys_segments++;
1330 spin_unlock(&conf->device_lock);
1331 /* Cannot call generic_make_request directly
1332 * as that will be queued in __generic_make_request
1333 * and subsequent mempool_alloc might block
1334 * waiting for it. so hand bio over to raid10d.
1335 */
1336 reschedule_retry(r10_bio);
1337
1338 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1339
1340 r10_bio->master_bio = bio;
aa8b57aa 1341 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1342 r10_bio->state = 0;
1343 r10_bio->mddev = mddev;
1344 r10_bio->sector = bio->bi_sector + sectors_handled;
1345 goto read_again;
1346 } else
1347 generic_make_request(read_bio);
5a7bbad2 1348 return;
1da177e4
LT
1349 }
1350
1351 /*
1352 * WRITE:
1353 */
34db0cd6
N
1354 if (conf->pending_count >= max_queued_requests) {
1355 md_wakeup_thread(mddev->thread);
1356 wait_event(conf->wait_barrier,
1357 conf->pending_count < max_queued_requests);
1358 }
6bfe0b49 1359 /* first select target devices under rcu_lock and
1da177e4
LT
1360 * inc refcount on their rdev. Record them by setting
1361 * bios[x] to bio
d4432c23
N
1362 * If there are known/acknowledged bad blocks on any device
1363 * on which we have seen a write error, we want to avoid
1364 * writing to those blocks. This potentially requires several
1365 * writes to write around the bad blocks. Each set of writes
1366 * gets its own r10_bio with a set of bios attached. The number
1367 * of r10_bios is recored in bio->bi_phys_segments just as with
1368 * the read case.
1da177e4 1369 */
c3b328ac 1370
69335ef3 1371 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1372 raid10_find_phys(conf, r10_bio);
d4432c23 1373retry_write:
cb6969e8 1374 blocked_rdev = NULL;
1da177e4 1375 rcu_read_lock();
d4432c23
N
1376 max_sectors = r10_bio->sectors;
1377
1da177e4
LT
1378 for (i = 0; i < conf->copies; i++) {
1379 int d = r10_bio->devs[i].devnum;
3cb03002 1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1381 struct md_rdev *rrdev = rcu_dereference(
1382 conf->mirrors[d].replacement);
4ca40c2c
N
1383 if (rdev == rrdev)
1384 rrdev = NULL;
6bfe0b49
DW
1385 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386 atomic_inc(&rdev->nr_pending);
1387 blocked_rdev = rdev;
1388 break;
1389 }
475b0321
N
1390 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391 atomic_inc(&rrdev->nr_pending);
1392 blocked_rdev = rrdev;
1393 break;
1394 }
e7c0c3fa
N
1395 if (rdev && (test_bit(Faulty, &rdev->flags)
1396 || test_bit(Unmerged, &rdev->flags)))
1397 rdev = NULL;
050b6615
N
1398 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1400 rrdev = NULL;
1401
d4432c23 1402 r10_bio->devs[i].bio = NULL;
475b0321 1403 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1404
1405 if (!rdev && !rrdev) {
6cce3b23 1406 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1407 continue;
1408 }
e7c0c3fa 1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1410 sector_t first_bad;
1411 sector_t dev_sector = r10_bio->devs[i].addr;
1412 int bad_sectors;
1413 int is_bad;
1414
1415 is_bad = is_badblock(rdev, dev_sector,
1416 max_sectors,
1417 &first_bad, &bad_sectors);
1418 if (is_bad < 0) {
1419 /* Mustn't write here until the bad block
1420 * is acknowledged
1421 */
1422 atomic_inc(&rdev->nr_pending);
1423 set_bit(BlockedBadBlocks, &rdev->flags);
1424 blocked_rdev = rdev;
1425 break;
1426 }
1427 if (is_bad && first_bad <= dev_sector) {
1428 /* Cannot write here at all */
1429 bad_sectors -= (dev_sector - first_bad);
1430 if (bad_sectors < max_sectors)
1431 /* Mustn't write more than bad_sectors
1432 * to other devices yet
1433 */
1434 max_sectors = bad_sectors;
1435 /* We don't set R10BIO_Degraded as that
1436 * only applies if the disk is missing,
1437 * so it might be re-added, and we want to
1438 * know to recover this chunk.
1439 * In this case the device is here, and the
1440 * fact that this chunk is not in-sync is
1441 * recorded in the bad block log.
1442 */
1443 continue;
1444 }
1445 if (is_bad) {
1446 int good_sectors = first_bad - dev_sector;
1447 if (good_sectors < max_sectors)
1448 max_sectors = good_sectors;
1449 }
6cce3b23 1450 }
e7c0c3fa
N
1451 if (rdev) {
1452 r10_bio->devs[i].bio = bio;
1453 atomic_inc(&rdev->nr_pending);
1454 }
475b0321
N
1455 if (rrdev) {
1456 r10_bio->devs[i].repl_bio = bio;
1457 atomic_inc(&rrdev->nr_pending);
1458 }
1da177e4
LT
1459 }
1460 rcu_read_unlock();
1461
6bfe0b49
DW
1462 if (unlikely(blocked_rdev)) {
1463 /* Have to wait for this device to get unblocked, then retry */
1464 int j;
1465 int d;
1466
475b0321 1467 for (j = 0; j < i; j++) {
6bfe0b49
DW
1468 if (r10_bio->devs[j].bio) {
1469 d = r10_bio->devs[j].devnum;
1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471 }
475b0321 1472 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1473 struct md_rdev *rdev;
475b0321 1474 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1475 rdev = conf->mirrors[d].replacement;
1476 if (!rdev) {
1477 /* Race with remove_disk */
1478 smp_mb();
1479 rdev = conf->mirrors[d].rdev;
1480 }
1481 rdev_dec_pending(rdev, mddev);
475b0321
N
1482 }
1483 }
6bfe0b49
DW
1484 allow_barrier(conf);
1485 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486 wait_barrier(conf);
1487 goto retry_write;
1488 }
1489
d4432c23
N
1490 if (max_sectors < r10_bio->sectors) {
1491 /* We are splitting this into multiple parts, so
1492 * we need to prepare for allocating another r10_bio.
1493 */
1494 r10_bio->sectors = max_sectors;
1495 spin_lock_irq(&conf->device_lock);
1496 if (bio->bi_phys_segments == 0)
1497 bio->bi_phys_segments = 2;
1498 else
1499 bio->bi_phys_segments++;
1500 spin_unlock_irq(&conf->device_lock);
1501 }
1502 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1503
4e78064f 1504 atomic_set(&r10_bio->remaining, 1);
d4432c23 1505 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1506
1da177e4
LT
1507 for (i = 0; i < conf->copies; i++) {
1508 struct bio *mbio;
1509 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1510 if (r10_bio->devs[i].bio) {
1511 struct md_rdev *rdev = conf->mirrors[d].rdev;
1512 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1514 max_sectors);
1515 r10_bio->devs[i].bio = mbio;
1516
1517 mbio->bi_sector = (r10_bio->devs[i].addr+
1518 choose_data_offset(r10_bio,
1519 rdev));
1520 mbio->bi_bdev = rdev->bdev;
1521 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1522 mbio->bi_rw =
1523 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1524 mbio->bi_private = r10_bio;
1525
1526 atomic_inc(&r10_bio->remaining);
1527
1528 cb = blk_check_plugged(raid10_unplug, mddev,
1529 sizeof(*plug));
1530 if (cb)
1531 plug = container_of(cb, struct raid10_plug_cb,
1532 cb);
1533 else
1534 plug = NULL;
1535 spin_lock_irqsave(&conf->device_lock, flags);
1536 if (plug) {
1537 bio_list_add(&plug->pending, mbio);
1538 plug->pending_cnt++;
1539 } else {
1540 bio_list_add(&conf->pending_bio_list, mbio);
1541 conf->pending_count++;
1542 }
1543 spin_unlock_irqrestore(&conf->device_lock, flags);
1544 if (!plug)
1545 md_wakeup_thread(mddev->thread);
1546 }
57c67df4 1547
e7c0c3fa
N
1548 if (r10_bio->devs[i].repl_bio) {
1549 struct md_rdev *rdev = conf->mirrors[d].replacement;
1550 if (rdev == NULL) {
1551 /* Replacement just got moved to main 'rdev' */
1552 smp_mb();
1553 rdev = conf->mirrors[d].rdev;
1554 }
1555 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1557 max_sectors);
1558 r10_bio->devs[i].repl_bio = mbio;
1559
1560 mbio->bi_sector = (r10_bio->devs[i].addr +
1561 choose_data_offset(
1562 r10_bio, rdev));
1563 mbio->bi_bdev = rdev->bdev;
1564 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1565 mbio->bi_rw =
1566 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1567 mbio->bi_private = r10_bio;
1568
1569 atomic_inc(&r10_bio->remaining);
1570 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1571 bio_list_add(&conf->pending_bio_list, mbio);
1572 conf->pending_count++;
e7c0c3fa
N
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1574 if (!mddev_check_plugged(mddev))
1575 md_wakeup_thread(mddev->thread);
57c67df4 1576 }
1da177e4
LT
1577 }
1578
079fa166
N
1579 /* Don't remove the bias on 'remaining' (one_write_done) until
1580 * after checking if we need to go around again.
1581 */
a35e63ef 1582
aa8b57aa 1583 if (sectors_handled < bio_sectors(bio)) {
079fa166 1584 one_write_done(r10_bio);
5e570289 1585 /* We need another r10_bio. It has already been counted
d4432c23
N
1586 * in bio->bi_phys_segments.
1587 */
1588 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1589
1590 r10_bio->master_bio = bio;
aa8b57aa 1591 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1592
1593 r10_bio->mddev = mddev;
1594 r10_bio->sector = bio->bi_sector + sectors_handled;
1595 r10_bio->state = 0;
1596 goto retry_write;
1597 }
079fa166
N
1598 one_write_done(r10_bio);
1599
1600 /* In case raid10d snuck in to freeze_array */
1601 wake_up(&conf->wait_barrier);
1da177e4
LT
1602}
1603
fd01b88c 1604static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1605{
e879a879 1606 struct r10conf *conf = mddev->private;
1da177e4
LT
1607 int i;
1608
5cf00fcd 1609 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1610 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1611 if (conf->geo.near_copies > 1)
1612 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613 if (conf->geo.far_copies > 1) {
1614 if (conf->geo.far_offset)
1615 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1616 else
5cf00fcd 1617 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1618 }
5cf00fcd
N
1619 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620 conf->geo.raid_disks - mddev->degraded);
1621 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1622 seq_printf(seq, "%s",
1623 conf->mirrors[i].rdev &&
b2d444d7 1624 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1625 seq_printf(seq, "]");
1626}
1627
700c7213
N
1628/* check if there are enough drives for
1629 * every block to appear on atleast one.
1630 * Don't consider the device numbered 'ignore'
1631 * as we might be about to remove it.
1632 */
635f6416 1633static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1634{
1635 int first = 0;
725d6e57 1636 int has_enough = 0;
635f6416
N
1637 int disks, ncopies;
1638 if (previous) {
1639 disks = conf->prev.raid_disks;
1640 ncopies = conf->prev.near_copies;
1641 } else {
1642 disks = conf->geo.raid_disks;
1643 ncopies = conf->geo.near_copies;
1644 }
700c7213 1645
725d6e57 1646 rcu_read_lock();
700c7213
N
1647 do {
1648 int n = conf->copies;
1649 int cnt = 0;
80b48124 1650 int this = first;
700c7213 1651 while (n--) {
725d6e57
N
1652 struct md_rdev *rdev;
1653 if (this != ignore &&
1654 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655 test_bit(In_sync, &rdev->flags))
700c7213 1656 cnt++;
635f6416 1657 this = (this+1) % disks;
700c7213
N
1658 }
1659 if (cnt == 0)
725d6e57 1660 goto out;
635f6416 1661 first = (first + ncopies) % disks;
700c7213 1662 } while (first != 0);
725d6e57
N
1663 has_enough = 1;
1664out:
1665 rcu_read_unlock();
1666 return has_enough;
700c7213
N
1667}
1668
f8c9e74f
N
1669static int enough(struct r10conf *conf, int ignore)
1670{
635f6416
N
1671 /* when calling 'enough', both 'prev' and 'geo' must
1672 * be stable.
1673 * This is ensured if ->reconfig_mutex or ->device_lock
1674 * is held.
1675 */
1676 return _enough(conf, 0, ignore) &&
1677 _enough(conf, 1, ignore);
f8c9e74f
N
1678}
1679
fd01b88c 1680static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1681{
1682 char b[BDEVNAME_SIZE];
e879a879 1683 struct r10conf *conf = mddev->private;
635f6416 1684 unsigned long flags;
1da177e4
LT
1685
1686 /*
1687 * If it is not operational, then we have already marked it as dead
1688 * else if it is the last working disks, ignore the error, let the
1689 * next level up know.
1690 * else mark the drive as failed
1691 */
635f6416 1692 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1693 if (test_bit(In_sync, &rdev->flags)
635f6416 1694 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1695 /*
1696 * Don't fail the drive, just return an IO error.
1da177e4 1697 */
635f6416 1698 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1699 return;
635f6416 1700 }
c04be0aa 1701 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1702 mddev->degraded++;
635f6416 1703 /*
1da177e4
LT
1704 * if recovery is running, make sure it aborts.
1705 */
dfc70645 1706 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1707 }
de393cde 1708 set_bit(Blocked, &rdev->flags);
b2d444d7 1709 set_bit(Faulty, &rdev->flags);
850b2b42 1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
635f6416 1711 spin_unlock_irqrestore(&conf->device_lock, flags);
067032bc
JP
1712 printk(KERN_ALERT
1713 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1715 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1716 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1717}
1718
e879a879 1719static void print_conf(struct r10conf *conf)
1da177e4
LT
1720{
1721 int i;
dc280d98 1722 struct raid10_info *tmp;
1da177e4 1723
128595ed 1724 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1725 if (!conf) {
128595ed 1726 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1727 return;
1728 }
5cf00fcd
N
1729 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730 conf->geo.raid_disks);
1da177e4 1731
5cf00fcd 1732 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1733 char b[BDEVNAME_SIZE];
1734 tmp = conf->mirrors + i;
1735 if (tmp->rdev)
128595ed 1736 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1737 i, !test_bit(In_sync, &tmp->rdev->flags),
1738 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1739 bdevname(tmp->rdev->bdev,b));
1740 }
1741}
1742
e879a879 1743static void close_sync(struct r10conf *conf)
1da177e4 1744{
0a27ec96
N
1745 wait_barrier(conf);
1746 allow_barrier(conf);
1da177e4
LT
1747
1748 mempool_destroy(conf->r10buf_pool);
1749 conf->r10buf_pool = NULL;
1750}
1751
fd01b88c 1752static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1753{
1754 int i;
e879a879 1755 struct r10conf *conf = mddev->private;
dc280d98 1756 struct raid10_info *tmp;
6b965620
N
1757 int count = 0;
1758 unsigned long flags;
1da177e4
LT
1759
1760 /*
1761 * Find all non-in_sync disks within the RAID10 configuration
1762 * and mark them in_sync
1763 */
5cf00fcd 1764 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1765 tmp = conf->mirrors + i;
4ca40c2c
N
1766 if (tmp->replacement
1767 && tmp->replacement->recovery_offset == MaxSector
1768 && !test_bit(Faulty, &tmp->replacement->flags)
1769 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770 /* Replacement has just become active */
1771 if (!tmp->rdev
1772 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773 count++;
1774 if (tmp->rdev) {
1775 /* Replaced device not technically faulty,
1776 * but we need to be sure it gets removed
1777 * and never re-added.
1778 */
1779 set_bit(Faulty, &tmp->rdev->flags);
1780 sysfs_notify_dirent_safe(
1781 tmp->rdev->sysfs_state);
1782 }
1783 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784 } else if (tmp->rdev
1785 && !test_bit(Faulty, &tmp->rdev->flags)
1786 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1787 count++;
2863b9eb 1788 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1789 }
1790 }
6b965620
N
1791 spin_lock_irqsave(&conf->device_lock, flags);
1792 mddev->degraded -= count;
1793 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1794
1795 print_conf(conf);
6b965620 1796 return count;
1da177e4
LT
1797}
1798
1799
fd01b88c 1800static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1801{
e879a879 1802 struct r10conf *conf = mddev->private;
199050ea 1803 int err = -EEXIST;
1da177e4 1804 int mirror;
6c2fce2e 1805 int first = 0;
5cf00fcd 1806 int last = conf->geo.raid_disks - 1;
050b6615 1807 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1808
1809 if (mddev->recovery_cp < MaxSector)
1810 /* only hot-add to in-sync arrays, as recovery is
1811 * very different from resync
1812 */
199050ea 1813 return -EBUSY;
635f6416 1814 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1815 return -EINVAL;
1da177e4 1816
a53a6c85 1817 if (rdev->raid_disk >= 0)
6c2fce2e 1818 first = last = rdev->raid_disk;
1da177e4 1819
050b6615
N
1820 if (q->merge_bvec_fn) {
1821 set_bit(Unmerged, &rdev->flags);
1822 mddev->merge_check_needed = 1;
1823 }
1824
2c4193df 1825 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1826 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1827 mirror = rdev->saved_raid_disk;
1828 else
6c2fce2e 1829 mirror = first;
2bb77736 1830 for ( ; mirror <= last ; mirror++) {
dc280d98 1831 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1832 if (p->recovery_disabled == mddev->recovery_disabled)
1833 continue;
b7044d41
N
1834 if (p->rdev) {
1835 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1836 p->replacement != NULL)
1837 continue;
1838 clear_bit(In_sync, &rdev->flags);
1839 set_bit(Replacement, &rdev->flags);
1840 rdev->raid_disk = mirror;
1841 err = 0;
9092c02d
JB
1842 if (mddev->gendisk)
1843 disk_stack_limits(mddev->gendisk, rdev->bdev,
1844 rdev->data_offset << 9);
b7044d41
N
1845 conf->fullsync = 1;
1846 rcu_assign_pointer(p->replacement, rdev);
1847 break;
1848 }
1da177e4 1849
9092c02d
JB
1850 if (mddev->gendisk)
1851 disk_stack_limits(mddev->gendisk, rdev->bdev,
1852 rdev->data_offset << 9);
1da177e4 1853
2bb77736 1854 p->head_position = 0;
d890fa2b 1855 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1856 rdev->raid_disk = mirror;
1857 err = 0;
1858 if (rdev->saved_raid_disk != mirror)
1859 conf->fullsync = 1;
1860 rcu_assign_pointer(p->rdev, rdev);
1861 break;
1862 }
050b6615
N
1863 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1864 /* Some requests might not have seen this new
1865 * merge_bvec_fn. We must wait for them to complete
1866 * before merging the device fully.
1867 * First we make sure any code which has tested
1868 * our function has submitted the request, then
1869 * we wait for all outstanding requests to complete.
1870 */
1871 synchronize_sched();
e2d59925
N
1872 freeze_array(conf, 0);
1873 unfreeze_array(conf);
050b6615
N
1874 clear_bit(Unmerged, &rdev->flags);
1875 }
ac5e7113 1876 md_integrity_add_rdev(rdev, mddev);
ed30be07 1877 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1878 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1879
1da177e4 1880 print_conf(conf);
199050ea 1881 return err;
1da177e4
LT
1882}
1883
b8321b68 1884static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1885{
e879a879 1886 struct r10conf *conf = mddev->private;
1da177e4 1887 int err = 0;
b8321b68 1888 int number = rdev->raid_disk;
c8ab903e 1889 struct md_rdev **rdevp;
dc280d98 1890 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1891
1892 print_conf(conf);
c8ab903e
N
1893 if (rdev == p->rdev)
1894 rdevp = &p->rdev;
1895 else if (rdev == p->replacement)
1896 rdevp = &p->replacement;
1897 else
1898 return 0;
1899
1900 if (test_bit(In_sync, &rdev->flags) ||
1901 atomic_read(&rdev->nr_pending)) {
1902 err = -EBUSY;
1903 goto abort;
1904 }
1905 /* Only remove faulty devices if recovery
1906 * is not possible.
1907 */
1908 if (!test_bit(Faulty, &rdev->flags) &&
1909 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1910 (!p->replacement || p->replacement == rdev) &&
63aced61 1911 number < conf->geo.raid_disks &&
c8ab903e
N
1912 enough(conf, -1)) {
1913 err = -EBUSY;
1914 goto abort;
1da177e4 1915 }
c8ab903e
N
1916 *rdevp = NULL;
1917 synchronize_rcu();
1918 if (atomic_read(&rdev->nr_pending)) {
1919 /* lost the race, try later */
1920 err = -EBUSY;
1921 *rdevp = rdev;
1922 goto abort;
4ca40c2c
N
1923 } else if (p->replacement) {
1924 /* We must have just cleared 'rdev' */
1925 p->rdev = p->replacement;
1926 clear_bit(Replacement, &p->replacement->flags);
1927 smp_mb(); /* Make sure other CPUs may see both as identical
1928 * but will never see neither -- if they are careful.
1929 */
1930 p->replacement = NULL;
1931 clear_bit(WantReplacement, &rdev->flags);
1932 } else
1933 /* We might have just remove the Replacement as faulty
1934 * Clear the flag just in case
1935 */
1936 clear_bit(WantReplacement, &rdev->flags);
1937
c8ab903e
N
1938 err = md_integrity_register(mddev);
1939
1da177e4
LT
1940abort:
1941
1942 print_conf(conf);
1943 return err;
1944}
1945
1946
6712ecf8 1947static void end_sync_read(struct bio *bio, int error)
1da177e4 1948{
9f2c9d12 1949 struct r10bio *r10_bio = bio->bi_private;
e879a879 1950 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1951 int d;
1da177e4 1952
3ea7daa5
N
1953 if (bio == r10_bio->master_bio) {
1954 /* this is a reshape read */
1955 d = r10_bio->read_slot; /* really the read dev */
1956 } else
1957 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1958
1959 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1960 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1961 else
1962 /* The write handler will notice the lack of
1963 * R10BIO_Uptodate and record any errors etc
1964 */
4dbcdc75
N
1965 atomic_add(r10_bio->sectors,
1966 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1967
1968 /* for reconstruct, we always reschedule after a read.
1969 * for resync, only after all reads
1970 */
73d5c38a 1971 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1972 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1973 atomic_dec_and_test(&r10_bio->remaining)) {
1974 /* we have read all the blocks,
1975 * do the comparison in process context in raid10d
1976 */
1977 reschedule_retry(r10_bio);
1978 }
1da177e4
LT
1979}
1980
9f2c9d12 1981static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1982{
fd01b88c 1983 struct mddev *mddev = r10_bio->mddev;
dfc70645 1984
1da177e4
LT
1985 while (atomic_dec_and_test(&r10_bio->remaining)) {
1986 if (r10_bio->master_bio == NULL) {
1987 /* the primary of several recovery bios */
73d5c38a 1988 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1989 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1990 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1991 reschedule_retry(r10_bio);
1992 else
1993 put_buf(r10_bio);
73d5c38a 1994 md_done_sync(mddev, s, 1);
1da177e4
LT
1995 break;
1996 } else {
9f2c9d12 1997 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1998 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1999 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2000 reschedule_retry(r10_bio);
2001 else
2002 put_buf(r10_bio);
1da177e4
LT
2003 r10_bio = r10_bio2;
2004 }
2005 }
1da177e4
LT
2006}
2007
5e570289
N
2008static void end_sync_write(struct bio *bio, int error)
2009{
2010 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 2011 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 2012 struct mddev *mddev = r10_bio->mddev;
e879a879 2013 struct r10conf *conf = mddev->private;
5e570289
N
2014 int d;
2015 sector_t first_bad;
2016 int bad_sectors;
2017 int slot;
9ad1aefc 2018 int repl;
4ca40c2c 2019 struct md_rdev *rdev = NULL;
5e570289 2020
9ad1aefc
N
2021 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2022 if (repl)
2023 rdev = conf->mirrors[d].replacement;
547414d1 2024 else
9ad1aefc 2025 rdev = conf->mirrors[d].rdev;
5e570289
N
2026
2027 if (!uptodate) {
9ad1aefc
N
2028 if (repl)
2029 md_error(mddev, rdev);
2030 else {
2031 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2032 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2033 set_bit(MD_RECOVERY_NEEDED,
2034 &rdev->mddev->recovery);
9ad1aefc
N
2035 set_bit(R10BIO_WriteError, &r10_bio->state);
2036 }
2037 } else if (is_badblock(rdev,
5e570289
N
2038 r10_bio->devs[slot].addr,
2039 r10_bio->sectors,
2040 &first_bad, &bad_sectors))
2041 set_bit(R10BIO_MadeGood, &r10_bio->state);
2042
9ad1aefc 2043 rdev_dec_pending(rdev, mddev);
5e570289
N
2044
2045 end_sync_request(r10_bio);
2046}
2047
1da177e4
LT
2048/*
2049 * Note: sync and recover and handled very differently for raid10
2050 * This code is for resync.
2051 * For resync, we read through virtual addresses and read all blocks.
2052 * If there is any error, we schedule a write. The lowest numbered
2053 * drive is authoritative.
2054 * However requests come for physical address, so we need to map.
2055 * For every physical address there are raid_disks/copies virtual addresses,
2056 * which is always are least one, but is not necessarly an integer.
2057 * This means that a physical address can span multiple chunks, so we may
2058 * have to submit multiple io requests for a single sync request.
2059 */
2060/*
2061 * We check if all blocks are in-sync and only write to blocks that
2062 * aren't in sync
2063 */
9f2c9d12 2064static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2065{
e879a879 2066 struct r10conf *conf = mddev->private;
1da177e4
LT
2067 int i, first;
2068 struct bio *tbio, *fbio;
f4380a91 2069 int vcnt;
1da177e4
LT
2070
2071 atomic_set(&r10_bio->remaining, 1);
2072
2073 /* find the first device with a block */
2074 for (i=0; i<conf->copies; i++)
2075 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2076 break;
2077
2078 if (i == conf->copies)
2079 goto done;
2080
2081 first = i;
2082 fbio = r10_bio->devs[i].bio;
2083
f4380a91 2084 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2085 /* now find blocks with errors */
0eb3ff12
N
2086 for (i=0 ; i < conf->copies ; i++) {
2087 int j, d;
1da177e4 2088
1da177e4 2089 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2090
2091 if (tbio->bi_end_io != end_sync_read)
2092 continue;
2093 if (i == first)
1da177e4 2094 continue;
0eb3ff12
N
2095 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2096 /* We know that the bi_io_vec layout is the same for
2097 * both 'first' and 'i', so we just compare them.
2098 * All vec entries are PAGE_SIZE;
2099 */
2100 for (j = 0; j < vcnt; j++)
2101 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2102 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 2103 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
2104 break;
2105 if (j == vcnt)
2106 continue;
7f7583d4 2107 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2108 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2109 /* Don't fix anything. */
2110 continue;
0eb3ff12 2111 }
f84ee364
N
2112 /* Ok, we need to write this bio, either to correct an
2113 * inconsistency or to correct an unreadable block.
1da177e4
LT
2114 * First we need to fixup bv_offset, bv_len and
2115 * bi_vecs, as the read request might have corrupted these
2116 */
8be185f2
KO
2117 bio_reset(tbio);
2118
1da177e4
LT
2119 tbio->bi_vcnt = vcnt;
2120 tbio->bi_size = r10_bio->sectors << 9;
1da177e4
LT
2121 tbio->bi_rw = WRITE;
2122 tbio->bi_private = r10_bio;
2123 tbio->bi_sector = r10_bio->devs[i].addr;
2124
2125 for (j=0; j < vcnt ; j++) {
2126 tbio->bi_io_vec[j].bv_offset = 0;
2127 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2128
2129 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2130 page_address(fbio->bi_io_vec[j].bv_page),
2131 PAGE_SIZE);
2132 }
2133 tbio->bi_end_io = end_sync_write;
2134
2135 d = r10_bio->devs[i].devnum;
2136 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2137 atomic_inc(&r10_bio->remaining);
aa8b57aa 2138 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4
LT
2139
2140 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2141 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2142 generic_make_request(tbio);
2143 }
2144
9ad1aefc
N
2145 /* Now write out to any replacement devices
2146 * that are active
2147 */
2148 for (i = 0; i < conf->copies; i++) {
2149 int j, d;
9ad1aefc
N
2150
2151 tbio = r10_bio->devs[i].repl_bio;
2152 if (!tbio || !tbio->bi_end_io)
2153 continue;
2154 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2155 && r10_bio->devs[i].bio != fbio)
2156 for (j = 0; j < vcnt; j++)
2157 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2158 page_address(fbio->bi_io_vec[j].bv_page),
2159 PAGE_SIZE);
2160 d = r10_bio->devs[i].devnum;
2161 atomic_inc(&r10_bio->remaining);
2162 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2163 bio_sectors(tbio));
9ad1aefc
N
2164 generic_make_request(tbio);
2165 }
2166
1da177e4
LT
2167done:
2168 if (atomic_dec_and_test(&r10_bio->remaining)) {
2169 md_done_sync(mddev, r10_bio->sectors, 1);
2170 put_buf(r10_bio);
2171 }
2172}
2173
2174/*
2175 * Now for the recovery code.
2176 * Recovery happens across physical sectors.
2177 * We recover all non-is_sync drives by finding the virtual address of
2178 * each, and then choose a working drive that also has that virt address.
2179 * There is a separate r10_bio for each non-in_sync drive.
2180 * Only the first two slots are in use. The first for reading,
2181 * The second for writing.
2182 *
2183 */
9f2c9d12 2184static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2185{
2186 /* We got a read error during recovery.
2187 * We repeat the read in smaller page-sized sections.
2188 * If a read succeeds, write it to the new device or record
2189 * a bad block if we cannot.
2190 * If a read fails, record a bad block on both old and
2191 * new devices.
2192 */
fd01b88c 2193 struct mddev *mddev = r10_bio->mddev;
e879a879 2194 struct r10conf *conf = mddev->private;
5e570289
N
2195 struct bio *bio = r10_bio->devs[0].bio;
2196 sector_t sect = 0;
2197 int sectors = r10_bio->sectors;
2198 int idx = 0;
2199 int dr = r10_bio->devs[0].devnum;
2200 int dw = r10_bio->devs[1].devnum;
2201
2202 while (sectors) {
2203 int s = sectors;
3cb03002 2204 struct md_rdev *rdev;
5e570289
N
2205 sector_t addr;
2206 int ok;
2207
2208 if (s > (PAGE_SIZE>>9))
2209 s = PAGE_SIZE >> 9;
2210
2211 rdev = conf->mirrors[dr].rdev;
2212 addr = r10_bio->devs[0].addr + sect,
2213 ok = sync_page_io(rdev,
2214 addr,
2215 s << 9,
2216 bio->bi_io_vec[idx].bv_page,
2217 READ, false);
2218 if (ok) {
2219 rdev = conf->mirrors[dw].rdev;
2220 addr = r10_bio->devs[1].addr + sect;
2221 ok = sync_page_io(rdev,
2222 addr,
2223 s << 9,
2224 bio->bi_io_vec[idx].bv_page,
2225 WRITE, false);
b7044d41 2226 if (!ok) {
5e570289 2227 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2228 if (!test_and_set_bit(WantReplacement,
2229 &rdev->flags))
2230 set_bit(MD_RECOVERY_NEEDED,
2231 &rdev->mddev->recovery);
2232 }
5e570289
N
2233 }
2234 if (!ok) {
2235 /* We don't worry if we cannot set a bad block -
2236 * it really is bad so there is no loss in not
2237 * recording it yet
2238 */
2239 rdev_set_badblocks(rdev, addr, s, 0);
2240
2241 if (rdev != conf->mirrors[dw].rdev) {
2242 /* need bad block on destination too */
3cb03002 2243 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2244 addr = r10_bio->devs[1].addr + sect;
2245 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2246 if (!ok) {
2247 /* just abort the recovery */
2248 printk(KERN_NOTICE
2249 "md/raid10:%s: recovery aborted"
2250 " due to read error\n",
2251 mdname(mddev));
2252
2253 conf->mirrors[dw].recovery_disabled
2254 = mddev->recovery_disabled;
2255 set_bit(MD_RECOVERY_INTR,
2256 &mddev->recovery);
2257 break;
2258 }
2259 }
2260 }
2261
2262 sectors -= s;
2263 sect += s;
2264 idx++;
2265 }
2266}
1da177e4 2267
9f2c9d12 2268static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2269{
e879a879 2270 struct r10conf *conf = mddev->private;
c65060ad 2271 int d;
24afd80d 2272 struct bio *wbio, *wbio2;
1da177e4 2273
5e570289
N
2274 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2275 fix_recovery_read_error(r10_bio);
2276 end_sync_request(r10_bio);
2277 return;
2278 }
2279
c65060ad
NK
2280 /*
2281 * share the pages with the first bio
1da177e4
LT
2282 * and submit the write request
2283 */
1da177e4 2284 d = r10_bio->devs[1].devnum;
24afd80d
N
2285 wbio = r10_bio->devs[1].bio;
2286 wbio2 = r10_bio->devs[1].repl_bio;
2287 if (wbio->bi_end_io) {
2288 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2289 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2290 generic_make_request(wbio);
2291 }
2292 if (wbio2 && wbio2->bi_end_io) {
2293 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2294 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2295 bio_sectors(wbio2));
24afd80d
N
2296 generic_make_request(wbio2);
2297 }
1da177e4
LT
2298}
2299
2300
1e50915f
RB
2301/*
2302 * Used by fix_read_error() to decay the per rdev read_errors.
2303 * We halve the read error count for every hour that has elapsed
2304 * since the last recorded read error.
2305 *
2306 */
fd01b88c 2307static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2308{
2309 struct timespec cur_time_mon;
2310 unsigned long hours_since_last;
2311 unsigned int read_errors = atomic_read(&rdev->read_errors);
2312
2313 ktime_get_ts(&cur_time_mon);
2314
2315 if (rdev->last_read_error.tv_sec == 0 &&
2316 rdev->last_read_error.tv_nsec == 0) {
2317 /* first time we've seen a read error */
2318 rdev->last_read_error = cur_time_mon;
2319 return;
2320 }
2321
2322 hours_since_last = (cur_time_mon.tv_sec -
2323 rdev->last_read_error.tv_sec) / 3600;
2324
2325 rdev->last_read_error = cur_time_mon;
2326
2327 /*
2328 * if hours_since_last is > the number of bits in read_errors
2329 * just set read errors to 0. We do this to avoid
2330 * overflowing the shift of read_errors by hours_since_last.
2331 */
2332 if (hours_since_last >= 8 * sizeof(read_errors))
2333 atomic_set(&rdev->read_errors, 0);
2334 else
2335 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2336}
2337
3cb03002 2338static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2339 int sectors, struct page *page, int rw)
2340{
2341 sector_t first_bad;
2342 int bad_sectors;
2343
2344 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2345 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2346 return -1;
2347 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2348 /* success */
2349 return 1;
b7044d41 2350 if (rw == WRITE) {
58c54fcc 2351 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2352 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2353 set_bit(MD_RECOVERY_NEEDED,
2354 &rdev->mddev->recovery);
2355 }
58c54fcc
N
2356 /* need to record an error - either for the block or the device */
2357 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2358 md_error(rdev->mddev, rdev);
2359 return 0;
2360}
2361
1da177e4
LT
2362/*
2363 * This is a kernel thread which:
2364 *
2365 * 1. Retries failed read operations on working mirrors.
2366 * 2. Updates the raid superblock when problems encounter.
6814d536 2367 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2368 */
2369
e879a879 2370static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2371{
2372 int sect = 0; /* Offset from r10_bio->sector */
2373 int sectors = r10_bio->sectors;
3cb03002 2374 struct md_rdev*rdev;
1e50915f 2375 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2376 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2377
7c4e06ff
N
2378 /* still own a reference to this rdev, so it cannot
2379 * have been cleared recently.
2380 */
2381 rdev = conf->mirrors[d].rdev;
1e50915f 2382
7c4e06ff
N
2383 if (test_bit(Faulty, &rdev->flags))
2384 /* drive has already been failed, just ignore any
2385 more fix_read_error() attempts */
2386 return;
1e50915f 2387
7c4e06ff
N
2388 check_decay_read_errors(mddev, rdev);
2389 atomic_inc(&rdev->read_errors);
2390 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2391 char b[BDEVNAME_SIZE];
2392 bdevname(rdev->bdev, b);
1e50915f 2393
7c4e06ff
N
2394 printk(KERN_NOTICE
2395 "md/raid10:%s: %s: Raid device exceeded "
2396 "read_error threshold [cur %d:max %d]\n",
2397 mdname(mddev), b,
2398 atomic_read(&rdev->read_errors), max_read_errors);
2399 printk(KERN_NOTICE
2400 "md/raid10:%s: %s: Failing raid device\n",
2401 mdname(mddev), b);
2402 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2403 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2404 return;
1e50915f 2405 }
1e50915f 2406
6814d536
N
2407 while(sectors) {
2408 int s = sectors;
2409 int sl = r10_bio->read_slot;
2410 int success = 0;
2411 int start;
2412
2413 if (s > (PAGE_SIZE>>9))
2414 s = PAGE_SIZE >> 9;
2415
2416 rcu_read_lock();
2417 do {
8dbed5ce
N
2418 sector_t first_bad;
2419 int bad_sectors;
2420
0544a21d 2421 d = r10_bio->devs[sl].devnum;
6814d536
N
2422 rdev = rcu_dereference(conf->mirrors[d].rdev);
2423 if (rdev &&
050b6615 2424 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2425 test_bit(In_sync, &rdev->flags) &&
2426 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2427 &first_bad, &bad_sectors) == 0) {
6814d536
N
2428 atomic_inc(&rdev->nr_pending);
2429 rcu_read_unlock();
2b193363 2430 success = sync_page_io(rdev,
6814d536 2431 r10_bio->devs[sl].addr +
ccebd4c4 2432 sect,
6814d536 2433 s<<9,
ccebd4c4 2434 conf->tmppage, READ, false);
6814d536
N
2435 rdev_dec_pending(rdev, mddev);
2436 rcu_read_lock();
2437 if (success)
2438 break;
2439 }
2440 sl++;
2441 if (sl == conf->copies)
2442 sl = 0;
2443 } while (!success && sl != r10_bio->read_slot);
2444 rcu_read_unlock();
2445
2446 if (!success) {
58c54fcc
N
2447 /* Cannot read from anywhere, just mark the block
2448 * as bad on the first device to discourage future
2449 * reads.
2450 */
6814d536 2451 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2452 rdev = conf->mirrors[dn].rdev;
2453
2454 if (!rdev_set_badblocks(
2455 rdev,
2456 r10_bio->devs[r10_bio->read_slot].addr
2457 + sect,
fae8cc5e 2458 s, 0)) {
58c54fcc 2459 md_error(mddev, rdev);
fae8cc5e
N
2460 r10_bio->devs[r10_bio->read_slot].bio
2461 = IO_BLOCKED;
2462 }
6814d536
N
2463 break;
2464 }
2465
2466 start = sl;
2467 /* write it back and re-read */
2468 rcu_read_lock();
2469 while (sl != r10_bio->read_slot) {
67b8dc4b 2470 char b[BDEVNAME_SIZE];
0544a21d 2471
6814d536
N
2472 if (sl==0)
2473 sl = conf->copies;
2474 sl--;
2475 d = r10_bio->devs[sl].devnum;
2476 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2477 if (!rdev ||
050b6615 2478 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2479 !test_bit(In_sync, &rdev->flags))
2480 continue;
2481
2482 atomic_inc(&rdev->nr_pending);
2483 rcu_read_unlock();
58c54fcc
N
2484 if (r10_sync_page_io(rdev,
2485 r10_bio->devs[sl].addr +
2486 sect,
055d3747 2487 s, conf->tmppage, WRITE)
1294b9c9
N
2488 == 0) {
2489 /* Well, this device is dead */
2490 printk(KERN_NOTICE
2491 "md/raid10:%s: read correction "
2492 "write failed"
2493 " (%d sectors at %llu on %s)\n",
2494 mdname(mddev), s,
2495 (unsigned long long)(
f8c9e74f
N
2496 sect +
2497 choose_data_offset(r10_bio,
2498 rdev)),
1294b9c9
N
2499 bdevname(rdev->bdev, b));
2500 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2501 "drive\n",
2502 mdname(mddev),
2503 bdevname(rdev->bdev, b));
6814d536 2504 }
1294b9c9
N
2505 rdev_dec_pending(rdev, mddev);
2506 rcu_read_lock();
6814d536
N
2507 }
2508 sl = start;
2509 while (sl != r10_bio->read_slot) {
1294b9c9 2510 char b[BDEVNAME_SIZE];
0544a21d 2511
6814d536
N
2512 if (sl==0)
2513 sl = conf->copies;
2514 sl--;
2515 d = r10_bio->devs[sl].devnum;
2516 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2517 if (!rdev ||
2518 !test_bit(In_sync, &rdev->flags))
2519 continue;
6814d536 2520
1294b9c9
N
2521 atomic_inc(&rdev->nr_pending);
2522 rcu_read_unlock();
58c54fcc
N
2523 switch (r10_sync_page_io(rdev,
2524 r10_bio->devs[sl].addr +
2525 sect,
055d3747 2526 s, conf->tmppage,
58c54fcc
N
2527 READ)) {
2528 case 0:
1294b9c9
N
2529 /* Well, this device is dead */
2530 printk(KERN_NOTICE
2531 "md/raid10:%s: unable to read back "
2532 "corrected sectors"
2533 " (%d sectors at %llu on %s)\n",
2534 mdname(mddev), s,
2535 (unsigned long long)(
f8c9e74f
N
2536 sect +
2537 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2538 bdevname(rdev->bdev, b));
2539 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2540 "drive\n",
2541 mdname(mddev),
2542 bdevname(rdev->bdev, b));
58c54fcc
N
2543 break;
2544 case 1:
1294b9c9
N
2545 printk(KERN_INFO
2546 "md/raid10:%s: read error corrected"
2547 " (%d sectors at %llu on %s)\n",
2548 mdname(mddev), s,
2549 (unsigned long long)(
f8c9e74f
N
2550 sect +
2551 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2552 bdevname(rdev->bdev, b));
2553 atomic_add(s, &rdev->corrected_errors);
6814d536 2554 }
1294b9c9
N
2555
2556 rdev_dec_pending(rdev, mddev);
2557 rcu_read_lock();
6814d536
N
2558 }
2559 rcu_read_unlock();
2560
2561 sectors -= s;
2562 sect += s;
2563 }
2564}
2565
9f2c9d12 2566static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2567{
2568 struct bio *bio = r10_bio->master_bio;
fd01b88c 2569 struct mddev *mddev = r10_bio->mddev;
e879a879 2570 struct r10conf *conf = mddev->private;
3cb03002 2571 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2572 /* bio has the data to be written to slot 'i' where
2573 * we just recently had a write error.
2574 * We repeatedly clone the bio and trim down to one block,
2575 * then try the write. Where the write fails we record
2576 * a bad block.
2577 * It is conceivable that the bio doesn't exactly align with
2578 * blocks. We must handle this.
2579 *
2580 * We currently own a reference to the rdev.
2581 */
2582
2583 int block_sectors;
2584 sector_t sector;
2585 int sectors;
2586 int sect_to_write = r10_bio->sectors;
2587 int ok = 1;
2588
2589 if (rdev->badblocks.shift < 0)
2590 return 0;
2591
2592 block_sectors = 1 << rdev->badblocks.shift;
2593 sector = r10_bio->sector;
2594 sectors = ((r10_bio->sector + block_sectors)
2595 & ~(sector_t)(block_sectors - 1))
2596 - sector;
2597
2598 while (sect_to_write) {
2599 struct bio *wbio;
2600 if (sectors > sect_to_write)
2601 sectors = sect_to_write;
2602 /* Write at 'sector' for 'sectors' */
2603 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2604 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2605 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2606 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2607 (sector - r10_bio->sector));
2608 wbio->bi_bdev = rdev->bdev;
2609 if (submit_bio_wait(WRITE, wbio) == 0)
2610 /* Failure! */
2611 ok = rdev_set_badblocks(rdev, sector,
2612 sectors, 0)
2613 && ok;
2614
2615 bio_put(wbio);
2616 sect_to_write -= sectors;
2617 sector += sectors;
2618 sectors = block_sectors;
2619 }
2620 return ok;
2621}
2622
9f2c9d12 2623static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2624{
2625 int slot = r10_bio->read_slot;
560f8e55 2626 struct bio *bio;
e879a879 2627 struct r10conf *conf = mddev->private;
abbf098e 2628 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2629 char b[BDEVNAME_SIZE];
2630 unsigned long do_sync;
856e08e2 2631 int max_sectors;
560f8e55
N
2632
2633 /* we got a read error. Maybe the drive is bad. Maybe just
2634 * the block and we can fix it.
2635 * We freeze all other IO, and try reading the block from
2636 * other devices. When we find one, we re-write
2637 * and check it that fixes the read error.
2638 * This is all done synchronously while the array is
2639 * frozen.
2640 */
fae8cc5e
N
2641 bio = r10_bio->devs[slot].bio;
2642 bdevname(bio->bi_bdev, b);
2643 bio_put(bio);
2644 r10_bio->devs[slot].bio = NULL;
2645
560f8e55 2646 if (mddev->ro == 0) {
e2d59925 2647 freeze_array(conf, 1);
560f8e55
N
2648 fix_read_error(conf, mddev, r10_bio);
2649 unfreeze_array(conf);
fae8cc5e
N
2650 } else
2651 r10_bio->devs[slot].bio = IO_BLOCKED;
2652
abbf098e 2653 rdev_dec_pending(rdev, mddev);
560f8e55 2654
7399c31b 2655read_more:
96c3fd1f
N
2656 rdev = read_balance(conf, r10_bio, &max_sectors);
2657 if (rdev == NULL) {
560f8e55
N
2658 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2659 " read error for block %llu\n",
7399c31b 2660 mdname(mddev), b,
560f8e55
N
2661 (unsigned long long)r10_bio->sector);
2662 raid_end_bio_io(r10_bio);
560f8e55
N
2663 return;
2664 }
2665
2666 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2667 slot = r10_bio->read_slot;
560f8e55
N
2668 printk_ratelimited(
2669 KERN_ERR
055d3747 2670 "md/raid10:%s: %s: redirecting "
560f8e55
N
2671 "sector %llu to another mirror\n",
2672 mdname(mddev),
2673 bdevname(rdev->bdev, b),
2674 (unsigned long long)r10_bio->sector);
2675 bio = bio_clone_mddev(r10_bio->master_bio,
2676 GFP_NOIO, mddev);
7399c31b
N
2677 md_trim_bio(bio,
2678 r10_bio->sector - bio->bi_sector,
2679 max_sectors);
560f8e55 2680 r10_bio->devs[slot].bio = bio;
abbf098e 2681 r10_bio->devs[slot].rdev = rdev;
560f8e55 2682 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2683 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2684 bio->bi_bdev = rdev->bdev;
2685 bio->bi_rw = READ | do_sync;
2686 bio->bi_private = r10_bio;
2687 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2688 if (max_sectors < r10_bio->sectors) {
2689 /* Drat - have to split this up more */
2690 struct bio *mbio = r10_bio->master_bio;
2691 int sectors_handled =
2692 r10_bio->sector + max_sectors
2693 - mbio->bi_sector;
2694 r10_bio->sectors = max_sectors;
2695 spin_lock_irq(&conf->device_lock);
2696 if (mbio->bi_phys_segments == 0)
2697 mbio->bi_phys_segments = 2;
2698 else
2699 mbio->bi_phys_segments++;
2700 spin_unlock_irq(&conf->device_lock);
2701 generic_make_request(bio);
7399c31b
N
2702
2703 r10_bio = mempool_alloc(conf->r10bio_pool,
2704 GFP_NOIO);
2705 r10_bio->master_bio = mbio;
aa8b57aa 2706 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2707 r10_bio->state = 0;
2708 set_bit(R10BIO_ReadError,
2709 &r10_bio->state);
2710 r10_bio->mddev = mddev;
2711 r10_bio->sector = mbio->bi_sector
2712 + sectors_handled;
2713
2714 goto read_more;
2715 } else
2716 generic_make_request(bio);
560f8e55
N
2717}
2718
e879a879 2719static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2720{
2721 /* Some sort of write request has finished and it
2722 * succeeded in writing where we thought there was a
2723 * bad block. So forget the bad block.
1a0b7cd8
N
2724 * Or possibly if failed and we need to record
2725 * a bad block.
749c55e9
N
2726 */
2727 int m;
3cb03002 2728 struct md_rdev *rdev;
749c55e9
N
2729
2730 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2731 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2732 for (m = 0; m < conf->copies; m++) {
2733 int dev = r10_bio->devs[m].devnum;
2734 rdev = conf->mirrors[dev].rdev;
2735 if (r10_bio->devs[m].bio == NULL)
2736 continue;
2737 if (test_bit(BIO_UPTODATE,
749c55e9 2738 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2739 rdev_clear_badblocks(
2740 rdev,
2741 r10_bio->devs[m].addr,
c6563a8c 2742 r10_bio->sectors, 0);
1a0b7cd8
N
2743 } else {
2744 if (!rdev_set_badblocks(
2745 rdev,
2746 r10_bio->devs[m].addr,
2747 r10_bio->sectors, 0))
2748 md_error(conf->mddev, rdev);
749c55e9 2749 }
9ad1aefc
N
2750 rdev = conf->mirrors[dev].replacement;
2751 if (r10_bio->devs[m].repl_bio == NULL)
2752 continue;
2753 if (test_bit(BIO_UPTODATE,
2754 &r10_bio->devs[m].repl_bio->bi_flags)) {
2755 rdev_clear_badblocks(
2756 rdev,
2757 r10_bio->devs[m].addr,
c6563a8c 2758 r10_bio->sectors, 0);
9ad1aefc
N
2759 } else {
2760 if (!rdev_set_badblocks(
2761 rdev,
2762 r10_bio->devs[m].addr,
2763 r10_bio->sectors, 0))
2764 md_error(conf->mddev, rdev);
2765 }
1a0b7cd8 2766 }
749c55e9
N
2767 put_buf(r10_bio);
2768 } else {
bd870a16
N
2769 for (m = 0; m < conf->copies; m++) {
2770 int dev = r10_bio->devs[m].devnum;
2771 struct bio *bio = r10_bio->devs[m].bio;
2772 rdev = conf->mirrors[dev].rdev;
2773 if (bio == IO_MADE_GOOD) {
749c55e9
N
2774 rdev_clear_badblocks(
2775 rdev,
2776 r10_bio->devs[m].addr,
c6563a8c 2777 r10_bio->sectors, 0);
749c55e9 2778 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2779 } else if (bio != NULL &&
2780 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2781 if (!narrow_write_error(r10_bio, m)) {
2782 md_error(conf->mddev, rdev);
2783 set_bit(R10BIO_Degraded,
2784 &r10_bio->state);
2785 }
2786 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2787 }
475b0321
N
2788 bio = r10_bio->devs[m].repl_bio;
2789 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2790 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2791 rdev_clear_badblocks(
2792 rdev,
2793 r10_bio->devs[m].addr,
c6563a8c 2794 r10_bio->sectors, 0);
475b0321
N
2795 rdev_dec_pending(rdev, conf->mddev);
2796 }
bd870a16
N
2797 }
2798 if (test_bit(R10BIO_WriteError,
2799 &r10_bio->state))
2800 close_write(r10_bio);
749c55e9
N
2801 raid_end_bio_io(r10_bio);
2802 }
2803}
2804
4ed8731d 2805static void raid10d(struct md_thread *thread)
1da177e4 2806{
4ed8731d 2807 struct mddev *mddev = thread->mddev;
9f2c9d12 2808 struct r10bio *r10_bio;
1da177e4 2809 unsigned long flags;
e879a879 2810 struct r10conf *conf = mddev->private;
1da177e4 2811 struct list_head *head = &conf->retry_list;
e1dfa0a2 2812 struct blk_plug plug;
1da177e4
LT
2813
2814 md_check_recovery(mddev);
1da177e4 2815
e1dfa0a2 2816 blk_start_plug(&plug);
1da177e4 2817 for (;;) {
6cce3b23 2818
0021b7bc 2819 flush_pending_writes(conf);
6cce3b23 2820
a35e63ef
N
2821 spin_lock_irqsave(&conf->device_lock, flags);
2822 if (list_empty(head)) {
2823 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2824 break;
a35e63ef 2825 }
9f2c9d12 2826 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2827 list_del(head->prev);
4443ae10 2828 conf->nr_queued--;
1da177e4
LT
2829 spin_unlock_irqrestore(&conf->device_lock, flags);
2830
2831 mddev = r10_bio->mddev;
070ec55d 2832 conf = mddev->private;
bd870a16
N
2833 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2834 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2835 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2836 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2837 reshape_request_write(mddev, r10_bio);
749c55e9 2838 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2839 sync_request_write(mddev, r10_bio);
7eaceacc 2840 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2841 recovery_request_write(mddev, r10_bio);
856e08e2 2842 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2843 handle_read_error(mddev, r10_bio);
856e08e2
N
2844 else {
2845 /* just a partial read to be scheduled from a
2846 * separate context
2847 */
2848 int slot = r10_bio->read_slot;
2849 generic_make_request(r10_bio->devs[slot].bio);
2850 }
560f8e55 2851
1d9d5241 2852 cond_resched();
de393cde
N
2853 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2854 md_check_recovery(mddev);
1da177e4 2855 }
e1dfa0a2 2856 blk_finish_plug(&plug);
1da177e4
LT
2857}
2858
2859
e879a879 2860static int init_resync(struct r10conf *conf)
1da177e4
LT
2861{
2862 int buffs;
69335ef3 2863 int i;
1da177e4
LT
2864
2865 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2866 BUG_ON(conf->r10buf_pool);
69335ef3 2867 conf->have_replacement = 0;
5cf00fcd 2868 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2869 if (conf->mirrors[i].replacement)
2870 conf->have_replacement = 1;
1da177e4
LT
2871 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2872 if (!conf->r10buf_pool)
2873 return -ENOMEM;
2874 conf->next_resync = 0;
2875 return 0;
2876}
2877
2878/*
2879 * perform a "sync" on one "block"
2880 *
2881 * We need to make sure that no normal I/O request - particularly write
2882 * requests - conflict with active sync requests.
2883 *
2884 * This is achieved by tracking pending requests and a 'barrier' concept
2885 * that can be installed to exclude normal IO requests.
2886 *
2887 * Resync and recovery are handled very differently.
2888 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2889 *
2890 * For resync, we iterate over virtual addresses, read all copies,
2891 * and update if there are differences. If only one copy is live,
2892 * skip it.
2893 * For recovery, we iterate over physical addresses, read a good
2894 * value for each non-in_sync drive, and over-write.
2895 *
2896 * So, for recovery we may have several outstanding complex requests for a
2897 * given address, one for each out-of-sync device. We model this by allocating
2898 * a number of r10_bio structures, one for each out-of-sync device.
2899 * As we setup these structures, we collect all bio's together into a list
2900 * which we then process collectively to add pages, and then process again
2901 * to pass to generic_make_request.
2902 *
2903 * The r10_bio structures are linked using a borrowed master_bio pointer.
2904 * This link is counted in ->remaining. When the r10_bio that points to NULL
2905 * has its remaining count decremented to 0, the whole complex operation
2906 * is complete.
2907 *
2908 */
2909
fd01b88c 2910static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2911 int *skipped, int go_faster)
1da177e4 2912{
e879a879 2913 struct r10conf *conf = mddev->private;
9f2c9d12 2914 struct r10bio *r10_bio;
1da177e4
LT
2915 struct bio *biolist = NULL, *bio;
2916 sector_t max_sector, nr_sectors;
1da177e4 2917 int i;
6cce3b23 2918 int max_sync;
57dab0bd 2919 sector_t sync_blocks;
1da177e4
LT
2920 sector_t sectors_skipped = 0;
2921 int chunks_skipped = 0;
5cf00fcd 2922 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2923
2924 if (!conf->r10buf_pool)
2925 if (init_resync(conf))
57afd89f 2926 return 0;
1da177e4 2927
7e83ccbe
MW
2928 /*
2929 * Allow skipping a full rebuild for incremental assembly
2930 * of a clean array, like RAID1 does.
2931 */
2932 if (mddev->bitmap == NULL &&
2933 mddev->recovery_cp == MaxSector &&
2934 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2935 conf->fullsync == 0) {
2936 *skipped = 1;
2937 max_sector = mddev->dev_sectors;
2938 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2939 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2940 max_sector = mddev->resync_max_sectors;
2941 return max_sector - sector_nr;
2942 }
2943
1da177e4 2944 skipped:
58c0fed4 2945 max_sector = mddev->dev_sectors;
3ea7daa5
N
2946 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2947 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2948 max_sector = mddev->resync_max_sectors;
2949 if (sector_nr >= max_sector) {
6cce3b23
N
2950 /* If we aborted, we need to abort the
2951 * sync on the 'current' bitmap chucks (there can
2952 * be several when recovering multiple devices).
2953 * as we may have started syncing it but not finished.
2954 * We can find the current address in
2955 * mddev->curr_resync, but for recovery,
2956 * we need to convert that to several
2957 * virtual addresses.
2958 */
3ea7daa5
N
2959 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2960 end_reshape(conf);
2961 return 0;
2962 }
2963
6cce3b23
N
2964 if (mddev->curr_resync < max_sector) { /* aborted */
2965 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2966 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2967 &sync_blocks, 1);
5cf00fcd 2968 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2969 sector_t sect =
2970 raid10_find_virt(conf, mddev->curr_resync, i);
2971 bitmap_end_sync(mddev->bitmap, sect,
2972 &sync_blocks, 1);
2973 }
9ad1aefc
N
2974 } else {
2975 /* completed sync */
2976 if ((!mddev->bitmap || conf->fullsync)
2977 && conf->have_replacement
2978 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2979 /* Completed a full sync so the replacements
2980 * are now fully recovered.
2981 */
5cf00fcd 2982 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2983 if (conf->mirrors[i].replacement)
2984 conf->mirrors[i].replacement
2985 ->recovery_offset
2986 = MaxSector;
2987 }
6cce3b23 2988 conf->fullsync = 0;
9ad1aefc 2989 }
6cce3b23 2990 bitmap_close_sync(mddev->bitmap);
1da177e4 2991 close_sync(conf);
57afd89f 2992 *skipped = 1;
1da177e4
LT
2993 return sectors_skipped;
2994 }
3ea7daa5
N
2995
2996 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2997 return reshape_request(mddev, sector_nr, skipped);
2998
5cf00fcd 2999 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3000 /* if there has been nothing to do on any drive,
3001 * then there is nothing to do at all..
3002 */
57afd89f
N
3003 *skipped = 1;
3004 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3005 }
3006
c6207277
N
3007 if (max_sector > mddev->resync_max)
3008 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3009
1da177e4
LT
3010 /* make sure whole request will fit in a chunk - if chunks
3011 * are meaningful
3012 */
5cf00fcd
N
3013 if (conf->geo.near_copies < conf->geo.raid_disks &&
3014 max_sector > (sector_nr | chunk_mask))
3015 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
3016 /*
3017 * If there is non-resync activity waiting for us then
3018 * put in a delay to throttle resync.
3019 */
0a27ec96 3020 if (!go_faster && conf->nr_waiting)
1da177e4 3021 msleep_interruptible(1000);
1da177e4
LT
3022
3023 /* Again, very different code for resync and recovery.
3024 * Both must result in an r10bio with a list of bios that
3025 * have bi_end_io, bi_sector, bi_bdev set,
3026 * and bi_private set to the r10bio.
3027 * For recovery, we may actually create several r10bios
3028 * with 2 bios in each, that correspond to the bios in the main one.
3029 * In this case, the subordinate r10bios link back through a
3030 * borrowed master_bio pointer, and the counter in the master
3031 * includes a ref from each subordinate.
3032 */
3033 /* First, we decide what to do and set ->bi_end_io
3034 * To end_sync_read if we want to read, and
3035 * end_sync_write if we will want to write.
3036 */
3037
6cce3b23 3038 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3039 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040 /* recovery... the complicated one */
e875ecea 3041 int j;
1da177e4
LT
3042 r10_bio = NULL;
3043
5cf00fcd 3044 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3045 int still_degraded;
9f2c9d12 3046 struct r10bio *rb2;
ab9d47e9
N
3047 sector_t sect;
3048 int must_sync;
e875ecea 3049 int any_working;
dc280d98 3050 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
3051
3052 if ((mirror->rdev == NULL ||
3053 test_bit(In_sync, &mirror->rdev->flags))
3054 &&
3055 (mirror->replacement == NULL ||
3056 test_bit(Faulty,
3057 &mirror->replacement->flags)))
ab9d47e9 3058 continue;
1da177e4 3059
ab9d47e9
N
3060 still_degraded = 0;
3061 /* want to reconstruct this device */
3062 rb2 = r10_bio;
3063 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3064 if (sect >= mddev->resync_max_sectors) {
3065 /* last stripe is not complete - don't
3066 * try to recover this sector.
3067 */
3068 continue;
3069 }
24afd80d
N
3070 /* Unless we are doing a full sync, or a replacement
3071 * we only need to recover the block if it is set in
3072 * the bitmap
ab9d47e9
N
3073 */
3074 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3075 &sync_blocks, 1);
3076 if (sync_blocks < max_sync)
3077 max_sync = sync_blocks;
3078 if (!must_sync &&
24afd80d 3079 mirror->replacement == NULL &&
ab9d47e9
N
3080 !conf->fullsync) {
3081 /* yep, skip the sync_blocks here, but don't assume
3082 * that there will never be anything to do here
3083 */
3084 chunks_skipped = -1;
3085 continue;
3086 }
6cce3b23 3087
ab9d47e9
N
3088 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3089 raise_barrier(conf, rb2 != NULL);
3090 atomic_set(&r10_bio->remaining, 0);
18055569 3091
ab9d47e9
N
3092 r10_bio->master_bio = (struct bio*)rb2;
3093 if (rb2)
3094 atomic_inc(&rb2->remaining);
3095 r10_bio->mddev = mddev;
3096 set_bit(R10BIO_IsRecover, &r10_bio->state);
3097 r10_bio->sector = sect;
1da177e4 3098
ab9d47e9
N
3099 raid10_find_phys(conf, r10_bio);
3100
3101 /* Need to check if the array will still be
3102 * degraded
3103 */
5cf00fcd 3104 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3105 if (conf->mirrors[j].rdev == NULL ||
3106 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3107 still_degraded = 1;
87fc767b 3108 break;
1da177e4 3109 }
ab9d47e9
N
3110
3111 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3112 &sync_blocks, still_degraded);
3113
e875ecea 3114 any_working = 0;
ab9d47e9 3115 for (j=0; j<conf->copies;j++) {
e875ecea 3116 int k;
ab9d47e9 3117 int d = r10_bio->devs[j].devnum;
5e570289 3118 sector_t from_addr, to_addr;
3cb03002 3119 struct md_rdev *rdev;
40c356ce
N
3120 sector_t sector, first_bad;
3121 int bad_sectors;
ab9d47e9
N
3122 if (!conf->mirrors[d].rdev ||
3123 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3124 continue;
3125 /* This is where we read from */
e875ecea 3126 any_working = 1;
40c356ce
N
3127 rdev = conf->mirrors[d].rdev;
3128 sector = r10_bio->devs[j].addr;
3129
3130 if (is_badblock(rdev, sector, max_sync,
3131 &first_bad, &bad_sectors)) {
3132 if (first_bad > sector)
3133 max_sync = first_bad - sector;
3134 else {
3135 bad_sectors -= (sector
3136 - first_bad);
3137 if (max_sync > bad_sectors)
3138 max_sync = bad_sectors;
3139 continue;
3140 }
3141 }
ab9d47e9 3142 bio = r10_bio->devs[0].bio;
8be185f2 3143 bio_reset(bio);
ab9d47e9
N
3144 bio->bi_next = biolist;
3145 biolist = bio;
3146 bio->bi_private = r10_bio;
3147 bio->bi_end_io = end_sync_read;
3148 bio->bi_rw = READ;
5e570289 3149 from_addr = r10_bio->devs[j].addr;
24afd80d
N
3150 bio->bi_sector = from_addr + rdev->data_offset;
3151 bio->bi_bdev = rdev->bdev;
3152 atomic_inc(&rdev->nr_pending);
3153 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3154
3155 for (k=0; k<conf->copies; k++)
3156 if (r10_bio->devs[k].devnum == i)
3157 break;
3158 BUG_ON(k == conf->copies);
5e570289 3159 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3160 r10_bio->devs[0].devnum = d;
5e570289 3161 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3162 r10_bio->devs[1].devnum = i;
5e570289 3163 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3164
24afd80d
N
3165 rdev = mirror->rdev;
3166 if (!test_bit(In_sync, &rdev->flags)) {
3167 bio = r10_bio->devs[1].bio;
8be185f2 3168 bio_reset(bio);
24afd80d
N
3169 bio->bi_next = biolist;
3170 biolist = bio;
3171 bio->bi_private = r10_bio;
3172 bio->bi_end_io = end_sync_write;
3173 bio->bi_rw = WRITE;
3174 bio->bi_sector = to_addr
3175 + rdev->data_offset;
3176 bio->bi_bdev = rdev->bdev;
3177 atomic_inc(&r10_bio->remaining);
3178 } else
3179 r10_bio->devs[1].bio->bi_end_io = NULL;
3180
3181 /* and maybe write to replacement */
3182 bio = r10_bio->devs[1].repl_bio;
3183 if (bio)
3184 bio->bi_end_io = NULL;
3185 rdev = mirror->replacement;
3186 /* Note: if rdev != NULL, then bio
3187 * cannot be NULL as r10buf_pool_alloc will
3188 * have allocated it.
3189 * So the second test here is pointless.
3190 * But it keeps semantic-checkers happy, and
3191 * this comment keeps human reviewers
3192 * happy.
3193 */
3194 if (rdev == NULL || bio == NULL ||
3195 test_bit(Faulty, &rdev->flags))
3196 break;
8be185f2 3197 bio_reset(bio);
24afd80d
N
3198 bio->bi_next = biolist;
3199 biolist = bio;
3200 bio->bi_private = r10_bio;
3201 bio->bi_end_io = end_sync_write;
3202 bio->bi_rw = WRITE;
3203 bio->bi_sector = to_addr + rdev->data_offset;
3204 bio->bi_bdev = rdev->bdev;
3205 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3206 break;
3207 }
3208 if (j == conf->copies) {
e875ecea
N
3209 /* Cannot recover, so abort the recovery or
3210 * record a bad block */
ab9d47e9
N
3211 put_buf(r10_bio);
3212 if (rb2)
3213 atomic_dec(&rb2->remaining);
3214 r10_bio = rb2;
e875ecea
N
3215 if (any_working) {
3216 /* problem is that there are bad blocks
3217 * on other device(s)
3218 */
3219 int k;
3220 for (k = 0; k < conf->copies; k++)
3221 if (r10_bio->devs[k].devnum == i)
3222 break;
24afd80d
N
3223 if (!test_bit(In_sync,
3224 &mirror->rdev->flags)
3225 && !rdev_set_badblocks(
3226 mirror->rdev,
3227 r10_bio->devs[k].addr,
3228 max_sync, 0))
3229 any_working = 0;
3230 if (mirror->replacement &&
3231 !rdev_set_badblocks(
3232 mirror->replacement,
e875ecea
N
3233 r10_bio->devs[k].addr,
3234 max_sync, 0))
3235 any_working = 0;
3236 }
3237 if (!any_working) {
3238 if (!test_and_set_bit(MD_RECOVERY_INTR,
3239 &mddev->recovery))
3240 printk(KERN_INFO "md/raid10:%s: insufficient "
3241 "working devices for recovery.\n",
3242 mdname(mddev));
24afd80d 3243 mirror->recovery_disabled
e875ecea
N
3244 = mddev->recovery_disabled;
3245 }
ab9d47e9 3246 break;
1da177e4 3247 }
ab9d47e9 3248 }
1da177e4
LT
3249 if (biolist == NULL) {
3250 while (r10_bio) {
9f2c9d12
N
3251 struct r10bio *rb2 = r10_bio;
3252 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3253 rb2->master_bio = NULL;
3254 put_buf(rb2);
3255 }
3256 goto giveup;
3257 }
3258 } else {
3259 /* resync. Schedule a read for every block at this virt offset */
3260 int count = 0;
6cce3b23 3261
78200d45
N
3262 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3263
6cce3b23
N
3264 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3265 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3266 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3267 &mddev->recovery)) {
6cce3b23
N
3268 /* We can skip this block */
3269 *skipped = 1;
3270 return sync_blocks + sectors_skipped;
3271 }
3272 if (sync_blocks < max_sync)
3273 max_sync = sync_blocks;
1da177e4
LT
3274 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3275
1da177e4
LT
3276 r10_bio->mddev = mddev;
3277 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3278 raise_barrier(conf, 0);
3279 conf->next_resync = sector_nr;
1da177e4
LT
3280
3281 r10_bio->master_bio = NULL;
3282 r10_bio->sector = sector_nr;
3283 set_bit(R10BIO_IsSync, &r10_bio->state);
3284 raid10_find_phys(conf, r10_bio);
5cf00fcd 3285 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3286
5cf00fcd 3287 for (i = 0; i < conf->copies; i++) {
1da177e4 3288 int d = r10_bio->devs[i].devnum;
40c356ce
N
3289 sector_t first_bad, sector;
3290 int bad_sectors;
3291
9ad1aefc
N
3292 if (r10_bio->devs[i].repl_bio)
3293 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3294
1da177e4 3295 bio = r10_bio->devs[i].bio;
8be185f2 3296 bio_reset(bio);
af03b8e4 3297 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3298 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3299 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3300 continue;
40c356ce
N
3301 sector = r10_bio->devs[i].addr;
3302 if (is_badblock(conf->mirrors[d].rdev,
3303 sector, max_sync,
3304 &first_bad, &bad_sectors)) {
3305 if (first_bad > sector)
3306 max_sync = first_bad - sector;
3307 else {
3308 bad_sectors -= (sector - first_bad);
3309 if (max_sync > bad_sectors)
91502f09 3310 max_sync = bad_sectors;
40c356ce
N
3311 continue;
3312 }
3313 }
1da177e4
LT
3314 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3315 atomic_inc(&r10_bio->remaining);
3316 bio->bi_next = biolist;
3317 biolist = bio;
3318 bio->bi_private = r10_bio;
3319 bio->bi_end_io = end_sync_read;
802ba064 3320 bio->bi_rw = READ;
40c356ce 3321 bio->bi_sector = sector +
1da177e4
LT
3322 conf->mirrors[d].rdev->data_offset;
3323 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3324 count++;
9ad1aefc
N
3325
3326 if (conf->mirrors[d].replacement == NULL ||
3327 test_bit(Faulty,
3328 &conf->mirrors[d].replacement->flags))
3329 continue;
3330
3331 /* Need to set up for writing to the replacement */
3332 bio = r10_bio->devs[i].repl_bio;
8be185f2 3333 bio_reset(bio);
9ad1aefc
N
3334 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3335
3336 sector = r10_bio->devs[i].addr;
3337 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3338 bio->bi_next = biolist;
3339 biolist = bio;
3340 bio->bi_private = r10_bio;
3341 bio->bi_end_io = end_sync_write;
3342 bio->bi_rw = WRITE;
3343 bio->bi_sector = sector +
3344 conf->mirrors[d].replacement->data_offset;
3345 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3346 count++;
1da177e4
LT
3347 }
3348
3349 if (count < 2) {
3350 for (i=0; i<conf->copies; i++) {
3351 int d = r10_bio->devs[i].devnum;
3352 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3353 rdev_dec_pending(conf->mirrors[d].rdev,
3354 mddev);
9ad1aefc
N
3355 if (r10_bio->devs[i].repl_bio &&
3356 r10_bio->devs[i].repl_bio->bi_end_io)
3357 rdev_dec_pending(
3358 conf->mirrors[d].replacement,
3359 mddev);
1da177e4
LT
3360 }
3361 put_buf(r10_bio);
3362 biolist = NULL;
3363 goto giveup;
3364 }
3365 }
3366
1da177e4 3367 nr_sectors = 0;
6cce3b23
N
3368 if (sector_nr + max_sync < max_sector)
3369 max_sector = sector_nr + max_sync;
1da177e4
LT
3370 do {
3371 struct page *page;
3372 int len = PAGE_SIZE;
1da177e4
LT
3373 if (sector_nr + (len>>9) > max_sector)
3374 len = (max_sector - sector_nr) << 9;
3375 if (len == 0)
3376 break;
3377 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3378 struct bio *bio2;
1da177e4 3379 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3380 if (bio_add_page(bio, page, len, 0))
3381 continue;
3382
3383 /* stop here */
3384 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3385 for (bio2 = biolist;
3386 bio2 && bio2 != bio;
3387 bio2 = bio2->bi_next) {
3388 /* remove last page from this bio */
3389 bio2->bi_vcnt--;
3390 bio2->bi_size -= len;
3391 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3392 }
ab9d47e9 3393 goto bio_full;
1da177e4
LT
3394 }
3395 nr_sectors += len>>9;
3396 sector_nr += len>>9;
3397 } while (biolist->bi_vcnt < RESYNC_PAGES);
3398 bio_full:
3399 r10_bio->sectors = nr_sectors;
3400
3401 while (biolist) {
3402 bio = biolist;
3403 biolist = biolist->bi_next;
3404
3405 bio->bi_next = NULL;
3406 r10_bio = bio->bi_private;
3407 r10_bio->sectors = nr_sectors;
3408
3409 if (bio->bi_end_io == end_sync_read) {
3410 md_sync_acct(bio->bi_bdev, nr_sectors);
3411 generic_make_request(bio);
3412 }
3413 }
3414
57afd89f
N
3415 if (sectors_skipped)
3416 /* pretend they weren't skipped, it makes
3417 * no important difference in this case
3418 */
3419 md_done_sync(mddev, sectors_skipped, 1);
3420
1da177e4
LT
3421 return sectors_skipped + nr_sectors;
3422 giveup:
3423 /* There is nowhere to write, so all non-sync
e875ecea
N
3424 * drives must be failed or in resync, all drives
3425 * have a bad block, so try the next chunk...
1da177e4 3426 */
09b4068a
N
3427 if (sector_nr + max_sync < max_sector)
3428 max_sector = sector_nr + max_sync;
3429
3430 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3431 chunks_skipped ++;
3432 sector_nr = max_sector;
1da177e4 3433 goto skipped;
1da177e4
LT
3434}
3435
80c3a6ce 3436static sector_t
fd01b88c 3437raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3438{
3439 sector_t size;
e879a879 3440 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3441
3442 if (!raid_disks)
3ea7daa5
N
3443 raid_disks = min(conf->geo.raid_disks,
3444 conf->prev.raid_disks);
80c3a6ce 3445 if (!sectors)
dab8b292 3446 sectors = conf->dev_sectors;
80c3a6ce 3447
5cf00fcd
N
3448 size = sectors >> conf->geo.chunk_shift;
3449 sector_div(size, conf->geo.far_copies);
80c3a6ce 3450 size = size * raid_disks;
5cf00fcd 3451 sector_div(size, conf->geo.near_copies);
80c3a6ce 3452
5cf00fcd 3453 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3454}
3455
6508fdbf
N
3456static void calc_sectors(struct r10conf *conf, sector_t size)
3457{
3458 /* Calculate the number of sectors-per-device that will
3459 * actually be used, and set conf->dev_sectors and
3460 * conf->stride
3461 */
3462
5cf00fcd
N
3463 size = size >> conf->geo.chunk_shift;
3464 sector_div(size, conf->geo.far_copies);
3465 size = size * conf->geo.raid_disks;
3466 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3467 /* 'size' is now the number of chunks in the array */
3468 /* calculate "used chunks per device" */
3469 size = size * conf->copies;
3470
3471 /* We need to round up when dividing by raid_disks to
3472 * get the stride size.
3473 */
5cf00fcd 3474 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3475
5cf00fcd 3476 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3477
5cf00fcd
N
3478 if (conf->geo.far_offset)
3479 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3480 else {
5cf00fcd
N
3481 sector_div(size, conf->geo.far_copies);
3482 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3483 }
3484}
dab8b292 3485
deb200d0
N
3486enum geo_type {geo_new, geo_old, geo_start};
3487static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3488{
3489 int nc, fc, fo;
3490 int layout, chunk, disks;
3491 switch (new) {
3492 case geo_old:
3493 layout = mddev->layout;
3494 chunk = mddev->chunk_sectors;
3495 disks = mddev->raid_disks - mddev->delta_disks;
3496 break;
3497 case geo_new:
3498 layout = mddev->new_layout;
3499 chunk = mddev->new_chunk_sectors;
3500 disks = mddev->raid_disks;
3501 break;
3502 default: /* avoid 'may be unused' warnings */
3503 case geo_start: /* new when starting reshape - raid_disks not
3504 * updated yet. */
3505 layout = mddev->new_layout;
3506 chunk = mddev->new_chunk_sectors;
3507 disks = mddev->raid_disks + mddev->delta_disks;
3508 break;
3509 }
475901af 3510 if (layout >> 18)
deb200d0
N
3511 return -1;
3512 if (chunk < (PAGE_SIZE >> 9) ||
3513 !is_power_of_2(chunk))
3514 return -2;
3515 nc = layout & 255;
3516 fc = (layout >> 8) & 255;
3517 fo = layout & (1<<16);
3518 geo->raid_disks = disks;
3519 geo->near_copies = nc;
3520 geo->far_copies = fc;
3521 geo->far_offset = fo;
475901af 3522 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
deb200d0
N
3523 geo->chunk_mask = chunk - 1;
3524 geo->chunk_shift = ffz(~chunk);
3525 return nc*fc;
3526}
3527
e879a879 3528static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3529{
e879a879 3530 struct r10conf *conf = NULL;
dab8b292 3531 int err = -EINVAL;
deb200d0
N
3532 struct geom geo;
3533 int copies;
3534
3535 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3536
deb200d0 3537 if (copies == -2) {
128595ed
N
3538 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3539 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3540 mdname(mddev), PAGE_SIZE);
dab8b292 3541 goto out;
1da177e4 3542 }
2604b703 3543
deb200d0 3544 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3545 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3546 mdname(mddev), mddev->new_layout);
1da177e4
LT
3547 goto out;
3548 }
dab8b292
TM
3549
3550 err = -ENOMEM;
e879a879 3551 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3552 if (!conf)
1da177e4 3553 goto out;
dab8b292 3554
3ea7daa5 3555 /* FIXME calc properly */
dc280d98 3556 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3557 max(0,-mddev->delta_disks)),
dab8b292
TM
3558 GFP_KERNEL);
3559 if (!conf->mirrors)
3560 goto out;
4443ae10
N
3561
3562 conf->tmppage = alloc_page(GFP_KERNEL);
3563 if (!conf->tmppage)
dab8b292
TM
3564 goto out;
3565
deb200d0
N
3566 conf->geo = geo;
3567 conf->copies = copies;
dab8b292
TM
3568 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3569 r10bio_pool_free, conf);
3570 if (!conf->r10bio_pool)
3571 goto out;
3572
6508fdbf 3573 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3574 if (mddev->reshape_position == MaxSector) {
3575 conf->prev = conf->geo;
3576 conf->reshape_progress = MaxSector;
3577 } else {
3578 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3579 err = -EINVAL;
3580 goto out;
3581 }
3582 conf->reshape_progress = mddev->reshape_position;
3583 if (conf->prev.far_offset)
3584 conf->prev.stride = 1 << conf->prev.chunk_shift;
3585 else
3586 /* far_copies must be 1 */
3587 conf->prev.stride = conf->dev_sectors;
3588 }
e7e72bf6 3589 spin_lock_init(&conf->device_lock);
dab8b292
TM
3590 INIT_LIST_HEAD(&conf->retry_list);
3591
3592 spin_lock_init(&conf->resync_lock);
3593 init_waitqueue_head(&conf->wait_barrier);
3594
0232605d 3595 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3596 if (!conf->thread)
3597 goto out;
3598
dab8b292
TM
3599 conf->mddev = mddev;
3600 return conf;
3601
3602 out:
3ea7daa5
N
3603 if (err == -ENOMEM)
3604 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3605 mdname(mddev));
dab8b292
TM
3606 if (conf) {
3607 if (conf->r10bio_pool)
3608 mempool_destroy(conf->r10bio_pool);
3609 kfree(conf->mirrors);
3610 safe_put_page(conf->tmppage);
3611 kfree(conf);
3612 }
3613 return ERR_PTR(err);
3614}
3615
fd01b88c 3616static int run(struct mddev *mddev)
dab8b292 3617{
e879a879 3618 struct r10conf *conf;
dab8b292 3619 int i, disk_idx, chunk_size;
dc280d98 3620 struct raid10_info *disk;
3cb03002 3621 struct md_rdev *rdev;
dab8b292 3622 sector_t size;
3ea7daa5
N
3623 sector_t min_offset_diff = 0;
3624 int first = 1;
532a2a3f 3625 bool discard_supported = false;
dab8b292
TM
3626
3627 if (mddev->private == NULL) {
3628 conf = setup_conf(mddev);
3629 if (IS_ERR(conf))
3630 return PTR_ERR(conf);
3631 mddev->private = conf;
3632 }
3633 conf = mddev->private;
3634 if (!conf)
3635 goto out;
3636
dab8b292
TM
3637 mddev->thread = conf->thread;
3638 conf->thread = NULL;
3639
8f6c2e4b 3640 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3641 if (mddev->queue) {
532a2a3f
SL
3642 blk_queue_max_discard_sectors(mddev->queue,
3643 mddev->chunk_sectors);
5026d7a9 3644 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3645 blk_queue_io_min(mddev->queue, chunk_size);
3646 if (conf->geo.raid_disks % conf->geo.near_copies)
3647 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3648 else
3649 blk_queue_io_opt(mddev->queue, chunk_size *
3650 (conf->geo.raid_disks / conf->geo.near_copies));
3651 }
8f6c2e4b 3652
dafb20fa 3653 rdev_for_each(rdev, mddev) {
3ea7daa5 3654 long long diff;
aba336bd 3655 struct request_queue *q;
34b343cf 3656
1da177e4 3657 disk_idx = rdev->raid_disk;
f8c9e74f
N
3658 if (disk_idx < 0)
3659 continue;
3660 if (disk_idx >= conf->geo.raid_disks &&
3661 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3662 continue;
3663 disk = conf->mirrors + disk_idx;
3664
56a2559b
N
3665 if (test_bit(Replacement, &rdev->flags)) {
3666 if (disk->replacement)
3667 goto out_free_conf;
3668 disk->replacement = rdev;
3669 } else {
3670 if (disk->rdev)
3671 goto out_free_conf;
3672 disk->rdev = rdev;
3673 }
aba336bd
N
3674 q = bdev_get_queue(rdev->bdev);
3675 if (q->merge_bvec_fn)
3676 mddev->merge_check_needed = 1;
3ea7daa5
N
3677 diff = (rdev->new_data_offset - rdev->data_offset);
3678 if (!mddev->reshape_backwards)
3679 diff = -diff;
3680 if (diff < 0)
3681 diff = 0;
3682 if (first || diff < min_offset_diff)
3683 min_offset_diff = diff;
56a2559b 3684
cc4d1efd
JB
3685 if (mddev->gendisk)
3686 disk_stack_limits(mddev->gendisk, rdev->bdev,
3687 rdev->data_offset << 9);
1da177e4
LT
3688
3689 disk->head_position = 0;
532a2a3f
SL
3690
3691 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3692 discard_supported = true;
1da177e4 3693 }
3ea7daa5 3694
ed30be07
JB
3695 if (mddev->queue) {
3696 if (discard_supported)
3697 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3698 mddev->queue);
3699 else
3700 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3701 mddev->queue);
3702 }
6d508242 3703 /* need to check that every block has at least one working mirror */
700c7213 3704 if (!enough(conf, -1)) {
128595ed 3705 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3706 mdname(mddev));
1da177e4
LT
3707 goto out_free_conf;
3708 }
3709
3ea7daa5
N
3710 if (conf->reshape_progress != MaxSector) {
3711 /* must ensure that shape change is supported */
3712 if (conf->geo.far_copies != 1 &&
3713 conf->geo.far_offset == 0)
3714 goto out_free_conf;
3715 if (conf->prev.far_copies != 1 &&
78eaa0d4 3716 conf->prev.far_offset == 0)
3ea7daa5
N
3717 goto out_free_conf;
3718 }
3719
1da177e4 3720 mddev->degraded = 0;
f8c9e74f
N
3721 for (i = 0;
3722 i < conf->geo.raid_disks
3723 || i < conf->prev.raid_disks;
3724 i++) {
1da177e4
LT
3725
3726 disk = conf->mirrors + i;
3727
56a2559b
N
3728 if (!disk->rdev && disk->replacement) {
3729 /* The replacement is all we have - use it */
3730 disk->rdev = disk->replacement;
3731 disk->replacement = NULL;
3732 clear_bit(Replacement, &disk->rdev->flags);
3733 }
3734
5fd6c1dc 3735 if (!disk->rdev ||
2e333e89 3736 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3737 disk->head_position = 0;
3738 mddev->degraded++;
8c2e870a
NB
3739 if (disk->rdev)
3740 conf->fullsync = 1;
1da177e4 3741 }
d890fa2b 3742 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3743 }
3744
8c6ac868 3745 if (mddev->recovery_cp != MaxSector)
128595ed 3746 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3747 " -- starting background reconstruction\n",
3748 mdname(mddev));
1da177e4 3749 printk(KERN_INFO
128595ed 3750 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3751 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3752 conf->geo.raid_disks);
1da177e4
LT
3753 /*
3754 * Ok, everything is just fine now
3755 */
dab8b292
TM
3756 mddev->dev_sectors = conf->dev_sectors;
3757 size = raid10_size(mddev, 0, 0);
3758 md_set_array_sectors(mddev, size);
3759 mddev->resync_max_sectors = size;
1da177e4 3760
cc4d1efd 3761 if (mddev->queue) {
5cf00fcd 3762 int stripe = conf->geo.raid_disks *
9d8f0363 3763 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3764 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3765 mddev->queue->backing_dev_info.congested_data = mddev;
3766
3767 /* Calculate max read-ahead size.
3768 * We need to readahead at least twice a whole stripe....
3769 * maybe...
3770 */
5cf00fcd 3771 stripe /= conf->geo.near_copies;
3ea7daa5
N
3772 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3773 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3774 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3775 }
3776
a91a2785
MP
3777
3778 if (md_integrity_register(mddev))
3779 goto out_free_conf;
3780
3ea7daa5
N
3781 if (conf->reshape_progress != MaxSector) {
3782 unsigned long before_length, after_length;
3783
3784 before_length = ((1 << conf->prev.chunk_shift) *
3785 conf->prev.far_copies);
3786 after_length = ((1 << conf->geo.chunk_shift) *
3787 conf->geo.far_copies);
3788
3789 if (max(before_length, after_length) > min_offset_diff) {
3790 /* This cannot work */
3791 printk("md/raid10: offset difference not enough to continue reshape\n");
3792 goto out_free_conf;
3793 }
3794 conf->offset_diff = min_offset_diff;
3795
3796 conf->reshape_safe = conf->reshape_progress;
3797 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3798 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3799 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3800 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3801 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3802 "reshape");
3803 }
3804
1da177e4
LT
3805 return 0;
3806
3807out_free_conf:
01f96c0a 3808 md_unregister_thread(&mddev->thread);
1da177e4
LT
3809 if (conf->r10bio_pool)
3810 mempool_destroy(conf->r10bio_pool);
1345b1d8 3811 safe_put_page(conf->tmppage);
990a8baf 3812 kfree(conf->mirrors);
1da177e4
LT
3813 kfree(conf);
3814 mddev->private = NULL;
3815out:
3816 return -EIO;
3817}
3818
fd01b88c 3819static int stop(struct mddev *mddev)
1da177e4 3820{
e879a879 3821 struct r10conf *conf = mddev->private;
1da177e4 3822
409c57f3
N
3823 raise_barrier(conf, 0);
3824 lower_barrier(conf);
3825
01f96c0a 3826 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3827 if (mddev->queue)
3828 /* the unplug fn references 'conf'*/
3829 blk_sync_queue(mddev->queue);
3830
1da177e4
LT
3831 if (conf->r10bio_pool)
3832 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3833 safe_put_page(conf->tmppage);
990a8baf 3834 kfree(conf->mirrors);
1da177e4
LT
3835 kfree(conf);
3836 mddev->private = NULL;
3837 return 0;
3838}
3839
fd01b88c 3840static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3841{
e879a879 3842 struct r10conf *conf = mddev->private;
6cce3b23
N
3843
3844 switch(state) {
3845 case 1:
3846 raise_barrier(conf, 0);
3847 break;
3848 case 0:
3849 lower_barrier(conf);
3850 break;
3851 }
6cce3b23 3852}
1da177e4 3853
006a09a0
N
3854static int raid10_resize(struct mddev *mddev, sector_t sectors)
3855{
3856 /* Resize of 'far' arrays is not supported.
3857 * For 'near' and 'offset' arrays we can set the
3858 * number of sectors used to be an appropriate multiple
3859 * of the chunk size.
3860 * For 'offset', this is far_copies*chunksize.
3861 * For 'near' the multiplier is the LCM of
3862 * near_copies and raid_disks.
3863 * So if far_copies > 1 && !far_offset, fail.
3864 * Else find LCM(raid_disks, near_copy)*far_copies and
3865 * multiply by chunk_size. Then round to this number.
3866 * This is mostly done by raid10_size()
3867 */
3868 struct r10conf *conf = mddev->private;
3869 sector_t oldsize, size;
3870
f8c9e74f
N
3871 if (mddev->reshape_position != MaxSector)
3872 return -EBUSY;
3873
5cf00fcd 3874 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3875 return -EINVAL;
3876
3877 oldsize = raid10_size(mddev, 0, 0);
3878 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3879 if (mddev->external_size &&
3880 mddev->array_sectors > size)
006a09a0 3881 return -EINVAL;
a4a6125a
N
3882 if (mddev->bitmap) {
3883 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3884 if (ret)
3885 return ret;
3886 }
3887 md_set_array_sectors(mddev, size);
006a09a0
N
3888 set_capacity(mddev->gendisk, mddev->array_sectors);
3889 revalidate_disk(mddev->gendisk);
3890 if (sectors > mddev->dev_sectors &&
3891 mddev->recovery_cp > oldsize) {
3892 mddev->recovery_cp = oldsize;
3893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894 }
6508fdbf
N
3895 calc_sectors(conf, sectors);
3896 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3897 mddev->resync_max_sectors = size;
3898 return 0;
3899}
3900
fd01b88c 3901static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3902{
3cb03002 3903 struct md_rdev *rdev;
e879a879 3904 struct r10conf *conf;
dab8b292
TM
3905
3906 if (mddev->degraded > 0) {
128595ed
N
3907 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3908 mdname(mddev));
dab8b292
TM
3909 return ERR_PTR(-EINVAL);
3910 }
3911
dab8b292
TM
3912 /* Set new parameters */
3913 mddev->new_level = 10;
3914 /* new layout: far_copies = 1, near_copies = 2 */
3915 mddev->new_layout = (1<<8) + 2;
3916 mddev->new_chunk_sectors = mddev->chunk_sectors;
3917 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3918 mddev->raid_disks *= 2;
3919 /* make sure it will be not marked as dirty */
3920 mddev->recovery_cp = MaxSector;
3921
3922 conf = setup_conf(mddev);
02214dc5 3923 if (!IS_ERR(conf)) {
dafb20fa 3924 rdev_for_each(rdev, mddev)
e93f68a1
N
3925 if (rdev->raid_disk >= 0)
3926 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3927 conf->barrier = 1;
3928 }
3929
dab8b292
TM
3930 return conf;
3931}
3932
fd01b88c 3933static void *raid10_takeover(struct mddev *mddev)
dab8b292 3934{
e373ab10 3935 struct r0conf *raid0_conf;
dab8b292
TM
3936
3937 /* raid10 can take over:
3938 * raid0 - providing it has only two drives
3939 */
3940 if (mddev->level == 0) {
3941 /* for raid0 takeover only one zone is supported */
e373ab10
N
3942 raid0_conf = mddev->private;
3943 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3944 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3945 " with more than one zone.\n",
3946 mdname(mddev));
dab8b292
TM
3947 return ERR_PTR(-EINVAL);
3948 }
3949 return raid10_takeover_raid0(mddev);
3950 }
3951 return ERR_PTR(-EINVAL);
3952}
3953
3ea7daa5
N
3954static int raid10_check_reshape(struct mddev *mddev)
3955{
3956 /* Called when there is a request to change
3957 * - layout (to ->new_layout)
3958 * - chunk size (to ->new_chunk_sectors)
3959 * - raid_disks (by delta_disks)
3960 * or when trying to restart a reshape that was ongoing.
3961 *
3962 * We need to validate the request and possibly allocate
3963 * space if that might be an issue later.
3964 *
3965 * Currently we reject any reshape of a 'far' mode array,
3966 * allow chunk size to change if new is generally acceptable,
3967 * allow raid_disks to increase, and allow
3968 * a switch between 'near' mode and 'offset' mode.
3969 */
3970 struct r10conf *conf = mddev->private;
3971 struct geom geo;
3972
3973 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974 return -EINVAL;
3975
3976 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977 /* mustn't change number of copies */
3978 return -EINVAL;
3979 if (geo.far_copies > 1 && !geo.far_offset)
3980 /* Cannot switch to 'far' mode */
3981 return -EINVAL;
3982
3983 if (mddev->array_sectors & geo.chunk_mask)
3984 /* not factor of array size */
3985 return -EINVAL;
3986
3ea7daa5
N
3987 if (!enough(conf, -1))
3988 return -EINVAL;
3989
3990 kfree(conf->mirrors_new);
3991 conf->mirrors_new = NULL;
3992 if (mddev->delta_disks > 0) {
3993 /* allocate new 'mirrors' list */
3994 conf->mirrors_new = kzalloc(
dc280d98 3995 sizeof(struct raid10_info)
3ea7daa5
N
3996 *(mddev->raid_disks +
3997 mddev->delta_disks),
3998 GFP_KERNEL);
3999 if (!conf->mirrors_new)
4000 return -ENOMEM;
4001 }
4002 return 0;
4003}
4004
4005/*
4006 * Need to check if array has failed when deciding whether to:
4007 * - start an array
4008 * - remove non-faulty devices
4009 * - add a spare
4010 * - allow a reshape
4011 * This determination is simple when no reshape is happening.
4012 * However if there is a reshape, we need to carefully check
4013 * both the before and after sections.
4014 * This is because some failed devices may only affect one
4015 * of the two sections, and some non-in_sync devices may
4016 * be insync in the section most affected by failed devices.
4017 */
4018static int calc_degraded(struct r10conf *conf)
4019{
4020 int degraded, degraded2;
4021 int i;
4022
4023 rcu_read_lock();
4024 degraded = 0;
4025 /* 'prev' section first */
4026 for (i = 0; i < conf->prev.raid_disks; i++) {
4027 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028 if (!rdev || test_bit(Faulty, &rdev->flags))
4029 degraded++;
4030 else if (!test_bit(In_sync, &rdev->flags))
4031 /* When we can reduce the number of devices in
4032 * an array, this might not contribute to
4033 * 'degraded'. It does now.
4034 */
4035 degraded++;
4036 }
4037 rcu_read_unlock();
4038 if (conf->geo.raid_disks == conf->prev.raid_disks)
4039 return degraded;
4040 rcu_read_lock();
4041 degraded2 = 0;
4042 for (i = 0; i < conf->geo.raid_disks; i++) {
4043 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044 if (!rdev || test_bit(Faulty, &rdev->flags))
4045 degraded2++;
4046 else if (!test_bit(In_sync, &rdev->flags)) {
4047 /* If reshape is increasing the number of devices,
4048 * this section has already been recovered, so
4049 * it doesn't contribute to degraded.
4050 * else it does.
4051 */
4052 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053 degraded2++;
4054 }
4055 }
4056 rcu_read_unlock();
4057 if (degraded2 > degraded)
4058 return degraded2;
4059 return degraded;
4060}
4061
4062static int raid10_start_reshape(struct mddev *mddev)
4063{
4064 /* A 'reshape' has been requested. This commits
4065 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066 * This also checks if there are enough spares and adds them
4067 * to the array.
4068 * We currently require enough spares to make the final
4069 * array non-degraded. We also require that the difference
4070 * between old and new data_offset - on each device - is
4071 * enough that we never risk over-writing.
4072 */
4073
4074 unsigned long before_length, after_length;
4075 sector_t min_offset_diff = 0;
4076 int first = 1;
4077 struct geom new;
4078 struct r10conf *conf = mddev->private;
4079 struct md_rdev *rdev;
4080 int spares = 0;
bb63a701 4081 int ret;
3ea7daa5
N
4082
4083 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084 return -EBUSY;
4085
4086 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087 return -EINVAL;
4088
4089 before_length = ((1 << conf->prev.chunk_shift) *
4090 conf->prev.far_copies);
4091 after_length = ((1 << conf->geo.chunk_shift) *
4092 conf->geo.far_copies);
4093
4094 rdev_for_each(rdev, mddev) {
4095 if (!test_bit(In_sync, &rdev->flags)
4096 && !test_bit(Faulty, &rdev->flags))
4097 spares++;
4098 if (rdev->raid_disk >= 0) {
4099 long long diff = (rdev->new_data_offset
4100 - rdev->data_offset);
4101 if (!mddev->reshape_backwards)
4102 diff = -diff;
4103 if (diff < 0)
4104 diff = 0;
4105 if (first || diff < min_offset_diff)
4106 min_offset_diff = diff;
4107 }
4108 }
4109
4110 if (max(before_length, after_length) > min_offset_diff)
4111 return -EINVAL;
4112
4113 if (spares < mddev->delta_disks)
4114 return -EINVAL;
4115
4116 conf->offset_diff = min_offset_diff;
4117 spin_lock_irq(&conf->device_lock);
4118 if (conf->mirrors_new) {
4119 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4120 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
4121 smp_mb();
4122 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4123 conf->mirrors_old = conf->mirrors;
4124 conf->mirrors = conf->mirrors_new;
4125 conf->mirrors_new = NULL;
4126 }
4127 setup_geo(&conf->geo, mddev, geo_start);
4128 smp_mb();
4129 if (mddev->reshape_backwards) {
4130 sector_t size = raid10_size(mddev, 0, 0);
4131 if (size < mddev->array_sectors) {
4132 spin_unlock_irq(&conf->device_lock);
4133 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4134 mdname(mddev));
4135 return -EINVAL;
4136 }
4137 mddev->resync_max_sectors = size;
4138 conf->reshape_progress = size;
4139 } else
4140 conf->reshape_progress = 0;
4141 spin_unlock_irq(&conf->device_lock);
4142
bb63a701
N
4143 if (mddev->delta_disks && mddev->bitmap) {
4144 ret = bitmap_resize(mddev->bitmap,
4145 raid10_size(mddev, 0,
4146 conf->geo.raid_disks),
4147 0, 0);
4148 if (ret)
4149 goto abort;
4150 }
3ea7daa5
N
4151 if (mddev->delta_disks > 0) {
4152 rdev_for_each(rdev, mddev)
4153 if (rdev->raid_disk < 0 &&
4154 !test_bit(Faulty, &rdev->flags)) {
4155 if (raid10_add_disk(mddev, rdev) == 0) {
4156 if (rdev->raid_disk >=
4157 conf->prev.raid_disks)
4158 set_bit(In_sync, &rdev->flags);
4159 else
4160 rdev->recovery_offset = 0;
4161
4162 if (sysfs_link_rdev(mddev, rdev))
4163 /* Failure here is OK */;
4164 }
4165 } else if (rdev->raid_disk >= conf->prev.raid_disks
4166 && !test_bit(Faulty, &rdev->flags)) {
4167 /* This is a spare that was manually added */
4168 set_bit(In_sync, &rdev->flags);
4169 }
4170 }
4171 /* When a reshape changes the number of devices,
4172 * ->degraded is measured against the larger of the
4173 * pre and post numbers.
4174 */
4175 spin_lock_irq(&conf->device_lock);
4176 mddev->degraded = calc_degraded(conf);
4177 spin_unlock_irq(&conf->device_lock);
4178 mddev->raid_disks = conf->geo.raid_disks;
4179 mddev->reshape_position = conf->reshape_progress;
4180 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181
4182 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4185 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4186
4187 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4188 "reshape");
4189 if (!mddev->sync_thread) {
bb63a701
N
4190 ret = -EAGAIN;
4191 goto abort;
3ea7daa5
N
4192 }
4193 conf->reshape_checkpoint = jiffies;
4194 md_wakeup_thread(mddev->sync_thread);
4195 md_new_event(mddev);
4196 return 0;
bb63a701
N
4197
4198abort:
4199 mddev->recovery = 0;
4200 spin_lock_irq(&conf->device_lock);
4201 conf->geo = conf->prev;
4202 mddev->raid_disks = conf->geo.raid_disks;
4203 rdev_for_each(rdev, mddev)
4204 rdev->new_data_offset = rdev->data_offset;
4205 smp_wmb();
4206 conf->reshape_progress = MaxSector;
4207 mddev->reshape_position = MaxSector;
4208 spin_unlock_irq(&conf->device_lock);
4209 return ret;
3ea7daa5
N
4210}
4211
4212/* Calculate the last device-address that could contain
4213 * any block from the chunk that includes the array-address 's'
4214 * and report the next address.
4215 * i.e. the address returned will be chunk-aligned and after
4216 * any data that is in the chunk containing 's'.
4217 */
4218static sector_t last_dev_address(sector_t s, struct geom *geo)
4219{
4220 s = (s | geo->chunk_mask) + 1;
4221 s >>= geo->chunk_shift;
4222 s *= geo->near_copies;
4223 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4224 s *= geo->far_copies;
4225 s <<= geo->chunk_shift;
4226 return s;
4227}
4228
4229/* Calculate the first device-address that could contain
4230 * any block from the chunk that includes the array-address 's'.
4231 * This too will be the start of a chunk
4232 */
4233static sector_t first_dev_address(sector_t s, struct geom *geo)
4234{
4235 s >>= geo->chunk_shift;
4236 s *= geo->near_copies;
4237 sector_div(s, geo->raid_disks);
4238 s *= geo->far_copies;
4239 s <<= geo->chunk_shift;
4240 return s;
4241}
4242
4243static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4244 int *skipped)
4245{
4246 /* We simply copy at most one chunk (smallest of old and new)
4247 * at a time, possibly less if that exceeds RESYNC_PAGES,
4248 * or we hit a bad block or something.
4249 * This might mean we pause for normal IO in the middle of
4250 * a chunk, but that is not a problem was mddev->reshape_position
4251 * can record any location.
4252 *
4253 * If we will want to write to a location that isn't
4254 * yet recorded as 'safe' (i.e. in metadata on disk) then
4255 * we need to flush all reshape requests and update the metadata.
4256 *
4257 * When reshaping forwards (e.g. to more devices), we interpret
4258 * 'safe' as the earliest block which might not have been copied
4259 * down yet. We divide this by previous stripe size and multiply
4260 * by previous stripe length to get lowest device offset that we
4261 * cannot write to yet.
4262 * We interpret 'sector_nr' as an address that we want to write to.
4263 * From this we use last_device_address() to find where we might
4264 * write to, and first_device_address on the 'safe' position.
4265 * If this 'next' write position is after the 'safe' position,
4266 * we must update the metadata to increase the 'safe' position.
4267 *
4268 * When reshaping backwards, we round in the opposite direction
4269 * and perform the reverse test: next write position must not be
4270 * less than current safe position.
4271 *
4272 * In all this the minimum difference in data offsets
4273 * (conf->offset_diff - always positive) allows a bit of slack,
4274 * so next can be after 'safe', but not by more than offset_disk
4275 *
4276 * We need to prepare all the bios here before we start any IO
4277 * to ensure the size we choose is acceptable to all devices.
4278 * The means one for each copy for write-out and an extra one for
4279 * read-in.
4280 * We store the read-in bio in ->master_bio and the others in
4281 * ->devs[x].bio and ->devs[x].repl_bio.
4282 */
4283 struct r10conf *conf = mddev->private;
4284 struct r10bio *r10_bio;
4285 sector_t next, safe, last;
4286 int max_sectors;
4287 int nr_sectors;
4288 int s;
4289 struct md_rdev *rdev;
4290 int need_flush = 0;
4291 struct bio *blist;
4292 struct bio *bio, *read_bio;
4293 int sectors_done = 0;
4294
4295 if (sector_nr == 0) {
4296 /* If restarting in the middle, skip the initial sectors */
4297 if (mddev->reshape_backwards &&
4298 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4299 sector_nr = (raid10_size(mddev, 0, 0)
4300 - conf->reshape_progress);
4301 } else if (!mddev->reshape_backwards &&
4302 conf->reshape_progress > 0)
4303 sector_nr = conf->reshape_progress;
4304 if (sector_nr) {
4305 mddev->curr_resync_completed = sector_nr;
4306 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4307 *skipped = 1;
4308 return sector_nr;
4309 }
4310 }
4311
4312 /* We don't use sector_nr to track where we are up to
4313 * as that doesn't work well for ->reshape_backwards.
4314 * So just use ->reshape_progress.
4315 */
4316 if (mddev->reshape_backwards) {
4317 /* 'next' is the earliest device address that we might
4318 * write to for this chunk in the new layout
4319 */
4320 next = first_dev_address(conf->reshape_progress - 1,
4321 &conf->geo);
4322
4323 /* 'safe' is the last device address that we might read from
4324 * in the old layout after a restart
4325 */
4326 safe = last_dev_address(conf->reshape_safe - 1,
4327 &conf->prev);
4328
4329 if (next + conf->offset_diff < safe)
4330 need_flush = 1;
4331
4332 last = conf->reshape_progress - 1;
4333 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4334 & conf->prev.chunk_mask);
4335 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4336 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4337 } else {
4338 /* 'next' is after the last device address that we
4339 * might write to for this chunk in the new layout
4340 */
4341 next = last_dev_address(conf->reshape_progress, &conf->geo);
4342
4343 /* 'safe' is the earliest device address that we might
4344 * read from in the old layout after a restart
4345 */
4346 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4347
4348 /* Need to update metadata if 'next' might be beyond 'safe'
4349 * as that would possibly corrupt data
4350 */
4351 if (next > safe + conf->offset_diff)
4352 need_flush = 1;
4353
4354 sector_nr = conf->reshape_progress;
4355 last = sector_nr | (conf->geo.chunk_mask
4356 & conf->prev.chunk_mask);
4357
4358 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4359 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4360 }
4361
4362 if (need_flush ||
4363 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4364 /* Need to update reshape_position in metadata */
4365 wait_barrier(conf);
4366 mddev->reshape_position = conf->reshape_progress;
4367 if (mddev->reshape_backwards)
4368 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4369 - conf->reshape_progress;
4370 else
4371 mddev->curr_resync_completed = conf->reshape_progress;
4372 conf->reshape_checkpoint = jiffies;
4373 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4374 md_wakeup_thread(mddev->thread);
4375 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4376 kthread_should_stop());
4377 conf->reshape_safe = mddev->reshape_position;
4378 allow_barrier(conf);
4379 }
4380
4381read_more:
4382 /* Now schedule reads for blocks from sector_nr to last */
4383 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4384 raise_barrier(conf, sectors_done != 0);
4385 atomic_set(&r10_bio->remaining, 0);
4386 r10_bio->mddev = mddev;
4387 r10_bio->sector = sector_nr;
4388 set_bit(R10BIO_IsReshape, &r10_bio->state);
4389 r10_bio->sectors = last - sector_nr + 1;
4390 rdev = read_balance(conf, r10_bio, &max_sectors);
4391 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4392
4393 if (!rdev) {
4394 /* Cannot read from here, so need to record bad blocks
4395 * on all the target devices.
4396 */
4397 // FIXME
4398 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4399 return sectors_done;
4400 }
4401
4402 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4403
4404 read_bio->bi_bdev = rdev->bdev;
4405 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4406 + rdev->data_offset);
4407 read_bio->bi_private = r10_bio;
4408 read_bio->bi_end_io = end_sync_read;
4409 read_bio->bi_rw = READ;
4410 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4411 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4412 read_bio->bi_vcnt = 0;
3ea7daa5
N
4413 read_bio->bi_size = 0;
4414 r10_bio->master_bio = read_bio;
4415 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4416
4417 /* Now find the locations in the new layout */
4418 __raid10_find_phys(&conf->geo, r10_bio);
4419
4420 blist = read_bio;
4421 read_bio->bi_next = NULL;
4422
4423 for (s = 0; s < conf->copies*2; s++) {
4424 struct bio *b;
4425 int d = r10_bio->devs[s/2].devnum;
4426 struct md_rdev *rdev2;
4427 if (s&1) {
4428 rdev2 = conf->mirrors[d].replacement;
4429 b = r10_bio->devs[s/2].repl_bio;
4430 } else {
4431 rdev2 = conf->mirrors[d].rdev;
4432 b = r10_bio->devs[s/2].bio;
4433 }
4434 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4435 continue;
8be185f2
KO
4436
4437 bio_reset(b);
3ea7daa5
N
4438 b->bi_bdev = rdev2->bdev;
4439 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4440 b->bi_private = r10_bio;
4441 b->bi_end_io = end_reshape_write;
4442 b->bi_rw = WRITE;
3ea7daa5 4443 b->bi_next = blist;
3ea7daa5
N
4444 blist = b;
4445 }
4446
4447 /* Now add as many pages as possible to all of these bios. */
4448
4449 nr_sectors = 0;
4450 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4451 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4452 int len = (max_sectors - s) << 9;
4453 if (len > PAGE_SIZE)
4454 len = PAGE_SIZE;
4455 for (bio = blist; bio ; bio = bio->bi_next) {
4456 struct bio *bio2;
4457 if (bio_add_page(bio, page, len, 0))
4458 continue;
4459
4460 /* Didn't fit, must stop */
4461 for (bio2 = blist;
4462 bio2 && bio2 != bio;
4463 bio2 = bio2->bi_next) {
4464 /* Remove last page from this bio */
4465 bio2->bi_vcnt--;
4466 bio2->bi_size -= len;
4467 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4468 }
4469 goto bio_full;
4470 }
4471 sector_nr += len >> 9;
4472 nr_sectors += len >> 9;
4473 }
4474bio_full:
4475 r10_bio->sectors = nr_sectors;
4476
4477 /* Now submit the read */
4478 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4479 atomic_inc(&r10_bio->remaining);
4480 read_bio->bi_next = NULL;
4481 generic_make_request(read_bio);
4482 sector_nr += nr_sectors;
4483 sectors_done += nr_sectors;
4484 if (sector_nr <= last)
4485 goto read_more;
4486
4487 /* Now that we have done the whole section we can
4488 * update reshape_progress
4489 */
4490 if (mddev->reshape_backwards)
4491 conf->reshape_progress -= sectors_done;
4492 else
4493 conf->reshape_progress += sectors_done;
4494
4495 return sectors_done;
4496}
4497
4498static void end_reshape_request(struct r10bio *r10_bio);
4499static int handle_reshape_read_error(struct mddev *mddev,
4500 struct r10bio *r10_bio);
4501static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4502{
4503 /* Reshape read completed. Hopefully we have a block
4504 * to write out.
4505 * If we got a read error then we do sync 1-page reads from
4506 * elsewhere until we find the data - or give up.
4507 */
4508 struct r10conf *conf = mddev->private;
4509 int s;
4510
4511 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4512 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4513 /* Reshape has been aborted */
4514 md_done_sync(mddev, r10_bio->sectors, 0);
4515 return;
4516 }
4517
4518 /* We definitely have the data in the pages, schedule the
4519 * writes.
4520 */
4521 atomic_set(&r10_bio->remaining, 1);
4522 for (s = 0; s < conf->copies*2; s++) {
4523 struct bio *b;
4524 int d = r10_bio->devs[s/2].devnum;
4525 struct md_rdev *rdev;
4526 if (s&1) {
4527 rdev = conf->mirrors[d].replacement;
4528 b = r10_bio->devs[s/2].repl_bio;
4529 } else {
4530 rdev = conf->mirrors[d].rdev;
4531 b = r10_bio->devs[s/2].bio;
4532 }
4533 if (!rdev || test_bit(Faulty, &rdev->flags))
4534 continue;
4535 atomic_inc(&rdev->nr_pending);
4536 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4537 atomic_inc(&r10_bio->remaining);
4538 b->bi_next = NULL;
4539 generic_make_request(b);
4540 }
4541 end_reshape_request(r10_bio);
4542}
4543
4544static void end_reshape(struct r10conf *conf)
4545{
4546 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4547 return;
4548
4549 spin_lock_irq(&conf->device_lock);
4550 conf->prev = conf->geo;
4551 md_finish_reshape(conf->mddev);
4552 smp_wmb();
4553 conf->reshape_progress = MaxSector;
4554 spin_unlock_irq(&conf->device_lock);
4555
4556 /* read-ahead size must cover two whole stripes, which is
4557 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4558 */
4559 if (conf->mddev->queue) {
4560 int stripe = conf->geo.raid_disks *
4561 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4562 stripe /= conf->geo.near_copies;
4563 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4564 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4565 }
4566 conf->fullsync = 0;
4567}
4568
4569
4570static int handle_reshape_read_error(struct mddev *mddev,
4571 struct r10bio *r10_bio)
4572{
4573 /* Use sync reads to get the blocks from somewhere else */
4574 int sectors = r10_bio->sectors;
3ea7daa5 4575 struct r10conf *conf = mddev->private;
e0ee7785
N
4576 struct {
4577 struct r10bio r10_bio;
4578 struct r10dev devs[conf->copies];
4579 } on_stack;
4580 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4581 int slot = 0;
4582 int idx = 0;
4583 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4584
e0ee7785
N
4585 r10b->sector = r10_bio->sector;
4586 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4587
4588 while (sectors) {
4589 int s = sectors;
4590 int success = 0;
4591 int first_slot = slot;
4592
4593 if (s > (PAGE_SIZE >> 9))
4594 s = PAGE_SIZE >> 9;
4595
4596 while (!success) {
e0ee7785 4597 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4598 struct md_rdev *rdev = conf->mirrors[d].rdev;
4599 sector_t addr;
4600 if (rdev == NULL ||
4601 test_bit(Faulty, &rdev->flags) ||
4602 !test_bit(In_sync, &rdev->flags))
4603 goto failed;
4604
e0ee7785 4605 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4606 success = sync_page_io(rdev,
4607 addr,
4608 s << 9,
4609 bvec[idx].bv_page,
4610 READ, false);
4611 if (success)
4612 break;
4613 failed:
4614 slot++;
4615 if (slot >= conf->copies)
4616 slot = 0;
4617 if (slot == first_slot)
4618 break;
4619 }
4620 if (!success) {
4621 /* couldn't read this block, must give up */
4622 set_bit(MD_RECOVERY_INTR,
4623 &mddev->recovery);
4624 return -EIO;
4625 }
4626 sectors -= s;
4627 idx++;
4628 }
4629 return 0;
4630}
4631
4632static void end_reshape_write(struct bio *bio, int error)
4633{
4634 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4635 struct r10bio *r10_bio = bio->bi_private;
4636 struct mddev *mddev = r10_bio->mddev;
4637 struct r10conf *conf = mddev->private;
4638 int d;
4639 int slot;
4640 int repl;
4641 struct md_rdev *rdev = NULL;
4642
4643 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4644 if (repl)
4645 rdev = conf->mirrors[d].replacement;
4646 if (!rdev) {
4647 smp_mb();
4648 rdev = conf->mirrors[d].rdev;
4649 }
4650
4651 if (!uptodate) {
4652 /* FIXME should record badblock */
4653 md_error(mddev, rdev);
4654 }
4655
4656 rdev_dec_pending(rdev, mddev);
4657 end_reshape_request(r10_bio);
4658}
4659
4660static void end_reshape_request(struct r10bio *r10_bio)
4661{
4662 if (!atomic_dec_and_test(&r10_bio->remaining))
4663 return;
4664 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4665 bio_put(r10_bio->master_bio);
4666 put_buf(r10_bio);
4667}
4668
4669static void raid10_finish_reshape(struct mddev *mddev)
4670{
4671 struct r10conf *conf = mddev->private;
4672
4673 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4674 return;
4675
4676 if (mddev->delta_disks > 0) {
4677 sector_t size = raid10_size(mddev, 0, 0);
4678 md_set_array_sectors(mddev, size);
4679 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4680 mddev->recovery_cp = mddev->resync_max_sectors;
4681 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4682 }
4683 mddev->resync_max_sectors = size;
4684 set_capacity(mddev->gendisk, mddev->array_sectors);
4685 revalidate_disk(mddev->gendisk);
63aced61
N
4686 } else {
4687 int d;
4688 for (d = conf->geo.raid_disks ;
4689 d < conf->geo.raid_disks - mddev->delta_disks;
4690 d++) {
4691 struct md_rdev *rdev = conf->mirrors[d].rdev;
4692 if (rdev)
4693 clear_bit(In_sync, &rdev->flags);
4694 rdev = conf->mirrors[d].replacement;
4695 if (rdev)
4696 clear_bit(In_sync, &rdev->flags);
4697 }
3ea7daa5
N
4698 }
4699 mddev->layout = mddev->new_layout;
4700 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4701 mddev->reshape_position = MaxSector;
4702 mddev->delta_disks = 0;
4703 mddev->reshape_backwards = 0;
4704}
4705
84fc4b56 4706static struct md_personality raid10_personality =
1da177e4
LT
4707{
4708 .name = "raid10",
2604b703 4709 .level = 10,
1da177e4
LT
4710 .owner = THIS_MODULE,
4711 .make_request = make_request,
4712 .run = run,
4713 .stop = stop,
4714 .status = status,
4715 .error_handler = error,
4716 .hot_add_disk = raid10_add_disk,
4717 .hot_remove_disk= raid10_remove_disk,
4718 .spare_active = raid10_spare_active,
4719 .sync_request = sync_request,
6cce3b23 4720 .quiesce = raid10_quiesce,
80c3a6ce 4721 .size = raid10_size,
006a09a0 4722 .resize = raid10_resize,
dab8b292 4723 .takeover = raid10_takeover,
3ea7daa5
N
4724 .check_reshape = raid10_check_reshape,
4725 .start_reshape = raid10_start_reshape,
4726 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4727};
4728
4729static int __init raid_init(void)
4730{
2604b703 4731 return register_md_personality(&raid10_personality);
1da177e4
LT
4732}
4733
4734static void raid_exit(void)
4735{
2604b703 4736 unregister_md_personality(&raid10_personality);
1da177e4
LT
4737}
4738
4739module_init(raid_init);
4740module_exit(raid_exit);
4741MODULE_LICENSE("GPL");
0efb9e61 4742MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4743MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4744MODULE_ALIAS("md-raid10");
2604b703 4745MODULE_ALIAS("md-level-10");
34db0cd6
N
4746
4747module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);