]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/md/raid5-cache.c
md/raid5: simplfy delaying of writes while metadata is updated.
[mirror_ubuntu-focal-kernel.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
b4c625c6 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
f6bed0ef
SL
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/wait.h>
17#include <linux/blkdev.h>
18#include <linux/slab.h>
19#include <linux/raid/md_p.h>
5cb2fbd6 20#include <linux/crc32c.h>
f6bed0ef 21#include <linux/random.h>
ce1ccd07 22#include <linux/kthread.h>
03b047f4 23#include <linux/types.h>
f6bed0ef
SL
24#include "md.h"
25#include "raid5.h"
1e6d690b 26#include "bitmap.h"
f6bed0ef
SL
27
28/*
29 * metadata/data stored in disk with 4k size unit (a block) regardless
30 * underneath hardware sector size. only works with PAGE_SIZE == 4096
31 */
32#define BLOCK_SECTORS (8)
effe6ee7 33#define BLOCK_SECTOR_SHIFT (3)
f6bed0ef 34
0576b1c6 35/*
a39f7afd
SL
36 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
37 *
38 * In write through mode, the reclaim runs every log->max_free_space.
39 * This can prevent the recovery scans for too long
0576b1c6
SL
40 */
41#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
42#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
43
a39f7afd
SL
44/* wake up reclaim thread periodically */
45#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
46/* start flush with these full stripes */
84890c03 47#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
a39f7afd
SL
48/* reclaim stripes in groups */
49#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50
c38d29b3
CH
51/*
52 * We only need 2 bios per I/O unit to make progress, but ensure we
53 * have a few more available to not get too tight.
54 */
55#define R5L_POOL_SIZE 4
56
2ded3703
SL
57/*
58 * r5c journal modes of the array: write-back or write-through.
59 * write-through mode has identical behavior as existing log only
60 * implementation.
61 */
62enum r5c_journal_mode {
63 R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
64 R5C_JOURNAL_MODE_WRITE_BACK = 1,
65};
66
2c7da14b
SL
67static char *r5c_journal_mode_str[] = {"write-through",
68 "write-back"};
2ded3703
SL
69/*
70 * raid5 cache state machine
71 *
9b69173e 72 * With the RAID cache, each stripe works in two phases:
2ded3703
SL
73 * - caching phase
74 * - writing-out phase
75 *
76 * These two phases are controlled by bit STRIPE_R5C_CACHING:
77 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
78 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
79 *
80 * When there is no journal, or the journal is in write-through mode,
81 * the stripe is always in writing-out phase.
82 *
83 * For write-back journal, the stripe is sent to caching phase on write
84 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
85 * the write-out phase by clearing STRIPE_R5C_CACHING.
86 *
87 * Stripes in caching phase do not write the raid disks. Instead, all
88 * writes are committed from the log device. Therefore, a stripe in
89 * caching phase handles writes as:
90 * - write to log device
91 * - return IO
92 *
93 * Stripes in writing-out phase handle writes as:
94 * - calculate parity
95 * - write pending data and parity to journal
96 * - write data and parity to raid disks
97 * - return IO for pending writes
98 */
99
f6bed0ef
SL
100struct r5l_log {
101 struct md_rdev *rdev;
102
103 u32 uuid_checksum;
104
105 sector_t device_size; /* log device size, round to
106 * BLOCK_SECTORS */
0576b1c6
SL
107 sector_t max_free_space; /* reclaim run if free space is at
108 * this size */
f6bed0ef
SL
109
110 sector_t last_checkpoint; /* log tail. where recovery scan
111 * starts from */
112 u64 last_cp_seq; /* log tail sequence */
113
114 sector_t log_start; /* log head. where new data appends */
115 u64 seq; /* log head sequence */
116
17036461 117 sector_t next_checkpoint;
17036461 118
f6bed0ef
SL
119 struct mutex io_mutex;
120 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
121
122 spinlock_t io_list_lock;
123 struct list_head running_ios; /* io_units which are still running,
124 * and have not yet been completely
125 * written to the log */
126 struct list_head io_end_ios; /* io_units which have been completely
127 * written to the log but not yet written
128 * to the RAID */
a8c34f91
SL
129 struct list_head flushing_ios; /* io_units which are waiting for log
130 * cache flush */
04732f74 131 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 132 struct bio flush_bio;
f6bed0ef 133
5036c390
CH
134 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
135
f6bed0ef 136 struct kmem_cache *io_kc;
5036c390 137 mempool_t *io_pool;
c38d29b3 138 struct bio_set *bs;
e8deb638 139 mempool_t *meta_pool;
f6bed0ef 140
0576b1c6
SL
141 struct md_thread *reclaim_thread;
142 unsigned long reclaim_target; /* number of space that need to be
143 * reclaimed. if it's 0, reclaim spaces
144 * used by io_units which are in
145 * IO_UNIT_STRIPE_END state (eg, reclaim
146 * dones't wait for specific io_unit
147 * switching to IO_UNIT_STRIPE_END
148 * state) */
0fd22b45 149 wait_queue_head_t iounit_wait;
0576b1c6 150
f6bed0ef
SL
151 struct list_head no_space_stripes; /* pending stripes, log has no space */
152 spinlock_t no_space_stripes_lock;
56fef7c6
CH
153
154 bool need_cache_flush;
2ded3703
SL
155
156 /* for r5c_cache */
157 enum r5c_journal_mode r5c_journal_mode;
a39f7afd
SL
158
159 /* all stripes in r5cache, in the order of seq at sh->log_start */
160 struct list_head stripe_in_journal_list;
161
162 spinlock_t stripe_in_journal_lock;
163 atomic_t stripe_in_journal_count;
3bddb7f8
SL
164
165 /* to submit async io_units, to fulfill ordering of flush */
166 struct work_struct deferred_io_work;
2e38a37f
SL
167 /* to disable write back during in degraded mode */
168 struct work_struct disable_writeback_work;
03b047f4
SL
169
170 /* to for chunk_aligned_read in writeback mode, details below */
171 spinlock_t tree_lock;
172 struct radix_tree_root big_stripe_tree;
f6bed0ef
SL
173};
174
03b047f4
SL
175/*
176 * Enable chunk_aligned_read() with write back cache.
177 *
178 * Each chunk may contain more than one stripe (for example, a 256kB
179 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
180 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
181 * For each big_stripe, we count how many stripes of this big_stripe
182 * are in the write back cache. These data are tracked in a radix tree
183 * (big_stripe_tree). We use radix_tree item pointer as the counter.
184 * r5c_tree_index() is used to calculate keys for the radix tree.
185 *
186 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
187 * big_stripe of each chunk in the tree. If this big_stripe is in the
188 * tree, chunk_aligned_read() aborts. This look up is protected by
189 * rcu_read_lock().
190 *
191 * It is necessary to remember whether a stripe is counted in
192 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
193 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
194 * two flags are set, the stripe is counted in big_stripe_tree. This
195 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
196 * r5c_try_caching_write(); and moving clear_bit of
197 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
198 * r5c_finish_stripe_write_out().
199 */
200
201/*
202 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
203 * So it is necessary to left shift the counter by 2 bits before using it
204 * as data pointer of the tree.
205 */
206#define R5C_RADIX_COUNT_SHIFT 2
207
208/*
209 * calculate key for big_stripe_tree
210 *
211 * sect: align_bi->bi_iter.bi_sector or sh->sector
212 */
213static inline sector_t r5c_tree_index(struct r5conf *conf,
214 sector_t sect)
215{
216 sector_t offset;
217
218 offset = sector_div(sect, conf->chunk_sectors);
219 return sect;
220}
221
f6bed0ef
SL
222/*
223 * an IO range starts from a meta data block and end at the next meta data
224 * block. The io unit's the meta data block tracks data/parity followed it. io
225 * unit is written to log disk with normal write, as we always flush log disk
226 * first and then start move data to raid disks, there is no requirement to
227 * write io unit with FLUSH/FUA
228 */
229struct r5l_io_unit {
230 struct r5l_log *log;
231
232 struct page *meta_page; /* store meta block */
233 int meta_offset; /* current offset in meta_page */
234
f6bed0ef
SL
235 struct bio *current_bio;/* current_bio accepting new data */
236
237 atomic_t pending_stripe;/* how many stripes not flushed to raid */
238 u64 seq; /* seq number of the metablock */
239 sector_t log_start; /* where the io_unit starts */
240 sector_t log_end; /* where the io_unit ends */
241 struct list_head log_sibling; /* log->running_ios */
242 struct list_head stripe_list; /* stripes added to the io_unit */
243
244 int state;
6143e2ce 245 bool need_split_bio;
3bddb7f8
SL
246 struct bio *split_bio;
247
248 unsigned int has_flush:1; /* include flush request */
249 unsigned int has_fua:1; /* include fua request */
250 unsigned int has_null_flush:1; /* include empty flush request */
251 /*
252 * io isn't sent yet, flush/fua request can only be submitted till it's
253 * the first IO in running_ios list
254 */
255 unsigned int io_deferred:1;
256
257 struct bio_list flush_barriers; /* size == 0 flush bios */
f6bed0ef
SL
258};
259
260/* r5l_io_unit state */
261enum r5l_io_unit_state {
262 IO_UNIT_RUNNING = 0, /* accepting new IO */
263 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
264 * don't accepting new bio */
265 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 266 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
267};
268
2ded3703
SL
269bool r5c_is_writeback(struct r5l_log *log)
270{
271 return (log != NULL &&
272 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
273}
274
f6bed0ef
SL
275static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
276{
277 start += inc;
278 if (start >= log->device_size)
279 start = start - log->device_size;
280 return start;
281}
282
283static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
284 sector_t end)
285{
286 if (end >= start)
287 return end - start;
288 else
289 return end + log->device_size - start;
290}
291
292static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
293{
294 sector_t used_size;
295
296 used_size = r5l_ring_distance(log, log->last_checkpoint,
297 log->log_start);
298
299 return log->device_size > used_size + size;
300}
301
f6bed0ef
SL
302static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
303 enum r5l_io_unit_state state)
304{
f6bed0ef
SL
305 if (WARN_ON(io->state >= state))
306 return;
307 io->state = state;
f6bed0ef
SL
308}
309
1e6d690b
SL
310static void
311r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
312 struct bio_list *return_bi)
313{
314 struct bio *wbi, *wbi2;
315
316 wbi = dev->written;
317 dev->written = NULL;
318 while (wbi && wbi->bi_iter.bi_sector <
319 dev->sector + STRIPE_SECTORS) {
320 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 321 md_write_end(conf->mddev);
1e6d690b 322 if (!raid5_dec_bi_active_stripes(wbi)) {
1e6d690b
SL
323 bio_list_add(return_bi, wbi);
324 }
325 wbi = wbi2;
326 }
327}
328
329void r5c_handle_cached_data_endio(struct r5conf *conf,
330 struct stripe_head *sh, int disks, struct bio_list *return_bi)
331{
332 int i;
333
334 for (i = sh->disks; i--; ) {
335 if (sh->dev[i].written) {
336 set_bit(R5_UPTODATE, &sh->dev[i].flags);
337 r5c_return_dev_pending_writes(conf, &sh->dev[i],
338 return_bi);
339 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
340 STRIPE_SECTORS,
341 !test_bit(STRIPE_DEGRADED, &sh->state),
342 0);
343 }
344 }
345}
346
ff875738
AP
347void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
348
a39f7afd
SL
349/* Check whether we should flush some stripes to free up stripe cache */
350void r5c_check_stripe_cache_usage(struct r5conf *conf)
351{
352 int total_cached;
353
354 if (!r5c_is_writeback(conf->log))
355 return;
356
357 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
358 atomic_read(&conf->r5c_cached_full_stripes);
359
360 /*
361 * The following condition is true for either of the following:
362 * - stripe cache pressure high:
363 * total_cached > 3/4 min_nr_stripes ||
364 * empty_inactive_list_nr > 0
365 * - stripe cache pressure moderate:
366 * total_cached > 1/2 min_nr_stripes
367 */
368 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
369 atomic_read(&conf->empty_inactive_list_nr) > 0)
370 r5l_wake_reclaim(conf->log, 0);
371}
372
373/*
374 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
375 * stripes in the cache
376 */
377void r5c_check_cached_full_stripe(struct r5conf *conf)
378{
379 if (!r5c_is_writeback(conf->log))
380 return;
381
382 /*
383 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
384 * or a full stripe (chunk size / 4k stripes).
385 */
386 if (atomic_read(&conf->r5c_cached_full_stripes) >=
84890c03 387 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
a39f7afd
SL
388 conf->chunk_sectors >> STRIPE_SHIFT))
389 r5l_wake_reclaim(conf->log, 0);
390}
391
392/*
393 * Total log space (in sectors) needed to flush all data in cache
394 *
39b99586
SL
395 * To avoid deadlock due to log space, it is necessary to reserve log
396 * space to flush critical stripes (stripes that occupying log space near
397 * last_checkpoint). This function helps check how much log space is
398 * required to flush all cached stripes.
a39f7afd 399 *
39b99586
SL
400 * To reduce log space requirements, two mechanisms are used to give cache
401 * flush higher priorities:
402 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
403 * stripes ALREADY in journal can be flushed w/o pending writes;
404 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
405 * can be delayed (r5l_add_no_space_stripe).
a39f7afd 406 *
39b99586
SL
407 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
408 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
409 * pages of journal space. For stripes that has not passed 1, flushing it
410 * requires (conf->raid_disks + 1) pages of journal space. There are at
411 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
412 * required to flush all cached stripes (in pages) is:
413 *
414 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
415 * (group_cnt + 1) * (raid_disks + 1)
416 * or
417 * (stripe_in_journal_count) * (max_degraded + 1) +
418 * (group_cnt + 1) * (raid_disks - max_degraded)
a39f7afd
SL
419 */
420static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
421{
422 struct r5l_log *log = conf->log;
423
424 if (!r5c_is_writeback(log))
425 return 0;
426
39b99586
SL
427 return BLOCK_SECTORS *
428 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
429 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
a39f7afd
SL
430}
431
432/*
433 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
434 *
435 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
436 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
437 * device is less than 2x of reclaim_required_space.
438 */
439static inline void r5c_update_log_state(struct r5l_log *log)
440{
441 struct r5conf *conf = log->rdev->mddev->private;
442 sector_t free_space;
443 sector_t reclaim_space;
f687a33e 444 bool wake_reclaim = false;
a39f7afd
SL
445
446 if (!r5c_is_writeback(log))
447 return;
448
449 free_space = r5l_ring_distance(log, log->log_start,
450 log->last_checkpoint);
451 reclaim_space = r5c_log_required_to_flush_cache(conf);
452 if (free_space < 2 * reclaim_space)
453 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e
SL
454 else {
455 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
456 wake_reclaim = true;
a39f7afd 457 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e 458 }
a39f7afd
SL
459 if (free_space < 3 * reclaim_space)
460 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
461 else
462 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
f687a33e
SL
463
464 if (wake_reclaim)
465 r5l_wake_reclaim(log, 0);
a39f7afd
SL
466}
467
2ded3703
SL
468/*
469 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
470 * This function should only be called in write-back mode.
471 */
a39f7afd 472void r5c_make_stripe_write_out(struct stripe_head *sh)
2ded3703
SL
473{
474 struct r5conf *conf = sh->raid_conf;
475 struct r5l_log *log = conf->log;
476
477 BUG_ON(!r5c_is_writeback(log));
478
479 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
480 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1e6d690b
SL
481
482 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
483 atomic_inc(&conf->preread_active_stripes);
1e6d690b
SL
484}
485
486static void r5c_handle_data_cached(struct stripe_head *sh)
487{
488 int i;
489
490 for (i = sh->disks; i--; )
491 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
492 set_bit(R5_InJournal, &sh->dev[i].flags);
493 clear_bit(R5_LOCKED, &sh->dev[i].flags);
494 }
495 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
496}
497
498/*
499 * this journal write must contain full parity,
500 * it may also contain some data pages
501 */
502static void r5c_handle_parity_cached(struct stripe_head *sh)
503{
504 int i;
505
506 for (i = sh->disks; i--; )
507 if (test_bit(R5_InJournal, &sh->dev[i].flags))
508 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2ded3703
SL
509}
510
511/*
512 * Setting proper flags after writing (or flushing) data and/or parity to the
513 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
514 */
515static void r5c_finish_cache_stripe(struct stripe_head *sh)
516{
517 struct r5l_log *log = sh->raid_conf->log;
518
519 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
520 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
521 /*
522 * Set R5_InJournal for parity dev[pd_idx]. This means
523 * all data AND parity in the journal. For RAID 6, it is
524 * NOT necessary to set the flag for dev[qd_idx], as the
525 * two parities are written out together.
526 */
527 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
1e6d690b
SL
528 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
529 r5c_handle_data_cached(sh);
530 } else {
531 r5c_handle_parity_cached(sh);
532 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
533 }
2ded3703
SL
534}
535
d8858f43
CH
536static void r5l_io_run_stripes(struct r5l_io_unit *io)
537{
538 struct stripe_head *sh, *next;
539
540 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
541 list_del_init(&sh->log_list);
2ded3703
SL
542
543 r5c_finish_cache_stripe(sh);
544
d8858f43
CH
545 set_bit(STRIPE_HANDLE, &sh->state);
546 raid5_release_stripe(sh);
547 }
548}
549
56fef7c6
CH
550static void r5l_log_run_stripes(struct r5l_log *log)
551{
552 struct r5l_io_unit *io, *next;
553
554 assert_spin_locked(&log->io_list_lock);
555
556 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
557 /* don't change list order */
558 if (io->state < IO_UNIT_IO_END)
559 break;
560
561 list_move_tail(&io->log_sibling, &log->finished_ios);
562 r5l_io_run_stripes(io);
563 }
564}
565
3848c0bc
CH
566static void r5l_move_to_end_ios(struct r5l_log *log)
567{
568 struct r5l_io_unit *io, *next;
569
570 assert_spin_locked(&log->io_list_lock);
571
572 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
573 /* don't change list order */
574 if (io->state < IO_UNIT_IO_END)
575 break;
576 list_move_tail(&io->log_sibling, &log->io_end_ios);
577 }
578}
579
3bddb7f8 580static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
f6bed0ef
SL
581static void r5l_log_endio(struct bio *bio)
582{
583 struct r5l_io_unit *io = bio->bi_private;
3bddb7f8 584 struct r5l_io_unit *io_deferred;
f6bed0ef 585 struct r5l_log *log = io->log;
509ffec7 586 unsigned long flags;
f6bed0ef 587
6e74a9cf
SL
588 if (bio->bi_error)
589 md_error(log->rdev->mddev, log->rdev);
590
f6bed0ef 591 bio_put(bio);
e8deb638 592 mempool_free(io->meta_page, log->meta_pool);
f6bed0ef 593
509ffec7
CH
594 spin_lock_irqsave(&log->io_list_lock, flags);
595 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
ea17481f 596 if (log->need_cache_flush && !list_empty(&io->stripe_list))
3848c0bc 597 r5l_move_to_end_ios(log);
56fef7c6
CH
598 else
599 r5l_log_run_stripes(log);
3bddb7f8
SL
600 if (!list_empty(&log->running_ios)) {
601 /*
602 * FLUSH/FUA io_unit is deferred because of ordering, now we
603 * can dispatch it
604 */
605 io_deferred = list_first_entry(&log->running_ios,
606 struct r5l_io_unit, log_sibling);
607 if (io_deferred->io_deferred)
608 schedule_work(&log->deferred_io_work);
609 }
610
509ffec7
CH
611 spin_unlock_irqrestore(&log->io_list_lock, flags);
612
56fef7c6
CH
613 if (log->need_cache_flush)
614 md_wakeup_thread(log->rdev->mddev->thread);
3bddb7f8
SL
615
616 if (io->has_null_flush) {
617 struct bio *bi;
618
619 WARN_ON(bio_list_empty(&io->flush_barriers));
620 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
621 bio_endio(bi);
622 atomic_dec(&io->pending_stripe);
623 }
3bddb7f8 624 }
ea17481f
SL
625
626 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
627 if (atomic_read(&io->pending_stripe) == 0)
628 __r5l_stripe_write_finished(io);
3bddb7f8
SL
629}
630
631static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
632{
633 unsigned long flags;
634
635 spin_lock_irqsave(&log->io_list_lock, flags);
636 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
637 spin_unlock_irqrestore(&log->io_list_lock, flags);
638
639 if (io->has_flush)
20737738 640 io->current_bio->bi_opf |= REQ_PREFLUSH;
3bddb7f8 641 if (io->has_fua)
20737738 642 io->current_bio->bi_opf |= REQ_FUA;
3bddb7f8
SL
643 submit_bio(io->current_bio);
644
645 if (!io->split_bio)
646 return;
647
648 if (io->has_flush)
20737738 649 io->split_bio->bi_opf |= REQ_PREFLUSH;
3bddb7f8 650 if (io->has_fua)
20737738 651 io->split_bio->bi_opf |= REQ_FUA;
3bddb7f8
SL
652 submit_bio(io->split_bio);
653}
654
655/* deferred io_unit will be dispatched here */
656static void r5l_submit_io_async(struct work_struct *work)
657{
658 struct r5l_log *log = container_of(work, struct r5l_log,
659 deferred_io_work);
660 struct r5l_io_unit *io = NULL;
661 unsigned long flags;
662
663 spin_lock_irqsave(&log->io_list_lock, flags);
664 if (!list_empty(&log->running_ios)) {
665 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
666 log_sibling);
667 if (!io->io_deferred)
668 io = NULL;
669 else
670 io->io_deferred = 0;
671 }
672 spin_unlock_irqrestore(&log->io_list_lock, flags);
673 if (io)
674 r5l_do_submit_io(log, io);
f6bed0ef
SL
675}
676
2e38a37f
SL
677static void r5c_disable_writeback_async(struct work_struct *work)
678{
679 struct r5l_log *log = container_of(work, struct r5l_log,
680 disable_writeback_work);
681 struct mddev *mddev = log->rdev->mddev;
682
683 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
684 return;
685 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
686 mdname(mddev));
687 mddev_suspend(mddev);
688 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
689 mddev_resume(mddev);
690}
691
f6bed0ef
SL
692static void r5l_submit_current_io(struct r5l_log *log)
693{
694 struct r5l_io_unit *io = log->current_io;
3bddb7f8 695 struct bio *bio;
f6bed0ef 696 struct r5l_meta_block *block;
509ffec7 697 unsigned long flags;
f6bed0ef 698 u32 crc;
3bddb7f8 699 bool do_submit = true;
f6bed0ef
SL
700
701 if (!io)
702 return;
703
704 block = page_address(io->meta_page);
705 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 706 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef 707 block->checksum = cpu_to_le32(crc);
3bddb7f8 708 bio = io->current_bio;
f6bed0ef
SL
709
710 log->current_io = NULL;
509ffec7 711 spin_lock_irqsave(&log->io_list_lock, flags);
3bddb7f8
SL
712 if (io->has_flush || io->has_fua) {
713 if (io != list_first_entry(&log->running_ios,
714 struct r5l_io_unit, log_sibling)) {
715 io->io_deferred = 1;
716 do_submit = false;
717 }
718 }
509ffec7 719 spin_unlock_irqrestore(&log->io_list_lock, flags);
3bddb7f8
SL
720 if (do_submit)
721 r5l_do_submit_io(log, io);
f6bed0ef
SL
722}
723
6143e2ce 724static struct bio *r5l_bio_alloc(struct r5l_log *log)
b349feb3 725{
c38d29b3 726 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
b349feb3 727
796a5cf0 728 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b349feb3 729 bio->bi_bdev = log->rdev->bdev;
1e932a37 730 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
b349feb3 731
b349feb3
CH
732 return bio;
733}
734
c1b99198
CH
735static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
736{
737 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
738
a39f7afd 739 r5c_update_log_state(log);
c1b99198
CH
740 /*
741 * If we filled up the log device start from the beginning again,
742 * which will require a new bio.
743 *
744 * Note: for this to work properly the log size needs to me a multiple
745 * of BLOCK_SECTORS.
746 */
747 if (log->log_start == 0)
6143e2ce 748 io->need_split_bio = true;
c1b99198
CH
749
750 io->log_end = log->log_start;
751}
752
f6bed0ef
SL
753static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
754{
755 struct r5l_io_unit *io;
756 struct r5l_meta_block *block;
f6bed0ef 757
5036c390
CH
758 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
759 if (!io)
760 return NULL;
761 memset(io, 0, sizeof(*io));
762
51039cd0 763 io->log = log;
51039cd0
CH
764 INIT_LIST_HEAD(&io->log_sibling);
765 INIT_LIST_HEAD(&io->stripe_list);
3bddb7f8 766 bio_list_init(&io->flush_barriers);
51039cd0 767 io->state = IO_UNIT_RUNNING;
f6bed0ef 768
e8deb638 769 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
f6bed0ef 770 block = page_address(io->meta_page);
e8deb638 771 clear_page(block);
f6bed0ef
SL
772 block->magic = cpu_to_le32(R5LOG_MAGIC);
773 block->version = R5LOG_VERSION;
774 block->seq = cpu_to_le64(log->seq);
775 block->position = cpu_to_le64(log->log_start);
776
777 io->log_start = log->log_start;
778 io->meta_offset = sizeof(struct r5l_meta_block);
2b8ef16e 779 io->seq = log->seq++;
f6bed0ef 780
6143e2ce
CH
781 io->current_bio = r5l_bio_alloc(log);
782 io->current_bio->bi_end_io = r5l_log_endio;
783 io->current_bio->bi_private = io;
b349feb3 784 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef 785
c1b99198 786 r5_reserve_log_entry(log, io);
f6bed0ef
SL
787
788 spin_lock_irq(&log->io_list_lock);
789 list_add_tail(&io->log_sibling, &log->running_ios);
790 spin_unlock_irq(&log->io_list_lock);
791
792 return io;
793}
794
795static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
796{
22581f58
CH
797 if (log->current_io &&
798 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 799 r5l_submit_current_io(log);
f6bed0ef 800
5036c390 801 if (!log->current_io) {
22581f58 802 log->current_io = r5l_new_meta(log);
5036c390
CH
803 if (!log->current_io)
804 return -ENOMEM;
805 }
806
f6bed0ef
SL
807 return 0;
808}
809
810static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
811 sector_t location,
812 u32 checksum1, u32 checksum2,
813 bool checksum2_valid)
814{
815 struct r5l_io_unit *io = log->current_io;
816 struct r5l_payload_data_parity *payload;
817
818 payload = page_address(io->meta_page) + io->meta_offset;
819 payload->header.type = cpu_to_le16(type);
820 payload->header.flags = cpu_to_le16(0);
821 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
822 (PAGE_SHIFT - 9));
823 payload->location = cpu_to_le64(location);
824 payload->checksum[0] = cpu_to_le32(checksum1);
825 if (checksum2_valid)
826 payload->checksum[1] = cpu_to_le32(checksum2);
827
828 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
829 sizeof(__le32) * (1 + !!checksum2_valid);
830}
831
832static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
833{
834 struct r5l_io_unit *io = log->current_io;
835
6143e2ce 836 if (io->need_split_bio) {
3bddb7f8
SL
837 BUG_ON(io->split_bio);
838 io->split_bio = io->current_bio;
6143e2ce 839 io->current_bio = r5l_bio_alloc(log);
3bddb7f8
SL
840 bio_chain(io->current_bio, io->split_bio);
841 io->need_split_bio = false;
f6bed0ef 842 }
f6bed0ef 843
6143e2ce
CH
844 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
845 BUG();
846
c1b99198 847 r5_reserve_log_entry(log, io);
f6bed0ef
SL
848}
849
ea17481f
SL
850static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
851{
852 struct mddev *mddev = log->rdev->mddev;
853 struct r5conf *conf = mddev->private;
854 struct r5l_io_unit *io;
855 struct r5l_payload_flush *payload;
856 int meta_size;
857
858 /*
859 * payload_flush requires extra writes to the journal.
860 * To avoid handling the extra IO in quiesce, just skip
861 * flush_payload
862 */
863 if (conf->quiesce)
864 return;
865
866 mutex_lock(&log->io_mutex);
867 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
868
869 if (r5l_get_meta(log, meta_size)) {
870 mutex_unlock(&log->io_mutex);
871 return;
872 }
873
874 /* current implementation is one stripe per flush payload */
875 io = log->current_io;
876 payload = page_address(io->meta_page) + io->meta_offset;
877 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
878 payload->header.flags = cpu_to_le16(0);
879 payload->size = cpu_to_le32(sizeof(__le64));
880 payload->flush_stripes[0] = cpu_to_le64(sect);
881 io->meta_offset += meta_size;
882 mutex_unlock(&log->io_mutex);
883}
884
5036c390 885static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
f6bed0ef
SL
886 int data_pages, int parity_pages)
887{
888 int i;
889 int meta_size;
5036c390 890 int ret;
f6bed0ef
SL
891 struct r5l_io_unit *io;
892
893 meta_size =
894 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
895 * data_pages) +
896 sizeof(struct r5l_payload_data_parity) +
897 sizeof(__le32) * parity_pages;
898
5036c390
CH
899 ret = r5l_get_meta(log, meta_size);
900 if (ret)
901 return ret;
902
f6bed0ef
SL
903 io = log->current_io;
904
3bddb7f8
SL
905 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
906 io->has_flush = 1;
907
f6bed0ef 908 for (i = 0; i < sh->disks; i++) {
1e6d690b
SL
909 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
910 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef
SL
911 continue;
912 if (i == sh->pd_idx || i == sh->qd_idx)
913 continue;
3bddb7f8
SL
914 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
915 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
916 io->has_fua = 1;
917 /*
918 * we need to flush journal to make sure recovery can
919 * reach the data with fua flag
920 */
921 io->has_flush = 1;
922 }
f6bed0ef
SL
923 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
924 raid5_compute_blocknr(sh, i, 0),
925 sh->dev[i].log_checksum, 0, false);
926 r5l_append_payload_page(log, sh->dev[i].page);
927 }
928
2ded3703 929 if (parity_pages == 2) {
f6bed0ef
SL
930 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
931 sh->sector, sh->dev[sh->pd_idx].log_checksum,
932 sh->dev[sh->qd_idx].log_checksum, true);
933 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
934 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
2ded3703 935 } else if (parity_pages == 1) {
f6bed0ef
SL
936 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
937 sh->sector, sh->dev[sh->pd_idx].log_checksum,
938 0, false);
939 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
2ded3703
SL
940 } else /* Just writing data, not parity, in caching phase */
941 BUG_ON(parity_pages != 0);
f6bed0ef
SL
942
943 list_add_tail(&sh->log_list, &io->stripe_list);
944 atomic_inc(&io->pending_stripe);
945 sh->log_io = io;
5036c390 946
a39f7afd
SL
947 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
948 return 0;
949
950 if (sh->log_start == MaxSector) {
951 BUG_ON(!list_empty(&sh->r5c));
952 sh->log_start = io->log_start;
953 spin_lock_irq(&log->stripe_in_journal_lock);
954 list_add_tail(&sh->r5c,
955 &log->stripe_in_journal_list);
956 spin_unlock_irq(&log->stripe_in_journal_lock);
957 atomic_inc(&log->stripe_in_journal_count);
958 }
5036c390 959 return 0;
f6bed0ef
SL
960}
961
a39f7afd
SL
962/* add stripe to no_space_stripes, and then wake up reclaim */
963static inline void r5l_add_no_space_stripe(struct r5l_log *log,
964 struct stripe_head *sh)
965{
966 spin_lock(&log->no_space_stripes_lock);
967 list_add_tail(&sh->log_list, &log->no_space_stripes);
968 spin_unlock(&log->no_space_stripes_lock);
969}
970
f6bed0ef
SL
971/*
972 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
973 * data from log to raid disks), so we shouldn't wait for reclaim here
974 */
975int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
976{
a39f7afd 977 struct r5conf *conf = sh->raid_conf;
f6bed0ef
SL
978 int write_disks = 0;
979 int data_pages, parity_pages;
f6bed0ef
SL
980 int reserve;
981 int i;
5036c390 982 int ret = 0;
a39f7afd 983 bool wake_reclaim = false;
f6bed0ef
SL
984
985 if (!log)
986 return -EAGAIN;
987 /* Don't support stripe batch */
988 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
989 test_bit(STRIPE_SYNCING, &sh->state)) {
990 /* the stripe is written to log, we start writing it to raid */
991 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
992 return -EAGAIN;
993 }
994
2ded3703
SL
995 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
996
f6bed0ef
SL
997 for (i = 0; i < sh->disks; i++) {
998 void *addr;
999
1e6d690b
SL
1000 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1001 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef 1002 continue;
1e6d690b 1003
f6bed0ef
SL
1004 write_disks++;
1005 /* checksum is already calculated in last run */
1006 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1007 continue;
1008 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
1009 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1010 addr, PAGE_SIZE);
f6bed0ef
SL
1011 kunmap_atomic(addr);
1012 }
1013 parity_pages = 1 + !!(sh->qd_idx >= 0);
1014 data_pages = write_disks - parity_pages;
1015
f6bed0ef 1016 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
1017 /*
1018 * The stripe must enter state machine again to finish the write, so
1019 * don't delay.
1020 */
1021 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
1022 atomic_inc(&sh->count);
1023
1024 mutex_lock(&log->io_mutex);
1025 /* meta + data */
1026 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
f6bed0ef 1027
a39f7afd
SL
1028 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1029 if (!r5l_has_free_space(log, reserve)) {
1030 r5l_add_no_space_stripe(log, sh);
1031 wake_reclaim = true;
1032 } else {
1033 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1034 if (ret) {
1035 spin_lock_irq(&log->io_list_lock);
1036 list_add_tail(&sh->log_list,
1037 &log->no_mem_stripes);
1038 spin_unlock_irq(&log->io_list_lock);
1039 }
1040 }
1041 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1042 /*
1043 * log space critical, do not process stripes that are
1044 * not in cache yet (sh->log_start == MaxSector).
1045 */
1046 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1047 sh->log_start == MaxSector) {
1048 r5l_add_no_space_stripe(log, sh);
1049 wake_reclaim = true;
1050 reserve = 0;
1051 } else if (!r5l_has_free_space(log, reserve)) {
1052 if (sh->log_start == log->last_checkpoint)
1053 BUG();
1054 else
1055 r5l_add_no_space_stripe(log, sh);
1056 } else {
1057 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1058 if (ret) {
1059 spin_lock_irq(&log->io_list_lock);
1060 list_add_tail(&sh->log_list,
1061 &log->no_mem_stripes);
1062 spin_unlock_irq(&log->io_list_lock);
1063 }
5036c390 1064 }
f6bed0ef 1065 }
f6bed0ef 1066
5036c390 1067 mutex_unlock(&log->io_mutex);
a39f7afd
SL
1068 if (wake_reclaim)
1069 r5l_wake_reclaim(log, reserve);
f6bed0ef
SL
1070 return 0;
1071}
1072
1073void r5l_write_stripe_run(struct r5l_log *log)
1074{
1075 if (!log)
1076 return;
1077 mutex_lock(&log->io_mutex);
1078 r5l_submit_current_io(log);
1079 mutex_unlock(&log->io_mutex);
1080}
1081
828cbe98
SL
1082int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1083{
1084 if (!log)
1085 return -ENODEV;
3bddb7f8
SL
1086
1087 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1088 /*
1089 * in write through (journal only)
1090 * we flush log disk cache first, then write stripe data to
1091 * raid disks. So if bio is finished, the log disk cache is
1092 * flushed already. The recovery guarantees we can recovery
1093 * the bio from log disk, so we don't need to flush again
1094 */
1095 if (bio->bi_iter.bi_size == 0) {
1096 bio_endio(bio);
1097 return 0;
1098 }
1099 bio->bi_opf &= ~REQ_PREFLUSH;
1100 } else {
1101 /* write back (with cache) */
1102 if (bio->bi_iter.bi_size == 0) {
1103 mutex_lock(&log->io_mutex);
1104 r5l_get_meta(log, 0);
1105 bio_list_add(&log->current_io->flush_barriers, bio);
1106 log->current_io->has_flush = 1;
1107 log->current_io->has_null_flush = 1;
1108 atomic_inc(&log->current_io->pending_stripe);
1109 r5l_submit_current_io(log);
1110 mutex_unlock(&log->io_mutex);
1111 return 0;
1112 }
828cbe98 1113 }
828cbe98
SL
1114 return -EAGAIN;
1115}
1116
f6bed0ef
SL
1117/* This will run after log space is reclaimed */
1118static void r5l_run_no_space_stripes(struct r5l_log *log)
1119{
1120 struct stripe_head *sh;
1121
1122 spin_lock(&log->no_space_stripes_lock);
1123 while (!list_empty(&log->no_space_stripes)) {
1124 sh = list_first_entry(&log->no_space_stripes,
1125 struct stripe_head, log_list);
1126 list_del_init(&sh->log_list);
1127 set_bit(STRIPE_HANDLE, &sh->state);
1128 raid5_release_stripe(sh);
1129 }
1130 spin_unlock(&log->no_space_stripes_lock);
1131}
1132
a39f7afd
SL
1133/*
1134 * calculate new last_checkpoint
1135 * for write through mode, returns log->next_checkpoint
1136 * for write back, returns log_start of first sh in stripe_in_journal_list
1137 */
1138static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1139{
1140 struct stripe_head *sh;
1141 struct r5l_log *log = conf->log;
1142 sector_t new_cp;
1143 unsigned long flags;
1144
1145 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1146 return log->next_checkpoint;
1147
1148 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1149 if (list_empty(&conf->log->stripe_in_journal_list)) {
1150 /* all stripes flushed */
d3014e21 1151 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
a39f7afd
SL
1152 return log->next_checkpoint;
1153 }
1154 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1155 struct stripe_head, r5c);
1156 new_cp = sh->log_start;
1157 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1158 return new_cp;
1159}
1160
17036461
CH
1161static sector_t r5l_reclaimable_space(struct r5l_log *log)
1162{
a39f7afd
SL
1163 struct r5conf *conf = log->rdev->mddev->private;
1164
17036461 1165 return r5l_ring_distance(log, log->last_checkpoint,
a39f7afd 1166 r5c_calculate_new_cp(conf));
17036461
CH
1167}
1168
5036c390
CH
1169static void r5l_run_no_mem_stripe(struct r5l_log *log)
1170{
1171 struct stripe_head *sh;
1172
1173 assert_spin_locked(&log->io_list_lock);
1174
1175 if (!list_empty(&log->no_mem_stripes)) {
1176 sh = list_first_entry(&log->no_mem_stripes,
1177 struct stripe_head, log_list);
1178 list_del_init(&sh->log_list);
1179 set_bit(STRIPE_HANDLE, &sh->state);
1180 raid5_release_stripe(sh);
1181 }
1182}
1183
04732f74 1184static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
1185{
1186 struct r5l_io_unit *io, *next;
1187 bool found = false;
1188
1189 assert_spin_locked(&log->io_list_lock);
1190
04732f74 1191 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
1192 /* don't change list order */
1193 if (io->state < IO_UNIT_STRIPE_END)
1194 break;
1195
1196 log->next_checkpoint = io->log_start;
17036461
CH
1197
1198 list_del(&io->log_sibling);
5036c390
CH
1199 mempool_free(io, log->io_pool);
1200 r5l_run_no_mem_stripe(log);
17036461
CH
1201
1202 found = true;
1203 }
1204
1205 return found;
1206}
1207
509ffec7
CH
1208static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1209{
1210 struct r5l_log *log = io->log;
a39f7afd 1211 struct r5conf *conf = log->rdev->mddev->private;
509ffec7
CH
1212 unsigned long flags;
1213
1214 spin_lock_irqsave(&log->io_list_lock, flags);
1215 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 1216
04732f74 1217 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
1218 spin_unlock_irqrestore(&log->io_list_lock, flags);
1219 return;
1220 }
509ffec7 1221
a39f7afd
SL
1222 if (r5l_reclaimable_space(log) > log->max_free_space ||
1223 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
509ffec7
CH
1224 r5l_wake_reclaim(log, 0);
1225
509ffec7
CH
1226 spin_unlock_irqrestore(&log->io_list_lock, flags);
1227 wake_up(&log->iounit_wait);
1228}
1229
0576b1c6
SL
1230void r5l_stripe_write_finished(struct stripe_head *sh)
1231{
1232 struct r5l_io_unit *io;
1233
0576b1c6 1234 io = sh->log_io;
0576b1c6
SL
1235 sh->log_io = NULL;
1236
509ffec7
CH
1237 if (io && atomic_dec_and_test(&io->pending_stripe))
1238 __r5l_stripe_write_finished(io);
0576b1c6
SL
1239}
1240
a8c34f91
SL
1241static void r5l_log_flush_endio(struct bio *bio)
1242{
1243 struct r5l_log *log = container_of(bio, struct r5l_log,
1244 flush_bio);
1245 unsigned long flags;
1246 struct r5l_io_unit *io;
a8c34f91 1247
6e74a9cf
SL
1248 if (bio->bi_error)
1249 md_error(log->rdev->mddev, log->rdev);
1250
a8c34f91 1251 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
1252 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1253 r5l_io_run_stripes(io);
04732f74 1254 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
1255 spin_unlock_irqrestore(&log->io_list_lock, flags);
1256}
1257
0576b1c6
SL
1258/*
1259 * Starting dispatch IO to raid.
1260 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1261 * broken meta in the middle of a log causes recovery can't find meta at the
1262 * head of log. If operations require meta at the head persistent in log, we
1263 * must make sure meta before it persistent in log too. A case is:
1264 *
1265 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1266 * data/parity must be persistent in log before we do the write to raid disks.
1267 *
1268 * The solution is we restrictly maintain io_unit list order. In this case, we
1269 * only write stripes of an io_unit to raid disks till the io_unit is the first
1270 * one whose data/parity is in log.
1271 */
1272void r5l_flush_stripe_to_raid(struct r5l_log *log)
1273{
a8c34f91 1274 bool do_flush;
56fef7c6
CH
1275
1276 if (!log || !log->need_cache_flush)
0576b1c6 1277 return;
0576b1c6
SL
1278
1279 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
1280 /* flush bio is running */
1281 if (!list_empty(&log->flushing_ios)) {
1282 spin_unlock_irq(&log->io_list_lock);
1283 return;
0576b1c6 1284 }
a8c34f91
SL
1285 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1286 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 1287 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
1288
1289 if (!do_flush)
1290 return;
1291 bio_reset(&log->flush_bio);
1292 log->flush_bio.bi_bdev = log->rdev->bdev;
1293 log->flush_bio.bi_end_io = r5l_log_flush_endio;
70fd7614 1294 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
4e49ea4a 1295 submit_bio(&log->flush_bio);
0576b1c6
SL
1296}
1297
0576b1c6 1298static void r5l_write_super(struct r5l_log *log, sector_t cp);
4b482044
SL
1299static void r5l_write_super_and_discard_space(struct r5l_log *log,
1300 sector_t end)
1301{
1302 struct block_device *bdev = log->rdev->bdev;
1303 struct mddev *mddev;
1304
1305 r5l_write_super(log, end);
1306
1307 if (!blk_queue_discard(bdev_get_queue(bdev)))
1308 return;
1309
1310 mddev = log->rdev->mddev;
1311 /*
8e018c21
SL
1312 * Discard could zero data, so before discard we must make sure
1313 * superblock is updated to new log tail. Updating superblock (either
1314 * directly call md_update_sb() or depend on md thread) must hold
1315 * reconfig mutex. On the other hand, raid5_quiesce is called with
1316 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1317 * for all IO finish, hence waitting for reclaim thread, while reclaim
1318 * thread is calling this function and waitting for reconfig mutex. So
1319 * there is a deadlock. We workaround this issue with a trylock.
1320 * FIXME: we could miss discard if we can't take reconfig mutex
4b482044 1321 */
2953079c
SL
1322 set_mask_bits(&mddev->sb_flags, 0,
1323 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
8e018c21
SL
1324 if (!mddev_trylock(mddev))
1325 return;
1326 md_update_sb(mddev, 1);
1327 mddev_unlock(mddev);
4b482044 1328
6e74a9cf 1329 /* discard IO error really doesn't matter, ignore it */
4b482044
SL
1330 if (log->last_checkpoint < end) {
1331 blkdev_issue_discard(bdev,
1332 log->last_checkpoint + log->rdev->data_offset,
1333 end - log->last_checkpoint, GFP_NOIO, 0);
1334 } else {
1335 blkdev_issue_discard(bdev,
1336 log->last_checkpoint + log->rdev->data_offset,
1337 log->device_size - log->last_checkpoint,
1338 GFP_NOIO, 0);
1339 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1340 GFP_NOIO, 0);
1341 }
1342}
1343
a39f7afd
SL
1344/*
1345 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1346 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1347 *
1348 * must hold conf->device_lock
1349 */
1350static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
0576b1c6 1351{
a39f7afd
SL
1352 BUG_ON(list_empty(&sh->lru));
1353 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1354 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
0576b1c6 1355
0576b1c6 1356 /*
a39f7afd
SL
1357 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1358 * raid5_release_stripe() while holding conf->device_lock
0576b1c6 1359 */
a39f7afd
SL
1360 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1361 assert_spin_locked(&conf->device_lock);
0576b1c6 1362
a39f7afd
SL
1363 list_del_init(&sh->lru);
1364 atomic_inc(&sh->count);
17036461 1365
a39f7afd
SL
1366 set_bit(STRIPE_HANDLE, &sh->state);
1367 atomic_inc(&conf->active_stripes);
1368 r5c_make_stripe_write_out(sh);
0576b1c6 1369
e33fbb9c
SL
1370 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1371 atomic_inc(&conf->r5c_flushing_partial_stripes);
1372 else
1373 atomic_inc(&conf->r5c_flushing_full_stripes);
a39f7afd
SL
1374 raid5_release_stripe(sh);
1375}
1376
1377/*
1378 * if num == 0, flush all full stripes
1379 * if num > 0, flush all full stripes. If less than num full stripes are
1380 * flushed, flush some partial stripes until totally num stripes are
1381 * flushed or there is no more cached stripes.
1382 */
1383void r5c_flush_cache(struct r5conf *conf, int num)
1384{
1385 int count;
1386 struct stripe_head *sh, *next;
1387
1388 assert_spin_locked(&conf->device_lock);
1389 if (!conf->log)
0576b1c6
SL
1390 return;
1391
a39f7afd
SL
1392 count = 0;
1393 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1394 r5c_flush_stripe(conf, sh);
1395 count++;
1396 }
1397
1398 if (count >= num)
1399 return;
1400 list_for_each_entry_safe(sh, next,
1401 &conf->r5c_partial_stripe_list, lru) {
1402 r5c_flush_stripe(conf, sh);
1403 if (++count >= num)
1404 break;
1405 }
1406}
1407
1408static void r5c_do_reclaim(struct r5conf *conf)
1409{
1410 struct r5l_log *log = conf->log;
1411 struct stripe_head *sh;
1412 int count = 0;
1413 unsigned long flags;
1414 int total_cached;
1415 int stripes_to_flush;
e33fbb9c 1416 int flushing_partial, flushing_full;
a39f7afd
SL
1417
1418 if (!r5c_is_writeback(log))
1419 return;
1420
e33fbb9c
SL
1421 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1422 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
a39f7afd 1423 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
e33fbb9c
SL
1424 atomic_read(&conf->r5c_cached_full_stripes) -
1425 flushing_full - flushing_partial;
a39f7afd
SL
1426
1427 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1428 atomic_read(&conf->empty_inactive_list_nr) > 0)
1429 /*
1430 * if stripe cache pressure high, flush all full stripes and
1431 * some partial stripes
1432 */
1433 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1434 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
e33fbb9c 1435 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
84890c03 1436 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
a39f7afd
SL
1437 /*
1438 * if stripe cache pressure moderate, or if there is many full
1439 * stripes,flush all full stripes
1440 */
1441 stripes_to_flush = 0;
1442 else
1443 /* no need to flush */
1444 stripes_to_flush = -1;
1445
1446 if (stripes_to_flush >= 0) {
1447 spin_lock_irqsave(&conf->device_lock, flags);
1448 r5c_flush_cache(conf, stripes_to_flush);
1449 spin_unlock_irqrestore(&conf->device_lock, flags);
1450 }
1451
1452 /* if log space is tight, flush stripes on stripe_in_journal_list */
1453 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1454 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1455 spin_lock(&conf->device_lock);
1456 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1457 /*
1458 * stripes on stripe_in_journal_list could be in any
1459 * state of the stripe_cache state machine. In this
1460 * case, we only want to flush stripe on
1461 * r5c_cached_full/partial_stripes. The following
1462 * condition makes sure the stripe is on one of the
1463 * two lists.
1464 */
1465 if (!list_empty(&sh->lru) &&
1466 !test_bit(STRIPE_HANDLE, &sh->state) &&
1467 atomic_read(&sh->count) == 0) {
1468 r5c_flush_stripe(conf, sh);
e8fd52ee
SL
1469 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1470 break;
a39f7afd 1471 }
a39f7afd
SL
1472 }
1473 spin_unlock(&conf->device_lock);
1474 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1475 }
f687a33e
SL
1476
1477 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1478 r5l_run_no_space_stripes(log);
1479
a39f7afd
SL
1480 md_wakeup_thread(conf->mddev->thread);
1481}
1482
0576b1c6
SL
1483static void r5l_do_reclaim(struct r5l_log *log)
1484{
a39f7afd 1485 struct r5conf *conf = log->rdev->mddev->private;
0576b1c6 1486 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
1487 sector_t reclaimable;
1488 sector_t next_checkpoint;
a39f7afd 1489 bool write_super;
0576b1c6
SL
1490
1491 spin_lock_irq(&log->io_list_lock);
a39f7afd
SL
1492 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1493 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
0576b1c6
SL
1494 /*
1495 * move proper io_unit to reclaim list. We should not change the order.
1496 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1497 * shouldn't reuse space of an unreclaimable io_unit
1498 */
1499 while (1) {
17036461
CH
1500 reclaimable = r5l_reclaimable_space(log);
1501 if (reclaimable >= reclaim_target ||
0576b1c6
SL
1502 (list_empty(&log->running_ios) &&
1503 list_empty(&log->io_end_ios) &&
a8c34f91 1504 list_empty(&log->flushing_ios) &&
04732f74 1505 list_empty(&log->finished_ios)))
0576b1c6
SL
1506 break;
1507
17036461
CH
1508 md_wakeup_thread(log->rdev->mddev->thread);
1509 wait_event_lock_irq(log->iounit_wait,
1510 r5l_reclaimable_space(log) > reclaimable,
1511 log->io_list_lock);
0576b1c6 1512 }
17036461 1513
a39f7afd 1514 next_checkpoint = r5c_calculate_new_cp(conf);
0576b1c6
SL
1515 spin_unlock_irq(&log->io_list_lock);
1516
a39f7afd 1517 if (reclaimable == 0 || !write_super)
0576b1c6
SL
1518 return;
1519
0576b1c6
SL
1520 /*
1521 * write_super will flush cache of each raid disk. We must write super
1522 * here, because the log area might be reused soon and we don't want to
1523 * confuse recovery
1524 */
4b482044 1525 r5l_write_super_and_discard_space(log, next_checkpoint);
0576b1c6
SL
1526
1527 mutex_lock(&log->io_mutex);
17036461 1528 log->last_checkpoint = next_checkpoint;
a39f7afd 1529 r5c_update_log_state(log);
0576b1c6 1530 mutex_unlock(&log->io_mutex);
0576b1c6 1531
17036461 1532 r5l_run_no_space_stripes(log);
0576b1c6
SL
1533}
1534
1535static void r5l_reclaim_thread(struct md_thread *thread)
1536{
1537 struct mddev *mddev = thread->mddev;
1538 struct r5conf *conf = mddev->private;
1539 struct r5l_log *log = conf->log;
1540
1541 if (!log)
1542 return;
a39f7afd 1543 r5c_do_reclaim(conf);
0576b1c6
SL
1544 r5l_do_reclaim(log);
1545}
1546
a39f7afd 1547void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
f6bed0ef 1548{
0576b1c6
SL
1549 unsigned long target;
1550 unsigned long new = (unsigned long)space; /* overflow in theory */
1551
a39f7afd
SL
1552 if (!log)
1553 return;
0576b1c6
SL
1554 do {
1555 target = log->reclaim_target;
1556 if (new < target)
1557 return;
1558 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1559 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
1560}
1561
e6c033f7
SL
1562void r5l_quiesce(struct r5l_log *log, int state)
1563{
4b482044 1564 struct mddev *mddev;
e6c033f7
SL
1565 if (!log || state == 2)
1566 return;
ce1ccd07
SL
1567 if (state == 0)
1568 kthread_unpark(log->reclaim_thread->tsk);
1569 else if (state == 1) {
4b482044
SL
1570 /* make sure r5l_write_super_and_discard_space exits */
1571 mddev = log->rdev->mddev;
1572 wake_up(&mddev->sb_wait);
ce1ccd07 1573 kthread_park(log->reclaim_thread->tsk);
a39f7afd 1574 r5l_wake_reclaim(log, MaxSector);
e6c033f7
SL
1575 r5l_do_reclaim(log);
1576 }
1577}
1578
6e74a9cf
SL
1579bool r5l_log_disk_error(struct r5conf *conf)
1580{
f6b6ec5c
SL
1581 struct r5l_log *log;
1582 bool ret;
7dde2ad3 1583 /* don't allow write if journal disk is missing */
f6b6ec5c
SL
1584 rcu_read_lock();
1585 log = rcu_dereference(conf->log);
1586
1587 if (!log)
1588 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1589 else
1590 ret = test_bit(Faulty, &log->rdev->flags);
1591 rcu_read_unlock();
1592 return ret;
6e74a9cf
SL
1593}
1594
effe6ee7
SL
1595#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1596
355810d1
SL
1597struct r5l_recovery_ctx {
1598 struct page *meta_page; /* current meta */
1599 sector_t meta_total_blocks; /* total size of current meta and data */
1600 sector_t pos; /* recovery position */
1601 u64 seq; /* recovery position seq */
b4c625c6
SL
1602 int data_parity_stripes; /* number of data_parity stripes */
1603 int data_only_stripes; /* number of data_only stripes */
1604 struct list_head cached_list;
effe6ee7
SL
1605
1606 /*
1607 * read ahead page pool (ra_pool)
1608 * in recovery, log is read sequentially. It is not efficient to
1609 * read every page with sync_page_io(). The read ahead page pool
1610 * reads multiple pages with one IO, so further log read can
1611 * just copy data from the pool.
1612 */
1613 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1614 sector_t pool_offset; /* offset of first page in the pool */
1615 int total_pages; /* total allocated pages */
1616 int valid_pages; /* pages with valid data */
1617 struct bio *ra_bio; /* bio to do the read ahead */
355810d1
SL
1618};
1619
effe6ee7
SL
1620static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1621 struct r5l_recovery_ctx *ctx)
1622{
1623 struct page *page;
1624
1625 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1626 if (!ctx->ra_bio)
1627 return -ENOMEM;
1628
1629 ctx->valid_pages = 0;
1630 ctx->total_pages = 0;
1631 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1632 page = alloc_page(GFP_KERNEL);
1633
1634 if (!page)
1635 break;
1636 ctx->ra_pool[ctx->total_pages] = page;
1637 ctx->total_pages += 1;
1638 }
1639
1640 if (ctx->total_pages == 0) {
1641 bio_put(ctx->ra_bio);
1642 return -ENOMEM;
1643 }
1644
1645 ctx->pool_offset = 0;
1646 return 0;
1647}
1648
1649static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1650 struct r5l_recovery_ctx *ctx)
1651{
1652 int i;
1653
1654 for (i = 0; i < ctx->total_pages; ++i)
1655 put_page(ctx->ra_pool[i]);
1656 bio_put(ctx->ra_bio);
1657}
1658
1659/*
1660 * fetch ctx->valid_pages pages from offset
1661 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1662 * However, if the offset is close to the end of the journal device,
1663 * ctx->valid_pages could be smaller than ctx->total_pages
1664 */
1665static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1666 struct r5l_recovery_ctx *ctx,
1667 sector_t offset)
1668{
1669 bio_reset(ctx->ra_bio);
1670 ctx->ra_bio->bi_bdev = log->rdev->bdev;
1671 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1672 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1673
1674 ctx->valid_pages = 0;
1675 ctx->pool_offset = offset;
1676
1677 while (ctx->valid_pages < ctx->total_pages) {
1678 bio_add_page(ctx->ra_bio,
1679 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1680 ctx->valid_pages += 1;
1681
1682 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1683
1684 if (offset == 0) /* reached end of the device */
1685 break;
1686 }
1687
1688 return submit_bio_wait(ctx->ra_bio);
1689}
1690
1691/*
1692 * try read a page from the read ahead page pool, if the page is not in the
1693 * pool, call r5l_recovery_fetch_ra_pool
1694 */
1695static int r5l_recovery_read_page(struct r5l_log *log,
1696 struct r5l_recovery_ctx *ctx,
1697 struct page *page,
1698 sector_t offset)
1699{
1700 int ret;
1701
1702 if (offset < ctx->pool_offset ||
1703 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1704 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1705 if (ret)
1706 return ret;
1707 }
1708
1709 BUG_ON(offset < ctx->pool_offset ||
1710 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1711
1712 memcpy(page_address(page),
1713 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1714 BLOCK_SECTOR_SHIFT]),
1715 PAGE_SIZE);
1716 return 0;
1717}
1718
9ed988f5
SL
1719static int r5l_recovery_read_meta_block(struct r5l_log *log,
1720 struct r5l_recovery_ctx *ctx)
355810d1
SL
1721{
1722 struct page *page = ctx->meta_page;
1723 struct r5l_meta_block *mb;
1724 u32 crc, stored_crc;
effe6ee7 1725 int ret;
355810d1 1726
effe6ee7
SL
1727 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1728 if (ret != 0)
1729 return ret;
355810d1
SL
1730
1731 mb = page_address(page);
1732 stored_crc = le32_to_cpu(mb->checksum);
1733 mb->checksum = 0;
1734
1735 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1736 le64_to_cpu(mb->seq) != ctx->seq ||
1737 mb->version != R5LOG_VERSION ||
1738 le64_to_cpu(mb->position) != ctx->pos)
1739 return -EINVAL;
1740
5cb2fbd6 1741 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
1742 if (stored_crc != crc)
1743 return -EINVAL;
1744
1745 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1746 return -EINVAL;
1747
1748 ctx->meta_total_blocks = BLOCK_SECTORS;
1749
1750 return 0;
1751}
1752
9ed988f5
SL
1753static void
1754r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1755 struct page *page,
1756 sector_t pos, u64 seq)
355810d1 1757{
355810d1 1758 struct r5l_meta_block *mb;
355810d1 1759
355810d1 1760 mb = page_address(page);
9ed988f5 1761 clear_page(mb);
355810d1
SL
1762 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1763 mb->version = R5LOG_VERSION;
1764 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1765 mb->seq = cpu_to_le64(seq);
1766 mb->position = cpu_to_le64(pos);
9ed988f5 1767}
355810d1 1768
9ed988f5
SL
1769static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1770 u64 seq)
1771{
1772 struct page *page;
5c88f403 1773 struct r5l_meta_block *mb;
355810d1 1774
9ed988f5
SL
1775 page = alloc_page(GFP_KERNEL);
1776 if (!page)
1777 return -ENOMEM;
1778 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
5c88f403
SL
1779 mb = page_address(page);
1780 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1781 mb, PAGE_SIZE));
796a5cf0 1782 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
20737738 1783 REQ_FUA, false)) {
355810d1
SL
1784 __free_page(page);
1785 return -EIO;
1786 }
1787 __free_page(page);
1788 return 0;
1789}
355810d1 1790
b4c625c6
SL
1791/*
1792 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1793 * to mark valid (potentially not flushed) data in the journal.
1794 *
1795 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1796 * so there should not be any mismatch here.
1797 */
1798static void r5l_recovery_load_data(struct r5l_log *log,
1799 struct stripe_head *sh,
1800 struct r5l_recovery_ctx *ctx,
1801 struct r5l_payload_data_parity *payload,
1802 sector_t log_offset)
1803{
1804 struct mddev *mddev = log->rdev->mddev;
1805 struct r5conf *conf = mddev->private;
1806 int dd_idx;
1807
1808 raid5_compute_sector(conf,
1809 le64_to_cpu(payload->location), 0,
1810 &dd_idx, sh);
effe6ee7 1811 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
b4c625c6
SL
1812 sh->dev[dd_idx].log_checksum =
1813 le32_to_cpu(payload->checksum[0]);
1814 ctx->meta_total_blocks += BLOCK_SECTORS;
1815
1816 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1817 set_bit(STRIPE_R5C_CACHING, &sh->state);
1818}
1819
1820static void r5l_recovery_load_parity(struct r5l_log *log,
1821 struct stripe_head *sh,
1822 struct r5l_recovery_ctx *ctx,
1823 struct r5l_payload_data_parity *payload,
1824 sector_t log_offset)
1825{
1826 struct mddev *mddev = log->rdev->mddev;
1827 struct r5conf *conf = mddev->private;
1828
1829 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
effe6ee7 1830 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
b4c625c6
SL
1831 sh->dev[sh->pd_idx].log_checksum =
1832 le32_to_cpu(payload->checksum[0]);
1833 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1834
1835 if (sh->qd_idx >= 0) {
effe6ee7
SL
1836 r5l_recovery_read_page(
1837 log, ctx, sh->dev[sh->qd_idx].page,
1838 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
b4c625c6
SL
1839 sh->dev[sh->qd_idx].log_checksum =
1840 le32_to_cpu(payload->checksum[1]);
1841 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
355810d1 1842 }
b4c625c6
SL
1843 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1844}
355810d1 1845
b4c625c6
SL
1846static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1847{
1848 int i;
1849
1850 sh->state = 0;
1851 sh->log_start = MaxSector;
1852 for (i = sh->disks; i--; )
1853 sh->dev[i].flags = 0;
1854}
1855
1856static void
1857r5l_recovery_replay_one_stripe(struct r5conf *conf,
1858 struct stripe_head *sh,
1859 struct r5l_recovery_ctx *ctx)
1860{
1861 struct md_rdev *rdev, *rrdev;
1862 int disk_index;
1863 int data_count = 0;
355810d1 1864
b4c625c6 1865 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
355810d1
SL
1866 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1867 continue;
b4c625c6
SL
1868 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1869 continue;
1870 data_count++;
355810d1
SL
1871 }
1872
b4c625c6
SL
1873 /*
1874 * stripes that only have parity must have been flushed
1875 * before the crash that we are now recovering from, so
1876 * there is nothing more to recovery.
1877 */
1878 if (data_count == 0)
1879 goto out;
355810d1 1880
b4c625c6
SL
1881 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1882 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
355810d1
SL
1883 continue;
1884
1885 /* in case device is broken */
b4c625c6 1886 rcu_read_lock();
355810d1 1887 rdev = rcu_dereference(conf->disks[disk_index].rdev);
b4c625c6
SL
1888 if (rdev) {
1889 atomic_inc(&rdev->nr_pending);
1890 rcu_read_unlock();
1891 sync_page_io(rdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1892 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1893 false);
b4c625c6
SL
1894 rdev_dec_pending(rdev, rdev->mddev);
1895 rcu_read_lock();
1896 }
355810d1 1897 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
b4c625c6
SL
1898 if (rrdev) {
1899 atomic_inc(&rrdev->nr_pending);
1900 rcu_read_unlock();
1901 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1902 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1903 false);
b4c625c6
SL
1904 rdev_dec_pending(rrdev, rrdev->mddev);
1905 rcu_read_lock();
1906 }
1907 rcu_read_unlock();
355810d1 1908 }
b4c625c6
SL
1909 ctx->data_parity_stripes++;
1910out:
1911 r5l_recovery_reset_stripe(sh);
1912}
1913
1914static struct stripe_head *
1915r5c_recovery_alloc_stripe(struct r5conf *conf,
3c66abba 1916 sector_t stripe_sect)
b4c625c6
SL
1917{
1918 struct stripe_head *sh;
1919
1920 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1921 if (!sh)
1922 return NULL; /* no more stripe available */
1923
1924 r5l_recovery_reset_stripe(sh);
b4c625c6
SL
1925
1926 return sh;
1927}
1928
1929static struct stripe_head *
1930r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1931{
1932 struct stripe_head *sh;
1933
1934 list_for_each_entry(sh, list, lru)
1935 if (sh->sector == sect)
1936 return sh;
1937 return NULL;
1938}
1939
1940static void
1941r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1942 struct r5l_recovery_ctx *ctx)
1943{
1944 struct stripe_head *sh, *next;
1945
1946 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1947 r5l_recovery_reset_stripe(sh);
1948 list_del_init(&sh->lru);
1949 raid5_release_stripe(sh);
1950 }
1951}
1952
1953static void
1954r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1955 struct r5l_recovery_ctx *ctx)
1956{
1957 struct stripe_head *sh, *next;
1958
1959 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1960 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1961 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1962 list_del_init(&sh->lru);
1963 raid5_release_stripe(sh);
1964 }
1965}
1966
1967/* if matches return 0; otherwise return -EINVAL */
1968static int
effe6ee7
SL
1969r5l_recovery_verify_data_checksum(struct r5l_log *log,
1970 struct r5l_recovery_ctx *ctx,
1971 struct page *page,
b4c625c6
SL
1972 sector_t log_offset, __le32 log_checksum)
1973{
1974 void *addr;
1975 u32 checksum;
1976
effe6ee7 1977 r5l_recovery_read_page(log, ctx, page, log_offset);
b4c625c6
SL
1978 addr = kmap_atomic(page);
1979 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1980 kunmap_atomic(addr);
1981 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1982}
1983
1984/*
1985 * before loading data to stripe cache, we need verify checksum for all data,
1986 * if there is mismatch for any data page, we drop all data in the mata block
1987 */
1988static int
1989r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1990 struct r5l_recovery_ctx *ctx)
1991{
1992 struct mddev *mddev = log->rdev->mddev;
1993 struct r5conf *conf = mddev->private;
1994 struct r5l_meta_block *mb = page_address(ctx->meta_page);
1995 sector_t mb_offset = sizeof(struct r5l_meta_block);
1996 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1997 struct page *page;
1998 struct r5l_payload_data_parity *payload;
2d4f4687 1999 struct r5l_payload_flush *payload_flush;
b4c625c6
SL
2000
2001 page = alloc_page(GFP_KERNEL);
2002 if (!page)
2003 return -ENOMEM;
2004
2005 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2006 payload = (void *)mb + mb_offset;
2d4f4687 2007 payload_flush = (void *)mb + mb_offset;
b4c625c6
SL
2008
2009 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
2010 if (r5l_recovery_verify_data_checksum(
effe6ee7 2011 log, ctx, page, log_offset,
b4c625c6
SL
2012 payload->checksum[0]) < 0)
2013 goto mismatch;
2014 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
2015 if (r5l_recovery_verify_data_checksum(
effe6ee7 2016 log, ctx, page, log_offset,
b4c625c6
SL
2017 payload->checksum[0]) < 0)
2018 goto mismatch;
2019 if (conf->max_degraded == 2 && /* q for RAID 6 */
2020 r5l_recovery_verify_data_checksum(
effe6ee7 2021 log, ctx, page,
b4c625c6
SL
2022 r5l_ring_add(log, log_offset,
2023 BLOCK_SECTORS),
2024 payload->checksum[1]) < 0)
2025 goto mismatch;
2d4f4687
SL
2026 } else if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2027 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2028 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
b4c625c6
SL
2029 goto mismatch;
2030
2d4f4687
SL
2031 if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2032 mb_offset += sizeof(struct r5l_payload_flush) +
2033 le32_to_cpu(payload_flush->size);
2034 } else {
2035 /* DATA or PARITY payload */
2036 log_offset = r5l_ring_add(log, log_offset,
2037 le32_to_cpu(payload->size));
2038 mb_offset += sizeof(struct r5l_payload_data_parity) +
2039 sizeof(__le32) *
2040 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2041 }
b4c625c6 2042
b4c625c6
SL
2043 }
2044
2045 put_page(page);
355810d1
SL
2046 return 0;
2047
b4c625c6
SL
2048mismatch:
2049 put_page(page);
355810d1
SL
2050 return -EINVAL;
2051}
2052
b4c625c6
SL
2053/*
2054 * Analyze all data/parity pages in one meta block
2055 * Returns:
2056 * 0 for success
2057 * -EINVAL for unknown playload type
2058 * -EAGAIN for checksum mismatch of data page
2059 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2060 */
2061static int
2062r5c_recovery_analyze_meta_block(struct r5l_log *log,
2063 struct r5l_recovery_ctx *ctx,
2064 struct list_head *cached_stripe_list)
355810d1 2065{
b4c625c6
SL
2066 struct mddev *mddev = log->rdev->mddev;
2067 struct r5conf *conf = mddev->private;
355810d1 2068 struct r5l_meta_block *mb;
b4c625c6 2069 struct r5l_payload_data_parity *payload;
2d4f4687 2070 struct r5l_payload_flush *payload_flush;
b4c625c6 2071 int mb_offset;
355810d1 2072 sector_t log_offset;
b4c625c6
SL
2073 sector_t stripe_sect;
2074 struct stripe_head *sh;
2075 int ret;
2076
2077 /*
2078 * for mismatch in data blocks, we will drop all data in this mb, but
2079 * we will still read next mb for other data with FLUSH flag, as
2080 * io_unit could finish out of order.
2081 */
2082 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2083 if (ret == -EINVAL)
2084 return -EAGAIN;
2085 else if (ret)
2086 return ret; /* -ENOMEM duo to alloc_page() failed */
355810d1
SL
2087
2088 mb = page_address(ctx->meta_page);
b4c625c6 2089 mb_offset = sizeof(struct r5l_meta_block);
355810d1
SL
2090 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2091
b4c625c6 2092 while (mb_offset < le32_to_cpu(mb->meta_size)) {
355810d1
SL
2093 int dd;
2094
b4c625c6 2095 payload = (void *)mb + mb_offset;
2d4f4687
SL
2096 payload_flush = (void *)mb + mb_offset;
2097
2098 if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2099 int i, count;
2100
2101 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2102 for (i = 0; i < count; ++i) {
2103 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2104 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2105 stripe_sect);
2106 if (sh) {
2107 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2108 r5l_recovery_reset_stripe(sh);
2109 list_del_init(&sh->lru);
2110 raid5_release_stripe(sh);
2111 }
2112 }
2113
2114 mb_offset += sizeof(struct r5l_payload_flush) +
2115 le32_to_cpu(payload_flush->size);
2116 continue;
2117 }
2118
2119 /* DATA or PARITY payload */
b4c625c6
SL
2120 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
2121 raid5_compute_sector(
2122 conf, le64_to_cpu(payload->location), 0, &dd,
2123 NULL)
2124 : le64_to_cpu(payload->location);
2125
2126 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2127 stripe_sect);
2128
2129 if (!sh) {
3c66abba 2130 sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
b4c625c6
SL
2131 /*
2132 * cannot get stripe from raid5_get_active_stripe
2133 * try replay some stripes
2134 */
2135 if (!sh) {
2136 r5c_recovery_replay_stripes(
2137 cached_stripe_list, ctx);
2138 sh = r5c_recovery_alloc_stripe(
3c66abba 2139 conf, stripe_sect);
b4c625c6
SL
2140 }
2141 if (!sh) {
2142 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2143 mdname(mddev),
2144 conf->min_nr_stripes * 2);
2145 raid5_set_cache_size(mddev,
2146 conf->min_nr_stripes * 2);
3c66abba
SL
2147 sh = r5c_recovery_alloc_stripe(conf,
2148 stripe_sect);
b4c625c6
SL
2149 }
2150 if (!sh) {
2151 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2152 mdname(mddev));
2153 return -ENOMEM;
2154 }
2155 list_add_tail(&sh->lru, cached_stripe_list);
2156 }
2157
2158 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
f7b7bee7
ZL
2159 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2160 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
b4c625c6 2161 r5l_recovery_replay_one_stripe(conf, sh, ctx);
b4c625c6
SL
2162 list_move_tail(&sh->lru, cached_stripe_list);
2163 }
2164 r5l_recovery_load_data(log, sh, ctx, payload,
2165 log_offset);
2166 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
2167 r5l_recovery_load_parity(log, sh, ctx, payload,
2168 log_offset);
2169 else
355810d1 2170 return -EINVAL;
b4c625c6
SL
2171
2172 log_offset = r5l_ring_add(log, log_offset,
2173 le32_to_cpu(payload->size));
2174
2175 mb_offset += sizeof(struct r5l_payload_data_parity) +
2176 sizeof(__le32) *
2177 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
355810d1 2178 }
b4c625c6 2179
355810d1
SL
2180 return 0;
2181}
2182
b4c625c6
SL
2183/*
2184 * Load the stripe into cache. The stripe will be written out later by
2185 * the stripe cache state machine.
2186 */
2187static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2188 struct stripe_head *sh)
355810d1 2189{
b4c625c6
SL
2190 struct r5dev *dev;
2191 int i;
2192
2193 for (i = sh->disks; i--; ) {
2194 dev = sh->dev + i;
2195 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2196 set_bit(R5_InJournal, &dev->flags);
2197 set_bit(R5_UPTODATE, &dev->flags);
2198 }
2199 }
b4c625c6
SL
2200}
2201
2202/*
2203 * Scan through the log for all to-be-flushed data
2204 *
2205 * For stripes with data and parity, namely Data-Parity stripe
2206 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2207 *
2208 * For stripes with only data, namely Data-Only stripe
2209 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2210 *
2211 * For a stripe, if we see data after parity, we should discard all previous
2212 * data and parity for this stripe, as these data are already flushed to
2213 * the array.
2214 *
2215 * At the end of the scan, we return the new journal_tail, which points to
2216 * first data-only stripe on the journal device, or next invalid meta block.
2217 */
2218static int r5c_recovery_flush_log(struct r5l_log *log,
2219 struct r5l_recovery_ctx *ctx)
2220{
bc8f167f 2221 struct stripe_head *sh;
b4c625c6
SL
2222 int ret = 0;
2223
2224 /* scan through the log */
355810d1 2225 while (1) {
b4c625c6
SL
2226 if (r5l_recovery_read_meta_block(log, ctx))
2227 break;
2228
2229 ret = r5c_recovery_analyze_meta_block(log, ctx,
2230 &ctx->cached_list);
2231 /*
2232 * -EAGAIN means mismatch in data block, in this case, we still
2233 * try scan the next metablock
2234 */
2235 if (ret && ret != -EAGAIN)
2236 break; /* ret == -EINVAL or -ENOMEM */
355810d1
SL
2237 ctx->seq++;
2238 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2239 }
b4c625c6
SL
2240
2241 if (ret == -ENOMEM) {
2242 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2243 return ret;
2244 }
2245
2246 /* replay data-parity stripes */
2247 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2248
2249 /* load data-only stripes to stripe cache */
bc8f167f 2250 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2251 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2252 r5c_recovery_load_one_stripe(log, sh);
b4c625c6
SL
2253 ctx->data_only_stripes++;
2254 }
2255
2256 return 0;
355810d1
SL
2257}
2258
b4c625c6
SL
2259/*
2260 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2261 * log will start here. but we can't let superblock point to last valid
2262 * meta block. The log might looks like:
2263 * | meta 1| meta 2| meta 3|
2264 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2265 * superblock points to meta 1, we write a new valid meta 2n. if crash
2266 * happens again, new recovery will start from meta 1. Since meta 2n is
2267 * valid now, recovery will think meta 3 is valid, which is wrong.
2268 * The solution is we create a new meta in meta2 with its seq == meta
3c6edc66
SL
2269 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2270 * will not think meta 3 is a valid meta, because its seq doesn't match
b4c625c6
SL
2271 */
2272
2273/*
2274 * Before recovery, the log looks like the following
2275 *
2276 * ---------------------------------------------
2277 * | valid log | invalid log |
2278 * ---------------------------------------------
2279 * ^
2280 * |- log->last_checkpoint
2281 * |- log->last_cp_seq
2282 *
2283 * Now we scan through the log until we see invalid entry
2284 *
2285 * ---------------------------------------------
2286 * | valid log | invalid log |
2287 * ---------------------------------------------
2288 * ^ ^
2289 * |- log->last_checkpoint |- ctx->pos
2290 * |- log->last_cp_seq |- ctx->seq
2291 *
2292 * From this point, we need to increase seq number by 10 to avoid
2293 * confusing next recovery.
2294 *
2295 * ---------------------------------------------
2296 * | valid log | invalid log |
2297 * ---------------------------------------------
2298 * ^ ^
2299 * |- log->last_checkpoint |- ctx->pos+1
3c6edc66 2300 * |- log->last_cp_seq |- ctx->seq+10001
b4c625c6
SL
2301 *
2302 * However, it is not safe to start the state machine yet, because data only
2303 * parities are not yet secured in RAID. To save these data only parities, we
2304 * rewrite them from seq+11.
2305 *
2306 * -----------------------------------------------------------------
2307 * | valid log | data only stripes | invalid log |
2308 * -----------------------------------------------------------------
2309 * ^ ^
2310 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2311 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2312 *
2313 * If failure happens again during this process, the recovery can safe start
2314 * again from log->last_checkpoint.
2315 *
2316 * Once data only stripes are rewritten to journal, we move log_tail
2317 *
2318 * -----------------------------------------------------------------
2319 * | old log | data only stripes | invalid log |
2320 * -----------------------------------------------------------------
2321 * ^ ^
2322 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2323 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2324 *
2325 * Then we can safely start the state machine. If failure happens from this
2326 * point on, the recovery will start from new log->last_checkpoint.
2327 */
2328static int
2329r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2330 struct r5l_recovery_ctx *ctx)
355810d1 2331{
a85dd7b8 2332 struct stripe_head *sh;
b4c625c6 2333 struct mddev *mddev = log->rdev->mddev;
355810d1 2334 struct page *page;
3c66abba 2335 sector_t next_checkpoint = MaxSector;
355810d1 2336
b4c625c6
SL
2337 page = alloc_page(GFP_KERNEL);
2338 if (!page) {
2339 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2340 mdname(mddev));
355810d1 2341 return -ENOMEM;
b4c625c6 2342 }
355810d1 2343
3c66abba
SL
2344 WARN_ON(list_empty(&ctx->cached_list));
2345
a85dd7b8 2346 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2347 struct r5l_meta_block *mb;
2348 int i;
2349 int offset;
2350 sector_t write_pos;
2351
2352 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2353 r5l_recovery_create_empty_meta_block(log, page,
2354 ctx->pos, ctx->seq);
2355 mb = page_address(page);
2356 offset = le32_to_cpu(mb->meta_size);
fc833c2a 2357 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
b4c625c6
SL
2358
2359 for (i = sh->disks; i--; ) {
2360 struct r5dev *dev = &sh->dev[i];
2361 struct r5l_payload_data_parity *payload;
2362 void *addr;
2363
2364 if (test_bit(R5_InJournal, &dev->flags)) {
2365 payload = (void *)mb + offset;
2366 payload->header.type = cpu_to_le16(
2367 R5LOG_PAYLOAD_DATA);
2368 payload->size = BLOCK_SECTORS;
2369 payload->location = cpu_to_le64(
2370 raid5_compute_blocknr(sh, i, 0));
2371 addr = kmap_atomic(dev->page);
2372 payload->checksum[0] = cpu_to_le32(
2373 crc32c_le(log->uuid_checksum, addr,
2374 PAGE_SIZE));
2375 kunmap_atomic(addr);
2376 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2377 dev->page, REQ_OP_WRITE, 0, false);
2378 write_pos = r5l_ring_add(log, write_pos,
2379 BLOCK_SECTORS);
2380 offset += sizeof(__le32) +
2381 sizeof(struct r5l_payload_data_parity);
2382
2383 }
2384 }
2385 mb->meta_size = cpu_to_le32(offset);
5c88f403
SL
2386 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2387 mb, PAGE_SIZE));
b4c625c6 2388 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
20737738 2389 REQ_OP_WRITE, REQ_FUA, false);
b4c625c6 2390 sh->log_start = ctx->pos;
3c66abba
SL
2391 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2392 atomic_inc(&log->stripe_in_journal_count);
b4c625c6
SL
2393 ctx->pos = write_pos;
2394 ctx->seq += 1;
3c66abba 2395 next_checkpoint = sh->log_start;
355810d1 2396 }
3c66abba 2397 log->next_checkpoint = next_checkpoint;
355810d1
SL
2398 __free_page(page);
2399 return 0;
2400}
2401
a85dd7b8
SL
2402static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2403 struct r5l_recovery_ctx *ctx)
2404{
2405 struct mddev *mddev = log->rdev->mddev;
2406 struct r5conf *conf = mddev->private;
2407 struct stripe_head *sh, *next;
2408
2409 if (ctx->data_only_stripes == 0)
2410 return;
2411
2412 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2413
2414 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2415 r5c_make_stripe_write_out(sh);
2416 set_bit(STRIPE_HANDLE, &sh->state);
2417 list_del_init(&sh->lru);
2418 raid5_release_stripe(sh);
2419 }
2420
2421 md_wakeup_thread(conf->mddev->thread);
2422 /* reuse conf->wait_for_quiescent in recovery */
2423 wait_event(conf->wait_for_quiescent,
2424 atomic_read(&conf->active_stripes) == 0);
2425
2426 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2427}
2428
f6bed0ef
SL
2429static int r5l_recovery_log(struct r5l_log *log)
2430{
5aabf7c4 2431 struct mddev *mddev = log->rdev->mddev;
effe6ee7 2432 struct r5l_recovery_ctx *ctx;
5aabf7c4 2433 int ret;
43b96748 2434 sector_t pos;
355810d1 2435
effe6ee7
SL
2436 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2437 if (!ctx)
355810d1
SL
2438 return -ENOMEM;
2439
effe6ee7
SL
2440 ctx->pos = log->last_checkpoint;
2441 ctx->seq = log->last_cp_seq;
2442 INIT_LIST_HEAD(&ctx->cached_list);
2443 ctx->meta_page = alloc_page(GFP_KERNEL);
355810d1 2444
effe6ee7
SL
2445 if (!ctx->meta_page) {
2446 ret = -ENOMEM;
2447 goto meta_page;
2448 }
b4c625c6 2449
effe6ee7
SL
2450 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2451 ret = -ENOMEM;
2452 goto ra_pool;
2453 }
2454
2455 ret = r5c_recovery_flush_log(log, ctx);
2456
2457 if (ret)
2458 goto error;
43b96748 2459
effe6ee7
SL
2460 pos = ctx->pos;
2461 ctx->seq += 10000;
43b96748 2462
effe6ee7 2463 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
5aabf7c4
SL
2464 pr_debug("md/raid:%s: starting from clean shutdown\n",
2465 mdname(mddev));
a85dd7b8 2466 else
99f17890 2467 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
effe6ee7
SL
2468 mdname(mddev), ctx->data_only_stripes,
2469 ctx->data_parity_stripes);
2470
2471 if (ctx->data_only_stripes == 0) {
2472 log->next_checkpoint = ctx->pos;
2473 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2474 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2475 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
a85dd7b8
SL
2476 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2477 mdname(mddev));
effe6ee7
SL
2478 ret = -EIO;
2479 goto error;
b4c625c6
SL
2480 }
2481
effe6ee7
SL
2482 log->log_start = ctx->pos;
2483 log->seq = ctx->seq;
43b96748
J
2484 log->last_checkpoint = pos;
2485 r5l_write_super(log, pos);
a85dd7b8 2486
effe6ee7
SL
2487 r5c_recovery_flush_data_only_stripes(log, ctx);
2488 ret = 0;
2489error:
2490 r5l_recovery_free_ra_pool(log, ctx);
2491ra_pool:
2492 __free_page(ctx->meta_page);
2493meta_page:
2494 kfree(ctx);
2495 return ret;
f6bed0ef
SL
2496}
2497
2498static void r5l_write_super(struct r5l_log *log, sector_t cp)
2499{
2500 struct mddev *mddev = log->rdev->mddev;
2501
2502 log->rdev->journal_tail = cp;
2953079c 2503 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6bed0ef
SL
2504}
2505
2c7da14b
SL
2506static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2507{
2508 struct r5conf *conf = mddev->private;
2509 int ret;
2510
2511 if (!conf->log)
2512 return 0;
2513
2514 switch (conf->log->r5c_journal_mode) {
2515 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2516 ret = snprintf(
2517 page, PAGE_SIZE, "[%s] %s\n",
2518 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2519 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2520 break;
2521 case R5C_JOURNAL_MODE_WRITE_BACK:
2522 ret = snprintf(
2523 page, PAGE_SIZE, "%s [%s]\n",
2524 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2525 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2526 break;
2527 default:
2528 ret = 0;
2529 }
2530 return ret;
2531}
2532
2533static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2534 const char *page, size_t length)
2535{
2536 struct r5conf *conf = mddev->private;
2537 struct r5l_log *log = conf->log;
2538 int val = -1, i;
2539 int len = length;
2540
2541 if (!log)
2542 return -ENODEV;
2543
2544 if (len && page[len - 1] == '\n')
2545 len -= 1;
2546 for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2547 if (strlen(r5c_journal_mode_str[i]) == len &&
2548 strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2549 val = i;
2550 break;
2551 }
2552 if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2553 val > R5C_JOURNAL_MODE_WRITE_BACK)
2554 return -EINVAL;
2555
2e38a37f
SL
2556 if (raid5_calc_degraded(conf) > 0 &&
2557 val == R5C_JOURNAL_MODE_WRITE_BACK)
2558 return -EINVAL;
2559
2c7da14b
SL
2560 mddev_suspend(mddev);
2561 conf->log->r5c_journal_mode = val;
2562 mddev_resume(mddev);
2563
2564 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2565 mdname(mddev), val, r5c_journal_mode_str[val]);
2566 return length;
2567}
2568
2569struct md_sysfs_entry
2570r5c_journal_mode = __ATTR(journal_mode, 0644,
2571 r5c_journal_mode_show, r5c_journal_mode_store);
2572
2ded3703
SL
2573/*
2574 * Try handle write operation in caching phase. This function should only
2575 * be called in write-back mode.
2576 *
2577 * If all outstanding writes can be handled in caching phase, returns 0
2578 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2579 * and returns -EAGAIN
2580 */
2581int r5c_try_caching_write(struct r5conf *conf,
2582 struct stripe_head *sh,
2583 struct stripe_head_state *s,
2584 int disks)
2585{
2586 struct r5l_log *log = conf->log;
1e6d690b
SL
2587 int i;
2588 struct r5dev *dev;
2589 int to_cache = 0;
03b047f4
SL
2590 void **pslot;
2591 sector_t tree_index;
2592 int ret;
2593 uintptr_t refcount;
2ded3703
SL
2594
2595 BUG_ON(!r5c_is_writeback(log));
2596
1e6d690b
SL
2597 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2598 /*
2599 * There are two different scenarios here:
2600 * 1. The stripe has some data cached, and it is sent to
2601 * write-out phase for reclaim
2602 * 2. The stripe is clean, and this is the first write
2603 *
2604 * For 1, return -EAGAIN, so we continue with
2605 * handle_stripe_dirtying().
2606 *
2607 * For 2, set STRIPE_R5C_CACHING and continue with caching
2608 * write.
2609 */
2610
2611 /* case 1: anything injournal or anything in written */
2612 if (s->injournal > 0 || s->written > 0)
2613 return -EAGAIN;
2614 /* case 2 */
2615 set_bit(STRIPE_R5C_CACHING, &sh->state);
2616 }
2617
2e38a37f
SL
2618 /*
2619 * When run in degraded mode, array is set to write-through mode.
2620 * This check helps drain pending write safely in the transition to
2621 * write-through mode.
2622 */
2623 if (s->failed) {
2624 r5c_make_stripe_write_out(sh);
2625 return -EAGAIN;
2626 }
2627
1e6d690b
SL
2628 for (i = disks; i--; ) {
2629 dev = &sh->dev[i];
2630 /* if non-overwrite, use writing-out phase */
2631 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2632 !test_bit(R5_InJournal, &dev->flags)) {
2633 r5c_make_stripe_write_out(sh);
2634 return -EAGAIN;
2635 }
2636 }
2637
03b047f4
SL
2638 /* if the stripe is not counted in big_stripe_tree, add it now */
2639 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2640 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2641 tree_index = r5c_tree_index(conf, sh->sector);
2642 spin_lock(&log->tree_lock);
2643 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2644 tree_index);
2645 if (pslot) {
2646 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2647 pslot, &log->tree_lock) >>
2648 R5C_RADIX_COUNT_SHIFT;
2649 radix_tree_replace_slot(
2650 &log->big_stripe_tree, pslot,
2651 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2652 } else {
2653 /*
2654 * this radix_tree_insert can fail safely, so no
2655 * need to call radix_tree_preload()
2656 */
2657 ret = radix_tree_insert(
2658 &log->big_stripe_tree, tree_index,
2659 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2660 if (ret) {
2661 spin_unlock(&log->tree_lock);
2662 r5c_make_stripe_write_out(sh);
2663 return -EAGAIN;
2664 }
2665 }
2666 spin_unlock(&log->tree_lock);
2667
2668 /*
2669 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2670 * counted in the radix tree
2671 */
2672 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2673 atomic_inc(&conf->r5c_cached_partial_stripes);
2674 }
2675
1e6d690b
SL
2676 for (i = disks; i--; ) {
2677 dev = &sh->dev[i];
2678 if (dev->towrite) {
2679 set_bit(R5_Wantwrite, &dev->flags);
2680 set_bit(R5_Wantdrain, &dev->flags);
2681 set_bit(R5_LOCKED, &dev->flags);
2682 to_cache++;
2683 }
2684 }
2685
2686 if (to_cache) {
2687 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2688 /*
2689 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2690 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2691 * r5c_handle_data_cached()
2692 */
2693 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2694 }
2695
2696 return 0;
2697}
2698
2699/*
2700 * free extra pages (orig_page) we allocated for prexor
2701 */
2702void r5c_release_extra_page(struct stripe_head *sh)
2703{
d7bd398e 2704 struct r5conf *conf = sh->raid_conf;
1e6d690b 2705 int i;
d7bd398e
SL
2706 bool using_disk_info_extra_page;
2707
2708 using_disk_info_extra_page =
2709 sh->dev[0].orig_page == conf->disks[0].extra_page;
1e6d690b
SL
2710
2711 for (i = sh->disks; i--; )
2712 if (sh->dev[i].page != sh->dev[i].orig_page) {
2713 struct page *p = sh->dev[i].orig_page;
2714
2715 sh->dev[i].orig_page = sh->dev[i].page;
86aa1397
SL
2716 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2717
d7bd398e
SL
2718 if (!using_disk_info_extra_page)
2719 put_page(p);
1e6d690b 2720 }
d7bd398e
SL
2721
2722 if (using_disk_info_extra_page) {
2723 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2724 md_wakeup_thread(conf->mddev->thread);
2725 }
2726}
2727
2728void r5c_use_extra_page(struct stripe_head *sh)
2729{
2730 struct r5conf *conf = sh->raid_conf;
2731 int i;
2732 struct r5dev *dev;
2733
2734 for (i = sh->disks; i--; ) {
2735 dev = &sh->dev[i];
2736 if (dev->orig_page != dev->page)
2737 put_page(dev->orig_page);
2738 dev->orig_page = conf->disks[i].extra_page;
2739 }
2ded3703
SL
2740}
2741
2742/*
2743 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2744 * stripe is committed to RAID disks.
2745 */
2746void r5c_finish_stripe_write_out(struct r5conf *conf,
2747 struct stripe_head *sh,
2748 struct stripe_head_state *s)
2749{
03b047f4 2750 struct r5l_log *log = conf->log;
1e6d690b
SL
2751 int i;
2752 int do_wakeup = 0;
03b047f4
SL
2753 sector_t tree_index;
2754 void **pslot;
2755 uintptr_t refcount;
1e6d690b 2756
03b047f4 2757 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2ded3703
SL
2758 return;
2759
2760 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2761 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2762
03b047f4 2763 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2ded3703 2764 return;
1e6d690b
SL
2765
2766 for (i = sh->disks; i--; ) {
2767 clear_bit(R5_InJournal, &sh->dev[i].flags);
2768 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2769 do_wakeup = 1;
2770 }
2771
2772 /*
2773 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2774 * We updated R5_InJournal, so we also update s->injournal.
2775 */
2776 s->injournal = 0;
2777
2778 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2779 if (atomic_dec_and_test(&conf->pending_full_writes))
2780 md_wakeup_thread(conf->mddev->thread);
2781
2782 if (do_wakeup)
2783 wake_up(&conf->wait_for_overlap);
a39f7afd 2784
03b047f4 2785 spin_lock_irq(&log->stripe_in_journal_lock);
a39f7afd 2786 list_del_init(&sh->r5c);
03b047f4 2787 spin_unlock_irq(&log->stripe_in_journal_lock);
a39f7afd 2788 sh->log_start = MaxSector;
03b047f4
SL
2789
2790 atomic_dec(&log->stripe_in_journal_count);
2791 r5c_update_log_state(log);
2792
2793 /* stop counting this stripe in big_stripe_tree */
2794 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2795 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2796 tree_index = r5c_tree_index(conf, sh->sector);
2797 spin_lock(&log->tree_lock);
2798 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2799 tree_index);
2800 BUG_ON(pslot == NULL);
2801 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2802 pslot, &log->tree_lock) >>
2803 R5C_RADIX_COUNT_SHIFT;
2804 if (refcount == 1)
2805 radix_tree_delete(&log->big_stripe_tree, tree_index);
2806 else
2807 radix_tree_replace_slot(
2808 &log->big_stripe_tree, pslot,
2809 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2810 spin_unlock(&log->tree_lock);
2811 }
2812
2813 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2814 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
e33fbb9c 2815 atomic_dec(&conf->r5c_flushing_partial_stripes);
03b047f4
SL
2816 atomic_dec(&conf->r5c_cached_partial_stripes);
2817 }
2818
2819 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2820 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
e33fbb9c 2821 atomic_dec(&conf->r5c_flushing_full_stripes);
03b047f4
SL
2822 atomic_dec(&conf->r5c_cached_full_stripes);
2823 }
ea17481f
SL
2824
2825 r5l_append_flush_payload(log, sh->sector);
1e6d690b
SL
2826}
2827
ff875738 2828int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
1e6d690b 2829{
a39f7afd 2830 struct r5conf *conf = sh->raid_conf;
1e6d690b
SL
2831 int pages = 0;
2832 int reserve;
2833 int i;
2834 int ret = 0;
2835
2836 BUG_ON(!log);
2837
2838 for (i = 0; i < sh->disks; i++) {
2839 void *addr;
2840
2841 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2842 continue;
2843 addr = kmap_atomic(sh->dev[i].page);
2844 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2845 addr, PAGE_SIZE);
2846 kunmap_atomic(addr);
2847 pages++;
2848 }
2849 WARN_ON(pages == 0);
2850
2851 /*
2852 * The stripe must enter state machine again to call endio, so
2853 * don't delay.
2854 */
2855 clear_bit(STRIPE_DELAYED, &sh->state);
2856 atomic_inc(&sh->count);
2857
2858 mutex_lock(&log->io_mutex);
2859 /* meta + data */
2860 reserve = (1 + pages) << (PAGE_SHIFT - 9);
1e6d690b 2861
a39f7afd
SL
2862 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2863 sh->log_start == MaxSector)
2864 r5l_add_no_space_stripe(log, sh);
2865 else if (!r5l_has_free_space(log, reserve)) {
2866 if (sh->log_start == log->last_checkpoint)
2867 BUG();
2868 else
2869 r5l_add_no_space_stripe(log, sh);
1e6d690b
SL
2870 } else {
2871 ret = r5l_log_stripe(log, sh, pages, 0);
2872 if (ret) {
2873 spin_lock_irq(&log->io_list_lock);
2874 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2875 spin_unlock_irq(&log->io_list_lock);
2876 }
2877 }
2878
2879 mutex_unlock(&log->io_mutex);
2880 return 0;
f6bed0ef
SL
2881}
2882
03b047f4
SL
2883/* check whether this big stripe is in write back cache. */
2884bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2885{
2886 struct r5l_log *log = conf->log;
2887 sector_t tree_index;
2888 void *slot;
2889
2890 if (!log)
2891 return false;
2892
2893 WARN_ON_ONCE(!rcu_read_lock_held());
2894 tree_index = r5c_tree_index(conf, sect);
2895 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2896 return slot != NULL;
2897}
2898
f6bed0ef
SL
2899static int r5l_load_log(struct r5l_log *log)
2900{
2901 struct md_rdev *rdev = log->rdev;
2902 struct page *page;
2903 struct r5l_meta_block *mb;
2904 sector_t cp = log->rdev->journal_tail;
2905 u32 stored_crc, expected_crc;
2906 bool create_super = false;
d30dfeb9 2907 int ret = 0;
f6bed0ef
SL
2908
2909 /* Make sure it's valid */
2910 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2911 cp = 0;
2912 page = alloc_page(GFP_KERNEL);
2913 if (!page)
2914 return -ENOMEM;
2915
796a5cf0 2916 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
f6bed0ef
SL
2917 ret = -EIO;
2918 goto ioerr;
2919 }
2920 mb = page_address(page);
2921
2922 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2923 mb->version != R5LOG_VERSION) {
2924 create_super = true;
2925 goto create;
2926 }
2927 stored_crc = le32_to_cpu(mb->checksum);
2928 mb->checksum = 0;
5cb2fbd6 2929 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
2930 if (stored_crc != expected_crc) {
2931 create_super = true;
2932 goto create;
2933 }
2934 if (le64_to_cpu(mb->position) != cp) {
2935 create_super = true;
2936 goto create;
2937 }
2938create:
2939 if (create_super) {
2940 log->last_cp_seq = prandom_u32();
2941 cp = 0;
56056c2e 2942 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
f6bed0ef
SL
2943 /*
2944 * Make sure super points to correct address. Log might have
2945 * data very soon. If super hasn't correct log tail address,
2946 * recovery can't find the log
2947 */
2948 r5l_write_super(log, cp);
2949 } else
2950 log->last_cp_seq = le64_to_cpu(mb->seq);
2951
2952 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
2953 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2954 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2955 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
2956 log->last_checkpoint = cp;
2957
2958 __free_page(page);
2959
d30dfeb9
J
2960 if (create_super) {
2961 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2962 log->seq = log->last_cp_seq + 1;
2963 log->next_checkpoint = cp;
2964 } else
2965 ret = r5l_recovery_log(log);
2966
3d7e7e1d
ZL
2967 r5c_update_log_state(log);
2968 return ret;
f6bed0ef
SL
2969ioerr:
2970 __free_page(page);
2971 return ret;
2972}
2973
2e38a37f
SL
2974void r5c_update_on_rdev_error(struct mddev *mddev)
2975{
2976 struct r5conf *conf = mddev->private;
2977 struct r5l_log *log = conf->log;
2978
2979 if (!log)
2980 return;
2981
2982 if (raid5_calc_degraded(conf) > 0 &&
2983 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2984 schedule_work(&log->disable_writeback_work);
2985}
2986
f6bed0ef
SL
2987int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2988{
c888a8f9 2989 struct request_queue *q = bdev_get_queue(rdev->bdev);
f6bed0ef 2990 struct r5l_log *log;
ff875738
AP
2991 char b[BDEVNAME_SIZE];
2992
2993 pr_debug("md/raid:%s: using device %s as journal\n",
2994 mdname(conf->mddev), bdevname(rdev->bdev, b));
f6bed0ef
SL
2995
2996 if (PAGE_SIZE != 4096)
2997 return -EINVAL;
c757ec95
SL
2998
2999 /*
3000 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3001 * raid_disks r5l_payload_data_parity.
3002 *
3003 * Write journal and cache does not work for very big array
3004 * (raid_disks > 203)
3005 */
3006 if (sizeof(struct r5l_meta_block) +
3007 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3008 conf->raid_disks) > PAGE_SIZE) {
3009 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3010 mdname(conf->mddev), conf->raid_disks);
3011 return -EINVAL;
3012 }
3013
f6bed0ef
SL
3014 log = kzalloc(sizeof(*log), GFP_KERNEL);
3015 if (!log)
3016 return -ENOMEM;
3017 log->rdev = rdev;
3018
c888a8f9 3019 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
56fef7c6 3020
5cb2fbd6
SL
3021 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3022 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
3023
3024 mutex_init(&log->io_mutex);
3025
3026 spin_lock_init(&log->io_list_lock);
3027 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 3028 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 3029 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 3030 INIT_LIST_HEAD(&log->finished_ios);
3a83f467 3031 bio_init(&log->flush_bio, NULL, 0);
f6bed0ef
SL
3032
3033 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3034 if (!log->io_kc)
3035 goto io_kc;
3036
5036c390
CH
3037 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3038 if (!log->io_pool)
3039 goto io_pool;
3040
c38d29b3
CH
3041 log->bs = bioset_create(R5L_POOL_SIZE, 0);
3042 if (!log->bs)
3043 goto io_bs;
3044
e8deb638
CH
3045 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3046 if (!log->meta_pool)
3047 goto out_mempool;
3048
03b047f4
SL
3049 spin_lock_init(&log->tree_lock);
3050 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3051
0576b1c6
SL
3052 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3053 log->rdev->mddev, "reclaim");
3054 if (!log->reclaim_thread)
3055 goto reclaim_thread;
a39f7afd
SL
3056 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3057
0fd22b45 3058 init_waitqueue_head(&log->iounit_wait);
0576b1c6 3059
5036c390
CH
3060 INIT_LIST_HEAD(&log->no_mem_stripes);
3061
f6bed0ef
SL
3062 INIT_LIST_HEAD(&log->no_space_stripes);
3063 spin_lock_init(&log->no_space_stripes_lock);
3064
3bddb7f8 3065 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2e38a37f 3066 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3bddb7f8 3067
2ded3703 3068 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
a39f7afd
SL
3069 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3070 spin_lock_init(&log->stripe_in_journal_lock);
3071 atomic_set(&log->stripe_in_journal_count, 0);
2ded3703 3072
d2250f10
SL
3073 rcu_assign_pointer(conf->log, log);
3074
f6bed0ef
SL
3075 if (r5l_load_log(log))
3076 goto error;
3077
a62ab49e 3078 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
f6bed0ef 3079 return 0;
e8deb638 3080
f6bed0ef 3081error:
d2250f10 3082 rcu_assign_pointer(conf->log, NULL);
0576b1c6
SL
3083 md_unregister_thread(&log->reclaim_thread);
3084reclaim_thread:
e8deb638
CH
3085 mempool_destroy(log->meta_pool);
3086out_mempool:
c38d29b3
CH
3087 bioset_free(log->bs);
3088io_bs:
5036c390
CH
3089 mempool_destroy(log->io_pool);
3090io_pool:
f6bed0ef
SL
3091 kmem_cache_destroy(log->io_kc);
3092io_kc:
3093 kfree(log);
3094 return -EINVAL;
3095}
3096
ff875738 3097void r5l_exit_log(struct r5conf *conf)
f6bed0ef 3098{
ff875738
AP
3099 struct r5l_log *log = conf->log;
3100
3101 conf->log = NULL;
3102 synchronize_rcu();
3103
2e38a37f 3104 flush_work(&log->disable_writeback_work);
0576b1c6 3105 md_unregister_thread(&log->reclaim_thread);
e8deb638 3106 mempool_destroy(log->meta_pool);
c38d29b3 3107 bioset_free(log->bs);
5036c390 3108 mempool_destroy(log->io_pool);
f6bed0ef
SL
3109 kmem_cache_destroy(log->io_kc);
3110 kfree(log);
3111}