]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/md/raid5-cache.c
md/raid5-cache: do not need to set STRIPE_PREREAD_ACTIVE repeatedly
[mirror_ubuntu-bionic-kernel.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
b4c625c6 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
f6bed0ef
SL
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/wait.h>
17#include <linux/blkdev.h>
18#include <linux/slab.h>
19#include <linux/raid/md_p.h>
5cb2fbd6 20#include <linux/crc32c.h>
f6bed0ef 21#include <linux/random.h>
ce1ccd07 22#include <linux/kthread.h>
f6bed0ef
SL
23#include "md.h"
24#include "raid5.h"
1e6d690b 25#include "bitmap.h"
f6bed0ef
SL
26
27/*
28 * metadata/data stored in disk with 4k size unit (a block) regardless
29 * underneath hardware sector size. only works with PAGE_SIZE == 4096
30 */
31#define BLOCK_SECTORS (8)
32
0576b1c6 33/*
a39f7afd
SL
34 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
35 *
36 * In write through mode, the reclaim runs every log->max_free_space.
37 * This can prevent the recovery scans for too long
0576b1c6
SL
38 */
39#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
41
a39f7afd
SL
42/* wake up reclaim thread periodically */
43#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44/* start flush with these full stripes */
45#define R5C_FULL_STRIPE_FLUSH_BATCH 256
46/* reclaim stripes in groups */
47#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
48
c38d29b3
CH
49/*
50 * We only need 2 bios per I/O unit to make progress, but ensure we
51 * have a few more available to not get too tight.
52 */
53#define R5L_POOL_SIZE 4
54
2ded3703
SL
55/*
56 * r5c journal modes of the array: write-back or write-through.
57 * write-through mode has identical behavior as existing log only
58 * implementation.
59 */
60enum r5c_journal_mode {
61 R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
62 R5C_JOURNAL_MODE_WRITE_BACK = 1,
63};
64
2c7da14b
SL
65static char *r5c_journal_mode_str[] = {"write-through",
66 "write-back"};
2ded3703
SL
67/*
68 * raid5 cache state machine
69 *
9b69173e 70 * With the RAID cache, each stripe works in two phases:
2ded3703
SL
71 * - caching phase
72 * - writing-out phase
73 *
74 * These two phases are controlled by bit STRIPE_R5C_CACHING:
75 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
77 *
78 * When there is no journal, or the journal is in write-through mode,
79 * the stripe is always in writing-out phase.
80 *
81 * For write-back journal, the stripe is sent to caching phase on write
82 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83 * the write-out phase by clearing STRIPE_R5C_CACHING.
84 *
85 * Stripes in caching phase do not write the raid disks. Instead, all
86 * writes are committed from the log device. Therefore, a stripe in
87 * caching phase handles writes as:
88 * - write to log device
89 * - return IO
90 *
91 * Stripes in writing-out phase handle writes as:
92 * - calculate parity
93 * - write pending data and parity to journal
94 * - write data and parity to raid disks
95 * - return IO for pending writes
96 */
97
f6bed0ef
SL
98struct r5l_log {
99 struct md_rdev *rdev;
100
101 u32 uuid_checksum;
102
103 sector_t device_size; /* log device size, round to
104 * BLOCK_SECTORS */
0576b1c6
SL
105 sector_t max_free_space; /* reclaim run if free space is at
106 * this size */
f6bed0ef
SL
107
108 sector_t last_checkpoint; /* log tail. where recovery scan
109 * starts from */
110 u64 last_cp_seq; /* log tail sequence */
111
112 sector_t log_start; /* log head. where new data appends */
113 u64 seq; /* log head sequence */
114
17036461 115 sector_t next_checkpoint;
17036461 116
f6bed0ef
SL
117 struct mutex io_mutex;
118 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
119
120 spinlock_t io_list_lock;
121 struct list_head running_ios; /* io_units which are still running,
122 * and have not yet been completely
123 * written to the log */
124 struct list_head io_end_ios; /* io_units which have been completely
125 * written to the log but not yet written
126 * to the RAID */
a8c34f91
SL
127 struct list_head flushing_ios; /* io_units which are waiting for log
128 * cache flush */
04732f74 129 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 130 struct bio flush_bio;
f6bed0ef 131
5036c390
CH
132 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
133
f6bed0ef 134 struct kmem_cache *io_kc;
5036c390 135 mempool_t *io_pool;
c38d29b3 136 struct bio_set *bs;
e8deb638 137 mempool_t *meta_pool;
f6bed0ef 138
0576b1c6
SL
139 struct md_thread *reclaim_thread;
140 unsigned long reclaim_target; /* number of space that need to be
141 * reclaimed. if it's 0, reclaim spaces
142 * used by io_units which are in
143 * IO_UNIT_STRIPE_END state (eg, reclaim
144 * dones't wait for specific io_unit
145 * switching to IO_UNIT_STRIPE_END
146 * state) */
0fd22b45 147 wait_queue_head_t iounit_wait;
0576b1c6 148
f6bed0ef
SL
149 struct list_head no_space_stripes; /* pending stripes, log has no space */
150 spinlock_t no_space_stripes_lock;
56fef7c6
CH
151
152 bool need_cache_flush;
2ded3703
SL
153
154 /* for r5c_cache */
155 enum r5c_journal_mode r5c_journal_mode;
a39f7afd
SL
156
157 /* all stripes in r5cache, in the order of seq at sh->log_start */
158 struct list_head stripe_in_journal_list;
159
160 spinlock_t stripe_in_journal_lock;
161 atomic_t stripe_in_journal_count;
3bddb7f8
SL
162
163 /* to submit async io_units, to fulfill ordering of flush */
164 struct work_struct deferred_io_work;
f6bed0ef
SL
165};
166
167/*
168 * an IO range starts from a meta data block and end at the next meta data
169 * block. The io unit's the meta data block tracks data/parity followed it. io
170 * unit is written to log disk with normal write, as we always flush log disk
171 * first and then start move data to raid disks, there is no requirement to
172 * write io unit with FLUSH/FUA
173 */
174struct r5l_io_unit {
175 struct r5l_log *log;
176
177 struct page *meta_page; /* store meta block */
178 int meta_offset; /* current offset in meta_page */
179
f6bed0ef
SL
180 struct bio *current_bio;/* current_bio accepting new data */
181
182 atomic_t pending_stripe;/* how many stripes not flushed to raid */
183 u64 seq; /* seq number of the metablock */
184 sector_t log_start; /* where the io_unit starts */
185 sector_t log_end; /* where the io_unit ends */
186 struct list_head log_sibling; /* log->running_ios */
187 struct list_head stripe_list; /* stripes added to the io_unit */
188
189 int state;
6143e2ce 190 bool need_split_bio;
3bddb7f8
SL
191 struct bio *split_bio;
192
193 unsigned int has_flush:1; /* include flush request */
194 unsigned int has_fua:1; /* include fua request */
195 unsigned int has_null_flush:1; /* include empty flush request */
196 /*
197 * io isn't sent yet, flush/fua request can only be submitted till it's
198 * the first IO in running_ios list
199 */
200 unsigned int io_deferred:1;
201
202 struct bio_list flush_barriers; /* size == 0 flush bios */
f6bed0ef
SL
203};
204
205/* r5l_io_unit state */
206enum r5l_io_unit_state {
207 IO_UNIT_RUNNING = 0, /* accepting new IO */
208 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
209 * don't accepting new bio */
210 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 211 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
212};
213
2ded3703
SL
214bool r5c_is_writeback(struct r5l_log *log)
215{
216 return (log != NULL &&
217 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
218}
219
f6bed0ef
SL
220static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
221{
222 start += inc;
223 if (start >= log->device_size)
224 start = start - log->device_size;
225 return start;
226}
227
228static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
229 sector_t end)
230{
231 if (end >= start)
232 return end - start;
233 else
234 return end + log->device_size - start;
235}
236
237static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
238{
239 sector_t used_size;
240
241 used_size = r5l_ring_distance(log, log->last_checkpoint,
242 log->log_start);
243
244 return log->device_size > used_size + size;
245}
246
f6bed0ef
SL
247static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
248 enum r5l_io_unit_state state)
249{
f6bed0ef
SL
250 if (WARN_ON(io->state >= state))
251 return;
252 io->state = state;
f6bed0ef
SL
253}
254
1e6d690b
SL
255static void
256r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
257 struct bio_list *return_bi)
258{
259 struct bio *wbi, *wbi2;
260
261 wbi = dev->written;
262 dev->written = NULL;
263 while (wbi && wbi->bi_iter.bi_sector <
264 dev->sector + STRIPE_SECTORS) {
265 wbi2 = r5_next_bio(wbi, dev->sector);
266 if (!raid5_dec_bi_active_stripes(wbi)) {
267 md_write_end(conf->mddev);
268 bio_list_add(return_bi, wbi);
269 }
270 wbi = wbi2;
271 }
272}
273
274void r5c_handle_cached_data_endio(struct r5conf *conf,
275 struct stripe_head *sh, int disks, struct bio_list *return_bi)
276{
277 int i;
278
279 for (i = sh->disks; i--; ) {
280 if (sh->dev[i].written) {
281 set_bit(R5_UPTODATE, &sh->dev[i].flags);
282 r5c_return_dev_pending_writes(conf, &sh->dev[i],
283 return_bi);
284 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
285 STRIPE_SECTORS,
286 !test_bit(STRIPE_DEGRADED, &sh->state),
287 0);
288 }
289 }
290}
291
a39f7afd
SL
292/* Check whether we should flush some stripes to free up stripe cache */
293void r5c_check_stripe_cache_usage(struct r5conf *conf)
294{
295 int total_cached;
296
297 if (!r5c_is_writeback(conf->log))
298 return;
299
300 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
301 atomic_read(&conf->r5c_cached_full_stripes);
302
303 /*
304 * The following condition is true for either of the following:
305 * - stripe cache pressure high:
306 * total_cached > 3/4 min_nr_stripes ||
307 * empty_inactive_list_nr > 0
308 * - stripe cache pressure moderate:
309 * total_cached > 1/2 min_nr_stripes
310 */
311 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
312 atomic_read(&conf->empty_inactive_list_nr) > 0)
313 r5l_wake_reclaim(conf->log, 0);
314}
315
316/*
317 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
318 * stripes in the cache
319 */
320void r5c_check_cached_full_stripe(struct r5conf *conf)
321{
322 if (!r5c_is_writeback(conf->log))
323 return;
324
325 /*
326 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
327 * or a full stripe (chunk size / 4k stripes).
328 */
329 if (atomic_read(&conf->r5c_cached_full_stripes) >=
330 min(R5C_FULL_STRIPE_FLUSH_BATCH,
331 conf->chunk_sectors >> STRIPE_SHIFT))
332 r5l_wake_reclaim(conf->log, 0);
333}
334
335/*
336 * Total log space (in sectors) needed to flush all data in cache
337 *
338 * Currently, writing-out phase automatically includes all pending writes
339 * to the same sector. So the reclaim of each stripe takes up to
340 * (conf->raid_disks + 1) pages of log space.
341 *
342 * To totally avoid deadlock due to log space, the code reserves
343 * (conf->raid_disks + 1) pages for each stripe in cache, which is not
344 * necessary in most cases.
345 *
346 * To improve this, we will need writing-out phase to be able to NOT include
347 * pending writes, which will reduce the requirement to
348 * (conf->max_degraded + 1) pages per stripe in cache.
349 */
350static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
351{
352 struct r5l_log *log = conf->log;
353
354 if (!r5c_is_writeback(log))
355 return 0;
356
357 return BLOCK_SECTORS * (conf->raid_disks + 1) *
358 atomic_read(&log->stripe_in_journal_count);
359}
360
361/*
362 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
363 *
364 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
365 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
366 * device is less than 2x of reclaim_required_space.
367 */
368static inline void r5c_update_log_state(struct r5l_log *log)
369{
370 struct r5conf *conf = log->rdev->mddev->private;
371 sector_t free_space;
372 sector_t reclaim_space;
373
374 if (!r5c_is_writeback(log))
375 return;
376
377 free_space = r5l_ring_distance(log, log->log_start,
378 log->last_checkpoint);
379 reclaim_space = r5c_log_required_to_flush_cache(conf);
380 if (free_space < 2 * reclaim_space)
381 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
382 else
383 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
384 if (free_space < 3 * reclaim_space)
385 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
386 else
387 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
388}
389
2ded3703
SL
390/*
391 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
392 * This function should only be called in write-back mode.
393 */
a39f7afd 394void r5c_make_stripe_write_out(struct stripe_head *sh)
2ded3703
SL
395{
396 struct r5conf *conf = sh->raid_conf;
397 struct r5l_log *log = conf->log;
398
399 BUG_ON(!r5c_is_writeback(log));
400
401 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
402 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1e6d690b
SL
403
404 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
405 atomic_inc(&conf->preread_active_stripes);
406
407 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
408 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
409 atomic_dec(&conf->r5c_cached_partial_stripes);
410 }
411
412 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
413 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
414 atomic_dec(&conf->r5c_cached_full_stripes);
415 }
416}
417
418static void r5c_handle_data_cached(struct stripe_head *sh)
419{
420 int i;
421
422 for (i = sh->disks; i--; )
423 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
424 set_bit(R5_InJournal, &sh->dev[i].flags);
425 clear_bit(R5_LOCKED, &sh->dev[i].flags);
426 }
427 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
428}
429
430/*
431 * this journal write must contain full parity,
432 * it may also contain some data pages
433 */
434static void r5c_handle_parity_cached(struct stripe_head *sh)
435{
436 int i;
437
438 for (i = sh->disks; i--; )
439 if (test_bit(R5_InJournal, &sh->dev[i].flags))
440 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2ded3703
SL
441}
442
443/*
444 * Setting proper flags after writing (or flushing) data and/or parity to the
445 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
446 */
447static void r5c_finish_cache_stripe(struct stripe_head *sh)
448{
449 struct r5l_log *log = sh->raid_conf->log;
450
451 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
452 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
453 /*
454 * Set R5_InJournal for parity dev[pd_idx]. This means
455 * all data AND parity in the journal. For RAID 6, it is
456 * NOT necessary to set the flag for dev[qd_idx], as the
457 * two parities are written out together.
458 */
459 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
1e6d690b
SL
460 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
461 r5c_handle_data_cached(sh);
462 } else {
463 r5c_handle_parity_cached(sh);
464 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
465 }
2ded3703
SL
466}
467
d8858f43
CH
468static void r5l_io_run_stripes(struct r5l_io_unit *io)
469{
470 struct stripe_head *sh, *next;
471
472 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
473 list_del_init(&sh->log_list);
2ded3703
SL
474
475 r5c_finish_cache_stripe(sh);
476
d8858f43
CH
477 set_bit(STRIPE_HANDLE, &sh->state);
478 raid5_release_stripe(sh);
479 }
480}
481
56fef7c6
CH
482static void r5l_log_run_stripes(struct r5l_log *log)
483{
484 struct r5l_io_unit *io, *next;
485
486 assert_spin_locked(&log->io_list_lock);
487
488 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
489 /* don't change list order */
490 if (io->state < IO_UNIT_IO_END)
491 break;
492
493 list_move_tail(&io->log_sibling, &log->finished_ios);
494 r5l_io_run_stripes(io);
495 }
496}
497
3848c0bc
CH
498static void r5l_move_to_end_ios(struct r5l_log *log)
499{
500 struct r5l_io_unit *io, *next;
501
502 assert_spin_locked(&log->io_list_lock);
503
504 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
505 /* don't change list order */
506 if (io->state < IO_UNIT_IO_END)
507 break;
508 list_move_tail(&io->log_sibling, &log->io_end_ios);
509 }
510}
511
3bddb7f8 512static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
f6bed0ef
SL
513static void r5l_log_endio(struct bio *bio)
514{
515 struct r5l_io_unit *io = bio->bi_private;
3bddb7f8 516 struct r5l_io_unit *io_deferred;
f6bed0ef 517 struct r5l_log *log = io->log;
509ffec7 518 unsigned long flags;
f6bed0ef 519
6e74a9cf
SL
520 if (bio->bi_error)
521 md_error(log->rdev->mddev, log->rdev);
522
f6bed0ef 523 bio_put(bio);
e8deb638 524 mempool_free(io->meta_page, log->meta_pool);
f6bed0ef 525
509ffec7
CH
526 spin_lock_irqsave(&log->io_list_lock, flags);
527 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
56fef7c6 528 if (log->need_cache_flush)
3848c0bc 529 r5l_move_to_end_ios(log);
56fef7c6
CH
530 else
531 r5l_log_run_stripes(log);
3bddb7f8
SL
532 if (!list_empty(&log->running_ios)) {
533 /*
534 * FLUSH/FUA io_unit is deferred because of ordering, now we
535 * can dispatch it
536 */
537 io_deferred = list_first_entry(&log->running_ios,
538 struct r5l_io_unit, log_sibling);
539 if (io_deferred->io_deferred)
540 schedule_work(&log->deferred_io_work);
541 }
542
509ffec7
CH
543 spin_unlock_irqrestore(&log->io_list_lock, flags);
544
56fef7c6
CH
545 if (log->need_cache_flush)
546 md_wakeup_thread(log->rdev->mddev->thread);
3bddb7f8
SL
547
548 if (io->has_null_flush) {
549 struct bio *bi;
550
551 WARN_ON(bio_list_empty(&io->flush_barriers));
552 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
553 bio_endio(bi);
554 atomic_dec(&io->pending_stripe);
555 }
556 if (atomic_read(&io->pending_stripe) == 0)
557 __r5l_stripe_write_finished(io);
558 }
559}
560
561static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
562{
563 unsigned long flags;
564
565 spin_lock_irqsave(&log->io_list_lock, flags);
566 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
567 spin_unlock_irqrestore(&log->io_list_lock, flags);
568
569 if (io->has_flush)
570 bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FLUSH);
571 if (io->has_fua)
572 bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FUA);
573 submit_bio(io->current_bio);
574
575 if (!io->split_bio)
576 return;
577
578 if (io->has_flush)
579 bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FLUSH);
580 if (io->has_fua)
581 bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FUA);
582 submit_bio(io->split_bio);
583}
584
585/* deferred io_unit will be dispatched here */
586static void r5l_submit_io_async(struct work_struct *work)
587{
588 struct r5l_log *log = container_of(work, struct r5l_log,
589 deferred_io_work);
590 struct r5l_io_unit *io = NULL;
591 unsigned long flags;
592
593 spin_lock_irqsave(&log->io_list_lock, flags);
594 if (!list_empty(&log->running_ios)) {
595 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
596 log_sibling);
597 if (!io->io_deferred)
598 io = NULL;
599 else
600 io->io_deferred = 0;
601 }
602 spin_unlock_irqrestore(&log->io_list_lock, flags);
603 if (io)
604 r5l_do_submit_io(log, io);
f6bed0ef
SL
605}
606
607static void r5l_submit_current_io(struct r5l_log *log)
608{
609 struct r5l_io_unit *io = log->current_io;
3bddb7f8 610 struct bio *bio;
f6bed0ef 611 struct r5l_meta_block *block;
509ffec7 612 unsigned long flags;
f6bed0ef 613 u32 crc;
3bddb7f8 614 bool do_submit = true;
f6bed0ef
SL
615
616 if (!io)
617 return;
618
619 block = page_address(io->meta_page);
620 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 621 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef 622 block->checksum = cpu_to_le32(crc);
3bddb7f8 623 bio = io->current_bio;
f6bed0ef
SL
624
625 log->current_io = NULL;
509ffec7 626 spin_lock_irqsave(&log->io_list_lock, flags);
3bddb7f8
SL
627 if (io->has_flush || io->has_fua) {
628 if (io != list_first_entry(&log->running_ios,
629 struct r5l_io_unit, log_sibling)) {
630 io->io_deferred = 1;
631 do_submit = false;
632 }
633 }
509ffec7 634 spin_unlock_irqrestore(&log->io_list_lock, flags);
3bddb7f8
SL
635 if (do_submit)
636 r5l_do_submit_io(log, io);
f6bed0ef
SL
637}
638
6143e2ce 639static struct bio *r5l_bio_alloc(struct r5l_log *log)
b349feb3 640{
c38d29b3 641 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
b349feb3 642
796a5cf0 643 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b349feb3 644 bio->bi_bdev = log->rdev->bdev;
1e932a37 645 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
b349feb3 646
b349feb3
CH
647 return bio;
648}
649
c1b99198
CH
650static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
651{
652 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
653
a39f7afd 654 r5c_update_log_state(log);
c1b99198
CH
655 /*
656 * If we filled up the log device start from the beginning again,
657 * which will require a new bio.
658 *
659 * Note: for this to work properly the log size needs to me a multiple
660 * of BLOCK_SECTORS.
661 */
662 if (log->log_start == 0)
6143e2ce 663 io->need_split_bio = true;
c1b99198
CH
664
665 io->log_end = log->log_start;
666}
667
f6bed0ef
SL
668static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
669{
670 struct r5l_io_unit *io;
671 struct r5l_meta_block *block;
f6bed0ef 672
5036c390
CH
673 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
674 if (!io)
675 return NULL;
676 memset(io, 0, sizeof(*io));
677
51039cd0 678 io->log = log;
51039cd0
CH
679 INIT_LIST_HEAD(&io->log_sibling);
680 INIT_LIST_HEAD(&io->stripe_list);
3bddb7f8 681 bio_list_init(&io->flush_barriers);
51039cd0 682 io->state = IO_UNIT_RUNNING;
f6bed0ef 683
e8deb638 684 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
f6bed0ef 685 block = page_address(io->meta_page);
e8deb638 686 clear_page(block);
f6bed0ef
SL
687 block->magic = cpu_to_le32(R5LOG_MAGIC);
688 block->version = R5LOG_VERSION;
689 block->seq = cpu_to_le64(log->seq);
690 block->position = cpu_to_le64(log->log_start);
691
692 io->log_start = log->log_start;
693 io->meta_offset = sizeof(struct r5l_meta_block);
2b8ef16e 694 io->seq = log->seq++;
f6bed0ef 695
6143e2ce
CH
696 io->current_bio = r5l_bio_alloc(log);
697 io->current_bio->bi_end_io = r5l_log_endio;
698 io->current_bio->bi_private = io;
b349feb3 699 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef 700
c1b99198 701 r5_reserve_log_entry(log, io);
f6bed0ef
SL
702
703 spin_lock_irq(&log->io_list_lock);
704 list_add_tail(&io->log_sibling, &log->running_ios);
705 spin_unlock_irq(&log->io_list_lock);
706
707 return io;
708}
709
710static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
711{
22581f58
CH
712 if (log->current_io &&
713 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 714 r5l_submit_current_io(log);
f6bed0ef 715
5036c390 716 if (!log->current_io) {
22581f58 717 log->current_io = r5l_new_meta(log);
5036c390
CH
718 if (!log->current_io)
719 return -ENOMEM;
720 }
721
f6bed0ef
SL
722 return 0;
723}
724
725static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
726 sector_t location,
727 u32 checksum1, u32 checksum2,
728 bool checksum2_valid)
729{
730 struct r5l_io_unit *io = log->current_io;
731 struct r5l_payload_data_parity *payload;
732
733 payload = page_address(io->meta_page) + io->meta_offset;
734 payload->header.type = cpu_to_le16(type);
735 payload->header.flags = cpu_to_le16(0);
736 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
737 (PAGE_SHIFT - 9));
738 payload->location = cpu_to_le64(location);
739 payload->checksum[0] = cpu_to_le32(checksum1);
740 if (checksum2_valid)
741 payload->checksum[1] = cpu_to_le32(checksum2);
742
743 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
744 sizeof(__le32) * (1 + !!checksum2_valid);
745}
746
747static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
748{
749 struct r5l_io_unit *io = log->current_io;
750
6143e2ce 751 if (io->need_split_bio) {
3bddb7f8
SL
752 BUG_ON(io->split_bio);
753 io->split_bio = io->current_bio;
6143e2ce 754 io->current_bio = r5l_bio_alloc(log);
3bddb7f8
SL
755 bio_chain(io->current_bio, io->split_bio);
756 io->need_split_bio = false;
f6bed0ef 757 }
f6bed0ef 758
6143e2ce
CH
759 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
760 BUG();
761
c1b99198 762 r5_reserve_log_entry(log, io);
f6bed0ef
SL
763}
764
5036c390 765static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
f6bed0ef
SL
766 int data_pages, int parity_pages)
767{
768 int i;
769 int meta_size;
5036c390 770 int ret;
f6bed0ef
SL
771 struct r5l_io_unit *io;
772
773 meta_size =
774 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
775 * data_pages) +
776 sizeof(struct r5l_payload_data_parity) +
777 sizeof(__le32) * parity_pages;
778
5036c390
CH
779 ret = r5l_get_meta(log, meta_size);
780 if (ret)
781 return ret;
782
f6bed0ef
SL
783 io = log->current_io;
784
3bddb7f8
SL
785 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
786 io->has_flush = 1;
787
f6bed0ef 788 for (i = 0; i < sh->disks; i++) {
1e6d690b
SL
789 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
790 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef
SL
791 continue;
792 if (i == sh->pd_idx || i == sh->qd_idx)
793 continue;
3bddb7f8
SL
794 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
795 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
796 io->has_fua = 1;
797 /*
798 * we need to flush journal to make sure recovery can
799 * reach the data with fua flag
800 */
801 io->has_flush = 1;
802 }
f6bed0ef
SL
803 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
804 raid5_compute_blocknr(sh, i, 0),
805 sh->dev[i].log_checksum, 0, false);
806 r5l_append_payload_page(log, sh->dev[i].page);
807 }
808
2ded3703 809 if (parity_pages == 2) {
f6bed0ef
SL
810 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
811 sh->sector, sh->dev[sh->pd_idx].log_checksum,
812 sh->dev[sh->qd_idx].log_checksum, true);
813 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
814 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
2ded3703 815 } else if (parity_pages == 1) {
f6bed0ef
SL
816 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
817 sh->sector, sh->dev[sh->pd_idx].log_checksum,
818 0, false);
819 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
2ded3703
SL
820 } else /* Just writing data, not parity, in caching phase */
821 BUG_ON(parity_pages != 0);
f6bed0ef
SL
822
823 list_add_tail(&sh->log_list, &io->stripe_list);
824 atomic_inc(&io->pending_stripe);
825 sh->log_io = io;
5036c390 826
a39f7afd
SL
827 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
828 return 0;
829
830 if (sh->log_start == MaxSector) {
831 BUG_ON(!list_empty(&sh->r5c));
832 sh->log_start = io->log_start;
833 spin_lock_irq(&log->stripe_in_journal_lock);
834 list_add_tail(&sh->r5c,
835 &log->stripe_in_journal_list);
836 spin_unlock_irq(&log->stripe_in_journal_lock);
837 atomic_inc(&log->stripe_in_journal_count);
838 }
5036c390 839 return 0;
f6bed0ef
SL
840}
841
a39f7afd
SL
842/* add stripe to no_space_stripes, and then wake up reclaim */
843static inline void r5l_add_no_space_stripe(struct r5l_log *log,
844 struct stripe_head *sh)
845{
846 spin_lock(&log->no_space_stripes_lock);
847 list_add_tail(&sh->log_list, &log->no_space_stripes);
848 spin_unlock(&log->no_space_stripes_lock);
849}
850
f6bed0ef
SL
851/*
852 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
853 * data from log to raid disks), so we shouldn't wait for reclaim here
854 */
855int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
856{
a39f7afd 857 struct r5conf *conf = sh->raid_conf;
f6bed0ef
SL
858 int write_disks = 0;
859 int data_pages, parity_pages;
f6bed0ef
SL
860 int reserve;
861 int i;
5036c390 862 int ret = 0;
a39f7afd 863 bool wake_reclaim = false;
f6bed0ef
SL
864
865 if (!log)
866 return -EAGAIN;
867 /* Don't support stripe batch */
868 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
869 test_bit(STRIPE_SYNCING, &sh->state)) {
870 /* the stripe is written to log, we start writing it to raid */
871 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
872 return -EAGAIN;
873 }
874
2ded3703
SL
875 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
876
f6bed0ef
SL
877 for (i = 0; i < sh->disks; i++) {
878 void *addr;
879
1e6d690b
SL
880 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
881 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef 882 continue;
1e6d690b 883
f6bed0ef
SL
884 write_disks++;
885 /* checksum is already calculated in last run */
886 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
887 continue;
888 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
889 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
890 addr, PAGE_SIZE);
f6bed0ef
SL
891 kunmap_atomic(addr);
892 }
893 parity_pages = 1 + !!(sh->qd_idx >= 0);
894 data_pages = write_disks - parity_pages;
895
f6bed0ef 896 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
897 /*
898 * The stripe must enter state machine again to finish the write, so
899 * don't delay.
900 */
901 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
902 atomic_inc(&sh->count);
903
904 mutex_lock(&log->io_mutex);
905 /* meta + data */
906 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
f6bed0ef 907
a39f7afd
SL
908 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
909 if (!r5l_has_free_space(log, reserve)) {
910 r5l_add_no_space_stripe(log, sh);
911 wake_reclaim = true;
912 } else {
913 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
914 if (ret) {
915 spin_lock_irq(&log->io_list_lock);
916 list_add_tail(&sh->log_list,
917 &log->no_mem_stripes);
918 spin_unlock_irq(&log->io_list_lock);
919 }
920 }
921 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
922 /*
923 * log space critical, do not process stripes that are
924 * not in cache yet (sh->log_start == MaxSector).
925 */
926 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
927 sh->log_start == MaxSector) {
928 r5l_add_no_space_stripe(log, sh);
929 wake_reclaim = true;
930 reserve = 0;
931 } else if (!r5l_has_free_space(log, reserve)) {
932 if (sh->log_start == log->last_checkpoint)
933 BUG();
934 else
935 r5l_add_no_space_stripe(log, sh);
936 } else {
937 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
938 if (ret) {
939 spin_lock_irq(&log->io_list_lock);
940 list_add_tail(&sh->log_list,
941 &log->no_mem_stripes);
942 spin_unlock_irq(&log->io_list_lock);
943 }
5036c390 944 }
f6bed0ef 945 }
f6bed0ef 946
5036c390 947 mutex_unlock(&log->io_mutex);
a39f7afd
SL
948 if (wake_reclaim)
949 r5l_wake_reclaim(log, reserve);
f6bed0ef
SL
950 return 0;
951}
952
953void r5l_write_stripe_run(struct r5l_log *log)
954{
955 if (!log)
956 return;
957 mutex_lock(&log->io_mutex);
958 r5l_submit_current_io(log);
959 mutex_unlock(&log->io_mutex);
960}
961
828cbe98
SL
962int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
963{
964 if (!log)
965 return -ENODEV;
3bddb7f8
SL
966
967 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
968 /*
969 * in write through (journal only)
970 * we flush log disk cache first, then write stripe data to
971 * raid disks. So if bio is finished, the log disk cache is
972 * flushed already. The recovery guarantees we can recovery
973 * the bio from log disk, so we don't need to flush again
974 */
975 if (bio->bi_iter.bi_size == 0) {
976 bio_endio(bio);
977 return 0;
978 }
979 bio->bi_opf &= ~REQ_PREFLUSH;
980 } else {
981 /* write back (with cache) */
982 if (bio->bi_iter.bi_size == 0) {
983 mutex_lock(&log->io_mutex);
984 r5l_get_meta(log, 0);
985 bio_list_add(&log->current_io->flush_barriers, bio);
986 log->current_io->has_flush = 1;
987 log->current_io->has_null_flush = 1;
988 atomic_inc(&log->current_io->pending_stripe);
989 r5l_submit_current_io(log);
990 mutex_unlock(&log->io_mutex);
991 return 0;
992 }
828cbe98 993 }
828cbe98
SL
994 return -EAGAIN;
995}
996
f6bed0ef
SL
997/* This will run after log space is reclaimed */
998static void r5l_run_no_space_stripes(struct r5l_log *log)
999{
1000 struct stripe_head *sh;
1001
1002 spin_lock(&log->no_space_stripes_lock);
1003 while (!list_empty(&log->no_space_stripes)) {
1004 sh = list_first_entry(&log->no_space_stripes,
1005 struct stripe_head, log_list);
1006 list_del_init(&sh->log_list);
1007 set_bit(STRIPE_HANDLE, &sh->state);
1008 raid5_release_stripe(sh);
1009 }
1010 spin_unlock(&log->no_space_stripes_lock);
1011}
1012
a39f7afd
SL
1013/*
1014 * calculate new last_checkpoint
1015 * for write through mode, returns log->next_checkpoint
1016 * for write back, returns log_start of first sh in stripe_in_journal_list
1017 */
1018static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1019{
1020 struct stripe_head *sh;
1021 struct r5l_log *log = conf->log;
1022 sector_t new_cp;
1023 unsigned long flags;
1024
1025 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1026 return log->next_checkpoint;
1027
1028 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1029 if (list_empty(&conf->log->stripe_in_journal_list)) {
1030 /* all stripes flushed */
d3014e21 1031 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
a39f7afd
SL
1032 return log->next_checkpoint;
1033 }
1034 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1035 struct stripe_head, r5c);
1036 new_cp = sh->log_start;
1037 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1038 return new_cp;
1039}
1040
17036461
CH
1041static sector_t r5l_reclaimable_space(struct r5l_log *log)
1042{
a39f7afd
SL
1043 struct r5conf *conf = log->rdev->mddev->private;
1044
17036461 1045 return r5l_ring_distance(log, log->last_checkpoint,
a39f7afd 1046 r5c_calculate_new_cp(conf));
17036461
CH
1047}
1048
5036c390
CH
1049static void r5l_run_no_mem_stripe(struct r5l_log *log)
1050{
1051 struct stripe_head *sh;
1052
1053 assert_spin_locked(&log->io_list_lock);
1054
1055 if (!list_empty(&log->no_mem_stripes)) {
1056 sh = list_first_entry(&log->no_mem_stripes,
1057 struct stripe_head, log_list);
1058 list_del_init(&sh->log_list);
1059 set_bit(STRIPE_HANDLE, &sh->state);
1060 raid5_release_stripe(sh);
1061 }
1062}
1063
04732f74 1064static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
1065{
1066 struct r5l_io_unit *io, *next;
1067 bool found = false;
1068
1069 assert_spin_locked(&log->io_list_lock);
1070
04732f74 1071 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
1072 /* don't change list order */
1073 if (io->state < IO_UNIT_STRIPE_END)
1074 break;
1075
1076 log->next_checkpoint = io->log_start;
17036461
CH
1077
1078 list_del(&io->log_sibling);
5036c390
CH
1079 mempool_free(io, log->io_pool);
1080 r5l_run_no_mem_stripe(log);
17036461
CH
1081
1082 found = true;
1083 }
1084
1085 return found;
1086}
1087
509ffec7
CH
1088static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1089{
1090 struct r5l_log *log = io->log;
a39f7afd 1091 struct r5conf *conf = log->rdev->mddev->private;
509ffec7
CH
1092 unsigned long flags;
1093
1094 spin_lock_irqsave(&log->io_list_lock, flags);
1095 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 1096
04732f74 1097 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
1098 spin_unlock_irqrestore(&log->io_list_lock, flags);
1099 return;
1100 }
509ffec7 1101
a39f7afd
SL
1102 if (r5l_reclaimable_space(log) > log->max_free_space ||
1103 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
509ffec7
CH
1104 r5l_wake_reclaim(log, 0);
1105
509ffec7
CH
1106 spin_unlock_irqrestore(&log->io_list_lock, flags);
1107 wake_up(&log->iounit_wait);
1108}
1109
0576b1c6
SL
1110void r5l_stripe_write_finished(struct stripe_head *sh)
1111{
1112 struct r5l_io_unit *io;
1113
0576b1c6 1114 io = sh->log_io;
0576b1c6
SL
1115 sh->log_io = NULL;
1116
509ffec7
CH
1117 if (io && atomic_dec_and_test(&io->pending_stripe))
1118 __r5l_stripe_write_finished(io);
0576b1c6
SL
1119}
1120
a8c34f91
SL
1121static void r5l_log_flush_endio(struct bio *bio)
1122{
1123 struct r5l_log *log = container_of(bio, struct r5l_log,
1124 flush_bio);
1125 unsigned long flags;
1126 struct r5l_io_unit *io;
a8c34f91 1127
6e74a9cf
SL
1128 if (bio->bi_error)
1129 md_error(log->rdev->mddev, log->rdev);
1130
a8c34f91 1131 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
1132 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1133 r5l_io_run_stripes(io);
04732f74 1134 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
1135 spin_unlock_irqrestore(&log->io_list_lock, flags);
1136}
1137
0576b1c6
SL
1138/*
1139 * Starting dispatch IO to raid.
1140 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1141 * broken meta in the middle of a log causes recovery can't find meta at the
1142 * head of log. If operations require meta at the head persistent in log, we
1143 * must make sure meta before it persistent in log too. A case is:
1144 *
1145 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1146 * data/parity must be persistent in log before we do the write to raid disks.
1147 *
1148 * The solution is we restrictly maintain io_unit list order. In this case, we
1149 * only write stripes of an io_unit to raid disks till the io_unit is the first
1150 * one whose data/parity is in log.
1151 */
1152void r5l_flush_stripe_to_raid(struct r5l_log *log)
1153{
a8c34f91 1154 bool do_flush;
56fef7c6
CH
1155
1156 if (!log || !log->need_cache_flush)
0576b1c6 1157 return;
0576b1c6
SL
1158
1159 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
1160 /* flush bio is running */
1161 if (!list_empty(&log->flushing_ios)) {
1162 spin_unlock_irq(&log->io_list_lock);
1163 return;
0576b1c6 1164 }
a8c34f91
SL
1165 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1166 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 1167 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
1168
1169 if (!do_flush)
1170 return;
1171 bio_reset(&log->flush_bio);
1172 log->flush_bio.bi_bdev = log->rdev->bdev;
1173 log->flush_bio.bi_end_io = r5l_log_flush_endio;
796a5cf0 1174 bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
4e49ea4a 1175 submit_bio(&log->flush_bio);
0576b1c6
SL
1176}
1177
0576b1c6 1178static void r5l_write_super(struct r5l_log *log, sector_t cp);
4b482044
SL
1179static void r5l_write_super_and_discard_space(struct r5l_log *log,
1180 sector_t end)
1181{
1182 struct block_device *bdev = log->rdev->bdev;
1183 struct mddev *mddev;
1184
1185 r5l_write_super(log, end);
1186
1187 if (!blk_queue_discard(bdev_get_queue(bdev)))
1188 return;
1189
1190 mddev = log->rdev->mddev;
1191 /*
8e018c21
SL
1192 * Discard could zero data, so before discard we must make sure
1193 * superblock is updated to new log tail. Updating superblock (either
1194 * directly call md_update_sb() or depend on md thread) must hold
1195 * reconfig mutex. On the other hand, raid5_quiesce is called with
1196 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1197 * for all IO finish, hence waitting for reclaim thread, while reclaim
1198 * thread is calling this function and waitting for reconfig mutex. So
1199 * there is a deadlock. We workaround this issue with a trylock.
1200 * FIXME: we could miss discard if we can't take reconfig mutex
4b482044 1201 */
8e018c21
SL
1202 set_mask_bits(&mddev->flags, 0,
1203 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1204 if (!mddev_trylock(mddev))
1205 return;
1206 md_update_sb(mddev, 1);
1207 mddev_unlock(mddev);
4b482044 1208
6e74a9cf 1209 /* discard IO error really doesn't matter, ignore it */
4b482044
SL
1210 if (log->last_checkpoint < end) {
1211 blkdev_issue_discard(bdev,
1212 log->last_checkpoint + log->rdev->data_offset,
1213 end - log->last_checkpoint, GFP_NOIO, 0);
1214 } else {
1215 blkdev_issue_discard(bdev,
1216 log->last_checkpoint + log->rdev->data_offset,
1217 log->device_size - log->last_checkpoint,
1218 GFP_NOIO, 0);
1219 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1220 GFP_NOIO, 0);
1221 }
1222}
1223
a39f7afd
SL
1224/*
1225 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1226 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1227 *
1228 * must hold conf->device_lock
1229 */
1230static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1231{
1232 BUG_ON(list_empty(&sh->lru));
1233 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1234 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1235
1236 /*
1237 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1238 * raid5_release_stripe() while holding conf->device_lock
1239 */
1240 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1241 assert_spin_locked(&conf->device_lock);
1242
1243 list_del_init(&sh->lru);
1244 atomic_inc(&sh->count);
1245
1246 set_bit(STRIPE_HANDLE, &sh->state);
1247 atomic_inc(&conf->active_stripes);
1248 r5c_make_stripe_write_out(sh);
1249
a39f7afd
SL
1250 raid5_release_stripe(sh);
1251}
1252
1253/*
1254 * if num == 0, flush all full stripes
1255 * if num > 0, flush all full stripes. If less than num full stripes are
1256 * flushed, flush some partial stripes until totally num stripes are
1257 * flushed or there is no more cached stripes.
1258 */
1259void r5c_flush_cache(struct r5conf *conf, int num)
1260{
1261 int count;
1262 struct stripe_head *sh, *next;
1263
1264 assert_spin_locked(&conf->device_lock);
1265 if (!conf->log)
1266 return;
1267
1268 count = 0;
1269 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1270 r5c_flush_stripe(conf, sh);
1271 count++;
1272 }
1273
1274 if (count >= num)
1275 return;
1276 list_for_each_entry_safe(sh, next,
1277 &conf->r5c_partial_stripe_list, lru) {
1278 r5c_flush_stripe(conf, sh);
1279 if (++count >= num)
1280 break;
1281 }
1282}
1283
1284static void r5c_do_reclaim(struct r5conf *conf)
1285{
1286 struct r5l_log *log = conf->log;
1287 struct stripe_head *sh;
1288 int count = 0;
1289 unsigned long flags;
1290 int total_cached;
1291 int stripes_to_flush;
1292
1293 if (!r5c_is_writeback(log))
1294 return;
1295
1296 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1297 atomic_read(&conf->r5c_cached_full_stripes);
1298
1299 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1300 atomic_read(&conf->empty_inactive_list_nr) > 0)
1301 /*
1302 * if stripe cache pressure high, flush all full stripes and
1303 * some partial stripes
1304 */
1305 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1306 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1307 atomic_read(&conf->r5c_cached_full_stripes) >
1308 R5C_FULL_STRIPE_FLUSH_BATCH)
1309 /*
1310 * if stripe cache pressure moderate, or if there is many full
1311 * stripes,flush all full stripes
1312 */
1313 stripes_to_flush = 0;
1314 else
1315 /* no need to flush */
1316 stripes_to_flush = -1;
1317
1318 if (stripes_to_flush >= 0) {
1319 spin_lock_irqsave(&conf->device_lock, flags);
1320 r5c_flush_cache(conf, stripes_to_flush);
1321 spin_unlock_irqrestore(&conf->device_lock, flags);
1322 }
1323
1324 /* if log space is tight, flush stripes on stripe_in_journal_list */
1325 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1326 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1327 spin_lock(&conf->device_lock);
1328 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1329 /*
1330 * stripes on stripe_in_journal_list could be in any
1331 * state of the stripe_cache state machine. In this
1332 * case, we only want to flush stripe on
1333 * r5c_cached_full/partial_stripes. The following
1334 * condition makes sure the stripe is on one of the
1335 * two lists.
1336 */
1337 if (!list_empty(&sh->lru) &&
1338 !test_bit(STRIPE_HANDLE, &sh->state) &&
1339 atomic_read(&sh->count) == 0) {
1340 r5c_flush_stripe(conf, sh);
1341 }
1342 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1343 break;
1344 }
1345 spin_unlock(&conf->device_lock);
1346 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1347 }
1348 md_wakeup_thread(conf->mddev->thread);
1349}
1350
0576b1c6
SL
1351static void r5l_do_reclaim(struct r5l_log *log)
1352{
a39f7afd 1353 struct r5conf *conf = log->rdev->mddev->private;
0576b1c6 1354 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
1355 sector_t reclaimable;
1356 sector_t next_checkpoint;
a39f7afd 1357 bool write_super;
0576b1c6
SL
1358
1359 spin_lock_irq(&log->io_list_lock);
a39f7afd
SL
1360 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1361 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
0576b1c6
SL
1362 /*
1363 * move proper io_unit to reclaim list. We should not change the order.
1364 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1365 * shouldn't reuse space of an unreclaimable io_unit
1366 */
1367 while (1) {
17036461
CH
1368 reclaimable = r5l_reclaimable_space(log);
1369 if (reclaimable >= reclaim_target ||
0576b1c6
SL
1370 (list_empty(&log->running_ios) &&
1371 list_empty(&log->io_end_ios) &&
a8c34f91 1372 list_empty(&log->flushing_ios) &&
04732f74 1373 list_empty(&log->finished_ios)))
0576b1c6
SL
1374 break;
1375
17036461
CH
1376 md_wakeup_thread(log->rdev->mddev->thread);
1377 wait_event_lock_irq(log->iounit_wait,
1378 r5l_reclaimable_space(log) > reclaimable,
1379 log->io_list_lock);
0576b1c6 1380 }
17036461 1381
a39f7afd 1382 next_checkpoint = r5c_calculate_new_cp(conf);
0576b1c6
SL
1383 spin_unlock_irq(&log->io_list_lock);
1384
17036461 1385 BUG_ON(reclaimable < 0);
a39f7afd
SL
1386
1387 if (reclaimable == 0 || !write_super)
0576b1c6
SL
1388 return;
1389
0576b1c6
SL
1390 /*
1391 * write_super will flush cache of each raid disk. We must write super
1392 * here, because the log area might be reused soon and we don't want to
1393 * confuse recovery
1394 */
4b482044 1395 r5l_write_super_and_discard_space(log, next_checkpoint);
0576b1c6
SL
1396
1397 mutex_lock(&log->io_mutex);
17036461 1398 log->last_checkpoint = next_checkpoint;
a39f7afd 1399 r5c_update_log_state(log);
0576b1c6 1400 mutex_unlock(&log->io_mutex);
0576b1c6 1401
17036461 1402 r5l_run_no_space_stripes(log);
0576b1c6
SL
1403}
1404
1405static void r5l_reclaim_thread(struct md_thread *thread)
1406{
1407 struct mddev *mddev = thread->mddev;
1408 struct r5conf *conf = mddev->private;
1409 struct r5l_log *log = conf->log;
1410
1411 if (!log)
1412 return;
a39f7afd 1413 r5c_do_reclaim(conf);
0576b1c6
SL
1414 r5l_do_reclaim(log);
1415}
1416
a39f7afd 1417void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
f6bed0ef 1418{
0576b1c6
SL
1419 unsigned long target;
1420 unsigned long new = (unsigned long)space; /* overflow in theory */
1421
a39f7afd
SL
1422 if (!log)
1423 return;
0576b1c6
SL
1424 do {
1425 target = log->reclaim_target;
1426 if (new < target)
1427 return;
1428 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1429 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
1430}
1431
e6c033f7
SL
1432void r5l_quiesce(struct r5l_log *log, int state)
1433{
4b482044 1434 struct mddev *mddev;
e6c033f7
SL
1435 if (!log || state == 2)
1436 return;
ce1ccd07
SL
1437 if (state == 0)
1438 kthread_unpark(log->reclaim_thread->tsk);
1439 else if (state == 1) {
4b482044
SL
1440 /* make sure r5l_write_super_and_discard_space exits */
1441 mddev = log->rdev->mddev;
1442 wake_up(&mddev->sb_wait);
ce1ccd07 1443 kthread_park(log->reclaim_thread->tsk);
a39f7afd 1444 r5l_wake_reclaim(log, MaxSector);
e6c033f7
SL
1445 r5l_do_reclaim(log);
1446 }
1447}
1448
6e74a9cf
SL
1449bool r5l_log_disk_error(struct r5conf *conf)
1450{
f6b6ec5c
SL
1451 struct r5l_log *log;
1452 bool ret;
7dde2ad3 1453 /* don't allow write if journal disk is missing */
f6b6ec5c
SL
1454 rcu_read_lock();
1455 log = rcu_dereference(conf->log);
1456
1457 if (!log)
1458 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1459 else
1460 ret = test_bit(Faulty, &log->rdev->flags);
1461 rcu_read_unlock();
1462 return ret;
6e74a9cf
SL
1463}
1464
355810d1
SL
1465struct r5l_recovery_ctx {
1466 struct page *meta_page; /* current meta */
1467 sector_t meta_total_blocks; /* total size of current meta and data */
1468 sector_t pos; /* recovery position */
1469 u64 seq; /* recovery position seq */
b4c625c6
SL
1470 int data_parity_stripes; /* number of data_parity stripes */
1471 int data_only_stripes; /* number of data_only stripes */
1472 struct list_head cached_list;
355810d1
SL
1473};
1474
9ed988f5
SL
1475static int r5l_recovery_read_meta_block(struct r5l_log *log,
1476 struct r5l_recovery_ctx *ctx)
355810d1
SL
1477{
1478 struct page *page = ctx->meta_page;
1479 struct r5l_meta_block *mb;
1480 u32 crc, stored_crc;
1481
796a5cf0
MC
1482 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1483 false))
355810d1
SL
1484 return -EIO;
1485
1486 mb = page_address(page);
1487 stored_crc = le32_to_cpu(mb->checksum);
1488 mb->checksum = 0;
1489
1490 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1491 le64_to_cpu(mb->seq) != ctx->seq ||
1492 mb->version != R5LOG_VERSION ||
1493 le64_to_cpu(mb->position) != ctx->pos)
1494 return -EINVAL;
1495
5cb2fbd6 1496 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
1497 if (stored_crc != crc)
1498 return -EINVAL;
1499
1500 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1501 return -EINVAL;
1502
1503 ctx->meta_total_blocks = BLOCK_SECTORS;
1504
1505 return 0;
1506}
1507
9ed988f5
SL
1508static void
1509r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1510 struct page *page,
1511 sector_t pos, u64 seq)
355810d1 1512{
355810d1
SL
1513 struct r5l_meta_block *mb;
1514 u32 crc;
1515
355810d1 1516 mb = page_address(page);
9ed988f5 1517 clear_page(mb);
355810d1
SL
1518 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1519 mb->version = R5LOG_VERSION;
1520 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1521 mb->seq = cpu_to_le64(seq);
1522 mb->position = cpu_to_le64(pos);
5cb2fbd6 1523 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1 1524 mb->checksum = cpu_to_le32(crc);
9ed988f5 1525}
355810d1 1526
9ed988f5
SL
1527static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1528 u64 seq)
1529{
1530 struct page *page;
1531
1532 page = alloc_page(GFP_KERNEL);
1533 if (!page)
1534 return -ENOMEM;
1535 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
796a5cf0
MC
1536 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1537 WRITE_FUA, false)) {
355810d1
SL
1538 __free_page(page);
1539 return -EIO;
1540 }
1541 __free_page(page);
1542 return 0;
1543}
1544
b4c625c6
SL
1545/*
1546 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1547 * to mark valid (potentially not flushed) data in the journal.
1548 *
1549 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1550 * so there should not be any mismatch here.
1551 */
1552static void r5l_recovery_load_data(struct r5l_log *log,
1553 struct stripe_head *sh,
1554 struct r5l_recovery_ctx *ctx,
1555 struct r5l_payload_data_parity *payload,
1556 sector_t log_offset)
1557{
1558 struct mddev *mddev = log->rdev->mddev;
1559 struct r5conf *conf = mddev->private;
1560 int dd_idx;
1561
1562 raid5_compute_sector(conf,
1563 le64_to_cpu(payload->location), 0,
1564 &dd_idx, sh);
1565 sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1566 sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1567 sh->dev[dd_idx].log_checksum =
1568 le32_to_cpu(payload->checksum[0]);
1569 ctx->meta_total_blocks += BLOCK_SECTORS;
1570
1571 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1572 set_bit(STRIPE_R5C_CACHING, &sh->state);
1573}
1574
1575static void r5l_recovery_load_parity(struct r5l_log *log,
1576 struct stripe_head *sh,
1577 struct r5l_recovery_ctx *ctx,
1578 struct r5l_payload_data_parity *payload,
1579 sector_t log_offset)
1580{
1581 struct mddev *mddev = log->rdev->mddev;
1582 struct r5conf *conf = mddev->private;
1583
1584 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1585 sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1586 sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1587 sh->dev[sh->pd_idx].log_checksum =
1588 le32_to_cpu(payload->checksum[0]);
1589 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1590
1591 if (sh->qd_idx >= 0) {
1592 sync_page_io(log->rdev,
1593 r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1594 PAGE_SIZE, sh->dev[sh->qd_idx].page,
1595 REQ_OP_READ, 0, false);
1596 sh->dev[sh->qd_idx].log_checksum =
1597 le32_to_cpu(payload->checksum[1]);
1598 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1599 }
1600 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1601}
1602
1603static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1604{
1605 int i;
1606
1607 sh->state = 0;
1608 sh->log_start = MaxSector;
1609 for (i = sh->disks; i--; )
1610 sh->dev[i].flags = 0;
1611}
1612
1613static void
1614r5l_recovery_replay_one_stripe(struct r5conf *conf,
1615 struct stripe_head *sh,
1616 struct r5l_recovery_ctx *ctx)
1617{
1618 struct md_rdev *rdev, *rrdev;
1619 int disk_index;
1620 int data_count = 0;
1621
1622 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1623 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1624 continue;
1625 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1626 continue;
1627 data_count++;
1628 }
1629
1630 /*
1631 * stripes that only have parity must have been flushed
1632 * before the crash that we are now recovering from, so
1633 * there is nothing more to recovery.
1634 */
1635 if (data_count == 0)
1636 goto out;
1637
1638 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1639 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1640 continue;
1641
1642 /* in case device is broken */
1643 rcu_read_lock();
1644 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1645 if (rdev) {
1646 atomic_inc(&rdev->nr_pending);
1647 rcu_read_unlock();
1648 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1649 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1650 false);
1651 rdev_dec_pending(rdev, rdev->mddev);
1652 rcu_read_lock();
1653 }
1654 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1655 if (rrdev) {
1656 atomic_inc(&rrdev->nr_pending);
1657 rcu_read_unlock();
1658 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1659 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1660 false);
1661 rdev_dec_pending(rrdev, rrdev->mddev);
1662 rcu_read_lock();
1663 }
1664 rcu_read_unlock();
1665 }
1666 ctx->data_parity_stripes++;
1667out:
1668 r5l_recovery_reset_stripe(sh);
1669}
1670
1671static struct stripe_head *
1672r5c_recovery_alloc_stripe(struct r5conf *conf,
b4c625c6
SL
1673 sector_t stripe_sect,
1674 sector_t log_start)
1675{
1676 struct stripe_head *sh;
1677
1678 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1679 if (!sh)
1680 return NULL; /* no more stripe available */
1681
1682 r5l_recovery_reset_stripe(sh);
1683 sh->log_start = log_start;
1684
1685 return sh;
1686}
1687
1688static struct stripe_head *
1689r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1690{
1691 struct stripe_head *sh;
1692
1693 list_for_each_entry(sh, list, lru)
1694 if (sh->sector == sect)
1695 return sh;
1696 return NULL;
1697}
1698
1699static void
1700r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1701 struct r5l_recovery_ctx *ctx)
1702{
1703 struct stripe_head *sh, *next;
1704
1705 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1706 r5l_recovery_reset_stripe(sh);
1707 list_del_init(&sh->lru);
1708 raid5_release_stripe(sh);
1709 }
1710}
1711
1712static void
1713r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1714 struct r5l_recovery_ctx *ctx)
1715{
1716 struct stripe_head *sh, *next;
1717
1718 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1719 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1720 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1721 list_del_init(&sh->lru);
1722 raid5_release_stripe(sh);
1723 }
1724}
1725
1726/* if matches return 0; otherwise return -EINVAL */
1727static int
1728r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1729 sector_t log_offset, __le32 log_checksum)
1730{
1731 void *addr;
1732 u32 checksum;
1733
1734 sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1735 page, REQ_OP_READ, 0, false);
1736 addr = kmap_atomic(page);
1737 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1738 kunmap_atomic(addr);
1739 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1740}
1741
1742/*
1743 * before loading data to stripe cache, we need verify checksum for all data,
1744 * if there is mismatch for any data page, we drop all data in the mata block
1745 */
1746static int
1747r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1748 struct r5l_recovery_ctx *ctx)
1749{
1750 struct mddev *mddev = log->rdev->mddev;
1751 struct r5conf *conf = mddev->private;
1752 struct r5l_meta_block *mb = page_address(ctx->meta_page);
1753 sector_t mb_offset = sizeof(struct r5l_meta_block);
1754 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1755 struct page *page;
1756 struct r5l_payload_data_parity *payload;
1757
1758 page = alloc_page(GFP_KERNEL);
1759 if (!page)
1760 return -ENOMEM;
1761
1762 while (mb_offset < le32_to_cpu(mb->meta_size)) {
1763 payload = (void *)mb + mb_offset;
1764
1765 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1766 if (r5l_recovery_verify_data_checksum(
1767 log, page, log_offset,
1768 payload->checksum[0]) < 0)
1769 goto mismatch;
1770 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1771 if (r5l_recovery_verify_data_checksum(
1772 log, page, log_offset,
1773 payload->checksum[0]) < 0)
1774 goto mismatch;
1775 if (conf->max_degraded == 2 && /* q for RAID 6 */
1776 r5l_recovery_verify_data_checksum(
1777 log, page,
1778 r5l_ring_add(log, log_offset,
1779 BLOCK_SECTORS),
1780 payload->checksum[1]) < 0)
1781 goto mismatch;
1782 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1783 goto mismatch;
1784
1785 log_offset = r5l_ring_add(log, log_offset,
1786 le32_to_cpu(payload->size));
1787
1788 mb_offset += sizeof(struct r5l_payload_data_parity) +
1789 sizeof(__le32) *
1790 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1791 }
1792
1793 put_page(page);
1794 return 0;
1795
1796mismatch:
1797 put_page(page);
1798 return -EINVAL;
1799}
1800
1801/*
1802 * Analyze all data/parity pages in one meta block
1803 * Returns:
1804 * 0 for success
1805 * -EINVAL for unknown playload type
1806 * -EAGAIN for checksum mismatch of data page
1807 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1808 */
1809static int
1810r5c_recovery_analyze_meta_block(struct r5l_log *log,
1811 struct r5l_recovery_ctx *ctx,
1812 struct list_head *cached_stripe_list)
1813{
1814 struct mddev *mddev = log->rdev->mddev;
1815 struct r5conf *conf = mddev->private;
1816 struct r5l_meta_block *mb;
1817 struct r5l_payload_data_parity *payload;
1818 int mb_offset;
1819 sector_t log_offset;
1820 sector_t stripe_sect;
1821 struct stripe_head *sh;
1822 int ret;
1823
1824 /*
1825 * for mismatch in data blocks, we will drop all data in this mb, but
1826 * we will still read next mb for other data with FLUSH flag, as
1827 * io_unit could finish out of order.
1828 */
1829 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1830 if (ret == -EINVAL)
1831 return -EAGAIN;
1832 else if (ret)
1833 return ret; /* -ENOMEM duo to alloc_page() failed */
1834
1835 mb = page_address(ctx->meta_page);
1836 mb_offset = sizeof(struct r5l_meta_block);
1837 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1838
1839 while (mb_offset < le32_to_cpu(mb->meta_size)) {
1840 int dd;
1841
1842 payload = (void *)mb + mb_offset;
1843 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1844 raid5_compute_sector(
1845 conf, le64_to_cpu(payload->location), 0, &dd,
1846 NULL)
1847 : le64_to_cpu(payload->location);
1848
1849 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1850 stripe_sect);
1851
1852 if (!sh) {
9b69173e 1853 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, ctx->pos);
b4c625c6
SL
1854 /*
1855 * cannot get stripe from raid5_get_active_stripe
1856 * try replay some stripes
1857 */
1858 if (!sh) {
1859 r5c_recovery_replay_stripes(
1860 cached_stripe_list, ctx);
1861 sh = r5c_recovery_alloc_stripe(
9b69173e 1862 conf, stripe_sect, ctx->pos);
b4c625c6
SL
1863 }
1864 if (!sh) {
1865 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1866 mdname(mddev),
1867 conf->min_nr_stripes * 2);
1868 raid5_set_cache_size(mddev,
1869 conf->min_nr_stripes * 2);
1870 sh = r5c_recovery_alloc_stripe(
9b69173e 1871 conf, stripe_sect, ctx->pos);
b4c625c6
SL
1872 }
1873 if (!sh) {
1874 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1875 mdname(mddev));
1876 return -ENOMEM;
1877 }
1878 list_add_tail(&sh->lru, cached_stripe_list);
1879 }
1880
1881 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
f7b7bee7
ZL
1882 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
1883 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
b4c625c6 1884 r5l_recovery_replay_one_stripe(conf, sh, ctx);
b4c625c6
SL
1885 sh->log_start = ctx->pos;
1886 list_move_tail(&sh->lru, cached_stripe_list);
1887 }
1888 r5l_recovery_load_data(log, sh, ctx, payload,
1889 log_offset);
1890 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1891 r5l_recovery_load_parity(log, sh, ctx, payload,
1892 log_offset);
1893 else
1894 return -EINVAL;
1895
1896 log_offset = r5l_ring_add(log, log_offset,
1897 le32_to_cpu(payload->size));
1898
1899 mb_offset += sizeof(struct r5l_payload_data_parity) +
1900 sizeof(__le32) *
1901 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1902 }
1903
1904 return 0;
1905}
1906
1907/*
1908 * Load the stripe into cache. The stripe will be written out later by
1909 * the stripe cache state machine.
1910 */
1911static void r5c_recovery_load_one_stripe(struct r5l_log *log,
1912 struct stripe_head *sh)
1913{
b4c625c6
SL
1914 struct r5dev *dev;
1915 int i;
1916
1917 for (i = sh->disks; i--; ) {
1918 dev = sh->dev + i;
1919 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
1920 set_bit(R5_InJournal, &dev->flags);
1921 set_bit(R5_UPTODATE, &dev->flags);
1922 }
1923 }
b4c625c6 1924 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
462eb7d8 1925 atomic_inc(&log->stripe_in_journal_count);
b4c625c6
SL
1926}
1927
1928/*
1929 * Scan through the log for all to-be-flushed data
1930 *
1931 * For stripes with data and parity, namely Data-Parity stripe
1932 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1933 *
1934 * For stripes with only data, namely Data-Only stripe
1935 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1936 *
1937 * For a stripe, if we see data after parity, we should discard all previous
1938 * data and parity for this stripe, as these data are already flushed to
1939 * the array.
1940 *
1941 * At the end of the scan, we return the new journal_tail, which points to
1942 * first data-only stripe on the journal device, or next invalid meta block.
1943 */
1944static int r5c_recovery_flush_log(struct r5l_log *log,
1945 struct r5l_recovery_ctx *ctx)
1946{
bc8f167f 1947 struct stripe_head *sh;
b4c625c6
SL
1948 int ret = 0;
1949
1950 /* scan through the log */
1951 while (1) {
1952 if (r5l_recovery_read_meta_block(log, ctx))
1953 break;
1954
1955 ret = r5c_recovery_analyze_meta_block(log, ctx,
1956 &ctx->cached_list);
1957 /*
1958 * -EAGAIN means mismatch in data block, in this case, we still
1959 * try scan the next metablock
1960 */
1961 if (ret && ret != -EAGAIN)
1962 break; /* ret == -EINVAL or -ENOMEM */
1963 ctx->seq++;
1964 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1965 }
1966
1967 if (ret == -ENOMEM) {
1968 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
1969 return ret;
1970 }
1971
1972 /* replay data-parity stripes */
1973 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
1974
1975 /* load data-only stripes to stripe cache */
bc8f167f 1976 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
1977 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1978 r5c_recovery_load_one_stripe(log, sh);
b4c625c6
SL
1979 ctx->data_only_stripes++;
1980 }
1981
1982 return 0;
1983}
1984
1985/*
1986 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1987 * log will start here. but we can't let superblock point to last valid
1988 * meta block. The log might looks like:
1989 * | meta 1| meta 2| meta 3|
1990 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1991 * superblock points to meta 1, we write a new valid meta 2n. if crash
1992 * happens again, new recovery will start from meta 1. Since meta 2n is
1993 * valid now, recovery will think meta 3 is valid, which is wrong.
1994 * The solution is we create a new meta in meta2 with its seq == meta
1995 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1996 * not think meta 3 is a valid meta, because its seq doesn't match
1997 */
1998
1999/*
2000 * Before recovery, the log looks like the following
2001 *
2002 * ---------------------------------------------
2003 * | valid log | invalid log |
2004 * ---------------------------------------------
2005 * ^
2006 * |- log->last_checkpoint
2007 * |- log->last_cp_seq
2008 *
2009 * Now we scan through the log until we see invalid entry
2010 *
2011 * ---------------------------------------------
2012 * | valid log | invalid log |
2013 * ---------------------------------------------
2014 * ^ ^
2015 * |- log->last_checkpoint |- ctx->pos
2016 * |- log->last_cp_seq |- ctx->seq
2017 *
2018 * From this point, we need to increase seq number by 10 to avoid
2019 * confusing next recovery.
2020 *
2021 * ---------------------------------------------
2022 * | valid log | invalid log |
2023 * ---------------------------------------------
2024 * ^ ^
2025 * |- log->last_checkpoint |- ctx->pos+1
2026 * |- log->last_cp_seq |- ctx->seq+11
2027 *
2028 * However, it is not safe to start the state machine yet, because data only
2029 * parities are not yet secured in RAID. To save these data only parities, we
2030 * rewrite them from seq+11.
2031 *
2032 * -----------------------------------------------------------------
2033 * | valid log | data only stripes | invalid log |
2034 * -----------------------------------------------------------------
2035 * ^ ^
2036 * |- log->last_checkpoint |- ctx->pos+n
2037 * |- log->last_cp_seq |- ctx->seq+10+n
2038 *
2039 * If failure happens again during this process, the recovery can safe start
2040 * again from log->last_checkpoint.
2041 *
2042 * Once data only stripes are rewritten to journal, we move log_tail
2043 *
2044 * -----------------------------------------------------------------
2045 * | old log | data only stripes | invalid log |
2046 * -----------------------------------------------------------------
2047 * ^ ^
2048 * |- log->last_checkpoint |- ctx->pos+n
2049 * |- log->last_cp_seq |- ctx->seq+10+n
2050 *
2051 * Then we can safely start the state machine. If failure happens from this
2052 * point on, the recovery will start from new log->last_checkpoint.
2053 */
2054static int
2055r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2056 struct r5l_recovery_ctx *ctx)
2057{
bc8f167f 2058 struct stripe_head *sh, *next;
b4c625c6
SL
2059 struct mddev *mddev = log->rdev->mddev;
2060 struct page *page;
2061
2062 page = alloc_page(GFP_KERNEL);
2063 if (!page) {
2064 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2065 mdname(mddev));
2066 return -ENOMEM;
2067 }
2068
2069 ctx->seq += 10;
bc8f167f 2070 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
b4c625c6
SL
2071 struct r5l_meta_block *mb;
2072 int i;
2073 int offset;
2074 sector_t write_pos;
2075
2076 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2077 r5l_recovery_create_empty_meta_block(log, page,
2078 ctx->pos, ctx->seq);
2079 mb = page_address(page);
2080 offset = le32_to_cpu(mb->meta_size);
fc833c2a 2081 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
b4c625c6
SL
2082
2083 for (i = sh->disks; i--; ) {
2084 struct r5dev *dev = &sh->dev[i];
2085 struct r5l_payload_data_parity *payload;
2086 void *addr;
2087
2088 if (test_bit(R5_InJournal, &dev->flags)) {
2089 payload = (void *)mb + offset;
2090 payload->header.type = cpu_to_le16(
2091 R5LOG_PAYLOAD_DATA);
2092 payload->size = BLOCK_SECTORS;
2093 payload->location = cpu_to_le64(
2094 raid5_compute_blocknr(sh, i, 0));
2095 addr = kmap_atomic(dev->page);
2096 payload->checksum[0] = cpu_to_le32(
2097 crc32c_le(log->uuid_checksum, addr,
2098 PAGE_SIZE));
2099 kunmap_atomic(addr);
2100 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2101 dev->page, REQ_OP_WRITE, 0, false);
2102 write_pos = r5l_ring_add(log, write_pos,
2103 BLOCK_SECTORS);
2104 offset += sizeof(__le32) +
2105 sizeof(struct r5l_payload_data_parity);
2106
2107 }
2108 }
2109 mb->meta_size = cpu_to_le32(offset);
2110 mb->checksum = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2111 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2112 REQ_OP_WRITE, WRITE_FUA, false);
2113 sh->log_start = ctx->pos;
2114 ctx->pos = write_pos;
2115 ctx->seq += 1;
bc8f167f
J
2116
2117 list_del_init(&sh->lru);
2118 raid5_release_stripe(sh);
b4c625c6
SL
2119 }
2120 __free_page(page);
2121 return 0;
2122}
2123
f6bed0ef
SL
2124static int r5l_recovery_log(struct r5l_log *log)
2125{
5aabf7c4 2126 struct mddev *mddev = log->rdev->mddev;
355810d1 2127 struct r5l_recovery_ctx ctx;
5aabf7c4 2128 int ret;
355810d1
SL
2129
2130 ctx.pos = log->last_checkpoint;
2131 ctx.seq = log->last_cp_seq;
2132 ctx.meta_page = alloc_page(GFP_KERNEL);
b4c625c6
SL
2133 ctx.data_only_stripes = 0;
2134 ctx.data_parity_stripes = 0;
2135 INIT_LIST_HEAD(&ctx.cached_list);
2136
355810d1
SL
2137 if (!ctx.meta_page)
2138 return -ENOMEM;
2139
5aabf7c4 2140 ret = r5c_recovery_flush_log(log, &ctx);
355810d1
SL
2141 __free_page(ctx.meta_page);
2142
5aabf7c4
SL
2143 if (ret)
2144 return ret;
b4c625c6 2145
5aabf7c4
SL
2146 if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2147 pr_debug("md/raid:%s: starting from clean shutdown\n",
2148 mdname(mddev));
2149 else {
2150 pr_debug("md/raid:%s: recoverying %d data-only stripes and %d data-parity stripes\n",
2151 mdname(mddev), ctx.data_only_stripes,
2152 ctx.data_parity_stripes);
2153
2154 if (ctx.data_only_stripes > 0)
2155 if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2156 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2157 mdname(mddev));
2158 return -EIO;
2159 }
b4c625c6
SL
2160 }
2161
5aabf7c4
SL
2162 log->log_start = ctx.pos;
2163 log->next_checkpoint = ctx.pos;
2164 log->seq = ctx.seq;
2165 r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq);
2166 r5l_write_super(log, ctx.pos);
f6bed0ef
SL
2167 return 0;
2168}
2169
2170static void r5l_write_super(struct r5l_log *log, sector_t cp)
2171{
2172 struct mddev *mddev = log->rdev->mddev;
2173
2174 log->rdev->journal_tail = cp;
2175 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2176}
2177
2c7da14b
SL
2178static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2179{
2180 struct r5conf *conf = mddev->private;
2181 int ret;
2182
2183 if (!conf->log)
2184 return 0;
2185
2186 switch (conf->log->r5c_journal_mode) {
2187 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2188 ret = snprintf(
2189 page, PAGE_SIZE, "[%s] %s\n",
2190 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2191 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2192 break;
2193 case R5C_JOURNAL_MODE_WRITE_BACK:
2194 ret = snprintf(
2195 page, PAGE_SIZE, "%s [%s]\n",
2196 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2197 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2198 break;
2199 default:
2200 ret = 0;
2201 }
2202 return ret;
2203}
2204
2205static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2206 const char *page, size_t length)
2207{
2208 struct r5conf *conf = mddev->private;
2209 struct r5l_log *log = conf->log;
2210 int val = -1, i;
2211 int len = length;
2212
2213 if (!log)
2214 return -ENODEV;
2215
2216 if (len && page[len - 1] == '\n')
2217 len -= 1;
2218 for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2219 if (strlen(r5c_journal_mode_str[i]) == len &&
2220 strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2221 val = i;
2222 break;
2223 }
2224 if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2225 val > R5C_JOURNAL_MODE_WRITE_BACK)
2226 return -EINVAL;
2227
2228 mddev_suspend(mddev);
2229 conf->log->r5c_journal_mode = val;
2230 mddev_resume(mddev);
2231
2232 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2233 mdname(mddev), val, r5c_journal_mode_str[val]);
2234 return length;
2235}
2236
2237struct md_sysfs_entry
2238r5c_journal_mode = __ATTR(journal_mode, 0644,
2239 r5c_journal_mode_show, r5c_journal_mode_store);
2240
2ded3703
SL
2241/*
2242 * Try handle write operation in caching phase. This function should only
2243 * be called in write-back mode.
2244 *
2245 * If all outstanding writes can be handled in caching phase, returns 0
2246 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2247 * and returns -EAGAIN
2248 */
2249int r5c_try_caching_write(struct r5conf *conf,
2250 struct stripe_head *sh,
2251 struct stripe_head_state *s,
2252 int disks)
2253{
2254 struct r5l_log *log = conf->log;
1e6d690b
SL
2255 int i;
2256 struct r5dev *dev;
2257 int to_cache = 0;
2ded3703
SL
2258
2259 BUG_ON(!r5c_is_writeback(log));
2260
1e6d690b
SL
2261 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2262 /*
2263 * There are two different scenarios here:
2264 * 1. The stripe has some data cached, and it is sent to
2265 * write-out phase for reclaim
2266 * 2. The stripe is clean, and this is the first write
2267 *
2268 * For 1, return -EAGAIN, so we continue with
2269 * handle_stripe_dirtying().
2270 *
2271 * For 2, set STRIPE_R5C_CACHING and continue with caching
2272 * write.
2273 */
2274
2275 /* case 1: anything injournal or anything in written */
2276 if (s->injournal > 0 || s->written > 0)
2277 return -EAGAIN;
2278 /* case 2 */
2279 set_bit(STRIPE_R5C_CACHING, &sh->state);
2280 }
2281
2282 for (i = disks; i--; ) {
2283 dev = &sh->dev[i];
2284 /* if non-overwrite, use writing-out phase */
2285 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2286 !test_bit(R5_InJournal, &dev->flags)) {
2287 r5c_make_stripe_write_out(sh);
2288 return -EAGAIN;
2289 }
2290 }
2291
2292 for (i = disks; i--; ) {
2293 dev = &sh->dev[i];
2294 if (dev->towrite) {
2295 set_bit(R5_Wantwrite, &dev->flags);
2296 set_bit(R5_Wantdrain, &dev->flags);
2297 set_bit(R5_LOCKED, &dev->flags);
2298 to_cache++;
2299 }
2300 }
2301
2302 if (to_cache) {
2303 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2304 /*
2305 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2306 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2307 * r5c_handle_data_cached()
2308 */
2309 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2310 }
2311
2312 return 0;
2313}
2314
2315/*
2316 * free extra pages (orig_page) we allocated for prexor
2317 */
2318void r5c_release_extra_page(struct stripe_head *sh)
2319{
d7bd398e 2320 struct r5conf *conf = sh->raid_conf;
1e6d690b 2321 int i;
d7bd398e
SL
2322 bool using_disk_info_extra_page;
2323
2324 using_disk_info_extra_page =
2325 sh->dev[0].orig_page == conf->disks[0].extra_page;
1e6d690b
SL
2326
2327 for (i = sh->disks; i--; )
2328 if (sh->dev[i].page != sh->dev[i].orig_page) {
2329 struct page *p = sh->dev[i].orig_page;
2330
2331 sh->dev[i].orig_page = sh->dev[i].page;
d7bd398e
SL
2332 if (!using_disk_info_extra_page)
2333 put_page(p);
1e6d690b 2334 }
d7bd398e
SL
2335
2336 if (using_disk_info_extra_page) {
2337 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2338 md_wakeup_thread(conf->mddev->thread);
2339 }
2340}
2341
2342void r5c_use_extra_page(struct stripe_head *sh)
2343{
2344 struct r5conf *conf = sh->raid_conf;
2345 int i;
2346 struct r5dev *dev;
2347
2348 for (i = sh->disks; i--; ) {
2349 dev = &sh->dev[i];
2350 if (dev->orig_page != dev->page)
2351 put_page(dev->orig_page);
2352 dev->orig_page = conf->disks[i].extra_page;
2353 }
2ded3703
SL
2354}
2355
2356/*
2357 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2358 * stripe is committed to RAID disks.
2359 */
2360void r5c_finish_stripe_write_out(struct r5conf *conf,
2361 struct stripe_head *sh,
2362 struct stripe_head_state *s)
2363{
1e6d690b
SL
2364 int i;
2365 int do_wakeup = 0;
2366
2ded3703
SL
2367 if (!conf->log ||
2368 !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2369 return;
2370
2371 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2372 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2373
2374 if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2375 return;
1e6d690b
SL
2376
2377 for (i = sh->disks; i--; ) {
2378 clear_bit(R5_InJournal, &sh->dev[i].flags);
2379 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2380 do_wakeup = 1;
2381 }
2382
2383 /*
2384 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2385 * We updated R5_InJournal, so we also update s->injournal.
2386 */
2387 s->injournal = 0;
2388
2389 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2390 if (atomic_dec_and_test(&conf->pending_full_writes))
2391 md_wakeup_thread(conf->mddev->thread);
2392
2393 if (do_wakeup)
2394 wake_up(&conf->wait_for_overlap);
a39f7afd
SL
2395
2396 if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2397 return;
2398
2399 spin_lock_irq(&conf->log->stripe_in_journal_lock);
2400 list_del_init(&sh->r5c);
2401 spin_unlock_irq(&conf->log->stripe_in_journal_lock);
2402 sh->log_start = MaxSector;
2403 atomic_dec(&conf->log->stripe_in_journal_count);
1e6d690b
SL
2404}
2405
2406int
2407r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2408 struct stripe_head_state *s)
2409{
a39f7afd 2410 struct r5conf *conf = sh->raid_conf;
1e6d690b
SL
2411 int pages = 0;
2412 int reserve;
2413 int i;
2414 int ret = 0;
2415
2416 BUG_ON(!log);
2417
2418 for (i = 0; i < sh->disks; i++) {
2419 void *addr;
2420
2421 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2422 continue;
2423 addr = kmap_atomic(sh->dev[i].page);
2424 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2425 addr, PAGE_SIZE);
2426 kunmap_atomic(addr);
2427 pages++;
2428 }
2429 WARN_ON(pages == 0);
2430
2431 /*
2432 * The stripe must enter state machine again to call endio, so
2433 * don't delay.
2434 */
2435 clear_bit(STRIPE_DELAYED, &sh->state);
2436 atomic_inc(&sh->count);
2437
2438 mutex_lock(&log->io_mutex);
2439 /* meta + data */
2440 reserve = (1 + pages) << (PAGE_SHIFT - 9);
1e6d690b 2441
a39f7afd
SL
2442 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2443 sh->log_start == MaxSector)
2444 r5l_add_no_space_stripe(log, sh);
2445 else if (!r5l_has_free_space(log, reserve)) {
2446 if (sh->log_start == log->last_checkpoint)
2447 BUG();
2448 else
2449 r5l_add_no_space_stripe(log, sh);
1e6d690b
SL
2450 } else {
2451 ret = r5l_log_stripe(log, sh, pages, 0);
2452 if (ret) {
2453 spin_lock_irq(&log->io_list_lock);
2454 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2455 spin_unlock_irq(&log->io_list_lock);
2456 }
2457 }
2458
2459 mutex_unlock(&log->io_mutex);
2460 return 0;
2ded3703
SL
2461}
2462
f6bed0ef
SL
2463static int r5l_load_log(struct r5l_log *log)
2464{
2465 struct md_rdev *rdev = log->rdev;
2466 struct page *page;
2467 struct r5l_meta_block *mb;
2468 sector_t cp = log->rdev->journal_tail;
2469 u32 stored_crc, expected_crc;
2470 bool create_super = false;
2471 int ret;
2472
2473 /* Make sure it's valid */
2474 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2475 cp = 0;
2476 page = alloc_page(GFP_KERNEL);
2477 if (!page)
2478 return -ENOMEM;
2479
796a5cf0 2480 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
f6bed0ef
SL
2481 ret = -EIO;
2482 goto ioerr;
2483 }
2484 mb = page_address(page);
2485
2486 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2487 mb->version != R5LOG_VERSION) {
2488 create_super = true;
2489 goto create;
2490 }
2491 stored_crc = le32_to_cpu(mb->checksum);
2492 mb->checksum = 0;
5cb2fbd6 2493 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
2494 if (stored_crc != expected_crc) {
2495 create_super = true;
2496 goto create;
2497 }
2498 if (le64_to_cpu(mb->position) != cp) {
2499 create_super = true;
2500 goto create;
2501 }
2502create:
2503 if (create_super) {
2504 log->last_cp_seq = prandom_u32();
2505 cp = 0;
56056c2e 2506 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
f6bed0ef
SL
2507 /*
2508 * Make sure super points to correct address. Log might have
2509 * data very soon. If super hasn't correct log tail address,
2510 * recovery can't find the log
2511 */
2512 r5l_write_super(log, cp);
2513 } else
2514 log->last_cp_seq = le64_to_cpu(mb->seq);
2515
2516 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
2517 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2518 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2519 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef 2520 log->last_checkpoint = cp;
28cd88e2 2521 log->next_checkpoint = cp;
a39f7afd
SL
2522 mutex_lock(&log->io_mutex);
2523 r5c_update_log_state(log);
2524 mutex_unlock(&log->io_mutex);
f6bed0ef
SL
2525
2526 __free_page(page);
2527
2528 return r5l_recovery_log(log);
2529ioerr:
2530 __free_page(page);
2531 return ret;
2532}
2533
2534int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2535{
c888a8f9 2536 struct request_queue *q = bdev_get_queue(rdev->bdev);
f6bed0ef
SL
2537 struct r5l_log *log;
2538
2539 if (PAGE_SIZE != 4096)
2540 return -EINVAL;
c757ec95
SL
2541
2542 /*
2543 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2544 * raid_disks r5l_payload_data_parity.
2545 *
2546 * Write journal and cache does not work for very big array
2547 * (raid_disks > 203)
2548 */
2549 if (sizeof(struct r5l_meta_block) +
2550 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2551 conf->raid_disks) > PAGE_SIZE) {
2552 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2553 mdname(conf->mddev), conf->raid_disks);
2554 return -EINVAL;
2555 }
2556
f6bed0ef
SL
2557 log = kzalloc(sizeof(*log), GFP_KERNEL);
2558 if (!log)
2559 return -ENOMEM;
2560 log->rdev = rdev;
2561
c888a8f9 2562 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
56fef7c6 2563
5cb2fbd6
SL
2564 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2565 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
2566
2567 mutex_init(&log->io_mutex);
2568
2569 spin_lock_init(&log->io_list_lock);
2570 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 2571 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 2572 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 2573 INIT_LIST_HEAD(&log->finished_ios);
a8c34f91 2574 bio_init(&log->flush_bio);
f6bed0ef
SL
2575
2576 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2577 if (!log->io_kc)
2578 goto io_kc;
2579
5036c390
CH
2580 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2581 if (!log->io_pool)
2582 goto io_pool;
2583
c38d29b3
CH
2584 log->bs = bioset_create(R5L_POOL_SIZE, 0);
2585 if (!log->bs)
2586 goto io_bs;
2587
e8deb638
CH
2588 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2589 if (!log->meta_pool)
2590 goto out_mempool;
2591
0576b1c6
SL
2592 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2593 log->rdev->mddev, "reclaim");
2594 if (!log->reclaim_thread)
2595 goto reclaim_thread;
a39f7afd
SL
2596 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2597
0fd22b45 2598 init_waitqueue_head(&log->iounit_wait);
0576b1c6 2599
5036c390
CH
2600 INIT_LIST_HEAD(&log->no_mem_stripes);
2601
f6bed0ef
SL
2602 INIT_LIST_HEAD(&log->no_space_stripes);
2603 spin_lock_init(&log->no_space_stripes_lock);
2604
3bddb7f8
SL
2605 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2606
2ded3703 2607 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
a39f7afd
SL
2608 INIT_LIST_HEAD(&log->stripe_in_journal_list);
2609 spin_lock_init(&log->stripe_in_journal_lock);
2610 atomic_set(&log->stripe_in_journal_count, 0);
2ded3703 2611
f6bed0ef
SL
2612 if (r5l_load_log(log))
2613 goto error;
2614
f6b6ec5c 2615 rcu_assign_pointer(conf->log, log);
a62ab49e 2616 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
f6bed0ef 2617 return 0;
e8deb638 2618
f6bed0ef 2619error:
0576b1c6
SL
2620 md_unregister_thread(&log->reclaim_thread);
2621reclaim_thread:
e8deb638
CH
2622 mempool_destroy(log->meta_pool);
2623out_mempool:
c38d29b3
CH
2624 bioset_free(log->bs);
2625io_bs:
5036c390
CH
2626 mempool_destroy(log->io_pool);
2627io_pool:
f6bed0ef
SL
2628 kmem_cache_destroy(log->io_kc);
2629io_kc:
2630 kfree(log);
2631 return -EINVAL;
2632}
2633
2634void r5l_exit_log(struct r5l_log *log)
2635{
0576b1c6 2636 md_unregister_thread(&log->reclaim_thread);
e8deb638 2637 mempool_destroy(log->meta_pool);
c38d29b3 2638 bioset_free(log->bs);
5036c390 2639 mempool_destroy(log->io_pool);
f6bed0ef
SL
2640 kmem_cache_destroy(log->io_kc);
2641 kfree(log);
2642}